WO2023098843A1 - 催化裂解反应器和系统及其应用 - Google Patents

催化裂解反应器和系统及其应用 Download PDF

Info

Publication number
WO2023098843A1
WO2023098843A1 PCT/CN2022/136055 CN2022136055W WO2023098843A1 WO 2023098843 A1 WO2023098843 A1 WO 2023098843A1 CN 2022136055 W CN2022136055 W CN 2022136055W WO 2023098843 A1 WO2023098843 A1 WO 2023098843A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalytic cracking
zone
diameter
inner diameter
Prior art date
Application number
PCT/CN2022/136055
Other languages
English (en)
French (fr)
Inventor
魏晓丽
张执刚
龚剑洪
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023098843A1 publication Critical patent/WO2023098843A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the application relates to the field of petrochemical industry, in particular to a fluidized catalytic cracking reactor, a catalytic cracking system containing it and its application.
  • Ethylene and propylene are the most basic raw materials of petrochemical industry and the basis for the production of various important organic chemical products.
  • the production scale, output and technical level of ethylene and propylene are important indicators to measure the development level of a country's petrochemical industry. Although my country's ethylene production capacity and output ranks second in the world, and propylene production capacity and output ranks first in the world, they still cannot meet the needs of my country's national economic development and improvement of people's living standards. In 2020, the equivalent demand of ethylene and propylene in my country is 58.63 million tons and 47.5 million tons respectively.
  • the self-sufficiency rates of ethylene and propylene are about 51.4% and 79.9% respectively, and the production of olefin products is still insufficient.
  • the steam cracking of light hydrocarbons such as naphtha is still the main production technology of ethylene and propylene.
  • the cracking furnace uses fossil fuels to heat the furnace tube, making the steam cracking furnace the main source of carbon dioxide emissions. , high energy consumption, and poor product selectivity, a large amount of methane is generated in the product.
  • researchers have been developing technologies for catalytic cracking of light hydrocarbons such as naphtha to produce olefins.
  • Cida patent application CN106221786A discloses a naphtha conversion method, which combines naphtha catalytic cracking with steam cracking of low-carbon alkanes, catalytic cracking of high-carbon alkanes and high-carbon olefins to produce low-carbon olefins, light aromatics and High octane gasoline. Since most of the reactants are converted in the lower temperature catalytic cracking, energy consumption can be reduced overall.
  • Chinese patent application CN111484386A discloses a raw material conversion device containing naphtha, including reacting the raw material containing naphtha in the fast fluidized bed reactor to obtain product gas and catalyst to be regenerated; Part of the catalyst to be regenerated is supplied to the fast fluidized bed reactor, and part is sent to the regenerator.
  • the technical problem solved by the device is to reduce the influence of thermal cracking reaction in naphtha catalytic cracking technology and reduce the yield of methane in the product.
  • Chinese patent application CN109280561A discloses a process for producing propylene and co-producing aromatics by using naphtha or light hydrocarbons as raw materials for low-temperature catalytic reaction.
  • the raw naphtha or light hydrocarbon enters the fixed-bed reactor after being heated by a heat exchanger and/or a heating furnace, and undergoes a low-temperature catalytic reaction under the action of a specific catalyst, and the reaction product is separated into ethylene propylene, C4C five hydrocarbons, and aromatic hydrocarbons such as toluene and xylene produced by-products, and part of the carbon four carbon five hydrocarbons are recycled back to the reactor.
  • Chinese patent application CN111715152A discloses a combined reactor for alkane dehydrogenation and hydrocarbon catalytic cracking to olefins
  • the disclosed reaction device for alkane catalytic dehydrogenation to olefins includes a catalytic dehydrogenation cracking reactor and a settling section of the reactor, The settling section of the reactor is located on the upper part of the reactor, wherein the reactor includes a dehydrogenation reaction section and a cracking reaction section, the dehydrogenation reaction section is located below the cracking reaction section, and one end of the catalyst regeneration inclined tube is connected to the dehydrogenation reaction section .
  • the method is not only beneficial to the dehydrogenation reaction, but also beneficial to the catalytic cracking reaction.
  • naphtha fixed bed catalytic cracking is characterized by lower reaction temperature, but its conversion rate of low-carbon alkanes is low.
  • the combination of catalytic cracking of naphtha and steam cracking can increase the yield of ethylene to a certain extent, but there is still the problem of carbon emissions.
  • Combining with alkane dehydrogenation is a relatively potential technical path, but the mechanism of dehydrogenation and cracking in catalyst and process technology is still being explored.
  • Light raw materials such as naphtha have small molecules, high reaction activation energy, and high reaction temperature, which often leads to high yield of by-product methane, and the heat of catalytic cracking reaction is large, which requires a lot of heat in the reaction, and self-cracking produces Coke often cannot meet the needs of the heat balance of the reaction-regeneration system itself.
  • the catalytic cracking reaction of light hydrocarbons such as naphtha has low coke formation and requires a large amount of external fuel oil.
  • catalytic cracking uses molecular sieve as the active component of the catalyst, the local high temperature generated by the combustion of fuel oil in the regenerator gradually removes the aluminum from the molecular sieve skeleton, and the catalyst activity gradually decreases, resulting in a further decrease in the conversion rate of the reactants. Therefore, the catalytic cracking technology of light raw materials such as naphtha needs to be continuously improved and developed in pursuit of higher reaction conversion and reaction selectivity.
  • the above-mentioned prior art proposes methods and catalysts for converting petroleum hydrocarbon raw materials into light olefins through a catalytic cracking reaction process, but fails to solve the problem of insufficient reaction heat and high methane yield in the cracking process of light raw materials.
  • the purpose of this application is to provide a fluidized catalytic cracking reactor, system and method, which can improve the reaction selectivity of light raw material catalytic cracking to produce ethylene and propylene, and reduce the methane yield.
  • the application provides a fluidized catalytic cracking reactor, which includes a catalytic cracking reaction zone and an outlet zone from bottom to top, and the top of the reaction zone communicates with the bottom end of the outlet zone , wherein the reaction zone includes at least one reduced-diameter reaction section, the inner diameter of which decreases continuously from the bottom end to the top end, the inner diameter of the top end is greater than or equal to the inner diameter of the outlet area, and the at least one reduced-diameter reaction section
  • the ratio of the overall height to the overall height of the reactor is from 0.15:1 to 0.8:1.
  • the ratio of the total height of the at least one reduced-diameter reaction zone to the total height of the reaction zone is 0.7:1 to 0.95:1.
  • a catalyst distributor is provided at the bottom of at least one of the reduced-diameter reaction sections.
  • the upper part of the reaction zone is provided with at least one additional material inlet, and the distance between the at least one additional material inlet and the top of the reaction zone is independently 0 to 20% of the total height of the reaction zone.
  • the application provides a catalytic cracking system, including a catalytic cracking reaction unit, an oil separation unit, a stripping unit, an optional reaction product separation unit and a regenerator, wherein the catalytic cracking reaction unit includes at least one The fluidized catalytic cracking reactor of the present application.
  • At least one fuel oil feed port is provided at the lower part of the stripping device and/or in the connecting pipeline between the stripping device and the regenerator.
  • the application provides a catalytic cracking method, comprising making the hydrocarbon-containing feedstock and the catalytic cracking catalyst in the fluidized catalytic cracking reactor of the present application or in the fluidized catalytic cracking reactor of the catalytic cracking system of the present application Steps in a contact reaction.
  • the bottom space of the reduced-diameter reaction section set is large, and the average linear velocity of the fluid is low, which can effectively improve the catalyst density therein, thereby greatly improving the ratio of catalyst and reaction raw materials,
  • Strengthening the primary cracking reaction of raw materials can not only increase the reaction conversion rate, but also increase the yield of low-carbon olefins; moreover, the reduced diameter structure of the set reduced diameter reaction section is conducive to accelerating the reaction of oil and gas leaving the reaction zone, shortening the reaction time, and at the same time
  • Reducing catalyst backmixing is beneficial to reducing the secondary conversion reaction of low-carbon olefins generated in the primary reaction and improving the selectivity of low-carbon olefins.
  • a catalyst distributor at the bottom of the reduced-diameter reaction section.
  • the degree of turbulence in contact with the reaction oil and gas accelerates the adsorption-desorption frequency of raw material molecules at the active center of the catalyst, weakens the electrostatic effect on the surface of the catalyst, improves the diffusion performance of the catalyst surface, and increases product selectivity.
  • a reaction directing agent can be sprayed into the upper part of the catalytic cracking reaction zone, which can effectively improve the temperature distribution in the reactor, thereby changing the course of the cracking reaction and achieving the technology of reducing methane Effect.
  • the directing agent is petroleum distillate oil, it can also play the role of supplementing fuel oil, which helps to improve heat balance.
  • fuel oil can be sprayed into the lower part of the stripper, so that the fuel oil can form additional coke on the catalyst, which can be evenly distributed in the catalyst bed after entering the regenerator.
  • Stable and uniform combustion and heat release realize the coordinated control of fuel oil distribution and coke on the catalyst, avoid local hot spots, and effectively protect the performance of the catalyst.
  • Fig. 1A is the schematic diagram of a kind of preferred embodiment of fluidized catalytic cracking reactor of the present application
  • Fig. 1 B is the schematic diagram of another preferred embodiment of the fluidized catalytic cracking reactor of the present application.
  • Fig. 2 is the schematic diagram of another preferred embodiment of the fluidized catalytic cracking reactor of the present application.
  • Fig. 3 is the schematic diagram of the catalytic cracking system of an embodiment provided by the present application.
  • Fig. 4 is a schematic diagram of another embodiment of a catalytic cracking system provided by the present application.
  • upstream and downstream are both based on the flow direction of the reactant material.
  • upstream refers to a position below and “downstream” refers to a position above.
  • the expression "camber angle ⁇ of the sides of an isosceles trapezoid” refers to the angle complementary to the lower foot of said isosceles trapezoid, as shown in FIGS. 1A , 1B and 2 .
  • the application provides a fluidized catalytic cracking reactor, which comprises a catalytic cracking reaction zone and an outlet zone successively from bottom to top, and the top of the reaction zone is connected to the bottom end of the outlet zone. connected, wherein the reaction zone includes at least one reduced-diameter reaction section, the inner diameter of which decreases continuously from the bottom end to the top end, and the inner diameter of the top end is greater than or equal to the inner diameter of the outlet zone.
  • the catalytic cracking reaction zone is a fluidized bed, preferably selected from a conveying fluidized bed, a turbulent fluidized bed, a fast bed, or a combination thereof.
  • the at least one reduced-diameter reaction section constitutes the main part of the catalytic cracking reaction zone
