WO2023098877A1 - 电池拆卸的控制方法及装置、电池安装的控制方法及装置 - Google Patents

电池拆卸的控制方法及装置、电池安装的控制方法及装置 Download PDF

Info

Publication number
WO2023098877A1
WO2023098877A1 PCT/CN2022/136210 CN2022136210W WO2023098877A1 WO 2023098877 A1 WO2023098877 A1 WO 2023098877A1 CN 2022136210 W CN2022136210 W CN 2022136210W WO 2023098877 A1 WO2023098877 A1 WO 2023098877A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
torque
lifting platform
shuttle
controlling
Prior art date
Application number
PCT/CN2022/136210
Other languages
English (en)
French (fr)
Inventor
张建平
陈志民
廖志桥
赵政浩
陆文成
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2023098877A1 publication Critical patent/WO2023098877A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention belongs to the field of battery replacement control for electric vehicles, and in particular relates to a control method and device for battery disassembly, a control method and device for battery installation, electronic equipment, and a storage medium.
  • Existing electric vehicle mainly has two kinds of charging methods, and a kind of is direct charge type, and another kind is quick change type.
  • the direct charging type needs to set up a charging pile to charge the electric vehicle, but the charging time is long and the efficiency is low.
  • the battery-swapping type needs to be equipped with a power-swapping station, and the battery can be replaced quickly by replacing the battery of the electric vehicle, which shortens a long time compared with the direct-charging type.
  • the invention provides a control method and device for battery disassembly, a control method and device for battery installation, electronic equipment, and a storage medium, so as to quickly and effectively change batteries for electric vehicles that use complex fixing parts to fix batteries.
  • a control method for battery disassembly which is applied to a power exchange station, where the power exchange station includes a lifting platform and battery replacement equipment, and the lifting platform is used to drive an electric vehicle carried on the lifting platform to move up and down,
  • the power exchange equipment includes a shuttle and a disassembly tool, the disassembly tool is provided on the shuttle, and the disassembly tool is used to unlock or lock the fixed parts of the battery;
  • the control method includes:
  • the disassembly tool on the shuttle vehicle can be aligned with the fixed parts of the electric vehicle chassis carried on the lifting platform to realize
  • the effective disassembly and assembly of the battery can save the battery replacement time of the electric vehicle and improve the battery replacement efficiency.
  • controlling the relative movement of the lifting platform and the shuttle vehicle includes:
  • the relative movement between the lifting platform and the shuttle car is realized.
  • the first disassembly height and the second disassembly height can be determined according to It has been empirically determined that the alignment accuracy of the dismounting tool with the fixed part can be improved.
  • guide holes are provided on the chassis, and guides are provided on the shuttle car; the relative movement of the lifting platform and the shuttle car at a designated position below the lifting platform is controlled, so that the The dismounting tool is aligned with the fixed parts on the chassis of the electric vehicle, including:
  • the guide piece and the guide hole have a guiding function.
  • the guide piece first touches the guide hole on the chassis of the electric vehicle for guidance and positioning.
  • the precise alignment of the assembly tool and the fixed part greatly improves the safety and stability of the assembly tool when disassembling the battery.
  • the lifting platform and the shuttle vehicle before controlling the relative movement of the lifting platform and the shuttle vehicle, it includes:
  • the lifting platform before controlling the relative movement of the lifting platform and the shuttle car, the lifting platform is first controlled to rise to the third dismounting height higher than the no-load passing height of the shuttle car, so as to control the shuttle car to move smoothly under the lifting platform to the specified height. position, thereby achieving precise alignment of the dismounting tool with the fixed part.
  • continuing to control the relative movement of the lifting platform and the shuttle vehicle includes:
  • a leveling column is provided on the shuttle;
  • the chassis is attached to the end surface of the leveling column.
  • the leveling column can ensure that the chassis of the vehicle is parallel to the disassembly tool, and improve the safety and stability of the battery disassembly by the disassembly tool.
  • the fixing part includes a rotation lock
  • the dismounting tool includes a torque gun
  • controlling the dismounting tool to unlock the fixing part of the battery includes:
  • the torque gun is controlled to unlock the rotation lock.
  • the torque gun before controlling the torque gun to rotate the first set number of turns in the first direction, it also includes:
  • the second direction is opposite to the first direction.
  • the torque gun is rotated in two opposite directions, so that the probability of successful cap recognition between the torque gun and the rotation lock will be greatly improved, effectively avoiding the detection without successful cap recognition , greatly improving security and stability.
  • the first direction is a locking direction
  • the second direction is an unlocking direction
  • both the second set number of turns and the third set number of turns are smaller than the first set number of turns
  • both the second set number of turns and the third set number of turns are less than or equal to 1.
  • the battery removal efficiency is improved. At the same time, it ensures more accurate detection and effectively avoids the occurrence of errors.
  • controlling the torque gun to unlock the rotation lock includes:
  • the torque gun is controlled to apply the unlocking torque, so that the torque gun rotates in the unlocking direction, and drives the rotating locking part to rotate in the unlocking direction, thereby realizing the fixed
  • the unlocking operation of the parts is very convenient to use.
  • the method also includes:
  • controlling the dismounting tool to unlock the fixing part of the battery, so that the battery is separated from the electric vehicle and carried on the dismounting tool includes:
  • the shuttle car and the lifting platform are controlled to move toward each other, so that the battery is separated from the electric vehicle and carried on the shuttle car.
  • a control method for battery installation which is applied to a power exchange station, where the power exchange station includes a lifting platform and battery replacement equipment, and the lifting platform is used to drive an electric vehicle carried on the lifting platform to move up and down,
  • the power exchange equipment includes a shuttle and a disassembly tool, the disassembly tool is provided on the shuttle, and the disassembly tool is used to unlock or lock the fixed parts of the battery;
  • the control method includes:
  • the batteries carried on the shuttle car are aligned with the battery installation positions at the bottom of the electric vehicle carried on the lifting platform, so as to realize effective battery installation. , which can save the battery swapping time of the electric vehicle and improve the battery swapping efficiency.
  • controlling the relative movement of the lifting platform and the shuttle vehicle includes:
  • the first installation height and the second installation height can be determined according to It has been empirically determined that the alignment accuracy of the dismounting tool with the fixed part can be improved.
  • a guide hole is provided on the chassis of the electric vehicle, and a guide is provided on the shuttle car; the relative movement of the lifting platform and the shuttle car at a designated position below the lifting platform is controlled to Aligning the batteries carried on the shuttle with the battery installation positions at the bottom of the electric vehicle carried on the lifting platform, including:
  • the guide piece and the guide hole have a guiding function.
  • the guide piece first touches the guide hole on the chassis of the electric vehicle for guidance and positioning.
  • the precise alignment of the installation tool and the fixed part greatly improves the safety and stability of the battery installation by the disassembly tool.
  • the lifting platform and the shuttle vehicle before controlling the relative movement of the lifting platform and the shuttle vehicle, it includes:
  • continuing to control the relative movement of the lifting platform and the shuttle vehicle includes:
  • a leveling column is provided on the shuttle;
  • the chassis of the electric vehicle is attached to the end surface of the leveling column.
  • the leveling column can ensure that the chassis of the vehicle is parallel to the disassembly tool, and improve the safety and stability of the battery disassembly by the disassembly tool.
  • the fixed component includes a rotation lock
  • the dismounting tool includes a torque gun
  • the controlling the dismounting tool to lock the fixing part of the battery includes:
  • the torque gun is controlled to lock the rotation locking member.
  • the torque gun before controlling the torque gun to rotate the fifth set number of turns in the first direction, it also includes:
  • the first direction is opposite to the second direction.
  • the position of the rotation lock is adjusted by rotating the torque gun in two opposite directions, which effectively avoids detection before reaching the installation position, and greatly improves safety and stability.
  • the first direction is a locking direction
  • the second direction is an unlocking direction
  • both the sixth set number of turns and the seventh set number of turns are smaller than the fifth set number of turns;
  • both the sixth set number of turns and the seventh set number of turns are less than or equal to 1.
  • the method before controlling the torque gun to lock the rotation lock, the method further includes:
  • the rotary lock first rotates in the locking direction, and then rotates in the unlocking direction to reach the initial position, even if there is an offset and misalignment phenomenon in the first locking process of the rotary lock,
  • the rotating locking member reaches the initial position, so that the rotating locking member will be precisely in the locking position, and at the same time, the locking accuracy of the rotating locking member in the subsequent locking process is greatly improved, and the locking is more stable.
  • the method also includes:
  • controlling the torque gun to lock the rotation lock includes:
  • the torque gun is controlled to apply a locking torque, so that the torque gun rotates in the locking direction, and drives the rotary lock to rotate in the same direction. , so as to realize the locking operation of the fixed parts, which is very convenient to use.
  • control method also includes:
  • the actual number of rotations of the torque gun is judged Whether it is within the range of locking circles, so as to determine whether the disassembly tool is locked successfully, realize accurate detection and control, and greatly improve the safety and stability of the disassembly tool to install the battery.
  • controlling the dismounting tool to lock the fixing part of the battery so that the battery is installed on the electric vehicle includes:
  • the shuttle vehicle is controlled to move toward the lifting platform so that the shuttle vehicle drives away.
  • a control device for battery disassembly which is applied to a power exchange station, characterized in that the power exchange station includes a lifting platform and battery replacement equipment, and the lifting platform is used to drive an electric vehicle carried on the lifting platform
  • the power exchange equipment includes a shuttle and a disassembly tool, the disassembly tool is arranged on the shuttle, and the disassembly tool is used to unlock or lock the fixed parts of the battery;
  • Controls include:
  • the first control module is configured to control the relative movement of the lifting platform and the shuttle vehicle at a designated position below the lifting platform when the electric vehicle to be replaced is carried on the lifting platform, so that The dismounting tool is aligned with a fixed part on the chassis of the electric vehicle;
  • the first control module is further configured to continue to control the relative movement of the lifting platform and the shuttle car, so that the disassembly tool on the shuttle car contacts the fixed component;
  • the second control module is used to control the dismounting tool to unlock the fixing part of the battery, so that the battery is detached from the electric vehicle and carried on the dismounting tool.
  • the disassembly tool on the shuttle vehicle can be aligned with the fixed parts of the electric vehicle chassis carried on the lifting platform to realize
  • the effective disassembly and assembly of the battery can save the battery replacement time of the electric vehicle and improve the battery replacement efficiency.
  • the first control module when controlling the relative movement of the lifting platform and the shuttle, is used for:
  • the relative movement between the lifting platform and the shuttle car is realized.
  • the first disassembly height and the second disassembly height can be determined according to It has been empirically determined that the alignment accuracy of the dismounting tool with the fixed part can be improved.
  • guide holes are provided on the chassis, and guides are provided on the shuttle; when controlling the relative movement of the lifting platform and the shuttle at a designated position below the lifting platform, the The first control module is used for:
  • the guide piece and the guide hole have a guiding function.
  • the guide piece first touches the guide hole on the chassis of the electric vehicle for guidance and positioning.
  • the precise alignment of the assembly tool and the fixed part greatly improves the safety and stability of the assembly tool when disassembling the battery.
  • the first control module is further configured to:
  • the lifting platform before controlling the relative movement of the lifting platform and the shuttle car, the lifting platform is first controlled to rise to the third dismounting height higher than the no-load passing height of the shuttle car, so as to control the shuttle car to move smoothly under the lifting platform to the specified height. position, thereby achieving precise alignment of the dismounting tool with the fixed part.
  • the first control module is used to:
  • a leveling column is provided on the shuttle;
  • the chassis is attached to the end surface of the leveling column.
  • the leveling column can ensure that the chassis of the vehicle is parallel to the disassembly tool, and improve the safety and stability of the battery disassembly by the disassembly tool.
  • the fixing part includes a rotation lock
  • the dismounting tool includes a torque gun
  • the second control module includes:
  • a control unit configured to control the torque gun to rotate a first set number of turns in a first direction, and detect a first real-time torque of the torque gun;
  • a judging unit configured to judge whether the first real-time torque reaches the first set torque during the rotation of the torque gun; and when the first real-time torque reaches the first set torque , determining that the torque gun has reached an unlocked position and controlling the torque gun to lock the rotation lock.
  • the second control module before controlling the torque gun to rotate in the first direction for a first set number of turns, is further used for:
  • the second direction is opposite to the first direction.
  • the torque gun is rotated in two opposite directions, so that the probability of successful cap recognition between the torque gun and the rotation lock will be greatly improved, effectively avoiding the detection without successful cap recognition , greatly improving security and stability.
  • the first direction is a locking direction
  • the second direction is an unlocking direction
  • both the second set number of turns and the third set number of turns are smaller than the first set number of turns
  • both the second set number of turns and the third set number of turns are less than or equal to 1.
  • the battery removal efficiency is improved. At the same time, it ensures more accurate detection and effectively avoids the occurrence of errors.
  • the second control unit when controlling the torque gun to unlock the rotation lock, is used for:
  • the torque gun is controlled to apply the unlocking torque, so that the torque gun rotates in the unlocking direction, and drives the rotating locking part to rotate in the unlocking direction, thereby realizing the fixed
  • the unlocking operation of the parts is very convenient to use.
  • the second control unit is also used for:
  • the second control module is specifically used for:
  • control the torque gun When it is determined that the torque gun successfully unlocks the rotation lock, control the torque gun to release the unlocking torque, and invoke a first control module to control the shuttle and the lifting platform moving towards each other, so that the battery is separated from the electric vehicle and carried on the shuttle.
  • a battery-installed control device which is applied to a power exchange station, is characterized in that the power exchange station includes a lifting platform and battery replacement equipment, and the lifting platform is used to drive an electric vehicle carried on the lifting platform
  • the power exchange equipment includes a shuttle and a disassembly tool, the disassembly tool is arranged on the shuttle, and the disassembly tool is used to unlock or lock the fixed parts of the battery;
  • Controls include:
  • the third control module is used to control the relative movement of the lifting platform and the shuttle vehicle at a designated position below the lifting platform, so that the battery carried on the shuttle vehicle and the electric motor carried on the lifting platform The battery installation position at the bottom of the vehicle is aligned;
  • the third control module is also used to continue to control the relative movement of the lifting platform and the shuttle car, so that the battery carried on the shuttle car reaches the battery installation position at the bottom of the electric vehicle and the dismounting a tool is in contact with said fixed part;
  • the fourth control module is configured to control the dismounting tool to lock the fixing part of the battery, so that the battery is installed on the electric vehicle.
  • the batteries carried on the shuttle car are aligned with the battery installation positions at the bottom of the electric vehicle carried on the lifting platform, so as to realize effective battery installation. , which can save the battery swapping time of the electric vehicle and improve the battery swapping efficiency.
  • the third control module when controlling the relative movement of the lifting platform and the shuttle, is used to:
  • the first installation height and the second installation height can be determined according to It has been empirically determined that the alignment accuracy of the dismounting tool with the fixed part can be improved.
  • a guide hole is provided on the chassis of the electric vehicle, and a guide member is provided on the shuttle car;
  • the first control module determines that the battery on the shuttle vehicle is aligned with the battery installation position on the bottom of the electric vehicle on the lifting platform.
  • the guide piece and the guide hole have a guiding function.
  • the guide piece first touches the guide hole on the chassis of the electric vehicle for guidance and positioning.
  • the precise alignment of the installation tool and the fixed part greatly improves the safety and stability of the battery installation by the disassembly tool.
  • the third control module is further configured to:
  • the third control module is used to:
  • a leveling column is provided on the shuttle;
  • the chassis of the electric vehicle is attached to the end surface of the leveling column.
  • the leveling column can ensure that the chassis of the vehicle is parallel to the disassembly tool, and improve the safety and stability of the battery disassembly by the disassembly tool.
  • the fixing component includes a rotation lock
  • the disassembly tool includes a torque gun
  • the fourth control module includes:
  • control unit configured to control the torque gun to rotate a fifth set number of turns in the first direction, and detect a third real-time torque of the torque gun
  • a judging unit configured to judge whether the third real-time torque reaches a third set torque during the rotation of the torque gun; when the third real-time torque reaches the third set torque, Then it is determined that the torque gun has reached the locking position and the torque gun is controlled to lock the rotation locking member.
  • the fourth control module is further used for:
  • the first direction is opposite to the second direction.
  • the position of the rotation lock is adjusted by rotating the torque gun in two opposite directions, thereby effectively avoiding detection before reaching the installation position, and greatly improving safety and stability .
  • the first direction is a locking direction
  • the second direction is an unlocking direction
  • both the sixth set number of turns and the seventh set number of turns are smaller than the fifth set number of turns;
  • both the sixth set number of turns and the seventh set number of turns are less than or equal to 1.
  • the fourth control module when controlling the dismounting tool to lock the fixing part of the battery, is also used for:
  • the rotary lock first rotates in the locking direction, and then rotates in the unlocking direction to reach the initial position, even if there is an offset and misalignment phenomenon in the first locking process of the rotary lock,
  • the rotating locking member reaches the initial position, so that the rotating locking member will be precisely in the locking position, and at the same time, the locking accuracy of the rotating locking member in the subsequent locking process is greatly improved, and the locking is more stable.
  • the fourth control module is also used for:
  • the fourth control module when controlling the torque gun to lock the rotation lock, is used for:
  • the torque gun is controlled to apply a locking torque, so that the torque gun rotates in the locking direction, and drives the rotary lock to rotate in the same direction. , so as to realize the locking operation of the fixed parts, which is very convenient to use.
