WO2023100299A1 - Time synchronization device, time synchronization method, and program - Google Patents

Time synchronization device, time synchronization method, and program Download PDF

Info

Publication number
WO2023100299A1
WO2023100299A1 PCT/JP2021/044154 JP2021044154W WO2023100299A1 WO 2023100299 A1 WO2023100299 A1 WO 2023100299A1 JP 2021044154 W JP2021044154 W JP 2021044154W WO 2023100299 A1 WO2023100299 A1 WO 2023100299A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
offset
transmission delay
threshold
delay time
Prior art date
Application number
PCT/JP2021/044154
Other languages
French (fr)
Japanese (ja)
Inventor
佳祐 山形
慎一 吉原
豪 矢沢
隆 中西
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023564347A priority Critical patent/JPWO2023100299A1/ja
Priority to PCT/JP2021/044154 priority patent/WO2023100299A1/en
Publication of WO2023100299A1 publication Critical patent/WO2023100299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Definitions

  • the present disclosure relates to a time synchronization device, time synchronization method and program.
  • the PTP Precision Time Protocol
  • the IEEE-1588 standard is a protocol that synchronizes the time (device time) of computers on a LAN (Local Area Network) with high accuracy (see Non-Patent Document 1).
  • FIG. 11 is a diagram showing a configuration example of a time synchronization system 1 that synchronizes the time of devices on a network using the PTP protocol.
  • the time synchronization system 1 shown in FIG. 11 includes a Grand Master Clock 2, a conventional Boundary Clock 100a, and a client device 3.
  • Grand Master Clock 2 and Boundary Clock 100a can communicate via a network such as a LAN.
  • the Boundary Clock 100a and the client device 3 can communicate via a network such as a LAN.
  • the Grand Master Clock 2 is equipped with a GNSS antenna that receives signals (GNSS signals) from satellites of a global positioning satellite system (GNSS: Global Navigation Satellite System) such as GPS (Global Positioning System).
  • GNSS Global Navigation Satellite System
  • Grand Master Clock 2 receives GNSS signals via a GNSS antenna and obtains Coordinated Universal Time (UTC) from the received GNSS signals.
  • the Grand Master Clock 2 has a master function that distributes the obtained UTC as a reference time via the network.
  • the Boundary Clock 100a functions as a device with a slave function that synchronizes the internal time of its own device with the time delivered from the host device for the host device with the master function, and for the slave device with the slave function functions as a device with master functionality.
  • the Boundary Clock 100a functions as a device with a slave function for the Grand Master Clock 2, and functions as a device with a master function for the client device 3. Therefore, the Boundary Clock 100a synchronizes the internal time of the Boundary Clock 100a with the time (reference time) delivered from the Grand Master Clock 2 by transmitting and receiving PTP packets to and from the Grand Master Clock 2.
  • Boundary Clock 100a distributes the device internal time to the client device 3 by transmitting/receiving a PTP packet to/from the client device 3, and synchronizes the device internal time of the client device 3 with the internal device time of its own device.
  • the client device 3 has a slave function that synchronizes the internal time of the device with the time delivered from the device with the master function. In the time synchronization system 1 shown in FIG. 11, the client device 3 synchronizes the device internal time with the time delivered from the Boundary Clock 100a.
  • the client device 3 is, for example, a base station device in a mobile phone network.
  • IEEE Std 1588TM-2008 “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”
  • the conventional Boundary Clock 100a synchronizes with the internal time of the Grand Master Clock 2, which includes a large error, and may continue to deliver an erroneous time to the subordinate client device 3 due to a large error from UTC. If such an erroneous time is delivered, there is a possibility that the internal time of the user device under the control of the client device 3 will be shifted, resulting in system failure or communication failure. In addition to the user devices under the client device 3, the system failure or the It may cause communication failure. Thus, synchronization to the wrong time can cause very high impact problems. Therefore, it is necessary to more accurately determine the occurrence of a failure in synchronizing the internal time of the host device and the internal time of the local device and the location of the failure.
  • the object of the present disclosure which has been made in view of the above problems, is to synchronize the device internal time of the device with the time delivered from the host device, and synchronize the device internal time of the lower device with the device internal time of the device itself.
  • the time synchronization device synchronizes the device internal time of the own device with the device internal time of the host device by transmitting and receiving packets with the host device, and synchronizes the device internal time of the lower device.
  • a time synchronizing device for synchronizing with the device internal time of the own device, the offset calculation unit calculating an offset that is a difference between the device internal time of the host device and the device internal time of the host device; and the host device A transmission delay time calculation unit for calculating a transmission delay time of a packet transmitted/received to/from the device itself, an offset pattern determination unit for determining the variation pattern of the offset, and a transmission delay for determining the variation pattern of the transmission delay time.
  • a time pattern determination unit; and a failure location determination unit that determines a location where a failure occurs in time synchronization with the host device based on the offset variation pattern and the transmission delay time variation pattern.
  • a time synchronization method synchronizes the device internal time of the device with the device internal time of the host device by transmitting and receiving packets with the host device
  • a time synchronization method for synchronizing a time with an internal device time of a host device comprising: calculating an offset, which is a difference between the device internal time of the host device and the device internal time of the host device; a step of calculating a transmission delay time of a packet transmitted/received between itself; a step of determining a variation pattern of said offset; a step of determining a variation pattern of said transmission delay time; , determining a location where a failure occurs in time synchronization with the host device based on the variation pattern of the transmission delay time.
  • a program according to the present disclosure causes a computer to operate as the time synchronization device described above.
  • the internal time of the own device is synchronized with the time delivered from the upper device
  • the internal time of the lower device is synchronized with the internal time of the own device. In this case, it is possible to more accurately determine the occurrence of a failure in synchronization between the internal time of the host device and the internal time of the own device and the location of the failure.
  • FIG. 1 is a diagram showing a configuration example of a Boundary Clock as a time synchronization device according to the first embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram for explaining calculation of offset and transmission delay time
  • FIG. 2 is a flow chart showing an example of the operation of the Boundary Clock shown in FIG. 1
  • FIG. FIG. 5 is a diagram showing an example of an offset variation pattern
  • FIG. 10 is a diagram showing another example of an offset variation pattern
  • FIG. 4 is a diagram showing an example of a variation pattern of transmission delay time
  • FIG. 10 is a diagram showing another example of a variation pattern of transmission delay time
  • FIG. 10 is a diagram showing another example of a variation pattern of transmission delay time
  • FIG. 10 is a diagram showing still another example of a transmission delay time variation pattern
  • 2 is a diagram for explaining determination of a failure location by a failure location determination unit shown in FIG. 1
  • FIG. 2 is a diagram showing an example of the hardware configuration of the Boundary Clock shown in FIG. 1
  • FIG. FIG. 7 is a diagram showing a configuration example of a Boundary Clock as a time synchronization device according to the second embodiment of the present disclosure
  • FIG. FIG. 9 is a flow chart showing an example of the operation of the Boundary Clock shown in FIG. 8
  • FIG. FIG. 9 is a diagram for explaining selection of time synchronization targets by the time selection unit shown in FIG. 8 ; It is a figure which shows the structural example of the conventional time synchronous system.
  • FIG. 1 is a diagram showing a configuration example of a Boundary Clock 100 as a time synchronization device according to the first embodiment of the present disclosure.
  • the Boundary Clock 100 according to this embodiment distributes the time distributed from the Grand Master Clock 2 to the client device 3 instead of the Boundary Clock 100a in the time synchronization system 1 shown in FIG. That is, the Boundary Clock 100 as a time synchronization device according to the present embodiment synchronizes the device internal time of its own device with the device internal time of the host device by transmitting and receiving packets (PTP packets) with the host device (Grand Master Clock 2). , the device internal time of the subordinate device (client device 3) is synchronized with the device internal time of the own device.
  • PTP packets packets
  • the Boundary Clock 100 includes packet transmission/reception units 101 and 105, an offset calculation unit 102, a transmission delay time calculation unit 103, a time synchronization processing unit 104, and a threshold storage unit 106. , an offset pattern determination section 107 , a transmission delay time pattern determination section 108 , a count flag section 109 , a Clock Class rewrite section 110 and a failure location determination section 111 .
  • the packet transmitting/receiving unit 101 transmits/receives PTP packets to/from the Grand Master Clock2.
  • Packet transmitting/receiving section 101 outputs the packet received from Grand Master Clock 2 to offset calculating section 102 and transmission delay time calculating section 103 .
  • the offset calculation unit 102 calculates an offset, which is the difference between the Grand Master Clock 2, which is a higher-level device, and the internal device time of its own device (Boundary Clock 100). Specifically, the offset calculation unit 102 acquires the time stamp from the packet output from the packet transmission/reception unit 101, and calculates the offset based on the acquired time stamp. Calculation of the offset by the offset calculator 102 will be described below with reference to FIG.
  • Grand Master Clock 2 sends a Sync message to Boundary Clock 100.
  • the Grand Master Clock 2 transmits to the Boundary Clock 100 a Sync message including a time stamp indicating time T1, which is the transmission time of the Sync message.
  • the Boundary Clock 100 When the Boundary Clock 100 receives the Sync message transmitted from the Grand Master Clock 2 at time T2, it transmits a Delay_Req message (delay request message) to the Grand Master Clock 2 at time T3.
  • the Grand Master Clock 2 When the Grand Master Clock 2 receives the Delay_Req message sent from the Boundary Clock 100 at time T 4 , it sends a Delay_Resp message (delayed response message) to the Boundary Clock 100 .
  • the Grand Master Clock 2 transmits to the Boundary Clock 100 a Delay_Resp message including a time stamp indicating time T4, which is the time at which the Delay_Req message was received.
  • the offset calculation unit 102 outputs the offset calculation result to the time synchronization processing unit 104 and the offset pattern determination unit 107 .
  • the transmission delay time calculation unit 103 calculates the transmission delay time of PTP packets transmitted and received between the Grand Master Clock 2 and the Boundary Clock 100, which are host devices.
  • the transmission delay time calculation unit 103 outputs the calculation result of the transmission delay time to the time synchronization processing unit 104 and the transmission delay time pattern determination unit 108 .
  • the time synchronization processing unit 104 Based on the offset calculated by the offset calculation unit 102 and the transmission delay time calculated by the transmission delay time calculation unit 103, the time synchronization processing unit 104 converts the internal time of the Boundary Clock 100 to the internal time of the Grand Master Clock 2. sync to
  • the packet transmission/reception unit 105 transmits/receives PTP packets to/from the client device 3 .
  • a packet transmitted/received to/from the client device 3 includes time information of the internal time of the Boundary Clock 100, and by transmitting/receiving the packet, the internal time of the client device 3 is synchronized with the internal time of the Boundary Clock 100. be able to.
  • Threshold storage unit 106 stores thresholds (first threshold TH1, second threshold TH2, third threshold TH3 and fourth threshold TH4) of is stored.
  • Methods of setting each threshold include a method of setting a predetermined fixed value, a method of obtaining offset and transmission delay time data for a certain period of time, and a method of setting based on an average value thereof, and the like.
  • the offset pattern determination unit 107 determines the offset variation pattern calculated by the offset calculation unit 102 . Specifically, the offset pattern determination unit 107 determines whether or not the absolute value of the offset is greater than the first threshold TH1. Then, the offset pattern determination unit 107 determines whether or not the time or the number of times that the absolute value of the offset is greater than the first threshold TH1 is greater than the second threshold TH2, as the variation pattern of the offset. Offset pattern determination section 107 outputs the determination result to fault location determination section 111 .
  • the transmission delay time pattern determination unit 108 determines the variation pattern of the transmission delay time calculated by the transmission delay time calculation unit 103 . Specifically, transmission delay time pattern determining section 108 determines whether or not the transmission delay is greater than third threshold TH3. Then, transmission delay time pattern determining section 108 determines whether or not the time or the number of times that the transmission delay time is determined to be greater than the third threshold TH3 is greater than the fourth threshold TH4 as the variation pattern of the transmission delay time. do. Transmission delay time pattern determination section 108 outputs the determination result to fault point determination section 111 .
  • the count flag unit 109 manages an offset count flag that indicates whether or not the time or the number of times it is determined that the absolute value of the offset is greater than the first threshold TH1 is being counted.
  • the count flag unit 109 also manages a transmission delay time count flag indicating whether or not the time or the number of times the transmission delay time is determined to be greater than the third threshold TH3 is being counted.
  • the Clock Class rewriting section 110 rewrites the Clock Class indicating whether or not the internal time of the Boundary Clock 100 is synchronized with the internal time of the Grand Master Clock 2 under the control of the failure point determining section 111 and outputs the Clock Class to the packet transmitting/receiving section 105 . do.
  • the Clock Class is included in the PTP packet transmitted and received between the Boundary Clock 100 and the client device 3 and transmitted to the client device 3 . In the client device 3, if the Clock Class indicates that the internal time of the Boundary Clock 100 is synchronized with the internal time of the Grand Master Clock 2, the internal time of the client device 3 is synchronized with the internal time of the Boundary Clock 100. is done.
  • the Clock Class indicates that the internal time of the Boundary Clock 100 is not synchronized with the internal time of the Grand Master Clock 2
  • the synchronization of the internal time of the client device 3 with the internal time of the Boundary Clock 100 is stopped. be.
  • the failure location determination unit 111 determines the Grand Determine the occurrence of a time synchronization failure with Master Clock 2 and the location of the failure.
  • the location of the time synchronization failure can be the GNSS antenna provided by the Grand Master Clock 2, the Grand Master Clock 2 itself, or the transmission path between the Grand Master Clock 2 and the Boundary Clock 100. If the point of failure is the GNSS antenna, it is conceivable that it has been subjected to signal attacks such as jamming or spoofing. Also, if the location of the failure is the Grand Master Clock 2 itself, it is conceivable that some functions within the Grand Master Clock 2 have failed. Also, if the location of the failure is the transmission path between the Grand Master Clock 2 and the Boundary Clock 100, for example, a temporary cable failure may have occurred.
  • the failure location determination unit 111 determines that the location of the failure is the Grand Master Clock 2 (the GNSS antenna provided by the Grand Master Clock 2, or the Grand Master Clock 2 itself) or the transmission path between the Grand Master Clock 2 and the Boundary Clock 100. determine whether The details of the determination of the failure location by the failure location determination unit 111 will be described later.
  • the failure location determining unit 111 determines that the failure location is the Grand Master Clock 2, it stops synchronizing the internal device time of the client device 3 with the internal device time of its own device. Specifically, the failure point determination unit 111 rewrites the Clock Class so that the Clock Class indicates that the internal time of the Boundary Clock 100 is not synchronized with the internal time of the Grand Master Clock 2. direct to.
  • FIG. 3 is a flowchart showing an example of the operation of the Boundary Clock 100 according to this embodiment, and is a diagram for explaining the time synchronization method by the Boundary Clock 100.
  • FIG. 3 is a flowchart showing an example of the operation of the Boundary Clock 100 according to this embodiment, and is a diagram for explaining the time synchronization method by the Boundary Clock 100.
  • the offset calculation unit 102 acquires the time stamp from the packet output from the packet transmission/reception unit 101 and calculates the offset (step S101).
  • the offset pattern determination unit 107 determines whether the absolute value of the offset calculated by the offset calculation unit 102 is greater than the first threshold TH1 stored in the threshold storage unit 106 (step S102).
  • the first threshold TH1 is a threshold for determining whether or not the offset has changed significantly. For example, normally, if the absolute value of the offset between the device time of Grand Master Clock 2 and the device time of Boundary Clock 100 is less than 1 ms, the first threshold TH1 is set to 1 ms, for example. In this case, the offset pattern determination unit 107 sequentially determines whether the absolute value of the offset is greater than 1 ms. The offset pattern determination unit 107 counts the number of consecutive determinations that the absolute value of the offset is greater than the first threshold TH1. This count value is hereinafter referred to as an offset count.
  • the average value of data for a certain period of time may be set as the first threshold TH1.
  • the offset is calculated every second, and the average value of the 60 pieces of data is used as the first threshold value TH1. may be set.
  • the offset pattern determination unit 107 When determining that the absolute value of the offset is greater than the first threshold TH1 (step S102: Yes), the offset pattern determination unit 107 increases the offset count by 1 (step S103) and turns on the offset count flag. If the offset count flag is already on, the offset pattern determination unit 107 keeps the offset count flag on.
  • the offset pattern determination unit 107 determines whether or not the offset count is greater than the second threshold TH2 (step S104).
  • the second threshold TH2 is a threshold for determining whether the change in offset is temporary.
  • the second threshold TH2 is set to 10 times, for example. In this case, the offset pattern determination unit 107 determines whether or not the absolute value of the offset is greater than the first threshold TH1 (for example, 1 ms) ten consecutive times.
  • step S104 determines that the offset count is equal to or less than the second threshold TH2 (0 ⁇ offset count ⁇ second threshold TH2) (step S104: No), the process is repeated from step S101. .
  • step S104 If it is determined that the offset count is greater than the second threshold TH2 (second threshold TH2 ⁇ offset count) (step S104: Yes), the offset pattern determination unit 107 determines that the offset count is greater than the second threshold TH2. This is notified to the failure location determination unit 111 . In other words, the offset pattern determination unit 107 detects, as the offset variation pattern, that the state in which the absolute value of the offset is greater than the first threshold TH1 continues for a predetermined time corresponding to the second threshold TH2. can be notified to
  • the offset pattern determining unit 107 sets the offset count to 0 and turns off the offset count flag (step S105). .
  • the offset count is 0 and the offset count flag remains off. Therefore, the offset pattern determination unit 107 can notify the fault location determination unit 111 that the offset variation pattern is that the absolute value of the offset continues to be equal to or less than the first threshold TH1.
  • the Boundary Clock 100 synchronizes the device internal time of its own device with the device internal time of the Grand Master Clock 2, so that the offset eventually reaches the first threshold TH1. be smaller than Therefore, the offset pattern determination unit 107 determines whether the offset variation pattern is a pattern (pattern 0) in which the offset remains smaller than the first threshold TH1 shown in FIG. is larger than the threshold TH1, and after a predetermined period of time corresponding to the second threshold TH2 has elapsed, it is determined whether the pattern (pattern 1) is smaller than the first threshold TH1. output to
  • step S106 to step S109 described below is performed.
  • the transmission delay time calculation unit 103 acquires the time stamp from the packet output from the packet transmission/reception unit 101 and calculates the transmission delay time (step S106).
  • the transmission delay time pattern determination unit 108 determines whether or not the transmission delay time calculated by the transmission delay time calculation unit 103 is greater than the third threshold TH3 stored in the threshold storage unit 106 (step S107). .
  • the third threshold TH3 is a threshold for determining whether or not the transmission delay time has changed significantly. For example, normally, when packets are transmitted and received between the Grand Master Clock 2 and the Boundary Clock 100 within 10 ms, the third threshold TH3 is set to 10 ms, for example. In this case, transmission delay time pattern determination section 108 successively determines whether or not the transmission delay time is greater than 10 ms.
  • the transmission delay time pattern determination unit 108 counts the number of consecutive determinations that the transmission delay time is greater than the third threshold TH3. This count value is hereinafter referred to as a transmission delay time count.
  • the average value of data for a certain period of time may be set as the third threshold TH3.
  • the transmission delay time is calculated every second, and the average value of the 60 pieces of data is the third threshold. It may be set as TH3.
  • step S107 If it is determined that the transmission delay time is greater than the third threshold TH3 (step S107: Yes), the transmission delay time pattern determination unit 108 increases the transmission delay time count by 1 (step S108), and turns on the transmission delay time count flag. to If the transmission delay time count flag is already on, transmission delay time pattern determination section 108 keeps the transmission delay time count flag on.
  • the transmission delay time pattern determination unit 108 determines whether or not the transmission delay time count is greater than the fourth threshold TH4 (step S109).
  • a fourth threshold TH4 is a threshold for determining whether the change in transmission delay time is temporary.
  • the fourth threshold TH4 is set to ten times, for example. In this case, the transmission delay time pattern determination unit 108 determines whether or not the transmission delay time is greater than the third threshold TH3 (for example, 10 ms) ten consecutive times.
  • step S109 No
  • step S109 No
  • the transmission delay time pattern determination unit 108 determines that the transmission delay time count is greater than the fourth threshold TH4. It notifies the failure point determination unit 111 that the threshold value TH4 of 4 has been exceeded. That is, the transmission delay time pattern determination unit 108 determines that the state in which the transmission delay time is greater than the third threshold TH3 continues for a predetermined time corresponding to the fourth threshold TH4 as the variation pattern of the transmission delay time. The determination unit 111 can be notified.
  • the transmission delay time pattern determination unit 108 sets the transmission delay time count to 0 and turns off the transmission delay time count flag. (step S105).
  • the transmission delay time pattern determination unit 108 can notify the failure location determination unit 111 that the transmission delay time is continuously equal to or less than the third threshold TH3 as the variation pattern of the transmission delay time. .
  • the transmission delay time pattern determination unit 108 determines that the transmission delay time becomes larger than the third threshold TH3 and the transmission delay time before the predetermined time corresponding to the fourth threshold TH4 elapses as the variation pattern of the transmission delay time. has become equal to or less than the third threshold TH3.
  • the transmission delay time pattern determination unit 108 determines whether the variation pattern of the transmission delay time is a pattern (pattern 0) in which the transmission delay time remains smaller than the third threshold TH3 shown in FIG. 5C, in which the transmission delay time becomes larger than the third threshold TH3 and becomes smaller than the third threshold TH3 before the predetermined time corresponding to the fourth threshold TH4 elapses (pattern 1), or FIG. is a pattern in which the transmission delay time is greater than the third threshold TH3 continues even after a predetermined period of time corresponding to the fourth threshold TH4 has passed. output to
  • the location determination unit 111 determines the occurrence of a failure in time synchronization with the Grand Master Clock 2 and the location of the failure based on the variation pattern of the offset and the variation pattern of the transmission delay time (step S110). Determination of the failure location by the failure location determination unit 111 will be described with reference to FIG.
  • pattern 0 and pattern 1 there are two patterns, pattern 0 and pattern 1, as offset variation patterns. Also, as described with reference to FIGS. 5A, 5B, and 5C, there are three patterns, pattern 0, pattern 1, and pattern 2, as transmission delay time variation patterns. Therefore, by combining the offset variation pattern and the transmission delay time variation pattern, there are six patterns (pattern A to pattern F) as shown in FIG.
  • Pattern A is a pattern in which pattern 0 is the variation pattern of the offset and pattern 0 is the variation pattern of the transmission delay time. That is, in pattern A, the absolute value of the offset is equal to or less than the first threshold TH1 (FIG. 4A), and the transmission delay time is equal to or less than the third threshold TH3. Therefore, there is no abnormality in the offset and the transmission delay time, and it is considered that there is no failure in synchronizing the internal time of the Grand Master Clock 2 and the internal time of the Boundary Clock 100 .
  • Pattern B is a pattern in which pattern 1 is the variation pattern of the offset and pattern 0 is the variation pattern of the transmission delay time. That is, pattern B is a state in which the absolute value of the offset is greater than the first threshold TH1 and the transmission delay time is less than or equal to the third threshold TH3. In this case, in pattern B, although there is no abnormality in the transmission path between the Grand Master Clock 2 and the Boundary Clock 100, the absolute value of the offset has a deviation larger than the first threshold TH1. It is considered that an abnormality has occurred in the internal time of Grand Master Clock 2 (a failure occurred in Grand Master Clock 2).
  • Pattern C is a pattern in which pattern 0 is the variation pattern of the offset and pattern 1 is the variation pattern of the transmission delay time. That is, pattern C is a state in which the absolute value of the offset is less than or equal to the first threshold TH1, and the transmission delay time is greater than the third threshold TH3 and then less than the third threshold TH3. In this case, in pattern C, even if the transmission delay time fluctuates greatly temporarily, the offset does not deviate more than the first threshold TH1, so the transmission line between Grand Master Clock 2 and Boundary Clock 100 It is considered that a temporary failure (eg, congestion) occurred in
  • Pattern D is a pattern in which pattern 1 is the variation pattern of the offset and pattern 1 is the variation pattern of the transmission delay time. That is, in pattern D, the absolute value of the offset becomes larger than the first threshold TH1, then becomes equal to or smaller than the first threshold TH1, and the transmission delay time becomes larger than the third threshold TH3, and then the third threshold TH3. is smaller than the threshold TH3. In this case, in pattern D, even if the transmission delay time temporarily increases, it returns to the original value. It is possible that a failure occurred on its own.
  • Pattern E is a pattern in which pattern 0 is the variation pattern of the offset and pattern 2 is the variation pattern of the transmission delay time. That is, in pattern E, the absolute value of the offset remains equal to or less than the first threshold TH1 and the transmission delay time remains greater than the third threshold TH3.
  • Pattern F is a pattern in which pattern 1 is the variation pattern of the offset and pattern 2 is the variation pattern of the transmission delay time. That is, in pattern F, the absolute value of the offset becomes greater than the first threshold TH1, then becomes equal to or less than the first threshold TH1, and the transmission delay time remains greater than the third threshold TH3. In patterns E and F, since the transmission delay time anomaly continues for a long time, it is considered that an anomaly has occurred in the transmission line (for example, cable) between the Grand Master Clock 2 and the Boundary Clock 100 .
  • the transmission line for example, cable
  • the fault location determining unit 111 determines the location of the failure based on the combination of the offset variation pattern and the transmission delay time variation pattern as described with reference to FIG. Specifically, in the case of patterns A, C, E, and F, the failure point determination unit 111 determines that no failure has occurred or that a failure has occurred in the transmission line between the Grand Master Clock 2 and the Boundary Clock 100. judge. On the other hand, in the case of patterns B and D, the failure location determining unit 111 determines that a failure has occurred in the Grand Master Clock2.
  • the failure location determining unit 111 determines that no failure has occurred or that a failure has occurred in the transmission path between the Grand Master Clock 2 and the Boundary Clock 100 (offset fluctuation pattern and If the combination with the variation pattern of the transmission delay time is pattern A, C, E, F), the time itself delivered from the Grand Master Clock 2 is accurate, so the internal time of the client device 3 continues to be the own device. Synchronize with the device internal time.
  • the failure location determining unit 111 determines that a failure has occurred in the Grand Master Clock 2 (when the combination of the offset fluctuation pattern and the transmission delay time fluctuation pattern is patterns B and D), the failure occurs in the Grand Master Clock 2. The occurrence is notified to the Clock Class rewriting unit 110 (step S111).
  • the Clock Class rewriting unit 110 Upon receiving the notification from the failure location determining unit 111, the Clock Class rewriting unit 110 rewrites the Clock Class so that the Clock Class indicates that the internal time of the Boundary Clock 100 is not synchronized with the internal time of the Grand Master Clock 2. . As a result, synchronization of the device internal time of the client device 3 with the device internal time of the Boundary Clock 100 is stopped.
  • the second threshold TH2 is the number of times the absolute value of the offset is determined to be greater than the first threshold TH1, but it is not limited to this.
  • the second threshold TH2 may be the time during which the absolute value of the offset is continuously determined to be greater than the first threshold TH1.
  • the offset pattern determination unit 107 determines, for example, whether the time period during which the absolute value of the offset exceeds the first threshold TH1 is longer than the second threshold TH2 (eg, 30 seconds).
  • the fourth threshold TH4 is the number of times the transmission delay time is determined to be greater than the third threshold TH3, but it is not limited to this.
  • the fourth threshold TH4 may be a period of time during which the transmission delay time is continuously determined to be greater than the third threshold TH3.
  • the transmission delay time pattern determination unit 108 determines, for example, whether or not the time during which the transmission delay time exceeds the third threshold TH3 is longer than the fourth threshold TH4 (eg, 30 seconds).
  • the failure point determination unit 111 determines that the time or the number of times that the absolute value of the offset is greater than the first threshold TH1 is greater than the second threshold TH2, and the transmission delay time is equal to or less than the third threshold TH3. If there is, it is determined that the location of the fault is Grand Master Clock2. Alternatively, the failure point determination unit 111 determines that the time or number of times that the absolute value of the offset is greater than the first threshold TH1 is greater than the second threshold TH2, and the transmission delay time is greater than the third threshold TH3. If the determined time or number of times is smaller than the fourth threshold TH4, it is determined that the fault has occurred at Grand Master Clock2.
  • a method of determining the occurrence of a failure and the location of the failure using only the variation pattern of the transmission delay time is also conceivable. For example, if the transmission delay time fluctuation pattern fluctuates like pattern 1 shown in FIG. 5B, a failure occurs in Grand Master Clock 2, and if it fluctuates like pattern 2 shown in FIG. A method of determining that a failure has occurred in the transmission line between the Master Clock 2 and the Boundary Clock 100 is conceivable. However, this method may not be able to accurately determine the occurrence of a fault and the location of the fault.
  • time T1 and time T4 are shifted by the same amount of time, time T1 and time T4 cancel each other out, as is clear from the above-described equation 2, and the change in transmission delay time due to the shift between time T1 and time T4 is determined.
  • I can't the change in transmission delay time due to the shift between time T1 and time T4 is determined.
  • time synchronization device has been described using an example in which time synchronization is performed between the Grand Master Clock 2 and the client device 3, but it is not limited to this.
  • the time synchronization device according to the present disclosure may perform time synchronization between one Boundary Clock and another Boundary Clock, for example.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the Boundary Clock 100 as the time synchronization device according to this embodiment.
  • FIG. 7 shows an example of the hardware configuration of the Boundary Clock 100 when the Boundary Clock 100 is configured by a computer capable of executing program instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal computer), an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • the Boundary Clock 100 includes a processor 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input section 15, a display section 16 and a communication interface (I/F) 17. have. Each component is communicatively connected to each other via a bus 19 .
  • the processor 11 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), and the like. may be configured by a plurality of processors of
  • the processor 11 is a control unit that controls each configuration and executes various arithmetic processing. That is, the processor 11 reads a program from the ROM 12 or the storage 14 and executes the program using the RAM 13 as a work area. The processor 11 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 12 or the storage 14 .
  • the ROM 12 or storage 14 stores a program for causing a computer to function as the Boundary Clock 100 according to the present disclosure.
  • each configuration of the Boundary Clock 100 that is, the offset calculation unit 102, the transmission delay time calculation unit 103, the time synchronization processing unit 104, the offset pattern determination unit 107, the transmission delay A time pattern determination section 108, a count flag section 109, a Clock Class rewrite section 110, and a fault point determination section 111 are implemented.
  • Programs are stored in non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), USB (Universal Serial Bus) memory, etc. may be provided in Also, the program may be downloaded from an external device via a network.
  • CD-ROM Compact Disk Read Only Memory
  • DVD-ROM Digital Versatile Disk Read Only Memory
  • USB Universal Serial Bus
  • the ROM 12 stores various programs and various data.
  • RAM 13 temporarily stores programs or data as a work area.
  • the storage 14 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
  • the ROM 12 or storage 14 stores, for example, the above-described first threshold TH1, second threshold TH2, third threshold TH3 and fourth threshold TH4.
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
  • the display unit 16 is, for example, a liquid crystal display, and displays various information.
  • the display unit 16 may employ a touch panel system and function as the input unit 15 .
  • the communication interface 17 is an interface for communicating with other devices (eg, Grand Master Clock 2 and client device 3), for example, an interface for LAN.
  • devices eg, Grand Master Clock 2 and client device 3
  • a computer can be suitably used to function as each part of the Boundary Clock 100 described above.
  • Such a computer can be implemented by storing a program describing the processing details for realizing the function of each part of the Boundary Clock 100 in the memory of the computer, and reading and executing this program by the processor of the computer. can be done. That is, the program can cause the computer to function as the Boundary Clock 100 described above. It is also possible to record the program in a non-temporary storage medium. It is also possible to provide the program via a network.
  • the Boundary Clock 100 as a time synchronization device includes an offset calculation unit 102, a transmission delay time calculation unit 103, an offset pattern determination unit 107, a transmission delay time pattern determination unit 108, and a fault location determination unit. and a section 111 .
  • the offset calculation unit 102 calculates an offset, which is the difference between the internal device time of the host device and the internal device time of the own device.
  • the transmission delay time calculator 103 calculates the transmission delay time of packets transmitted and received between the host device and its own device.
  • the offset pattern determination unit 107 determines an offset variation pattern.
  • Transmission delay time pattern determining section 108 determines a variation pattern of transmission delay time.
  • the failure location determination unit 111 determines the location of a failure in time synchronization with a higher-level device based on the variation pattern of the offset and the variation pattern of the transmission delay time.
  • the offset calculation unit 102 calculates an offset that is the difference between the device internal time of the host device and the device internal time of the own device (step S101), and the transmission delay time calculation and a step (step S106) of calculating a transmission delay time of a packet transmitted/received between the host device and the own device by the unit 103 .
  • the offset pattern determination unit 107 determines the offset variation pattern (steps S102 to S104), and the transmission delay time pattern determination unit 108 determines the transmission delay time variation.
  • a step of determining a pattern (steps S107 to S109), and a failure location determination unit 111 determines a failure location of time synchronization with a higher-level device based on an offset variation pattern and a transmission delay time variation pattern. and (step S110).
  • FIG. 8 is a diagram showing a configuration example of a Boundary Clock 100A as a time synchronization device according to the second embodiment of the present disclosure.
  • the Boundary Clock 100A includes packet transmission/reception units 101, 101A, and 105, an offset calculation unit 102, a transmission delay time calculation unit 103, a time synchronization processing unit 104, and a threshold storage unit. 106 , an offset pattern determination unit 107 , a transmission delay time pattern determination unit 108 , a count flag unit 109 , a failure location determination unit 111 A, and a time selection unit 112 .
  • the Boundary Clock 100A according to this embodiment differs from the Boundary Clock 100 according to the first embodiment in that a packet transmission/reception section 101A and a time selection section 112 are added, and the Clock Class rewrite section 110 is removed. , in that the failure location determination unit 111 is changed to a failure location determination unit 111A.
  • the packet transmitting/receiving unit 101A transmits/receives packets to/from the Grand Master Clock 2A, which is different from the Grand Master Clock 2 with which the packet transmitting/receiving unit 101 transmits/receives packets. That is, the Boundary Clock 100A according to this embodiment can communicate with a plurality of Grand Master Clocks 2 and 2A. Packet transmitting/receiving section 101A outputs the packet received from Grand Master Clock 2A to offset calculating section 102 and transmission delay time calculating section 103 .
  • the time selection unit 112 selects a target for synchronizing the internal time of the device from among a plurality of Grand Master Clocks 2 and 2A with which the Boundary Clock 100A can communicate.
  • the time selection unit 112 selects a target for synchronizing the internal time according to, for example, BMCA (Best Master Clock Algorithm) defined by IEEE Std 1588 TM -2019.
  • BMCA Best Master Clock Algorithm
  • the failure location determination unit 111A determines the occurrence of a time synchronization failure with the host device and the location of the failure based on the variation pattern of the offset and the variation pattern of the transmission delay time. . Then, when the failure location determination unit 111A determines that the location of the failure is the host device with which the device internal time of the device itself is synchronized, the time selection unit 112 selects the target device to synchronize the device internal time of the device itself. to switch.
  • FIG. 9 is a flow chart showing an example of the operation of the Boundary Clock 100A according to this embodiment.
  • the same reference numerals are assigned to the same processes as in FIG. 3, and the description thereof is omitted.
  • the time selection unit 112 performs time synchronization by synchronizing the internal time of the own device by BMCA in parallel with the processing from step S101 to step S104 and the processing from step S106 to step S109 described with reference to FIG. is selected (step S201).
  • the selection of targets for time synchronization by BMCA is described in IEEE Std 1588 TM -2019 and the like, so a detailed description will be omitted, but an outline will be described with reference to FIG. 10 . In FIG. 10, an example of selecting a target for time synchronization from two host devices (Grand Master Clock A and Grand Master Clock B) will be described.
  • the time selection unit 112 acquires packets including the parameters shown below, which are respectively transmitted from Grand Master Clock A and Grand Master Clock B via the packet transmission/reception units 101 and 101A.
  • Identification code (GM Identity): Identification code unique to the Grand Master Clock Priority 1 (GM priority 1): First priority for each Grand Master Clock set by the administrator GM class (GM class): Identification code for each Grand Master Clock A value that indicates traceability (ability to trace to UTC (index indicating reliability of time)) GM clock accuracy: (GM accuracy value): A value that indicates the accuracy of time for each Grand Master Clock GM clock stability (GM offsetScaledLogVariance) : Value indicating stability for each Grand Master Clock Priority 2 (GM priority 2): Second priority for each Grand Master Clock set by the administrator
  • the time selection unit 112 compares the identification codes of Grand Master Clock A and Grand Master Clock B, and determines whether the identification codes of Grand Master Clock A and Grand Master Clock B are the same (step S301). . If it is determined that the identification codes of Grand Master Clock A and Grand Master Clock B are the same (step S301: Yes), the time selection unit 112 determines the number of stages connected from each Grand Master Clock to Boundary Clock 100A. , the upstream port number, the receiving port number, and the receiving side port number of the same data set are compared to select a target for time synchronization.
  • the time selection unit 112 compares the priority 1 of Grand Master Clock A and Grand Master Clock B (step S302).
  • the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
  • the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
  • the time selection unit 112 compares the GM classes of Grand Master Clock A and Grand Master Clock B (step S303).
  • the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
  • the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
  • the time selection unit 112 compares the GM clock accuracy of Grand Master Clock A and Grand Master Clock B (step S304).
  • the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
  • the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
  • the time selection unit 112 compares the GM clock stability of Grand Master Clock A and Grand Master Clock B (step S305 ).
  • the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
  • the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
  • the time selection unit 112 compares the priority 2 of Grand Master Clock A and Grand Master Clock B (step S306 ).
  • the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
  • the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
  • the time selection unit 112 compares the identification codes of Grand Master Clock A and Grand Master Clock B (step S307).
  • the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
  • the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
  • the time selection unit 112 appropriately selects a host device (Grand Master Clock 2 or Grand Master Clock 2A) with which to synchronize the internal time of the Boundary Clock 100A.
  • the failure location determination unit 111A determines that the failure location is a higher-level device (for example, Grand Master Clock 2) that synchronizes the internal time of its own device, the failure occurs in Grand Master Clock 2. has occurred to the time selection unit 112 (step S202).
  • the failure location is a higher-level device (for example, Grand Master Clock 2) that synchronizes the internal time of its own device
  • the Boundary Clock 100A as a time synchronization device has a time selection unit 112 that selects a host device with which to synchronize the internal time of its own device from among a plurality of host devices (Grand Master Clocks 2 and 2A). further provide.
  • failure location determination unit 111A determines that the location of the failure is the host device with which the device internal time is synchronized
  • failure location determination unit 111A instructs time selection unit 112 to select the host device with which the device internal time is synchronized. let me switch.
  • the Boundary Clock 100A according to the second embodiment can also be configured by a computer having the hardware configuration described with reference to FIG.
  • a time synchronizing device for synchronizing the device internal time of its own device with the device internal time of the host device by transmitting and receiving packets to and from a host device, and synchronizing the device internal time of the lower device with the device internal time of the device itself, , memory; a controller connected to the memory; with The control unit calculating an offset, which is the difference between the internal device time of the host device and the internal device time of the own device; calculating the transmission delay time of packets transmitted and received between the higher-level device and the own device; determining a variation pattern of the offset; determining a variation pattern of the transmission delay time; A time synchronizing device that determines a location of failure in time synchronization with the host device based on the variation pattern of the offset and the variation pattern of the transmission delay time.
  • the control unit select a host device with which to synchronize the internal time of the device from among multiple host devices, A time synchronizing device that, when determining that the location of the failure is the host device, switches the host device with which the internal time of the self device is to be synchronized from among a plurality of host devices.
  • the control unit Determining whether the absolute value of the offset is greater than the first threshold, and determining that the absolute value of the offset is greater than the first threshold as the variation pattern of the offset is the second Determine whether it is greater than the threshold, determining whether or not the transmission delay time is greater than a third threshold, and determining whether or not the transmission delay time is greater than the third threshold as a variation pattern of the transmission delay time; A time synchronization device that determines whether or not it is greater than a threshold.
  • Appendix 7 A non-temporary storage medium storing a program executable by a computer, the non-temporary storage medium storing the program for causing the computer to operate as the time synchronization device according to claim 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A Boundary Clock (100) as a time synchronization device according to the present disclosure comprises: an offset calculation unit (102) for calculating an offset, which is a difference between the intra-device time of a higher-level device and the intra-device time of the Boundary Clock itself; a transmission delay time calculation unit (103) for calculating a transmission delay time of a packet transmitted and received between the higher-level device and the Boundary Clock itself; an offset pattern determination unit (107) for determining a variation pattern of the offset; a transmission delay time pattern determination unit (107) for determining a variation pattern of the transmission delay time; and a failure part determination unit (111) for determining, on the basis of the variation pattern of the offset and the variation pattern of the transmission delay time, a part where a failure has occurred in the time synchronization with the higher-level device.

