WO2023098615A1 - 一种唤醒方法、网关及系统 - Google Patents

一种唤醒方法、网关及系统 Download PDF

Info

Publication number
WO2023098615A1
WO2023098615A1 PCT/CN2022/134650 CN2022134650W WO2023098615A1 WO 2023098615 A1 WO2023098615 A1 WO 2023098615A1 CN 2022134650 W CN2022134650 W CN 2022134650W WO 2023098615 A1 WO2023098615 A1 WO 2023098615A1
Authority
WO
WIPO (PCT)
Prior art keywords
gateway
module
message
address
low
Prior art date
Application number
PCT/CN2022/134650
Other languages
English (en)
French (fr)
Inventor
王云贵
胡剑
李有涛
吴日海
蔡亚杰
王建兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098615A1 publication Critical patent/WO2023098615A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a wake-up method, gateway and system.
  • IoT includes perception layer, network layer and application layer.
  • the perception layer includes terminal devices, which include sensors for collecting environmental information;
  • the network layer includes IoT gateways and IoT controllers, where IoT controllers are used to control and manage IoT gateways, and IoT gateways are used to
  • the environmental information collected by the terminal equipment is sent to the server at the application layer, and the server is used to realize the analysis and processing of the environmental information or data.
  • the application discloses a wake-up method, a gateway and a system.
  • the gateway can meet the requirements of different industries, and the power consumption of the gateway or the system can be saved by using the wake-up method provided in the application.
  • the present application provides a wake-up method, the method comprising: the low power consumption module of the first gateway receives a first message; determines that the first message contains the address of the first gateway; and responds to the determination The first message includes the address of the first gateway, and wakes up the Wireless Alliance Wi-Fi module of the first gateway.
  • the first gateway includes a low-power module and a Wi-Fi module, and when the low-power module receives the first message and determines that the address of the first gateway is included in the first message, it wakes up the Wi-Fi module , before the low power consumption module receives the first message, or when the low power consumption module determines that the first message does not include the address of the first gateway, the Wi-Fi module is in an unawakened state, reducing the usage The power consumption is reduced, and the low power consumption module consumes less power, saving power consumption.
  • the low power consumption module includes one of a Bluetooth module, a ZigBee module, an air interface communication module or a Beidou communication module.
  • the low-power module can be a Bluetooth module or a ZigBee module.
  • the low-power module can also be an air interface communication module or a Beidou communication module. These communication modules not only consume less power, but also Moreover, it can be used to transmit data.
  • the Wi-Fi module in the first gateway is woken up, it can also be used to transmit data. Therefore, in this application, the first gateway can transmit different data through multiple channels or links, which can be applied in different industries and different application scenarios, and meanwhile, the first gateway has the characteristic of low power consumption.
  • the address of the first gateway includes an address of a low power consumption module of the first gateway or an address of a Wi-Fi module of the first gateway.
  • the address of the first gateway may be the address of the low power consumption module or the address of the Wi-Fi module.
  • the first message is generated and sent by the second gateway under a trigger condition; the first message is used to indicate to wake up the Wi-Fi modules of each gateway on the link.
  • the trigger condition includes that the second gateway receives an alarm notification sent by the terminal device, where the alarm notification is when the terminal device detects abnormal data dispatched.
  • the terminal device when the terminal device detects abnormal data, the terminal device sends an alarm notification to the second gateway, and the second gateway receives the alarm notification and triggers the generation of the first message to indicate to wake up the link from the second gateway to the controller.
  • the Wi-Fi modules of each gateway on the road can be used to transmit the abnormal data collected by the terminal equipment after the awakened Wi-Fi link, so that relevant personnel can deal with the abnormal data in a timely manner.
  • a trigger wake-up mechanism is set on the gateway, which can deal with abnormal situations in the environment in time, and can be applied in different scenarios.
  • the first message is sent by a controller or a root node gateway, and the root node gateway is a gateway directly connected to the controller.
  • the first message can also be generated and sent by the controller or the root node gateway.
  • the controller or the root node gateway can The root node gateway determines the link that needs to be awakened according to actual needs, and propagates it to other gateways in the form of the first message.
  • the first message is sent in unicast mode, and the first message includes a receiving address and a destination address, and the receiving address is the next hop that needs to be woken up.
  • the address of the gateway, the destination address is the address of the last gateway that needs to be woken up; the method further includes: updating the receiving address in the first message according to the destination address, and sending the updated first message go out.
  • the first message may be transmitted in the system in the form of unicast.
  • the first message includes the receiving address and the destination address, so that after each gateway receives the first message, it can determine whether the first message is sent to the gateway according to the receiving address. Only when the receiving address is the address of the gateway, the gateway The low power consumption module wakes up the Wi-Fi module, then the gateway determines and updates the receiving address of the next hop, and sends the updated first message. If the receiving address is not the address of the gateway, the gateway directly sends the first message A message is sent without waking up the Wi-Fi module. Implementing the present application helps to reduce the power consumption of the gateway or system.
  • the first message includes addresses of gateways that need to be woken up, and the first message is sent in a unicast or broadcast manner.
  • each gateway on the link that needs to be awakened may be included in the first message, and the first message may be sent in the form of unicast or broadcast.
  • each gateway judges whether Whether the address of the gateway is included, if yes, wake up the Wi-Fi module of the gateway, and send the first message; if not, send the first message without waking up the Wi-Fi module. Implementing the present application helps to reduce the power consumption of the gateway or system.
  • the addresses of the gateways that need to be woken up exist in the form of a Bitmap.
  • the method further includes: sending the first message.
  • the present application provides a gateway, including a low power consumption module and a Wireless Alliance Wi-Fi module, the Wi-Fi module is in a dormant state, and the low power consumption module is used to connect the dormant The Wi-Fi module wakes up.
  • the gateway includes a low-power module and a Wi-Fi module.
  • the low-power module consumes less power, and the Wi-Fi module does not consume power when it is in a dormant state.
  • the Wi-Fi module in the dormant state can be woken up by the low-power module, and the Wi-Fi module can be in the dormant state again when the Wi-Fi module is not in use.
  • the gateway provided by the application consumes less power, which reduces the power consumption of the gateway and the entire system.
  • the low power consumption module includes one of a Bluetooth module, a ZigBee module, an air interface communication module or a Beidou communication module.
  • the low-power module can be a Bluetooth module or a ZigBee module.
  • the low-power module can also be an air interface communication module or a Beidou communication module. These communication modules consume less power and are can be used to transfer data.
  • the Wi-Fi module in the first gateway is woken up, it can also be used to transmit data. Therefore, in this application, the first gateway can transmit different data through multiple channels or links, which can be applied in different industries and different application scenarios, and meanwhile, the first gateway has the characteristic of low power consumption.
  • the sleep state is a power-off state
  • the gateway also includes a processor and a power supply control module, the low power consumption module is connected to the processor, and the processor is connected to the power supply control module; the power supply control module is used to control the Wi -Power supply of Fi module;
  • the low power consumption module is configured to: receive a first message, determine that the first message contains the address of the gateway, and send a wake-up notification to the processor in response to determining that the first message contains the address of the gateway , the wake-up notification is used to instruct the processor to wake up the Wi-Fi module;
  • the processor is configured to: control the power supply control module to supply power to the Wi-Fi module according to the wake-up notification, so as to wake up the Wi-Fi module.
  • the sleep state of the Wi-Fi module is a power-off state
  • the low-power module can wake up the Wi-Fi module of the gateway by controlling the power supply control module to supply power to the Wi-Fi module.
  • the address of the gateway includes an address of a low power consumption module of the gateway or an address of a Wi-Fi module of the gateway.
  • the first message is generated and sent by the first gateway under a trigger condition; the first message is used to indicate to wake up the Wi-Fi modules of each gateway on the link.
  • the trigger condition includes that the first gateway receives an alarm notification sent by a terminal device, where the alarm notification is when the terminal device detects an abnormal data dispatched.
  • the first message is sent by a controller or a root node gateway, where the root node gateway is a gateway directly connected to the controller.
  • the first message is sent in unicast mode, and the first message includes a receiving address and a destination address, and the receiving address is the next hop that needs to be woken up.
  • the address of the gateway, the destination address is the address of the last gateway that needs to be woken up; the gateway is used to: update the receiving address in the first message according to the destination address, and send the updated first message go out.
  • the first message includes addresses of gateways that need to be woken up, and the first message is sent in a unicast or broadcast manner.
  • the addresses of the gateways that need to be woken up exist in the form of a Bitmap.
  • the low power consumption module is configured to: send the first message.
  • the present application provides a system, including a plurality of gateways, wherein each of the plurality of gateways includes a low power consumption module and a Wireless Alliance Wi-Fi module, wherein the Wi-Fi module In a dormant state, the low power consumption module is used to wake up the Wi-Fi module in a dormant state.
  • each gateway in the system includes a low-power module and a Wi-Fi module.
  • the Wi-Fi module is in a dormant state and does not consume power.
  • the low-power module consumes low power, and the power consumed by the entire system is low. , which reduces the power consumption of the system; when it is necessary to transmit data, the Wi-Fi module can be woken up through the low-power module, and the Wi-Fi module after awakening can be used for transmission speed.
  • the low power consumption module includes one of a Bluetooth module, a ZigBee module, an air interface communication module or a Beidou communication module.
  • the low-power module can be a Bluetooth module, a ZigBee module, or an air interface communication module or a Beidou communication module.
  • the aforementioned communication modules of each gateway in the system form a low-power link, and the low-power Not only does the link consume less power, but it can also be used to transmit data.
  • each Wi-Fi module in the system is awakened to form a Wi-Fi link, and the Wi-Fi link can also be used to transmit data. Therefore, in this application, the entire system includes low-power links and Wi-Fi links. The two types of links can be used to transmit different data, and are suitable for different industries and different application scenarios. At the same time, the entire system Has the characteristic of low power consumption.
  • the multiple gateways include a first gateway
  • the low power consumption module of the first gateway is configured to receive a first message; the first message includes a broadcast address, and the broadcast address is used to indicate to wake up the Wi-Fi of each gateway in the plurality of gateways. module;
  • the low power consumption module of the first gateway is further configured to wake up the Wi-Fi module of the first gateway according to the first message.
  • the Wi-Fi modules of multiple gateways in the system need to be woken up during the initial wake-up, so the first message includes a broadcast address, and the broadcast address is used to indicate to wake up the Wi-Fi modules of each of the multiple gateways. module.
  • the system further includes a controller, the first message is sent by the controller or a root node gateway, and the root node gateway is one of the multiple gateways A gateway directly connected to the controller.
  • the wakeup initiator is the controller, and the first message can be generated and sent by the controller, or the controller can notify the root node gateway, and the root node gateway can generate and send the first message.
  • the low power consumption module of the first gateway is further configured to send the first message.
  • the Wi-Fi module of the first gateway is also used for:
  • the Wi-Fi module of each gateway needs to register with the controller. After the registration is successful, the controller returns the registration ID to the Wi-Fi module of the gateway.
  • the registration ID can be used as the identity of the Wi-Fi module Identification ID.
  • the Wi-Fi module of the first gateway is further configured to send the identifier of the Wi-Fi module to the low power consumption module of the first gateway.
  • the Wi-Fi module of the first gateway is also used for:
  • the adjacent gateway refers to a gateway reachable by the first gateway through one hop.
  • the low power consumption module of the first gateway is also used for low-speed data transmission
  • the Wi-Fi module of the first gateway is also used for high-speed data transmission.
  • the Wi-Fi module links formed by the Wi-Fi modules of each gateway in the system can be used for high-speed data transmission
  • the low-power links formed by the low-power modules of each gateway can be used for low-speed data transmission.
  • data can be transmitted through low-power links in the system, and the Wi-Fi link can be in a dormant state to save power consumption;
  • low-power modules of each gateway can be used to transmit data Wake up the Wi-Fi module of the gateway respectively, and transmit data through the link of the Wi-Fi module.
  • the system composed of various gateways can be applied to different industries and different scenarios to meet different needs, and the whole system has the characteristics of low power consumption and strong applicability.
  • FIG. 1 is a schematic diagram of an Internet of Things system architecture provided by the present application.
  • FIG. 2 is a schematic diagram of the process of establishing a link between adjacent gateways provided by the present application
  • FIG. 3 is a schematic diagram of elements in a message provided by the present application.
  • FIG. 4 is a schematic flow chart of a wake-up method provided by the present application.
  • FIG. 5 is a schematic flowchart of another wake-up method provided by the present application.
  • FIG. 6 is a schematic diagram of a network layer message format provided by the present application.
  • FIG. 7 is a schematic diagram of another network layer message format provided by the present application.
  • FIG. 8 is a schematic diagram of an Internet of Things system architecture based on the Beidou system provided by the present application.
  • FIG. 9 is a schematic structural diagram of a gateway provided by the present application.
  • FIG. 10 is a schematic structural diagram of another gateway provided by the present application.
  • Fig. 11 is a schematic structural diagram of another gateway provided by the present application.
  • Figure 1 is a schematic diagram of the architecture of an Internet of Things system provided by this application, the system includes a server (not shown in the figure), a controller, multiple gateways and multiple A terminal, wherein the server is connected to the controller.
  • the terminal equipment includes sensors for collecting environmental information or data.
  • the terminal device may be, for example, an image sensor (camera), a temperature sensor, a humidity sensor, a smoke sensor, a rain gauge, a water level gauge, an infrared sensor, and the like.
  • the gateway is used to transmit the data or information collected by the terminal equipment to the server through the controller.
  • Each gateway includes a low-power module and a wireless alliance (wireless fidelity, Wi-Fi) module, and the low-power module can be a Bluetooth module or a ZigBee module.
  • the low-power module is used to transmit business data at low speed. For example, when the amount of data collected by the terminal equipment is small or the transmission rate is not high, the low-power module can be used to transmit data.
  • the water level gauge is used in water conservancy scenarios
  • the low power consumption module can be used to transmit data
  • the Wi-Fi module is used for high-speed transmission of business data, for example, the amount of data collected by the terminal equipment is large or the transmission rate is required
  • the Wi-Fi module can be used to transmit data.
  • the Wi-Fi module can be used to transmit data when a camera or image sensor is used to capture image or video data in a water conservancy scene.
  • the controller is used to manage each gateway and each terminal device.
  • the controller is responsible for the registration authentication and management of the terminal device and each gateway, and the controller is also responsible for the connection management of the gateway.
  • the server is used to receive the information or data sent by the controller, and analyze and process the information or data, and so on.
  • FIG. 1 is only an example architecture provided by this application.
  • the Wi-Fi module of the gateway (such as gateway 1) directly connected to the controller can be in the power-on state, that is, always online status.
  • the system architecture may include more or less devices, and Fig. 1 does not limit the present application.
  • terminal equipment connected to gateway 1 is shown in FIG. 1 , and terminal equipment can also be connected to other gateways, which are not shown in the figure; there may be multiple parallel gateways directly connected to the controller, Figure 1 only shows one, etc.
  • the low-power modules in each gateway are powered, that is, the low-power modules are online. Therefore, the low-power links of the entire system can transmit data.
  • the Wi-Fi modules of each gateway are powerless, and the Wi-Fi modules are in a dormant state, so the Wi-Fi links in the system cannot transmit data, and the low The power consumption module wakes up the Wi-Fi module of this gateway, and each Wi-Fi module can only transmit data after being woken up and establishing a link.
  • gateways adjacent to gateway 2 include gateway 1, gateway 3 and gateway 5, gateways adjacent to gateway 5 include gateway 2 and gateway 6, and gateways adjacent to gateway 6 include gateway 5, gateway 3 and gateway 7 .
  • the low-power module of gateway 1 sends the message, and the low-power module of gateway 2 can receive the message, but other gateways cannot receive it;
  • the low-power module of gateway 3 sends a message, the low-power module of gateway 3 and the low-power module of gateway 5 can receive the message, but other gateways cannot receive the message;
  • the low-power The power consumption module and the low power consumption module of the gateway 6 can receive the message, but other gateways cannot receive the message.
  • the initial wake-up process of the Wi-Fi modules of each gateway in the system will also involve the process of the Wi-Fi module of each gateway being woken up again (that is, being woken up for the second time, being woken up for the third time).
  • message and "the first message” are used to indicate the messages transmitted between the various low-power modules in the system when the system wakes up again.
  • the “second message” is used here when describing the process of being woken up for the first time
  • the “second message” is used to indicate the message transmitted between various low-power modules in the system when the system is first woken up.