  • the reaction zone can be composed of the at least one reduced-diameter reaction section, optionally connecting adjacent The connection section of the reaction zone, and optionally the transition section connecting the reaction zone with other parts of the reactor (such as outlet zone, pre-lift zone, etc.) constitutes.
  • the ratio of the total height of the at least one reduced-diameter reaction zone to the total height of the catalytic cracking reaction zone is 0.70:1 to 0.95:1, for example, 0.75:1 to 0.9:1.
  • the diameter-reducing reaction section is a hollow cylinder with a substantially circular cross section and open bottom and top ends, and its inner diameter decreases continuously from the bottom end to the top end.
  • the inner diameter of the reduced-diameter reaction section may be continuously reduced in a linear or non-linear manner.
  • a reaction section in the form of a hollow frusto-cone can be cited.
  • the reaction zone is composed of at least one, preferably 1-3, hollow frustoconical segments and an optional connecting segment connecting adjacent hollow frustoconical segments, and optionally connecting the reaction zone.
  • the transition section between the zone and the rest of the reactor constitutes a columnar pattern.
  • the bottom space of the reduced-diameter reaction section (for example, the hollow truncated conical reaction section) provided is large, and the average linear velocity of the fluid is low, which can Effectively increase the catalyst density in it, thereby greatly increasing the ratio of catalyst to reaction raw materials, and the bottom space is in the turbulent fluidization or rapid fluidization operation area, and the violent merging and breaking of bubbles leads to the mixing and returning of particles Intensified mixing and increased turbulence can strengthen the gas-solid contact efficiency, improve mass transfer and heat transfer, and then strengthen the primary cracking reaction of raw materials, which can not only increase the reaction conversion rate, but also increase the yield of low-carbon olefins; moreover, the The reduced diameter structure of the reduced diameter reaction section is conducive to accelerating the reaction of oil and gas leaving the reaction zone, shortening the reaction time, and at the same time changing the flow direction of the gas-solid two-phase.
  • the accelerating effect of the structure will gather in the central area, thereby breaking the ring-nuclear structure in the traditional riser, reducing catalyst back-mixing, which is beneficial to reducing the secondary conversion reaction of low-carbon olefins generated in the primary reaction, and improving the selection of low-carbon olefins sex.
  • a catalyst distributor is provided at the bottom of at least one of the reduced-diameter reaction sections of the fluidized catalytic cracking reactor. Further preferably, when a plurality of reduced-diameter reaction sections are provided, a catalyst distributor is provided at the bottom of the most upstream narrowed-diameter reaction section along the flow direction; even more preferably, at the bottom of each reduced-diameter reaction section, Catalyst distributors are provided.
  • the combination of the catalyst distributor arranged at the bottom of the reduced-diameter reaction section and the special structure of the reduced-diameter reaction section helps to increase the degree of turbulence in the contact between the catalyst and the reaction oil and gas in the reduced-diameter reaction section, Accelerate the adsorption-desorption frequency of raw material molecules on the active center of the catalyst, weaken the electrostatic effect on the surface of the catalyst, improve the diffusion performance of the catalyst surface, and increase product selectivity.
  • the catalyst distributor suitable for this application can be an industrially common fluid distributor, such as one or more of flat plate, arch, dish, ring, umbrella and blister, preferably arch and blister distributor.
  • the pre-lift zone is not necessary, for example, when the reactor of the present application is used in series with other reactors such as riser reactors, its catalytic cracking reaction zone can be directly Direct communication with outlets of other reactors located upstream without employing said pre-lift zone.
  • the fluidized catalytic cracking reactor of the present application may not include a pre-lift zone.
  • at least one catalytic cracking catalyst inlet and/or at least one raw material feeding port can be provided, so that the catalyst and/or reaction raw materials etc. enter into the catalytic cracking reaction in the district.
  • the reaction zone may not be provided with catalyst and raw material inlets, and the catalyst and reaction raw materials therein may be derived from catalysts and reaction raw materials carried in other reactor streams.
  • the fluidized catalytic cracking reactor further includes a pre-lift zone, the top of the pre-lift zone communicates with the bottom end of the reaction zone, and the pre-lift zone and/or the reaction zone On (for example reaction zone bottom and/or middle part) be provided with at least one, preferably 1-3, catalytic cracking catalyst inlet, and described prelifting zone and/or on described reaction zone (for example reaction zone bottom and/or middle part) ) is provided with at least one, preferably 1-3, raw material feed ports, and the inner diameter of the bottom end of the at least one reduced-diameter reaction section is larger than the inner diameter of the pre-lifting zone. Further preferably, the inner diameter of the top end of the at least one reduced-diameter reaction section is greater than or equal to the inner diameter of the pre-lift zone.
  • the bottom is provided with an additional catalytic cracking catalyst inlet and/or raw material feed inlet.
  • At least one, such as 1, 2, 3 or more raw material inlets can be set on the fluidized catalytic cracking reactor, and the at least one raw material inlets can be set independently At the top outlet of the pre-lift zone and/or at the bottom and/or middle of the catalytic cracking reaction zone.
  • multiple (such as 2-3) raw material feed ports are provided on the fluidized catalytic cracking reactor, and the positions of the multiple raw material feed ports are each independently located in the pre-lifting zone and/or catalytic cracking reaction zone at the same height or at different heights, for example, one raw material inlet can be arranged at the top outlet of the pre-lifting zone, and another raw material inlet can be arranged at the two shrinkages of the catalytic cracking reaction zone At the connecting section between the reaction sections.
  • raw materials with different properties can be fed into different raw material feeding ports, for example, C4-C12 hydrocarbon raw materials can be fed into the raw material feeding port in the pre-lifting zone, and C12 can be fed into the raw material feeding port in the middle of the reaction zone. - C20 hydrocarbon feedstock.
  • the upper part of the reaction zone is provided with at least one, preferably 1-3, additional material inlets, and the distance between the at least one additional material inlet and the top of the reaction zone is independently 0 to 20%, preferably 0 to 15%, of the total height of the zone.
  • the reaction directing agent can be sprayed into the upper part of the catalytic cracking reaction zone of the fluidized catalytic cracking reactor through the additional material inlet, thus the temperature distribution in the reactor can be effectively improved, thereby changing the cracking reaction. process to achieve the technical effect of reducing methane.
  • the reaction directing agent suitable for this application may be selected from water and petroleum distillates selected from gasoline fractions, diesel fractions, wax oil fractions, oil slurry, or combinations thereof.
  • the reaction-directing agent is petroleum distillate oil, it can also function as supplementary fuel oil, helping to improve the heat balance of the reaction-regeneration system.
  • the C4 fraction and/or the C5 fraction produced by the device can also be sprayed into the upper part of the catalytic cracking reaction zone of the fluidized catalytic cracking reactor through the additional material inlet, thereby further improving the low-carbon olefins Yield and selection to improve raw material utilization
  • the ratio of the total height of the at least one reduced-diameter reaction zone to the total height of the reactor is 0.15:1 to 0.8:1, for example 0.2:1 to 0.75:1.
  • the total height of the catalytic cracking reaction zone is 2-50 meters, preferably 5-40 meters, more preferably 8-20 meters, and the total height of the fluidized catalytic cracking reactor is 40-70 meters. rice.
  • the catalytic cracking reaction zone includes 1-10, preferably 1-5, more preferably 1-3 diameter-reducing reaction sections.
  • each reduced-diameter reaction section may have the same or different height, inner diameter and structural form, which is not strictly limited in the present application.
  • the ratio of the bottom inner diameter to the top inner diameter of the at least one reduced-diameter reaction zone is independently greater than 1.2:1 to 10:1, preferably 1.5:1 to 5:1. Further preferably, the ratio of the inner diameter of the bottom end of the at least one reduced-diameter reaction zone to the total height of the reactor is each independently 0.01:1 to 0.5:1, preferably 0.05:1 to 0.2:1.
  • the at least one reduced-diameter reaction section is in the form of a hollow truncated cone, and the longitudinal section is an isosceles trapezoid;
  • the ratio of the inner diameter of the top end of the at least one reduced-diameter reaction section to its height is independently 0.005- 0.3:1, preferably 0.02-0.2:1, the ratio of the inner diameter of the bottom end to its height is independently 0.015-0.25:1, preferably 0.02-0.2, and the ratio of the inner diameter of the bottom end to the inner diameter of the top end is independently greater than 1.2:1 to 10 :1, preferably 1.5:1 to 5:1.
  • the ratio of the height of the at least one reduced-diameter reaction zone to the total height of the reactor is each independently 0.15:1 to 0.8:1, such as 0.2:1 to 0.75:1.
  • the inner diameter of the top end of the at least one reduced-diameter reaction section is independently 0.2-5 meters, preferably 0.4-3 meters.
  • the ratio of the inner diameter of the pre-lift zone to its height is 0.02-0.4:1, preferably 0.04-0.3; the ratio of its height to the total height of the reactor is 0.01:1 to 0.2:1 , preferably 0.05:1 to 0.15:1. Further preferably, the inner diameter of the pre-lift zone is 0.2-5 meters, preferably 0.4-3 meters.
  • the pre-lift zone is connected to the catalytic cracking reaction zone through a first transition section, the first transition section is in the form of an inverted hollow truncated cone, and the longitudinal section is an isosceles trapezoid, etc.
  • the camber angle ⁇ of the sides of the waist trapezoid is 5-85°, preferably 15-75°.
  • the inner diameter of the top of the reaction zone is larger than the inner diameter of the outlet zone, and at this time, the reaction zone and the outlet zone may be connected through a second transition section.
  • the second transition section is in the form of a hollow truncated cone, the longitudinal section of which is an isosceles trapezoid, and the camber angle ⁇ of the sides of the isosceles trapezoid is 95-175°, preferably 105-165°.
  • the ratio of the inner diameter of the outlet zone to its height is 0.01-0.3:1, preferably 0.05-0.2, and the ratio of the height of the outlet zone to the total height of the reactor is 0.05:1 to 0.5:1, preferably 0.1:1 to 0.35:1. Further preferably, the inner diameter of the outlet zone is 0.2-5 meters, preferably 0.4-3 meters.
  • the outlet end of the outlet zone may be open, or may be directly connected to the inlet of the cyclone separator.
  • the outlet zone provided can generate a sufficient velocity field to overcome the gravitational effect of the particles, so that the stream can obtain an upward thrust to offset the friction of the side wall Due to the influence of force and radial diffusion, the flow in the reactor is similar to that of "plug flow", reducing secondary reactions.
  • the fluidized catalytic cracking reactor of the present application comprises successively from bottom to top: pre-lift zone I, catalytic cracking reaction zone II and outlet zone III,
  • the top of the pre-lift zone I communicates with the bottom of the reaction zone II, and the top of the reaction zone II communicates with the bottom of the outlet zone III.
  • the lower part of the pre-lift zone I is provided with a catalyst inlet 110, and the catalyst input through the inlet 110 is lifted and transported to the reaction zone II by the pre-lift medium.