Description

時刻同期装置、時刻同期方法およびプログラムTime synchronization device, time synchronization method and program
 本開示は、時刻同期装置、時刻同期方法およびプログラムに関する。 The present disclosure relates to a time synchronization device, time synchronization method and program.
 IEEE-1588規格で定義されたPTP(Precision Time Protocol)は、LAN(Local Area Network)上のコンピュータの時刻(装置内時刻)を高い精度で同期させるプロトコルである(非特許文献1参照)。図11は、PTPプロトコルを用いてネットワーク上の装置の時刻を同期させる、時刻同期システム1の構成例を示す図である。 The PTP (Precision Time Protocol) defined by the IEEE-1588 standard is a protocol that synchronizes the time (device time) of computers on a LAN (Local Area Network) with high accuracy (see Non-Patent Document 1). FIG. 11 is a diagram showing a configuration example of a time synchronization system 1 that synchronizes the time of devices on a network using the PTP protocol.
 図11に示す時刻同期システム1は、Grand Master Clock2と、従来のBoundary Clock100aと、クライアント装置3とを備える。Grand Master Clock2とBoundary Clock100aとは、LANなどのネットワークを介して通信可能である。また、Boundary Clock100aとクライアント装置3とは、LANなどのネットワークを介して通信可能である。 The time synchronization system 1 shown in FIG. 11 includes a Grand Master Clock 2, a conventional Boundary Clock 100a, and a client device 3. Grand Master Clock 2 and Boundary Clock 100a can communicate via a network such as a LAN. Also, the Boundary Clock 100a and the client device 3 can communicate via a network such as a LAN.
 Grand Master Clock2は、GPS(Global Positioning System)などの全球測位衛星システム(GNSS:Global Navigation Satellite System)の衛星からの信号(GNSS信号)を受信するGNSSアンテナを備える。Grand Master Clock2は、GNSSアンテナを介してGNSS信号を受信し、受信したGNSS信号から協定世界時(UTC:Universal Time Coordinated)を取得する。Grand Master Clock2は、ネットワークを介して、取得したUTCを基準時刻として配信するマスター機能を備える。 The Grand Master Clock 2 is equipped with a GNSS antenna that receives signals (GNSS signals) from satellites of a global positioning satellite system (GNSS: Global Navigation Satellite System) such as GPS (Global Positioning System). Grand Master Clock 2 receives GNSS signals via a GNSS antenna and obtains Coordinated Universal Time (UTC) from the received GNSS signals. The Grand Master Clock 2 has a master function that distributes the obtained UTC as a reference time via the network.
 Boundary Clock100aは、マスター機能を備える上位装置に対しては、上位装置から配信された時刻に自装置の装置内時刻を同期させるスレーブ機能を備える装置として機能し、スレーブ機能を備える下位装置に対してはマスター機能を備える装置として機能する。図11に示す時刻同期システム1においては、Boundary Clock100aは、Grand Master Clock2に対してはスレーブ機能を備える装置として機能し、クライアント装置3に対してはマスター機能を備える装置として機能する。したがって、Boundary Clock100aは、Grand Master Clock2とのPTPパケットの送受信により、Grand Master Clock2から配信される時刻(基準時刻)に、Boundary Clock100aの装置内時刻を同期させる。また、Boundary Clock100aは、クライアント装置3とのPTPパケットの送受信により、装置内時刻をクライアント装置3に配信し、クライアント装置3の装置内時刻を、自装置の装置内時刻に同期させる。 The Boundary Clock 100a functions as a device with a slave function that synchronizes the internal time of its own device with the time delivered from the host device for the host device with the master function, and for the slave device with the slave function functions as a device with master functionality. In the time synchronization system 1 shown in FIG. 11, the Boundary Clock 100a functions as a device with a slave function for the Grand Master Clock 2, and functions as a device with a master function for the client device 3. Therefore, the Boundary Clock 100a synchronizes the internal time of the Boundary Clock 100a with the time (reference time) delivered from the Grand Master Clock 2 by transmitting and receiving PTP packets to and from the Grand Master Clock 2. Further, the Boundary Clock 100a distributes the device internal time to the client device 3 by transmitting/receiving a PTP packet to/from the client device 3, and synchronizes the device internal time of the client device 3 with the internal device time of its own device.
 クライアント装置3は、マスター機能を備える装置から配信された時刻に、装置内時刻を同期させるスレーブ機能を備える。図11に示す時刻同期システム1では、クライアント装置3は、Boundary Clock100aから配信された時刻に、装置内時刻を同期させる。クライアント装置3は、例えば、携帯電話網における基地局装置である。 The client device 3 has a slave function that synchronizes the internal time of the device with the time delivered from the device with the master function. In the time synchronization system 1 shown in FIG. 11, the client device 3 synchronizes the device internal time with the time delivered from the Boundary Clock 100a. The client device 3 is, for example, a base station device in a mobile phone network.
 図11に示す時刻同期システム1においては、Grand Master Clock2が備えるGNSSアンテナ、Grand Master Clock2自体、あるいは、Grand Master Clock2とBoundary Clock100aの間の伝送経路で障害が発生し、Grand Master Clock2の装置内時刻とBoundary Clock100aの装置内時刻とに大きなズレが発生することがある。 In the time synchronization system 1 shown in FIG. 11, if a failure occurs in the GNSS antenna provided by the Grand Master Clock 2, the Grand Master Clock 2 itself, or the transmission path between the Grand Master Clock 2 and the Boundary Clock 100a, the internal time of the Grand Master Clock 2 and the internal time of the Boundary Clock 100a.
 伝送経路で障害が発生した場合には、Grand Master Clock2から配信される時刻自体は正確であり、Boundary Clock100aは、誤った時刻に同期しない。  In the event of a failure in the transmission path, the time delivered from the Grand Master Clock 2 itself is accurate, and the Boundary Clock 100a does not synchronize with the incorrect time.
 一方、Grand Master Clock2が備えるGNSSアンテナ、あるいは、Grand Master Clock2自体に障害が発生した場合、Grand Master Clock2から配信される時刻自体が、UTCとのズレが大きい、誤った時刻となることがある。この場合、従来のBoundary Clock100aは、大きな誤差を含むGrand Master Clock2の装置内時刻に同期し、配下のクライアント装置3に、UTCとの誤差が大きく、誤った時刻を配信し続ける可能性がある。このような誤った時刻が配信されると、クライアント装置3の配下のユーザ装置の装置内時刻までずれて、システム障害あるいは通信障害が発生する可能性がある。また、クライアント装置3の配下のユーザ装置だけでなく、別のGrand Master Clock2あるいはBoundary Clock100aと同期することで装置内時刻がずれていないクライアント装置3の配下のユーザ装置に対しても、システム障害あるいは通信障害を引き起こす可能性がある。このように、誤った時刻への同期が発生すると、非常に影響が大きな問題が生じる可能性がある。従って、より正確に上位装置の装置内時刻と自装置の装置内時刻の同期の障害の発生および障害の発生箇所を判定する必要がある。 On the other hand, if the GNSS antenna provided by the Grand Master Clock 2 or the Grand Master Clock 2 itself fails, the time itself delivered from the Grand Master Clock 2 may be incorrect due to a large discrepancy from UTC. In this case, the conventional Boundary Clock 100a synchronizes with the internal time of the Grand Master Clock 2, which includes a large error, and may continue to deliver an erroneous time to the subordinate client device 3 due to a large error from UTC. If such an erroneous time is delivered, there is a possibility that the internal time of the user device under the control of the client device 3 will be shifted, resulting in system failure or communication failure. In addition to the user devices under the client device 3, the system failure or the It may cause communication failure. Thus, synchronization to the wrong time can cause very high impact problems. Therefore, it is necessary to more accurately determine the occurrence of a failure in synchronizing the internal time of the host device and the internal time of the local device and the location of the failure.
 上記のような問題点に鑑みてなされた本開示の目的は、上位装置から配信された時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を自装置の装置内時刻に同期させる場合に、より正確に、上位装置の装置内時刻と自装置の装置内時刻との同期の障害の発生および障害の発生箇所を判定することができる時刻同期装置、時刻同期方法およびプログラムを提供することにある。 The object of the present disclosure, which has been made in view of the above problems, is to synchronize the device internal time of the device with the time delivered from the host device, and synchronize the device internal time of the lower device with the device internal time of the device itself. Provide a time synchronization device, a time synchronization method, and a program that can more accurately determine the occurrence of a failure in synchronizing the internal time of a host device and the internal time of its own device and the location of the failure when the time is synchronized. to do.
 上記課題を解決するため、本開示に係る時刻同期装置は、上位装置とのパケットの送受信により、前記上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を前記自装置の装置内時刻に同期させる時刻同期装置であって、前記上位装置の装置内時刻と前記自装置の装置内時刻との差であるオフセットを計算するオフセット計算部と、前記上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算する伝送遅延時間計算部と、前記オフセットの変動パターンを判定するオフセットパターン判定部と、前記伝送遅延時間の変動パターンを判定する伝送遅延時間パターン判定部と、前記オフセットの変動パターンと、前記伝送遅延時間の変動パターンとに基づき、前記上位装置との時刻同期の障害の発生箇所を判定する障害箇所判定部と、を備える。 In order to solve the above problems, the time synchronization device according to the present disclosure synchronizes the device internal time of the own device with the device internal time of the host device by transmitting and receiving packets with the host device, and synchronizes the device internal time of the lower device. A time synchronizing device for synchronizing with the device internal time of the own device, the offset calculation unit calculating an offset that is a difference between the device internal time of the host device and the device internal time of the host device; and the host device A transmission delay time calculation unit for calculating a transmission delay time of a packet transmitted/received to/from the device itself, an offset pattern determination unit for determining the variation pattern of the offset, and a transmission delay for determining the variation pattern of the transmission delay time. a time pattern determination unit; and a failure location determination unit that determines a location where a failure occurs in time synchronization with the host device based on the offset variation pattern and the transmission delay time variation pattern.
 また、上記課題を解決するため、本開示に係る時刻同期方法は、上位装置とのパケットの送受信により、前記上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を前記自装置の装置内時刻に同期させる時刻同期方法であって、前記上位装置の装置内時刻と前記自装置の装置内時刻との差であるオフセットを計算するステップと、前記上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算するステップと、前記オフセットの変動パターンを判定するステップと、前記伝送遅延時間の変動パターンを判定するステップと、前記オフセットの変動パターンと、前記伝送遅延時間の変動パターンとに基づき、前記上位装置との時刻同期の障害の発生箇所を判定するステップと、を含む。 Further, in order to solve the above problems, a time synchronization method according to the present disclosure synchronizes the device internal time of the device with the device internal time of the host device by transmitting and receiving packets with the host device, A time synchronization method for synchronizing a time with an internal device time of a host device, comprising: calculating an offset, which is a difference between the device internal time of the host device and the device internal time of the host device; a step of calculating a transmission delay time of a packet transmitted/received between itself; a step of determining a variation pattern of said offset; a step of determining a variation pattern of said transmission delay time; , determining a location where a failure occurs in time synchronization with the host device based on the variation pattern of the transmission delay time.
 また、上記課題を解決するため、本開示に係るプログラムは、コンピュータを、上述した時刻同期装置として動作させる。 Also, in order to solve the above problems, a program according to the present disclosure causes a computer to operate as the time synchronization device described above.
 本開示に係る時刻同期装置、時刻同期方法およびプログラムによれば、上位装置から配信された時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を自装置の装置内時刻に同期させる場合に、より正確に、上位装置の装置内時刻と自装置の装置内時刻との同期の障害の発生および障害の発生箇所を判定することができる。 According to the time synchronization device, time synchronization method, and program according to the present disclosure, the internal time of the own device is synchronized with the time delivered from the upper device, and the internal time of the lower device is synchronized with the internal time of the own device. In this case, it is possible to more accurately determine the occurrence of a failure in synchronization between the internal time of the host device and the internal time of the own device and the location of the failure.
本開示の第1の実施形態に係る時刻同期装置としてのBoundary Clockの構成例を示す図である。1 is a diagram showing a configuration example of a Boundary Clock as a time synchronization device according to the first embodiment of the present disclosure; FIG. オフセットおよび伝送遅延時間の計算について説明するための図である。FIG. 4 is a diagram for explaining calculation of offset and transmission delay time; 図1に示すBoundary Clockの動作の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the operation of the Boundary Clock shown in FIG. 1; FIG. オフセットの変動パターンの一例を示す図である。FIG. 5 is a diagram showing an example of an offset variation pattern; オフセットの変動パターンの別の一例を示す図である。FIG. 10 is a diagram showing another example of an offset variation pattern; 伝送遅延時間の変動パターンの一例を示す図である。FIG. 4 is a diagram showing an example of a variation pattern of transmission delay time; 伝送遅延時間の変動パターンの別の一例を示す図である。FIG. 10 is a diagram showing another example of a variation pattern of transmission delay time; 伝送遅延時間の変動パターンのさらに別の一例を示す図である。FIG. 10 is a diagram showing still another example of a transmission delay time variation pattern; 図1に示す障害箇所判定部による障害箇所の判定について説明するための図である。2 is a diagram for explaining determination of a failure location by a failure location determination unit shown in FIG. 1; FIG. 図1に示すBoundary Clockのハードウェア構成の一例を示す図である。2 is a diagram showing an example of the hardware configuration of the Boundary Clock shown in FIG. 1; FIG. 本開示の第2の実施形態に係る時刻同期装置としてのBoundary Clockの構成例を示す図である。FIG. 7 is a diagram showing a configuration example of a Boundary Clock as a time synchronization device according to the second embodiment of the present disclosure; FIG. 図8に示すBoundary Clockの動作の一例を示すフローチャートである。FIG. 9 is a flow chart showing an example of the operation of the Boundary Clock shown in FIG. 8; FIG. 図8に示す時刻選択部による時刻同期の対象の選択について説明するための図である。FIG. 9 is a diagram for explaining selection of time synchronization targets by the time selection unit shown in FIG. 8 ; 従来の時刻同期システムの構成例を示す図である。It is a figure which shows the structural example of the conventional time synchronous system.
 以下、本開示の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本開示の第1の実施形態に係る時刻同期装置としてのBoundary Clock100の構成例を示す図である。本実施形態に係るBoundary Clock100は、図11に示す時刻同期システム1において、Boundary Clock100aの代わりに、Grand Master Clock2から配信された時刻を、クライアント装置3に配信するものである。すなわち、本実施形態に係る時刻同期装置としてのBoundary Clock100は、上位装置(Grand Master Clock2)とのパケット(PTPパケット)の送受信により、上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置(クライアント装置3)の装置内時刻を自装置の装置内時刻に同期させるものである。
(First embodiment)
FIG. 1 is a diagram showing a configuration example of a Boundary Clock 100 as a time synchronization device according to the first embodiment of the present disclosure. The Boundary Clock 100 according to this embodiment distributes the time distributed from the Grand Master Clock 2 to the client device 3 instead of the Boundary Clock 100a in the time synchronization system 1 shown in FIG. That is, the Boundary Clock 100 as a time synchronization device according to the present embodiment synchronizes the device internal time of its own device with the device internal time of the host device by transmitting and receiving packets (PTP packets) with the host device (Grand Master Clock 2). , the device internal time of the subordinate device (client device 3) is synchronized with the device internal time of the own device.
 図1に示すように、本実施形態に係るBoundary Clock100は、パケット送受信部101,105と、オフセット計算部102と、伝送遅延時間計算部103と、時刻同期処理部104と、閾値記憶部106と、オフセットパターン判定部107と、伝送遅延時間パターン判定部108と、カウントフラグ部109と、Clock Class書換部110と、障害箇所判定部111とを備える。 As shown in FIG. 1, the Boundary Clock 100 according to this embodiment includes packet transmission/ reception units 101 and 105, an offset calculation unit 102, a transmission delay time calculation unit 103, a time synchronization processing unit 104, and a threshold storage unit 106. , an offset pattern determination section 107 , a transmission delay time pattern determination section 108 , a count flag section 109 , a Clock Class rewrite section 110 and a failure location determination section 111 .
 パケット送受信部101は、Grand Master Clock2との間でPTPパケットの送受信を行う。パケット送受信部101は、Grand Master Clock2から受信したパケットをオフセット計算部102および伝送遅延時間計算部103に出力する。 The packet transmitting/receiving unit 101 transmits/receives PTP packets to/from the Grand Master Clock2. Packet transmitting/receiving section 101 outputs the packet received from Grand Master Clock 2 to offset calculating section 102 and transmission delay time calculating section 103 .
 オフセット計算部102は、上位装置であるGrand Master Clock2と自装置(Boundary Clock100)の装置内時刻との差であるオフセットを計算する。具体的には、オフセット計算部102は、パケット送受信部101から出力されたパケットからタイムスタンプを取得し、取得したタイムスタンプに基づき、オフセットを計算する。以下、オフセット計算部102によるオフセットの計算について、図2を参照して説明する。 The offset calculation unit 102 calculates an offset, which is the difference between the Grand Master Clock 2, which is a higher-level device, and the internal device time of its own device (Boundary Clock 100). Specifically, the offset calculation unit 102 acquires the time stamp from the packet output from the packet transmission/reception unit 101, and calculates the offset based on the acquired time stamp. Calculation of the offset by the offset calculator 102 will be described below with reference to FIG.
 図2に示すように、Grand Master Clock2は、Sync message(同期メッセージ)をBoundary Clock100に送信する。Grand Master Clock2は、Sync messageの送信時刻である時刻T1を示すタイムスタンプを、Sync messageに含めてBoundary Clock100に送信する。 As shown in FIG. 2, Grand Master Clock 2 sends a Sync message to Boundary Clock 100. The Grand Master Clock 2 transmits to the Boundary Clock 100 a Sync message including a time stamp indicating time T1, which is the transmission time of the Sync message.
 Boundary Clock100は、時刻T2において、Grand Master Clock2から送信されてきたSync messageを受信すると、時刻T3において、Delay_Req message(遅延リクエストメッセージ)をGrand Master Clock2に送信する。 When the Boundary Clock 100 receives the Sync message transmitted from the Grand Master Clock 2 at time T2, it transmits a Delay_Req message (delay request message) to the Grand Master Clock 2 at time T3.
 Grand Master Clock2は、時刻T4において、Boundary Clock100から送信されてきたDelay_Req messageを受信すると、Delay_Resp message(遅延レスポンスメッセージ)をBoundary Clock100に送信する。Grand Master Clock2は、Delay_Req messageの受信時刻である時刻T4を示すタイムスタンプを、Delay_Resp messageに含めてBoundary Clock100に送信する。 When the Grand Master Clock 2 receives the Delay_Req message sent from the Boundary Clock 100 at time T 4 , it sends a Delay_Resp message (delayed response message) to the Boundary Clock 100 . The Grand Master Clock 2 transmits to the Boundary Clock 100 a Delay_Resp message including a time stamp indicating time T4, which is the time at which the Delay_Req message was received.
 オフセット計算部102は、Sync messageに含まれる、Grand Master Clock2がSync messageを送信した時刻T1を示すタイムスタンプ、Boundary Clock100がSync messageを受信した時刻T2を示すタイムスタンプ、Boundary Clock100がDelay_Req messageを送信した時刻T3を示すタイムスタンプ、および、Delay_Resp messageに含まれる、Grand Master Clock2がDelay_Req messageを送信した時刻T4を示すタイムスタンプを取得する。そして、オフセット計算部102は、以下の式1に基づきオフセットを計算する。
  オフセット=((T2-T1)-(T4-T3))/2 ・・・式1