  • the controller sends a message or notification to the gateway 1, and the message or notification is used to instruct the gateway 1 to generate a second message, wherein the second message is used to instruct to wake up the Wi-Fi modules of all gateways
  • the low-power module of gateway 1 wakes up the Wi-Fi module of the gateway, generates a second message, and sends the second message, wherein the second message includes a broadcast address; The broadcast address indicates that the system needs to wake up the Wi-Fi modules in each gateway.
  • the low-power module of gateway 2 wakes up the Wi-Fi module of this gateway and sends the second message; the low-power module of gateway 3
  • Both the power consumption module and the low power consumption module of gateway 5 can receive the second message sent by the low power consumption module of gateway 2, and the low power consumption module of gateway 3 wakes up the Wi-Fi module of this gateway after receiving the second message, And send the second message, similarly the low power consumption module of gateway 5 wakes up the Wi-Fi module of this gateway after receiving the second message, and sends the second message; ... until the second message traverses the entire system, all gateways All Wi-Fi modules are woken up.
  • gateway 1 is the root node gateway.
  • the controller needs to send notifications or messages to the multiple root node gateways to instruct the root node gateway to generate a second message.
  • the second message is used to instruct to wake up the Wi-Fi modules of all gateways.
  • each root node gateway After each root node gateway receives the message or notification sent by the controller, it wakes up the Wi-Fi module of the gateway, then generates a second message, and sends the second message,...Finally, the Wi-Fi module of the gateway on each link in the system -Fi modules are all woken up.
  • the controller may directly generate a second message when first awakened, and the second message includes a broadcast address indicating that the system needs to wake up the Wi-Fi modules in each gateway, and the controller will generate The second message is sent out; the low-power module of gateway 1 receives the second message, wakes up the Wi-Fi module of the gateway, and then sends the second message; ...until the second message traverses the entire system, all the Wi-Fi modules of the gateway -Fi modules are all woken up. If there are multiple root node gateways in the system, then multiple root node gateways can receive the second message sent by the controller. After each root node gateway receives the second message, it wakes up the Wi-Fi module of this gateway, and Send the second message out....
  • the second message may further include a sequence number, and the sequence number is used to identify the second message.
  • the low-power module of a certain gateway receives the second message, it first judges whether it has received the message of the serial number, if it has received it, it will not process it, if it has not received it, it will wake up the Wi- The Fi module sends the second message.
  • the message includes a serial number, and repeated processing can be avoided by judging whether a message with the serial number has been received. For example, in Fig.
  • the low power consumption module of gateway 6 can receive the second message that the low power consumption module of gateway 3 sends, also can receive the second message that the low power consumption module of gateway 5 sends, when gateway 6 The low-power module receives the second message for the second time, and judges through the sequence number that it has already received and processed the message, and then does not process the message.
  • the second message may include a receiving address and a destination address, the receiving address refers to the address of the next-hop gateway that needs to be woken up, and the destination address refers to the is the address of the last gateway that needs to be woken up, then both the receiving address and the destination address are broadcast addresses.
  • the second message may also be transmitted in the system in the form of broadcast.
  • the Wi-Fi modules of each gateway register on the controller respectively, that is, the Wi-Fi module of the gateway that needs to register sends a registration request to the controller, and the controller receives the registration request.
  • the Wi-Fi module of the gateway is registered, and after the registration is completed, a registration identifier is returned to the Wi-Fi module of the gateway, and the registration identifier can be used to identify the Wi-Fi module of the gateway.
  • a link needs to be established between the Wi-Fi modules of each gateway. The following describes how to establish a link between the Wi-Fi modules of each gateway.
  • FIG. 1 A schematic diagram of the process of establishing a Wi-Fi link between 2, the process is as follows.
  • the Wi-Fi module of gateway 1 sends its own identity to the low-power module of this gateway, and obtains the identity of the low-power module, and then gateway 1 shares the identity of the Wi-Fi module of this gateway with the low-power module The identity binding.
  • the Wi-Fi module of gateway 2 sends its own identity to the low-power module of this gateway, and obtains the identity of the low-power module, and then gateway 2 shares the identity of the Wi-Fi module of this gateway with the low-power module The identity binding.
  • the identifier of the Wi-Fi module may be a registration identifier or a media access control (MAC) address of the Wi-Fi module
  • the identifier of the low-power module may be the public device address ( public device address) or random device address (random device address), the random device address can be a static device address or a private device address.
  • the Wi-Fi module of gateway 1 sends a connection request to the Wi-Fi module of gateway 2, and the connection request carries the identifier of the Wi-Fi module of gateway 1 and the identifier of the bound low-power module.
  • the Wi-Fi module of gateway 2 receives the connection request, and obtains the identifier of the Wi-Fi module of gateway 1 and the identifier of the bound low-power module from the connection request.
  • the connection request is sent in the format of a Wi-Fi protocol standard message
  • the Wi-Fi protocol standard message includes a message header and at least one element.
  • FIG. 3 is a schematic diagram of an element in a Wi-Fi protocol-based standard message provided by the present application, wherein the number below each field indicates the number of bytes occupied by the field.
  • the identifier of the low power consumption module in the connection request can be carried in the source extension address field, and the identifier of the Wi-Fi module can be carried in the header of the message (the header of the message is not shown in the figure).
  • the schematic diagram in FIG. 3 is only for example, and does not constitute a limitation on the packet format in this embodiment.
  • the Wi-Fi module of gateway 2 sends the routing information that can reach gateway 1 to the low-power module of this gateway, wherein the routing information that can reach gateway 1 includes the identification of the Wi-Fi module of gateway 1 and the bound The identification of the low power consumption module and the identification of the Wi-Fi module of gateway 2.
  • the Wi-Fi module of gateway 2 sends a connection request response message to the Wi-Fi module of gateway 1, and the response message carries the identifier of the Wi-Fi module of gateway 2 and the identifier of the bound low-power module.
  • the Wi-Fi module of gateway 1 receives the response message, and obtains the identifier of the Wi-Fi module of gateway 2 and the identifier of the bound low power consumption module.
  • the response message is also sent in the form of a message.
  • the identifier of the low-power module can be carried in the source extension field, and the identifier of the Wi-Fi module can be carried in the header of the message.
  • the Wi-Fi module of gateway 1 sends the routing information that can reach gateway 2 to the low-power module of this gateway, wherein the routing information that can reach gateway 2 includes the identification of the Wi-Fi module of gateway 2 and the bound The identification of the low power consumption module and the identification of the Wi-Fi module of gateway 1.
  • gateway 1 and gateway 2 a link is established between gateway 1 and gateway 2.
  • the above only takes gateway 1 and gateway 2 as an example to introduce the process of establishing a link.
  • the same is true for establishing links between other gateways in the system, for example, between gateway 2 and gateway 3, between gateway 2 and gateway 5, Between gateway 3 and gateway 4, between gateway 3 and gateway 6, etc., the Wi-Fi link of the entire system is established, and the established Wi-Fi link can be used to transmit data.
  • each gateway After the Wi-Fi link is established, each gateway will also add the identification of the Wi-Fi module of the gateway and the identification of the bound low-power module, the identification of the Wi-Fi module of the adjacent gateway and the identification of the bound low-power module
  • the identification of each gateway is sent to the controller, and the identification of the Wi-Fi module of each gateway and the identification of the bound low-power module are stored in the controller, that is, the routing information of each link in the system.
  • the Wi-Fi modules of each gateway can also write the routing information from the gateway to the controller into the low power consumption module of the gateway.
  • the Wi-Fi module of the gateway 4 writes the identification of the gateway passed by the gateway 4 to the controller into the low-power module of the gateway 4, wherein the identification of the gateway passed by the gateway 4 to the controller includes the identification of the gateway 3 , the identifier of the gateway 2, the identifier of the gateway 1, the identifier of the gateway may be the identifier of the Wi-Fi module or the identifier of the low power consumption module of the gateway.
  • the identifiers of the gateways in the routing information are not in sequence.
  • the routing information stored in the gateway may be lost.
  • the Wi-Fi module of the gateway will reconnect with the adjacent The Wi-Fi module of the gateway establishes a Wi-Fi link.
  • the low-power module of the gateway does not have the function of actively selecting routes, and cannot actively learn routing information. It needs to rely on the routing information that the Wi-Fi module will learn after establishing a link. Send to the low-power module, the low-power module can get the routing information. Therefore, in this implementation, when it is necessary to determine which gateway the next hop of a message is sent to, that is, to determine the receiving address of the next hop according to the destination address, it is necessary to rely on the routing function of the Wi-Fi module (corresponding to the Refer to the description of the relevant content below).
  • the low-power modules of the gateway have the function of actively selecting routes, and can actively learn routing information through the establishment of links between low-power modules.
  • Wi-Fi modules can also obtain routing information by establishing a link.
  • the Wi-Fi module of gateway 1 and the low-power module have sent identifications to each other, and the Wi-Fi module and low-power module of gateway 2 have also sent each other ID sent.
  • the link between the low-power module of gateway 1 and the low-power module of gateway 2 can be established independently, and the process is as follows: the low-power module of gateway 1 can send a connection request to the low-power module of gateway 2, and the connection request carries The identity of the low-power module of gateway 1 and the identity of the bound Wi-Fi module, correspondingly, the low-power module of gateway 2 receives the connection request, and obtains the identity of the low-power module of gateway 1 and the identity of the bound Wi-Fi module The identity of the Wi-Fi module; the low-power module of gateway 2 sends a connection request response message to the low-power module of gateway 1, and the response message carries the identity of the low-power module of gateway 2 and the bound Wi-Fi module Correspondingly, the low-power module of gateway 1
  • a link can also be established between the Wi-Fi module of gateway 1 and the Wi-Fi module of gateway 2, the process is as follows: the Wi-Fi module of gateway 1 can send a connection request to the Wi-Fi module of gateway 2, and the connection The request carries the ID of the Wi-Fi module of gateway 1 and the ID of the bound low-power module.
  • the Wi-Fi module of gateway 2 receives the connection request and obtains the ID and ID of the Wi-Fi module of gateway 1.
  • the identity of the bound low-power module; the Wi-Fi module of gateway 2 sends a connection request response message to the Wi-Fi module of gateway 1, and the response message carries the identity of the Wi-Fi module of gateway 2 and the bound low-power module.
  • the identification of the power consumption module is the Wi-Fi module of gateway 1 and the Wi-Fi module of gateway 2
  • the process is as follows: the Wi-Fi module of gateway 1 can send a connection request to the Wi-Fi module of gateway 2, and the connection The request carries the ID of the Wi-Fi module of gateway 1 and the
  • the Wi-Fi module of gateway 1 receives the response message, and obtains the identification of the Wi-Fi module of gateway 2 and the identification of the bound low-power consumption module.
  • the identity of the adjacent gateway can be obtained.
  • This example only introduces gateway 1 and gateway 2 as examples. In practical applications, links can be established between Wi-Fi modules of adjacent gateways in the system.
  • the low-power module is similar to the Wi-Fi module, and has the function of autonomous routing and autonomous learning of routing information. Therefore, in this implementation, the low-power module can be determined according to the destination address.
  • the receiving address of the next hop (for correspondence, refer to the description of related content below).
  • the Wi-Fi link After a period of time or due to no data transmission for a long time, the Wi-Fi link will be dormant again. In order to facilitate data transmission, the controller needs to periodically wake up the Wi-Fi link. In some scenarios, all Wi-Fi links in the system need to transmit data, and the controller needs to periodically wake up all Wi-Fi modules in the system.
  • the method of re-awakening the Wi-Fi module can refer to the description of the above-mentioned related content for details.
  • the controller needs to periodically wake up the Wi-Fi modules on the one or more Wi-Fi links.
  • the following takes waking up a Wi-Fi link as an example.
  • waking up a Wi-Fi link composed of the controller, gateway 1, gateway 2, gateway 3, gateway 6, and gateway 7 is taken as an example.
  • FIG. 4 is a schematic flowchart of a wake-up method provided by the present application.
  • the wake-up method includes but is not limited to the following description.
  • the low power consumption module of the first gateway receives a first message.
  • the first gateway refers to any gateway in the system that is not directly connected to the controller, that is, a non-root node gateway.
  • the first gateway can be gateway 2, gateway 3, gateway 6, gateway 7.
  • the controller sends a notification or message to Gateway 1, the notification or message is used to instruct Gateway 1 to generate a first message, and the first message is used to indicate to wake up the Wi-Fi network composed of Gateway 1, Gateway 2, Gateway 3, Gateway 6 and Gateway 7.
  • Link: the low power consumption module of gateway 1 receives the notification or message sent by the controller, and generates the first message.
  • the first message generated by the low-power module of gateway 1 includes a receiving address and a destination address.
  • the receiving address is the identification of the next-hop gateway that needs to be woken up
  • the destination address is the The identity of the wake-up gateway, where the receiving address is the identity of the low-power module of gateway 2 or the identity of the Wi-Fi module of gateway 2, and the destination address is the identity of the low-power module of gateway 7 or the Wi-Fi module of gateway 7 logo.
  • the low-power module of the gateway does not have its own active route selection function, then when determining the receiving address of the next hop according to the destination address, it needs to rely on the route selection function of the Wi-Fi module of the gateway. That is, the Wi-Fi module can select the gateway that needs to be sent as the next hop according to the destination address. For example, if the low-power module of gateway 1 does not have the function of autonomous routing, it needs to rely on the Wi-Fi module of gateway 1 to determine which gateway needs to be woken up next according to the destination address, that is, the first message The receiving address in is determined by the Wi-Fi module of gateway 1 according to the destination address, and then sent to the low-power module of this gateway.
  • the low-power module of the gateway can complete the route selection by itself, and determine the address of the next hop according to the destination address. For example, if the low power consumption module of gateway 1 has the function of autonomous route selection, the low power consumption module of gateway 1 can determine the receiving address of the next hop according to the destination address.
  • the first message is usually transmitted in the system in the form of unicast.
  • the first message generated by the low-power module of gateway 1 includes the addresses of the gateways on the link that need to be woken up.
  • the addresses of the gateways can be the identifiers of the low-power modules of the gateways or Wi -Fi module identification, for example, in this embodiment, the address of each gateway that needs to be woken up on the link includes the identification of the Wi-Fi module of gateway 1 or the identification of the low-power module, and the identification of the Wi-Fi module of gateway 2 Or the logo of the low-power module, the logo of the Wi-Fi module of gateway 3 or the logo of the low-power module, the logo of the Wi-Fi module of gateway 6 or the logo of the low-power module, the logo of the Wi-Fi module of gateway 7 logo or the logo of the low-power module.
  • the first message may be transmitted in the system in the form of unicast or broadcast.
  • the addresses of the gateways on the link that need to be woken up may exist in the form of a Bitmap.
  • “0" or “1” can be used to indicate whether the Wi-Fi module of the gateway needs to be awakened, where “0” indicates that the Wi-Fi module of the gateway does not need to be awakened, and “1” indicates that the Wi-Fi module of the gateway does not need to be awakened.
  • gateway 1 to gateway 7 It can also represent gateway 1 to gateway 7 in order from right to left, then "1100111" means that the gateways that need to be woken up include gateway 1, gateway 2, gateway 3, gateway 6, gateway 7, and so on.
  • This example is only used as an example, and other forms of Bitmap may also be used to represent the addresses of the gateways that need to be woken up, which is not limited in this application.
  • the low power consumption module of the first gateway receives the first message sent by the previous gateway, for example, if the first gateway is gateway 2, the low power consumption module of gateway 2 receives the low power consumption module of gateway 1 The first message sent; if the first gateway is gateway 3, the low power module of gateway 3 receives the first message sent by the low power module of gateway 2; and so on.
  • Way B the controller directly generates the first message according to the link that needs to be woken up, and then sends the first message.
  • the first message generated by the controller includes a receiving address and a destination address, wherein the receiving address is the identifier of the low-power module of gateway 1, and the destination address is still the identifier of the low-power module of gateway 7 or the ID of the Wi-Fi module.
  • the first message is usually sent in a unicast manner.
  • the receiving address can be determined by the low-power module according to the destination address; when the low-power module of the gateway does not have the function of actively selecting routes, the receiving address It can be determined by the Wi-Fi module of the gateway, and the Wi-Fi module determines the receiving address and sends it to the low-power module.
  • the first message generated by the controller includes the addresses of the gateways on the link that need to be woken up.
  • the content included in the first message in this implementation is the same as the content in the first message in the second implementation in mode A, and the first message may also exist in the form of a Bitmap.
  • the first message can be transmitted in the system in the form of unicast or broadcast.