  • the fourth control module is also used for:
  • the actual number of rotations of the torque gun is judged Whether it is within the range of locking circles, so as to determine whether the disassembly tool is locked successfully, realize accurate detection and control, and greatly improve the safety and stability of the disassembly tool to install the battery.
  • the fourth control module when controlling the dismounting tool to lock the fixing part of the battery, is specifically used for:
  • control the torque gun When it is determined that the torque gun successfully locks the rotation lock, control the torque gun to release the locking torque, and call the third control module to control the shuttle car and the The lifting platforms move toward each other, so that the shuttle car drives away.
  • An electronic device comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the computer program, it implements the battery removal control method and method described in any one of the above and/or control methods for battery installation.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for controlling battery removal and/or the method for controlling battery installation described in any one of the above are implemented.
  • the positive and progressive effect of the present invention lies in: in the embodiment of the present invention, through the control of the lifting platform and the battery exchange equipment, during the process of battery disassembly and assembly, the disassembly tool on the shuttle car can be connected with the electric battery carried on the lifting platform.
  • the fixed parts of the vehicle chassis are aligned to realize effective disassembly and assembly of the battery, which can save the battery replacement time of the electric vehicle and improve the battery replacement efficiency.
  • Fig. 1a is a schematic diagram of a battery disassembly and assembly scenario provided by an exemplary embodiment of the present invention
  • Fig. 1b is a schematic diagram of another battery disassembly scenario provided by an exemplary embodiment of the present invention.
  • Fig. 1c is a schematic structural diagram of a battery replacement device provided by an exemplary embodiment of the present invention.
  • Fig. 2 is a flow chart of a control method for battery disassembly provided by an exemplary embodiment of the present invention
  • Fig. 3 is a flow chart of controlling the relative movement of the lifting platform and the shuttle vehicle at a designated position below the lifting platform in the battery removal control method provided by an exemplary embodiment of the present invention
  • Fig. 4 is a flow chart of controlling the dismounting tool to unlock the fixing part of the battery in the battery dismounting control method provided by an exemplary embodiment of the present invention
  • Fig. 5 is a flow chart of controlling the torque gun to unlock the rotation lock in the battery removal control method provided by an exemplary embodiment of the present invention
  • Fig. 6 is a flow chart of a battery installation control method provided by an exemplary embodiment of the present invention.
  • Fig. 7 is a flow chart of controlling the relative movement of the lifting platform and the shuttle vehicle at a designated position below the lifting platform in the battery installation control method provided by an exemplary embodiment of the present invention
  • Fig. 8 is a flow chart of determining that the torque gun reaches the locked position in the battery installation control method provided by an exemplary embodiment of the present invention
  • Fig. 9 is a flow chart of controlling the torque gun to lock the rotation lock in the battery installation control method provided by an exemplary embodiment of the present invention.
  • Fig. 10 is a block diagram of a control device for battery removal provided by an exemplary embodiment of the present invention.
  • Fig. 11 is a block diagram of a battery-installed control device provided by an exemplary embodiment of the present invention.
  • Fig. 12 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present invention.
  • the embodiment of the present invention provides a control method for battery disassembly.
  • the control method is applied to a battery swapping station. See Figures 1a to 1c.
  • the swapping station includes a lifting platform 11 and a battery switching device 12.
  • the electric vehicle 13 on the lifting platform 11 moves up and down.
  • the battery exchange equipment 12 includes a shuttle car 121 and a disassembly tool 122.
  • the disassembly tool 122 is arranged on the shuttle car 121.
  • the disassembly tool 122 is used to unlock or lock the fixed parts of the battery on the electric vehicle.
  • Fig. 2 is a flowchart of a control method for battery disassembly provided by an exemplary embodiment of the present invention, the control method includes the following steps:
  • Step 210 when the electric vehicle to be replaced is carried on the lifting platform, control the relative movement of the lifting platform and the shuttle vehicle located at a designated position below the lifting platform, so that the disassembly tool and the vehicle on the chassis of the electric vehicle The fixed parts are aligned.
  • Fig. 3 is a flow chart of controlling the relative movement of the lift platform and the shuttle vehicle located at a designated position below the lift platform in the battery removal control method in an embodiment of the present invention, the above step 210 may include the following steps:
  • Step S211 controlling the lifting platform to descend to the first disassembly height, and controlling the shuttle car to ascend to the second disassembly height, so that the disassembly tool is aligned with the fixed part on the chassis.
  • controlling the lifting platform to descend to the first dismantling height and controlling the shuttle car to rise to the second dismantling height can be executed synchronously or asynchronously. In asynchronous execution, the descending of the lifting platform can be preferentially controlled, or the shuttle can be preferentially controlled.
  • the car is raised, and this embodiment of the present invention is not particularly limited.
  • the lifting platform In the process of controlling the lifting platform to descend to the first disassembly height, the lifting platform can be controlled to descend at a constant speed, or can be controlled to descend at a variable speed, or to be uniform and then variable. limited.
  • the shuttle car In the process of controlling the shuttle car to rise to the second disassembly height, the shuttle car can be controlled to rise at a constant speed, or can be controlled to rise at a variable speed, or first to be at a constant speed and then to change speed.
  • the embodiment of the present invention does not specifically limit the rising speed of the shuttle car.
  • the shuttle vehicle before controlling the relative movement of the lifting platform and the shuttle vehicle, it is first determined whether the shuttle vehicle is located at a specified position under the lifting platform. If it is determined that the shuttle car is located at a designated position under the lifting platform, the relative movement of the lifting platform and the shuttle car is controlled.
  • the lifting platform controls the lifting platform to reach the third disassembly height, the third disassembly height is higher than the no-load passing height of the shuttle car, so that the shuttle car can move to the designated position smoothly, and
  • the lifting platform is controlled to descend to the first disassembly height, and the shuttle is controlled to rise to the second disassembly height, so that the disassembly tools are aligned with the fixed components on the chassis of the electric vehicle.
  • the no-load passing height of the shuttle vehicle is the minimum height at which the shuttle vehicle can enter and exit under the lifting platform without conflicting with the vehicle when the battery is not loaded.
  • the chassis height of the electric vehicle carried on the lifting platform is higher than the no-load passing height of the shuttle vehicle, and the shuttle vehicle can smoothly move under the electric vehicle.
  • the disassembly tool on the shuttle is located under the battery of the electric vehicle.
  • a guide hole (not shown in the figure) is provided on the chassis, referring to FIG. 1 c , and a guide member 123 is provided on the shuttle.
  • the above step S210 also includes the following steps:
  • Step S212 when the guide piece is inserted into the guide hole, it is determined that the dismounting tool is aligned with the fixing part on the chassis.
  • the distance between the disassembly tool and the fixed part becomes smaller and smaller.
  • the guide piece 123 is inserted into the guide hole, it is determined that the disassembly tool is aligned with the fixed part on the chassis.
  • the precise alignment of the disassembly tool and the fixed part is realized, which greatly improves the safety and stability of the disassembly tool for disassembling the battery.
  • Step 220 continue to control the relative movement of the lifting platform and the shuttle car, so that the disassembly tool on the shuttle car contacts the fixed component.
  • the lifting platform while continuing to control the relative movement of the lifting platform and the shuttle car, the lifting platform is controlled to descend to the fourth disassembly height, and the shuttle car is controlled to rise to the fifth disassembly height, so that the disassembly tools on the shuttle car The fixed parts are in contact.
  • the fourth disassembly height is lower than the first disassembly height
  • the fifth disassembly height is higher than the second disassembly height.
  • a leveling column 124 is provided on the shuttle.
  • the chassis fits the end surface of the leveling column, thereby ensuring that the vehicle chassis Parallel to the removal tool for easy battery removal.
  • the lifting platform can be controlled to descend at a constant speed, or the lifting platform can be controlled to descend at a variable speed, or the speed can be changed at a constant speed first
  • the embodiment of the present invention does not specifically limit the descending speed of the lifting platform.
  • the shuttle car Similar to controlling the shuttle car to rise to the second dismantling height, in the process of controlling the shuttle car to rise to the fifth dismantling height, the shuttle car can be controlled to rise at a constant speed, or the shuttle car can be controlled to rise at a variable speed, or the speed can be changed at a constant speed first.
  • the ascent speed of the shuttle car is not particularly limited.
  • Step 230 controlling the assembly and disassembly tool to unlock the fixing part of the battery, so that the battery is detached from the electric vehicle and carried on the assembly and disassembly tool.
  • the disassembly tools on the shuttle can be aligned with the fixed parts of the electric vehicle chassis carried on the lifting platform, so as to facilitate battery disassembly and assembly. It can save the battery replacement time of the electric vehicle and improve the battery replacement efficiency.
  • the fixing part includes a rotation lock
  • the dismounting tool includes a torque gun
  • the rotation lock is unlocked by the torque gun.
  • Fig. 4 is a flow chart of controlling the dismounting tool to unlock the fixed parts of the battery in the battery dismounting control method in an embodiment of the present invention, the above step S230 may include the following steps:
  • Step S231 controlling the torque gun to rotate in a first direction for a first set number of turns, and detecting a first real-time torque of the torque gun.
  • Step S232 during the rotation of the torque gun, it is judged whether the first real-time torque reaches the first set torque.
  • Step S233 if the first real-time torque reaches the first set torque, then determine that the torque gun has reached the unlocking position and control the torque gun to unlock the rotation locking member.
  • the torque gun When unlocking, the torque gun is controlled to rotate a first set number of circles in a first direction, and the first real-time torque of the torque gun is detected. During the rotation process of the torque gun, judge whether the first real-time torque reaches the first set torque; ) and control the torque gun to unlock the rotation lock of the battery; if the first real-time torque does not reach the first set torque, then it is determined that the torque gun has not reached the unlocked position (that is, the recognition of the cap fails), and the recognition of the cap can be issued. Failure reminder.
  • the torque gun After the torque gun is in contact with the rotating lock, by controlling the torque gun to rotate the first set number of turns in the first direction and detecting the first real-time torque of the torque gun, if the cap recognition between the torque gun and the fixed part is successful, Then the first real-time torque generated by the torque gun during the rotation will inevitably reach the first set torque, so as to determine that the disassembly tool reaches the unlocked position; Then the torque gun will not receive resistance or the resistance is small during the rotation process, that is, there is a idling phenomenon, so that the generated first real-time torque does not reach the first set torque, so it is determined that the disassembly tool has not reached the unlocked position.
  • the first set number of turns can be determined according to the number of locked or unlocked turns of the rotation lock, and the first set torque can be determined according to the technical specifications of the rotation lock or through actual test data.
  • the torque gun before the torque gun is controlled to rotate the first set number of turns in the first direction, the torque gun is also controlled to rotate in the first direction for the second set number of turns, and the torque gun is controlled to rotate in the second direction for the third set number of turns. Number of turns. Wherein, the second direction is opposite to the first direction.
  • the torque gun is controlled to rotate the second set number of turns and the third set number of turns in the first direction and the second direction respectively.
  • the number of turns even if there may be an offset and misalignment phenomenon during the contact process between the disassembly tool and the fixed part, but the torque gun is rotated in two opposite directions, so that the probability of successful recognition between the torque gun and the rotation lock Greatly improved, effectively avoiding detection without successful cap recognition, greatly improving security and stability.
  • both the second set number of turns and the third set number of turns are smaller than the first set number of turns.
  • the second set number of turns and the third set number of turns are both less than or equal to 1, for example, the second set number of turns and the third set number of turns are set to 0.5 turns.
  • the first set number of turns can be set to 7 turns.
  • the first direction is the locking direction
  • the second direction is the unlocking direction
  • FIG. 5 is a flow chart of controlling the torque gun to unlock the rotation lock in the method for controlling battery disassembly in an embodiment of the present invention.
  • the above step S233 may include the following steps:
  • Step S233-1 controlling the torque gun to apply the unlocking torque to rotate for a fourth set number of turns in the unlocking direction.
  • the dismounting tool When it is detected that the dismounting tool reaches the unlocking position, that is, when the cap recognition is successful, the dismounting tool is controlled to unlock the fixed part. Specifically, the torque gun is controlled to apply the unlocking torque to rotate the fourth set number of turns in the unlocking direction, The torque gun is rotated in the unlocking direction, and the rotating locking part is also driven to rotate in the unlocking direction, thereby realizing the unlocking operation of the fixed part, which is very convenient to use.
  • the fourth set number of turns can be determined according to the number of locking or unlocking turns of the rotation lock member.
  • step S233 may also include the following steps:
  • Step S233-2 During the process of the torque gun rotating for the fourth set number of turns in the unlocking direction, detect the second real-time torque of the torque gun, and determine whether the second real-time torque reaches the second set torque.
  • Step S233-3 When the second real-time torque reaches the second set torque, it is judged whether the actual number of rotations of the torque gun is within the range of the unlocking number of rotations, so as to determine that the dismounting tool has successfully unlocked the fixed part of the battery.
  • the second set torque can be determined according to the technical specifications of the rotation locking member or through actual test data.
  • the second setting Torque can be determined from the specifications of the rotary lock or from actual test data.
  • the second real-time torque reaches the second set torque, it is judged whether the actual number of rotations of the torque gun is within the range of unlocking circles, and if the actual number of rotations of the torque gun falls within the range of unlocking circles, it is determined to disassemble The tool is unlocked successfully; if the actual number of rotations of the torque gun does not fall within the range of the unlocking number, it is determined that the unlocking of the disassembly tool is unsuccessful; for example, the actual number of rotations is less than the range of the unlocking number, then it is determined that the torque gun is stuck As a result, it cannot be rotated; and for example, the actual number of rotations is smaller than the range of unlocked circles, then it is determined that the torque gun has idling and does not drive the rotation lock to rotate together.
  • step S230 may further include the following steps:
  • Step S234 when it is determined that the torque gun successfully unlocks the rotation lock, control the torque gun to release the unlocking torque
  • Step S235 controlling the shuttle vehicle and the lifting platform to move toward each other, so that the battery is separated from the electric vehicle and loaded on the shuttle vehicle.
  • the shuttle In the process of controlling the movement of the shuttle car and the lifting platform, control the shuttle car to descend, and control the lifting platform to rise until the distance between the shuttle car and the lifting platform is greater than the loaded passing height of the shuttle car, the shuttle can be controlled
  • the car drives away from under the lifting platform with the battery to continue the follow-up battery replacement operation.
  • the on-load passing height is the minimum height at which the shuttle car can enter and exit under the lifting platform when the battery is carried on the shuttle car, and neither the shuttle car nor the battery conflicts with the vehicle.
  • Fig. 6 is a flowchart of a battery installation control method provided by an exemplary embodiment of the present invention, the control method includes the following steps:
  • Step 310 Control the relative movement of the lifting platform and the shuttle vehicle at a designated position below the lifting platform, so that the battery carried on the shuttle vehicle is aligned with the battery installation position at the bottom of the electric vehicle carried on the lifting platform.
  • Fig. 7 is a flow chart of controlling the relative movement of the lifting platform and the shuttle vehicle located at a designated position below the lifting platform in the battery installation control method in an embodiment of the present invention, the above step S310 may include the following steps:
  • Step S311 control the lifting platform to descend to the first installation height, and control the shuttle car to rise to the second installation height, so that the battery on the shuttle car is aligned with the battery installation position on the bottom of the electric vehicle on the lifting platform.
  • controlling the lifting platform to descend to the first installation height and controlling the shuttle vehicle to rise to the second installation height can be executed synchronously or asynchronously. During asynchronous execution, the descending of the lifting platform can be prioritized, or the shuttle can be preferentially controlled. The car is raised, and this embodiment of the present invention is not particularly limited.
  • the lifting platform In the process of controlling the lifting platform to descend to the first installation height, the lifting platform can be controlled to descend at a constant speed, or the lifting platform can be controlled to descend at a variable speed, or the speed can be changed at a constant speed first. limited.
  • the shuttle car In the process of controlling the shuttle car to rise to the second installation height, the shuttle car can be controlled to rise at a constant speed, or the shuttle car can be controlled to rise at a variable speed, or the speed can be changed at a constant speed first, and the rising speed of the shuttle car is not particularly limited in the embodiment of the present invention.
  • the shuttle vehicle before controlling the relative movement of the lifting platform and the shuttle vehicle, it is first determined whether the shuttle vehicle is located at a specified position under the lifting platform. If it is determined that the shuttle car is located at a designated position under the lifting platform, the relative movement of the lifting platform and the shuttle car is controlled.
  • the shuttle car If the shuttle car is not located at the designated position under the lifting platform, control the lifting platform to reach the third installation height, the third installation height is higher than the loaded passing height of the shuttle car, so that the shuttle car carrying the battery can move smoothly to Designate the location, and when it is determined that the shuttle is at the designated location, control the lifting platform to descend to the first installation height, and control the shuttle to rise to the second installation height, so that the batteries carried on the shuttle and the batteries carried on the lifting platform The battery installation positions at the bottom of the electric vehicle are aligned.
  • the on-load passing height of the shuttle car is the minimum height at which the shuttle car can enter and exit under the lifting platform when the shuttle car is carrying the battery and neither the shuttle car nor the battery conflicts with the vehicle.