  • the pre-lift zone I can be a hollow cylindrical structure, the ratio of its inner diameter to its height is 0.02-0.4:1; the ratio of its height to the total height of the reactor is 0.01:1 to 0.2:1; its inner diameter is 0.2-5 rice.
  • the pre-lift zone I is connected to the reaction zone II through the first transition section I-1, the longitudinal section of the first transition section I-1 is an isosceles trapezoid, and the camber angle ⁇ of the side of the isosceles trapezoid is 5-85° .
  • the first transition section I-1 and/or the lower part of the reaction zone II is provided with a raw material feed port 9 .
  • another raw material feed port 16 can be provided for other raw materials or return streams.
  • the reaction zone II includes at least one reduced-diameter reaction section, the reduced-diameter reaction section is a hollow cylinder with a substantially circular cross-section and open bottom and top ends, and its inner diameter decreases continuously from the bottom end to the top end.
  • the inner diameter of the bottom end of each reduced-diameter reaction section of the reaction zone II is greater than the inner diameter of the pre-lift zone I, and the inner diameter of the top of each reduced-diameter reaction section is equal to the inner diameter of the pre-lift zone I and the inner diameter of the outlet zone III .
  • the top of the reaction zone II is provided with at least one additional material inlet 10 near the top outlet, and the at least one additional material inlet 10 is independently located at a distance of 0% of the total height of the reaction zone II from the top of the reaction zone II. to the 20% position.
  • the reaction zone II includes a reduced-diameter reaction section 100, which is in the form of a hollow truncated cone, and its longitudinal section is isosceles trapezoidal;
  • the ratio of the inner diameter D 220 at the top to its height in Fig. 1A and Fig.
  • the height of the reduced-diameter reaction section 100 is equal to the height h II of the reaction zone II) is 0.005-0.3:1, and the inner diameter D 210 at the bottom and its height
  • the ratio is 0.015-0.25:1, the ratio of the inner diameter D 210 at the bottom end to the inner diameter D 220 at the top is greater than 1.2:1 to 10:1; the ratio of the height of the reduced-diameter reaction section 100 to the total height h of the reactor 0.15:1 to 0.8:1.
  • a catalyst distributor 300 is added at the bottom of the reduced-diameter reaction section 100 .
  • the reaction zone II includes two series of reduced-diameter reaction sections 100, 100', and the reduced-diameter reaction sections 100, 100' are in the form of hollow truncated cones , the longitudinal section is isosceles trapezoidal; the ratio of the inner diameter D 220 , D 220' at the top to the height h1, h1' of the corresponding reduced-diameter reaction section is independently 0.005-0.3:1, and the inner diameter D 210 , D 210' at the bottom The ratio to the height h1, h1' of the corresponding reduced-diameter reaction section is independently 0.015-0.25:1, and the ratio of the bottom inner diameter D 210 , D 210' to the top inner diameter D 220 , D 220' is independently greater than 1.2:1 to 10:1; the ratio of the height h1, h1' of the reduced-diameter reaction section 100, 100' to the total height h of the reactor is independently 0.15:
  • the reduced-diameter reaction sections 100 and 100' are connected by a connecting section II-1, the longitudinal section of which is an isosceles trapezoid, and the camber angle ⁇ of the sides of the isosceles trapezoid is 5-85°.
  • the outlet area III of the fluidized catalytic cracking reactor is a hollow cylinder form, and the ratio of its inner diameter to its height h III is 0.01-0.3: 1, and the height h of the outlet area
  • the ratio of III to the overall reactor height h is from 0.05:1 to 0.5:1.
  • the application provides a catalytic cracking system, which includes a catalytic cracking reaction unit, an oil separation unit, a stripping unit, an optional reaction product separation unit and a regenerator, wherein the catalytic
  • the cracking reaction device includes at least one, preferably 1-3, fluidized catalytic cracking reactors of the present application.
  • fluidized catalytic cracking reactors which can be a combination of a fluidized catalytic cracking reactor of the present application and other existing fluidized catalytic cracking reactors, or can be It is a combination of multiple fluidized catalytic cracking reactors of the present application. These reactors can be connected in parallel and connected to the oil separation unit.
  • At least one, preferably 1-3, fuel oil feed ports are provided in the lower part of the stripping device and/or in the connecting pipeline between the stripping device and the regenerator, for To provide additional fuel oil to the spent catalyst.
  • the fuel oil can form additional coke on the spent catalyst before it enters the regenerator.
  • the fuel oil is evenly distributed in the catalyst bed, and can be stably and evenly burned to release heat under the action of oxygen-containing gas. , realizing the coordinated control of fuel oil distribution and coking on the catalyst, avoiding local hot spots, and effectively protecting the performance of the catalyst.
  • At least one, preferably 1-3, fuel oil feed ports are provided at the lower part of the stripping device, and the at least one fuel oil feed port is separated from the steam stripper.
  • the distance from the bottom of the stripping device is independently 0-30%, preferably 5-25%, of the height of the stripping device.
  • the stripping unit, the oil separation unit, the regenerator, the reaction product separation unit and other devices etc. can all adopt equipment well known to those skilled in the art, and the connection mode between these equipment It can also be done in a manner known in the art.
  • the oil separation device may include a cyclone separator and an outlet quick separator.
  • the oil separation device includes a settler arranged coaxially with the fluidized catalytic cracking reactor or arranged in parallel.
  • the reaction product separation device can be various reaction oil-gas separation devices commonly used in the art, such as a fractionation tower, on which a dry gas outlet, a liquefied gas outlet, a cracked gasoline outlet, a cracked diesel oil outlet and a cracked heavy oil outlet can be set for
  • the distillation range of the reaction product is separated into components such as dry gas, liquefied gas, pyrolysis gasoline, pyrolysis diesel oil and pyrolysis heavy oil.
  • the catalytic cracking system of the present application includes a fluidized catalytic cracking reactor 1, an oil separation device 5, a settler 3, a stripping device 4, and a regenerator 2 , wherein the FCC reactor 1 shown in FIG. 3 is the reactor shown in FIG. 1A or FIG. 1B , and the FCC reactor 1 shown in FIG. 4 is the reactor shown in FIG. 2 .
  • the pre-lift zone I of the fluidized catalytic cracking reactor 1 is provided with a catalyst inlet 13, the bottom of the catalytic cracking reaction zone II is provided with a raw material feed port 9, and the top is provided with an oil agent outlet 150, and the catalytic cracking reaction shown in Fig.
  • zone II is also provided with another raw material feed port 16;
  • the oil separation device 5 is used for separating the oil gas product and the catalyst in the reaction effluent from the fluidized catalytic cracking reactor 1;
  • the catalyst separated by the catalyst separation device 5 settles and enters the stripping device 4;
  • the stripping device 4 is used for stripping the catalyst therein to reclaim the reaction oil gas;
  • the regenerated regenerated catalyst is circulated back to the fluidized catalytic cracking reactor 1 for reaction.
  • reaction oil gas ie, the reaction product
  • the reaction oil gas (ie, the reaction product) separated by the oil agent separation device 5 is collected in the gas collection chamber 6 and then transported to the subsequent reaction product separation device (not shown) through the pipeline 7 for separation.
  • the regenerator 2 the raw catalyst is burned under the action of the oxygen-containing regeneration gas introduced through the pipeline 14 to obtain the regenerated catalyst, which is input into the reactor 1 through the regeneration inclined pipe 13; while the flue gas is discharged through the pipeline 15 to enter the energy recycling system.
  • the bottom of the stripping device 4 is provided with at least one fuel oil feed port 11, wherein the distance L11 from the bottom end of the at least one fuel oil feed port 11 to the stripping device is independently equal to the steam Raise 0-30% of device height h4 .
  • the application provides a catalytic cracking method, comprising making the fluid catalytic cracking reaction of hydrocarbon-containing feedstock and catalytic cracking catalyst in the fluid catalytic cracking reactor of the present application, preferably in the catalytic cracking system of the present application The steps of the contact reaction in the vessel.
  • the fluidized catalytic cracking reactor and system provided by this application are suitable for catalytic cracking reactions of various raw materials, such as light hydrocarbons or light distillate oils, oxygenated hydrocarbons, shale oil, hydrorefined wax oil, hydro-upgrading Wax oil, hydrocracking tail oil or one or more mixed raw materials of the above materials are catalytically cracked to produce light olefins, especially light hydrocarbons or light distillate oils are catalytically cracked to produce light olefins.
  • various raw materials such as light hydrocarbons or light distillate oils, oxygenated hydrocarbons, shale oil, hydrorefined wax oil, hydro-upgrading Wax oil, hydrocracking tail oil or one or more mixed raw materials of the above materials are catalytically cracked to produce light olefins, especially light hydrocarbons or light distillate oils are catalytically cracked to produce light olefins.
  • the light hydrocarbons or light distillates may be gaseous hydrocarbons, petroleum hydrocarbons with a distillation range of 25-350°C, distillates of oxygenated compounds, biomass or waste plastics;
  • the gaseous hydrocarbons may be selected from saturated liquefied Gas, unsaturated liquefied gas, carbon four cuts, or their combination;
  • the petroleum hydrocarbons can be selected from primary processed straight-run naphtha, straight-run kerosene, straight-run diesel or a combination thereof; oil, raffinate, hydrocracked light naphtha, pentane oil, coker gasoline, Fischer-Tropsch synthetic oil, catalytically cracked light gasoline, hydrogenated gasoline, hydrogenated diesel or combinations thereof.
  • the reaction raw material is selected from C4-C20 light raw material oil.
  • the reaction conditions in the catalytic cracking reaction zone of the fluidized catalytic cracking reactor include: the reaction temperature is 510-750°C, the reaction time is 0.5-10 seconds, and the weight ratio of agent to oil is 10:1 to 50:1, and the water-to-oil weight ratio is 0.05:1 to 2.0:1.
  • the reaction conditions in the catalytic cracking reaction zone include: the reaction temperature is 550-700°C, the reaction time is 1-5 seconds, the weight ratio of agent to oil is 20:1 to 40:1, water The oil weight ratio is 0.2:1 to 0.8:1.
  • the catalytic cracking catalyst comprises 1-50% by weight, preferably 5-45% by weight, more preferably 10-40% by weight of Zeolite; 5-99% by weight, preferably 10-80% by weight, more preferably 20-70% by weight of inorganic oxides, and 0-70% by weight, preferably 5-60% by weight, more preferably 10-50% by weight of clay .
  • the zeolite includes a medium-pore zeolite and an optional large-pore zeolite, and the medium-pore zeolite is selected from ZSM series zeolites, ZRP zeolites, and any combination thereof; the large-pore zeolite is selected from Rare earth Y zeolite, rare earth hydrogen Y zeolite, ultrastable Y zeolite, high silicon Y zeolite, and any combination thereof. Further preferably, on a dry basis, the mesoporous zeolite accounts for 10-100 wt%, preferably 50-90 wt%, of the total weight of the zeolite.
  • the medium-pore zeolite and large-pore zeolite follow the conventional definitions in this field, that is, the average pore diameter of the medium-pore zeolite is about 0.5-0.6 nm, and the average pore diameter of the large-pore zeolite is about 0.7-1.0 nm.
  • the large-pore zeolite can be selected from one or more of rare earth Y (REY) zeolite, rare earth hydrogen Y (REHY) zeolite, ultrastable Y zeolite and high silicon Y zeolite obtained by different methods kind.
  • the medium pore zeolite may be selected from zeolites with MFI structure, such as ZSM series zeolites and/or ZRP zeolites.
  • the above-mentioned mesoporous zeolite can also be modified with non-metal elements such as phosphorus and/or transition metal elements such as iron, cobalt, and nickel.
  • ZRP zeolites can be found in US Pat. No. 5,232,675A.