  • the first gateway refers to any gateway in the system.
  • the first gateway may be gateway 1, gateway 2, gateway 3, gateway 6, and gateway 7. If the first gateway is gateway 1, the low-power module of gateway 1 receives the first message sent by the controller; if the first gateway is gateway 2, the low-power module of gateway 2 receives the first message sent by the controller The first message sent; etc.
  • the first message may further include a serial number, and the serial number is used to identify the first message.
  • the meaning of the serial number is similar to the meaning of the serial number when the gateway is woken up for the first time mentioned above, both of which are used to identify a certain message, the difference is that different serial numbers are used to identify different messages.
  • the low power consumption module of the first gateway determines whether the address of the gateway is included in the first message.
  • the low power consumption module of the first gateway wakes up the Wi-Fi module of this gateway, and sends the first message.
  • the low power consumption module of the first gateway directly sends the first message.
  • the first message includes the receiving address and the destination address
  • the first low-power module judges whether the receiving address in the first message is the address of the gateway, and if so, wakes up the first Wi-Fi module , and modify the receiving address in the first message to the identifier of the gateway that needs to be woken up in the next hop, and then send the first message to identify it; if not, then send the first message directly without waking up.
  • the first message includes the addresses of the gateways on the link that need to be woken up, and the first low-power module judges whether the first message includes the address of the gateway. If it is not on the link, wake up the first Wi-Fi module, and then send the first message; if not, it means that the gateway is not on the link that needs to be woken up, and then directly send the first message.
  • the first low-power module first judges whether it has received a message with the same serial number; If it has been received, it will be judged whether the address of the gateway is included in the first message, and the corresponding operation will be performed according to the judgment result. If it has been received, no processing will be done.
  • step S103 before sending the first message, it may be judged whether the destination address in the first message is the address of the gateway, if so, not to send, if not, to be sent.
  • Steps S101 to S104 describe the actions of one gateway.
  • the system includes multiple gateways, so steps S101 to S104 are executed in a loop until each Wi-Fi on the link indicated by the first notification The modules are all woken up. After all the Wi-Fi modules on the link indicated by the first notification are woken up, the Wi-Fi link can be used for high-speed data transmission. If there are multiple Wi-Fi links that need to be woken up, each link in the multiple links is woken up separately, and the controller sends multiple first notifications, each of which indicates that a link needs to be woken up. The first notification indicates that the links that need to be woken up are different.
  • the gateway includes a Wi-Fi module and a low-power module, and the entire IoT system includes a Wi-Fi link and a low-power link.
  • the Wi-Fi link is used for high-speed transmission of business data, and the low-power
  • the power consumption link is used to transmit business data at low speed.
  • the Wi-Fi link is in a dormant state, which can reduce the power consumption of the system and meet the needs of different industries.
  • the terminal device When the detection data of the terminal device is abnormal, for example, the infrared sensor on the terminal device in the water conservancy scene detects that someone is approaching the dangerous area, or the smoke sensor in the forest detects that the smoke exceeds the threshold, or the temperature sensor detects that the temperature If the humidity is too low or too high, for example, if the humidity sensor in the soil detects that the humidity is too high or not enough, etc., the terminal device will send an alarm notification to the corresponding connected gateway. Wi-Fi module and trigger to wake up the Wi-Fi modules of each gateway on the link from the gateway to the controller, so that the environmental data collected by the terminal equipment can be transmitted from the gateway to the Wi-Fi link where the controller is located. The following describes the process of waking up the Wi-Fi link from the gateway to the controller in this scenario in conjunction with FIG. 1 , as shown in FIG. 5 , which is a schematic flowchart of another wake-up method provided by the present application.
  • the low power consumption module of the second gateway is triggered to wake up the Wi-Fi module of the second gateway under a trigger condition, and generates and sends a first message.
  • the second gateway is any gateway in the system, for example, the second gateway may be gateway 1, gateway 2, gateway 3, gateway 4, gateway 5, gateway 6, and gateway 7 in FIG. 1 .
  • the trigger condition includes that the low power consumption module of the second gateway receives an alarm notification sent by the terminal device, where the alarm notification is generated when the terminal device detects abnormal data.
  • the low power consumption module of the second gateway receives the alarm notification sent by the terminal device, triggers to wake up the Wi-Fi module of the gateway, generates and sends the first message.
  • the first message includes a receiving address and a destination address, wherein the receiving address is the identification of the gateway that needs to be woken up at the next hop, for example, the identification of the low-power module of the gateway that needs to be woken up at the next hop, and the destination
  • the address is the identification of the last gateway that needs to be woken up on the link from the gateway to the controller, that is, the identification of the root node gateway on the link from the gateway to the controller.
  • the identification can be, for example, the identification of the Wi-Fi module or the low Identification of the power consumption module.
  • the destination address may also be an address of the controller, and the address of the controller may be, for example, a MAC address or an Internet protocol (internet protocol, IP) address of the controller.
  • IP Internet protocol
  • specific indication information may be used to indicate the identity of the root node gateway or the address of the controller.
  • the specific indication information may be a specific character or number or code, for example, the specific character may be F.
  • the receiving address in the first message can be determined by the low power consumption module of the second gateway according to the destination address, if the low power consumption module of the second gateway does not With the function of autonomous routing, the receiving address in the first message can be determined by the Wi-Fi module of the second gateway according to the destination address, and then sent to the second low-power module.
  • the first message is usually transmitted on the link in the form of unicast.
  • the first message includes the identifiers of the gateways on the link from the second gateway to the controller, and the identifiers may be the identifiers of the low power consumption module or the Wi-Fi module.
  • the second gateway is gateway 4
  • the low power consumption module of gateway 4 triggers to wake up the Wi-Fi module of this gateway, generates and sends the first message
  • the first message includes the identifier of the low-power module of gateway 3 or the identifier of the Wi-Fi module, the identifier of the low-power module of gateway 2 or the identifier of the Wi-Fi module, the identifier of the low-power module of gateway 1 or The ID of the Wi-Fi module.
  • the identification of each gateway on the link from the gateway to the controller is stored in the low-power module by the Wi-Fi module of the gateway when it is first awakened.
  • the first message may be transmitted in the system in the form of unicast or broadcast.
  • the identifiers of the gateways on the link from the second gateway to the controller may exist in the form of a Bitmap.
  • the first message may further include a sequence number.
  • the meaning of the serial number is similar to the meaning of the serial number in the foregoing embodiments, and will not be repeated here.
  • the low power consumption module of the first gateway receives the first message.
  • the first gateway refers to any gateway on the link from the second gateway to the controller, the first gateway is different from the second gateway, for example, if the second gateway is gateway 4 in Figure 1, then the first gateway refers to is any gateway located on the link from gateway 4 to the controller, such as gateway 3 or gateway 2 or gateway 1; if the second gateway is gateway 6 in Figure 1, then the first gateway refers to the gateway located by Any gateway on the link from the gateway 6 to the controller, for example, may be the gateway 5 or the gateway 2 or the gateway 1 or the gateway 3 .
  • the first low power consumption module receives the first message.
  • the second gateway is gateway 4
  • the first message received by the low power consumption module of gateway 3 is sent by the low power consumption module of gateway 4
  • the first gateway is Gateway 2
  • the first message received by the low-power module of gateway 2 is sent by the low-power module of gateway 3
  • the first gateway is gateway 1, the first message received by the low-power module of gateway 1
  • the message is sent by the low power module of gateway 2.
  • the second gateway is gateway 6, if the first gateway is gateway 5, the first message received by the low power consumption module of gateway 5 is sent by the low power consumption module of gateway 6; if the first gateway is Gateway 2, the first message received by the low-power module of gateway 2 is sent by the low-power module of gateway 5; if the first gateway is gateway 1, the first message received by the low-power module of gateway 1 The message is sent by the low power module of gateway 2.
  • the link from the second gateway to the controller can be gateway 6, gateway 5, gateway 2, gateway 1, or gateway 6, gateway 3, gateway 2 , gateway 1.
  • the low power consumption module of the first gateway determines whether the address of the gateway is included in the first message.
  • the low power consumption module of the first gateway wakes up the Wi-Fi module of this gateway, and sends out the first message.
  • the low power consumption module of the first gateway directly sends the first message.
  • the first message includes the receiving address and the destination address
  • the low power consumption module of the first gateway judges whether the receiving address in the first message is the address of the gateway, and if so, wakes up the Wi-Fi of the gateway.
  • -Fi module modify the receiving address in the first message to the identification of the gateway that needs to be woken up in the next hop, and then send the first message to identify; if not, the low power consumption module of the first gateway directly sends the first message send it out.
  • the first message includes the identification of each gateway on the link from the second gateway to the controller, and the low power consumption module of the first gateway judges whether the address of the gateway is included in the first message, If included, wake up the Wi-Fi module of the gateway, and send the first message; if not included, directly send the first message.
  • the low-power module of the first gateway first judges whether a message with the same serial number has been received, and if not If it has been received, it will judge whether the first message includes the address of the gateway, and perform corresponding operations according to the judgment result; if it has received it, it will not do any processing.
  • the second gateway in step S201 may be any gateway in the system.
  • Steps S202 to S205 describe the actions of any gateway (not the second gateway) in the link from the second gateway to the controller. If the gateway is the root node gateway directly connected to the controller, it only needs to be executed once The operation from step S202 to step S205 can wake up the Wi-Fi module of the root node gateway. If the gateway is not the root node gateway, it is necessary to perform steps S202 to S205 in a loop until the second gateway to the controller. All Wi-Fi modules wake up. The awakened Wi-Fi link can be used for high-speed transmission of data collected by terminal devices.
  • the Wi-Fi link when there is no need to transmit data, the Wi-Fi link is in a dormant state, which can save electricity and reduce power consumption; when encountering an abnormal situation, wake up the Wi-Fi module of the gateway through each low-power module , so that the Wi-Fi link can transmit data normally.
  • the first message is transmitted between the low-power modules of each gateway, and the first message exists in the form of a message.
  • the message format of the first message is introduced below .
  • the first message is a message based on the BLE protocol.
  • FIG. 6 is a schematic diagram of a network layer message format based on the BLE protocol provided by the embodiment of the present application.
  • the network layer message is a protocol data unit (protocol data unit, PDU), and the PDU includes a "header” field, a "length” field and a "data” field, wherein the "header” field includes a "broadcast message type” field, the Reserved field, the From Address Type field, and the Receive Address Type field.
  • the number below each field indicates the number of bytes occupied by the field, and the number above indicates the number of bits occupied by the field.
  • the "broadcast message type" field in the message is extended.
  • the "broadcast message type” is used to indicate the transmission form of the message and/or or the type or purpose of the message. For example, use “0111” to indicate that the message is transmitted in the form of broadcast and indicate that the message is a wake-up message (used to indicate to wake up the Wi-Fi module of the gateway); use "0000" to indicate that the message is transmitted in the form of broadcast ;etc.
  • the "broadcast packet type" field may be empty.
  • Send address type indicates the type of identification of the BLE module of the current gateway
  • Receiving address type indicates the type of identification of the BLE module of the next-hop gateway
  • the type of identification of the BLE module of the current gateway or the next-hop gateway It may be a public device address or a random device address, and the random device address may be a static device address or a private device address, and so on.
  • the "data” field includes multiple advertising data (advertising data, AD) structures, and each AD structure includes 3 subfields: AD length (length), AD type (type) and AD data (data).
  • AD structure in the "data” field is extended.
  • the first message includes the receiving address and the destination address.
  • it can also include a serial number, and the receiving address can be carried in the "data" field
  • AD structure for example:
  • AD type 0x20//Among them, the 0x20 type is used to indicate the next hop address, that is, the receiving address
  • AD data the identification of the BLE module or the identification of the Wi-Fi module
  • the destination address can be carried in an AD structure in the "data" field, for example:
  • AD type 0x22//Among them, the 0x22 type is used to indicate the address of the last node, that is, the destination address
  • AD data the identification of the BLE module or the identification of the Wi-Fi module
  • serial number can be carried in an AD structure in the "data" field, for example:
  • AD type 0x21//Among them, the 0x21 type is used to indicate the serial number
  • the first message includes the addresses of the gateways that need to be woken up, and the addresses of multiple gateways that need to be woken up can be carried in multiple AD structures in the "data" field, wherein one AD structure carries the address of one gateway. address.
  • the BLE modules of each gateway send a second message, and the second message may also exist in the message format shown in Figure x.
  • the "broadcast message type" may also be represented by "0111". If the second message is transmitted in the form of unicast, and the second message includes a broadcast address, the "broadcast packet type" field can be empty, and the broadcast address is carried in one or more AD structures in the "data" field.
  • the message format shown in Figure 6 is only for example.
  • the first message or the second message can also be in other message formats.
  • the extension field in the message is just an implementation method, and other fields can also be extended in practical applications. To implement the method described in the embodiment of this application, this application does not make a limitation.
  • the first message is a message based on the ZigBee standard protocol.
  • FIG. 7 is a schematic diagram of a network layer message based on the ZigBee standard protocol provided by the present application.
  • the numbers below each field indicate the occupied space.
  • the "Frame Control” field includes the "Frame Type” subfield, and the "Frame Type” can be used to indicate whether the message carries data or commands. For example, when the "Frame Type" is "00”, it means that the message What is carried in the message is data, and when the "frame type” is "01”, it means that the message is carried in a command.
  • This application extends the "frame type” subfield in the "frame control” field in the message, for example, the extension is: use “10" to indicate that the message is a wake-up message, and the wake-up message is used to indicate the Wi -Fi module.
  • the "frame load” field includes multiple advertising data (advertising data, AD) structures, and each AD structure includes 3 subfields: AD length (length), AD type (type) and AD data (data).
  • AD structure in the "frame load” field is extended. For example, if the first message includes the receiving address and the destination address, the receiving address can be carried in an AD structure in the "frame load” field, for example:
  • AD type 0x00//0x00 type is used to indicate the next hop address, that is, the receiving address
  • AD data the identification of the ZigBee module or the identification of the Wi-Fi module
  • the receiving address can also be carried in the two AD structures of the "Frame Load" field, for example:
  • AD type 0x00//0x00 type is used to indicate the identification of the ZigBee module of the next-hop gateway
  • AD data the identification of the ZigBee module
  • AD type 0x01//0x01 type is used to indicate the identification of the Wi-Fi module of the next-hop gateway
  • AD data the identification of the Wi-Fi module
  • the destination address in the first message can be carried in one AD structure or two AD structures, and the sequence number can be carried in one AD structure.
  • the addresses of multiple gateways that need to be woken up can be carried in multiple AD structures in the "frame load" field, wherein one AD structure carries the address of one gateway .
  • the second message sent between the ZigBee modules of each gateway may also exist in the message format shown in FIG. 7 .
  • the first message or the second message sent between the ZigBee modules of each gateway is usually transmitted in the form of unicast. If it needs to be transmitted in the form of broadcast, a certain field in the ZigBee protocol message can be extended, for example, the "multicast flag" field in the "frame control" field in Figure 7 can be extended, using special characters or Number or code to indicate that the message is transmitted in the form of broadcast.
  • the message format shown in Figure 7 is only for example.
  • the first message or the second message can also be in other message formats.
  • the extension field in the message is just an implementation method, and other fields can also be extended in practical applications. To implement the method described in the embodiment of this application, this application does not make a limitation.
  • the Wi-Fi module in the gateway can also be awakened through the Beidou system or based on the base station system.
  • Fig. 8 is a schematic structural diagram of an IoT system based on the Beidou system provided by the present application.
  • a Fi module and a low-power module is a Beidou communication module, wherein the Beidou communication module can be deployed on the gateway through an interface or a plug-in card.
  • the Beidou console is used to receive the message sent by the controller, and send the message to the Beidou communication module of the gateway through the Beidou satellite.
  • the Beidou communication module is used to receive and analyze the message; the Beidou communication module is also used to send the message to Beidou through the Beidou satellite Console, the Beidou console sends the received message to the controller; the Beidou communication module is also used to send the message to the Beidou communication module of other gateways through the Beidou satellite, or to receive the Beidou communication module of other gateways through Beidou Messages sent by satellites.
  • the Beidou communication module is also used to wake up the Wi-Fi module of the gateway, and to transmit data collected by terminal devices at low speed.
  • the message or data may exist in the form of a short message.
  • the controller can send a second message to the Beidou communication modules of each gateway through the Beidou console and Beidou satellite.
  • the second message includes a broadcast address, and the broadcast address is used to instruct to wake up the Wi-Fi modules of all gateways in the system.