The offset calculation unit 102 calculates the time stamp indicating the time T1 when the Grand Master Clock 2 transmitted the Sync message, the time stamp indicating the time T2 when the Boundary Clock 100 received the Sync message, and the Boundary Clock 100 transmitting the Delay_Req message, which are included in the Sync message. and a time stamp indicating time T4 at which Grand Master Clock 2 transmitted the Delay_Req message included in the Delay_Resp message. Then, the offset calculator 102 calculates the offset based on Equation 1 below.
Offset = ((T2-T1)-(T4-T3))/2 Expression 1
 図1を再び参照すると、オフセット計算部102は、オフセットの計算結果を時刻同期処理部104およびオフセットパターン判定部107に出力する。 Referring to FIG. 1 again, the offset calculation unit 102 outputs the offset calculation result to the time synchronization processing unit 104 and the offset pattern determination unit 107 .
 伝送遅延時間計算部103は、上位装置であるGrand Master Clock2とBoundary Clock100との間で送受信されるPTPパケットの伝送遅延時間を計算する。伝送遅延時間計算部103は、Boundary Clock100がSync messageを受信した時刻T2と、Grand Master Clock2がSync messageを送信した時刻T1との差、および、Grand Master Clock2がDelay_Req messageを受信した時刻T4と、Boundary Clock100がDelay_Req messageを送信した時刻T3との差の平均を、伝送遅延時間として計算する。すなわち、伝送遅延時間計算部103は、図2を参照して説明した、時刻T1,T2,T3,T4をそれぞれ示すタイムスタンプを用いて、以下の式2に基づき、伝送遅延時間を計算する。
  伝送遅延時間=((T2-T1)+(T4-T3))/2 ・・・式2
The transmission delay time calculation unit 103 calculates the transmission delay time of PTP packets transmitted and received between the Grand Master Clock 2 and the Boundary Clock 100, which are host devices. The transmission delay time calculation unit 103 calculates the difference between the time T2 at which the Boundary Clock 100 received the Sync message and the time T1 at which the Grand Master Clock 2 transmitted the Sync message, the time T4 at which the Grand Master Clock 2 received the Delay_Req message, The average difference from the time T3 when the Boundary Clock 100 transmitted the Delay_Req message is calculated as the transmission delay time. That is, transmission delay time calculation section 103 calculates the transmission delay time based on Equation 2 below using time stamps respectively indicating times T1, T2, T3, and T4 described with reference to FIG.
Transmission delay time=((T2-T1)+(T4-T3))/2 Equation 2
 伝送遅延時間計算部103は、伝送遅延時間の計算結果を時刻同期処理部104および伝送遅延時間パターン判定部108に出力する。 The transmission delay time calculation unit 103 outputs the calculation result of the transmission delay time to the time synchronization processing unit 104 and the transmission delay time pattern determination unit 108 .
 時刻同期処理部104は、オフセット計算部102により計算されたオフセット、および、伝送遅延時間計算部103により計算された伝送遅延時間に基づき、Boundary Clock100の装置内時刻を、Grand Master Clock2の装置内時刻に同期させる。 Based on the offset calculated by the offset calculation unit 102 and the transmission delay time calculated by the transmission delay time calculation unit 103, the time synchronization processing unit 104 converts the internal time of the Boundary Clock 100 to the internal time of the Grand Master Clock 2. sync to
 パケット送受信部105は、クライアント装置3との間でPTPパケットの送受信を行う。クライアント装置3との間で送受信されるパケットには、Boundary Clock100の装置内時刻の時刻情報が含まれ、当該パケットの送受信により、クライアント装置3の装置内時刻をBoundary Clock100の装置内時刻に同期させることができる。 The packet transmission/reception unit 105 transmits/receives PTP packets to/from the client device 3 . A packet transmitted/received to/from the client device 3 includes time information of the internal time of the Boundary Clock 100, and by transmitting/receiving the packet, the internal time of the client device 3 is synchronized with the internal time of the Boundary Clock 100. be able to.
 閾値記憶部106は、後述するオフセットパターン判定部107および伝送遅延時間パターン判定部108での処理に必要となる閾値(第1の閾値TH1、第2の閾値TH2、第3の閾値TH3および第4の閾値TH4)を記憶する。各閾値の設定方法としては、予め定められた固定値を設定する方法、一定期間におけるオフセットおよび伝送遅延時間のデータを取得し、その平均値などに基づいて設定する方法などがある。 Threshold storage unit 106 stores thresholds (first threshold TH1, second threshold TH2, third threshold TH3 and fourth threshold TH4) of is stored. Methods of setting each threshold include a method of setting a predetermined fixed value, a method of obtaining offset and transmission delay time data for a certain period of time, and a method of setting based on an average value thereof, and the like.
 オフセットパターン判定部107は、オフセット計算部102により計算されたオフセットの変動パターンを判定する。具体的には、オフセットパターン判定部107は、オフセットの絶対値が第1の閾値TH1より大きいか否かを判定する。そして、オフセットパターン判定部107は、オフセットの変動パターンとして、オフセットの絶対値が第1の閾値TH1より大きいと判定された時間または回数が第2の閾値TH2より大きいか否かを判定する。オフセットパターン判定部107は、判定結果を障害箇所判定部111に出力する。 The offset pattern determination unit 107 determines the offset variation pattern calculated by the offset calculation unit 102 . Specifically, the offset pattern determination unit 107 determines whether or not the absolute value of the offset is greater than the first threshold TH1. Then, the offset pattern determination unit 107 determines whether or not the time or the number of times that the absolute value of the offset is greater than the first threshold TH1 is greater than the second threshold TH2, as the variation pattern of the offset. Offset pattern determination section 107 outputs the determination result to fault location determination section 111 .
 伝送遅延時間パターン判定部108は、伝送遅延時間計算部103により計算された伝送遅延時間の変動パターンを判定する。具体的には、伝送遅延時間パターン判定部108は、伝送遅延が第3の閾値TH3より大きいか否かを判定する。そして、伝送遅延時間パターン判定部108は、伝送遅延時間の変動パターンとして、伝送遅延時間が第3の閾値TH3より大きいと判定された時間または回数が第4の閾値TH4より大きいか否かを判定する。伝送遅延時間パターン判定部108は、判定結果を障害箇所判定部111に出力する。 The transmission delay time pattern determination unit 108 determines the variation pattern of the transmission delay time calculated by the transmission delay time calculation unit 103 . Specifically, transmission delay time pattern determining section 108 determines whether or not the transmission delay is greater than third threshold TH3. Then, transmission delay time pattern determining section 108 determines whether or not the time or the number of times that the transmission delay time is determined to be greater than the third threshold TH3 is greater than the fourth threshold TH4 as the variation pattern of the transmission delay time. do. Transmission delay time pattern determination section 108 outputs the determination result to fault point determination section 111 .
 カウントフラグ部109は、オフセットの絶対値が第1の閾値TH1より大きいと判定された時間または回数をカウント中であるか否かを示すオフセットカウントフラグを管理する。また、カウントフラグ部109は、伝送遅延時間が第3の閾値TH3より大きいと判定された時間または回数をカウント中であるか否かを示す伝送遅延時間カウントフラグを管理する。 The count flag unit 109 manages an offset count flag that indicates whether or not the time or the number of times it is determined that the absolute value of the offset is greater than the first threshold TH1 is being counted. The count flag unit 109 also manages a transmission delay time count flag indicating whether or not the time or the number of times the transmission delay time is determined to be greater than the third threshold TH3 is being counted.
 Clock Class書換部110は、障害箇所判定部111の制御に従い、Boundary Clock100の装置内時刻がGrand Master Clock2の装置内時刻に同期しているか否かを示すClock Classを書き換え、パケット送受信部105に出力する。Clock Classは、Boundary Clock100とクライアント装置3との間で送受信されるPTPパケットに含まれ、クライアント装置3に送信される。クライアント装置3では、Clock Classが、Boundary Clock100の装置内時刻がGrand Master Clock2の装置内時刻に同期していることを示す場合、クライアント装置3の装置内時刻のBoundary Clock100の装置内時刻への同期が行われる。また、Clock Classが、Boundary Clock100の装置内時刻がGrand Master Clock2の装置内時刻に同期していないことを示す場合、クライアント装置3の装置内時刻のBoundary Clock100の装置内時刻への同期が停止される。 The Clock Class rewriting section 110 rewrites the Clock Class indicating whether or not the internal time of the Boundary Clock 100 is synchronized with the internal time of the Grand Master Clock 2 under the control of the failure point determining section 111 and outputs the Clock Class to the packet transmitting/receiving section 105 . do. The Clock Class is included in the PTP packet transmitted and received between the Boundary Clock 100 and the client device 3 and transmitted to the client device 3 . In the client device 3, if the Clock Class indicates that the internal time of the Boundary Clock 100 is synchronized with the internal time of the Grand Master Clock 2, the internal time of the client device 3 is synchronized with the internal time of the Boundary Clock 100. is done. Also, if the Clock Class indicates that the internal time of the Boundary Clock 100 is not synchronized with the internal time of the Grand Master Clock 2, the synchronization of the internal time of the client device 3 with the internal time of the Boundary Clock 100 is stopped. be.
 障害箇所判定部111は、オフセットパターン判定部107により判定された、オフセットの変動パターンと、伝送遅延時間パターン判定部108により判定された、伝送遅延時間の変動パターンとに基づき、上位装置であるGrand Master Clock2との時刻同期の障害の発生および障害の発生箇所を判定する。 Based on the offset variation pattern determined by the offset pattern determination unit 107 and the transmission delay time variation pattern determined by the transmission delay time pattern determination unit 108, the failure location determination unit 111 determines the Grand Determine the occurrence of a time synchronization failure with Master Clock 2 and the location of the failure.
 時刻同期の障害の発生箇所としては、Grand Master Clock2が備えるGNSSアンテナ、Grand Master Clock2自体、あるいは、Grand Master Clock2とBoundary Clock100との間の伝送経路が考えられる。障害の発生箇所がGNSSアンテナである場合、ジャミング(妨害電波)あるいはスプーフィング(なりすまし)などの信号攻撃を受けたことが考えられる。また、障害の発生箇所がGrand Master Clock2自体である場合、Grand Master Clock2内の一部の機能が故障したことが考えられる。また、障害の発生の箇所がGrand Master Clock2とBoundary Clock100との間の伝送経路である場合、例えば、一時的にケーブル異常が発生したことが考えられる。  The location of the time synchronization failure can be the GNSS antenna provided by the Grand Master Clock 2, the Grand Master Clock 2 itself, or the transmission path between the Grand Master Clock 2 and the Boundary Clock 100. If the point of failure is the GNSS antenna, it is conceivable that it has been subjected to signal attacks such as jamming or spoofing. Also, if the location of the failure is the Grand Master Clock 2 itself, it is conceivable that some functions within the Grand Master Clock 2 have failed. Also, if the location of the failure is the transmission path between the Grand Master Clock 2 and the Boundary Clock 100, for example, a temporary cable failure may have occurred.
障害箇所判定部111は、障害の発生箇所が、Grand Master Clock2(Grand Master Clock2が備えるGNSSアンテナ、あるいは、Grand Master Clock2自体)であるか、Grand Master Clock2とBoundary Clock100との間の伝送経路であるかを判定する。障害箇所判定部111による障害箇所の判定の詳細については後述する。 The failure location determination unit 111 determines that the location of the failure is the Grand Master Clock 2 (the GNSS antenna provided by the Grand Master Clock 2, or the Grand Master Clock 2 itself) or the transmission path between the Grand Master Clock 2 and the Boundary Clock 100. determine whether The details of the determination of the failure location by the failure location determination unit 111 will be described later.
 障害箇所判定部111は、障害の発生箇所がGrand Master Clock2であると判定すると、クライアント装置3の装置内時刻の自装置の装置内時刻への同期を停止する。具体的には、障害箇所判定部111は、Boundary Clock100の装置内時刻がGrand Master Clock2の装置内時刻に同期していないことをClock Classが示すように、Clock Classの書き換えをClock Class書換部110に指示する。 When the failure location determining unit 111 determines that the failure location is the Grand Master Clock 2, it stops synchronizing the internal device time of the client device 3 with the internal device time of its own device. Specifically, the failure point determination unit 111 rewrites the Clock Class so that the Clock Class indicates that the internal time of the Boundary Clock 100 is not synchronized with the internal time of the Grand Master Clock 2. direct to.
 次に、本実施形態に係るBoundary Clock100の動作について説明する。 Next, the operation of the Boundary Clock 100 according to this embodiment will be described.
 図3は、本実施形態に係るBoundary Clock100の動作の一例を示すフローチャートであり、Boundary Clock100による時刻同期方法を説明するための図である。 FIG. 3 is a flowchart showing an example of the operation of the Boundary Clock 100 according to this embodiment, and is a diagram for explaining the time synchronization method by the Boundary Clock 100. FIG.
 オフセット計算部102は、パケット送受信部101から出力されたパケットからタイムスタンプを取得し、オフセットを計算する(ステップS101)。 The offset calculation unit 102 acquires the time stamp from the packet output from the packet transmission/reception unit 101 and calculates the offset (step S101).
 オフセットパターン判定部107は、オフセット計算部102により計算されたオフセットの絶対値が、閾値記憶部106に記憶されている第1の閾値TH1より大きいか否かを判定する(ステップS102)。第1の閾値TH1は、オフセットが大きく変動したか否かを判定するための閾値である。例えば、通常時には、Grand Master Clock2の装置内時刻とBoundary Clock100の装置内時刻とのオフセットの絶対値が1msより小さい場合、第1の閾値TH1は、例えば、1msに設定される。この場合、オフセットパターン判定部107は、オフセットの絶対値が1msより大きいか否かを逐次、判定する。オフセットパターン判定部107は、オフセットの絶対値が第1の閾値TH1より大きいと連続して判定した回数をカウントする。以下では、このカウント値をオフセットカウントと称する。 The offset pattern determination unit 107 determines whether the absolute value of the offset calculated by the offset calculation unit 102 is greater than the first threshold TH1 stored in the threshold storage unit 106 (step S102). The first threshold TH1 is a threshold for determining whether or not the offset has changed significantly. For example, normally, if the absolute value of the offset between the device time of Grand Master Clock 2 and the device time of Boundary Clock 100 is less than 1 ms, the first threshold TH1 is set to 1 ms, for example. In this case, the offset pattern determination unit 107 sequentially determines whether the absolute value of the offset is greater than 1 ms. The offset pattern determination unit 107 counts the number of consecutive determinations that the absolute value of the offset is greater than the first threshold TH1. This count value is hereinafter referred to as an offset count.
 なお、上述したように、第1の閾値TH1としては、一定期間のデータの平均値が設定されてよい。例えば、Grand Master Clock2とBoundary Clock100との間でPTPでの通信が開始されてからの1分間において、1秒ごとにオフセットを計算し、その60個のデータの平均値が第1の閾値TH1として設定されてよい。 Note that, as described above, the average value of data for a certain period of time may be set as the first threshold TH1. For example, in one minute from the start of PTP communication between Grand Master Clock 2 and Boundary Clock 100, the offset is calculated every second, and the average value of the 60 pieces of data is used as the first threshold value TH1. may be set.
 オフセットの絶対値が第1の閾値TH1より大きいと判定した場合(ステップS102:Yes)、オフセットパターン判定部107は、オフセットカウントを1増やし(ステップS103)、オフセットカウントフラグをオンにする。オフセットパターン判定部107は、既にオフセットカウントフラグがオンの場合、オフセットカウントフラグをオンのままとする。 When determining that the absolute value of the offset is greater than the first threshold TH1 (step S102: Yes), the offset pattern determination unit 107 increases the offset count by 1 (step S103) and turns on the offset count flag. If the offset count flag is already on, the offset pattern determination unit 107 keeps the offset count flag on.
 次に、オフセットパターン判定部107は、オフセットカウントが第2の閾値TH2より大きいか否かを判定する(ステップS104)。第2の閾値TH2は、オフセットの変化が一時的であるか否かを判定するための閾値である。第2の閾値TH2は、例えば、10回に設定される。この場合、オフセットパターン判定部107は、オフセットの絶対値が第1の閾値TH1(例えば、1ms)よりも10回連続で大きいか否かを判定する。 Next, the offset pattern determination unit 107 determines whether or not the offset count is greater than the second threshold TH2 (step S104). The second threshold TH2 is a threshold for determining whether the change in offset is temporary. The second threshold TH2 is set to 10 times, for example. In this case, the offset pattern determination unit 107 determines whether or not the absolute value of the offset is greater than the first threshold TH1 (for example, 1 ms) ten consecutive times.
 オフセットカウントが第2の閾値TH2以下である(0<オフセットカウント≦第2の閾値TH2)であるとオフセットパターン判定部107により判定された場合(ステップS104:No)、ステップS101から処理が繰り返される。 If the offset pattern determination unit 107 determines that the offset count is equal to or less than the second threshold TH2 (0<offset count≦second threshold TH2) (step S104: No), the process is repeated from step S101. .
 オフセットカウントが第2の閾値TH2より大きい(第2の閾値TH2<オフセットカウント)と判定した場合(ステップS104:Yes)、オフセットパターン判定部107は、オフセットカウントが第2の閾値TH2より大きくなったことを障害箇所判定部111に通知する。すなわち、オフセットパターン判定部107は、オフセットの変動パターンとして、オフセットの絶対値が第1の閾値TH1より大きい状態が、第2の閾値TH2に応じた所定時間だけ継続したことを障害箇所判定部111に通知することができる。 If it is determined that the offset count is greater than the second threshold TH2 (second threshold TH2<offset count) (step S104: Yes), the offset pattern determination unit 107 determines that the offset count is greater than the second threshold TH2. This is notified to the failure location determination unit 111 . In other words, the offset pattern determination unit 107 detects, as the offset variation pattern, that the state in which the absolute value of the offset is greater than the first threshold TH1 continues for a predetermined time corresponding to the second threshold TH2. can be notified to
 オフセットの絶対値が第1の閾値TH1以下であると判定した場合(ステップS102:No)、オフセットパターン判定部107は、オフセットカウントを0にするとともに、オフセットカウントフラグをオフにする(ステップS105)。オフセットの絶対値が第1の閾値TH1以下である状態が継続している場合、オフセットカウントは0であるとともに、オフセットカウントフラグはオフのままである。したがって、オフセットパターン判定部107は、オフセットの変動パターンとして、オフセットの絶対値が第1の閾値TH1以下である状態が継続していることを障害箇所判定部111に通知することができる。 When determining that the absolute value of the offset is equal to or less than the first threshold TH1 (step S102: No), the offset pattern determining unit 107 sets the offset count to 0 and turns off the offset count flag (step S105). . When the absolute value of the offset continues to be equal to or less than the first threshold TH1, the offset count is 0 and the offset count flag remains off. Therefore, the offset pattern determination unit 107 can notify the fault location determination unit 111 that the offset variation pattern is that the absolute value of the offset continues to be equal to or less than the first threshold TH1.
 なお、オフセットの絶対値が第1の閾値TH1より大きくても、Boundary Clock100が、自装置の装置内時刻をGrand Master Clock2の装置内時刻に同期させることで、オフセットはやがて、第1の閾値TH1よりも小さくなる。したがって、オフセットパターン判定部107は、オフセットの変動パターンが、図4Aに示す、オフセットが第1の閾値TH1より小さいままであるパターン(パターン0)であるか、図4Bに示す、オフセットが第1の閾値TH1より大きくなり、第2の閾値TH2に応じた所定時間が経過した後、第1の閾値TH1より小さくなるパターン(パターン1)であるかを判定し、判定結果を障害箇所判定部111に出力する。 Even if the absolute value of the offset is greater than the first threshold TH1, the Boundary Clock 100 synchronizes the device internal time of its own device with the device internal time of the Grand Master Clock 2, so that the offset eventually reaches the first threshold TH1. be smaller than Therefore, the offset pattern determination unit 107 determines whether the offset variation pattern is a pattern (pattern 0) in which the offset remains smaller than the first threshold TH1 shown in FIG. is larger than the threshold TH1, and after a predetermined period of time corresponding to the second threshold TH2 has elapsed, it is determined whether the pattern (pattern 1) is smaller than the first threshold TH1. output to
 上述したステップS101からステップS105の処理と並行して、以下で説明するステップS106からステップS109の処理が行われる。 In parallel with the processing from step S101 to step S105 described above, the processing from step S106 to step S109 described below is performed.
 伝送遅延時間計算部103は、パケット送受信部101から出力されたパケットからタイムスタンプを取得し、伝送遅延時間を計算する(ステップS106)。 The transmission delay time calculation unit 103 acquires the time stamp from the packet output from the packet transmission/reception unit 101 and calculates the transmission delay time (step S106).