  • ZSM series zeolites are preferably selected from ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48 and a mixture of one or more zeolites with similar structures.
  • ZSM-5 can be found in US Pat. No. 3,702,886A.
  • the inorganic oxide is used as a binder, preferably silicon dioxide (SiO 2 ) and/or aluminum oxide (Al 2 O 3 ).
  • the clay is used as a matrix (ie carrier), preferably kaolin and/or halloysite.
  • the method further comprises inputting a reaction directing agent into the fluid catalytic cracking reactor through an additional feed inlet of the fluid catalytic cracking reactor, the reaction directing agent being selected from water and petroleum fractions Oil, the petroleum distillates are selected from gasoline fractions, diesel fractions, wax oil fractions, oil slurry, or combinations thereof.
  • the feed weight ratio of the reaction directing agent to the reaction raw material is 0.03-0.3:1, preferably 0.05-0.2.
  • the method further includes: through the fuel oil feed port arranged at the lower part of the stripping device of the catalytic cracking system and/or in the connecting pipeline between the stripping device and the regenerator Fuel oil is injected so that the stripped spent catalyst and fuel oil enter the regenerator for regeneration. Further preferably, the weight ratio of the injection amount of fuel oil to the reaction raw material is 0.05-0.2:1.
  • the temperature of the regenerated catalyst regenerated by the regenerator is 680-780°C.
  • the pre-lift medium enters the fluidized catalytic cracking reactor 1 from the bottom of the pre-lift zone 1 through the pipeline 8, and the pre-lift medium can be dry gas, steam or their mixture.
  • the hot regenerated catalyst from the regenerated inclined pipe 13 enters the lower part of the pre-lift zone I and moves upward under the lifting effect of the pre-lift medium.
  • Reaction raw materials such as preheated light crude oil and atomized steam are injected into the upper part of the pre-lifting zone I and/or the bottom of the reaction zone II through the feed line 9, and are mixed and contacted with the catalyst in the fluidized catalytic cracking reactor. Catalytic cleavage reactions are carried out on the way through the reaction zone II.
  • the reaction product flows upwards and contacts with the reaction directing agent injected through the additional material inlet 10, so that the reaction is terminated in time, and the catalyst with coke and the reaction oil gas obtained enter the oil agent separation device 5 such as a cyclone separator through the outlet area III, and the gas is carried out.
  • the reaction directing agent injected through the additional material inlet 10
  • the catalyst with coke and the reaction oil gas obtained enter the oil agent separation device 5 such as a cyclone separator through the outlet area III, and the gas is carried out.
  • Solid separation, the reaction oil and gas obtained from the separation enter the follow-up separation system through the gas collection chamber 6 and the large oil and gas pipe 7;
  • the fuel oil injected into the feed port 11 is contacted to further deposit coke, and then enters the regenerator 2 through the inclined pipe 12 to be regenerated, mixes with the air 14 at the bottom of the regenerator, and is burned for regeneration, and the regenerated catalyst returns to the reactor 1 through the inclined pipe 13
  • the regenerated flue gas enters the energy recovery system through pipeline 15.
  • the pre-lift medium enters the fluidized catalytic cracking reactor from the bottom of the pre-lift zone I through the pipeline 8, and the pre-lift medium can be dry gas, steam or their mixture.
  • the heated or uncooled regenerated catalyst from the regeneration inclined pipe 13 enters the lower part of the pre-lift zone I and moves upward under the lifting effect of the pre-lift medium.
  • Reaction raw materials, such as preheated light crude oil, and atomized steam are injected into the upstream of the pre-lift zone I and/or the bottom of the first reduced-diameter reaction section 100 through the feed line 9, and are mixed with the catalyst in the fluidized catalytic cracking reactor.
  • the reactant flow is mixed with the recycled C4 material introduced through the pipeline 16 at the bottom of the second reduced-diameter reaction section 100' for further reaction, the reaction product flows upwards, and contacts with the reaction-directing agent injected through the pipeline 10 to quench the cracking reaction in time , the catalyst with coke and the reaction oil gas enter the oil agent separation device 5 such as a cyclone separator through the outlet area III, and carry out gas-solid separation, and the reaction oil gas obtained from the separation is drawn out through the gas collection chamber 6 and the large oil gas pipe 7, and then enters the follow-up Separation system: the separated catalyst with coke enters the stripper, and the raw catalyst after stripping is in contact with the fuel oil injected through the fuel oil inlet 11, after further depositing coke, it enters regeneration through the raw inclined pipe 12 The regenerator 2 mixes with the air 14 at the bottom of the regenerator and regenerates. The regenerated catalyst returns to the reactor 1 for recycling through the regeneration inclined pipe 13, and the regenerated flue gas enters the energy
  • the fluidized catalytic cracking reactor, system and method of this application can efficiently produce chemical raw materials such as ethylene and propylene from light petroleum hydrocarbons, and help refineries transform, develop and extend from oil refining to chemical raw material production, which not only solves the problem of petrochemical
  • chemical raw materials such as ethylene and propylene from light petroleum hydrocarbons
  • refineries transform, develop and extend from oil refining to chemical raw material production, which not only solves the problem of petrochemical
  • the shortage of raw materials has improved the economic benefits of the refinery.
  • the application provides the following technical solutions:
  • a fluidized catalytic cracking reactor comprising successively from bottom to top:
  • the reaction zone includes at least one diameter-reducing reaction section, the diameter-reducing reaction section is a hollow cylinder with a substantially circular cross-section and open bottom and top ends, and its inner diameter decreases continuously from bottom to top ;and
  • the optional pre-lift zone communicates with the bottom end of the reaction zone, and the top of the reaction zone communicates with the outlet zone, and on the optional pre-lift zone and/or the reaction
  • the bottom of the zone is provided with at least one raw material feeding port
  • the bottom end of the reaction zone has a cross-sectional inner diameter greater than or equal to the cross-sectional inner diameter of the optional pre-lift zone, and the top end has a cross-sectional inner diameter equal to or greater than the cross-sectional inner diameter of the optional pre-lift zone and the the cross-sectional inner diameter of the exit zone;
  • the upper part of the reaction zone is provided with one or more reaction directing agent inlets, and the distance between the one or more reaction directing agent inlets and the outlet end of the reaction zone is 0 to 20% of the total height of the reaction zone.
  • the fluidized catalytic cracking reactor described in item 3 wherein said reduced-diameter reaction section is a hollow truncated cone type, and the longitudinal section is an isosceles trapezoid;
  • the ratios of the heights are independently 0.005-0.3:1, the ratios of the inner diameter of the bottom cross-section to the height of the reduced-diameter reaction section are independently 0.015-0.25:1, the ratio of the inner diameter of the bottom cross-section to the inner diameter of the top cross-section
  • the ratios are each independently greater than 1.2 and less than or equal to 10; the ratios of the height of the reduced-diameter reaction section to the total height of the reactor are each independently 0.15:1 to 0.8:1.
  • a catalytic cracking system comprising a catalytic cracking reaction unit, an oil separation unit, a stripping unit, an optional reaction product separation unit, and a regenerator, wherein said catalytic cracking reaction unit comprises one or A plurality of fluid catalytic cracking reactors according to any one of items 1-10.
  • the distance between the fuel oil inlet and the bottom end of the stripping device is independently 0-30% of the height of the stripping device.
  • a catalytic cracking method comprising the step of contacting the reaction raw material and the catalyst in the catalytic cracking system described in any one of items 12-14.
  • reaction raw material is selected from C4-C20 light feed oil.
  • reaction directing agent is input to the fluid catalytic cracking reactor through the reaction directing agent inlet of the fluid catalytic cracking reactor, and the reaction directing agent is selected from water And petroleum distillate oil, described petroleum distillate oil is selected from one or more in gasoline fraction, diesel oil fraction, wax oil fraction and oil slurry.
  • the method includes: injecting fuel oil through the fuel oil inlet, so that the stripped spent catalyst and fuel oil enter the regenerator for regeneration.
  • the feed oil used in the following examples and comparative examples is straight-run naphtha, and its properties are as shown in Table 1.
  • the catalyst used is a commercial catalytic cracking catalyst purchased from China Petroleum & Chemical Corporation Catalyst Branch Company, trade name for the NCC.
  • the total height of the reactor is 10 meters, of which the pre-lift zone is 2 meters and the inner diameter is 0.2 meters; the height of the reaction zone is 5 meters, the inner diameter of the top is 0.2 meters, and the inner diameter of the bottom is 0.3 meters; the height of the outlet zone is 3 meters, and the inner diameter is 0.2 meters.
  • the upper additional material inlet is set at a distance of 0.5 meters from the outlet at the top of the reaction zone.
  • the position of the fuel oil feed port is 10% of the height of the stripping device from the bottom of the stripping device.
  • the ratio of the injection amount of the reaction directing agent to the feed amount of the raw material is 0.05:1 (weight) and the injection amount of fuel oil is 6% of the feed amount of the raw material.
  • the total height of the reactor is 10 meters, wherein the pre-lift zone is 2 meters, and the inner diameter is 0.2 meters; the height of the reaction zone is 5 meters, and the first hollow truncated cone section height h1 is 2.5 meters, and the inner diameter of the top is 0.2 meters,
  • the inner diameter of the base is 0.3 m;
  • the second hollow frusto-conical section has a height h1 of 2.45 m, an inner diameter of 0.2 m at the top and 0.3 m at the base;
  • the exit zone has a height of 3 m and an inner diameter of 0.2 m.
  • the upper additional material inlet is set at a distance of 0.2 meters from the outlet at the top of the second hollow truncated cone.
  • the position of the fuel oil feed port is 10% of the height of the stripping device from the bottom of the stripping device.
  • the ratio of the injection amount of the reaction directing agent to the feed amount of the raw material is 0.05:1 (weight) and the injection amount of the fuel oil is 6% of the feed amount of the raw material.
  • Example 2 The test was carried out with reference to Example 1, the difference being that a catalyst distributor in the form of a bubble cap was added at the bottom of the reduced-diameter reaction section of the reaction zone II.
  • the test was carried out on a medium-sized device, and the reactor was a conventional riser reactor.
  • the preheated raw oil enters the lower part of the riser reactor and contacts with the catalytic cracking catalyst to carry out the catalytic cracking reaction. After the reaction, the stream enters the subsequent oil separation device and product separation device; the operating conditions and product distribution are listed in Table 2.
  • the feedstock oil and NCC catalyst shown in Table 1 were used to test on a medium-sized device, and the reactor was a variable-diameter riser reactor with a diameter-expanding reaction section (referring to Chinese patent CN1152119C).
  • the preheated raw oil enters the lower part of the riser reactor and contacts with the catalytic cracking catalyst to carry out the catalytic cracking reaction. After the reaction, the stream enters the subsequent oil separation device and product separation device; the operating conditions and product distribution are listed in Table 2.
  • any combination of various implementations of the present application can also be made, as long as they do not violate the idea of the present application, they should also be regarded as the content of the invention of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