  • the Beidou communication module of each gateway obtains the second message, and wakes up the Wi-Fi module of the gateway according to the second message.
  • each gateway can send a confirmation wake-up message to the controller through the awakened Wi-Fi link, or send a message to the controller through the Beidou communication module, Beidou satellite and Beidou console. Send a confirmation wakeup message.
  • the second message may include the identification of the Beidou communication module on each gateway, where the identification of the Beidou communication module may be the registration identification of the Beidou communication module when it is registered on the controller, or may be used to represent the Beidou communication module other identifiers.
  • each gateway After the Wi-Fi modules of each gateway are woken up, they register with the controller respectively. After the registration is completed, each Wi-Fi module will receive a registration identifier returned by the controller. After the registration is completed, each gateway sends the identification of its own Wi-Fi module and the identification of the Beidou communication module to the controller. Therefore, the identification of the Wi-Fi module and the identification of the Beidou communication module of each gateway in the system are stored in the controller.
  • the Wi-Fi link After a period of time or due to no data transmission for a long time, the Wi-Fi link will be dormant again. In order to facilitate data transmission, the controller needs to wake up the Wi-Fi link periodically. If all Wi-Fi links in the system need to transmit data, the controller needs to periodically wake up all Wi-Fi modules in the system. In this case, the method of initial wakeup can be used to wake up again. For details, refer to For the sake of brevity, the above-mentioned description of the related content of the initial wake-up method of the IoT system based on the Beidou system will not be repeated here.
  • the controller needs to periodically wake up the Wi-Fi modules on the one or more Wi-Fi links.
  • the wake-up procedure in this case is described below.
  • the controller sends a first message to the Beidou console.
  • the first message includes the identification of the Wi-Fi module and/or the identification of the Beidou communication module of each gateway on the link that needs to be woken up.
  • the link that needs to be woken up is the link formed by gateway 4, gateway 3, gateway 2 and gateway 1
  • the first message includes the identification of the Wi-Fi module of gateway 4 and/or the identification of the Beidou communication module, the gateway The identification of the Wi-Fi module of 3 and/or the identification of the Beidou communication module, the identification of the Wi-Fi module of gateway 2 and/or the identification of the Beidou communication module, and the identification of the Wi-Fi module of gateway 1 and/or the identification of the Beidou communication module
  • the identification of each gateway where the identification of each gateway is not in sequence.
  • the identifiers of the Wi-Fi modules of the gateways and/or the identifiers of the Beidou communication modules included in the first message may exist in the form of a Bitmap.
  • the Beidou console sends the first message through the Beidou satellite.
  • the Beidou communication module of each gateway receives the first message, and judges whether the first message includes the identification of the gateway, the identification of the gateway includes the identification of the Wi-Fi module of the gateway or the identification of the Beidou communication module, if included, Then wake up the Wi-Fi module of this gateway, if it is not included, it will not wake up. Therefore, each Wi-Fi module on the Wi-Fi link that needs to be woken up is woken up, and the Wi-Fi link after the wakeup can be used for high-speed data transmission.
  • the gateway can send a confirmation wake-up message to the controller through the awakened Wi-Fi link, or send a confirmation to the controller through the Beidou communication module, Beidou satellite and Beidou console Wake up message.
  • the wake-up method may include but not limited to:
  • a certain gateway receives the alarm notification sent by the terminal device (when the terminal device detects abnormal data, it sends out an alarm notification), and sends an alarm notification to the controller through the Beidou satellite and Beidou console, and the controller receives the alarm notification , generate the first message, the first message includes the identification of the Beidou communication module and/or Beidou communication module of each gateway on the link from the gateway to the controller, and send the first message through the Beidou console and Beidou satellite .
  • the controller when the controller receives the alarm notification sent by the Beidou communication module of the gateway 4, the controller generates a first message, which includes the information of each Wi-Fi module on the Wi-Fi link from the gateway 4 to the controller. logo.
  • the first message may also include the identification of the Beidou communication module of each gateway on the link from the gateway 4 to the controller, specifically including the identification of the Beidou communication module of gateway 1 and the identification of the Beidou communication module of gateway 2. logo, the logo of the Beidou communication module of gateway 3, and the logo of the Beidou communication module of gateway 4.
  • the Beidou communication module of the gateway wakes up the Wi-Fi module of the gateway and generates a first message, which includes To the Beidou communication module and/or the identification of the Beidou communication module of each gateway on the link where the controller is located, and send the first message through the Beidou satellite.
  • each gateway After the Beidou communication module of each gateway receives the first message, it judges whether the first message includes the identity of the gateway, if included, wakes up the Wi-Fi module of the gateway, and if not included, does not wake up.
  • the awakened Wi-Fi link can be used for high-speed transmission of abnormal data collected by terminal equipment to the controller, and the controller uploads the data to the server, so that relevant personnel can take corresponding measures in time according to the abnormal data.
  • the application provides a wake-up method based on a base station system, the system involves a controller, a gateway, a terminal device, and a base station, wherein the gateway includes a Wi-Fi module and a low-power module, and the low-power module is an air interface (air interface) communication module, the air interface communication module can be deployed on the gateway in the form of a plug-in card or an interface.
  • the gateway includes a Wi-Fi module and a low-power module
  • the low-power module is an air interface (air interface) communication module
  • the air interface communication module can be deployed on the gateway in the form of a plug-in card or an interface.
  • the air interface communication module is used for wireless communication between the base station and the mobile phone.
  • the communication technologies supported by the air interface communication module include but are not limited to GSM, TD-SCDMA, WCDMA, CDMA, CDMA2000, LTE, NR, NB, etc.
  • the supported communication technologies also include 5G communication technology and higher communication technologies that may appear in the future.
  • the air interface communication module is used for low-speed data transmission, considering the need to reduce power consumption without affecting the data transmission of low-power links. For example, the amount of data collected by the terminal device is small or the transmission rate is not high. In the case of , it can be transmitted at a low speed through the air interface communication module.
  • the air interface communication module is also used to wake up the Wi-Fi module of the gateway. The awakened Wi-Fi module is used for high-speed data transmission. For example, when the amount of data collected by the terminal device is large or the transmission rate is high, the Wi-Fi module can be used to transmit data, for example, it can be used to transmit images or videos, etc. .
  • the difference between the wake-up method based on the base station system and the wake-up method based on the Beidou system is: in the wake-up method based on the Beidou system, the controller sends a message to the Beidou communication module on the gateway or the Beidou communication module on the gateway sends a message to the controller, and It is sent through the Beidou console and Beidou satellite; and based on the wake-up method of the base station system, the controller sends a message to the air interface communication module on the gateway or the air interface communication module on the gateway sends a message to the controller, and it is sent through the base station.
  • the wake-up method based on the base station system reference may be made to the above description of the wake-up method based on the Beidou system.
  • FIG. 9 is a schematic diagram of a hardware structure of a gateway 300 provided by the present application.
  • the gateway 300 includes at least one processor 301, a communication bus 302, a memory 303, at least one Communication interface 304 , low power consumption module 305 , Wi-Fi module 306 and power supply control module 307 .
  • Processor 301 can be a general-purpose central processing unit (central processing unit, CPU), network processor (network processor, be called for short NP), microprocessor, or also can be one or more integrated circuits for realizing the scheme of this application .
  • CPU central processing unit
  • network processor network processor
  • microprocessor or also can be one or more integrated circuits for realizing the scheme of this application .
  • application-specific integrated circuit application-specific integrated circuit, ASIC
  • programmable logic device programmable logic device
  • PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • Communication bus 302 is used to transfer information between the various components.
  • the communication bus 302 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory 303 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, and can also be a random access memory (random access memory, RAM) that can store information and instructions
  • Other types of dynamic storage devices can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), read-only disc (compact disc read-only memory, CD-ROM) or other optical disc storage , optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, can also be used to carry or store program codes in the form of instructions or data structures and Any other medium capable of being accessed by a computer, but not limited to.
  • the memory 303 may exist independently and be connected to the processor 301 through the communication bus 302 ; the memory 303 may also be integrated with the processor 301 .
  • the communication interface 304 is used to communicate with other devices or communication networks.
  • the communication interface 304 may include a wired communication interface, and may also include a wireless communication interface.
  • the wired communication interface may be, for example, an Ethernet interface, and the Ethernet interface may be an optical interface, an electrical interface or a combination thereof.
  • the wireless communication interface may be a wireless local area network (wireless local area networks, WLAN) interface, a cellular network communication interface, or a combination thereof.
  • the gateway 300 can communicate with the terminal equipment through the communication interface 304.
  • the terminal equipment can be, for example, a rain gauge, a water level gauge, a smoke sensor, a temperature sensor, a humidity sensor, a camera, an infrared sensor, etc.
  • 304 Receive images or videos or other data sent by the terminal device.
  • the processor 301 may include one or more CPUs.
  • the gateway 300 may include multiple processors 301 .
  • Each of the multiple processors 301 may be a single-core processor (single-CPU), or a multi-core processor (multi-CPU).
  • the processor 301 herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 303 is used to store the program code of the solution of the present application
  • the processor 301 is used to execute the program code stored in the memory 303 . That is, the gateway 300 can implement the methods provided in the embodiments in FIG. 1 to FIG. 7 through the processor 301 and the program codes in the memory 303 .
  • Low power consumption module 305 comprises a kind of in bluetooth module, ZigBee module, air interface communication module or Beidou communication module, comprises a plurality of logic units and internal memory in these communication modules, and logic unit is used for parsing the first message or the second message that receives The message, the memory is used to store data, the data includes, for example, routing information sent by the Wi-Fi module 306 to the low power module 305, and also includes data generated during the process of parsing the first message or the second message by the logic unit.
  • the low power consumption module 305 is used to wake up the Wi-Fi module 306 of the gateway 300, and is also used to transmit data at a low speed.
  • the Wi-Fi module 306 includes a radio frequency unit, a processor, and a memory.
  • the Wi-Fi module 306 is externally connected to an antenna, the antenna is used to receive or send wireless analog signals, and the radio frequency unit is used to convert the wireless analog signals received by the antenna into digital Signals, or used to convert digital signals into analog signals and send them out through the antenna.
  • the processor is used to process data, and the memory is used to store data.
  • the stored data includes intermediate data generated during data processing by the processor, and also includes the identification of the Wi-Fi module 306 of the gateway 300, the identification of the low-power module 305, and related information.
  • the storage may include a memory for temporarily storing data, for example, ROM, RAM, etc., and may also include a hard disk for persistent storage.
  • the gateway 300 when the gateway 300 is powered on, the low power consumption module 305 is in a power-on state, and the Wi-Fi module 306 is in a sleep state, and the sleep state refers to a power-off state.
  • the power supply control module 307 is used to control the power supply to the Wi-Fi module 306 .
  • the low power consumption module 305 judges whether the first message includes the gateway 300 address, after judging, if so, the low power consumption module 305 sends a wake-up notification to the processor 301 connected to the low power consumption module 305, and the wake-up notification is used to instruct the processor 301 to wake up the Wi-Fi module 306, and the processor 301 After receiving the wake-up notification, control the power supply control module 307 to supply power to the Wi-Fi module 306 to wake up the Wi-Fi module 306, so that the Wi-Fi module 306 is in a power-on state.
  • the Wi-Fi module 306 in a power-on state can receive data sent by a terminal device, and transmit the data to the controller at high speed, wherein the terminal device is such as a camera. After judging, if not, the low power consumption module 305 directly sends the first message.
  • the low power consumption module 305 when the low power consumption module 305 receives the second message sent by the controller or the root node gateway, the low power consumption module 305 parses the second message and includes the broadcast address, and the broadcast address indicates to wake up the Wi-Fi module 306 in each gateway , the low power consumption module 305 sends a wake-up notification to the processor 301, and the processor 301 controls the power supply control module 307 to supply power to the Wi-Fi module 306 after receiving the wake-up notification.
  • the gateway 300 may include at least one single board (board), and the low power consumption module 305 and the Wi-Fi module 306 in the gateway 300 may be located on different single boards, for example, referring to the schematic diagram shown in FIG. 10 ,
  • the gateway 300 includes an access point board (access point, AP) and an Internet of Things (internet of things, IOT) single board, the Wi-Fi module 306 is located on the IOT single board, and the low power consumption module 305 is located on the AP board.
  • the low power consumption module 305 and the Wi-Fi module 306 in the gateway may also be located on a single board.
  • both the low power consumption module 305 and the Wi-Fi module 306 are located on the AP board.
  • FIG. 10 takes FIG. 10 as an example to introduce how the low power consumption module 305 in the gateway 300 wakes up the Wi-Fi module 306 .
  • FIG 10 is a schematic structural diagram of a gateway 300 provided by the present application.
  • terminal devices such as rain gauges and Beidou terminals that collect less data or consume less network resources for data transmission can be Connect with the processor, collect a large amount of data to the camera or other terminal equipment that consumes a large amount of network resources for data transmission, and can be connected to the Wi-Fi module.
  • the camera can be connected to the power supply control module in the gateway 300, and the power supply control module simultaneously controls the power supply of the camera and the Wi-Fi module.
  • the terminal device and the Wi-Fi module are in a dormant state, that is, not powered on.
  • the low power consumption module receives the first message and judges that the first message includes the address of the gateway 300, Or when receiving the second message, send a wake-up notification to the processor, the processor receives the wake-up notification, and controls the power supply control module to supply power to the Wi-Fi module and the terminal device at the same time, and after the terminal device is powered on, it is used to collect surrounding environmental data , and send the environmental data to the Wi-Fi module, and the Wi-Fi module is used to send the environmental data collected by the terminal device to the controller. If it is judged that the first message does not include the address of the gateway 300, the low power module directly sends the first message.
  • the camera is equipped with an infrared sensor and a small power supply that can only work for the infrared sensor.
  • the camera is connected to the power supply control module of the gateway 300.
  • the power supply control module is used to control the power consumption required by the camera for acquisition work, and the camera is equipped with a charging and disconnecting mechanism.
  • the small power supply is not limited by the power supply control module of the gateway 300, whether the camera is powered on or off, the small power supply can supply power for the infrared sensor by itself to ensure the normal operation of the infrared sensor.
  • the power supply control module can sense whether the camera is in a charging state or a power-off state.
  • the camera When the camera is in a dormant state, when the infrared sensor detects an abnormality, the camera will automatically start charging so that the power supply control module can charge the camera. After the power supply control module detects that the camera starts charging, the power supply control module will charge the Wi-Fi module Provide power to wake up the Wi-Fi module, so that the Wi-Fi module can transmit the data collected by the camera to the controller at high speed.
  • the camera may have an independent power supply, and the camera is connected to the gateway 300 through communication.
  • the camera detects abnormal data
  • the camera sends an alarm notification to the gateway 300.
  • the gateway 300 receives the alarm notification, Control the power supply control module to supply power to the Wi-Fi module.
  • the method for the camera to detect abnormal data may be, for example, that the camera has data processing capabilities, and can detect the collected data to determine whether there is any abnormality in the data; for another example, other types of sensors on the camera, such as infrared sensors, can Data abnormality is detected, etc., and this application does not limit the method for detecting data abnormality by the camera.
  • one or more other processors may also be included on the IoT board or the AP board, for assisting the low power consumption module or the Wi-Fi module on the gateway 300 to parse messages, processing data, etc.
  • the present application does not limit the quantity or location of other processors on the gateway 300 .
  • FIG. 10 and FIG. 11 are schematic structural diagrams of a gateway exemplarily provided in the present application, which are for example only, and do not constitute a limitation to the present application.
  • the gateway 300 in the embodiment of the present application may correspond to the first gateway or the second gateway in the above-mentioned various method embodiments, for example, the gateway 300 may be the gateway 1, the gateway 2, the gateway 3, the gateway 4, the gateway 5, The gateway 6 , the gateway 7 , and each functional module in the gateway 300 may implement functions and/or implement various steps and methods of the devices in the foregoing method embodiments. For the sake of brevity, details are not repeated here.