 伝送遅延時間パターン判定部108は、伝送遅延時間計算部103により計算された伝送遅延時間が、閾値記憶部106に記憶されている第3の閾値TH3より大きいか否かを判定する(ステップS107)。第3の閾値TH3は、伝送遅延時間が大きく変動したか否かを判定するための閾値である。例えば、通常時には、Grand Master Clock2とBoundary Clock100との間で、10ms以内でパケットの送受信が行われる場合、第3の閾値TH3は、例えば、10msに設定される。この場合、伝送遅延時間パターン判定部108は、伝送遅延時間が10msより大きいか否かを逐次、判定する。伝送遅延時間パターン判定部108は、伝送遅延時間が第3の閾値TH3より大きいと連続して判定した回数をカウントする。以下では、このカウント値を伝送遅延時間カウントと称する。 The transmission delay time pattern determination unit 108 determines whether or not the transmission delay time calculated by the transmission delay time calculation unit 103 is greater than the third threshold TH3 stored in the threshold storage unit 106 (step S107). . The third threshold TH3 is a threshold for determining whether or not the transmission delay time has changed significantly. For example, normally, when packets are transmitted and received between the Grand Master Clock 2 and the Boundary Clock 100 within 10 ms, the third threshold TH3 is set to 10 ms, for example. In this case, transmission delay time pattern determination section 108 successively determines whether or not the transmission delay time is greater than 10 ms. The transmission delay time pattern determination unit 108 counts the number of consecutive determinations that the transmission delay time is greater than the third threshold TH3. This count value is hereinafter referred to as a transmission delay time count.
 なお、上述したように、第3の閾値TH3としては、一定期間のデータの平均値が設定されてよい。例えば、Grand Master Clock2とBoundary Clock100との間でPTPでの通信が開始されてからの1分間において、1秒ごとに伝送遅延時間を計算し、その60個のデータの平均値が第3の閾値TH3として設定されてよい。 Note that, as described above, the average value of data for a certain period of time may be set as the third threshold TH3. For example, in one minute after the start of PTP communication between Grand Master Clock 2 and Boundary Clock 100, the transmission delay time is calculated every second, and the average value of the 60 pieces of data is the third threshold. It may be set as TH3.
 伝送遅延時間が第3の閾値TH3より大きいと判定した場合(ステップS107:Yes)、伝送遅延時間パターン判定部108は、伝送遅延時間カウントを1増やし(ステップS108)、伝送遅延時間カウントフラグをオンにする。伝送遅延時間パターン判定部108は、既に伝送遅延時間カウントフラグがオンの場合、伝送遅延時間カウントフラグをオンのままとする。 If it is determined that the transmission delay time is greater than the third threshold TH3 (step S107: Yes), the transmission delay time pattern determination unit 108 increases the transmission delay time count by 1 (step S108), and turns on the transmission delay time count flag. to If the transmission delay time count flag is already on, transmission delay time pattern determination section 108 keeps the transmission delay time count flag on.
 次に、伝送遅延時間パターン判定部108は、伝送遅延時間カウントが第4の閾値TH4より大きいか否かを判定する(ステップS109)。第4の閾値TH4は、伝送遅延時間の変化が一時的であるか否かを判定するための閾値である。第4の閾値TH4は、例えば、10回に設定される。この場合、伝送遅延時間パターン判定部108は、伝送遅延時間が第3の閾値TH3(例えば、10ms)よりも10回連続で大きいか否かを判定する。 Next, the transmission delay time pattern determination unit 108 determines whether or not the transmission delay time count is greater than the fourth threshold TH4 (step S109). A fourth threshold TH4 is a threshold for determining whether the change in transmission delay time is temporary. The fourth threshold TH4 is set to ten times, for example. In this case, the transmission delay time pattern determination unit 108 determines whether or not the transmission delay time is greater than the third threshold TH3 (for example, 10 ms) ten consecutive times.
 伝送遅延時間カウントが第4の閾値TH以下である(0<伝送遅延時間カウント≦第4の閾値TH4)であると伝送遅延時間パターン判定部108により判定された場合(ステップS109:No)、ステップS106から処理が繰り返される。 If the transmission delay time pattern determining unit 108 determines that the transmission delay time count is equal to or less than the fourth threshold TH (0<transmission delay time count≤fourth threshold TH4) (step S109: No), step The process is repeated from S106.
 伝送遅延時間カウントが第4の閾値TH4より大きい(第4の閾値TH4<伝送遅延時間カウント)と判定した場合(ステップS109:Yes)、伝送遅延時間パターン判定部108は、伝送遅延時間カウントが第4の閾値TH4より大きくなったことを障害箇所判定部111に通知する。すなわち、伝送遅延時間パターン判定部108は、伝送遅延時間の変動パターンとして、伝送遅延時間が第3の閾値TH3より大きい状態が、第4の閾値TH4に応じた所定時間だけ継続したことを障害箇所判定部111に通知することができる。 When it is determined that the transmission delay time count is greater than the fourth threshold TH4 (fourth threshold TH4<transmission delay time count) (step S109: Yes), the transmission delay time pattern determination unit 108 determines that the transmission delay time count is greater than the fourth threshold TH4. It notifies the failure point determination unit 111 that the threshold value TH4 of 4 has been exceeded. That is, the transmission delay time pattern determination unit 108 determines that the state in which the transmission delay time is greater than the third threshold TH3 continues for a predetermined time corresponding to the fourth threshold TH4 as the variation pattern of the transmission delay time. The determination unit 111 can be notified.
 伝送遅延時間が第3の閾値TH3以下であると判定した場合(ステップS107:No)、伝送遅延時間パターン判定部108は、伝送遅延時間カウントを0にするとともに、伝送遅延時間カウントフラグをオフにする(ステップS105)。伝送遅延時間が第3の閾値TH3以下である状態が継続している場合、伝送遅延時間カウントは0であるとともに、伝送遅延時間カウントフラグはオフのままである。したがって、伝送遅延時間パターン判定部108は、伝送遅延時間の変動パターンとして、伝送遅延時間が第3の閾値TH3以下である状態が継続していることを障害箇所判定部111に通知することができる。また、伝送遅延時間が第3の閾値TH3より大きくなり、第4の閾値TH4に応じた所定時間経過する前に、伝送遅延時間が第3の閾値TH3以下になった場合、伝送遅延時間カウントは0であるとともに、伝送遅延時間カウントフラグはオンからオフになる。したがって、伝送遅延時間パターン判定部108は、伝送遅延時間の変動パターンとして、伝送遅延時間が第3の閾値TH3より大きくなり、第4の閾値TH4に応じた所定時間の経過前に、伝送遅延時間が第3の閾値TH3以下になったことを障害箇所判定部111に通知することができる。 If it is determined that the transmission delay time is equal to or less than the third threshold TH3 (step S107: No), the transmission delay time pattern determination unit 108 sets the transmission delay time count to 0 and turns off the transmission delay time count flag. (step S105). When the transmission delay time continues to be equal to or less than the third threshold TH3, the transmission delay time count is 0 and the transmission delay time count flag remains off. Therefore, the transmission delay time pattern determination unit 108 can notify the failure location determination unit 111 that the transmission delay time is continuously equal to or less than the third threshold TH3 as the variation pattern of the transmission delay time. . Further, when the transmission delay time becomes larger than the third threshold TH3 and becomes less than or equal to the third threshold TH3 before the predetermined time corresponding to the fourth threshold TH4 elapses, the transmission delay time count is 0, and the transmission delay time count flag is changed from on to off. Therefore, the transmission delay time pattern determination unit 108 determines that the transmission delay time becomes larger than the third threshold TH3 and the transmission delay time before the predetermined time corresponding to the fourth threshold TH4 elapses as the variation pattern of the transmission delay time. has become equal to or less than the third threshold TH3.
 したがって、伝送遅延時間パターン判定部108は、伝送遅延時間の変動パターンが、図5Aに示す、伝送遅延時間が第3の閾値TH3より小さいままであるパターン(パターン0)であるか、図5Bに示す、伝送遅延時間が第3の閾値TH3より大きくなり、第4の閾値TH4に応じた所定時間が経過する前に、第3の閾値TH3より小さくなるパターン(パターン1)であるか、図5Cに示す、伝送遅延時間が第3の閾値TH3より大きい状態が、第4の閾値TH4に応じた所定時間を経過しても継続するパターンであるかを判定し、判定結果を障害箇所判定部111に出力する。 Therefore, the transmission delay time pattern determination unit 108 determines whether the variation pattern of the transmission delay time is a pattern (pattern 0) in which the transmission delay time remains smaller than the third threshold TH3 shown in FIG. 5C, in which the transmission delay time becomes larger than the third threshold TH3 and becomes smaller than the third threshold TH3 before the predetermined time corresponding to the fourth threshold TH4 elapses (pattern 1), or FIG. is a pattern in which the transmission delay time is greater than the third threshold TH3 continues even after a predetermined period of time corresponding to the fourth threshold TH4 has passed. output to
 オフセットパターン判定部107によるオフセットの変動パターンの判定結果および伝送遅延時間パターン判定部108による伝送遅延時間の変動パターンの判定結果を受けて(ステップS104、ステップS105またはステップS109の処理の後)、障害箇所判定部111は、オフセットの変動パターンと、伝送遅延時間の変動パターンとに基づいて、Grand Master Clock2との時刻同期の障害の発生および障害の発生箇所を判定する(ステップS110)。図6を参照して、障害箇所判定部111による障害箇所の判定について説明する。 In response to the judgment result of the offset fluctuation pattern by the offset pattern judging unit 107 and the judgment result of the transmission delay time fluctuation pattern by the transmission delay time pattern judging unit 108 (after the process of step S104, step S105 or step S109), a fault is detected. The location determination unit 111 determines the occurrence of a failure in time synchronization with the Grand Master Clock 2 and the location of the failure based on the variation pattern of the offset and the variation pattern of the transmission delay time (step S110). Determination of the failure location by the failure location determination unit 111 will be described with reference to FIG.
 図4A,4Bを参照して説明したように、オフセットの変動パターンとしては、パターン0およびパターン1の2通りのパターンがある。また、図5A,5B,5Cを参照して説明したように、伝送遅延時間の変動パターンとしては、パターン0,パターン1およびパターン2の3通りのパターンがある。したがって、オフセットの変動パターンと伝送遅延時間の変動パターンとを組み合わせると、図6に示すように、6通りのパターン(パターンA-パターンF)がある。 As described with reference to FIGS. 4A and 4B, there are two patterns, pattern 0 and pattern 1, as offset variation patterns. Also, as described with reference to FIGS. 5A, 5B, and 5C, there are three patterns, pattern 0, pattern 1, and pattern 2, as transmission delay time variation patterns. Therefore, by combining the offset variation pattern and the transmission delay time variation pattern, there are six patterns (pattern A to pattern F) as shown in FIG.
 パターンAは、オフセットの変動パターンがパターン0であり、伝送遅延時間の変動パターンがパターン0であるパターンである。すなわち、パターンAは、オフセットの絶対値が第1の閾値TH1以下であり(図4A)、かつ、伝送遅延時間が第3の閾値TH3以下の状態である。したがって、オフセットおよび伝送遅延時間に異常はなく、Grand Master Clock2の装置内時刻とBoundary Clock100の装置内時刻との同期に障害は発生していないと考えられる。 Pattern A is a pattern in which pattern 0 is the variation pattern of the offset and pattern 0 is the variation pattern of the transmission delay time. That is, in pattern A, the absolute value of the offset is equal to or less than the first threshold TH1 (FIG. 4A), and the transmission delay time is equal to or less than the third threshold TH3. Therefore, there is no abnormality in the offset and the transmission delay time, and it is considered that there is no failure in synchronizing the internal time of the Grand Master Clock 2 and the internal time of the Boundary Clock 100 .
 パターンBは、オフセットの変動パターンがパターン1であり、伝送遅延時間の変動パターンがパターン0であるパターンである。すなわち、パターンBは、オフセットの絶対値が第1の閾値TH1より大きく、かつ、伝送遅延時間が第3の閾値TH3以下である状態である。この場合、パターンBでは、Grand Master Clock2とBoundary Clock100との間の伝送路には異常が無いにも変わらず、オフセットの絶対値には第1の閾値TH1より大きいずれが生じていることから、Grand Master Clock2の装置内時刻に異常が生じている(Grand Master Clock2で障害が発生した)と考えられる。 Pattern B is a pattern in which pattern 1 is the variation pattern of the offset and pattern 0 is the variation pattern of the transmission delay time. That is, pattern B is a state in which the absolute value of the offset is greater than the first threshold TH1 and the transmission delay time is less than or equal to the third threshold TH3. In this case, in pattern B, although there is no abnormality in the transmission path between the Grand Master Clock 2 and the Boundary Clock 100, the absolute value of the offset has a deviation larger than the first threshold TH1. It is considered that an abnormality has occurred in the internal time of Grand Master Clock 2 (a failure occurred in Grand Master Clock 2).
 パターンCは、オフセットの変動パターンがパターン0であり、伝送遅延時間の変動パターンがパターン1であるパターンである。すなわち、パターンCは、オフセットの絶対値が第1の閾値TH1以下であり、かつ、伝送遅延時間が第3の閾値TH3より大きくなり、その後、第3の閾値TH3より小さくなった状態である。この場合、パターンCでは、伝送遅延時間が一時的に大きく変動しても、オフセットには第1の閾値TH1より大きいずれが生じていないことから、Grand Master Clock2とBoundary Clock100との間の伝送路に一時的な障害(例えば、輻輳)が発生したと考えられる。 Pattern C is a pattern in which pattern 0 is the variation pattern of the offset and pattern 1 is the variation pattern of the transmission delay time. That is, pattern C is a state in which the absolute value of the offset is less than or equal to the first threshold TH1, and the transmission delay time is greater than the third threshold TH3 and then less than the third threshold TH3. In this case, in pattern C, even if the transmission delay time fluctuates greatly temporarily, the offset does not deviate more than the first threshold TH1, so the transmission line between Grand Master Clock 2 and Boundary Clock 100 It is considered that a temporary failure (eg, congestion) occurred in
 パターンDは、オフセットの変動パターンがパターン1であり、伝送遅延時間の変動パターンがパターン1であるパターンである。すなわち、パターンDは、オフセットの絶対値が第1の閾値TH1より大きくなり、その後、第1の閾値TH1以下となり、かつ、伝送遅延時間が、第3の閾値TH3より大きくなり、その後、第3の閾値TH3より小さくなった状態である。この場合、パターンDでは、伝送遅延時間が一時的に大きくなっても、元の値に戻っていることから、Grand Master Clock2とBoundary Clock100との間の伝送路には障害が無く、Grand Master Clock2自体に障害が発生したと考えられる。 Pattern D is a pattern in which pattern 1 is the variation pattern of the offset and pattern 1 is the variation pattern of the transmission delay time. That is, in pattern D, the absolute value of the offset becomes larger than the first threshold TH1, then becomes equal to or smaller than the first threshold TH1, and the transmission delay time becomes larger than the third threshold TH3, and then the third threshold TH3. is smaller than the threshold TH3. In this case, in pattern D, even if the transmission delay time temporarily increases, it returns to the original value. It is possible that a failure occurred on its own.
 パターンEは、オフセットの変動パターンがパターン0であり、伝送遅延時間の変動パターンがパターン2であるパターンである。すなわち、パターンEは、オフセットの絶対値が第1の閾値TH1以下であり、かつ、伝送遅延時間が第3の閾値TH3より大きいままの状態である。また、パターンFは、オフセットの変動パターンがパターン1であり、伝送遅延時間の変動パターンがパターン2であるパターンである。すなわち、パターンFは、オフセットの絶対値が第1の閾値TH1より大きくなり、その後、第1の閾値TH1以下となり、かつ、伝送遅延時間が第3の閾値TH3より大きいままの状態である。パターンE,Fでは、伝送遅延時間の異常が長時間続いていることから、Grand Master Clock2とBoundary Clock100との間の伝送路(例えば、ケーブル)に異常が生じていると考えられる。 Pattern E is a pattern in which pattern 0 is the variation pattern of the offset and pattern 2 is the variation pattern of the transmission delay time. That is, in pattern E, the absolute value of the offset remains equal to or less than the first threshold TH1 and the transmission delay time remains greater than the third threshold TH3. Pattern F is a pattern in which pattern 1 is the variation pattern of the offset and pattern 2 is the variation pattern of the transmission delay time. That is, in pattern F, the absolute value of the offset becomes greater than the first threshold TH1, then becomes equal to or less than the first threshold TH1, and the transmission delay time remains greater than the third threshold TH3. In patterns E and F, since the transmission delay time anomaly continues for a long time, it is considered that an anomaly has occurred in the transmission line (for example, cable) between the Grand Master Clock 2 and the Boundary Clock 100 .
 障害箇所判定部111は、図6を参照して説明したような、オフセットの変動パターンと伝送遅延時間の変動パターンとの組み合わせに基づき、障害の発生箇所を判定する。具体的には、障害箇所判定部111は、パターンA,C,E,Fの場合、障害が発生していない、あるいは、Grand Master Clock2とBoundary Clock100との間の伝送路で障害が発生したと判定する。一方、障害箇所判定部111は、パターンB,Dの場合、Grand Master Clock2で障害が発生したと判定する。 The fault location determining unit 111 determines the location of the failure based on the combination of the offset variation pattern and the transmission delay time variation pattern as described with reference to FIG. Specifically, in the case of patterns A, C, E, and F, the failure point determination unit 111 determines that no failure has occurred or that a failure has occurred in the transmission line between the Grand Master Clock 2 and the Boundary Clock 100. judge. On the other hand, in the case of patterns B and D, the failure location determining unit 111 determines that a failure has occurred in the Grand Master Clock2.
 図3を再び参照すると、障害箇所判定部111は、障害が発生していない、あるいは、Grand Master Clock2とBoundary Clock100との間の伝送路で障害が発生したと判定した場合(オフセットの変動パターンと伝送遅延時間の変動パターンとの組み合わせがパターンA,C,E,Fである場合)、Grand Master Clock2から配信される時刻自体は正確であるため引き続き、クライアント装置3の装置内時刻を自装置の装置内時刻に同期させる。 Referring to FIG. 3 again, if the failure location determining unit 111 determines that no failure has occurred or that a failure has occurred in the transmission path between the Grand Master Clock 2 and the Boundary Clock 100 (offset fluctuation pattern and If the combination with the variation pattern of the transmission delay time is pattern A, C, E, F), the time itself delivered from the Grand Master Clock 2 is accurate, so the internal time of the client device 3 continues to be the own device. Synchronize with the device internal time.
 障害箇所判定部111は、Grand Master Clock2で障害が発生したと判定した場合(オフセットの変動パターンと伝送遅延時間の変動パターンとの組み合わせがパターンB,Dである場合)、Grand Master Clock2で障害が発生したことをClock Class書換部110に通知する(ステップS111)。 When the failure location determining unit 111 determines that a failure has occurred in the Grand Master Clock 2 (when the combination of the offset fluctuation pattern and the transmission delay time fluctuation pattern is patterns B and D), the failure occurs in the Grand Master Clock 2. The occurrence is notified to the Clock Class rewriting unit 110 (step S111).
 Clock Class書換部110は、障害箇所判定部111の通知を受けると、Boundary Clock100の装置内時刻がGrand Master Clock2の装置内時刻に同期していないことをClock Classが示すように、Clock Classを書き換える。この結果、クライアント装置3の装置内時刻のBoundary Clock100の装置内時刻への同期が停止される。 Upon receiving the notification from the failure location determining unit 111, the Clock Class rewriting unit 110 rewrites the Clock Class so that the Clock Class indicates that the internal time of the Boundary Clock 100 is not synchronized with the internal time of the Grand Master Clock 2. . As a result, synchronization of the device internal time of the client device 3 with the device internal time of the Boundary Clock 100 is stopped.
 なお、図3においては、第2の閾値TH2は、オフセットの絶対値が第1の閾値TH1より大きいと判定された回数である例を用いて説明したが、これに限られるものではない。第2の閾値TH2は、連続してオフセットの絶対値が第1の閾値TH1より大きいと判定された時間であってもよい。この場合、オフセットパターン判定部107は、例えば、オフセットの絶対値が第1の閾値TH1を超えている時間が、第2の閾値TH2(例えば、30秒)より長い否かを判定する。 In FIG. 3, the second threshold TH2 is the number of times the absolute value of the offset is determined to be greater than the first threshold TH1, but it is not limited to this. The second threshold TH2 may be the time during which the absolute value of the offset is continuously determined to be greater than the first threshold TH1. In this case, the offset pattern determination unit 107 determines, for example, whether the time period during which the absolute value of the offset exceeds the first threshold TH1 is longer than the second threshold TH2 (eg, 30 seconds).
 また、図3においては、第4の閾値TH4は、伝送遅延時間が第3の閾値TH3より大きいと判定された回数である例を用いて説明したが、これに限られるものではない。第4の閾値TH4は、連続して伝送遅延時間が第3の閾値TH3より大きいと判定された時間であってもよい。この場合、伝送遅延時間パターン判定部108は、例えば、伝送遅延時間が第3の閾値TH3を超えている時間が、第4の閾値TH4(例えば、30秒)より長いか否かを判定する。 Also, in FIG. 3, the fourth threshold TH4 is the number of times the transmission delay time is determined to be greater than the third threshold TH3, but it is not limited to this. The fourth threshold TH4 may be a period of time during which the transmission delay time is continuously determined to be greater than the third threshold TH3. In this case, the transmission delay time pattern determination unit 108 determines, for example, whether or not the time during which the transmission delay time exceeds the third threshold TH3 is longer than the fourth threshold TH4 (eg, 30 seconds).