  • the chassis height of the electric vehicle carried on the lifting platform is higher than the load passing height of the shuttle car, and the shuttle car can smoothly carry the battery and move under the electric vehicle.
  • the shuttle is at a designated location, the battery on the shuttle is located under the chassis of the electric vehicle.
  • a guide hole is provided on the chassis of the electric vehicle, and a guide member is provided on the shuttle car.
  • the above step S310 also includes the following steps:
  • Step S312 when the guide member is inserted into the guide hole, it is determined that the battery on the shuttle vehicle is aligned with the battery installation position on the bottom of the electric vehicle on the lifting platform.
  • Step 320 continue to control the relative movement of the lifting platform and the shuttle car, so that the battery carried on the shuttle car reaches the battery installation position at the bottom of the electric vehicle and the dismounting tool contacts the fixed part.
  • the lifting platform while continuing to control the relative movement of the lifting platform and the shuttle car, the lifting platform is controlled to descend to the fourth installation height, and the shuttle car is controlled to rise to the fifth installation height, so that the battery carried on the shuttle car reaches the electric motor.
  • the fourth installation height is lower than the first installation height
  • the fifth installation height is higher than the second installation height.
  • the shuttle car is provided with a leveling column, and in the process of continuing to control the relative movement of the lifting platform and the shuttle car, when the lifting platform descends to the fourth installation height and the shuttle car rises to the fifth installation height,
  • the chassis of the electric vehicle is attached to the end face of the leveling column, so as to ensure that the chassis of the vehicle is parallel to the disassembly tool, which is convenient for battery installation.
  • the lifting platform can be controlled to descend at a constant speed, or the lifting platform can be controlled to descend at a variable speed, or the speed can be changed at a constant speed first
  • the embodiment of the present invention does not specifically limit the descending speed of the lifting platform.
  • the shuttle car Similar to controlling the shuttle car to rise to the second installation height, in the process of controlling the shuttle car to rise to the fifth installation height, the shuttle car can be controlled to rise at a constant speed, or the shuttle car can be controlled to rise at a variable speed, or the speed can be changed at a constant speed first.
  • the ascent speed of the shuttle car is not particularly limited.
  • Step 330 controlling the dismounting tool to lock the fixing part of the battery, so that the battery is installed on the electric vehicle.
  • the fixed part includes a rotation lock
  • the disassembly tool includes a torque gun
  • the rotation lock is locked by the torque gun. Before the torque gun locks the rotation lock, it needs to be determined whether the torque gun reaches Locked position (unlocked position).
  • Fig. 8 is a flow chart of determining that the torque gun reaches the locked position in the battery installation control method in an embodiment of the present invention. Before the above step S320, the above method also includes the following steps:
  • Step S315 controlling the torque gun to rotate the fifth set number of turns along the first direction, and detecting the third real-time torque of the torque gun;
  • Step S316 during the rotation process of the torque gun, it is judged whether the third real-time torque reaches the third set torque
  • Step S317 if the third real-time torque reaches the third set torque, it is determined that the torque gun has reached the locked position.
  • the torque gun When locking, the torque gun is controlled to rotate a fifth set number of turns along the first direction, and the third real-time torque of the torque gun is detected. During the rotation of the torque gun, it is judged whether the third real-time torque reaches the third set torque; if the third real-time torque reaches the third set torque, then it is determined that the torque gun has reached the locked position (that is, the recognition cap is successful) ) and control the torque gun to lock the rotation lock of the battery; if the third real-time torque does not reach the third set torque, it is determined that the torque gun has not reached the unlocked position (that is, the recognition cap fails), and an authentication can be issued. Cap failure reminder.
  • the fifth set number of turns and the third set torque it can be accurately determined whether the cap removal is successful, and the safety and stability are high.
  • the fifth set number of turns can be determined according to the number of locked or unlocked turns of the rotation lock
  • the third set torque can be determined according to the technical specifications of the rotation lock or through actual test data.
  • the torque gun before controlling the torque gun to rotate the fifth set number of turns in the first direction, the torque gun is also controlled to rotate in the first direction for the sixth set number of turns, and the torque gun is controlled to rotate in the second direction for the seventh set number of turns. Number of turns. Wherein, the first direction is opposite to the second direction.
  • both the sixth set number of turns and the seventh set number of turns are smaller than the fifth set number of turns.
  • both the sixth set number of turns and the seventh set number of turns are less than or equal to 1, for example, the sixth set number of turns and the seventh set number of turns are set to 0.5 turns.
  • the fifth set number of turns can be set to 7 turns.
  • the first direction is the locking direction
  • the second direction is the unlocking direction
  • FIG. 9 is a flow chart of controlling the torque gun to lock the rotation lock in the battery installation control method in an embodiment of the present invention.
  • the above step S330 may include the following steps:
  • Step S331 controlling the torque gun to rotate an eighth set number of turns in the unlocking direction, so that the rotation locking member reaches the initial position.
  • the disassembly tool After confirming that the disassembly tool has reached the locked position, it can be determined that the disassembly tool has reached the locked position by controlling the torque gun along the first direction.
  • the first direction is the locking direction
  • the second direction is the unlocking direction, which is the direction of the torque gun. Rotate the locking connection between the rotary lock and the bottom of the electric vehicle to determine that the disassembly tool has reached the locked position.
  • the eighth setting is set by controlling the torque gun to rotate in the unlocking direction The number of turns, so that the rotation locking member reaches the initial position, wherein, the eighth set number of turns can be determined according to the number of locking or unlocking turns of the rotation locking member.
  • the rotary lock By controlling the torque gun, the rotary lock first rotates in the locking direction, and then rotates in the unlocking direction to reach the initial position.
  • the locking part reaches the initial position, so that the rotating locking part will be precisely in the locking position.
  • the locking accuracy of the rotating locking part in the subsequent locking process is greatly improved, and the locking is more stable.
  • Step S332 during the process of the torque gun rotating the eighth set number of turns in the unlocking direction, detect the fourth real-time torque of the torque gun, and determine whether the fourth real-time torque reaches the fourth set torque.
  • Step S333 when the fourth real-time torque reaches the fourth set torque, judge whether the actual number of rotations of the torque gun is within the range of the preset number of rotations, so as to determine that the rotation locking member has reached the initial position.
  • the fourth setting Torque can be determined from the specifications of the rotary lock or from actual test data.
  • the fourth real-time torque reaches the fourth set torque, it is judged whether the actual rotation number of the torque gun is within the preset number of rotations, and if the actual rotation number of the torque gun falls within the preset number of rotations, then Determine that the rotation lock has reached the initial position; if the actual number of rotations of the torque gun does not fall within the preset number of turns, then determine that the rotation lock has reached the initial position; for example, the actual number of rotations is less than the preset number of turns, then It is determined that the torque gun is stuck and cannot rotate; if the actual number of rotations is smaller than the preset number of turns, it is determined that the torque gun has idling and does not drive the rotation lock to rotate together.
  • step S333 also includes the following steps:
  • Step S334 controlling the torque gun to apply a locking torque to rotate for a ninth set number of turns along the locking direction.
  • the torque gun After detecting and confirming that the rotary lock has reached the initial position, the torque gun is controlled to apply a locking torque, so that the torque gun rotates in the locking direction, and the rotary lock is also driven to rotate in the locking direction, thereby realizing the The locking operation of the rotary lock is very convenient to use.
  • the ninth set number of turns can be determined according to the number of locking or unlocking turns of the rotation lock member.
  • Step S335 during the torque gun rotates the ninth set number of turns in the locking direction, detect the fifth real-time torque of the torque gun, and judge whether the fifth real-time torque reaches the fifth set torque; when the fifth When the real-time torque reaches the fifth set torque, it is judged whether the actual rotation number of the torque gun is within the range of the locking number of rotations, so as to determine that the torque gun successfully locks the rotation locking member.
  • the fifth real-time torque of the torque gun By detecting the fifth real-time torque of the torque gun, when the fifth real-time torque reaches the fifth set torque, it indicates that the locking torque generated by the torque gun will be enough to drive the rotary lock to rotate and lock together. 5.
  • the set torque can be determined according to the technical specifications of the rotary lock or through actual test data.
  • the fifth real-time torque reaches the fifth set torque, it is judged whether the actual number of rotations of the torque gun is within the range of locked circles, and if the actual number of rotations of the torque gun falls within the range of locked circles, then Confirm that the disassembly tool is locked successfully; if the actual number of rotations of the torque gun does not fall within the range of locking circles, it is determined that the disassembly tool is not locked successfully.
  • step S330 may further include the following steps:
  • Step S336 if it is determined that the torque gun successfully locks the rotation locking member, control the torque gun to release the locking torque.
  • Step S337 controlling the shuttle vehicle and the lifting platform to move toward each other, so that the shuttle vehicle drives away.
  • Control the dismounting tool to move in a direction away from the electric vehicle By controlling the torque gun to release the locking torque to prevent the rotation lock from being stuck with the torque gun, and then controlling the disassembly tool to descend on the shuttle, so that the disassembly tool moves away from the electric vehicle, realizing the connection between the torque gun and the battery
  • the fixed parts of the battery are separated from each other, which greatly improves the safety and stability of the disassembly tool when installing the battery.
  • the battery installation control method further includes: controlling the shuttle to move out from under the electric vehicle. Through the walking movement of the shuttle car, the shuttle car moves out of the bottom of the electric vehicle, and also drives the disassembly tool to move out of the bottom of the electric vehicle. The vehicle will drive into the power exchange station, and the battery in the next electric vehicle will be removed through the shuttle car and disassembly tools, which greatly improves the power exchange efficiency of the power exchange station.
  • the present disclosure also provides embodiments of a control device for battery removal and a control device for battery installation.
  • Fig. 10 is a block diagram of a battery dismounting control device provided by an exemplary embodiment of the present invention, which is applied to a power exchange station, wherein the power exchange station includes a lifting platform and power exchange equipment, and the lift The platform is used to drive the electric vehicle carried on the lifting platform to perform lifting movement.
  • the power exchange equipment includes a shuttle car and a disassembly tool.
  • the disassembly tool is arranged on the shuttle car.
  • the disassembly tool A fixed part for unlocking or locking the battery; the control means includes:
  • the first control module 41 is configured to control the relative movement of the lifting platform and the shuttle vehicle at a designated position below the lifting platform when the electric vehicle to be replaced is carried on the lifting platform, so as to aligning the removal tool with a fixed component on the chassis of the electric vehicle;
  • the first control module 41 is also used to continue to control the relative movement of the lifting platform and the shuttle car, so that the disassembly tool on the shuttle car contacts the fixed component;
  • the second control module 42 is configured to control the dismounting tool to unlock the fixing part of the battery, so that the battery is detached from the electric vehicle and carried on the dismounting tool.
  • the first control module 41 when controlling the relative movement of the lifting platform and the shuttle vehicle, the first control module 41 is used to:
  • guide holes are provided on the chassis, and guides are provided on the shuttle; when controlling the relative movement of the lifting platform and the shuttle at a designated position below the lifting platform, the The first control module 41 is used for:
  • the first control module 41 is further configured to:
  • the first control module 41 is used to:
  • a leveling column is provided on the shuttle;
  • the chassis is attached to the end surface of the leveling column.
  • the fixing component includes a rotation lock
  • the dismounting tool includes a torque gun
  • the second control module 42 includes:
  • a control unit configured to control the torque gun to rotate a first set number of turns in a first direction, and detect a first real-time torque of the torque gun;
  • a judging unit configured to judge whether the first real-time torque reaches the first set torque during the rotation of the torque gun; and when the first real-time torque reaches the first set torque , determining that the assembly and disassembly tool has reached the unlocking position and controlling the assembly and disassembly tool to unlock the fixing part of the battery.
  • the second control module 42 is further configured to:
  • the second direction is opposite to the first direction.
  • the first direction is a locking direction
  • the second direction is an unlocking direction
  • both the second set number of turns and the third set number of turns are smaller than the first set number of turns
  • both the second set number of turns and the third set number of turns are less than or equal to 1.
  • the second control unit when controlling the dismounting tool to unlock the fixing part of the battery, the second control unit is used for:
  • the second control unit is also used for:
  • the second control module 42 is specifically used for:
  • control the torque gun When it is determined that the dismounting tool has successfully unlocked the fixing part of the battery, control the torque gun to release the unlocking torque, and call the first control module 41 to control the shuttle and the lifter.
  • the lifting platform moves toward each other, so that the battery is separated from the electric vehicle and carried on the shuttle vehicle.
  • Fig. 11 is a block diagram of a battery-mounted control device provided by an exemplary embodiment of the present invention, which is applied to a power exchange station, wherein the power exchange station includes a lifting platform and power exchange equipment, and the lift The platform is used to drive the electric vehicle carried on the lifting platform to perform lifting movement.
  • the power exchange equipment includes a shuttle car and a disassembly tool.
  • the disassembly tool is arranged on the shuttle car.
  • the disassembly tool A fixed part for unlocking or locking the battery; the control means includes:
  • the third control module 51 is used to control the relative movement between the lifting platform and the shuttle vehicle at a designated position below the lifting platform, so that the batteries carried on the shuttle vehicle and the batteries carried on the lifting platform The installation position of the battery at the bottom of the electric vehicle is aligned;
  • the third control module 51 is also used to continue to control the relative movement of the lifting platform and the shuttle car, so that the battery carried on the shuttle car reaches the battery installation position at the bottom of the electric vehicle and the dismantling The installation tool is in contact with the fixed part;
  • the fourth control module 52 is configured to control the dismounting tool to lock the fixing part of the battery, so that the battery is installed on the electric vehicle.
  • the third control module 51 when controlling the relative movement of the lifting platform and the shuttle, the third control module 51 is used to:
  • a guide hole is provided on the chassis of the electric vehicle, and a guide member is provided on the shuttle car;
  • the first control module determines that the battery on the shuttle vehicle is aligned with the battery installation position on the bottom of the electric vehicle on the lifting platform.
  • the third control module 51 is further configured to:
  • the third control module 51 is used to:
  • a leveling column is provided on the shuttle;
  • the chassis of the electric vehicle is attached to the end surface of the leveling column.
  • the fixing component includes a rotation lock
  • the dismounting tool includes a torque gun
  • the fourth control module 52 includes:
  • control unit configured to control the torque gun to rotate a fifth set number of turns in the first direction, and detect a third real-time torque of the torque gun
  • a judging unit configured to judge whether the third real-time torque reaches a third set torque during the rotation of the torque gun; when the third real-time torque reaches the third set torque, Then it is determined that the assembly and disassembly tool has reached the locking position, and the assembly and disassembly tool is controlled to lock the fixing part of the battery.
  • the fourth control module 52 is further configured to:
  • the first direction is opposite to the second direction.
  • the first direction is a locking direction
  • the second direction is an unlocking direction
  • both the sixth set number of turns and the seventh set number of turns are smaller than the fifth set number of turns;
  • both the sixth set number of turns and the seventh set number of turns are less than or equal to 1.
  • the fourth control module 52 is also used for:
  • the fourth control module 52 is also used for:
  • the fourth control module 52 is used for:
  • the fourth control module 52 is also used for:
  • the fourth control module 52 is specifically used for:
  • control the torque gun When it is determined that the dismounting tool has successfully locked the fixing part of the battery, control the torque gun to release the locking torque, and invoke the third control module 51 to control the shuttle It moves towards the lifting platform so that the shuttle car can drive away.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
  • Fig. 12 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present invention, showing a block diagram of an exemplary electronic device 60 suitable for implementing any embodiment of the present invention.
  • the electronic device 60 shown in FIG. 12 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
  • the electronic device 60 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • Components of the electronic device 60 may include, but are not limited to: at least one processor 61 , at least one memory 62 , and a bus 63 connecting different system components (including the memory 62 and the processor 61 ).
  • the bus 63 includes a data bus, an address bus and a control bus.
  • the memory 62 may include a volatile memory, such as a random access memory (RAM) 621 and/or a cache memory 622 , and may further include a read only memory (ROM) 623 .
  • RAM random access memory
  • ROM read only memory
  • Memory 62 may also include a program tool 625 (or utility) having a set (at least one) of program modules 624, such program modules 624 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each or some combination of these examples may include the realization of the network environment.
  • program tool 625 or utility
  • program modules 624 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each or some combination of these examples may include the realization of the network environment.
  • the processor 61 executes various functional applications and data processing by running computer programs stored in the memory 62 , such as the methods provided in any of the above-mentioned embodiments.
  • Electronic device 60 may also communicate with one or more external devices 64 (eg, keyboards, pointing devices, etc.). Such communication may occur through input/output (I/O) interface 65 .
  • the model-generating electronic device 60 can also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN) and/or a public network, such as the Internet) via a network adapter 66 .
  • network adapter 66 communicates with other modules of model generation electronics 60 via bus 63 .
  • model generation electronics 60 including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID ( disk array) systems, tape drives, and data backup storage systems.
  • An embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the battery installation control method described in any one of the above are implemented.