  • the present application also provides a system, the system includes a controller and multiple gateways, the multiple gateways can be any gateways involved in Figure 1 to Figure 11, for example, the first gateway and the second gateway described in the method embodiment Two gateways, the gateway described in Figure 9 or Figure 10 or Figure 11 in the device embodiment, the controller can be any controller involved in Figure 1 to Figure 11, for example, the controller in Figure 1 or Figure 8 of the system architecture , the controller described in the method embodiments, etc.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium
  • several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer program instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program instructions may be transmitted from a website, computer, server, or data center through Wired or wireless transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a digital video disc (digital video disc, DVD), or a semiconductor medium (such as a solid state disk), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种唤醒方法、网关及系统,所述网关包括低功耗模块和无线联盟Wi-Fi模块,Wi-Fi模块处于休眠状态,低功耗模块用于将处于休眠状态的Wi-Fi模块唤醒。所述唤醒方法包括:第一网关的低功耗模块接收到第一消息;确定第一消息包含第一网关的地址;响应于确定第一消息包含第一网关的地址,唤醒第一网关的无线联盟Wi-Fi模块。本申请提供的网关具有低功耗的特性,采用本申请提供的唤醒方法,能够有效降低网关及整个系统的功耗。

Description

一种唤醒方法、网关及系统
本申请要求于2021年11月30日提交中国专利局、申请号为202111446161X、申请名称为“一种唤醒方法、网关及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种唤醒方法、网关及系统。
背景技术
物联网包括感知层、网络层和应用层。感知层包括终端设备,终端设备上包括传感器,用于采集环境信息;网络层包括物联网关和物联控制器,物联控制器用于对物联网关进行控制、管理等,物联网关用于将终端设备采集的环境信息发送至位于应用层的服务器上,服务器用于实现对环境信息或数据的分析处理等。
国家相关标准要求,例如水利部强制标准中对于水利遥感测量设备,要求在电池供电情况下终端设备能够连续水文数据采集等工作不低于30天,同时要求物联网关能够支持终端设备采集的数据的传输,这对物联网关在电能方面的消耗带来了很大挑战,尤其是在条件较差的环境下。
发明内容
本申请公开了一种唤醒方法、网关及系统,所述网关能够满足不同行业的要求,使用本申请提供的唤醒方法,能够节省网关或系统的功耗。
第一方面,本申请提供了一种唤醒方法,所述方法包括:第一网关的低功耗模块接收到第一消息;确定所述第一消息包含所述第一网关的地址;响应于确定所述第一消息包含所述第一网关的地址,唤醒所述第一网关的无线联盟Wi-Fi模块。
可以看到,第一网关中包括低功耗模块和Wi-Fi模块,在低功耗模块接收到第一消息,确定第一消息中包括第一网关的地址的情况下,唤醒Wi-Fi模块,在低功耗模块接收到第一消息之前,或者在低功耗模块确定第一消息中不包括第一网关的地址的情况下,Wi-Fi模块是处于未唤醒的状态的,降低了用电量,减少了功耗,而低功耗模块耗电量少,节省功耗。
基于第一方面,在可能的实现方式中,所述低功耗模块包括蓝牙模块、ZigBee模块、空口通信模块或北斗通信模块中的一种。
可以看到,低功耗模块可以为蓝牙模块,也可以为ZigBee模块,在可能的实现方式中,低功耗模块还可以为空口通信模块或北斗通信模块,这些通信模块不仅耗电量少,而且能够用于传输数据,另外,第一网关中的Wi-Fi模块被唤醒后,也可以用于传输数据。因此,本申请中,第一网关可以通过多个通道或链路传输不同的数据,能够应用于不同行业、不同应用场景中,同时第一网关具有低功耗的特性。
基于第一方面,在可能的实现方式中,所述第一网关的地址包括所述第一网关的低功耗模块的地址或所述第一网关的Wi-Fi模块的地址。
可以理解,第一网关的地址可以是低功耗模块的地址,也可以是Wi-Fi模块的地址。
基于第一方面,在可能的实现方式中,所述第一消息是由第二网关在触发条件下生成并发送的;所述第一消息用于指示唤醒由所述第二网关至控制器所在链路上各个网关的Wi-Fi模块。
基于第一方面,在可能的实现方式中,所述触发条件包括所述第二网关接收到终端设备发送的告警通知,其中,所述告警通知是在所述终端设备检测到数据异常的情况下发出的。
可以理解,当终端设备检测到数据异常的情况下,终端设备向第二网关发送告警通知,第二网关接收到告警通知,触发生成第一消息,以指示唤醒由第二网关至控制器所在链路上各个网关的Wi-Fi模块,唤醒后的Wi-Fi链路可用于传输终端设备采集的异常数据,以便相关人员及时根据异常数据进行处理。本申请中,网关上设置有触发唤醒机制,能及时对环境中的异常情况进行处理,可应用于不同场景中。
基于第一方面,在可能的实现方式中,所述第一消息是由控制器或根节点网关发送的,所述根节点网关是与所述控制器直接连接的网关。
可以理解,第一消息也可以是由控制器或根节点网关生成并发送,在实际应用中,当需要唤醒系统中的某一条或多条Wi-Fi链路的情况下,可以由控制器或根节点网关根据实际需要确定需要唤醒的链路,通过第一消息的形式传播给其他网关。
基于第一方面,在可能的实现方式中,所述第一消息是以单播的方式发送的,所述第一消息中包括接收地址和目的地址,所述接收地址为下一跳需要唤醒的网关的地址,所述目的地址为最后一个需要唤醒的网关的地址;所述方法还包括:根据所述目的地址更新所述第一消息中的所述接收地址,将更新后的第一消息发送出去。
可以理解,第一消息可以以单播的形式在系统中传输。第一消息中包括接收地址和目的地址,以便每个网关接收到第一消息后根据接收地址确定第一消息是否是发送给本网关的,只有在接收地址为本网关的地址的情况下,网关的低功耗模块才唤醒Wi-Fi模块,然后网关确定并更新下一跳的接收地址,将更新后的第一消息发送出去,在接收地址不是本网关的地址的情况下,网关直接将第一消息发送出去,不唤醒Wi-Fi模块。实施本申请有助于降低网关或系统的功耗。
基于第一方面,在可能的实现方式中,所述第一消息中包括需要唤醒的各个网关的地址,所述第一消息是以单播或广播的方式发送的。
可以理解,第一消息中可以包括需要唤醒的链路上的各个网关的地址,第一消息可以以单播或广播的形式发送,当每个网关接收到第一消息后,判断第一消息中是否包括本网关的地址,若包括,则唤醒本网关的Wi-Fi模块,将第一消息发送出去,若不包括,不唤醒Wi-Fi模块,直接将第一消息发送出去。实施本申请有助于降低网关或系统的功耗。
基于第一方面,在可能的实现方式中,所述需要唤醒的各个网关的地址以位图Bitmap的形式存在。
基于第一方面,在可能的实现方式中,所述方法还包括:将所述第一消息发送出去。
第二方面,本申请提供了一种网关,包括低功耗模块和无线联盟Wi-Fi模块,所述Wi-Fi模块处于休眠状态,所述低功耗模块用于将处于休眠状态的所述Wi-Fi模块唤醒。
可以看到,网关包括低功耗模块和Wi-Fi模块,其中低功耗模块耗电量较少,Wi-Fi模块处于休眠状态时无需耗电,当需要使用Wi-Fi模块传输数据时,可通过低功耗模块将处于休眠状态的Wi-Fi模块唤醒,无需使用Wi-Fi模块时,Wi-Fi模块可再次处于休眠状态。本申请提供的网关耗电量较少,降低了网关以及整个系统的功耗。
基于第二方面,在可能的实现方式中,所述低功耗模块包括蓝牙模块、ZigBee模块、空 口通信模块或北斗通信模块中的一种。
可以理解,低功耗模块可以是蓝牙模块,也可以是ZigBee模块,在可能的实现方式中,低功耗模块还可以为空口通信模块或北斗通信模块,这些通信模块耗电量较少,且能够用于传输数据。另外,第一网关中的Wi-Fi模块被唤醒后,也可以用于传输数据。因此,本申请中,第一网关可以通过多个通道或链路传输不同的数据,能够应用于不同行业、不同应用场景中,同时第一网关具有低功耗的特性。
基于第二方面,在可能的实现方式中,所述休眠状态为未通电状态;
所述网关还包括处理器和供电控制模块,所述低功耗模块与所述处理器连接,所述处理器与所述供电控制模块连接;所述供电控制模块用于,控制对所述Wi-Fi模块的供电;
所述低功耗模块用于:接收第一消息,确定所述第一消息包含所述网关的地址,响应于确定所述第一消息包含所述网关的地址,向所述处理器发送唤醒通知,所述唤醒通知用于指示所述处理器唤醒所述Wi-Fi模块;
所述处理器用于:根据所述唤醒通知控制所述供电控制模块对所述Wi-Fi模块进行供电,来唤醒所述Wi-Fi模块。
可以理解,Wi-Fi模块的休眠状态为未通电状态,低功耗模块可以通过控制供电控制模块对Wi-Fi模块的供电,来唤醒本网关的Wi-Fi模块。
基于第二方面,在可能的实现方式中,所述网关的地址包括所述网关的低功耗模块的地址或所述网关的Wi-Fi模块的地址。
基于第二方面,在可能的实现方式中,所述第一消息是由第一网关在触发条件下生成并发送的;所述第一消息用于指示唤醒由所述第一网关至控制器所在链路上各个网关的Wi-Fi模块。
基于第二方面,在可能的实现方式中,所述触发条件包括所述第一网关接收到终端设备发送的告警通知,其中,所述告警通知是在所述终端设备检测到数据异常的情况下发出的。
基于第二方面,在可能的实现方式中,所述第一消息是由控制器或根节点网关发送的,所述根节点网关是与所述控制器直接连接的网关。
基于第二方面,在可能的实现方式中,所述第一消息是以单播的方式发送的,所述第一消息中包括接收地址和目的地址,所述接收地址为下一跳需要唤醒的网关的地址,所述目的地址为最后一个需要唤醒的网关的地址;所述网关用于:根据所述目的地址更新所述第一消息中的所述接收地址,将更新后的第一消息发送出去。
基于第二方面,在可能的实现方式中,所述第一消息中包括需要唤醒的各个网关的地址,所述第一消息是以单播或广播的方式发送的。
基于第二方面,在可能的实现方式中,所述需要唤醒的各个网关的地址以位图Bitmap的形式存在。
基于第二方面,在可能的实现方式中,所述低功耗模块用于:将所述第一消息发送出去。
第三方面,本申请提供了一种系统,包括多个网关,其中,所述多个网关中的每个网关包括低功耗模块和无线联盟Wi-Fi模块,其中,所述Wi-Fi模块处于休眠状态,所述低功耗模块用于将处于休眠状态的所述Wi-Fi模块唤醒。
可以看到,系统中的每个网关包括低功耗模块和Wi-Fi模块,Wi-Fi模块处于休眠状态,无需耗电,低功耗模块耗电量低,整个系统所消耗的功率较低,降低了系统的功耗;当需要传输数据时,可通过低功耗模块唤醒Wi-Fi模块,唤醒后的Wi-Fi模块可用于传输速度。
基于第三方面,在可能的实现方式中,所述低功耗模块包括蓝牙模块、ZigBee模块、空 口通信模块或北斗通信模块中的一种。
可以看到,低功耗模块可以为蓝牙模块,也可以为ZigBee模块,或者还可以为空口通信模块或北斗通信模块,系统中的各个网关的前述通信模块形成低功耗链路,低功耗链路不仅耗电量少,而且能够用于传输数据。另外,系统中的各个Wi-Fi模块被唤醒后形成Wi-Fi链路,Wi-Fi链路也可以用于传输数据。因此,本申请中,整个系统中包括低功耗链路和Wi-Fi链路,两种形式的链路可用于传输不同的数据,适用于不同的行业和不同的应用场景中,同时整个系统具有低功耗的特性。
基于第三方面,在可能的实现方式中,所述多个网关包括第一网关;
所述第一网关的低功耗模块用于,接收第一消息;所述第一消息中包括广播地址,所述广播地址用于指示唤醒所述多个网关中的每个网关的Wi-Fi模块;
所述第一网关的低功耗模块还用于,根据所述第一消息唤醒所述第一网关的Wi-Fi模块。
可以理解,在初次唤醒时,需要将系统中的多个网关的Wi-Fi模块唤醒,因此第一消息中包括广播地址,广播地址用于指示唤醒多个网关中的每个网关的Wi-Fi模块。
基于第三方面,在可能的实现方式中,所述系统还包括控制器,所述第一消息是由所述控制器或根节点网关发送的,所述根节点网关是所述多个网关中与所述控制器直接连接的网关。
可以理解,初次唤醒时,唤醒发起者是控制器,第一消息可以是由控制器生成发送出的,也可以是由控制器通知根节点网关,由根节点网关生成第一消息并发送出。
基于第三方面,在可能的实现方式中,所述第一网关的低功耗模块还用于,将所述第一消息发送出去。
基于第三方面,在可能的实现方式中,所述第一网关的Wi-Fi模块还用于:
向控制器发送注册请求;
接收所述控制器返回的所述第一网关的Wi-Fi模块的注册标识。
可以理解,每个网关的Wi-Fi模块初次被唤醒后,需要向控制器进行注册,注册成功后,控制器向网关的Wi-Fi模块返回注册标识,注册标识可以作为Wi-Fi模块的身份标识ID。
基于第三方面,在可能的实现方式中,所述第一网关的Wi-Fi模块还用于,将所述Wi-Fi模块的标识发送至所述第一网关的低功耗模块。基于第三方面,在可能的实现方式中,所述第一网关的Wi-Fi模块还用于:
接收相邻网关的Wi-Fi模块发送的所述相邻网关的Wi-Fi模块的标识、所述相邻网关的低功耗模块的标识;
将所述相邻网关的Wi-Fi模块的标识、所述相邻网关的低功耗模块的标识及所述第一网关的Wi-Fi模块的标识发送至所述第一网关的低功耗模块;
其中,所述相邻网关指的是所述第一网关通过一跳可到达的网关。
基于第三方面,在可能的实现方式中,所述第一网关的低功耗模块还用于低速传输数据,所述第一网关的Wi-Fi模块还用于高速传输数据。
可以看到,系统中的各个网关的Wi-Fi模块形成的Wi-Fi模块链路可用于高速传输数据,各个网关的低功耗模块形成的低功耗链路可用于低速传输数据。当无需高速传输数据时,可通过系统中的低功耗链路传输数据,Wi-Fi链路可处于休眠状态,节省功耗;当需要高速传输数据时,可通过各个网关的低功耗模块分别唤醒本网关的Wi-Fi模块,通过Wi-Fi模块链路传输数据。本申请中,由各个网关组成的系统能够应用于不同行业、不同场景,满足不同的需求,整个系统具有功耗低、适用性强的特性。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种物联网系统架构示意图;
图2为本申请提供的相邻网关之间建立链路过程的示意图;
图3为本申请提供的一种报文中的元素的示意图;
图4为本申请提供的一种唤醒方法的流程示意图;
图5为本申请提供的又一种唤醒方法的流程示意图;
图6为本申请提供的一种网络层报文格式的示意图;
图7为本申请提供的又一种网络层报文格式的示意图;
图8为本申请提供的一种基于北斗系统的物联网系统架构示意图;
图9为本申请提供的一种网关的结构示意图;