公开了一种流化催化裂解反应器和系统及其应用,所述流化催化裂解反应器从下到上依次包括催化裂解反应区和出口区,所述反应区的顶端与所述出口区的底端连通,其中所述反应区包括至少一个缩径反应段,其内径由底端至顶端连续地减小,其顶端的内径大于或等于所述出口区的内径,并且所述至少一个缩径反应段的总高度与所述反应器的总高度之比为0.15:1至0.8:1。采用所述流化催化裂解反应器和系统,可以从轻质石油烃高效生产乙烯、丙烯等化工原料,当用于催化裂解反应时,原料与催化剂的接触效率高,催化反应选择性好,乙烯和丙烯等高附加值产物的产率高,甲烷等副产物产率低。

Description

催化裂解反应器和系统及其应用 技术领域
本申请涉及石油化工领域,具体涉及一种流化催化裂解反应器、包含它的催化裂解系统及其应用。
背景技术
乙烯、丙烯是石油化工最基本的原料、是生产各种重要有机化工产品的基础。乙烯、丙烯的生产规模、产量和技术水平是衡量一个国家石化工业发展水平的重要标志。尽管我国乙烯的产能、产量已居世界第二位,丙烯的产能和产量已居世界第一,但仍不能满足我国国民经济发展和人民生活水平提高的需要。2020年我国乙烯、丙烯的当量需求分别为5863万吨、4750万吨,按当量需求计,乙烯、丙烯的自给率分别约为51.4%、79.9%,烯烃产品依然产不足需。当前,石脑油等轻烃蒸汽裂解仍然是乙烯和丙烯的主要生产技术,为了达到裂解所需的温度,裂解炉都采用化石燃料对炉管进行加热,使蒸汽裂解炉成为二氧化碳的主要排放源、能耗高,且产品选择性差,产物中有大量的甲烷生成。有鉴于此,研究人员一直在开发石脑油等轻烃催化裂解制烯烃技术。
中国专利申请CN106221786A公开了一种石脑油的转化方法,将石脑油催化裂解与低碳烷烃水蒸气裂解、高碳烷烃和高碳烯烃催化裂解结合,制取低碳烯烃、轻质芳烃和高辛烷值汽油。由于大部分反应物在温度较低的催化裂解中进行了转化,总体上可以降低能耗。
中国专利申请CN111484386A公开了一种含有石脑油的原料转化装置,包括含有石脑油的原料在所述快速流化床反应器中进行反应,得到产品气和待再生催化剂;然后将汽提后的待再生催化剂部分供给快速流化床反应器,部分输入再生器。该装置解决的技术问题是,降低石脑油催化裂解技术中热裂解反应的影响,降低产物中甲烷的收率。
中国专利申请CN109280561A公开了一种以石脑油或轻烃为原料低温催化反应制丙烯并联产芳烃的工艺方法。原料石脑油或轻烃经过换热器换热和/或加热炉加热后进入固定床反应器,在特定催化剂的作用下进行低温催化反应,反应产物经分离系统后得到乙烯丙烯、碳四 碳五烃、和副产的甲苯与二甲苯等芳烃,其中一部分碳四碳五烃循环返回反应器。
中国专利申请CN111715152A公开了一种烷烃脱氢与烃类催化裂解制烯烃的组合反应器,其公开的烷烃催化脱氢裂解制烯烃的反应装置包括催化脱氢裂解的反应器和反应器沉降段,反应器沉降段位于反应器的上部,其中,所述的反应器包括脱氢反应段和裂解反应段,脱氢反应段位于裂解反应段的下方,催化剂再生斜管的一端与脱氢反应段连接。该方法既有利于脱氢反应,又有利于催化裂解反应。
相对于蒸汽裂解,石脑油固定床催化裂解的特点是反应温度较低,但是它对低碳烷烃的转化率低。石脑油催化裂解与蒸汽裂解相结合,在一定程度上可以提高乙烯产率,但仍存在碳排放的问题。与烷烃脱氢结合,是较为有潜力的技术路径,但脱氢与裂解在催化剂与工艺技术相辅相成的机制还还在探索中。
石脑油等轻质原料分子小,反应活化能较高,需要较高的反应温度,常常导致副产物甲烷产率高,且催化裂解反应热大,在反应方面需要的热量多,自身裂化生成的焦炭往往不能满足反应-再生系统自身热平衡的需求。石脑油等轻烃催化裂解反应生焦低,需要大量的外补燃料油。由于催化裂解采用分子筛为活性组分的催化剂,再生器内燃料油的燃烧产生的局部高温使分子筛骨架铝逐渐脱出,催化剂活性逐渐下降,从而导致反应物进一步转化率下降。因此,石脑油等轻质原料催化裂解技术需要不断地进步与发展,追求更高的反应转化率和反应选择性。上述现有技术提出了通过催化裂化反应过程将石油烃原料转化为低碳烯烃的方法和催化剂,但未能解决轻质原料裂解过程中反应热不足且甲烷产率高的问题。
发明内容
本申请的目的是提供一种流化催化裂解反应器、系统以及方法,其可提高轻质原料催化裂解生产乙烯和丙烯反应选择性、降低甲烷产率。
为了实现上述目的,一方面,本申请提供了一种流化催化裂解反应器,从下到上依次包括催化裂解反应区和出口区,所述反应区的顶端与所述出口区的底端连通,其中所述反应区包括至少一个缩径反应 段,其内径由底端至顶端连续地减小,其顶端的内径大于或等于所述出口区的内径,并且所述至少一个缩径反应段的总高度与所述反应器的总高度之比为0.15∶1至0.8∶1。
优选地,所述至少一个缩径反应段的总高度与所述反应区的总高度之比为0.7∶1至0.95∶1。
优选地,在至少一个所述缩径反应段的底部设置有催化剂分布器。
优选地,所述反应区的上部设有至少一个附加物料入口,所述至少一个附加物料入口与所述反应区顶端的距离各自独立地为所述反应区总高度的0至20%。
另一方面,本申请提供了一种催化裂解系统,包括催化裂解反应装置、油剂分离装置、汽提装置、任选的反应产物分离装置和再生器,其中所述催化裂解反应装置包括至少一个本申请的流化催化裂解反应器。
优选地,在所述汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中设置有至少一个燃料油进料口。
再一方面,本申请提供了一种催化裂解方法,包括使含烃原料与催化裂解催化剂在本申请的流化催化裂解反应器中或者在本申请的催化裂解系统的流化催化裂解反应器中接触反应的步骤。
在本申请的流化催化裂解反应器中,所设置的缩径反应段的底部空间大,流体平均线速较低,可以有效提高其中的催化剂密度,从而大幅度提高催化剂和反应原料之比,强化原料的一次裂解反应,不仅提高反应转化率,也可以提高低碳烯烃产率;而且,所设置的缩径反应段的缩径结构有利于加速反应油气离开反应区,缩短了反应时间,同时减少催化剂返混,有利于减少一次反应生成的低碳烯烃的二次转化反应,提高低碳烯烃的选择性。
在本申请的流化催化裂解反应器中,优选在所述缩径反应段的底部设置催化剂分布器,该分布器与缩径反应段的特殊结构的结合有助于提高缩径反应段中催化剂与反应油气接触的湍动程度,使原料分子在催化剂活性中心吸附-脱附频率加快,削弱催化剂表面静电作用,改善催化剂表面扩散性能,提高产品选择性。
本申请的流化催化裂解反应器中,可以在所述催化裂解反应区的上部喷入反应导向剂,其可有效改善反应器内的温度分布,从而改变 裂化反应的历程,达到降低甲烷的技术效果。另外,当导向剂为石油馏分油时,其也可以起到补充燃料油的作用,有助于改善热平衡。
本申请的催化裂解系统中,可以在所述汽提器下部喷入燃料油,使燃料油在催化剂上形成附加焦炭,进入再生器后可在催化剂床层中均匀分布,在含氧气体作用下稳定、均匀燃烧放热,实现催化剂上燃料油分布与烧焦的协同控制,避免了局部热点,有效保护了催化剂使用性能。
采用本申请的流化催化裂解反应器和系统,可以从轻质石油烃高效生产乙烯、丙烯等化工原料,助力炼厂从炼油向化工原料生产的转型、发展和延伸,既解决了石化原料短缺的问题,又提高了炼厂的经济效益。本申请的反应器和系统用于催化裂解反应时,原料与催化剂的接触效率高,催化反应选择性好,乙烯和丙烯等高附加值产物的产率高,甲烷等副产物产率低。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1A为本申请的流化催化裂解反应器的一种优选实施方式的示意图;
图1B为本申请的流化催化裂解反应器的另一种优选实施方式的示意图;
图2为本申请的流化催化裂解反应器的另一种优选实施方式的示意图;
图3为本申请提供的一种实施方式的催化裂解系统的示意图;以及
图4为本申请提供的另一种实施方式的催化裂解系统的示意图。
具体实施方式
下面通过附图和实施例对本申请进一步详细说明。通过这些说明,本申请的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里 作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
在本申请中,所谓“上游”和“下游”均是基于反应物料的流动方向而言的。例如,当反应物流自下而上流动时,“上游”表示位于下方的位置,而“下游”表示位于上方的位置。
在本申请中,表述“等腰梯形侧边的外倾角α”指与所述等腰梯形的下底脚互补的角,如图1A、1B和2所示。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
此外,下面所描述的本申请不同实施方式中涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如上所述,在第一方面,本申请提供了一种流化催化裂解反应器,从下到上依次包括催化裂解反应区和出口区,所述反应区的顶端与所述出口区的底端连通,其中所述反应区包括至少一个缩径反应段,其内径由底端至顶端连续地减小,并且其顶端的内径大于或等于所述出口区的内径。
在本申请的流化催化裂解反应器中,所述催化裂解反应区为流化床,优选选自输送流化床、湍流流化床、快速床,或者它们的组合。
根据本申请,所述至少一个缩径反应段构成了所述催化裂解反应区的主要部分,例如所述反应区可以是由所述至少一个缩径反应段、任选的连接相邻的缩径反应段的连接段,以及任选的连接所述反应区与所述反应器的其他部分(如出口区、预提升区等)的过渡段构成。在具体的实施方式中,所述至少一个缩径反应段的总高度与所述催化裂解反应区的总高度之比为0.70∶1至0.95∶1,例如为0.75∶1至0.9∶ 1。
在本申请的具体实施方式中,所述缩径反应段为横截面呈大致圆形且底端和顶端开口的空心柱体,其内径由底端至顶端连续地减小。具体地,所述缩径反应段的内径可以线性或非线性方式连续地减小。作为“内径线性减小的缩径反应段”的例子,可以举出空心截头圆锥体形式的反应段。优选地,所述反应区为由至少一个,优选1-3个,空心截头圆锥体段与任选的连接相邻的空心截头圆锥体段的连接段、以及任选的连接所述反应区与所述反应器的其他部分的过渡段构成的柱体型式。
不局限于具体理论,据信在本申请的流化催化裂解反应器中,所设置的缩径反应段(例如空心截头圆锥形反应段)的底部空间大,流体平均线速较低,可以有效提高其中的催化剂密度,从而大幅度提高催化剂和反应原料之比,并且该底部空间处于湍流流态化或快速流态化操作区域,气泡之间的剧烈合并与破碎导致其中颗粒的混合和返混加剧,湍动程度增加,从而可以强化气固接触效率,改善传质与传热,进而强化原料的一次裂解反应,不仅可以提高反应转化率,还可以提高低碳烯烃产率;而且,所设置的缩径反应段的缩径结构有利于加速反应油气离开反应区,缩短了反应时间,同时可以改变气固两相的流动方向,在缩颈反应段底部具有一定初速度的物流由于缩径结构的加速作用,会向中心区聚集,从而打破传统提升管中的环-核结构,减少催化剂返混,有利于减少一次反应生成的低碳烯烃的二次转化反应,提高低碳烯烃的选择性。
在优选的实施方式中,在所述流化催化裂解反应器的至少一个所述缩径反应段的底部设置有催化剂分布器。进一步优选地,当设置有多个缩径反应段时,在沿物流方向位于最上游的缩径反应段的底部设置有催化剂分布器;更进一步优选地,在每一缩径反应段的底部均设置有催化剂分布器。
在此类优选实施方式中,设置在所述缩径反应段底部的催化剂分布器与缩径反应段的特殊结构的结合有助于提高缩径反应段中催化剂与反应油气接触的湍动程度,使原料分子在催化剂活性中心吸附-脱附频率加快,削弱催化剂表面静电作用,改善催化剂表面扩散性能,提高产品选择性。
适用于本申请的催化剂分布器可以为工业常见的流体分布器,例如平板形、拱形、碟形、环形、伞形和泡罩中的一种或多种,优选为拱形、泡罩式分布器。
根据本申请,在所述流化催化裂解反应器中,预提升区并不是必须的,例如当本申请的反应器与其他反应器如提升管反应器串联使用时,其催化裂解反应区可以直接与位于上游的其他反应器的出口直接连通,而无需采用所述预提升区。在某些具体实施方式中,本申请的流化催化裂解反应器可以不包括预提升区。此时,所述催化裂解反应区上,例如反应区底部,可以设有至少一个催化裂解催化剂入口和/或至少一个原料进料口,以便于催化剂和/或反应原料等进入到该催化裂解反应区中。当然,所述反应区也可以不设置催化剂和原料入口,其中的催化剂和反应原料可以来源于其他反应器物流中携带的催化剂和反应原料。这两种实施方式均在本申请的保护范围之内。
在优选的实施方式中,所述流化催化裂解反应器进一步包括预提升区,所述预提升区的顶端与所述反应区的底端连通,所述预提升区和/或所述反应区上(例如反应区底部和/或中部)设有至少一个,优选1-3个,催化裂解催化剂入口,且所述预提升区和/或所述反应区上(例如反应区底部和/或中部)设有至少一个,优选1-3个,原料进料口,并且所述至少一个缩径反应段底端的内径大于所述预提升区的内径。进一步优选地,所述至少一个缩径反应段顶端的内径大于或等于所述预提升区的内径。
在某些优选的实施方式中,当设置有n个缩径反应段,其中n≥2时,沿物流方向,在第2个至第n个缩径反应段中至少一者,优选每一者,的底部设置有附加的催化裂解催化剂入口和/或原料进料口。
根据本申请,在所述流化催化裂解反应器上可以设置至少一个,例如1个、2个、3个或更多个原料进料口,所述至少一个原料进料口可以各自独立地设置在预提升区的顶端出口处和/或催化裂解反应区的底部和/或中部。在某些具体实施方式中,在所述流化催化裂解反应器上设置有多个(如2-3个)原料进料口,所述多个原料进料口的位置各自独立地位于预提升区和/或催化裂解反应区的同一高度或不同高度处,例如一个原料进料口可以设置在预提升区的顶端出口处,另一个原料进料口可以设置在催化裂解反应区的两个缩径反应段之间的连接 段处。由此,可以在不同的原料进料口分别进料不同性质的原料,例如可以在预提升区的原料进料口进料C4-C12烃原料,在反应区中部的原料进料口进料C12-C20烃原料。