Abstract

本发明公开了电池拆卸的控制方法及装置、电池安装的控制方法及装置。其中,该方法应用于换电站中,换电站包括举升平台和换电设备,换电设备包括穿梭车与拆装工具,拆装工具设于穿梭车上;控制方法包括:在待换电的电动车辆承载于举升平台的情况下,控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动,以使拆装工具与电动车辆的底盘上的固定部件相对准;继续控制举升平台和穿梭车相对运动,以使穿梭车上的拆装工具与固定部件相接触;控制拆装工具对电池的固定部件进行解锁,以使得电池脱离电动车辆并承载于拆装工具上。从而,实现了电池有效拆装,可以节省电动车辆的换电时间,提高换电效率。

Description

电池拆卸的控制方法及装置、电池安装的控制方法及装置
本申请要求申请日为2021/12/2的中国专利申请2021114612836的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于电动车辆的换电控制领域,尤其涉及一种电池拆卸的控制方法及装置、电池安装的控制方法及装置、电子设备、存储介质。
背景技术
现有的电动车辆主要有两种充电方式,一种是直充式,另一种是快换式。其中,直充式需要设置充电桩来对电动车辆进行充电,但充电时间较长,效率较低。换电式需要设置换电站,通过对电动车辆更换电池来实现快速换电,相对直充式缩短了很长时间。
为了满足市场需求,越来越多的电动车辆其电池通过螺钉等复杂的固定部件固定,如何对采用复杂的固定部件固定电池的电动车辆进行快速、有效换电,是亟待解决的问题。
发明内容
本发明提供一种电池拆卸的控制方法及装置、电池安装的控制方法及装置、电子设备、存储介质,以对采用复杂的固定部件固定电池的电动车辆进行快速、有效换电。
本发明是通过下述技术方案来解决上述技术问题:
一种电池拆卸的控制方法,应用于换电站中,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制方法包括:
在待换电的电动车辆承载于所述举升平台的情况下,控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述拆装工具与所述电动车辆的底盘上的固定部件相对准;
继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上的拆装工具与所述固定部件相接触;
控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上。
在本方案中,通过对举升平台和换电设备的控制,使得电池拆装过程中,穿梭车上的拆装工具能够与承载于举升平台上的电动车辆底盘的固定部件相对准,实现电池有效拆装,可以节省电动车辆的换电时间,提高换电效率。
可选地,控制所述举升平台和所述穿梭车相对运动,包括:
控制所述举升平台下降至第一拆卸高度,并控制所述穿梭车上升至第二拆卸高度,以使所述拆装工具与所述底盘上的固定部件相对准。
在本方案中,通过控制举升平台下降至第一拆卸高度,并控制穿梭车上升至第二拆卸高度,实现举升平台和穿梭车的相对运动,第一拆卸高度与第二拆卸高度可以根据经验确定,可以提高拆装工具与固定部件的对准精度。
可选地,所述底盘上设有导向孔,所述穿梭车上设有导向件;控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述拆装工具与所述电动车辆的底盘上的固定部件相对准,包括:
当所述导向件插入所述导向孔时,确定所述拆装工具与所述底盘上的固定部件相对准。
在本方案中,导向件和导向孔具有导向功能,通过导向件先接触到电动汽车底盘上的导向孔并进行导向定位,在导向定位之后拆装工具再与固定部件相接触,从而实现了拆装工具与固定部件的精确对准,大大提高了拆装工具在拆卸电池的安全稳定性。
可选地,控制所述举升平台和所述穿梭车相对运动之前,包括:
控制所述举升平台上升至第三拆卸高度,所述第三拆卸高度高于所述穿梭车的空载通过高度;
控制所述穿梭车移动至所述举升平台下方的指定位置。
本方案中,控制举升平台和穿梭车相对运动之前,先控制举升平台上升至高于穿梭车的空载通过高度的第三拆卸高度,以便于控制穿梭车在举升平台下方顺利移动至指定位置,进而实现拆装工具与固定部件的精确对准。
可选地,继续控制所述举升平台和所述穿梭车相对运动,包括:
控制所述举升平台下降至第四拆卸高度,并控制所述穿梭车上升至第五拆卸高度,以使所述穿梭车上的拆装工具与所述固定部件相接触。
本方案中,通过控制举升平台下降至第四拆卸高度,并控制穿梭车上升至第五拆卸高度,以使拆装工具与固定部件相接触,并在拆装工具与固定部件相接触后才进行电池的解锁,大大提高了拆装工具拆卸电池的安全稳定性。
可选地,所述穿梭车上设有校平立柱;
当所述举升平台下降至所述第四拆卸高度且所述穿梭车上升至所述第五拆卸高度时,所述底盘贴合所述校平立柱的端面。
本方案中,校平立柱能够保证车辆底盘与拆装工具平行,提高拆装工具拆卸电池的安全稳定性。
可选地,所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;控制所述拆装工具对所述电池的固定部件进行解锁,包括:
控制所述扭矩枪沿第一方向旋转第一设定圈数,并检测所述扭矩枪的第一实时转矩;
在所述扭矩枪旋转过程中,判断所述第一实时转矩是否达到第一设定转矩;
若所述第一实时转矩达到所述第一设定转矩,则确定所述扭矩枪到达解锁位置并控制所述扭矩枪对所述旋转锁止件进行解锁。
在本方案中,通过控制扭矩枪的旋转来检测实时转矩就能够确定是否到达解锁位置,从而实现精确控制,安全稳定性高。
可选地,控制所述扭矩枪沿第一方向旋转第一设定圈数之前,还包括:
控制所述扭矩枪沿第一方向旋转第二设定圈数;
控制所述扭矩枪沿第二方向旋转第三设定圈数;
其中,所述第二方向与所述第一方向相反。
在本方案中,通过扭矩枪分别沿两个相反的方向旋转,使得扭矩枪与旋转锁止件之间认帽成功的概率将大大提高,有效避免了在不认帽成功的情况下就进行检测,大大提高了安全稳定性。
可选地,所述第一方向为锁紧方向,所述第二方向为解锁方向;
和/或,所述第二设定圈数和所述第三设定圈数均小于所述第一设定圈数;
和/或,所述第二设定圈数和所述第三设定圈数均小于或者等于1。
在本方案中,提高了电池拆卸效率。同时,保证了检测更加精准,有效避免了失误现象的发生。
可选地,控制所述扭矩枪对所述旋转锁止件进行解锁,包括:
控制所述扭矩枪施加解锁转矩沿解锁方向旋转第四设定圈数。
在本方案中,在检测拆装工具到达解锁位置之后,通过控制扭矩枪施加解锁转矩,使得扭矩枪沿解锁方向旋转,并带动旋转锁止件也一同沿解锁方向旋转,从而实现了对固定部件的解锁操作,使用非常方便。
可选地,所述方法还包括:
在所述扭矩枪沿解锁方向旋转第四设定圈数的过程中,检测所述扭矩枪的第二实时转矩,并判断所述第二实时转矩是否达到第二设定转矩;
当所述第二实时转矩达到所述第二设定转矩时,判断所述扭矩枪的实际旋转圈数是否在解锁圈数范围内,以确定所述拆装工具对所述电池的固定部件解锁成功。
在本方案中,实现精确检测控制,大大提高了拆装工具在拆卸电池的安全稳定性。
可选地,控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上,包括:
在确定所述扭矩枪对所述旋转锁止件解锁成功的情况下,控制所述扭矩枪释放所述解锁转矩;
控制所述穿梭车与所述举升平台相向运动,以使所述电池与所述电动车辆分离并承载于所述穿梭车上。
在本方案中,通过控制扭矩枪释放解锁转矩之后再控制穿梭车与举升平台相向运动,使得拆装工具朝远离电动汽车的方向移动,电池平稳地承载在穿梭车上,大大提高了拆装工具拆卸电池的安全稳定性。
一种电池安装的控制方法,应用于换电站中,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制方法包 括:
控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准;
继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上承载的电池到达所述电动车辆底部的电池安装位置且所述拆装工具与所述固定部件相接触;
控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上。
在本方案中,通过对举升平台和换电设备的控制,使得电池安装过程中,穿梭车上承载的电池与举升平台上承载的电动车辆底部的电池安装位置相对准,实现电池有效安装,可以节省电动车辆的换电时间,提高换电效率。
可选地,控制所述举升平台和所述穿梭车相对运动,包括:
控制所述举升平台下降至第一安装高度,并控制所述穿梭车上升至第二安装高度,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
在本方案中,通过控制举升平台下降至第一安装高度,并控制穿梭车上升至第二安装高度,实现举升平台和穿梭车的相对运动,第一安装高度与第二安装高度可以根据经验确定,可以提高拆装工具与固定部件的对准精度。
可选地,所述电动车辆的底盘上设有导向孔,所述穿梭车上设有导向件;控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准,包括:
当所述导向件插入所述导向孔时,确定所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
在本方案中,导向件和导向孔具有导向功能,通过导向件先接触到电动汽车底盘上的导向孔并进行导向定位,在导向定位之后拆装工具再与固定部件相接触,从而实现了拆装工具与固定部件的精确对准,大大提高了拆装工具安装电池的安全稳定性。
可选地,控制所述举升平台和所述穿梭车相对运动之前,包括:
控制所述举升平台上升至第三安装高度,所述第三安装高度高于所述穿梭车的有载通过高度;
控制所述穿梭车移动至所述举升平台下方的指定位置。
本方案中,控制举升平台和穿梭车相对运动之前,先控制举升平台上升至高于穿梭车的空载通过高度的第三安装高度,以便于控制穿梭车在举升平台下方顺利移动至指定位置,进而实现拆装工具与固定部件的精确对准。
可选地,继续控制所述举升平台和所述穿梭车相对运动,包括:
控制所述举升平台下降至第四安装高度,并控制所述穿梭车上升至第五安装高度,以使所述穿梭车上的拆装工具与所述固定部件相接触。
本方案中,通过控制举升平台下降至第四安装高度,并控制穿梭车上升至第五安装高度,以使拆装工具与固定部件相接触,并在拆装工具与固定部件相接触后才进行电池的解锁,大大提高了拆装工 具安装电池的安全稳定性。
可选地,所述穿梭车上设有校平立柱;
当所述举升平台下降至所述第四安装高度且所述穿梭车上升至所述第五安装高度时,所述电动车辆的底盘贴合所述校平立柱的端面。
本方案中,校平立柱能够保证车辆底盘与拆装工具平行,提高拆装工具拆卸电池的安全稳定性。
可选地,所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;在控制所述举升平台和所述穿梭车相对运动之前,所述控制方法还包括:
控制所述扭矩枪沿第一方向旋转第五设定圈数,并检测所述扭矩枪的第三实时转矩;
在所述扭矩枪旋转过程中,判断所述第三实时转矩是否达到第三设定转矩;
若所述第三实时转矩达到所述第三设定转矩,则确定所述扭矩枪到达锁止位置;
所述控制所述拆装工具对所述电池的固定部件进行锁止包括:
控制所述扭矩枪对所述旋转锁止件进行锁止。
在本方案中,通过控制扭矩枪的旋转来检测实时转矩是否达到第三设定转矩来确定是否到达锁止位置,从而实现精确控制,安全稳定性高。
可选地,控制所述扭矩枪沿第一方向旋转第五设定圈数之前,还包括:
控制所述扭矩枪沿第一方向旋转第六设定圈数;
控制所述扭矩枪沿第二方向旋转第七设定圈数;
其中,所述第一方向与所述第二方向相反。
在本方案中,通过扭矩枪分别沿两个相反的方向旋转,使得旋转锁止件的位置进行了调整,有效避免了在未到达安装位置的情况下就进行检测,大大提高了安全稳定性。
可选地,所述第一方向为锁紧方向,所述第二方向为解锁方向;
和/或,所述第六设定圈数和所述第七设定圈数均小于所述第五设定圈数;
和/或,所述第六设定圈数和所述第七设定圈数均小于或者等于1。
在本方案中,提高了电池安装效率。同时,保证了检测更加精准。
可选地,控制所述扭矩枪对所述旋转锁止件进行锁止之前,所述方法还包括:
控制所述扭矩枪沿解锁方向旋转第八设定圈数,以使所述旋转锁止件到达初始位置。
在本方案中,通过控制扭矩枪使得旋转锁止件先沿锁紧方向旋转,之后沿解锁方向旋转到达初始位置,即便旋转锁止件在第一次锁紧的过程中存在偏移错位现象,通过解锁将旋转锁止件到达初始位置,使得旋转锁止件将精确处于锁止位置上,同时,大大提高了后续锁紧过程中旋转锁止件的锁紧精度,实现锁紧更加稳定。
可选地,所述方法还包括:
在所述扭矩枪沿解锁方向旋转第八设定圈数的过程中,检测所述扭矩枪的第四实时转矩,并判断所述第四实时转矩是否达到第四设定转矩;
当所述第四实时转矩达到所述第四设定转矩时,判断所述扭矩枪的实际旋转圈数是否在预设圈数 范围内,以确定所述旋转锁止件到达初始位置。
在本方案中,通过检测扭矩枪的实时转矩,并判断实时转矩是否达到第四设定转矩,以及当实时转矩达到第四设定转矩时,判断扭矩枪的实际旋转圈数是否在预设圈数范围内,从而来确定旋转锁止件到达初始位置,实现精确检测控制,大大提高了拆装工具在安装电池的安全稳定性。
可选地,控制所述扭矩枪对所述旋转锁止件进行锁止,包括:
控制所述扭矩枪施加锁紧转矩沿锁紧方向旋转第九设定圈数。
在本方案中,在检测并确定旋转锁止件到达初始位置之后,通过控制扭矩枪施加锁紧转矩,使得扭矩枪沿锁紧方向旋转,并带动旋转锁止件也一同沿锁紧方向旋转,从而实现了对固定部件的锁紧操作,使用非常方便。
可选地,所述控制方法还包括:
在所述扭矩枪沿锁紧方向旋转第九设定圈数的过程中,检测所述扭矩枪的第五实时转矩,并判断所述第五实时转矩是否达到第五设定转矩;
当所述第五实时转矩达到所述第五设定转矩时,判断所述扭矩枪的实际旋转圈数是否在锁止圈数范围内,以确定所述扭矩枪对所述旋转锁止件锁止成功。
在本方案中,通过检测扭矩枪的实时转矩,并判断实时转矩是否达到第五设定转矩,以及当实时转矩达到第五设定转矩时,判断扭矩枪的实际旋转圈数是否在锁止圈数范围内,从而来确定拆装工具是否锁止成功,实现精确检测控制,大大提高拆装工具安装电池的安全稳定性。
可选地,控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上,包括:
在确定所述扭矩枪对所述旋转锁止件锁止成功的情况下,控制所述扭矩枪释放所述锁紧转矩;
控制所述穿梭车与所述举升平台相向运动,以便于所述穿梭车驶离。
在本方案中,通过控制扭矩枪释放解锁转矩之后再穿梭车与举升平台相向运动,从而实现扭矩枪与电池的固定部件相互脱离,提高了扭矩枪在安装电池时的安全稳定性。一种电池拆卸的控制装置,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制装置包括:
第一控制模块,用于在待换电的电动车辆承载于所述举升平台的情况下,控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述拆装工具与所述电动车辆的底盘上的固定部件相对准;
所述第一控制模块,还用于继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上的拆装工具与所述固定部件相接触;
第二控制模块,用于控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上。
在本方案中,通过对举升平台和换电设备的控制,使得电池拆装过程中,穿梭车上的拆装工具能 够与承载于举升平台上的电动车辆底盘的固定部件相对准,实现电池有效拆装,可以节省电动车辆的换电时间,提高换电效率。
可选地,在控制所述举升平台和所述穿梭车相对运动时,所述第一控制模块用于:
控制所述举升平台下降至第一拆卸高度,并控制所述穿梭车上升至第二拆卸高度,以使所述拆装工具与所述底盘上的固定部件相对准。
在本方案中,通过控制举升平台下降至第一拆卸高度,并控制穿梭车上升至第二拆卸高度,实现举升平台和穿梭车的相对运动,第一拆卸高度与第二拆卸高度可以根据经验确定,可以提高拆装工具与固定部件的对准精度。
可选地,所述底盘上设有导向孔,所述穿梭车上设有导向件;在控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动时,所述第一控制模块用于:
当所述导向件插入所述导向孔时,确定所述拆装工具与所述底盘上的固定部件相对准。
在本方案中,导向件和导向孔具有导向功能,通过导向件先接触到电动汽车底盘上的导向孔并进行导向定位,在导向定位之后拆装工具再与固定部件相接触,从而实现了拆装工具与固定部件的精确对准,大大提高了拆装工具在拆卸电池的安全稳定性。
可选地,控制所述举升平台和所述穿梭车相对运动之前,所述第一控制模块还用于:
控制所述举升平台上升至第三拆卸高度,所述第三拆卸高度高于所述穿梭车的空载通过高度;
控制所述穿梭车移动至所述举升平台下方的指定位置。
本方案中,控制举升平台和穿梭车相对运动之前,先控制举升平台上升至高于穿梭车的空载通过高度的第三拆卸高度,以便于控制穿梭车在举升平台下方顺利移动至指定位置,进而实现拆装工具与固定部件的精确对准。
可选地,继续控制所述举升平台和所述穿梭车相对运动时,所述第一控制模块用于:
控制所述举升平台下降至第四拆卸高度,并控制所述穿梭车上升至第五拆卸高度,以使所述穿梭车上的拆装工具与所述固定部件相接触。
本方案中,通过控制举升平台下降至第四拆卸高度,并控制穿梭车上升至第五拆卸高度,以使拆装工具与固定部件相接触,并在拆装工具与固定部件相接触后才进行电池的解锁,大大提高了拆装工具拆卸电池的安全稳定性。
可选地,所述穿梭车上设有校平立柱;
当所述举升平台下降至所述第四拆卸高度且所述穿梭车上升至所述第五拆卸高度时,所述底盘贴合所述校平立柱的端面。
本方案中,校平立柱能够保证车辆底盘与拆装工具平行,提高拆装工具拆卸电池的安全稳定性。
可选地,所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;所述第二控制模块包括:
控制单元,用于控制所述扭矩枪沿第一方向旋转第一设定圈数,并检测所述扭矩枪的第一实时转矩;
判断单元,用于在所述扭矩枪旋转过程中,判断所述第一实时转矩是否达到第一设定转矩;并当 所述第一实时转矩达到所述第一设定转矩时,确定所述扭矩枪到达解锁位置并控制所述扭矩枪对所述旋转锁止锁。
在本方案中,通过控制扭矩枪的旋转来检测实时转矩就能够确定是否到达解锁位置,从而实现精确控制,安全稳定性高。
可选地,控制所述扭矩枪沿第一方向旋转第一设定圈数之前,所述第二控制模块还用于:
控制所述扭矩枪沿第一方向旋转第二设定圈数;
控制所述扭矩枪沿第二方向旋转第三设定圈数;
其中,所述第二方向与所述第一方向相反。
在本方案中,通过扭矩枪分别沿两个相反的方向旋转,使得扭矩枪与旋转锁止件之间认帽成功的概率将大大提高,有效避免了在不认帽成功的情况下就进行检测,大大提高了安全稳定性。
可选地,所述第一方向为锁紧方向,所述第二方向为解锁方向;
和/或,所述第二设定圈数和所述第三设定圈数均小于所述第一设定圈数;
和/或,所述第二设定圈数和所述第三设定圈数均小于或者等于1。
在本方案中,提高了电池拆卸效率。同时,保证了检测更加精准,有效避免了失误现象的发生。
可选地,控制所述扭矩枪对所述旋转锁止件进行解锁时,所述第二控制单元用于:
控制所述扭矩枪施加解锁转矩沿解锁方向旋转第四设定圈数。
在本方案中,在检测拆装工具到达解锁位置之后,通过控制扭矩枪施加解锁转矩,使得扭矩枪沿解锁方向旋转,并带动旋转锁止件也一同沿解锁方向旋转,从而实现了对固定部件的解锁操作,使用非常方便。
可选地,所述第二控制单元还用于:
在所述扭矩枪沿解锁方向旋转第四设定圈数的过程中,检测所述扭矩枪的第二实时转矩,并判断所述第二实时转矩是否达到第二设定转矩;
当所述第二实时转矩达到所述第二设定转矩时,判断所述扭矩枪的实际旋转圈数是否在解锁圈数范围内,以确定所述拆装工具对所述电池的固定部件解锁成功。
在本方案中,实现精确检测控制,大大提高了拆装工具在拆卸电池的安全稳定性。
可选地,所述第二控制模块具体用于:
在确定所述扭矩枪对所述旋转锁止件解锁成功的情况下,控制所述扭矩枪释放所述解锁转矩,并调用第一控制模块,以控制所述穿梭车与所述举升平台相向运动,以使所述电池与所述电动车辆分离并承载于所述穿梭车上。
在本方案中,通过控制扭矩枪释放解锁转矩之后再穿梭车与举升平台相向运动,从而实现扭矩枪与电池的固定部件相互脱离,提高了扭矩枪在安装电池时的安全稳定性。
一种电池安装的控制装置,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述 控制装置包括:
第三控制模块,用于控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准;
所述第三控制模块,还用于继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上承载的电池到达所述电动车辆底部的电池安装位置且所述拆装工具与所述固定部件相接触;
第四控制模块,用于控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上。
在本方案中,通过对举升平台和换电设备的控制,使得电池安装过程中,穿梭车上承载的电池与举升平台上承载的电动车辆底部的电池安装位置相对准,实现电池有效安装,可以节省电动车辆的换电时间,提高换电效率。
可选地,控制所述举升平台和所述穿梭车相对运动时,所述第三控制模块用于:
控制所述举升平台下降至第一安装高度,并控制所述穿梭车上升至第二安装高度,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
在本方案中,通过控制举升平台下降至第一安装高度,并控制穿梭车上升至第二安装高度,实现举升平台和穿梭车的相对运动,第一安装高度与第二安装高度可以根据经验确定,可以提高拆装工具与固定部件的对准精度。
可选地,所述电动车辆的底盘上设有导向孔,所述穿梭车上设有导向件;
当所述导向件插入所述导向孔时,所述第一控制模块确定所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
在本方案中,导向件和导向孔具有导向功能,通过导向件先接触到电动汽车底盘上的导向孔并进行导向定位,在导向定位之后拆装工具再与固定部件相接触,从而实现了拆装工具与固定部件的精确对准,大大提高了拆装工具安装电池的安全稳定性。
可选地,控制所述举升平台和所述穿梭车相对运动之前,所述第三控制模块还用于:
控制所述举升平台上升至第三安装高度,所述第三安装高度高于所述穿梭车的有载通过高度;
控制所述穿梭车移动至所述举升平台下方的指定位置。
本方案中,控制举升平台和穿梭车相对运动之前,先控制举升平台上升至高于穿梭车的空载通过高度的第三安装高度,以便于控制穿梭车在举升平台下方顺利移动至指定位置,进而实现拆装工具与固定部件的精确对准。
可选地,继续控制所述举升平台和所述穿梭车相对运动时,所述第三控制模块用于:
控制所述举升平台下降至第四安装高度,并控制所述穿梭车上升至第五安装高度,以使所述穿梭车上的拆装工具与所述固定部件相接触。
本方案中,通过控制举升平台下降至第四安装高度,并控制穿梭车上升至第五安装高度,以使拆装工具与固定部件相接触,并在拆装工具与固定部件相接触后才进行电池的解锁,大大提高了拆装工具安装电池的安全稳定性。
可选地,所述穿梭车上设有校平立柱;
当所述举升平台下降至所述第四安装高度且所述穿梭车上升至所述第五安装高度时,所述电动车辆的底盘贴合所述校平立柱的端面。
本方案中,校平立柱能够保证车辆底盘与拆装工具平行,提高拆装工具拆卸电池的安全稳定性。
可选地,所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;所述第四控制模块包括:
控制单元,用于控制所述扭矩枪沿第一方向旋转第五设定圈数,并检测所述扭矩枪的第三实时转矩;
判断单元,用于在所述扭矩枪旋转过程中,判断所述第三实时转矩是否达到第三设定转矩;当所述第三实时转矩达到所述第三设定转矩时,则确定所述扭矩枪到达锁止位置并控制所述扭矩枪对所述旋转锁止件进行锁止。
在本方案中,通过控制扭矩枪的旋转来检测实时转矩是否达到第三设定转矩来确定是否到达锁止位置,从而实现精确控制,安全稳定性高。
可选地,控制所述扭矩枪沿第一方向旋转第五设定圈数之前,所述第四控制模块还用于:
控制所述扭矩枪沿第一方向旋转第六设定圈数;
控制所述扭矩枪沿第二方向旋转第七设定圈数;
其中,所述第一方向与所述第二方向相反。
在本方案中,通过扭矩枪分别沿两个相反的方向旋转,使得旋转锁止件的位置进行了调整,从而有效避免了在未到达安装位置的情况下就进行检测,大大提高了安全稳定性。
可选地,所述第一方向为锁紧方向,所述第二方向为解锁方向;
和/或,所述第六设定圈数和所述第七设定圈数均小于所述第五设定圈数;
和/或,所述第六设定圈数和所述第七设定圈数均小于或者等于1。
在本方案中,提高了电池安装效率。同时,保证了检测更加精准。
可选地,控制所述拆装工具对所述电池的固定部件进行锁止时,所述第四控制模块还用于:
控制所述扭矩枪沿解锁方向旋转第八设定圈数,以使所述旋转锁止件到达初始位置。
在本方案中,通过控制扭矩枪使得旋转锁止件先沿锁紧方向旋转,之后沿解锁方向旋转到达初始位置,即便旋转锁止件在第一次锁紧的过程中存在偏移错位现象,通过解锁将旋转锁止件到达初始位置,使得旋转锁止件将精确处于锁止位置上,同时,大大提高了后续锁紧过程中旋转锁止件的锁紧精度,实现锁紧更加稳定。
可选地,所述第四控制模块还用于:
在所述扭矩枪沿解锁方向旋转第八设定圈数的过程中,检测所述扭矩枪的第四实时转矩,并判断所述第四实时转矩是否达到第四设定转矩;
当所述第四实时转矩达到所述第四设定转矩时,判断所述扭矩枪的实际旋转圈数是否在预设圈数范围内,以确定所述旋转锁止件到达初始位置。
在本方案中,通过检测扭矩枪的实时转矩,并判断实时转矩是否达到第四设定转矩,以及当实时 转矩达到第四设定转矩时,判断扭矩枪的实际旋转圈数是否在预设圈数范围内,从而来确定旋转锁止件到达初始位置,实现精确检测控制,大大提高了拆装工具安装电池的安全稳定性。
可选地,控制所述扭矩枪对所述旋转锁止件进行锁止时,所述第四控制模块用于:
控制所述扭矩枪施加锁紧转矩沿锁紧方向旋转第九设定圈数。
在本方案中,在检测并确定旋转锁止件到达初始位置之后,通过控制扭矩枪施加锁紧转矩,使得扭矩枪沿锁紧方向旋转,并带动旋转锁止件也一同沿锁紧方向旋转,从而实现了对固定部件的锁紧操作,使用非常方便。
可选地,所述第四控制模块还用于:
在所述扭矩枪沿锁紧方向旋转第九设定圈数的过程中,检测所述扭矩枪的第五实时转矩,并判断所述第五实时转矩是否达到第五设定转矩;
当所述第五实时转矩达到所述第五设定转矩时,判断所述扭矩枪的实际旋转圈数是否在锁止圈数范围内,以确定所述扭矩枪对所述旋转锁止件锁止成功。
在本方案中,通过检测扭矩枪的实时转矩,并判断实时转矩是否达到第五设定转矩,以及当实时转矩达到第五设定转矩时,判断扭矩枪的实际旋转圈数是否在锁止圈数范围内,从而来确定拆装工具是否锁止成功,实现精确检测控制,大大提高了拆装工具安装电池的安全稳定性。
可选地,控制所述拆装工具对所述电池的固定部件进行锁止时,所述第四控制模块具体用于:
在确定所述扭矩枪对所述旋转锁止件锁止成功的情况下,控制所述扭矩枪释放所述锁紧转矩,并调用所述第三控制模块,以控制所述穿梭车与所述举升平台相向运动,以便于所述穿梭车驶离。
在本方案中,通过控制扭矩枪释放锁紧转矩之后再控制拆装工具在穿梭车上进行下降,使得拆装工具朝远离电动汽车的方向移动,实现扭矩枪与电池的固定部件相互脱离,大大提高了拆装工具安装电池的安全稳定性。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实上述任一项所述的电池拆卸的控制方法和/或电池安装的控制方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的电池拆卸的控制方法和/或电池安装的控制方法的步骤。
本发明的积极进步效果在于:本发明实施例中,通过对举升平台和换电设备的控制,使得电池拆装过程中,穿梭车上的拆装工具能够与承载于举升平台上的电动车辆底盘的固定部件相对准,实现电池有效拆装,可以节省电动车辆的换电时间,提高换电效率。
附图说明
图1a为本发明一示例性实施例提供的一种电池拆装场景的示意图;
图1b为本发明一示例性实施例提供的另一种电池拆装场景的示意图;
图1c为本发明一示例性实施例提供的一种电池拆装采用的换电设备的结构示意图;
图2为本发明一示例性实施例提供的一种电池拆卸的控制方法的流程图;
图3为本发明一示例性实施例提供的电池拆卸的控制方法中控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动的流程图;
图4为本发明一示例性实施例提供的电池拆卸的控制方法中控制拆装工具对电池的固定部件进行解锁的流程图;
图5为本发明一示例性实施例提供的电池拆卸的控制方法中控制扭矩枪对旋转锁止件进行解锁的流程图;
图6为本发明一示例性实施例提供的一种电池安装的控制方法的流程图;
图7为本发明一示例性实施例提供的电池安装的控制方法中控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动的流程图;
图8为本发明一示例性实施例提供的电池安装的控制方法中确定扭矩枪到达锁止位置的流程图;
图9为本发明一示例性实施例提供的电池安装的控制方法中控制扭矩枪对旋转锁止件进行锁止的流程图;
图10为本发明一示例性实施例提供的一种电池拆卸的控制装置的模块示意图;
图11为本发明一示例性实施例提供的一种电池安装的控制装置的模块示意图;
图12为本发明一示例实施例示出的一种电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
本发明实施例提供一种电池拆卸的控制方法,该控制方法应用于换电站中,参见图1a~图1c,换电站包括举升平台11和换电设备12,举升平台11用于带动承载于举升平台11上的电动车辆13作升降运动。换电设备12包括穿梭车121与拆装工具122,拆装工具122设于穿梭车121上,拆装工具122用于解锁或锁止电动车辆上电池的固定部件。
下面结合图1a~图1c,介绍电池拆卸的控制方法。
图2为本发明一示例性实施例提供的一种电池拆卸的控制方法的流程图,该控制方法包括以下步骤:
步骤210、在待换电的电动车辆承载于举升平台的情况下,控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动,以使拆装工具与电动车辆的底盘上的固定部件相对准。
图3为本发明一实施例中电池拆卸的控制方法中控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动的流程图,上述步骤210可以包括以下步骤:
步骤S211、控制举升平台下降至第一拆卸高度,并控制穿梭车上升至第二拆卸高度,以使拆装工具与底盘上的固定部件相对准。
需要说明的是,控制举升平台下降至第一拆卸高度、控制穿梭车上升至第二拆卸高度可以同步执行,也可以异步执行,异步执行时可优先控制举升平台下降,也可以优先控制穿梭车上升,对此本发 明实施例不作特别限定。控制举升平台下降至第一拆卸高度的过程中,可以控制举升平台匀速下降,也可以控制举升平台变速下降,或者先匀速再变速,本发明实施例对举升平台的下降速度不作特别限定。控制穿梭车上升至第二拆卸高度的过程中,可以控制穿梭车匀速上升,也可以控制穿梭车变速上升,或者先匀速再变速,本发明实施例对穿梭车的上升速度不作特别限定。
在一个实施例中,控制举升平台和穿梭车相对运动前,先确定穿梭车是否位于举升平台下方的指定位置。若确定穿梭车位于举升平台下方的指定位置,则控制举升平台和穿梭车相对运动。若穿梭车未位于举升平台下方的指定位置,则控制举升平台到达第三拆卸高度,第三拆卸高度高于穿梭车的空载通过高度,以使穿梭车能够顺利移动至指定位置,并在确定穿梭车位于指定位置时,控制举升平台下降至第一拆卸高度,并控制穿梭车上升至第二拆卸高度,以使拆装工具与电动车辆的底盘上的固定部件相对准。
其中,穿梭车的空载通过高度也即穿梭车未承载电池时可以进出举升平台下方且不与车辆发生冲突的最低高度。
举升平台位于第三拆卸高度时,承载于举升平台上的电动车辆的底盘高度高于穿梭车的空载通过高度,穿梭车能够顺利在电动车辆下方移动。当穿梭车位于指定位置,穿梭车上的拆装工具位于电动车辆的电池下方。
在一个实施例中,底盘上设有导向孔(图中未示出),参见图1c,穿梭车上设有导向件123。上述步骤S210还包括以下步骤:
步骤S212、当导向件插入导向孔时,确定拆装工具与底盘上的固定部件相对准。
控制举升平台和穿梭车相对运动的过程中,拆卸工具与固定部件之间的间隔越来越小,当导向件123插入导向孔时,确定拆装工具与底盘上的固定部件相对准。通过导向件和导向孔,实现了拆装工具与固定部件的精确对准,大大提高了拆装工具拆卸电池的安全稳定性。
步骤220、继续控制举升平台和穿梭车相对运动,以使穿梭车上的拆装工具与固定部件相接触。
在一个实施例中,继续控制举升平台和穿梭车相对运动时,控制举升平台下降至第四拆卸高度,并控制穿梭车上升至第五拆卸高度,以使穿梭车上的拆装工具与固定部件相接触。其中,第四拆卸高度低于第一拆卸高度,第五拆卸高度高于第二拆卸高度。继续控制举升平台和穿梭车相对运动,使得拆卸工具与固定部件之间的间隔更加小,直至穿梭车上的拆装工具与固定部件相接触。
在一个实施例中,参见图1c,穿梭车上设有校平立柱124。继续控制举升平台朝靠近穿梭车的方向运动的过程中,当举升平台下降至第四拆卸高度且穿梭车上升至第五拆卸高度时,底盘贴合校平立柱的端面,从而保证车辆底盘与拆装工具平行,便于电池拆卸。
与控制举升平台下降至第一拆卸高度类似的,控制举升平台下降至第四拆卸高度的过程中,可以控制举升平台匀速下降,也可以控制举升平台变速下降,或者先匀速再变速,本发明实施例对举升平台的下降速度不作特别限定。与控制穿梭车上升至第二拆卸高度类似的,控制穿梭车上升至第五拆卸高度的过程中,可以控制穿梭车匀速上升,也可以控制穿梭车变速上升,或者先匀速再变速,本发明实施例对穿梭车的上升速度不作特别限定。
步骤230、控制拆装工具对电池的固定部件进行解锁,以使得电池脱离电动车辆并承载于拆装工具上。
通过对举升平台和换电设备的控制,使得电池拆装过程中,穿梭车上的拆装工具能够与承载于举升平台上的电动车辆底盘的固定部件相对准,以便于电池拆装,可以节省电动车辆的换电时间,提高换电效率。
在一个实施例中,固定部件包括旋转锁止件,拆装工具包括扭矩枪,通过扭矩枪对旋转锁止件进行解锁。图4为本发明一实施例中电池拆卸的控制方法中控制拆装工具对电池的固定部件进行解锁的流程图,上述步骤S230可以包括以下步骤:
步骤S231、控制扭矩枪沿第一方向旋转第一设定圈数,并检测扭矩枪的第一实时转矩。
步骤S232、在扭矩枪旋转过程中,判断第一实时转矩是否达到第一设定转矩。
步骤S233、若第一实时转矩达到第一设定转矩,则确定扭矩枪到达解锁位置并控制扭矩枪对旋转锁止件进行解锁。
进行解锁时,控制扭矩枪沿第一方向旋转第一设定圈数,并检测扭矩枪的第一实时转矩。在扭矩枪旋转过程中,判断第一实时转矩是否达到第一设定转矩;若第一实时转矩达到第一设定转矩,则确定拆装工具到达解锁位置(也即认帽成功)并控制扭矩枪对电池的旋转锁止件进行解锁;若第一实时转矩未达到第一设定转矩,则确定扭矩枪未到达解锁位置(也即认帽失败),可发出认帽失败提醒。
在扭矩枪与旋转锁止件相接触后,通过控制扭矩枪沿第一方向旋转第一设定圈数并检测扭矩枪的第一实时转矩,若扭矩枪与固定部件之间认帽成功,则扭矩枪在旋转的过程中产生的第一实时转矩必然会达到第一设定转矩,从而来确定拆装工具到达解锁位置;若扭矩枪与旋转锁止件之间认帽不成功,则扭矩枪在旋转的过程中不会受到阻力或者阻力较小,也即存在空转现象,使得产生的第一实时转矩没有达到第一设定转矩,从而确定拆装工具未到达解锁位置。通过第一设定圈数和第一设定转矩两个维度的参数,能够精确确定是否认帽成功,安全稳定性高。其中,第一设定圈数可以根据旋转锁止件的锁紧或解锁圈数确定,第一设定转矩可以根据旋转锁止件的技术规格或通过实际试验数据确定。
在一个实施例中,控制扭矩枪沿第一方向旋转第一设定圈数之前,还控制扭矩枪沿第一方向旋转第二设定圈数,控制扭矩枪沿第二方向旋转第三设定圈数。其中,第二方向与第一方向相反。
在拆装工具122与固定部件相接触后、在检测拆装工具是否到达解锁位置的步骤之前,通过控制扭矩枪沿第一方向和第二方向分别旋转第二设定圈数和第三设定圈数,即便拆装工具与固定部件在接触的过程中可能存在偏移错位现象,但是通过扭矩枪分别沿两个相反的方向旋转,使得扭矩枪与旋转锁止件之间认帽成功的概率大大提高,有效避免了在未认帽成功的情况下就进行检测,大大提高了安全稳定性。
其中,第二设定圈数和第三设定圈数均小于第一设定圈数。在检测拆装工具是否到达解锁位置的步骤之前,通过控制扭矩枪沿第一方向和第二方向分别旋转第二设定圈数和第三设定圈数,由于第二设定圈数和第三设定圈数的圈数较少,无需转动特别多,从而提高了电池拆卸效率。同时,通过第一设定圈数的旋转圈数较多,保证了检测更加精准。优选地,第二设定圈数和第三设定圈数均小于或者 等于1,例如第二设定圈数和第三设定圈数设置为0.5圈。第一设定圈数的例如可以设置为7圈。
在本实施例中,第一方向为锁紧方向,第二方向为解锁方向。在检测拆装工具是否到达解锁位置时,如果扭矩枪与旋转锁止件之间认帽成功,扭矩枪在旋转的过程中产生的实时转矩必然会达到第一设定转矩,实现检测更加精准,有效避免了失误现象的发生。
图5为本发明一实施例中电池拆卸的控制方法中控制扭矩枪对旋转锁止件进行解锁的流程图,上述步骤S233可以包括以下步骤:
步骤S233-1、控制扭矩枪施加解锁转矩沿解锁方向旋转第四设定圈数。
在检测到拆装工具到达解锁位置,也即认帽成功的情况下,控制拆装工具对固定部件进行解锁,具体的,控制扭矩枪施加解锁转矩沿解锁方向旋转第四设定圈数,使得扭矩枪沿解锁方向旋转,并带动旋转锁止件也一同沿解锁方向旋转,从而实现了对固定部件的解锁操作,使用非常方便。其中,第四设定圈数可以根据旋转锁止件的锁紧或解锁圈数确定。
在一个实施例中,上述步骤S233还可以包括以下步骤:
步骤S233-2、在扭矩枪沿解锁方向旋转第四设定圈数的过程中,检测扭矩枪的第二实时转矩,并判断第二实时转矩是否达到第二设定转矩。
步骤S233-3、当第二实时转矩达到第二设定转矩时,判断扭矩枪的实际旋转圈数是否在解锁圈数范围内,以确定拆装工具对电池的固定部件解锁成功。
其中,第二设定转矩可以根据旋转锁止件的技术规格或通过实际试验数据确定。
通过检测扭矩枪的第二实时转矩,当第二实时转矩达到第二设定转矩时,则表明扭矩枪所产生的解锁转矩将足以带动旋转锁止件一同旋转,第二设定转矩可以根据旋转锁止件的技术规格或通过实际试验数据确定。当第二实时转矩达到第二设定转矩时,判断扭矩枪的实际旋转圈数是否在解锁圈数范围内,若扭矩枪的实际旋转圈数落入解锁圈数范围内,则确定拆装工具解锁成功;若扭矩枪的实际旋转圈数未落入解锁圈数范围内,则确定拆装工具解锁不成功;比如实际旋转圈数小于解锁圈数范围,则确定扭矩枪发生卡住现象而导致无法旋转;又比如实际旋转圈数小大于解锁圈数范围,则确定扭矩枪发生了空转而未带动旋转锁止件一同旋转。通过检测扭矩枪的第二实时转矩,并判断第二实时转矩是否达到第二设定转矩,以及当第二实时转矩达到第二设定转矩时,判断扭矩枪的实际旋转圈数是否在解锁圈数范围内,从而来确定拆装工具解锁成功,实现精确检测控制,大大提高了拆装工具在拆卸电池的安全稳定性。
在一个实施例中,在控制扭矩枪对旋转锁止件进行解锁后,上述步骤S230还可以包括以下步骤:
步骤S234、在确定扭矩枪对旋转锁止件解锁成功的情况下,控制扭矩枪释放解锁转矩;
步骤S235、控制穿梭车与举升平台相向运动,以使电池与电动车辆分离并承载于穿梭车上。
在完成对旋转锁止件的解锁后,释放扭矩枪的转矩,以防止旋转锁止件与扭矩枪卡住,便于电池与车辆分离。扭矩枪释放解锁转矩之后,再控制穿梭车与举升平台相向运动,拆装工具朝远离电动车辆的方向移动,电池能够平稳地承载在拆装工具上,大大提高了拆装工具在拆卸电池的安全稳定性。
在控制穿梭车与举升平台相向运动的过程中,控制穿梭车下降,并控制举升平台上升,直至穿梭 车与举升平台之间的间距大于穿梭车的有载通过高度,即可控制穿梭车带着电池驶离举升平台下方,以继续后续换电操作。
其中,有载通过高度也即电池承载于穿梭车上时穿梭车可以进出举升平台下方且穿梭车及电池均不与车辆发生冲突的最低高度。
图6为本发明一示例性实施例提供的一种电池安装的控制方法的流程图,该控制方法包括以下步骤:
步骤310、控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动,以使穿梭车上承载的电池与举升平台上承载的电动车辆底部的电池安装位置相对准。
图7为本发明一实施例中电池安装的控制方法中控制举升平台和位于举升平台下方的指定位置的穿梭车相对运动的流程图,上述步骤S310可以包括以下步骤:
步骤S311、控制举升平台下降至第一安装高度,并控制穿梭车上升至第二安装高度,以使穿梭车上承载的电池与举升平台上承载的电动车辆底部的电池安装位置相对准。
需要说明的是,控制举升平台下降至第一安装高度、控制穿梭车上升至第二安装高度可以同步执行,也可以异步执行,异步执行时可优先控制举升平台下降,也可以优先控制穿梭车上升,对此本发明实施例不作特别限定。控制举升平台下降至第一安装高度的过程中,可以控制举升平台匀速下降,也可以控制举升平台变速下降,或者先匀速再变速,本发明实施例对举升平台的下降速度不作特别限定。控制穿梭车上升至第二安装高度的过程中,可以控制穿梭车匀速上升,也可以控制穿梭车变速上升,或者先匀速再变速,本发明实施例对穿梭车的上升速度不作特别限定。