图10为本申请示例性提供的又一种网关的结构示意图;
图11为本申请示例性提供的又一种网关的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请提供了一种物联网系统,参见图1,图1为本申请提供的一种物联网系统架构示意图,该系统包括服务器(图中未示出)、控制器、多个网关和多个终端,其中,服务器与控制器连接。
终端设备上包括传感器,用于采集环境信息或数据。终端设备例如可以是图像传感器(摄像机)、温度传感器、湿度传感器、烟雾传感器、雨量筒、水位计、红外传感器等等。
网关用于将终端设备采集的数据或信息通过控制器传输至服务器上。每个网关包括低功耗模块和无线联盟(wireless fidelity,Wi-Fi)模块,低功耗模块可以为蓝牙模块或ZigBee模块。其中,低功耗模块用于低速传输业务数据,比如终端设备采集的数据量少或对传输速率要求不高的情况下,可以采用低功耗模块传输数据,例如,在水利场景中利用水位计测量水位的高度信息时或利用雨量筒测量雨水的密度时,可以采用低功耗模块传输数据;Wi-Fi模块用于高速传输业务数据,比如,终端设备采集的数据量大或对传输速率要求高的情况下,可以采用Wi-Fi模块传输数据,例如,在水利场景中利用摄像机或图像传感器拍摄图像或视频数据时,可以利用Wi-Fi模块传输数据。
控制器用于管理各个网关和各个终端设备,例如控制器负责终端设备和各个网关的注册认证和管理工作,控制器还负责网关的连接管理等工作。
服务器用于接收控制器发送的信息或数据,并对信息或数据进行分析处理,等等。
图1仅仅是本申请提供的一种示例架构,实际应用中,图1所示的系统架构中,与控制器直接连接的网关(例如网关1)的Wi-Fi模块可以处于通电状态,即一直在线状态。系统架构可以包括更多或更少的设备,图1并不构成对本申请的限定。比如,为了便于表示,图1中仅示出了与网关1连接的终端设备,其他网关上也可以连接终端设备,图中未示出;与控制器直接连接的可以有多个并列的网关,图1仅仅示出了一个,等等。
在网关通电后,各个网关中的低功耗模块是有电的,即低功耗模块是处于在线状态的,因此,整个系统的低功耗链路是可以传输数据的。为了降低设备功耗,各个网关的Wi-Fi模块是无电的,Wi-Fi模块是处于休眠状态的,因此系统中的Wi-Fi链路是无法传输数据的,需要通过每个网关的低功耗模块将本网关的Wi-Fi模块唤醒,各个Wi-Fi模块被唤醒并建立链路后才能传输数据。下面结合图1介绍各个网关的Wi-Fi模块是如何被唤醒的。
在介绍各个网关的Wi-Fi模块被唤醒的方法之前,需要说明的是,某一个网关中的低功耗模块发送出消息后,与该网关相邻网关的低功耗模块均是可以接收到该消息的,与该网关不相邻网关是接收不到该消息的,这里,相邻网关指的是通过一跳可达的网关,不相邻网关指的是通过一跳不可达的网关。例如,图1中,与网关2相邻网关包括网关1、网关3和网关5,与网关5相邻网关包括网关2和网关6,与网关6相邻网关包括网关5、网关3和网关7。又比如,若消息是由网关1向网关7的方向传送的,网关1的低功耗模块发送出消息,网关2的低功耗模块可以接收到该消息,其他网关接收不到;网关2的低功耗模块发送出消息,网关3的低功耗模块和网关5的低功耗模块可以接收到消息,其他网关接收不到;网关3的低功耗模块发送出消息,网关4的低功耗模块和网关6的低功耗模块可以接收到消息,其他网关接收不到。
需要说明的是,这里介绍的是系统中各个网关的Wi-Fi模块初次被唤醒的过程。在下文中,还会涉及到各个网关的Wi-Fi模块再次被唤醒(也就是第二次被唤醒、第三次被唤醒…)的过程,在描述再次被唤醒的过程中,涉及到“第一消息”,“第一消息”用于表示再次唤醒时系统中的各个低功耗模块之间传输的消息。为了区别“第一消息”,这里在描述初次被唤醒的过程时使用“第二消息”,“第二消息”用于表示初次唤醒时系统中的各个低功耗模块之间传输的消息。系统中的各个设备上电后,初次唤醒各个网关的Wi-Fi模块时,唤醒发起者是控制器。
在一种实现方式中,图1中,控制器向网关1发送消息或通知,该消息或通知用于指示网关1生成第二消息,其中第二消息用于指示唤醒所有网关的Wi-Fi模块,网关1的低功耗模块接收到控制器发送的消息或通知后,唤醒本网关的Wi-Fi模块,生成第二消息,并将第二消息发送出去,其中第二消息中包括广播地址;广播地址指示系统需要唤醒各个网关中的Wi-Fi模块,网关2的低功耗模块接收到第二消息后,唤醒本网关的Wi-Fi模块,并将第二消息发送出去;网关3的低功耗模块和网关5的低功耗模块均能接收到网关2的低功耗模块发送的第二消息,网关3的低功耗模块接收到第二消息后唤醒本网关的Wi-Fi模块,并将第二消息发送出去,同样网关5的低功耗模块接收到第二消息后唤醒本网关的Wi-Fi模块,并将第二消息发送出去;…直至第二消息遍历整个系统,全部网关的Wi-Fi模块均被唤醒。
其中,与控制器直接连接的网关称为根节点网关,例如,图1中,网关1为根节点网关。图1中若与控制器直接连接的网关有多个,则这多个网关均属于根节点网关。一般来说,多个根节点网关属于不同的链路,初次唤醒系统中的各个网关时,控制器需要向多个根节点网关分别发送通知或消息,用于指示根节点网关生成第二消息,第二消息用于指示唤醒所有网关的Wi-Fi模块。各个根节点网关接收到控制器发送的消息或通知后,唤醒本网关的Wi-Fi模块,然后生成第二消息,并将第二消息发送出去,…最终,系统中各个链路上网关的Wi-Fi模块均被唤醒。
在一种实现方式中,初次唤醒时,可以由控制器直接生成第二消息,第二消息中包括广播地址,所述广播地址指示系统需要唤醒各个网关中的Wi-Fi模块,控制器将生成的第二消 息发送出去;网关1的低功耗模块接收到第二消息,唤醒本网关的Wi-Fi模块,再将第二消息发送出去;…直至第二消息遍历整个系统,全部网关的Wi-Fi模块均被唤醒。若系统中有多个根节点网关,则多个根节点网关均可以接收到控制器发送的第二消息,每个根节点网关接收到第二消息后,唤醒本网关的Wi-Fi模块,并将第二消息发送出去…。
可选的,第二消息中还可以包括序列号,序列号用于标识第二消息。当某一网关的低功耗模块接收到第二消息,先判断是否收到过该序列号的消息,若收到过,则不做处理,若未收到过,则唤醒本网关的Wi-Fi模块,将第二消息发送出去。消息中包括序列号,通过判断是否收到过该序列号的消息,能够避免重复处理。例如,图1中,网关6的低功耗模块可以接收到网关3的低功耗模块发送的第二消息,也可以接收到网关5的低功耗模块发送的第二消息,当网关6的低功耗模块第二次接收到第二消息,通过序列号判断可知已经接收并处理过该消息了,则不再处理该消息。可选的,当第二消息以单播的形式在系统中传输时,第二消息中可以包括接收地址和目的地址,接收地址指的是下一跳需要唤醒的网关的地址,目的地址指的是最后一个需要唤醒的网关的地址,则接收地址和目的地址均为广播地址。
可选的,第二消息也可以以广播的形式在系统中传输。各个网关的Wi-Fi模块初次被唤醒后,各个网关的Wi-Fi模块分别在控制器上进行注册,即,需要注册的网关的Wi-Fi模块向控制器发送注册请求,控制器接收到注册请求后,为该网关的Wi-Fi模块进行注册,注册完成后向网关的Wi-Fi模块返回注册标识,该注册标识可用于标识该网关的Wi-Fi模块。标识各个网关的Wi-Fi模块注册成功后,各个网关的Wi-Fi模块之间需要建立链路,下面介绍各个网关的Wi-Fi模块之间是如何建立链路的。
先介绍第一种建立链路的方式。为了便于描述,以系统中的网关1和网关2为例,介绍各个网关的Wi-Fi模块之间是如何建立链路的,参见图2所示,图2为本申请提供的网关1与网关2之间建立Wi-Fi链路过程的示意图,过程如下。
1)网关1的Wi-Fi模块将自身的标识发送给本网关的低功耗模块,并获取低功耗模块的标识,然后网关1将本网关的Wi-Fi模块的标识与低功耗模块的标识绑定。同样,网关2的Wi-Fi模块将自身的标识发送给本网关的低功耗模块,并获取低功耗模块的标识,然后网关2将本网关的Wi-Fi模块的标识与低功耗模块的标识绑定。其中,Wi-Fi模块的标识可以是Wi-Fi模块的注册标识或者媒体存取控制位址(media access control,MAC)地址,低功耗模块的标识可以是低功耗模块的公共设备地址(public device address)或随机设备地址(random device address),随机设备地址可以是静态设备地址或私有设备地址。
2)网关1的Wi-Fi模块向网关2的Wi-Fi模块发送连接请求,连接请求中携带了网关1的Wi-Fi模块的标识和绑定的低功耗模块的标识。相应地,网关2的Wi-Fi模块接收到连接请求,并从连接请求中获得了网关1的Wi-Fi模块的标识和绑定的低功耗模块的标识。
其中,连接请求是以Wi-Fi协议标准报文的格式发送的,Wi-Fi协议标准报文包括报文头和至少一个元素。参见图3,图3为本申请提供的一种基于Wi-Fi协议标准报文中一个元素的示意图,其中,每个字段下方的数字表示该字段所占用的字节数,本实施例中,连接请求中低功耗模块的标识可以携带在源扩展地址字段中,Wi-Fi模块的标识携带在报文的报文头中(报文的报文头未在图中示出)。图3示意图仅仅用于举例,并不构成对本实施例中报文格式的限定。
3)网关2的Wi-Fi模块将可到达网关1的路由信息发送至本网关的低功耗模块,其中,可到达网关1的路由信息包括网关1的Wi-Fi模块的标识和绑定的低功耗模块的标识以及网关2的Wi-Fi模块的标识。
4)网关2的Wi-Fi模块向网关1的Wi-Fi模块发送连接请求响应消息,响应消息中携带了网关2的Wi-Fi模块的标识和绑定的低功耗模块的标识。相应地,网关1的Wi-Fi模块接收到响应消息,并获得网关2的Wi-Fi模块的标识和绑定的低功耗模块的标识。其中,响应消息也是以报文的形式发送的,同样,低功耗模块的标识可以携带在源扩展字段中,Wi-Fi模块的标识可以携带在报文的报文头中。
5)网关1的Wi-Fi模块将可到达网关2的路由信息发送至本网关的低功耗模块,其中,可到达网关2的路由信息包括网关2的Wi-Fi模块的标识和绑定的低功耗模块的标识以及网关1的Wi-Fi模块的标识。
因此,网关1与网关2之间建立了链路。上述仅仅以网关1和网关2为例介绍了建立链路的过程,系统中的其他网关之间也是如此建立链路的,比如,网关2与网关3之间、网关2与网关5之间、网关3与网关4之间、网关3与网关6之间等等,这样整个系统的Wi-Fi链路就建立起来了,建立好的Wi-Fi链路可用于传输数据。
Wi-Fi链路建立后,各个网关还将本网关的Wi-Fi模块的标识和绑定的低功耗模块的标识、相邻网关的Wi-Fi模块的标识和绑定的低功耗模块的标识发送至控制器,控制器中存储有各个网关的Wi-Fi模块的标识和绑定的低功耗模块的标识,也就是系统中各个链路的路由信息。
可选的,在一种实现方式中,在建立Wi-Fi链路之后,各个网关的Wi-Fi模块还可以将由本网关到达控制器的路由信息写入本网关的低功耗模块中。例如,网关4的Wi-Fi模块将由网关4到达控制器所经过的网关的标识写入网关4的低功耗模块中,其中由网关4到达控制器所经过的网关的标识包括网关3的标识、网关2的标识、网关1的标识,网关的标识可以是网关的Wi-Fi模块的标识或低功耗模块的标识。路由信息中各个网关的标识没有先后顺序。
可选的,当系统中的某个网关发生异常重启时,该网关中存储的路由信息可能会丢失,这种情况下,待该网关重启后,该网关的Wi-Fi模块会重新与相邻网关的Wi-Fi模块建立Wi-Fi链路。
在第一种建立链路的方式中,网关的低功耗模块不具有自己主动选路的功能,不能主动学习到路由信息,需要依赖于Wi-Fi模块建立链路后将学习到的路由信息发送至低功耗模块,低功耗模块才能获得路由信息。因此,此种实现方式中,当需要确定某消息下一跳发送给哪个网关时,也就是根据目的地址确定下一跳的接收地址时,需要依赖于Wi-Fi模块的选路功能(对应可参考下文中相关内容的描述)。
第二种建立链路的方式中,网关的低功耗模块具有自己主动选路的功能,可通过低功耗模块之间建立链路主动学习到路由信息。当然,Wi-Fi模块之间同样可以通过建立链路获得路由信息。
举例来说,若网关1与网关2为相邻网关,网关1的Wi-Fi模块和低功耗模块之间互相发送了标识,网关2的Wi-Fi模块和低功耗模块之间也互相发送了标识。网关1的低功耗模块和网关2的低功耗模块之间可以自主建立链路,过程如下:网关1的低功耗模块可以向网关2的低功耗模块发送连接请求,连接请求中携带了网关1的低功耗模块的标识和绑定的Wi-Fi模块的标识,相应地,网关2的低功耗模块接收到连接请求,获得网关1的低功耗模块的标识和绑定的Wi-Fi模块的标识;网关2的低功耗模块向网关1的低功耗模块发送连接请求响应消息,响应消息中携带了网关2的低功耗模块的标识和绑定的Wi-Fi模块的标识,相应地,网关1的低功耗模块接收到响应消息,获得网关2的低功耗模块的标识和绑定的Wi-Fi模块的标识。通过低功耗模块之间建立链路,可以获得相邻网关的标识。本示例仅仅以网关 1和网关2为例进行介绍,实际应用中,系统中的相邻网关的低功耗模块之间均可以建立链路。
类似的,网关1的Wi-Fi模块和网关2的Wi-Fi模块之间也可以建立链路,过程如下:网关1的Wi-Fi模块可以向网关2的Wi-Fi模块发送连接请求,连接请求中携带了网关1的Wi-Fi模块的标识和绑定的低功耗模块的标识,相应地,网关2的Wi-Fi模块接收到连接请求,获得网关1的Wi-Fi模块的标识和绑定的低功耗模块的标识;网关2的Wi-Fi模块向网关1的Wi-Fi模块发送连接请求响应消息,响应消息中携带了网关2的Wi-Fi模块的标识和绑定的低功耗模块的标识,相应地,网关1的Wi-Fi模块接收到响应消息,获得网关2的Wi-Fi模块的标识和绑定的低功耗模块的标识。通过Wi-Fi模块之间建立链路,可以获得相邻网关的标识。本示例仅仅以网关1和网关2为例进行介绍,实际应用中,系统中的相邻网关的Wi-Fi模块之间均可以建立链路。
在此种实现方式中,低功耗模块与Wi-Fi模块类似,具有自主选路的功能和自主学习路由信息的功能,因此,在此种实现方式中,低功耗模块可以根据目的地址确定下一跳的接收地址(对应可参考下文中相关内容的描述)。
经过一段时间或者由于长时间未传输数据,Wi-Fi链路会再次处于休眠状态。为了便于传输数据,控制器需要周期性地唤醒Wi-Fi链路。在某些场景下,系统中的所有Wi-Fi链路均需要传输数据,则需要控制器周期性地唤醒系统中的所有Wi-Fi模块,这种情况下,可以采用上述初次唤醒系统中所有Wi-Fi模块的方法进行再次唤醒,具体可参考上述相关内容的描述,为了说明书的简洁,在此不再赘述。
在某些场景下,系统中有一条或多条Wi-Fi链路需要传输数据,则需要控制器周期性地唤醒这一条或多条Wi-Fi链路上的Wi-Fi模块。为了便于描述,下面以唤醒一条Wi-Fi链路为例,例如,图1中以唤醒由控制器、网关1、网关2、网关3、网关6和网关7构成的Wi-Fi链路为例,介绍控制器是如何唤醒Wi-Fi链路的,参见图4所示,图4为本申请提供的一种唤醒方法的流程示意图,所述唤醒方法包括但不限于以下内容的描述。
S101、第一网关的低功耗模块接收到第一消息。
A方式:第一网关指的是系统中的任意一个与控制器非直接连接的网关,即非根节点网关,例如,图1中,第一网关可以是网关2、网关3、网关6、网关7。
下面介绍第一消息是如何生成的。
控制器向网关1发送通知或消息,通知或消息用于指示网关1生成第一消息,第一消息用于指示唤醒由网关1、网关2、网关3、网关6和网关7构成的Wi-Fi链路;网关1的低功耗模块接收到控制器发送的通知或消息,生成第一消息。
在第一种实现方式中,网关1的低功耗模块生成的第一消息中包括接收地址和目的地址,接收地址为下一跳需要唤醒的网关的标识,目的地址为链路上最后一个需要唤醒的网关的标识,这里接收地址为网关2的低功耗模块的标识或网关2的Wi-Fi模块的标识,目的地址为网关7的低功耗模块的标识或网关7的Wi-Fi模块的标识。