在优选的实施方式中,所述反应区的上部设有至少一个,优选1-3个,附加物料入口,所述至少一个附加物料入口与所述反应区顶端的距离各自独立地为所述反应区总高度的0至20%,优选0至15%。
根据本申请,可以通过所述附加物料入口向所述流化催化裂解反应器的催化裂解反应区的上部喷入反应导向剂,由此可以有效改善反应器内的温度分布,从而改变裂化反应的历程,达到降低甲烷的技术效果。适用于本申请的反应导向剂可以选自水和石油馏分油,所述石油馏分油选自汽油馏分、柴油馏分、蜡油馏分、油浆,或者它们的组合。另外,当所述反应导向剂为石油馏分油时,其也可以起到补充燃料油的作用,有助于改善反应-再生系统的热平衡。
根据本申请,还可以通过所述附加物料入口向所述流化催化裂解反应器的催化裂解反应区的上部喷入装置自产的C4馏分和/或C5馏分,由此可以进一步提高低碳烯烃产率和选择,提高原料利用率
在优选的实施方式中,所述至少一个缩径反应段的总高度与所述反应器的总高度之比为0.15∶1至0.8∶1,例如0.2∶1至0.75∶1。
在优选的实施方式中,所述催化裂解反应区的总高度为2-50米,优选5-40米,更优选8-20米,所述流化催化裂解反应器的总高度为40-70米。
在优选的实施方式中,所述催化裂解反应区包括1-10个、优选1-5个、更优选1-3个缩径反应段。当所述反应区包括2个、3个或更多个缩径反应段时,各缩径反应段可以具有相同或不同的高度、内径和结构形式,本申请对此并没有严格的限制。
在优选的实施方式中,所述至少一个缩径反应段的底端内径与顶端内径之比各自独立地为大于1.2∶1至10∶1,优选为1.5∶1至5∶1。进一步优选地,所述至少一个缩径反应段的底端的内径与所述反应器的总高度之比各自独立地为0.01∶1至0.5∶1,,优选0.05∶1至0.2∶1。
在优选的实施方式中,所述至少一个缩径反应段呈空心截头圆锥体型式,纵切面呈等腰梯形;所述至少一个缩径反应段顶端的内径与 其高度之比各自独立为0.005-0.3∶1,优选0.02-0.2∶1,底端的内径与其高度之比各自独立为0.015-0.25∶1,优选0.02-0.2,底端内径与顶端内径的之比各自独立为大于1.2∶1至10∶1,优选1.5∶1至5∶1。进一步优选地,所述至少一个缩径反应段的高度与所述反应器的总高度之比各自独立为0.15∶1至0.8∶1,例如0.2∶1至0.75∶1。更进一步优选地,所述至少一个缩径反应段顶端的内径各自独立地为0.2-5米,优选0.4-3米。
在优选的实施方式中,所述预提升区的内径与其高度之比为0.02-0.4∶1,优选0.04-0.3;其高度与所述反应器的总高度之比为0.01∶1至0.2∶1,优选0.05∶1至0.15∶1。进一步优选地,所述预提升区的内径为0.2-5米,优选0.4-3米。
在优选的实施方式中,所述预提升区与所述催化裂解反应区通过第一过渡段连接,所述第一过渡段呈倒置的空心截头圆锥体型式,纵切面为等腰梯形,等腰梯形侧边的外倾角α为5-85°,优选15-75°。
在某些优选实施方式中,所述反应区顶端的内径大于所述出口区的内径,此时所述反应区与出口区可以通过第二过渡段连接。优选地,该第二过渡段呈空心截头圆锥体型式,纵切面为等腰梯形,等腰梯形侧边的外倾角α为95-175°,优选105-165°。
在优选的实施方式中,所述出口区的内径与其高度之比为0.01-0.3∶1,优选0.05-0.2,所述出口区的高度与所述反应器的总高度之比为0.05∶1至0.5∶1,优选0.1∶1至0.35∶1。进一步优选地,所述出口区的内径为0.2-5米,优选0.4-3米。
根据本申请,所述出口区的出口端可以敞口,也可以和旋风分离器的入口直接连接。
不局限于具体理论,据信在本申请的流化催化裂解反应器中,所设置的出口区可以产生足够的速度场,克服颗粒的重力作用,使物流获得向上的推力,以抵消边壁摩擦力和径向扩散的影响,以近似于“平推流”的形式在反应器内流动,减少二次反应。
以下参照附图对本申请的流化催化裂解反应器的优选实施方式进行具体说明,但本申请的范围不限于这些优选实施方式。
如图1A、图1B和图2所示,在优选的实施方式中,本申请的流化催化裂解反应器从下到上依次包括:预提升区I、催化裂解反应区II 和出口区III,预提升区I的顶端与反应区II的底端相连通,反应区II的顶端与出口区III的底端相连通。预提升区I的下部设置有催化剂入口110,由预提升介质将经入口110输入的催化剂提升输送到反应区II中。该预提升区I可以是中空的圆柱体结构,其内径与其高度之比为0.02-0.4∶1;其高度与反应器总高度之比为0.01∶1至0.2∶1;其内径为0.2-5米。
所述预提升区I与反应区II通过第一过渡段I-1连接,该第一过渡段I-1的纵切面为等腰梯形,等腰梯形侧边的外倾角α为5-85°。在预提升区I的上部,第一过渡段I-1和/或反应区II的下部设置有原料进料口9。另外,在图2所示的反应器的反应区II的中部,即上部缩径反应段的底部还可以设置另一原料进料口16,用于其他原料或回炼物流。
所述反应区II包括至少一个缩径反应段,所述缩径反应段为横截面呈大致圆形且底端和顶端开口的空心柱体,其内径由底端至顶端连续地减小。所述反应区II的各缩径反应段的底端的内径大于预提升区I的内径,且各缩径反应段的顶端的内径等于所述预提升区I的内径和所述出口区III的内径。
所述反应区II的上部靠近顶端出口处设有至少一个附加物料入口10,所述至少一个附加物料入口10各自独立地位于距所述反应区II顶端的距离为所述反应区总高度的0至20%的位置处。
具体地,如图1A和图1B所示,在一种优选实施方式中,所述反应区II包括1段缩径反应段100,其呈空心截头圆锥体型式,纵切面呈等腰梯形;其顶端的内径D 220与其高度(在图1A、图1B中,缩径反应段100的高度与反应区II的高度h II相等)之比为0.005-0.3∶1,底端的内径D 210与其高度之比为0.015-0.25∶1,底端的内径D 210与顶端的内径D 220的之比为大于1.2∶1至10∶1;所述缩径反应段100的高度与反应器总高度h之比为0.15∶1至0.8∶1。与图1A的反应器相比,图1B的反应器在缩径反应段100的底部增设了催化剂分布器300。
如图2所示,在另一种优选实施方式中,所述反应区II包括2段串联的缩径反应段100,100’,缩径反应段100,100’均呈空心截头圆锥体型式,纵切面呈等腰梯形;其顶端的内径D 220、D 220’与相应缩径反应段的高度h1、h1’之比各自独立为0.005-0.3∶1,底端的内径D 210、D 210’ 与相应缩径反应段的高度h1、h1’之比各自独立为0.015-0.25∶1,底端内径D 210、D 210’与顶端内径D 220、D 220’之比各自独立为大于1.2∶1至10∶1;所述缩径反应段100,100’的高度h1、h1’与反应器总高度h之比各自独立为0.15∶1至0.8∶1;缩径反应段100,100’底端的内径D 210、D 220’与反应器总高度h之比各自独立地为0.01∶1至0.5∶1,所述反应区II的总高度h II与反应器总高度h之比为0.15∶1至0.8∶1。所述缩径反应段100,100’之间通过连接段II-1连接,其纵切面为等腰梯形,等腰梯形侧边的外倾角α为5-85°。
如图1A、图1B和图2所示,流化催化裂解反应器的出口区III为中空圆柱体形式,其内径与其高度h III之比为0.01-0.3∶1,所述出口区的高度h III与反应器总高度h之比为0.05∶1至0.5∶1。
在第二方面,本申请提供了一种催化裂解系统,所述催化裂解系统包括催化裂解反应装置、油剂分离装置、汽提装置、任选的反应产物分离装置和再生器,其中所述催化裂解反应装置包括至少一个,优选1-3个,本申请的流化催化裂解反应器。
在本申请的催化裂解系统中,流化催化裂解反应器可以有一个或者多个,可以是一个本申请的流化催化裂解反应器与其他现有的流化催化裂解反应器的组合,也可以是多个本申请的流化催化裂解反应器的组合。这些反应器可以以并联的方式连接,并与油剂分离装置相连接。
在优选的实施方式中,在所述汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中设置有至少一个,优选1-3个,燃料油进料口,用于向待生催化剂提供额外的燃料油。由此,可以使燃料油在待生催化剂进入再生器之前能够在其上形成附加焦炭,进入再生器后燃料油在催化剂床层中均匀分布,在含氧气体作用下能够稳定、均匀燃烧放热,实现了催化剂上燃料油分布与烧焦的协同控制,避免了局部热点,有效保护了催化剂的使用性能。
在某些优选的实施方式中,在所述汽提装置的下部设置有至少一个,优选1-3个,所述燃料油进料口,并且所述至少一个燃料油进料口离所述汽提装置底端的距离各自独立地为所述汽提装置高度的0-30%,优选5-25%。
本申请提供的催化裂解系统中,所述汽提装置、油剂分离装置、 再生器、反应产物分离装置和其他装置等均可采用本领域技术人员所熟知的设备,这些设备之间的连接方式也可以按照本领域已知的方式进行。例如,所述油剂分离装置可以包括旋风分离器、出口快速分离器。在某些具体实施方式中,所述油剂分离装置包括与所述流化催化裂解反应器同轴布置或者高低并列布置的沉降器。所述反应产物分离装置可以是各种本领域惯用的反应油气分离装置,例如分馏塔,其上可以设置干气出口、液化气出口、裂解汽油出口、裂解柴油出口和裂解重油出口,用于根据反应产物的馏程分离成干气、液化气、裂解汽油、裂解柴油以及裂解重油等组分。
以下参照附图对本申请的催化裂解系统的优选实施方式进行具体说明,但本申请的范围不限于这些优选实施方式。
如图3和图4所示,在优选的实施方式中,本申请的催化裂解系统包括流化催化裂解反应器1,油剂分离装置5,沉降器3,汽提装置4,以及再生器2,其中图3所示的流化催化裂解反应器1为图1A或图1B所示的反应器,而图4所示的流化催化裂化反应器1为图2所示的反应器。
流化催化裂解反应器1的预提升区I设置有催化剂入口13,催化裂解反应区II的底部设置有原料进料口9,顶端设置有油剂出口150,并且图4所示的催化裂解反应区II的中部还设置有另一原料进料口16;油剂分离装置5用于分离来自流化催化裂解反应器1的反应流出物中的油气产物和催化剂;沉降器3用于使经油剂分离装置5分离的催化剂沉降后进入汽提装置4;汽提装置4用于汽提其中的催化剂,以回收反应油气;再生器2通过待生斜管12与汽提装置4连接,用于使来自汽提装置4的待生催化剂进入到再生器2中进行再生;再生器2还通过再生斜管13与流化催化裂解反应器1的预提升区I连接,用于使经过再生器2再生的再生催化剂循环回流化催化裂解反应器1进行反应。
经油剂分离装置5分离得到的反应油气(即反应产物)在集气室6中集气后经管线7输送至后继的反应产物分离装置(未示出)进行分离。在再生器2中,待生催化剂在通过管线14通入的含氧再生气的作用下燃烧,得到再生催化剂,经再生斜管13输入到反应器1中;而烟气通过管线15排出进入能量回收系统。
在所述汽提装置4的下部设置有至少一个燃料油进料口11,其中, 所述至少一个燃料油进料口11离所述汽提装置底端的距离L 11各自独立地为所述汽提装置高度h 4的0-30%。
在第三方面,本申请提供了一种催化裂解方法,包括使含烃原料与催化裂解催化剂在本申请的流化催化裂解反应器中、优选在本申请的催化裂解系统的流化催化裂解反应器中接触反应的步骤。
本申请提供的流化催化裂解反应器和系统适用于各种原料的催化裂解反应,例如轻烃或轻质馏分油、含氧烃类、页岩油、加氢精制蜡油、加氢改质蜡油、加氢裂化尾油或上述原料的一种或几种的混合原料催化裂解生产低碳烯烃的反应,特别是轻烃或轻质馏分油催化裂解生产低碳烯烃的反应。
例如,所述轻烃或轻质馏分油可以为气体烃、馏程25-350℃的石油烃、含氧化合物、生物质或废塑料生成油的馏分油;所述气体烃可以选自饱和液化气、不饱和液化气、碳四馏分,或者它们的组合;所述石油烃可以选自一次加工的直馏石脑油、直馏煤油、直馏柴油或其组合;以及二次加工的拔头油、抽余油、加氢裂化轻石脑油、戊烷油、焦化汽油、费托合成油、催化裂化轻汽油、加氢汽油、加氢柴油或者其组合。在优选的实施方式中,所述反应原料选自C4-C20的轻质原料油。
在优选的实施方式中,所述流化催化裂解反应器的催化裂解反应区内的反应条件包括:反应温度为510-750℃,反应时间为0.5-10秒,剂油重量比为10∶1至50∶1,水油重量比为0.05∶1至2.0∶1。
在进一步优选的实施方式中,所述催化裂解反应区内的反应条件包括:反应温度为550-700℃,反应时间为1-5秒,剂油重量比为20∶1至40∶1,水油重量比为0.2∶1至0.8∶1。
在优选的实施方式中,以干基计并以所述催化剂的干基重量为基准,所述催化裂解催化剂包括1-50重量%,优选5-45重量%,更优选10-40重量%的沸石;5-99重量%,优选10-80重量%,更优选20-70重量%的无机氧化物,和0-70重量%,优选5-60重量%,更优选10-50重量%的粘土。
在进一步优选的实施方式中,所述沸石包括中孔沸石和任选的大孔沸石,所述中孔沸石选自ZSM系列沸石、ZRP沸石,和它们的任意组合;所述大孔沸石选自稀土Y型沸石、稀土氢Y型沸石、超稳Y型 沸石、高硅Y型沸石,和它们的任意组合。进一步优选地,以干基计,所述中孔沸石占所述沸石总重量的10-100重量%,优选50-90重量%。