在一个实施例中,控制举升平台和穿梭车相对运动前,先确定穿梭车是否位于举升平台下方的指定位置。若确定穿梭车位于举升平台下方的指定位置,则控制举升平台和穿梭车相对运动。若穿梭车未位于举升平台下方的指定位置,则控制举升平台到达第三安装高度,第三安装高度高于穿梭车的有载通过高度,以使承载有电池的穿梭车能够顺利移动至指定位置,并在确定穿梭车位于指定位置时,控制举升平台下降至第一安装高度,并控制穿梭车上升至第二安装高度,以使穿梭车上承载的电池与举升平台上承载的电动车辆底部的电池安装位置相对准。
其中,穿梭车的有载通过高度也即穿梭车承载电池时可以进出举升平台下方且穿梭车及电池均不与车辆发生冲突的最低高度。
举升平台位于第三安装高度时,承载于举升平台上的电动车辆的底盘高度高于穿梭车的有载通过高度,穿梭车能够顺利承载电池在电动车辆下方移动。当穿梭车位于指定位置,穿梭车上承载电池位于电动车辆的底盘下方。
在一个实施例中,电动车辆的底盘上设有导向孔,穿梭车上设有导向件。上述步骤S310还包括以下步骤:
步骤S312、当导向件插入导向孔时,确定穿梭车上承载的电池与举升平台上承载的电动车辆底部的电池安装位置相对准。
控制举升平台和穿梭车相对运动的过程中,当导向件插入导向孔时,确定穿梭车上承载的电池与 举升平台上承载的电动车辆底部的电池安装位置相对准。通过导向件和导向孔,实现了电池与车辆底部安装位置的精确对准,大大提高了拆装工具安装电池的安全稳定性。
步骤320、继续控制举升平台和穿梭车相对运动,以使穿梭车上承载的电池到达电动车辆底部的电池安装位置且拆装工具与固定部件相接触。
在一个实施例中,继续控制举升平台和穿梭车相对运动时,控制举升平台下降至第四安装高度,并控制穿梭车上升至第五安装高度,以使穿梭车上承载的电池到达电动车辆底部的电池安装位置。其中,第四安装高度低于第一安装高度,第五安装高度高于第二安装高度。继续控制举升平台和穿梭车相对运动,使得拆卸工具与固定部件之间的间隔更加小,直至穿梭车上承载的电池到达电动车辆底部的电池安装位置且拆装工具与固定部件相接触。
在一个实施例中,穿梭车上设有校平立柱,继续控制举升平台和穿梭车相对运动的过程中,当举升平台下降至第四安装高度且穿梭车上升至第五安装高度时,电动车辆的底盘贴合校平立柱的端面,从而保证车辆底盘与拆装工具平行,便于电池安装。
与控制举升平台下降至第一安装高度类似的,控制举升平台下降至第四安装高度的过程中,可以控制举升平台匀速下降,也可以控制举升平台变速下降,或者先匀速再变速,本发明实施例对举升平台的下降速度不作特别限定。与控制穿梭车上升至第二安装高度类似的,控制穿梭车上升至第五安装高度的过程中,可以控制穿梭车匀速上升,也可以控制穿梭车变速上升,或者先匀速再变速,本发明实施例对穿梭车的上升速度不作特别限定。
步骤330、控制拆装工具对电池的固定部件进行锁止,以使得电池安装于电动车辆上。
在一个实施例中,固定部件包括旋转锁止件,拆装工具包括扭矩枪,通过扭矩枪对旋转锁止件进行锁止,扭矩枪对旋转锁止件进行锁止之前需要确定扭矩枪是否到达锁止位置(解锁位置)。
图8为本发明一实施例中电池安装的控制方法中确定扭矩枪到达锁止位置的流程图,在上述步骤S320之前,上述方法还包括以下步骤:
步骤S315、控制扭矩枪沿第一方向旋转第五设定圈数,并检测扭矩枪的第三实时转矩;
步骤S316、在扭矩枪旋转过程中,判断第三实时转矩是否达到第三设定转矩;
步骤S317、若第三实时转矩达到所述第三设定转矩,则确定扭矩枪到达锁止位置。
进行锁止时,控制扭矩枪沿第一方向旋转第五设定圈数,并检测扭矩枪的第三实时转矩。在扭矩枪旋转过程中,判断第三实时转矩是否达到第三设定转矩;若第三实时转矩达到第三设定转矩,则确定扭矩枪到达锁止位置(也即认帽成功)并控制扭矩枪对电池的旋转锁止件进行锁止;若第三实时转矩未达到第三设定转矩,则确定扭矩枪未到达解锁位置(也即认帽失败),可发出认帽失败提醒。通过第五设定圈数和第三设定转矩两个维度的参数,能够精确确定是否认帽成功,安全稳定性高。其中,第五设定圈数可以根据旋转锁止件的锁紧或解锁圈数确定,第三设定转矩可以根据旋转锁止件的技术规格或通过实际试验数据确定。
在一个实施例中,控制扭矩枪沿第一方向旋转第五设定圈数之前,还控制扭矩枪沿第一方向旋转第六设定圈数,控制扭矩枪沿第二方向旋转第七设定圈数。其中,第一方向与第二方向相反。
在拆装工具与固定部件相接触后、在检测拆装工具是否到达解锁位置的步骤之前,通过控制扭矩枪沿第一方向和第二方向分别旋转第六设定圈数和第七设定圈数,即便拆装工具与固定部件在接触的过程中可能存在偏移错位现象,但是通过扭矩枪分别沿两个相反的方向旋转,使得扭矩枪与旋转锁止件之间认帽成功的概率大大提高,有效避免了在未认帽成功的情况下就进行检测,大大提高了安全稳定性。
其中,第六设定圈数和第七设定圈数均小于第五设定圈数。在检测拆装工具是否到达解锁位置的步骤之前,通过控制扭矩枪沿第一方向和第二方向分别旋转第六设定圈数和第七设定圈数,由于第六设定圈数和第七设定圈数的圈数较少,无需转动特别多,从而提高了电池拆卸效率。同时,通过第五设定圈数的旋转圈数较多,保证了检测更加精准。优选地,第六设定圈数和第七设定圈数均小于或者等于1,例如第六设定圈数和第七设定圈数设置为0.5圈。第五设定圈数的例如可以设置为7圈。
在本实施例中,第一方向为锁紧方向,第二方向为解锁方向。在检测拆装工具是否到达锁止位置时,如果扭矩枪与旋转锁止件之间认帽成功,扭矩枪在旋转的过程中产生的实时转矩必然会达到第三设定转矩,实现检测更加精准,有效避免了失误现象的发生。
图9为本发明一实施例中电池安装的控制方法中控制扭矩枪对旋转锁止件进行锁止的流程图,上述步骤S330可以包括以下步骤:
步骤S331、控制扭矩枪沿解锁方向旋转第八设定圈数,以使旋转锁止件到达初始位置。
在确定拆装工具到达锁止位置后,可以通过控制扭矩枪沿第一方向来确定拆装工具到达锁止位置,第一方向为锁紧方向,第二方向为解锁方向,也就是扭矩枪的旋转将旋转锁止件与电动车辆底部之间锁紧连接来确定拆装工具到达锁止位置,在确定拆装工具到达锁止位置的步骤之后,通过控制扭矩枪沿解锁方向旋转第八设定圈数,以使旋转锁止件到达初始位置,其中,第八设定圈数可以根据旋转锁止件的锁紧或解锁圈数确定。通过控制扭矩枪使得旋转锁止件先沿锁紧方向旋转,之后沿解锁方向旋转到达初始位置,即便旋转锁止件在第一次锁紧的过程中存在偏移错位现象,通过解锁将旋转锁止件到达初始位置,使得旋转锁止件将精确处于锁止位置上,同时,大大提高了后续锁紧过程中旋转锁止件的锁紧精度,实现锁紧更加稳定。
步骤S332、在扭矩枪沿解锁方向旋转第八设定圈数的过程中,检测扭矩枪的第四实时转矩,并判断第四实时转矩是否达到第四设定转矩。
步骤S333、当第四实时转矩达到第四设定转矩时,判断扭矩枪的实际旋转圈数是否在预设圈数范围内,以确定旋转锁止件到达初始位置。
通过检测扭矩枪的第四实时转矩,当第四实时转矩达到第四设定转矩时,则表明扭矩枪所产生的解锁转矩将足以带动旋转锁止件一同旋转,第四设定转矩可以根据旋转锁止件的技术规格或通过实际试验数据确定。当第四实时转矩达到第四设定转矩时,判断扭矩枪的实际旋转圈数是否在预设圈数范围内,若扭矩枪的实际旋转圈数落入预设圈数范围内,则确定旋转锁止件到达初始位置;若扭矩枪的实际旋转圈数未落入预设圈数范围内,则确定旋转锁止件到达初始位置;比如实际旋转圈数小于预设圈数范围,则确定扭矩枪发生卡住现象而导致无法旋转;又比如实际旋转圈数小大于预设圈数范围, 则确定扭矩枪发生了空转而未带动旋转锁止件一同旋转。通过检测扭矩枪的第四实时转矩,并判断第四实时转矩是否达到第四设定转矩,以及当第四实时转矩达到第四设定转矩时,判断扭矩枪的实际旋转圈数是否在预设圈数范围内,从而来确定旋转锁止件到达初始位置,实现精确检测控制,大大提高了拆装工具在安装电池的安全稳定性。
在一个实施例中,上述步骤S333还包括以下步骤:
步骤S334、控制扭矩枪施加锁紧转矩沿锁紧方向旋转第九设定圈数。
在检测并确定旋转锁止件到达初始位置之后,通过控制扭矩枪施加锁紧转矩,使得扭矩枪沿锁紧方向旋转,并带动旋转锁止件也一同沿锁紧方向旋转,从而实现了对旋转锁止件的锁紧操作,使用非常方便。其中,第九设定圈数可以根据旋转锁止件的锁紧或解锁圈数确定。
步骤S335、在扭矩枪沿锁紧方向旋转第九设定圈数的过程中,检测扭矩枪的第五实时转矩,并判断第五实时转矩是否达到第五设定转矩;当第五实时转矩达到第五设定转矩时,判断扭矩枪的实际旋转圈数是否在锁止圈数范围内,以确定扭矩枪对旋转锁止件锁止成功。
通过检测扭矩枪的第五实时转矩,当第五实时转矩达到第五设定转矩时,则表明扭矩枪所产生的锁紧转矩将足以带动旋转锁止件一同旋转锁紧,第五设定转矩可以根据旋转锁止件的技术规格或通过实际试验数据确定。当第五实时转矩达到第五设定转矩时,判断扭矩枪的实际旋转圈数是否在锁止圈数范围内,若扭矩枪的实际旋转圈数落入锁止圈数范围内,则确定拆装工具锁止成功;若扭矩枪的实际旋转圈数未落入锁止圈数范围内,则确定拆装工具未锁止成功。通过检测扭矩枪的第五实时转矩,并判断第五实时转矩是否达到第五设定转矩,以及当第五实时转矩达到第五设定转矩时,判断扭矩枪的实际旋转圈数是否在锁止圈数范围内,从而来确定拆装工具是否锁止成功,实现精确检测控制,大大提高了拆装工具在安装电池的安全稳定性。
在一个实施例中,在控制拆装工具对固定部件进行锁止的步骤之后,上述步骤S330还可以包括以下步骤:
步骤S336、在确定扭矩枪对旋转锁止件锁止成功的情况下,控制扭矩枪释放锁紧转矩。
步骤S337、控制穿梭车与举升平台相向运动,以便于穿梭车驶离。
控制拆装工具朝远离电动车辆的方向移动。通过控制扭矩枪释放锁紧转矩以防止旋转锁止件与扭矩枪卡住,再控制拆装工具在穿梭车上进行下降,使得拆装工具朝远离电动车辆的方向移动,实现扭矩枪与电池的固定部件相互脱离,大大提高了拆装工具在安装电池的安全稳定性。
在控制拆装工具承载电池朝远离电动车辆的方向移动的步骤之后,电池安装的控制方法还包括:控制穿梭车移出电动车辆的下方。通过穿梭车的行走移动,使得穿梭车移出电动车辆的下方,也带动拆装工具移出电动车辆的下方,电动车辆在换电站内安装充满电的电池之后将驶离出换电站,下一辆电动车辆将驶入换电站内,通过穿梭车和拆装工具将对下一辆的电动车辆中亏电的电池拆卸下来,大大提高了换电站的换电效率。
与前述电池拆卸的控制方法、电池安装的控制方法的实施例相对应,本公开还提供了电池拆卸的控制装置、电池安装的控制装置的实施例。
图10为本发明一示例性实施例提供的一种电池拆卸的控制装置的模块示意图,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制装置包括:
第一控制模块41,用于在待换电的电动车辆承载于所述举升平台的情况下,控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述拆装工具与所述电动车辆的底盘上的固定部件相对准;
所述第一控制模块41,还用于继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上的拆装工具与所述固定部件相接触;
第二控制模块42,用于控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上。
可选地,在控制所述举升平台和所述穿梭车相对运动时,所述第一控制模块41用于:
控制所述举升平台下降至第一拆卸高度,并控制所述穿梭车上升至第二拆卸高度,以使所述拆装工具与所述底盘上的固定部件相对准。
可选地,所述底盘上设有导向孔,所述穿梭车上设有导向件;在控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动时,所述第一控制模块41用于:
当所述导向件插入所述导向孔时,确定所述拆装工具与所述底盘上的固定部件相对准。
可选地,控制所述举升平台和所述穿梭车相对运动之前,所述第一控制模块41还用于:
控制所述举升平台上升至第三拆卸高度,所述第三拆卸高度高于所述穿梭车的空载通过高度;
控制所述穿梭车移动至所述举升平台下方的指定位置。
可选地,继续控制所述举升平台和所述穿梭车相对运动时,所述第一控制模块41用于:
控制所述举升平台下降至第四拆卸高度,并控制所述穿梭车上升至第五拆卸高度,以使所述穿梭车上的拆装工具与所述固定部件相接触。
可选地,所述穿梭车上设有校平立柱;
当所述举升平台下降至所述第四拆卸高度且所述穿梭车上升至所述第五拆卸高度时,所述底盘贴合所述校平立柱的端面。
可选地,所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;所述第二控制模块42包括:
控制单元,用于控制所述扭矩枪沿第一方向旋转第一设定圈数,并检测所述扭矩枪的第一实时转矩;
判断单元,用于在所述扭矩枪旋转过程中,判断所述第一实时转矩是否达到第一设定转矩;并当所述第一实时转矩达到所述第一设定转矩时,确定所述拆装工具到达解锁位置并控制所述拆装工具对所述电池的固定部件进行解锁。
可选地,控制所述扭矩枪沿第一方向旋转第一设定圈数之前,所述第二控制模块42还用于:
控制所述扭矩枪沿第一方向旋转第二设定圈数;
控制所述扭矩枪沿第二方向旋转第三设定圈数;
其中,所述第二方向与所述第一方向相反。
可选地,所述第一方向为锁紧方向,所述第二方向为解锁方向;
和/或,所述第二设定圈数和所述第三设定圈数均小于所述第一设定圈数;
和/或,所述第二设定圈数和所述第三设定圈数均小于或者等于1。
可选地,控制所述拆装工具对所述电池的固定部件进行解锁时,所述第二控制单元用于:
控制所述扭矩枪施加解锁转矩沿解锁方向旋转第四设定圈数。
可选地,所述第二控制单元还用于:
在所述扭矩枪沿解锁方向旋转第四设定圈数的过程中,检测所述扭矩枪的第二实时转矩,并判断所述第二实时转矩是否达到第二设定转矩;
当所述第二实时转矩达到所述第二设定转矩时,判断所述扭矩枪的实际旋转圈数是否在解锁圈数范围内,以确定所述拆装工具对所述电池的固定部件解锁成功。
可选地,所述第二控制模块42具体用于:
在确定所述拆装工具对所述电池的固定部件解锁成功的情况下,控制所述扭矩枪释放所述解锁转矩,并调用第一控制模块41,以控制所述穿梭车与所述举升平台相向运动,以使所述电池与所述电动车辆分离并承载于所述穿梭车上。
图11为本发明一示例性实施例提供的一种电池安装的控制装置的模块示意图,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制装置包括:
第三控制模块51,用于控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准;
所述第三控制模块51,还用于继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上承载的电池到达所述电动车辆底部的电池安装位置且所述拆装工具与所述固定部件相接触;
第四控制模块52,用于控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上。
可选地,控制所述举升平台和所述穿梭车相对运动时,所述第三控制模块51用于:
控制所述举升平台下降至第一安装高度,并控制所述穿梭车上升至第二安装高度,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
可选地,所述电动车辆的底盘上设有导向孔,所述穿梭车上设有导向件;
当所述导向件插入所述导向孔时,所述第一控制模块确定所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
可选地,控制所述举升平台和所述穿梭车相对运动之前,所述第三控制模块51还用于:
控制所述举升平台上升至第三安装高度,所述第三安装高度高于所述穿梭车的有载通过高度;
控制所述穿梭车移动至所述举升平台下方的指定位置。
可选地,继续控制所述举升平台和所述穿梭车相对运动时,所述第三控制模块51用于:
控制所述举升平台下降至第四安装高度,并控制所述穿梭车上升至第五安装高度,以使所述穿梭车上的拆装工具与所述固定部件相接触。
可选地,所述穿梭车上设有校平立柱;
当所述举升平台下降至所述第四安装高度且所述穿梭车上升至所述第五安装高度时,所述电动车辆的底盘贴合所述校平立柱的端面。
可选地,所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;所述第四控制模块52包括:
控制单元,用于控制所述扭矩枪沿第一方向旋转第五设定圈数,并检测所述扭矩枪的第三实时转矩;
判断单元,用于在所述扭矩枪旋转过程中,判断所述第三实时转矩是否达到第三设定转矩;当所述第三实时转矩达到所述第三设定转矩时,则确定所述拆装工具到达锁止位置并控制所述拆装工具对所述电池的固定部件进行锁止。
可选地,控制所述扭矩枪沿第一方向旋转第五设定圈数之前,所述第四控制模块52还用于:
控制所述扭矩枪沿第一方向旋转第六设定圈数;
控制所述扭矩枪沿第二方向旋转第七设定圈数;
其中,所述第一方向与所述第二方向相反。
可选地,所述第一方向为锁紧方向,所述第二方向为解锁方向;
和/或,所述第六设定圈数和所述第七设定圈数均小于所述第五设定圈数;
和/或,所述第六设定圈数和所述第七设定圈数均小于或者等于1。
可选地,控制所述拆装工具对所述电池的固定部件进行锁止时,所述第四控制模块52还用于:
控制所述扭矩枪沿解锁方向旋转第八设定圈数,以使所述旋转锁止件到达初始位置。
可选地,所述第四控制模块52还用于:
在所述扭矩枪沿解锁方向旋转第八设定圈数的过程中,检测所述扭矩枪的第四实时转矩,并判断所述第四实时转矩是否达到第四设定转矩;
当所述第四实时转矩达到所述第四设定转矩时,判断所述扭矩枪的实际旋转圈数是否在预设圈数范围内,以确定所述旋转锁止件到达初始位置。
可选地,控制所述拆装工具对所述固定部件进行锁止时,所述第四控制模块52用于:
控制所述扭矩枪施加锁紧转矩沿锁紧方向旋转第九设定圈数。
可选地,所述第四控制模块52还用于:
在所述扭矩枪沿锁紧方向旋转第九设定圈数的过程中,检测所述扭矩枪的第五实时转矩,并判断所述第五实时转矩是否达到第五设定转矩;
当所述第五实时转矩达到所述第五设定转矩时,判断所述扭矩枪的实际旋转圈数是否在锁止圈数范围内,以确定所述拆装工具锁止成功。
可选地,控制所述拆装工具对所述电池的固定部件进行锁止时,所述第四控制模块52具体用于:
在确定所述拆装工具对所述电池的固定部件锁止成功的情况下,控制所述扭矩枪释放所述锁紧转矩,并调用所述第三控制模块51,以控制所述穿梭车与所述举升平台相向运动,以便于所述穿梭车驶离。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
图12是本发明一示例实施例示出的一种电子设备的结构示意图,示出了适于用来实现本发明任一实施例的示例性电子设备60的框图。图12显示的电子设备60仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图12所示,电子设备60可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备60的组件可以包括但不限于:上述至少一个处理器61、上述至少一个存储器62、连接不同系统组件(包括存储器62和处理器61)的总线63。
总线63包括数据总线、地址总线和控制总线。
存储器62可以包括易失性存储器,例如随机存取存储器(RAM)621和/或高速缓存存储器622,还可以进一步包括只读存储器(ROM)623。
存储器62还可以包括具有一组(至少一个)程序模块624的程序工具625(或实用工具),这样的程序模块624包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器61通过运行存储在存储器62中的计算机程序,从而执行各种功能应用以及数据处理,例如上述任一实施例所提供的方法。
电子设备60也可以与一个或多个外部设备64(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口65进行。并且,模型生成的电子设备60还可以通过网络适配器66与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器66通过总线63与模型生成的电子设备60的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的电子设备60使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理 器执行时实现上述任一项所述的电池安装的控制方法的步骤。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (19)