需要说明的是,若网关的低功耗模块不具有自己主动选路的功能,则根据目的地址确定下一跳的接收地址时,需要依赖于本网关的Wi-Fi模块的选路功能,也就是,Wi-Fi模块能够根据目的地址选择下一跳需要发送的网关。例如,若网关1的低功耗模块不具有自主选路的功能,则需要依赖于网关1的Wi-Fi模块根据目的地址确定下一个需要唤醒的网关是哪一个,也就是说,第一消息中的接收地址是由网关1的Wi-Fi模块根据目的地址确定的,然后发送 给本网关的低功耗模块的。若网关的低功耗模块具有自己主动选路的功能,则低功耗模块可以自己完成选路,根据目的地址确定下一跳的地址。例如,若网关1的低功耗模块具有自主选路的功能,则网关1的低功耗模块能够根据目的地址确定下一跳的接收地址。
第一种实现方式中,第一消息通常以单播的形式在系统中传输。
在第二种实现方式中,网关1的低功耗模块生成的第一消息中包括链路上需要唤醒的各个网关的地址,各个网关的地址可以是各个网关的低功耗模块的标识或Wi-Fi模块的标识,例如,本实施例中,链路上需要唤醒的各个网关的地址包括网关1的Wi-Fi模块的标识或低功耗模块的标识、网关2的Wi-Fi模块的标识或低功耗模块的标识、网关3的Wi-Fi模块的标识或低功耗模块的标识、网关6的Wi-Fi模块的标识或低功耗模块的标识、网关7的Wi-Fi模块的标识或低功耗模块的标识。本实现方式中,第一消息可以以单播的形式或广播的形式在系统中传输。
可选的,链路上需要唤醒的各个网关的地址可以以位图Bitmap的形式存在。例如,若系统中包括7个网关,可以用“0”或“1”表示网关的Wi-Fi模块是否需要被唤醒,其中,“0”表示网关的Wi-Fi模块不需要被唤醒,“1”表示网关的Wi-Fi模块需要被唤醒,若按照从左至右的顺序表示网关1至网关7,则“1110011”表示需要唤醒的网关包括网关1、网关2、网关3、网关6、网关7,也可以按照从右至左的顺序表示网关1至网关7,则“1100111”表示需要唤醒的网关包括网关1、网关2、网关3、网关6、网关7,等等。本示例仅仅用于举例,还可以采用Bitmap的其他形式表示需要唤醒的各个网关的地址,本申请不做限定。
在A方式中,第一网关的低功耗模块接收到上一网关发送的第一消息,例如,若第一网关为网关2,网关2的低功耗模块接收到网关1的低功耗模块发送的第一消息;若第一网关为网关3,网关3的低功耗模块接收到网关2的低功耗模块发送的第一消息;等等。
B方式:控制器直接根据需要唤醒的链路生成第一消息,然后将第一消息发送出去。
在第一种实现方式中,控制器生成的第一消息中包括接收地址和目的地址,其中接收地址为网关1的低功耗模块的标识,目的地址仍为网关7的低功耗模块的标识或Wi-Fi模块的标识。在此实现方式中,第一消息通常采用单播的形式发送。
在网关的低功耗模块具有自己主动选路的功能情况下,接收地址可以由低功耗模块根据目的地址确定;在网关的低功耗模块不具有自己主动选路的功能情况下,接收地址可由网关的Wi-Fi模块来确定,Wi-Fi模块确定接收地址后发送给低功耗模块。在第二种实现方式中,控制器生成的第一消息中包括链路上需要唤醒的各个网关的地址。该实现方式中的第一消息中包括的内容与A方式下的第二种实现方式的第一消息中的内容相同,第一消息也可以以位图Bitmap的形式存在。第一消息可以以单播或广播的形式在系统中传输。
在B方式中,第一网关指的是系统中的任意一个网关,例如,图1中,第一网关可以是网关1、网关2、网关3、网关6、网关7。若第一网关为网关1,则网关1的低功耗模块接收到的是控制器发送的第一消息;若第一网关为网关2,则网关2的低功耗模块接收到的是网关1发送的第一消息;等等。
可选的,在任意一种实现方式中,第一消息中还可以包括序列号,序列号用于标识第一消息。序列号的含义同前述初次唤醒网关时序列号的含义类似,均是用来标识某一消息的,区别是使用不同的序列号标识不同的消息。
S102、第一网关的低功耗模块判断第一消息中是否包括本网关的地址。
S103、若是,第一网关的低功耗模块唤醒本网关的Wi-Fi模块,将第一消息发送出去。
S104、若否,第一网关的低功耗模块直接将第一消息发送出去。
在第一种实现方式中,第一消息中包括接收地址和目的地址,第一低功耗模块判断第一消息中的接收地址是否是本网关的地址,若是,则唤醒第一Wi-Fi模块,并将第一消息中的接收地址修改为下一跳需要唤醒的网关的标识,然后将第一消息发送出去标识;若不是,则不唤醒,直接将第一消息发送出去。
在第二种实现方式中,第一消息中包括链路上需要唤醒的各个网关的地址,第一低功耗模块判断第一消息中是否包括本网关的地址,若是则说明本网关位于需要唤醒的链路上,则将第一Wi-Fi模块唤醒,然后将第一消息发送出去;若不是,则说明本网关未位于需要唤醒的链路上,则直接将第一消息发送出去。
可选的,在任意一种实现方式中,若第一消息中包括序列号,第一低功耗模块接收到第一消息后,先判断是否接收到过相同序列号的消息,若未接收到过,则判断第一消息中是否包括本网关的地址,根据判断结果执行相应操作,若接收到过,则不做任何处理。
可选的,在步骤S103中,在将第一消息发送出去之前,可以判断第一消息中的目的地址是否是本网关的地址,若是则不发送,若不是则发送。
步骤S101至步骤S104描述的是一个网关的动作,实际应用中,系统中包括多个网关,因此步骤S101至步骤S104是循环执行的,直至第一通知所指示的链路上的各个Wi-Fi模块均被唤醒。第一通知所指示的链路上的各个Wi-Fi模块均被唤醒后,该Wi-Fi链路即可用于高速传输数据。若有多条Wi-Fi链路需要唤醒,则分别唤醒多条链路中的每一条链路,控制器分别发送多个第一通知,每个第一通知指示需要唤醒一条链路,不同的第一通知指示需要唤醒的链路不同。
可以看到,本申请中,网关包括Wi-Fi模块和低功耗模块,整个物联网系统包括Wi-Fi链路和低功耗链路,Wi-Fi链路用于高速传输业务数据,低功耗链路用于低速传输业务数据,当不需要传输数据时,Wi-Fi链路处于休眠状态,能够降低系统的功耗,满足不同行业的需求。
当终端设备检测数据异常的情况下,比如,水利场景中终端设备上的红外传感器检测到有人员靠近危险区,又比如,森林中烟雾传感器检测到烟雾超过阈值,又比如,温度传感器检测到温度过低或过高,又比如,土壤中的湿度传感器检测到湿度过大或湿度不足,等等,终端设备向对应连接的网关发送告警通知,网关接收到告警通知后,会触发唤醒本网关的Wi-Fi模块及触发唤醒由本网关至控制器所在链路上的各个网关的Wi-Fi模块,以便由本网关至控制器所在的Wi-Fi链路传输终端设备采集的环境数据。下面结合图1描述该场景下唤醒由本网关至控制器所在Wi-Fi链路的过程,参见图5所示,图5为本申请提供的又一种唤醒方法的流程示意图。
S201、第二网关的低功耗模块在触发条件下被触发唤醒第二网关的Wi-Fi模块,生成并发送第一消息。第二网关为系统中的任意一个网关,例如,第二网关可以是图1中的网关1、网关2、网关3、网关4、网关5、网关6、网关7。
触发条件包括第二网关的低功耗模块接收到终端设备发送的告警通知,其中告警通知是在终端设备检测到数据异常的情况下产生的。第二网关的低功耗模块接收到终端设备发送的告警通知,触发唤醒本网关的Wi-Fi模块,生成并发送第一消息。
第一种实现方式,第一消息中包括接收地址和目的地址,其中,接收地址为下一跳需要唤醒的网关的标识,例如,下一跳需要唤醒的网关的低功耗模块的标识,目的地址为由本网关至控制器所在链路上最后一个需要唤醒的网关的标识,也就是由本网关至控制器所在链路上的根节点网关的标识,标识例如可以是Wi-Fi模块的标识或低功耗模块的标识。可选的, 目的地址还可以是控制器的地址,控制器的地址例如可以是控制器的MAC地址或网际互连协议(internet protocol,IP)地址等。或者还可以使用特定指示信息来指示根节点网关的标识或控制器的地址,比如,特定指示信息可以是特定的字符或编号或编码等,例如,特定的字符可以是F。其中,若第二网关的低功耗模块具有自主选路的功能,则第一消息中的接收地址可由第二网关的低功耗模块根据目的地址确定,若第二网关的低功耗模块不具有自主选路的功能,第一消息中的接收地址可由第二网关的Wi-Fi模块根据目的地址确定,然后发送给第二低功耗模块。
第一种实现方式中,第一消息通常以单播的形式在链路中传输。
第二种实现方式,第一消息中包括由第二网关至控制器所在链路上的各个网关的标识,标识可以是低功耗模块的标识或Wi-Fi模块的标识。例如,若第二网关为网关4,网关4接收到与本网关连接的终端设备发送的告警通知后,网关4的低功耗模块触发唤醒本网关的Wi-Fi模块,生成并发送第一消息,第一消息中包括网关3的低功耗模块的标识或Wi-Fi模块的标识、网关2的低功耗模块的标识或Wi-Fi模块的标识、网关1的低功耗模块的标识或Wi-Fi模块的标识。其中,由本网关至控制器所在链路上各个网关的标识是初次唤醒时由本网关的Wi-Fi模块存储至低功耗模块中的。本实现方式中,第一消息可以以单播的形式或广播的形式在系统中传输。
可选的,由第二网关至控制器所在链路上的各个网关的标识可以以位图Bitmap的形式存在。
可选的,在任意一种实现方式中,第一消息中还可以包括序列号。序列号的含义与前述实施例中序列号的含义类似,在此不再赘述。
S202、第一网关的低功耗模块接收到第一消息。
第一网关指的是由第二网关至控制器所在链路上的任一网关,第一网关不同于第二网关,例如,若第二网关为图1中的网关4,则第一网关指的是位于由网关4至控制器这条链路上的任一网关,比如网关3或网关2或网关1;若第二网关为图1中的网关6,则第一网关指的是位于由网关6至控制器所在链路上的任一网关,比如可以是网关5或网关2或网关1或网关3。
第一低功耗模块接收到第一消息。在第二网关为网关4的情况下,若第一网关为网关3,则网关3的低功耗模块接收到的第一消息是由网关4的低功耗模块发送的;若第一网关为网关2,则网关2的低功耗模块接收到的第一消息是由网关3的低功耗模块发送的;若第一网关为网关1,则网关1的低功耗模块接收到的第一消息是由网关2的低功耗模块发送的。在第二网关为网关6的情况下,若第一网关为网关5,则网关5的低功耗模块接收到的第一消息是由网关6的低功耗模块发送的;若第一网关为网关2,则网关2的低功耗模块接收到的第一消息是由网关5的低功耗模块发送的;若第一网关为网关1,则网关1的低功耗模块接收到的第一消息是由网关2的低功耗模块发送的。需要说明的是,第二网关为网关6的情况下,由第二网关至控制器的链路可以为网关6、网关5、网关2、网关1,也可以为网关6、网关3、网关2、网关1。
S203、第一网关的低功耗模块判断第一消息中是否包含本网关的地址。
S204、若是,第一网关的低功耗模块唤醒本网关的Wi-Fi模块,将第一消息发送出去。
S205、若否,第一网关的低功耗模块直接将第一消息发送出去。
在第一种实现方式中,第一消息中包括接收地址和目的地址,第一网关的低功耗模块判断第一消息中的接收地址是否为本网关的地址,若是,则唤醒本网关的Wi-Fi模块,将第一 消息中的接收地址修改为下一跳需要唤醒的网关的标识,然后将第一消息发送出去标识;若不是,则第一网关的低功耗模块直接将第一消息发送出去。
在第二种实现方式中,第一消息中包括由第二网关至控制器所在链路上的各个网关的标识,第一网关的低功耗模块判断第一消息中是否包括本网关的地址,若包括则唤醒本网关的Wi-Fi模块,将第一消息发送出去,若不包括,则直接将第一消息发送出去。
可选的,在任意一种实现方式中,若第一消息中包括序列号,第一网关的低功耗模块接收到第一消息后,先判断是否接收到过相同序列号的消息,若未接收到过,则判断第一消息中是否包括本网关的地址,根据判断结果执行相应操作;若接收到过,则不做任何处理。
步骤S201中的第二网关可以是系统中的任意一个网关。步骤S202至步骤S205描述的是由第二网关至控制器所在链路中的任意一个网关(非第二网关)的动作,若该网关是与控制器直接连接的根节点网关,只需执行一次步骤S202至步骤S205的操作,即可将根节点网关的Wi-Fi模块唤醒,若该网关不是根节点网关,则需循环执行步骤S202至步骤S205,直至将由第二网关至控制器之间的所有Wi-Fi模块均唤醒。唤醒后的Wi-Fi链路可用于高速传输终端设备采集的数据。
可以看到,在不需要传输数据时,Wi-Fi链路处于休眠状态,能够节省用电,降低功耗;在遇到异常情况时,通过各个低功耗模块唤醒本网关的Wi-Fi模块,使得Wi-Fi链路正常传输数据。
在上述图4和图5所述的方法实施例中,各个网关的低功耗模块之间传输第一消息,第一消息是以报文的形式存在的,下面介绍第一消息的报文格式。
a、若低功耗模块为BLE模块,则第一消息为基于BLE协议的报文。
参见图6,图6为本申请实施例提供的一种基于BLE协议的网络层报文格式示意图。图6中,网络层报文为协议数据单元(protocol data unit,PDU),PDU包括“报头”字段、“长度”字段和“数据”字段,其中“报头”字段中包括“广播报文类型”字段、“保留”字段、“发送地址类型”字段和“接收地址类型”字段。各个字段下方的数字表示该字段所占用的字节数,上方的数字表示该字段所占用的比特数。
本申请实施例对报文中的“广播报文类型”字段进行扩展,当第一消息以广播的形式在系统中传输的情况下,用“广播报文类型”表示报文的传输形式和/或报文的类型或用途。例如,用“0111”表示该报文以广播的形式传输且表示该报文为唤醒报文(用于指示唤醒网关的Wi-Fi模块);用“0000”表示该报文以广播的形式传输;等等。当第一消息以单播的形式在系统中传输时,“广播报文类型”字段可以为空。“发送地址类型”表示当前网关的BLE模块的标识的类型,“接收地址类型”表示下一跳网关的BLE模块的标识的类型,其中,当前网关或下一跳网关的BLE模块的标识的类型可能是公共设备地址(public device address)或随机设备地址(random device address),随机设备地址又可能是静态设备地址或私有设备地址,等等。
“数据”字段中包括多个广播数据(advertising data,AD)结构,每个AD结构包括3个子字段:AD长度(length)、AD类型(type)和AD数据(data)。本实施例中,对“数据”字段中的AD结构进行扩展,比如,第一消息中包括接收地址和目的地址,可选的,还可以包括序列号,则接收地址可以携带在“数据”字段的一个AD结构中,例如:
AD type:0x20//其中,0x20类型用于指示下一跳地址,即接收地址
AD length:6
AD data:BLE模块的标识或Wi-Fi模块的标识
目的地址可以携带在“数据”字段的一个AD结构中,例如:
AD type:0x22//其中,0x22类型用于指示最后一个节点的地址,即目的地址
AD length:6
AD data:BLE模块的标识或Wi-Fi模块的标识
序列号可以携带在“数据”字段的一个AD结构中,例如:
AD type:0x21//其中,0x21类型用于指示序列号
AD length:2
AD data:序列号
又比如,第一消息中包括需要唤醒的各个网关的地址,多个需要唤醒的网关的地址可以分别携带在“数据”字段中的多个AD结构中,其中,一个AD结构中携带一个网关的地址。
在进行初次唤醒时,各个网关的BLE模块之间发送第二消息,第二消息也可以以图x所示的报文格式存在。若第二消息是以广播的形式传输,且第二消息用于指示唤醒网关的Wi-Fi模块,则“广播报文类型”也可以用“0111”表示。若第二消息是以单播的形式传输,第二消息中包括广播地址,则“广播报文类型”字段可以为空,广播地址携带在“数据”字段的一个或多个AD结构中。
图6所示的报文格式仅仅用于举例,第一消息或第二消息还可以是其他报文格式,报文中的扩展字段只是一种实现方式,实际应用中还可以对其他字段进行扩展来实现本申请实施例所描述的方法,本申请不做限定。
b、若低功耗模块为ZigBee模块,则第一消息为基于ZigBee标准协议的报文。
参见图7所示,图7为本申请提供的一种基于ZigBee标准协议的网络层报文的示意图。图7中,各个字段下方的数字表示所占用空间。
报文中,“帧控制”字段中包括“帧类型”子字段,“帧类型”可用于指示报文中携带的是数据还是命令,例如,“帧类型”为“00”时,表示报文中携带的是数据,“帧类型”为“01”时,表示报文中携带的是命令。本申请对报文中的“帧控制”字段中的“帧类型”子字段进行扩展,例如,扩展为:用“10”表示报文为唤醒报文,唤醒报文用于指示唤醒网关的Wi-Fi模块。