 そして、障害箇所判定部111は、オフセットの絶対値が第1の閾値TH1より大きいと判定された時間または回数が第2の閾値TH2より大きく、かつ、伝送遅延時間が第3の閾値TH3以下である場合、障害の発生箇所がGrand Master Clock2であると判定する。または、障害箇所判定部111は、オフセットの絶対値が第1の閾値TH1より大きいと判定された時間または回数が第2の閾値TH2より大きく、かつ、伝送遅延時間が第3の閾値TH3より大きいと判定された時間または回数が第4の閾値TH4より小さい場合、障害の発生箇所がGrand Master Clock2であると判定する。 Then, the failure point determination unit 111 determines that the time or the number of times that the absolute value of the offset is greater than the first threshold TH1 is greater than the second threshold TH2, and the transmission delay time is equal to or less than the third threshold TH3. If there is, it is determined that the location of the fault is Grand Master Clock2. Alternatively, the failure point determination unit 111 determines that the time or number of times that the absolute value of the offset is greater than the first threshold TH1 is greater than the second threshold TH2, and the transmission delay time is greater than the third threshold TH3. If the determined time or number of times is smaller than the fourth threshold TH4, it is determined that the fault has occurred at Grand Master Clock2.
 なお、伝送遅延時間の変動パターンのみを用いて、障害の発生および障害の発生箇所を判定する方法も考えられる。例えば、伝送遅延時間の変動パターンが、図5Bに示すパターン1のように変動した場合には、Grand Master Clock2で障害が発生し、図5Cに示すパターン2のように変動した場合には、Grand Master Clock2とBoundary Clock100との間の伝送路で障害が発生したと判定する方法が考えられる。しかしながら、この方法では、障害の発生および障害の発生箇所を正確に判定できない場合がある。 A method of determining the occurrence of a failure and the location of the failure using only the variation pattern of the transmission delay time is also conceivable. For example, if the transmission delay time fluctuation pattern fluctuates like pattern 1 shown in FIG. 5B, a failure occurs in Grand Master Clock 2, and if it fluctuates like pattern 2 shown in FIG. A method of determining that a failure has occurred in the transmission line between the Master Clock 2 and the Boundary Clock 100 is conceivable. However, this method may not be able to accurately determine the occurrence of a fault and the location of the fault.
 例えば、時刻T1および時刻T4が同じ時間だけずれた場合、上述した式2から明らかなように、時刻T1と時刻T4とが打ち消し合い、時刻T1および時刻T4のずれによる伝送遅延時間の変化が判別できないことがある。 For example, when time T1 and time T4 are shifted by the same amount of time, time T1 and time T4 cancel each other out, as is clear from the above-described equation 2, and the change in transmission delay time due to the shift between time T1 and time T4 is determined. Sometimes I can't.
 一方、本実施形態においては、伝送遅延時間の変動パターンだけでなく、オフセットの変動パターンも用いることで、より正確に障害の発生および障害の発生箇所を正確に判定することができる。上述した例では、時刻T1および時刻T4が同じ時間だけずれた場合にも、上述した式1から明らかなように、時刻T1と時刻T4とが打ち消されることが無いので、時刻T1および時刻T4のずれを、オフセットの変動として判別することができる。 On the other hand, in this embodiment, by using not only the transmission delay time variation pattern but also the offset variation pattern, it is possible to more accurately determine the occurrence of a failure and the location of the failure. In the example described above, even if the time T1 and the time T4 are shifted by the same amount of time, the time T1 and the time T4 do not cancel each other out, as is clear from the above equation 1. Therefore, the time T1 and the time T4 Misalignment can be determined as a variation in offset.
 なお、本実施形態においては、本開示に係る時刻同期装置が、Grand Master Clock2とクライアント装置3との間で時刻同期を行う例を用いて説明したが、これに限られるものではない。本開示に係る時刻同期装置は、例えば、一のBoundary Clockと他のBoundary Clockとの間で時刻同期を行うものであってもよい。 In addition, in this embodiment, the time synchronization device according to the present disclosure has been described using an example in which time synchronization is performed between the Grand Master Clock 2 and the client device 3, but it is not limited to this. The time synchronization device according to the present disclosure may perform time synchronization between one Boundary Clock and another Boundary Clock, for example.
 次に、本実施形態に係る時刻同期装置としてのBoundary Clock100のハードウェア構成について説明する。 Next, the hardware configuration of the Boundary Clock 100 as the time synchronization device according to this embodiment will be described.
 図7は、本実施形態に係る時刻同期装置としてのBoundary Clock100のハードウェア構成の一例を示す図である。図7においては、Boundary Clock100がプログラム命令を実行可能なコンピュータにより構成される場合の、Boundary Clock100のハードウェア構成の一例を示している。ここで、コンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。 FIG. 7 is a diagram showing an example of the hardware configuration of the Boundary Clock 100 as the time synchronization device according to this embodiment. FIG. 7 shows an example of the hardware configuration of the Boundary Clock 100 when the Boundary Clock 100 is configured by a computer capable of executing program instructions. Here, the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal computer), an electronic notepad, or the like. Program instructions may be program code, code segments, etc. for performing the required tasks.
 図7に示すように、Boundary Clock100は、プロセッサ11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16および通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。プロセッサ11は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などであり、同種または異種の複数のプロセッサにより構成されてもよい。 As shown in FIG. 7, the Boundary Clock 100 includes a processor 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input section 15, a display section 16 and a communication interface (I/F) 17. have. Each component is communicatively connected to each other via a bus 19 . The processor 11 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), and the like. may be configured by a plurality of processors of
 プロセッサ11は、各構成の制御および各種の演算処理を実行する制御部である。すなわち、プロセッサ11は、ROM12またはストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。プロセッサ11は、ROM12あるいはストレージ14に記憶されているプログラムに従って、上記各構成の制御および各種の演算処理を行う。本実施形態では、ROM12またはストレージ14には、コンピュータを本開示に係るBoundary Clock100として機能させるためのプログラムが格納されている。当該プログラムがプロセッサ11により読み出されて実行されることで、Boundary Clock100の各構成、すなわち、オフセット計算部102、伝送遅延時間計算部103、時刻同期処理部104、オフセットパターン判定部107、伝送遅延時間パターン判定部108、カウントフラグ部109、Clock Class書換部110および障害箇所判定部111が実現される。 The processor 11 is a control unit that controls each configuration and executes various arithmetic processing. That is, the processor 11 reads a program from the ROM 12 or the storage 14 and executes the program using the RAM 13 as a work area. The processor 11 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 12 or the storage 14 . In this embodiment, the ROM 12 or storage 14 stores a program for causing a computer to function as the Boundary Clock 100 according to the present disclosure. By reading and executing the program by the processor 11, each configuration of the Boundary Clock 100, that is, the offset calculation unit 102, the transmission delay time calculation unit 103, the time synchronization processing unit 104, the offset pattern determination unit 107, the transmission delay A time pattern determination section 108, a count flag section 109, a Clock Class rewrite section 110, and a fault point determination section 111 are implemented.
 プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、USB(Universal Serial Bus)メモリなどの非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 Programs are stored in non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), USB (Universal Serial Bus) memory, etc. may be provided in Also, the program may be downloaded from an external device via a network.
 ROM12は、各種プログラムおよび各種データを格納する。RAM13は、作業領域として一時的にプログラムまたはデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)またはSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラムおよび各種データを格納する。ROM12またはストレージ14は、例えば、上述した第1の閾値TH1、第2の閾値TH2、第3の閾値TH3および第4の閾値TH4を記憶する。 The ROM 12 stores various programs and various data. RAM 13 temporarily stores programs or data as a work area. The storage 14 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data. The ROM 12 or storage 14 stores, for example, the above-described first threshold TH1, second threshold TH2, third threshold TH3 and fourth threshold TH4.
 入力部15は、マウスなどのポインティングデバイス、およびキーボードを含み、各種の入力を行うために使用される。 The input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
 表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能してもよい。 The display unit 16 is, for example, a liquid crystal display, and displays various information. The display unit 16 may employ a touch panel system and function as the input unit 15 .
 通信インタフェース17は、他の装置(例えば、Grand Master Clock2およびクライアント装置3)と通信するためのインタフェースであり、例えば、LAN用のインタフェースである。 The communication interface 17 is an interface for communicating with other devices (eg, Grand Master Clock 2 and client device 3), for example, an interface for LAN.
 上述したBoundary Clock100の各部として機能させるためにコンピュータを好適に用いることが可能である。そのようなコンピュータは、Boundary Clock100の各部の機能を実現する処理内容を記述したプログラムを該コンピュータの記憶部に格納しておき、該コンピュータのプロセッサによってこのプログラムを読み出して実行させることで実現することができる。すなわち、当該プログラムは、コンピュータを、上述したBoundary Clock100として機能させることができる。また、当該プログラムを非一時的記憶媒体に記録することも可能である。また、当該プログラムを、ネットワークを介して提供することも可能である。 A computer can be suitably used to function as each part of the Boundary Clock 100 described above. Such a computer can be implemented by storing a program describing the processing details for realizing the function of each part of the Boundary Clock 100 in the memory of the computer, and reading and executing this program by the processor of the computer. can be done. That is, the program can cause the computer to function as the Boundary Clock 100 described above. It is also possible to record the program in a non-temporary storage medium. It is also possible to provide the program via a network.
 このように本実施形態に係る時刻同期装置としてのBoundary Clock100は、オフセット計算部102と、伝送遅延時間計算部103と、オフセットパターン判定部107と、伝送遅延時間パターン判定部108と、障害箇所判定部111とを備える。オフセット計算部102は、上位装置の装置内時刻と自装置の装置内時刻との差であるオフセットを計算する。伝送遅延時間計算部103は、上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算する。オフセットパターン判定部107は、オフセットの変動パターンを判定する。伝送遅延時間パターン判定部108は、伝送遅延時間の変動パターンを判定する。障害箇所判定部111は、オフセットの変動パターンと、伝送遅延時間の変動パターンとに基づき、上位装置との時刻同期の障害の発生箇所を判定する。 As described above, the Boundary Clock 100 as a time synchronization device according to this embodiment includes an offset calculation unit 102, a transmission delay time calculation unit 103, an offset pattern determination unit 107, a transmission delay time pattern determination unit 108, and a fault location determination unit. and a section 111 . The offset calculation unit 102 calculates an offset, which is the difference between the internal device time of the host device and the internal device time of the own device. The transmission delay time calculator 103 calculates the transmission delay time of packets transmitted and received between the host device and its own device. The offset pattern determination unit 107 determines an offset variation pattern. Transmission delay time pattern determining section 108 determines a variation pattern of transmission delay time. The failure location determination unit 111 determines the location of a failure in time synchronization with a higher-level device based on the variation pattern of the offset and the variation pattern of the transmission delay time.
 また、実施形態に係る時刻同期方法は、オフセット計算部102が、上位装置の装置内時刻と自装置の装置内時刻との差であるオフセットを計算するステップ(ステップS101)と、伝送遅延時間計算部103が、上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算するステップ(ステップS106)とを含む。また、本実施形態に係る時刻同期方法は、オフセットパターン判定部107が、オフセットの変動パターンを判定するステップ(ステップS102~ステップS104)と、伝送遅延時間パターン判定部108が、伝送遅延時間の変動パターンを判定するステップ(ステップS107~ステップS109)と、障害箇所判定部111が、オフセットの変動パターンと、伝送遅延時間の変動パターンとに基づき、上位装置との時刻同期の障害の発生箇所を判定するステップ(ステップS110)と、を含む。 In the time synchronization method according to the embodiment, the offset calculation unit 102 calculates an offset that is the difference between the device internal time of the host device and the device internal time of the own device (step S101), and the transmission delay time calculation and a step (step S106) of calculating a transmission delay time of a packet transmitted/received between the host device and the own device by the unit 103 . Further, in the time synchronization method according to the present embodiment, the offset pattern determination unit 107 determines the offset variation pattern (steps S102 to S104), and the transmission delay time pattern determination unit 108 determines the transmission delay time variation. A step of determining a pattern (steps S107 to S109), and a failure location determination unit 111 determines a failure location of time synchronization with a higher-level device based on an offset variation pattern and a transmission delay time variation pattern. and (step S110).
 オフセットの変動パターンと、伝送遅延時間の変動パターンとに基づき、障害の発生箇所を判定することで、Grand Master Clock2における装置内時刻のずれ方の影響を受けることなく、より正確に障害の発生および障害の発生箇所を正確に判定することができる。その結果、下位装置の装置内時刻を誤った時刻に同期させる可能性の低減を図ることができる。 By judging the location of the failure based on the variation pattern of the offset and the variation pattern of the transmission delay time, it is possible to more accurately detect the occurrence of the failure without being affected by the time shift in the Grand Master Clock 2. It is possible to accurately determine the location of the failure. As a result, it is possible to reduce the possibility of synchronizing the device internal time of the lower device with an incorrect time.
 (第2の実施形態)
 図8は、本開示の第2の実施形態に係る時刻同期装置としてのBoundary Clock100Aの構成例を示す図である。
(Second embodiment)
FIG. 8 is a diagram showing a configuration example of a Boundary Clock 100A as a time synchronization device according to the second embodiment of the present disclosure.
 図8に示すように、本実施形態に係るBoundary Clock100Aは、パケット送受信部101,101A,105と、オフセット計算部102と、伝送遅延時間計算部103と、時刻同期処理部104と、閾値記憶部106と、オフセットパターン判定部107、伝送遅延時間パターン判定部108と、カウントフラグ部109と、障害箇所判定部111Aと、時刻選択部112とを備える。本実施形態に係るBoundary Clock100Aは、第1の実施形態に係るBoundary Clock100と比較して、パケット送受信部101Aおよび時刻選択部112が追加された点と、Clock Class書換部110が削除された点と、障害箇所判定部111が障害箇所判定部111Aに変更された点とが異なる。 As shown in FIG. 8, the Boundary Clock 100A according to this embodiment includes packet transmission/ reception units 101, 101A, and 105, an offset calculation unit 102, a transmission delay time calculation unit 103, a time synchronization processing unit 104, and a threshold storage unit. 106 , an offset pattern determination unit 107 , a transmission delay time pattern determination unit 108 , a count flag unit 109 , a failure location determination unit 111 A, and a time selection unit 112 . The Boundary Clock 100A according to this embodiment differs from the Boundary Clock 100 according to the first embodiment in that a packet transmission/reception section 101A and a time selection section 112 are added, and the Clock Class rewrite section 110 is removed. , in that the failure location determination unit 111 is changed to a failure location determination unit 111A.
 パケット送受信部101Aは、パケット送受信部101がパケットの送受信を行うGrand Master Clock2とは別のGrand Master Clock2Aとパケットの送受信を行う。すなわち、本実施形態に係るBoundary Clock100Aは、複数のGrand Master Clock2,2Aと通信可能である。パケット送受信部101Aは、Grand Master Clock2Aから受信したパケットをオフセット計算部102および伝送遅延時間計算部103に出力する。 The packet transmitting/receiving unit 101A transmits/receives packets to/from the Grand Master Clock 2A, which is different from the Grand Master Clock 2 with which the packet transmitting/receiving unit 101 transmits/receives packets. That is, the Boundary Clock 100A according to this embodiment can communicate with a plurality of Grand Master Clocks 2 and 2A. Packet transmitting/receiving section 101A outputs the packet received from Grand Master Clock 2A to offset calculating section 102 and transmission delay time calculating section 103 .
 時刻選択部112は、Boundary Clock100Aが通信可能な複数のGrand Master Clock2,2Aの中から、自装置の装置内時刻を同期させる対象を選択する。時刻選択部112は、例えば、IEEE Std 1588TM-2019で規定されているBMCA(Best Master Clock Algorithm)に従い、装置内時刻を同期させる対象を選択する。 The time selection unit 112 selects a target for synchronizing the internal time of the device from among a plurality of Grand Master Clocks 2 and 2A with which the Boundary Clock 100A can communicate. The time selection unit 112 selects a target for synchronizing the internal time according to, for example, BMCA (Best Master Clock Algorithm) defined by IEEE Std 1588 -2019.
 障害箇所判定部111Aは、障害箇所判定部111と同様に、オフセットの変動パターンと、伝送遅延時間の変動パターンとに基づき、上位装置との時刻同期の障害の発生および障害の発生箇所を判定する。そして、障害箇所判定部111Aは、障害の発生箇所が、自装置の装置内時刻を同期させている上位装置であると判定すると、時刻選択部112に、自装置の装置内時刻を同期させる対象を切り替えさせる。 Similar to the failure location determination unit 111, the failure location determination unit 111A determines the occurrence of a time synchronization failure with the host device and the location of the failure based on the variation pattern of the offset and the variation pattern of the transmission delay time. . Then, when the failure location determination unit 111A determines that the location of the failure is the host device with which the device internal time of the device itself is synchronized, the time selection unit 112 selects the target device to synchronize the device internal time of the device itself. to switch.
 次に、本実施形態に係るBoundary Clock100Aの動作について説明する。 Next, the operation of the Boundary Clock 100A according to this embodiment will be described.
 図9は、本実施形態に係るBoundary Clock100Aの動作の一例を示すフローチャートである。図9において、図3と同様の処理には同じ符号を付し、説明を省略する。 FIG. 9 is a flow chart showing an example of the operation of the Boundary Clock 100A according to this embodiment. In FIG. 9, the same reference numerals are assigned to the same processes as in FIG. 3, and the description thereof is omitted.
 時刻選択部112は、図3を参照して説明した、ステップS101からステップS104の処理およびステップS106からステップS109の処理と並行して、BMCAにより、自装置の装置内時刻を同期させる、時刻同期の対象を選択する(ステップS201)。BMCAによる時刻同期の対象の選択については、IEEE Std 1588TM-2019などに記載されているため、詳細な説明は省略するが、概要について、図10を参照して説明する。図10においては、2つの上位装置(Grand Master Clock AおよびGrand Master Clock B)の中から時刻同期の対象を選択する例を用いて説明する。 The time selection unit 112 performs time synchronization by synchronizing the internal time of the own device by BMCA in parallel with the processing from step S101 to step S104 and the processing from step S106 to step S109 described with reference to FIG. is selected (step S201). The selection of targets for time synchronization by BMCA is described in IEEE Std 1588 TM -2019 and the like, so a detailed description will be omitted, but an outline will be described with reference to FIG. 10 . In FIG. 10, an example of selecting a target for time synchronization from two host devices (Grand Master Clock A and Grand Master Clock B) will be described.
 時刻選択部112は、パケット送受信部101,101Aを介して、Grand Master Clock AおよびGrand Master Clock Bそれぞれ送信された、以下に示すパラメータを含むパケットを取得する。
  識別コード(GM Identity):Grand Master Clock固有の識別コード
  優先度1(GM priority 1):管理者が設定するGrand Master Clockごとの第1の優先度