  1. 一种电池拆卸的控制方法,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制方法包括:
    在待换电的电动车辆承载于所述举升平台的情况下,控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述拆装工具与所述电动车辆的底盘上的固定部件相对准;
    继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上的拆装工具与所述固定部件相接触;
    控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上。
  2. 根据权利要求1所述的电池拆卸的控制方法,其特征在于,控制所述举升平台和所述穿梭车相对运动,包括:
    控制所述举升平台下降至第一拆卸高度,并控制所述穿梭车上升至第二拆卸高度,以使所述拆装工具与所述底盘上的固定部件相对准;
    和/或,
    控制所述举升平台和所述穿梭车相对运动之前,包括:
    控制所述举升平台上升至第三拆卸高度,所述第三拆卸高度高于所述穿梭车的空载通过高度;
    控制所述穿梭车移动至所述举升平台下方的指定位置;
    和/或,
    继续控制所述举升平台和所述穿梭车相对运动,包括:
    控制所述举升平台下降至第四拆卸高度,并控制所述穿梭车上升至第五拆卸高度,以使所述穿梭车上的拆装工具与所述固定部件相接触;
    和/或,
    所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;控制所述拆装工具对所述电池的固定部件进行解锁,包括:
    控制所述扭矩枪沿第一方向旋转第一设定圈数,并检测所述扭矩枪的第一实时转矩;
    在所述扭矩枪旋转过程中,判断所述第一实时转矩是否达到第一设定转矩;
    若所述第一实时转矩达到所述第一设定转矩,则确定所述扭矩枪到达解锁位置并控制所述扭矩枪对所述旋转锁止件进行解锁。
  3. 根据权利要求1或2所述的电池拆卸的控制方法,其特征在于,所述底盘上设有导向孔,所述穿梭车上设有导向件;控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以 使所述拆装工具与所述电动车辆的底盘上的固定部件相对准,包括:
    当所述导向件插入所述导向孔时,确定所述拆装工具与所述底盘上的固定部件相对准。
  4. 根据权利要求2所述的电池拆卸的控制方法,其特征在于,所述穿梭车上设有校平立柱;
    当所述举升平台下降至所述第四拆卸高度且所述穿梭车上升至所述第五拆卸高度时,所述底盘贴合所述校平立柱的端面。
  5. 根据权利要求2所述的电池拆卸的控制方法,其特征在于,控制所述扭矩枪沿第一方向旋转第一设定圈数之前,还包括:
    控制所述扭矩枪沿第一方向旋转第二设定圈数;
    控制所述扭矩枪沿第二方向旋转第三设定圈数;
    其中,所述第二方向与所述第一方向相反;
    和/或,
    控制所述扭矩枪对所述旋转锁止件进行解锁,包括:
    控制所述扭矩枪施加解锁转矩沿解锁方向旋转第四设定圈数。
  6. 根据权利要求5所述的电池拆卸的控制方法,其特征在于,所述第一方向为锁紧方向,所述第二方向为解锁方向;
    和/或,所述第二设定圈数和所述第三设定圈数均小于所述第一设定圈数;
    和/或,所述第二设定圈数和所述第三设定圈数均小于或者等于1。
  7. 根据权利要求5所述的电池拆卸的控制方法,其特征在于,所述控制方法还包括:
    在所述扭矩枪沿解锁方向旋转第四设定圈数的过程中,检测所述扭矩枪的第二实时转矩,并判断所述第二实时转矩是否达到第二设定转矩;
    当所述第二实时转矩达到所述第二设定转矩时,判断所述扭矩枪的实际旋转圈数是否在解锁圈数范围内,以确定所述扭矩枪对所述旋转锁止件解锁成功;
    和/或,
    控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上,包括:
    在确定所述扭矩枪对所述旋转锁止件解锁成功的情况下,控制所述扭矩枪释放所述解锁转矩;
    控制所述穿梭车与所述举升平台相向运动,以使所述电池与所述电动车辆分离并承载于所述穿梭车上。
  8. 一种电池安装的控制方法,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制方法包括:
    控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承 载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准;
    继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上承载的电池到达所述电动车辆底部的电池安装位置且所述拆装工具与所述固定部件相接触;
    控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上。
  9. 根据权利要求8所述的电池安装的控制方法,其特征在于,控制所述举升平台和所述穿梭车相对运动,包括:
    控制所述举升平台下降至第一安装高度,并控制所述穿梭车上升至第二安装高度,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准;
    和/或,
    控制所述举升平台和所述穿梭车相对运动之前,包括:
    控制所述举升平台上升至第三安装高度,所述第三安装高度高于所述穿梭车的有载通过高度;
    控制所述穿梭车移动至所述举升平台下方的指定位置;
    和/或,
    继续控制所述举升平台和所述穿梭车相对运动,包括:
    控制所述举升平台下降至第四安装高度,并控制所述穿梭车上升至第五安装高度,以使所述穿梭车上的拆装工具与所述固定部件相接触;
    和/或,
    所述固定部件包括旋转锁止件,所述拆装工具包括扭矩枪;在控制所述举升平台和所述穿梭车相对运动之前,所述控制方法还包括:
    控制所述扭矩枪沿第一方向旋转第五设定圈数,并检测所述扭矩枪的第三实时转矩;
    在所述扭矩枪旋转过程中,判断所述第三实时转矩是否达到第三设定转矩;
    若所述第三实时转矩达到所述第三设定转矩,则确定所述扭矩枪到达锁止位置;
    所述控制所述拆装工具对所述电池的固定部件进行锁止包括:
    控制所述扭矩枪对所述旋转锁止件进行锁止。
  10. 根据权利要求8或9所述的电池安装的控制方法,其特征在于,所述电动车辆的底盘上设有导向孔,所述穿梭车上设有导向件;控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准,包括:
    当所述导向件插入所述导向孔时,确定所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准。
  11. 根据权利要求9所述的电池安装的控制方法,其特征在于,所述穿梭车上设有校平立柱;
    当所述举升平台下降至所述第四安装高度且所述穿梭车上升至所述第五安装高度时,所述电动车辆的底盘贴合所述校平立柱的端面。
  12. 根据权利要求9所述的电池安装的控制方法,其特征在于,控制所述扭矩枪沿第一方向旋转第五设定圈数之前,还包括:
    控制所述扭矩枪沿第一方向旋转第六设定圈数;
    控制所述扭矩枪沿第二方向旋转第七设定圈数;
    其中,所述第一方向与所述第二方向相反;
    和/或,
    控制所述扭矩枪对所述旋转锁止件进行锁止之前,还包括:
    控制所述扭矩枪沿解锁方向旋转第八设定圈数,以使所述旋转锁止件到达初始位置;
    和/或,
    控制所述扭矩枪对所述旋转锁止件进行锁止,包括:
    控制所述扭矩枪施加锁紧转矩沿锁紧方向旋转第九设定圈数。
  13. 根据权利要求12所述的电池安装的控制方法,其特征在于,所述第一方向为锁紧方向,所述第二方向为解锁方向;
    和/或,所述第六设定圈数和所述第七设定圈数均小于所述第五设定圈数;
    和/或,所述第六设定圈数和所述第七设定圈数均小于或者等于1。
  14. 根据权利要求12所述的电池安装的控制方法,其特征在于,所述控制方法还包括:
    在所述扭矩枪沿解锁方向旋转第八设定圈数的过程中,检测所述扭矩枪的第四实时转矩,并判断所述第四实时转矩是否达到第四设定转矩;
    当所述第四实时转矩达到所述第四设定转矩时,判断所述扭矩枪的实际旋转圈数是否在预设圈数范围内,以确定所述旋转锁止件到达初始位置。
  15. 根据权利要求12所述的电池安装的控制方法,其特征在于,所述控制方法还包括:
    在所述扭矩枪沿锁紧方向旋转第九设定圈数的过程中,检测所述扭矩枪的第五实时转矩,并判断所述第五实时转矩是否达到第五设定转矩;
    当所述第五实时转矩达到所述第五设定转矩时,判断所述扭矩枪的实际旋转圈数是否在锁止圈数范围内,以确定所述扭矩枪对所述旋转锁止件锁止成功;
    和/或,
    控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上,包括:
    在确定所述扭矩枪对所述旋转锁止件锁止成功的情况下,控制所述扭矩枪释放所述锁紧转矩;
    控制所述穿梭车与所述举升平台相向运动,以便于所述穿梭车驶离。
  16. 一种电池拆卸的控制装置,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件; 所述控制装置包括:
    第一控制模块,用于在待换电的电动车辆承载于所述举升平台的情况下,控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述拆装工具与所述电动车辆的底盘上的固定部件相对准;
    所述第一控制模块,还用于继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上的拆装工具与所述固定部件相接触;
    第二控制模块,用于控制所述拆装工具对所述电池的固定部件进行解锁,以使得所述电池脱离所述电动车辆并承载于所述拆装工具上。
  17. 一种电池安装的控制装置,应用于换电站中,其特征在于,所述换电站包括举升平台和换电设备,所述举升平台用于带动承载于所述举升平台上的电动车辆作升降运动,所述换电设备包括穿梭车与拆装工具,所述拆装工具设于所述穿梭车上,所述拆装工具用于解锁或锁止所述电池的固定部件;所述控制装置包括:
    第三控制模块,用于控制所述举升平台和位于所述举升平台下方的指定位置的穿梭车相对运动,以使所述穿梭车上承载的电池与所述举升平台上承载的电动车辆底部的电池安装位置相对准;
    所述第三控制模块,还用于继续控制所述举升平台和所述穿梭车相对运动,以使所述穿梭车上承载的电池到达所述电动车辆底部的电池安装位置且所述拆装工具与所述固定部件相接触;
    第四控制模块,还用于控制所述拆装工具对所述电池的固定部件进行锁止,以使得所述电池安装于所述电动车辆上。
  18. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述的电池拆卸的控制方法和/或权利要求8至15中任一项所述的电池安装的控制方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的电池拆卸的控制方法和/或权利要求8至15中任一项所述的电池安装的控制方法的步骤。
PCT/CN2022/136210 2021-12-02 2022-12-02 电池拆卸的控制方法及装置、电池安装的控制方法及装置 WO2023098877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111461283.6 2021-12-02
CN202111461283.6A CN116215302A (zh) 2021-12-02 2021-12-02 电池拆卸的控制方法及装置、电池安装的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023098877A1 true WO2023098877A1 (zh) 2023-06-08