在本申请中,所述中孔沸石和大孔沸石沿用本领域的常规定义,即中孔沸石的平均孔径为约0.5-0.6nm,大孔沸石的平均孔径为约0.7-1.0nm。作为示例,所述大孔沸石可以选自稀土Y(REY)型沸石、稀土氢Y(REHY)型沸石、由不同方法得到的超稳Y型沸石和高硅Y型沸石中的一种或多种。所述中孔沸石可以选自具有MFI结构的沸石,例如ZSM系列沸石和/或ZRP沸石。任选地,还可对上述中孔沸石用磷等非金属元素和/或铁、钴、镍等过渡金属元素进行改性。有关ZRP沸石的更为详尽的描述可参见美国专利US5,232,675A。ZSM系列沸石优选选自ZSM-5、ZSM-11、ZSM-12、ZSM-23、ZSM-35、ZSM-38、ZSM-48和其它类似结构的沸石之中的一种或多种的混合物。有关ZSM-5的更为详尽的描述可参见美国专利US3,702,886A。
根据本申请,所述无机氧化物作为粘结剂,优选为二氧化硅(SiO 2)和/或三氧化二铝(Al 2O 3)。所述粘土作为基质(即载体),优选为高岭土和/或多水高岭土。
在优选的实施方式中,所述方法进一步包括通过所述流化催化裂解反应器的附加物料入口向所述流化催化裂解反应器输入反应导向剂,所述反应导向剂选自水和石油馏分油,所述石油馏分油选自汽油馏分、柴油馏分、蜡油馏分、油浆,或者它们的组合。
在进一步优选的实施方式中,所述反应导向剂与所述反应原料的进料重量比为0.03-0.3∶1,优选0.05-0.2。
在优选的实施方式中,所述方法进一步包括:通过设置在所述催化裂解系统的汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中的燃料油进料口注入燃料油,使得经过汽提的待生催化剂和燃料油进入所述再生器中进行再生。进一步优选地,燃料油的注入量与所述反应原料的进料重量比为0.05-0.2∶1。
在优选的实施方式中,经过所述再生器再生的再生催化剂的温度为680-780℃。
以下参照附图对本申请的催化裂解方法的优选实施方式进行具体说明,但本申请的范围不限于这些优选实施方式。
如图3所示,在一优选的实施方式中,预提升介质经管线8从预 提升区I底部进入所述流化催化裂解反应器1,预提升介质可以为干气、水蒸气或它们的混合物。来自再生斜管13的热的再生催化剂进入预提升区I下部,在预提升介质的提升作用下向上运动。反应原料如经预热的轻质原料油和雾化蒸汽经进料管线9注入预提升区I上部和/或反应区II底部,在流化催化裂解反应器内与催化剂混合接触,在由下至上通过所述反应区II的过程中进行催化裂解反应。反应产物向上流动,与经附加物料入口10注入的反应导向剂接触,使反应及时终止,得到的带有焦炭的催化剂与反应油气经出口区III进入油剂分离装置5如旋风分离器,进行气固分离,分离所得的反应油气经集气室6、大油气管7引出装置,进入后续分离系统;分离所得的带有焦炭的催化剂进入汽提器,汽提后的待生催化剂与经燃料油进料口11注入的燃料油接触,进一步沉积焦炭后,经待生斜管12进入再生器2与再生器底部的空气14混合烧焦再生,再生后的催化剂经再生斜管13返回反应器1循环使用,再生烟气经管线15进入能量回收系统。
如图4所示,在另一优选的实施方式中,预提升介质经管线8从预提升区I底部进入所述流化催化裂解反应器,预提升介质可以为干气、水蒸气或它们的混合物。来自再生斜管13的经过或未经过冷却的热再生催化剂进入预提升区I下部,在预提升介质的提升作用下向上运动。反应原料,如经预热的轻质原料油,和雾化蒸汽经进料管线9注入预提升区I上游和/或第一缩径反应段100底部,在流化催化裂解反应器内与催化剂混合接触、反应,反应物流与第二缩径反应段100’底部经管线16引入的回炼C4物料混合进一步反应,反应产物向上流动,与经管线10注入的反应导向剂接触及时淬灭裂解反应,带有焦炭的催化剂与反应油气经出口区III进入油剂分离装置5如旋风分离器,进行气固分离,分离所得的反应油气经集气室6、大油气管7引出装置,进入后续的分离系统;分离所得的带有焦炭的催化剂进入汽提器,汽提后的待生催化剂与经燃料油进料口11注入的燃料油接触,进一步沉积焦炭后,经待生斜管12进入再生器2与再生器底部的空气14混合烧焦再生,再生后的催化剂经再生斜管13返回反应器1循环使用,再生烟气经管线15进入能量回收系统。
采用本申请的流化催化裂解反应器、系统和方法,可以从轻质石油烃高效生产乙烯、丙烯等化工原料,助力炼厂从炼油向化工原料生 产的转型、发展和延伸,既解决了石化原料短缺的问题,又提高了炼厂的经济效益。
在某些优选的实施方式中,本申请提供了如下的技术方案:
1.一种流化催化裂解反应器,从下到上依次包括:
任选的预提升区,
催化裂解反应区,所述反应区包括至少一个缩径反应段,所述缩径反应段为横截面呈大致圆形且底端和顶端开口的空心柱体,其内径由下至上连续地减小;和
出口区,
其中,所述任选的预提升区与所述反应区的底端相连通,所述反应区的顶端与所述出口区相连通,所述任选的预提升区上和/或所述反应区的底部设有至少一个原料进料口;
所述反应区的底端的横截面内径大于或等于所述任选的预提升区的横截面内径,且顶端的横截面内径等于或大于所述任选的预提升区的横截面内径和所述出口区的横截面内径;
所述反应区的上部设有一个或多个反应导向剂入口,所述一个或多个反应导向剂入口与所述反应区的出口端的距离为所述反应区总高度的0至20%。
2.根据项目1所述的流化催化裂解反应器,其中,所述反应区的底部横截面内径与反应器总高度之比为0.01∶1至0.5∶1;所述反应区的总高度与反应器总高度之比为0.15∶1至0.8∶1。
3.根据项目1所述的流化催化裂解反应器,其中所述反应区包括1-3个缩径反应段。
4.根据项目3所述的流化催化裂解反应器,其中所述缩径反应段呈空心截头圆锥体型式,纵切面呈等腰梯形;其顶端横截面的内径与所述缩径反应段的高度之比各自独立为0.005-0.3∶1,底端横截面的内径与所述缩径反应段的高度之比各自独立为0.015-0.25∶1,底端横截面内径与顶端横截面内径的之比各自独立为大于1.2且小于或等于10;所述缩径反应段的高度与反应器总高度之比各自独立为0.15∶1至0.8∶1。
5.根据项目4所述的流化催化裂解反应器,其中所述缩径反应段的顶端横截面的内径各自独立地为0.2-5米。
6.根据项目1所述的流化催化裂解反应器,其中所述预提升区的内径与高度之比为0.02-0.4∶1;其高度与反应器总高度之比为0.01∶1至0.2∶1。
7.根据项目6所述的流化催化裂解反应器,其中所述预提升区的内径为0.2-5米。
8.根据项目6所述的流化催化裂解反应器,其中所述预提升区与所述反应区以第一连接段连接,所述第一连接段的纵切面为等腰梯形,等腰梯形侧边的外倾角α为5-85°。
9.根据项目1所述的流化催化裂解反应器,其中所述出口区的横截面内径与高度之比为0.01-0.3∶1,所述出口区的高度与反应器总高度之比为0.05∶1至0.5∶1。
10.根据项目9所述的流化催化裂解反应器,其中所述出口区的横截面内径为0.2-5米。
11.一种催化裂解系统,所述催化裂解系统包括催化裂解反应装置、油剂分离装置、汽提装置、任选的反应产物分离装置、和再生器,其中所述催化裂解反应装置包括一个或多个根据项目1-10中任一项所述的流化催化裂解反应器。
12.根据项目11所述的催化裂解系统,其中在所述汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中设置有至少一个燃料油进料口。
13.根据项目12所述的催化裂解系统,其中在所述汽提装置的下部设置有至少一个所述燃料油进料口,
所述燃料油入口离所述汽提装置底端的距离各自独立地为所述汽提装置高度的0-30%。
14.根据项目12或13所述的催化裂解系统,其中所述油剂分离装置包括与所述流化催化裂解反应器同轴布置或者高低并列布置的沉降器。
15.一种催化裂解方法,包括使反应原料与催化剂在项目12-14中任一项所述的催化裂解系统中接触反应的步骤。
16.根据项目15所述的催化裂解方法,其中,所述反应原料选自C4-C20的轻质原料油。
17.根据项目16所述的催化裂解方法,其中,通过所述流化催化 裂解反应器的反应导向剂入口向所述流化催化裂解反应器输入反应导向剂,所述反应导向剂选自水和石油馏分油,所述石油馏分油选自汽油馏分、柴油馏分、蜡油馏分和油浆中的一种或多种。
18.根据项目17所述的催化裂解方法,其中,所述反应导向剂与所述反应原料的进料重量比为0.03-0.3∶1。
19.根据项目16所述的催化裂解方法,其中在所述催化裂解系统的汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中设置有至少一个燃料油进料口;
所述方法包括:通过所述燃料油进料口注入燃料油,使得经过汽提的待生催化剂和燃料油进入所述再生器中进行再生。
20.根据项目19所述的催化裂解方法,其中经过所述再生器再生的再生催化剂的温度为680-780℃。
实施例
下面的实施例将对本申请予以进一步的说明,但并不因此而限制本申请。
以下实施例与对比例中所用的原料油均为直馏石脑油,其性质如表1所示,所用的催化剂是购自中国石油化工股份有限公司催化剂分公司的商业催化裂解催化剂,商品牌号为NCC。
表1 实施例和对比例中所用直馏石脑油的性质
密度(20℃)/(克/厘米 3) 0.7525
碳含量/重量% 87.47
氢含量/重量% 14.53
硫含量/(毫克/升) 140
氮含量/(毫克/升) 1.2
馏程/℃  
10体积% 90.9
30体积% 121.7
50体积% 145.8
70体积% 167.3
95体积% 197.5
烃组成/重量%  
链烷烃 58.30
烯烃 0
环烷烃 30.18
芳烃 11.52
实施例1
采用表1所示的原料油和NCC催化剂,在中型装置上进行试验,装置型式如图3所示,其中所用的反应器的结构如下:
反应器总高度为10米,其中预提升区2米,内径为0.2米;反应区高度为5米,顶端的内径为0.2米,底端的内径为0.3米;出口区高度为3米,内径为0.2米。上部的附加物料入口位置设置在与反应区顶端出口处的距离为0.5米处。
在汽提器中,燃料油进料口的位置为离所述汽提装置底端的距离为所述汽提装置高度的10%的位置处。
操作过程中,反应导向剂注入量与原料进料量的比为0.05∶1(重量)以及燃料油的注入量为原料进料量的6%。
操作条件和产品分布列于表2。从表2可以看出,本实施例的乙烯产率达到25.53重量%,丙烯产率达到24.21重量%,甲烷和焦炭产率分别为10.07重量%和3.70重量%。
实施例2
采用表1所示的原料油和NCC催化剂,在中型装置上进行试验,装置型式如图4所示,其中所用的反应器的结构如下:
反应器总高度为10米,其中预提升区2米,内径为0.2米;反应区高度为5米,其中第一个空心截头圆锥体段高度h1为2.5米,顶端的内径为0.2米,底端的内径为0.3米;第二个空心截头圆锥体段高度h1为2.45米,顶端的内径为0.2米,底端的内径为0.3米;出口区高度为3米,内径为0.2米。上部的附加物料入口位置设置在与离所述第二个空心截头圆锥体顶端出口处的距离为0.2米处。
在汽提器中,燃料油进料口的位置为离所述汽提装置底端的距离为所述汽提装置高度的10%的位置处。
操作过程中,反应导向剂注入量与原料进料量的比为0.05∶1(重量)以及燃料油的注入量为原料进料量6%。
操作条件和产品分布列于表2。从表2可以看出,本实施例的乙烯产率达到26.53重量%,丙烯产率达到26.13重量%,甲烷和焦炭产率分别为10.77重量%和3.86重量%。
实施例3
参照实施例1进行试验,区别在于在反应区II的缩径反应段的底部增设了泡罩形式的催化剂分布器。
操作条件和产品分布列于表2。从表2可以看出,本实施例的乙烯产率达到25.76重量%,丙烯产率达到24.96重量%,甲烷和焦炭产率分别为9.16重量%和3.65重量%。
对比例1
采用表1所示的原料油和NCC催化剂,在中型装置上进行试验,反应器为常规提升管反应器。预热的原料油进入提升管反应器下部与催化裂解催化剂接触进行催化裂解反应,反应后物流进入后续的油剂分离装置和产物分离设备;操作条件和产品分布列于表2。
从表2的结果可以看出,该对比例的乙烯产率仅为18.19重量%,丙烯产率仅为20.14重量%,甲烷和焦炭产率分别为12.95重量%和3.92重量%。
对比例2
采用表1所示的原料油和NCC催化剂,在中型装置上进行试验,反应器为带有扩径反应段的变径提升管反应器(参见中国专利CN1152119C)。预热的原料油进入提升管反应器下部与催化裂解催化剂接触进行催化裂解反应,反应后物流进入后续的油剂分离装置和产物分离设备;操作条件和产品分布列于表2。
从表2的结果可以看出,该对比例的乙烯产率为18.96重量%,丙烯产率仅为22.15重量%,甲烷和焦炭产率分别为15.70重量%和5.01重量%。
表2 实施例1-2和对比例1的反应结果对比
Figure PCTCN2022136055-appb-000001
由以上实施例和对比例的结果可以看出,采用本申请的流化催化裂解反应器和系统进行含烃原料催化裂解反应时,乙烯、丙烯产率显著提高,同时甲烷和焦炭产率降低。此外,在本申请的流化催化裂解反应器和系统中,通过在缩径反应段的底部设置催化剂分布器有助于进一步改善产品分布,降低甲烷和焦炭产率,提高乙烯和丙烯产率。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技 术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所发明的内容。