  GMクラス(GM class):Grand Master Clockごとのトレーサビリティ(UTCへの追跡可能性(時刻の信頼性を示す指標))を示す値
  GMクロック精度:(GM accuracy value):Grand Master Clockごとの時刻の精度を示す値
  GMクロック安定度(GM offsetScaledLogVariance):Grand Master Clockごとの安定度を示す値
  優先度2(GM priority 2):管理者が設定するGrand Master Clockごとの第2の優先度
The time selection unit 112 acquires packets including the parameters shown below, which are respectively transmitted from Grand Master Clock A and Grand Master Clock B via the packet transmission/ reception units 101 and 101A.
Identification code (GM Identity): Identification code unique to the Grand Master Clock Priority 1 (GM priority 1): First priority for each Grand Master Clock set by the administrator GM class (GM class): Identification code for each Grand Master Clock A value that indicates traceability (ability to trace to UTC (index indicating reliability of time)) GM clock accuracy: (GM accuracy value): A value that indicates the accuracy of time for each Grand Master Clock GM clock stability (GM offsetScaledLogVariance) : Value indicating stability for each Grand Master Clock Priority 2 (GM priority 2): Second priority for each Grand Master Clock set by the administrator
 まず、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock Bの識別コードを比較し、Grand Master Clock AおよびGrand Master Clock Bの識別コードが同じであるか否かを判定する(ステップS301)。Grand Master Clock AおよびGrand Master Clock Bの識別コードが同じであると判定した場合(ステップS301:Yes)、詳細は省略するが、時刻選択部112は、各Grand Master ClockからBoundary Clock100Aまでの接続段数、上流のポート番号、受信側のポート番号、同一のデータセットの受信側のポート番号の比較により、時刻同期の対象を選択する。 First, the time selection unit 112 compares the identification codes of Grand Master Clock A and Grand Master Clock B, and determines whether the identification codes of Grand Master Clock A and Grand Master Clock B are the same (step S301). . If it is determined that the identification codes of Grand Master Clock A and Grand Master Clock B are the same (step S301: Yes), the time selection unit 112 determines the number of stages connected from each Grand Master Clock to Boundary Clock 100A. , the upstream port number, the receiving port number, and the receiving side port number of the same data set are compared to select a target for time synchronization.
 Grand Master Clock AおよびGrand Master Clock Bの識別コードが同じでないと判定した場合(ステップS301:No)、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock Bの優先度1を比較する(ステップS302)。 When it is determined that the identification codes of Grand Master Clock A and Grand Master Clock B are not the same (step S301: No), the time selection unit 112 compares the priority 1 of Grand Master Clock A and Grand Master Clock B (step S302).
 Grand Master Clock Aの優先度1がGrand Master Clock Bの優先度1よりも小さい場合(A<B)、時刻選択部112は、Grand Master Clock Aを時刻同期の対象として選択する。 When the priority 1 of Grand Master Clock A is lower than the priority 1 of Grand Master Clock B (A<B), the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
 Grand Master Clock Bの優先度1がGrand Master Clock Aの優先度1よりも小さい場合(B<A)、時刻選択部112は、Grand Master Clock Bを時刻同期の対象として選択する。 When the priority 1 of Grand Master Clock B is lower than the priority 1 of Grand Master Clock A (B<A), the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
 Grand Master Clock AおよびGrand Master Clock Bの優先度1が同じである場合(A=B)、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock BのGMクラスを比較する(ステップS303)。 When Grand Master Clock A and Grand Master Clock B have the same priority 1 (A=B), the time selection unit 112 compares the GM classes of Grand Master Clock A and Grand Master Clock B (step S303).
 Grand Master Clock AのGMクラスがGrand Master Clock BのGMクラスよりも小さい場合(A<B)、時刻選択部112は、Grand Master Clock Aを時刻同期の対象として選択する。 When the GM class of Grand Master Clock A is smaller than the GM class of Grand Master Clock B (A<B), the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
 Grand Master Clock BのGMクラスがGrand Master Clock AのGMクラスよりも小さい場合(B<A)、時刻選択部112は、Grand Master Clock Bを時刻同期の対象として選択する。 When the GM class of Grand Master Clock B is smaller than the GM class of Grand Master Clock A (B<A), the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
 Grand Master Clock AおよびGrand Master Clock BのGMクラスが同じである場合(A=B)、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock BのGMクロック精度を比較する(ステップS304)。 When the GM classes of Grand Master Clock A and Grand Master Clock B are the same (A=B), the time selection unit 112 compares the GM clock accuracy of Grand Master Clock A and Grand Master Clock B (step S304).
 Grand Master Clock AのGMクロック精度がGrand Master Clock BのGMクロック精度よりも小さい場合(A<B)、時刻選択部112は、Grand Master Clock Aを時刻同期の対象として選択する。 When the GM clock precision of Grand Master Clock A is smaller than the GM clock precision of Grand Master Clock B (A<B), the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
 Grand Master Clock BのGMクロック精度がGrand Master Clock AのGMクロック精度よりも小さい場合(B<A)、時刻選択部112は、Grand Master Clock Bを時刻同期の対象として選択する。 When the GM clock precision of Grand Master Clock B is smaller than the GM clock precision of Grand Master Clock A (B<A), the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
 Grand Master Clock AおよびGrand Master Clock BのGMクロック精度が同じである場合(A=B)、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock BのGMクロック安定度を比較する(ステップS305)。 When the GM clock accuracy of Grand Master Clock A and Grand Master Clock B are the same (A=B), the time selection unit 112 compares the GM clock stability of Grand Master Clock A and Grand Master Clock B (step S305 ).
 Grand Master Clock AのGMクロック安定度がGrand Master Clock BのGMクロック安定度よりも小さい場合(A<B)、時刻選択部112は、Grand Master Clock Aを時刻同期の対象として選択する。 When the GM clock stability of Grand Master Clock A is less than the GM clock stability of Grand Master Clock B (A<B), the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
 Grand Master Clock BのGMクロック安定度がGrand Master Clock AのGMクロック安定度よりも小さい場合(B<A)、時刻選択部112は、Grand Master Clock Bを時刻同期の対象として選択する。 When the GM clock stability of Grand Master Clock B is smaller than the GM clock stability of Grand Master Clock A (B<A), the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
 Grand Master Clock AおよびGrand Master Clock BのGMクロック安定度が同じである場合(A=B)、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock Bの優先度2を比較する(ステップS306)。 When the GM clock stability of Grand Master Clock A and Grand Master Clock B are the same (A=B), the time selection unit 112 compares the priority 2 of Grand Master Clock A and Grand Master Clock B (step S306 ).
 Grand Master Clock Aの優先度2がGrand Master Clock Bの優先度2よりも小さい場合(A<B)、時刻選択部112は、Grand Master Clock Aを時刻同期の対象として選択する。 When the priority 2 of Grand Master Clock A is lower than the priority 2 of Grand Master Clock B (A<B), the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
 Grand Master Clock Bの優先度2がGrand Master Clock Aの優先度2よりも小さい場合(B<A)、時刻選択部112は、Grand Master Clock Bを時刻同期の対象として選択する。 When the priority 2 of Grand Master Clock B is lower than the priority 2 of Grand Master Clock A (B<A), the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
 Grand Master Clock AおよびGrand Master Clock Bの優先度2が同じである場合(A=B)、時刻選択部112は、Grand Master Clock AおよびGrand Master Clock Bの識別コードを比較する(ステップS307)。 When the priority 2 of Grand Master Clock A and Grand Master Clock B are the same (A=B), the time selection unit 112 compares the identification codes of Grand Master Clock A and Grand Master Clock B (step S307).
 Grand Master Clock Aの識別コードがGrand Master Clock Bの識別コードよりも小さい場合(A<B)、時刻選択部112は、Grand Master Clock Aを時刻同期の対象として選択する。 When the identification code of Grand Master Clock A is smaller than the identification code of Grand Master Clock B (A<B), the time selection unit 112 selects Grand Master Clock A as a target for time synchronization.
 Grand Master Clock Bの識別コードがGrand Master Clock Aの識別コードよりも小さい場合(B<A)、時刻選択部112は、Grand Master Clock Bを時刻同期の対象として選択する。 When the identification code of Grand Master Clock B is smaller than the identification code of Grand Master Clock A (B<A), the time selection unit 112 selects Grand Master Clock B as a target for time synchronization.
 上述した処理により、時刻選択部112は適宜、Boundary Clock100Aの装置内時刻を同期させる上位装置(Grand Master Clock2またはGrand Master Clock2A)を選択する。 Through the above-described processing, the time selection unit 112 appropriately selects a host device (Grand Master Clock 2 or Grand Master Clock 2A) with which to synchronize the internal time of the Boundary Clock 100A.
 図9を再び参照すると、障害箇所判定部111Aは、障害の発生箇所が自装置の装置内時刻を同期させている上位装置(例えば、Grand Master Clock2)であると判定すると、Grand Master Clock2で障害が発生したことを時刻選択部112に通知する(ステップS202)。 Referring to FIG. 9 again, when the failure location determination unit 111A determines that the failure location is a higher-level device (for example, Grand Master Clock 2) that synchronizes the internal time of its own device, the failure occurs in Grand Master Clock 2. has occurred to the time selection unit 112 (step S202).
 障害箇所判定部111Aからの通知を受けて、時刻選択部112は、自装置の装置内時刻を同期させる時刻同期の対象を切り替える。例えば、Grand Master Clock2の装置内時刻に自装置の装置内時刻を同期させている状態で、Grand Master Clock2で障害が発生したことを障害箇所判定部111Aから通知されると、時刻選択部112は、時刻同期の対象を、Grand Master Clock2からGrand Master Clock2Aに切り替える。時刻選択部112は、例えば、図10を参照して説明したBMCAによる時刻同期の対象の選択の処理おいて、ステップS305でA=Bであると判定すると、時刻同期の対象を切り替える。 Upon receiving the notification from the failure point determination unit 111A, the time selection unit 112 switches the target of time synchronization for synchronizing the internal time of the own device. For example, in a state in which the device internal time of the own device is synchronized with the device internal time of Grand Master Clock 2, when notified by the fault location determination unit 111A that a fault has occurred in Grand Master Clock 2, the time selection unit 112 , the target of time synchronization is switched from Grand Master Clock 2 to Grand Master Clock 2A. For example, in the process of selecting a target for time synchronization by BMCA described with reference to FIG. 10, the time selection unit 112 switches the target for time synchronization when determining that A=B in step S305.
 このように本実施形態に係る時刻同期装置としてのBoundary Clock100Aは、複数の上位装置(Grand Master Clock2,2A)の中から、自装置の装置内時刻を同期させる上位装置を選択する時刻選択部112をさらに備える。障害箇所判定部111Aは、障害の発生箇所が、自装置の装置内時刻を同期させている上位装置であると判定すると、時刻選択部112に、自装置の装置内時刻を同期させる上位装置を切り替えさせる。 As described above, the Boundary Clock 100A as a time synchronization device according to this embodiment has a time selection unit 112 that selects a host device with which to synchronize the internal time of its own device from among a plurality of host devices (Grand Master Clocks 2 and 2A). further provide. When failure location determination unit 111A determines that the location of the failure is the host device with which the device internal time is synchronized, failure location determination unit 111A instructs time selection unit 112 to select the host device with which the device internal time is synchronized. let me switch.
 そのため、下位装置の装置内時刻を誤った時刻に同期させる可能性の低減を図ることができる。 Therefore, it is possible to reduce the possibility of synchronizing the internal time of the lower device with an incorrect time.
 なお、第2の実施形態に係るBoundary Clock100Aについても、図7を参照して説明したハードウェア構成のコンピュータにより構成することができる。 The Boundary Clock 100A according to the second embodiment can also be configured by a computer having the hardware configuration described with reference to FIG.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiments, the following additional remarks are disclosed.
 [付記項1]
 上位装置とのパケットの送受信により、前記上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を前記自装置の装置内時刻に同期させる時刻同期装置であって、
 メモリと、
 前記メモリに接続された制御部と、
を備え、
 前記制御部は、
 前記上位装置の装置内時刻と前記自装置の装置内時刻との差であるオフセットを計算し、
 前記上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算し、
 前記オフセットの変動パターンを判定し、
 前記伝送遅延時間の変動パターンを判定し、
 前記オフセットの変動パターンと、前記伝送遅延時間の変動パターンとに基づき、前記上位装置との時刻同期の障害の発生箇所を判定する、時刻同期装置。
[Appendix 1]
A time synchronizing device for synchronizing the device internal time of its own device with the device internal time of the host device by transmitting and receiving packets to and from a host device, and synchronizing the device internal time of the lower device with the device internal time of the device itself, ,
memory;
a controller connected to the memory;
with
The control unit
calculating an offset, which is the difference between the internal device time of the host device and the internal device time of the own device;
calculating the transmission delay time of packets transmitted and received between the higher-level device and the own device;
determining a variation pattern of the offset;
determining a variation pattern of the transmission delay time;
A time synchronizing device that determines a location of failure in time synchronization with the host device based on the variation pattern of the offset and the variation pattern of the transmission delay time.
 [付記項2]
 付記項1に記載の時刻同期装置において、
 前記制御部は、前記障害の発生箇所が前記上位装置であると判定すると、前記下位装置の装置内時刻の前記自装置の装置内時刻への同期を停止する、時刻同期装置。
[Appendix 2]
In the time synchronization device according to additional item 1,
The time synchronizing device, wherein the control unit stops synchronizing the internal device time of the lower device with the internal device time of the own device when it is determined that the fault has occurred in the higher device.
 [付記項3]
 付記項1に記載の時刻同期装置において、
 前記制御部は、
 複数の上位装置の中から、自装置の装置内時刻を同期させる上位装置を選択し、
 前記障害の発生箇所が前記上位装置であると判定すると、複数の上位装置の中から、自装置の装置内時刻を同期させる上位装置を切り替える、時刻同期装置。
[Appendix 3]
In the time synchronization device according to additional item 1,
The control unit
select a host device with which to synchronize the internal time of the device from among multiple host devices,
A time synchronizing device that, when determining that the location of the failure is the host device, switches the host device with which the internal time of the self device is to be synchronized from among a plurality of host devices.
 [付記項4]
 付記項1に記載の時刻同期装置において、
 前記制御部は、
 前記オフセットの絶対値が第1の閾値より大きいか否かを判定し、前記オフセットの変動パターンとして、前記オフセットの絶対値が前記第1の閾値より大きいと判定された時間または回数が第2の閾値より大きいか否かを判定し、
 前記伝送遅延時間が第3の閾値より大きいか否かを判定し、前記伝送遅延時間の変動パターンとして、前記伝送遅延時間が前記第3の閾値より大きいと判定された時間または回数が第4の閾値より大きいか否かを判定する、時刻同期装置。
[Appendix 4]
In the time synchronization device according to additional item 1,
The control unit
Determining whether the absolute value of the offset is greater than the first threshold, and determining that the absolute value of the offset is greater than the first threshold as the variation pattern of the offset is the second Determine whether it is greater than the threshold,
determining whether or not the transmission delay time is greater than a third threshold, and determining whether or not the transmission delay time is greater than the third threshold as a variation pattern of the transmission delay time; A time synchronization device that determines whether or not it is greater than a threshold.
 [付記項5]
 付記項4に記載の時刻同期装置において、
 前記制御部は、前記オフセットの絶対値が前記第1の閾値より大きいと判定された時間または回数が前記第2の閾値より大きく、かつ、前記伝送遅延時間が前記第3の閾値以下である場合、または、前記伝送遅延時間が前記第3の閾値より大きいと判定された時間または回数が前記第4の閾値より小さい場合、前記障害の発生箇所が前記上位装置であると判定する、時刻同期装置。
[Appendix 5]
In the time synchronization device according to additional item 4,
When the time or the number of times that the absolute value of the offset is greater than the first threshold is greater than the second threshold and the transmission delay time is less than or equal to the third threshold Alternatively, when the time or the number of times it is determined that the transmission delay time is greater than the third threshold is less than the fourth threshold, the time synchronization device determines that the fault has occurred in the upper device. .
 [付記項6]
 上位装置とのパケットの送受信により、前記上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を前記自装置の装置内時刻に同期させる時刻同期方法であって、
 前記上位装置の装置内時刻と前記自装置の装置内時刻との差であるオフセットを計算し、
 前記上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算し、
 前記オフセットの変動パターンを判定し、
 前記伝送遅延時間の変動パターンを判定し、
 前記オフセットの変動パターンと、前記伝送遅延時間の変動パターンとに基づき、前記上位装置との時刻同期の障害の発生箇所を判定する、時刻同期方法。
[Appendix 6]
A time synchronization method for synchronizing the device internal time of a device with the device internal time of the host device and synchronizing the device internal time of a lower device with the device internal time of the device by transmitting and receiving packets to and from a host device, ,
calculating an offset, which is the difference between the internal device time of the host device and the internal device time of the own device;
calculating the transmission delay time of packets transmitted and received between the higher-level device and the own device;
determining a variation pattern of the offset;
determining a variation pattern of the transmission delay time;
A time synchronization method, wherein a location of failure in time synchronization with the host device is determined based on the variation pattern of the offset and the variation pattern of the transmission delay time.
 [付記項7]
 コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、前記コンピュータを、付記項1に記載の時刻同期装置として動作させる、プログラムを記憶した非一時的記憶媒体。
[Appendix 7]
A non-temporary storage medium storing a program executable by a computer, the non-temporary storage medium storing the program for causing the computer to operate as the time synchronization device according to claim 1.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨および範囲内で、多くの変更および置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形または変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above embodiments have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, the present invention should not be construed as limited by the embodiments described above, and various modifications and changes are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of configuration blocks described in the configuration diagrams of the embodiments into one, or divide one configuration block.
 1  時刻同期システム
 2,2A  Grand Master Clock(上位装置)
 3  クライアント装置(下位装置)
 11  プロセッサ
 12  ROM
 13  RAM
 14  ストレージ
 15  入力部
 16  表示部
 17  通信I/F
 19  バス
 100,100A  Boundary Clock(時刻同期装置)
 101,101A,105  パケット送受信部
 102  オフセット計算部
 103  伝送遅延時間計算部
 104  時刻同期処理部
 106  閾値記憶部
 107  オフセットパターン判定部
 108  伝送遅延時間パターン判定部
 109  カウントフラグ部
 110  Clock Class書換部
 111,111A  障害箇所判定部
 112  時刻選択部
1 Time synchronization system 2, 2A Grand Master Clock (upper device)
3 Client device (lower device)
11 processor 12 ROM
13 RAM
14 storage 15 input unit 16 display unit 17 communication I/F
19 Bus 100, 100A Boundary Clock (time synchronization device)
101, 101A, 105 packet transmission/reception unit 102 offset calculation unit 103 transmission delay time calculation unit 104 time synchronization processing unit 106 threshold storage unit 107 offset pattern determination unit 108 transmission delay time pattern determination unit 109 count flag unit 110 clock class rewrite unit 111, 111A Fault point determination unit 112 Time selection unit