Family

ID=86577260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136210 WO2023098877A1 (zh) 2021-12-02 2022-12-02 电池拆卸的控制方法及装置、电池安装的控制方法及装置

Country Status (2)

Country Link
CN (1) CN116215302A (zh)
WO (1) WO2023098877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117401608A (zh) * 2023-10-20 2024-01-16 嘉善志达机电有限公司 一种举升机及运用该举升机的智能换电平台

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787010A (zh) * 2015-04-13 2015-07-22 深圳精智机器有限公司 升降装置及换电设备
CN205872015U (zh) * 2016-06-20 2017-01-11 蔚来汽车有限公司 取换电小车
CN107775324A (zh) * 2017-10-26 2018-03-09 蔚来汽车有限公司 螺栓加锁方法、螺栓解锁方法、螺栓加解锁方法及车用电池更换方法
CN109507913A (zh) * 2017-11-30 2019-03-22 蔚来汽车有限公司 换电加解锁控制系统及控制方法
CN109849863A (zh) * 2017-11-30 2019-06-07 上海电巴新能源科技有限公司 穿梭式电池包更换设备及包含其的换电站
CN111231751A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电控制方法、系统、电子设备及存储介质
CN111231737A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电系统及包括其的换电站
CN111284360A (zh) * 2020-01-23 2020-06-16 奥动新能源汽车科技有限公司 夹车道控制方法及系统、电子设备及存储介质
CN111301215A (zh) * 2020-01-23 2020-06-19 奥动新能源汽车科技有限公司 换电控制方法及系统、电子设备及存储介质
CN111301216A (zh) * 2020-01-23 2020-06-19 奥动新能源汽车科技有限公司 换电控制方法及系统、电子设备及存储介质
CN111959338A (zh) * 2020-07-15 2020-11-20 浙江吉智新能源汽车科技有限公司 一种电动车辆的换电方法
DE102019212797A1 (de) * 2019-08-27 2021-03-04 Volkswagen Aktiengesellschaft Elektrisch betriebenes Fahrzeug, Wechselstation zum Austausch einer Traktionsbatterie des elektrisch betriebenen Fahrzeugs sowie Schnellkupplung
CN115284942A (zh) * 2021-12-02 2022-11-04 奥动新能源汽车科技有限公司 换电设备及包含其的换电站
CN115284936A (zh) * 2021-12-02 2022-11-04 奥动新能源汽车科技有限公司 车辆校正系统、换电站及换电方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787010A (zh) * 2015-04-13 2015-07-22 深圳精智机器有限公司 升降装置及换电设备
CN205872015U (zh) * 2016-06-20 2017-01-11 蔚来汽车有限公司 取换电小车
CN107775324A (zh) * 2017-10-26 2018-03-09 蔚来汽车有限公司 螺栓加锁方法、螺栓解锁方法、螺栓加解锁方法及车用电池更换方法
CN109507913A (zh) * 2017-11-30 2019-03-22 蔚来汽车有限公司 换电加解锁控制系统及控制方法
CN109849863A (zh) * 2017-11-30 2019-06-07 上海电巴新能源科技有限公司 穿梭式电池包更换设备及包含其的换电站
DE102019212797A1 (de) * 2019-08-27 2021-03-04 Volkswagen Aktiengesellschaft Elektrisch betriebenes Fahrzeug, Wechselstation zum Austausch einer Traktionsbatterie des elektrisch betriebenen Fahrzeugs sowie Schnellkupplung
CN111231737A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电系统及包括其的换电站
CN111284360A (zh) * 2020-01-23 2020-06-16 奥动新能源汽车科技有限公司 夹车道控制方法及系统、电子设备及存储介质
CN111301215A (zh) * 2020-01-23 2020-06-19 奥动新能源汽车科技有限公司 换电控制方法及系统、电子设备及存储介质
CN111301216A (zh) * 2020-01-23 2020-06-19 奥动新能源汽车科技有限公司 换电控制方法及系统、电子设备及存储介质
CN111231751A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电控制方法、系统、电子设备及存储介质
CN111959338A (zh) * 2020-07-15 2020-11-20 浙江吉智新能源汽车科技有限公司 一种电动车辆的换电方法
CN115284942A (zh) * 2021-12-02 2022-11-04 奥动新能源汽车科技有限公司 换电设备及包含其的换电站
CN115284936A (zh) * 2021-12-02 2022-11-04 奥动新能源汽车科技有限公司 车辆校正系统、换电站及换电方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117401608A (zh) * 2023-10-20 2024-01-16 嘉善志达机电有限公司 一种举升机及运用该举升机的智能换电平台
CN117401608B (zh) * 2023-10-20 2024-03-29 嘉善志达机电有限公司 一种智能换电平台

Also Published As

Publication number Publication date
CN116215302A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2019101028A1 (zh) 浮动对接装置、换电机器人以及加锁、解锁和加解锁方法
WO2023098877A1 (zh) 电池拆卸的控制方法及装置、电池安装的控制方法及装置
CN111959338B (zh) 一种电动车辆的换电方法
CN111301215A (zh) 换电控制方法及系统、电子设备及存储介质
CN102485554B (zh) 利用浮动机构的束角自动调整装置
WO2021148029A1 (zh) 夹车道控制方法及系统、电子设备及存储介质
CN112498298B (zh) 一种提高安全性的汽车电池拆卸方法、安装方法及装置
CN110962809A (zh) 电动汽车换电定位系统及方法
CN111231752A (zh) 换电设备
CN113820105B (zh) 激光器的功率测试方法及装置
CN115284936A (zh) 车辆校正系统、换电站及换电方法
US20230331216A1 (en) Method and computer system for controlling vehicle parking, medium, and vehicle
CN111907367A (zh) 一种换电平台及换电系统
US20240083394A1 (en) Battery swapping control method and system, electronic device, and computer readable storage medium
WO2023098861A1 (zh) 电池拆卸的控制方法及装置、电池安装的控制方法及装置
CN112477676A (zh) 换电设备及电动汽车的换电方法
WO2023098866A1 (zh) 电池拆卸的控制方法及装置、电池安装的控制方法及装置
CN113665407A (zh) 换电设备的换电控制方法以及换电设备
CN116039571A (zh) 一种电动汽车电池锁体的解锁控制方法及加锁控制方法
EP3910640B1 (en) Dimm insertion electronic cam insertion profile
CN115285079A (zh) 用于换电站的换电加解锁控制方法
CN204667293U (zh) 电子设备
CN114475341A (zh) 基于换电设备的换电控制方法、系统、介质及电子设备
CN216012008U (zh) 一种准确标记电机机械零点的机构
CN212928415U (zh) 锁紧构件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900681

Country of ref document: EP

Kind code of ref document: A1