Claims (14)

  1. 一种流化催化裂解反应器,从下到上依次包括催化裂解反应区和出口区,所述反应区的顶端与所述出口区的底端连通,其中所述反应区包括至少一个,优选1-3个,缩径反应段,其内径由底端至顶端连续地减小,其顶端的内径大于或等于所述出口区的内径,并且所述至少一个缩径反应段的总高度与所述反应器的总高度之比为0.15∶1至0.8∶1,优选0.2∶1至0.75∶1;
    优选地,所述至少一个缩径反应段的总高度与所述反应区的总高度之比为0.7∶1至0.95∶1,优选0.75∶1至0.90∶1,和/或
    所述至少一个缩径反应段的底端内径与顶端内径之比各自独立地为大于1.2∶1至10∶1,优选为1.5∶1至5∶1。
  2. 根据权利要求1所述的流化催化裂解反应器,其中在至少一个所述缩径反应段的底部设置有催化剂分布器,
    优选地,当设置有多个缩径反应段时,在沿物流方向位于最上游的缩径反应段的底部设置有催化剂分布器,进一步优选地,在每一缩径反应段的底部均设置有催化剂分布器。
  3. 根据权利要求1或2所述的流化催化裂解反应器,进一步包括预提升区,所述预提升区的顶端与所述反应区的底端连通,所述预提升区和/或所述反应区上设有至少一个,优选1-3个,催化裂解催化剂入口,且所述预提升区和/或所述反应区上设有至少一个,优选1-3个,原料进料口,并且所述至少一个缩径反应段底端的内径大于所述预提升区的内径,
    优选地,所述至少一个缩径反应段顶端的内径大于或等于所述预提升区的内径;
    进一步优选地,当设置有n个缩径反应段,其中n≥2时,沿物流方向,在第2个至第n个缩径反应段中至少一者,优选每一者,的底部设置有附加的催化裂解催化剂入口和/或原料进料口。
  4. 根据权利要求1-3中任一项所述的流化催化裂解反应器,其中所述反应区的上部设有至少一个,优选1-3个,附加物料入口,所述至少一个附加物料入口与所述反应区顶端的距离各自独立地为所述反应区总高度的0至20%,优选0至15%。
  5. 根据权利要求1-4中任一项所述的流化催化裂解反应器,其中所述至少一个缩径反应段呈空心截头圆锥体型式,纵切面呈等腰梯形;所述至少一个缩径反应段顶端的内径与其高度之比各自独立地为0.005-0.3∶1,优选0.02-0.2∶1,底端的内径与其高度之比各自独立地为0.015-0.25∶1,优选0.05-0.2∶1,底端内径与顶端内径之比各自独立地为大于1.2∶1至10∶1,优选1.5∶1至5∶1;
    优选地,所述至少一个缩径反应段的高度与所述反应器的总高度之比各自独立为0.15∶1至0.8∶1,例如0.2∶1至0.75∶1;
    进一步优选地,所述至少一个缩径反应段的底端的内径与所述反应器的总高度之比各自独立地为0.01∶1至0.5∶1,优选0.05∶1至0.2∶1;
    更进一步优选地,所述至少一个缩径反应段顶端的内径各自独立地为0.2-5米,优选0.4-3米。
  6. 根据权利要求3-4中任一项所述的流化催化裂解反应器,其中所述预提升区的内径与其高度之比为0.02-0.4∶1,优选0.05-0.2,其高度与所述反应器的总高度之比为0.01-0.2∶1,优选0.05-0.15∶1,
    优选地,所述预提升区的内径为0.2-5米,优选0.4-3米。
  7. 根据权利要求3-5中任一项所述的流化催化裂解反应器,其中所述预提升区与所述反应区通过第一过渡段连接,所述第一过渡段呈倒置的空心截头圆锥体型式,纵切面为等腰梯形,等腰梯形侧边的外倾角α为5-85°,优选15-75°。
  8. 根据权利要求1-7中任一项所述的流化催化裂解反应器,其中所述出口区的内径与其高度之比为0.01-0.3∶1,所述出口区的高度与所述反应器的总高度之比为0.05∶1至0.5∶1,优选0.1∶1至0.35∶1,
    优选地,所述出口区的内径为0.2-5米,优选0.4-3米。
  9. 一种催化裂解系统,包括催化裂解反应装置、油剂分离装置、汽提装置、任选的反应产物分离装置和再生器,其中所述催化裂解反应装置包括至少一个,优选1-3个,权利要求1-8中任一项所述的流化催化裂解反应器,
    优选地,在所述汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中设置有至少一个,优选1-3个,燃料油进料口。
  10. 根据权利要求9所述的催化裂解系统,其中在所述汽提装置的 下部设置有至少一个,优选1-3个,所述燃料油进料口,并且所述至少一个燃料油进料口离所述汽提装置底端的距离各自独立地为所述汽提装置高度的0-30%,优选5%-25%。
  11. 根据权利要求9或10所述的催化裂解系统,其中所述油剂分离装置包括与所述流化催化裂解反应器同轴布置或者高低并列布置的沉降器。
  12. 一种催化裂解方法,包括使含烃原料与催化裂解催化剂在权利要求1-8中任一项所述的流化催化裂解反应器中、优选在权利要求9-11中任一项所述的催化裂解系统的流化催化裂解反应器中接触反应的步骤,
    优选地,所述反应原料选自C4-C20的轻质原料油。
  13. 根据权利要求12所述的催化裂解方法,其中所述流化催化裂解反应器如权利要求4中所定义,并且所述方法进一步包括通过所述流化催化裂解反应器的附加物料入口向所述流化催化裂解反应器输入反应导向剂,所述反应导向剂选自水和石油馏分油,所述石油馏分油选自汽油馏分、柴油馏分、蜡油馏分、油浆,或者它们的组合,
    优选地,所述反应导向剂与所述含烃原料的进料重量比为0.03-0.3∶1,优选0.05-0.2∶1。
  14. 根据权利要求12或13所述的催化裂解方法,进一步包括:通过设置在所述催化裂解系统的汽提装置的下部和/或所述汽提装置与所述再生器的连接管线中的燃料油进料口注入燃料油,使得经过汽提的待生催化剂和燃料油进入再生器中进行再生,
    优选地,经过所述再生器再生的再生催化剂的温度为680-780℃。
PCT/CN2022/136055 2021-12-03 2022-12-02 催化裂解反应器和系统及其应用 WO2023098843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111466481.1 2021-12-03
CN202111466481.1A CN116218561A (zh) 2021-12-03 2021-12-03 催化裂化反应器、催化裂化系统及方法

Publications (1)

Publication Number Publication Date
WO2023098843A1 true WO2023098843A1 (zh) 2023-06-08

Family

ID=86581012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136055 WO2023098843A1 (zh) 2021-12-03 2022-12-02 催化裂解反应器和系统及其应用

Country Status (3)

Country Link
CN (1) CN116218561A (zh)
TW (1) TW202330094A (zh)
WO (1) WO2023098843A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116712947B (zh) * 2023-08-02 2024-02-06 罗托布斯特(上海)氢能科技有限公司 近海设施及船用可流动式原料气体催化热裂解系统及工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027019A1 (en) * 1994-03-31 1995-10-12 Neste Oy Process and apparatus for producing light olefins
CN110499181A (zh) * 2019-08-27 2019-11-26 青岛惠城环保科技股份有限公司 一种匀速床反应的催化裂化方法及装置
WO2020015603A1 (zh) * 2018-07-16 2020-01-23 中国石油化工股份有限公司 一种烃油催化裂解方法、反应器及系统
CN112536003A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 一种适用于制备烯烃和芳烃的催化转化反应器和系统
CN112538383A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 一种适用于烃油的催化转化的反应器和系统
CN113926396A (zh) * 2020-07-13 2022-01-14 中国石油化工股份有限公司 重油催化转化反应器和重油催化裂解制丙烯的方法
CN216946880U (zh) * 2021-12-03 2022-07-12 中国石油化工股份有限公司 催化裂化反应器及催化裂化系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027019A1 (en) * 1994-03-31 1995-10-12 Neste Oy Process and apparatus for producing light olefins
WO2020015603A1 (zh) * 2018-07-16 2020-01-23 中国石油化工股份有限公司 一种烃油催化裂解方法、反应器及系统
CN110499181A (zh) * 2019-08-27 2019-11-26 青岛惠城环保科技股份有限公司 一种匀速床反应的催化裂化方法及装置
CN112536003A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 一种适用于制备烯烃和芳烃的催化转化反应器和系统
CN112538383A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 一种适用于烃油的催化转化的反应器和系统
CN113926396A (zh) * 2020-07-13 2022-01-14 中国石油化工股份有限公司 重油催化转化反应器和重油催化裂解制丙烯的方法
CN216946880U (zh) * 2021-12-03 2022-07-12 中国石油化工股份有限公司 催化裂化反应器及催化裂化系统

Also Published As

Publication number Publication date
TW202330094A (zh) 2023-08-01
CN116218561A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN102051213B (zh) 一种催化裂解方法
TWI548732B (zh) A method for producing catalytic cracking of propylene
TWI819031B (zh) 一種烴油催化裂解方法、反應器及系統
CN102286294B (zh) 一种生产丙烯和轻芳烃的烃类催化转化方法
EP3919589A1 (en) Method for catalytic conversion of hydrocarbon with downer reactor and device thereof
CN102086402B (zh) 一种增产丙烯并改善汽油性质的催化裂化方法和装置
WO2023098843A1 (zh) 催化裂解反应器和系统及其应用
CN112536003B (zh) 一种适用于制备烯烃和芳烃的催化转化反应器和系统
CN112536001B (zh) 一种催化转化反应器和系统
CN103664454B (zh) 一种低能耗的费托合成油催化改质生产丙烯的方法
CN216946880U (zh) 催化裂化反应器及催化裂化系统
CN110724560B (zh) 一种生产丙烯和轻芳烃的催化裂解方法和系统
CN110724561B (zh) 一种生产丙烯和轻芳烃的催化裂解方法和系统
CN117186937A (zh) 催化裂解反应-再生系统和方法
CN103666551B (zh) 一种高温费托合成油的催化加工方法和装置
CN112538383B (zh) 一种适用于烃油的催化转化的反应器和系统
JP7354228B2 (ja) 炭化水素油の接触分解方法及びシステム
CN111423905B (zh) 催化裂解的工艺和系统
RU2793541C2 (ru) Способ, реактор и система для каталитического крекинга жидких нефтепродуктов
RU2797245C2 (ru) Способ и система для каталитического крекинга жидких нефтепродуктов
CN111423904B (zh) 催化裂解的工艺和系统
CN110724559B (zh) 一种生产丙烯和高辛烷值汽油的催化裂解方法和系统
CN117186932A (zh) 维持热平衡的轻质油催化裂解反应方法和系统
CN117186933A (zh) 一种可实现热平衡轻质油催化裂解反应方法和系统
CN117186931A (zh) 一种反应与生焦耦合的催化裂解反应方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401003241

Country of ref document: TH