Claims (7)

  1.  上位装置とのパケットの送受信により、前記上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を前記自装置の装置内時刻に同期させる時刻同期装置であって、
     前記上位装置の装置内時刻と前記自装置の装置内時刻との差であるオフセットを計算するオフセット計算部と、
     前記上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算する伝送遅延時間計算部と、
     前記オフセットの変動パターンを判定するオフセットパターン判定部と、
     前記伝送遅延時間の変動パターンを判定する伝送遅延時間パターン判定部と、
     前記オフセットの変動パターンと、前記伝送遅延時間の変動パターンとに基づき、前記上位装置との時刻同期の障害の発生箇所を判定する障害箇所判定部と、を備える時刻同期装置。
    A time synchronizing device for synchronizing the device internal time of its own device with the device internal time of the host device by transmitting and receiving packets to and from a host device, and synchronizing the device internal time of the lower device with the device internal time of the device itself, ,
    an offset calculation unit that calculates an offset, which is the difference between the internal device time of the host device and the internal device time of the own device;
    a transmission delay time calculation unit that calculates the transmission delay time of packets transmitted and received between the host device and the self device;
    an offset pattern determination unit that determines the variation pattern of the offset;
    a transmission delay time pattern determination unit that determines a variation pattern of the transmission delay time;
    A time synchronizing device comprising: a failure location determination unit that determines a location of failure in time synchronization with the higher-level device based on the variation pattern of the offset and the variation pattern of the transmission delay time.
  2.  請求項1に記載の時刻同期装置において、
     前記障害箇所判定部は、前記障害の発生箇所が前記上位装置であると判定すると、前記下位装置の装置内時刻の前記自装置の装置内時刻への同期を停止する、時刻同期装置。
    In the time synchronization device according to claim 1,
    The time synchronizing device, wherein the failure location determination unit stops synchronizing the device internal time of the lower device with the device internal time of the own device when it determines that the failure location is the host device.
  3.  請求項1に記載の時刻同期装置において、
     複数の上位装置の中から、自装置の装置内時刻を同期させる上位装置を選択する時刻選択部をさらに備え、
     前記障害箇所判定部は、前記障害の発生箇所が前記上位装置であると判定すると、前記時刻選択部に、自装置の装置内時刻を同期させる上位装置を切り替えさせる、時刻同期装置。
    In the time synchronization device according to claim 1,
    further comprising a time selection unit that selects, from among a plurality of higher-level devices, a higher-level device with which the internal time of the device is to be synchronized;
    The time synchronizing device, wherein, when the failure location determination unit determines that the location of the failure is the host device, the time selection unit switches the host device with which the device internal time of the own device is to be synchronized.
  4.  請求項1から3のいずれか一項に記載の時刻同期装置において、
     前記オフセットパターン判定部は、前記オフセットの絶対値が第1の閾値より大きいか否かを判定し、前記オフセットの変動パターンとして、前記オフセットの絶対値が前記第1の閾値より大きいと判定された時間または回数が第2の閾値より大きいか否かを判定し、
     前記伝送遅延時間パターン判定部は、前記伝送遅延時間が第3の閾値より大きいか否かを判定し、前記伝送遅延時間の変動パターンとして、前記伝送遅延時間が前記第3の閾値より大きいと判定された時間または回数が第4の閾値より大きいか否かを判定する、時刻同期装置。
    In the time synchronization device according to any one of claims 1 to 3,
    The offset pattern determination unit determines whether or not the absolute value of the offset is greater than a first threshold, and the absolute value of the offset is determined to be greater than the first threshold as the variation pattern of the offset. determining whether the time or number of times is greater than a second threshold;
    The transmission delay time pattern determination unit determines whether or not the transmission delay time is greater than a third threshold, and determines that the transmission delay time is greater than the third threshold as the variation pattern of the transmission delay time. time synchronizing device for determining whether the time or number of times set is greater than a fourth threshold.
  5.  請求項4に記載の時刻同期装置において、
     前記障害箇所判定部は、前記オフセットの絶対値が前記第1の閾値より大きいと判定された時間または回数が前記第2の閾値より大きく、かつ、前記伝送遅延時間が前記第3の閾値以下である場合、または、前記伝送遅延時間が前記第3の閾値より大きいと判定された時間または回数が前記第4の閾値より小さい場合、前記障害の発生箇所が前記上位装置であると判定する、時刻同期装置。
    In the time synchronization device according to claim 4,
    The failure point determination unit determines that the time or the number of times that the absolute value of the offset is greater than the first threshold is greater than the second threshold, and the transmission delay time is equal to or less than the third threshold. If there is, or if the time or number of times the transmission delay time is determined to be greater than the third threshold is less than the fourth threshold, determining that the location of the failure is the higher-level device; Synchronizer.
  6.  上位装置とのパケットの送受信により、前記上位装置の装置内時刻に自装置の装置内時刻を同期させ、下位装置の装置内時刻を前記自装置の装置内時刻に同期させる時刻同期方法であって、
     前記上位装置の装置内時刻と前記自装置の装置内時刻との差であるオフセットを計算するステップと、
     前記上位装置と自装置との間で送受信されるパケットの伝送遅延時間を計算するステップと、
     前記オフセットの変動パターンを判定するステップと、
     前記伝送遅延時間の変動パターンを判定するステップと、
     前記オフセットの変動パターンと、前記伝送遅延時間の変動パターンとに基づき、前記上位装置との時刻同期の障害の発生箇所を判定するステップと、を含む時刻同期方法。
    A time synchronization method for synchronizing the device internal time of a device with the device internal time of the host device and synchronizing the device internal time of a lower device with the device internal time of the device by transmitting and receiving packets to and from a host device, ,
    a step of calculating an offset, which is the difference between the internal device time of the host device and the internal device time of the own device;
    a step of calculating a transmission delay time of packets transmitted and received between the host device and its own device;
    determining a variation pattern of the offset;
    determining a variation pattern of the transmission delay time;
    A time synchronization method, comprising: judging a location where a failure occurs in time synchronization with the host device based on the variation pattern of the offset and the variation pattern of the transmission delay time.
  7.  コンピュータを、請求項1から5のいずれか一項に記載の時刻同期装置として動作させる、プログラム。 A program that causes a computer to operate as the time synchronization device according to any one of claims 1 to 5.
PCT/JP2021/044154 2021-12-01 2021-12-01 Time synchronization device, time synchronization method, and program WO2023100299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023564347A JPWO2023100299A1 (en) 2021-12-01 2021-12-01
PCT/JP2021/044154 WO2023100299A1 (en) 2021-12-01 2021-12-01 Time synchronization device, time synchronization method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044154 WO2023100299A1 (en) 2021-12-01 2021-12-01 Time synchronization device, time synchronization method, and program

Publications (1)

Publication Number Publication Date
WO2023100299A1 true WO2023100299A1 (en) 2023-06-08

Family

ID=86611655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044154 WO2023100299A1 (en) 2021-12-01 2021-12-01 Time synchronization device, time synchronization method, and program

Country Status (2)

Country Link
JP (1) JPWO2023100299A1 (en)
WO (1) WO2023100299A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152488A (en) * 2015-02-17 2016-08-22 日本電信電話株式会社 Time synchronization method and time synchronization device
JP2017098694A (en) * 2015-11-20 2017-06-01 富士通株式会社 Communication apparatus and time synchronizing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152488A (en) * 2015-02-17 2016-08-22 日本電信電話株式会社 Time synchronization method and time synchronization device
JP2017098694A (en) * 2015-11-20 2017-06-01 富士通株式会社 Communication apparatus and time synchronizing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKANISHI, TAKASHI: "Development and Introduction of High-Precision Time Synchronization Access Systems", NTT TECHNICAL REVIEW, vol. 29, no. 4, 1 April 2017 (2017-04-01), pages 50 - 53, XP009545973 *

Also Published As

Publication number Publication date
JPWO2023100299A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
JP5569299B2 (en) COMMUNICATION SYSTEM, COMMUNICATION INTERFACE DEVICE, AND SYNCHRONIZATION METHOD
EP3009897B1 (en) Distribution device, distribution system, and distribution method
CA2675645C (en) Facilitating synchronization of servers in a coordinated timing network
CA2675644C (en) Facilitating recovery in a coordinated timing network
TW201024961A (en) Maintaining a primary time server as the current time server in response to failure of time code receivers of the primary time server
CN110492965A (en) The method and apparatus of serial message clock synchronization in a kind of master-slave system
CA2675637A1 (en) Defining a stratum-1 configuration in a coordinated timing network
CN111385051B (en) Clock synchronization method, device and storage medium
JP2011193457A (en) System and method for performing time synchronization
JP6452427B2 (en) Time synchronization monitoring method, communication system, and master device
JP6465787B2 (en) Data processing apparatus, device, data processing method, and data processing program
US20210281339A1 (en) Communication system and slave device
CN114586297A (en) Synchronization method and device
JP2010004321A (en) Time tracking system and time tracking apparatus
WO2023100299A1 (en) Time synchronization device, time synchronization method, and program
JP2013206472A (en) Method of forming timestamp in real-time system, data processing device, computer program product, and digital storage medium
KR101716630B1 (en) Communication device, communication method and computer readable recording medium recording program
JP7230690B2 (en) Time synchronization program, information processing device and time synchronization method
KR20170125405A (en) Time synchronization device and time synchronization system
WO2023073970A1 (en) Time synchronization device, time synchronization method, and program
US11876609B2 (en) Time sync device, time sync method, and program
WO2023203782A1 (en) Time synchronization device, time synchronization method, and program
Li et al. A high-accuracy clock synchronization method in distributed real-time system
Kopetz Why a global time is needed in a dependable sos
WO2022259381A1 (en) Time synchronization device, time synchronization method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564347

Country of ref document: JP

Kind code of ref document: A