报文中,“帧负载”字段包括多个广播数据(advertising data,AD)结构,每个AD结构包括3个子字段:AD长度(length)、AD类型(type)和AD数据(data)。本实施例中,对“帧负载”字段中的AD结构进行扩展,比如,第一消息中包括接收地址和目的地址,则接收地址可以携带在“帧负载”字段的一个AD结构中,例如:
AD type:0x00//0x00类型用于指示下一跳地址,即接收地址
AD length:6
AD data:ZigBee模块的标识或Wi-Fi模块的标识
可选的,接收地址也可以携带在“帧负载”字段的两个AD结构中,例如:
AD type:0x00//0x00类型用于指示下一跳网关的ZigBee模块的标识
AD length:6
AD data:ZigBee模块的标识
AD type:0x01//0x01类型用于指示下一跳网关的Wi-Fi模块的标识
AD length:6
AD data:Wi-Fi模块的标识
类似的,第一消息中的目的地址可以携带在一个AD结构中或两个AD结构中,序列号可以携带在一个AD结构中。当第一消息中包括需要唤醒的各个网关的地址,多个需要唤醒的网关的地址可以分别携带在“帧负载”字段中的多个AD结构中,其中,一个AD结构中携带一个网关的地址。
在对系统中的各个网关进行初次唤醒时,各个网关的ZigBee模块之间发送的第二消息也可以以图7所示的报文格式存在。各个网关的ZigBee模块之间发送的第一消息或第二消息通常是以单播的形式传输的。若是需要以广播的形式传输,可以对基于ZigBee协议报文中的某个字段进行扩展,例如可以对图7中“帧控制”字段中的“多播标志位”字段进行扩展,使用特殊字符或编号或代码来表示报文以广播的形式传输。
图7所示的报文格式仅仅用于举例,第一消息或第二消息还可以是其他报文格式,报文中的扩展字段只是一种实现方式,实际应用中还可以对其他字段进行扩展来实现本申请实施例所描述的方法,本申请不做限定。
除了上述实施例中描述的方法外,还可以通过北斗系统或基于基站系统唤醒网关中的Wi-Fi模块。
参见图8,图8为本申请提供的一种基于北斗系统的物联网系统结构示意图,该物联网系统涉及控制器、网关、终端设备、北斗控制台和北斗卫星,其中,网关上包括Wi-Fi模块和低功耗模块,所述低功耗模块为北斗通信模块,其中北斗通信模块可以通过接口或插卡的方式部署在网关上。
北斗控制台用于接收控制器发送的消息,并将消息通过北斗卫星发送至网关的北斗通信模块,北斗通信模块用于接收并解析消息;北斗通信模块还用于将消息通过北斗卫星发送至北斗控制台,北斗控制台将接收到的消息再发送至控制器;北斗通信模块还用于将消息通过北斗卫星发送至其他网关的北斗通信模块,或者,用于接收其他网关的北斗通信模块通过北斗卫星发送的消息。另外,北斗通信模块还用于唤醒本网关的Wi-Fi模块,以及用于低速传输终端设备采集的数据。其中,消息或数据可以以短报文的形式存在。
下面描述本申请提供的基于北斗系统的唤醒方法。
初次唤醒:控制器可以通过北斗控制台和北斗卫星向各个网关的北斗通信模块发送第二消息,第二消息中包括广播地址,广播地址用于指示唤醒系统中所有网关的Wi-Fi模块。各个网关的北斗通信模块获取到第二消息,根据第二消息唤醒本网关的Wi-Fi模块。可选的,各个网关上的Wi-Fi模块被唤醒后,各个网关可通过唤醒的Wi-Fi链路向控制器发送确认唤醒消息,或通过北斗通信模块、北斗卫星及北斗控制台向控制器发送确认唤醒消息。
可选的,第二消息中可以包括各个网关上的北斗通信模块的标识,其中北斗通信模块的标识可以是北斗通信模块在控制器上注册时的注册标识,也可以是可用于表示北斗通信模块的其他标识。
各个网关的Wi-Fi模块被唤醒后,分别在控制器上进行注册,注册完成后,每个Wi-Fi模块会收到控制器返回的一个注册标识。注册完成后,各个网关将自身Wi-Fi模块的标识和北斗通信模块的标识发送至控制器,因此,控制器中存储有系统中各个网关的Wi-Fi模块的标识和北斗通信模块的标识。
经过一段时间或者由于长时间未传输数据,Wi-Fi链路会再次处于休眠状态。为了便于传 输数据,控制器需要周期性地唤醒Wi-Fi链路。若系统中的所有Wi-Fi链路均需要传输数据,则需要控制器周期性地唤醒系统中的所有Wi-Fi模块,这种情况下,可以采用初次唤醒的方法进行再次唤醒,具体可参考上述基于北斗系统的物联网系统初次唤醒方法相关内容的描述,为了说明书的简洁,在此不再赘述。
若系统中有一条或多条Wi-Fi链路需要传输数据,则需要控制器周期性地唤醒这一条或多条Wi-Fi链路上的Wi-Fi模块。下面描述这种情况下的唤醒过程。
1)控制器向北斗控制台发送第一消息。第一消息中包括需要唤醒的链路上的各个网关的Wi-Fi模块的标识和/或北斗通信模块的标识。例如,若需要唤醒的链路为网关4、网关3、网关2和网关1形成的链路,则第一消息中包括网关4的Wi-Fi模块的标识和/或北斗通信模块的标识、网关3的Wi-Fi模块的标识和/或北斗通信模块的标识、网关2的Wi-Fi模块的标识和/或北斗通信模块的标识和网关1的Wi-Fi模块的标识和/或北斗通信模块的标识,其中各个网关的标识没有先后顺序。可选的,第一消息中包括的各个网关的Wi-Fi模块的标识和/或北斗通信模块的标识可以以位图Bitmap的形式存在。
2)北斗控制台通过北斗卫星将第一消息发送出去。
3)各个网关的北斗通信模块接收到第一消息,判断第一消息中是否包括本网关的标识,本网关的标识包括本网关的Wi-Fi模块的标识或者北斗通信模块的标识,若包括,则唤醒本网关的Wi-Fi模块,若不包括,则不唤醒。从而将需要唤醒的Wi-Fi链路上的各个Wi-Fi模块唤醒,唤醒后的Wi-Fi链路可用于高速传输数据。
可选的,网关上的Wi-Fi模块被唤醒后,网关可通过唤醒的Wi-Fi链路向控制器发送确认唤醒消息,或通过北斗通信模块、北斗卫星和北斗控制台向控制器发送确认唤醒消息。
在某个终端设备采集的数据异常的情况下,唤醒方法可以包括但不限于:
1)某个网关接收到终端设备发送的告警通知(终端设备检测到数据异常的情况下,发出告警通知),通过北斗卫星和北斗控制台向控制器发送告警通知,控制器接收到告警通知后,生成第一消息,第一消息中包括由该网关至控制器所在链路上各个网关的北斗通信模块和/或北斗通信模块的标识,并将第一消息通过北斗控制台和北斗卫星发送出去。
例如,控制器接收到网关4的北斗通信模块发送的告警通知,则控制器生成第一消息,第一消息中包括由网关4至控制器所在的Wi-Fi链路上各个Wi-Fi模块的标识。在具体实现中,第一消息中还可以包括与由网关4至控制器所在链路上各个网关的北斗通信模块的标识,具体包括网关1的北斗通信模块的标识、网关2的北斗通信模块的标识、网关3的北斗通信模块的标识、网关4的北斗通信模块的标识。
可选的,也可以是,某个网关接收到终端设备发送的告警通知后,该网关的北斗通信模块唤醒本网关的Wi-Fi模块,并生成第一消息,第一消息中包括由该网关至控制器所在链路上各个网关的北斗通信模块和/或北斗通信模块的标识,并将第一消息通过北斗卫星发送出去。
2)每个网关的北斗通信模块接收到第一消息后,判断第一消息中是否包括本网关的标识,若包括,则唤醒本网关的Wi-Fi模块,若不包括,则不唤醒。唤醒后的Wi-Fi链路可用于高速传输终端设备采集的异常数据发送至控制器,控制器再将数据上传至服务器,以便相关人员根据异常数据及时采取相应措施。
本申请提供了一种基于基站系统的唤醒方法,所述系统涉及控制器、网关、终端设备以 及基站,其中,网关上包括Wi-Fi模块和低功耗模块,所述低功耗模块为空口(air interface)通信模块,空口通信模块可以以插卡或接口的形式部署在网关上。
空口通信模块用于在基站和移动电话之间进行无线通信。空口通信模块支持的通信技术包括但不限于GSM、TD-SCDMA、WCDMA、CDMA、CDMA2000、LTE、NR、NB等,支持的通信技术还包括5G通信技术及未来可能出现的更高通信技术。
本申请中,考虑到降低功耗的需求且不影响低功耗链路数据传输的情况下,空口通信模块用于低速传输数据,例如,终端设备采集的数据量少或对传输速率要求不高的情况,可以通过空口通信模块低速传输。空口通信模块还用于唤醒本网关的Wi-Fi模块。唤醒后的Wi-Fi模块用于高速传输数据,例如,终端设备采集的数据量大或对传输速率要求高的情况下,可以采用Wi-Fi模块传输数据,例如可以用于传输图像或视频等。
基于基站系统的唤醒方法与基于北斗系统的唤醒方法的区别是:基于北斗系统的唤醒方法中,控制器向网关上的北斗通信模块发送消息或网关上的北斗通信模块向控制器发送消息,并且是通过北斗控制台和北斗卫星发送的;而基于基站系统的唤醒方法,控制器向网关上的空口通信模块发送消息或网关上的空口通信模块向控制器发送消息,并且是通过基站发送的。基于基站系统的唤醒方法,可参考上述基于北斗系统的唤醒方法的描述,为了说明书的简洁,在此不再赘述。
本申请提供了一种网关300的硬件结构,参见图9,图9为本申请提供的一种网关300的硬件结构示意图,网关300包括至少一个处理器301、通信总线302、存储器303、至少一个通信接口304、低功耗模块305、Wi-Fi模块306和供电控制模块307。
处理器301可以是一个通用中央处理器(central processing unit,CPU)、网络处理器(network processor,简称NP)、微处理器,或者也可以是一个或多个用于实现本申请方案的集成电路。例如,专用集成电路(application-specific integrated circuit,ASIC)、可编程逻辑器件(programmable logic device,PLD)或其组合。其中,PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信总线302用于在各个组件之间传送信息。通信总线302可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器303可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only Memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,也可以是能够用于携带或存储具有指令或数据结构形式的程序代码且能够由计算机存取的任何其它介质,但不限于此。存储器303可以是独立存在,并通过通信总线302与处理器301相连接;存储器303也可以和处理器301集成在一起。
通信接口304用于与其它设备或通信网络进行通信。通信接口304可以包括有线通信接口,还可以包括无线通信接口。其中,有线通信接口例如可以为以太网接口,以太网接口可以是光接口、电接口或其组合。无线通信接口可以为无线局域网(wireless local area networks, WLAN)接口、蜂窝网络通信接口或其组合等。本申请中,网关300可以通过通信接口304与终端设备进行通信,终端设备例如可以是雨量筒、水位计、烟雾传感器、温度传感器、湿度传感器、摄像机、红外传感器等,例如,网关300通过通信接口304接收终端设备发送的图像或视频或其他数据。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU。
在具体实现中,作为一种实施例,网关300可以包括多个处理器301。多个处理器301中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器301可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在一些实施例中,存储器303用于存储本申请方案的程序代码,处理器301用于执行存储器303中存储的程序代码。也即是,网关300可以通过处理器301以及存储器303中的程序代码,来实现图1至图7实施例中提供的方法。
低功耗模块305包括蓝牙模块、ZigBee模块、空口通信模块或北斗通信模块中的一种,这些通信模块中包括多个逻辑单元和内存,逻辑单元用于解析接收到的第一消息或第二消息,内存用于存储数据,数据例如包括Wi-Fi模块306向低功耗模块305发送的路由信息,还包括逻辑单元解析第一消息或第二消息的过程中产生的数据。低功耗模块305用于唤醒本网关300的Wi-Fi模块306,还用于低速传输数据。
Wi-Fi模块306中包括射频单元、处理器、存储器,Wi-Fi模块306外部连接有天线,天线用于接收或发送无线模拟信号,射频单元用于将天线接收到的无线模拟信号转化为数字信号,或者用于将数字信号转化为模拟信号通过天线发送出去。处理器用处理数据,存储器中用于存储数据,存储的数据包括处理器处理数据过程中产生的中间数据,还包括本网关300的Wi-Fi模块306的标识和低功耗模块305的标识、相邻网关的Wi-Fi模块306的标识和相邻网关的低功耗模块305的标识等。存储器可以包括用于临时存储数据的内存,例如,ROM、RAM等,也可以包括持久性存储的硬盘。
本申请中,当网关300上电后,低功耗模块305处于通电状态,Wi-Fi模块306处于休眠状态,休眠状态指的是未通电状态。供电控制模块307用于控制对Wi-Fi模块306的供电。
当低功耗模块305接收到第一消息时,其中第一消息可以是控制器或根节点网关发送的,也可以是其他网关发送的,低功耗模块305判断第一消息中是否包括本网关300的地址,经判断,若是,则低功耗模块305向与该低功耗模块305连接的处理器301发送唤醒通知,唤醒通知用于指示处理器301唤醒Wi-Fi模块306,处理器301接收到唤醒通知,控制供电控制模块307对Wi-Fi模块306进行供电,来唤醒Wi-Fi模块306,使Wi-Fi模块306处于通电状态。处于通电状态的Wi-Fi模块306能够接收终端设备发送的数据,并将数据高速传输至控制器,其中,终端设备例如摄像机。经判断,若否,则低功耗模块305直接将第一消息发送出去。
或者,当低功耗模块305接收到控制器或根节点网关发送的第二消息时,低功耗模块305解析第二消息中包括广播地址,广播地址指示唤醒各个网关中的Wi-Fi模块306,低功耗模块305向处理器301发送唤醒通知,处理器301接收到唤醒通知后,控制供电控制模块307对Wi-Fi模块306进行供电。
在实际应用中,网关300可以包括至少一个单板(board),网关300中的低功耗模块305与Wi-Fi模块306可以位于不同的单板上,例如,参见图10所示的示意图,网关300包括接入点板(access point,AP)和物联网(internet of things,IOT)单板,Wi-Fi模块306位于 IOT单板上,低功耗模块305位于AP板上。网关中的低功耗模块305与Wi-Fi模块306也可以位于一个单板上,例如,参见图11所示的示意图,低功耗模块305与Wi-Fi模块306均位于AP板上。下面以图10为例,介绍一下网关300中的低功耗模块305是如何唤醒Wi-Fi模块306的。
如图10,图10为本申请提供的一种网关300的结构示意图,图10中,像雨量筒、北斗终端等采集数据量较少或采集的数据传输消耗网络资源较少的终端设备,可以与处理器连接,向摄像机等采集数据量较多或采集的数据传输消耗网络资源较大的终端设备,可以与Wi-Fi模块连接。摄像机可以与网关300中的供电控制模块连接,供电控制模块同时控制摄像机和Wi-Fi模块的供电。
当网关300上电后,终端设备和Wi-Fi模块处于休眠状态,即未通电状态,当低功耗模块接收到第一消息,并判断第一消息中包括本网关300的地址的情况下,或接收到第二消息时,向处理器发送唤醒通知,处理器接收到唤醒通知,控制供电控制模块同时对Wi-Fi模块和终端设备进行供电,终端设备通电后,用于采集周围的环境数据,并将环境数据发送至Wi-Fi模块,Wi-Fi模块用于将终端设备采集的环境数据发送至控制器。经判断第一消息中不包括本网关300的地址的情况下,低功耗模块直接将第一消息发送出去。
下面结合图10,介绍一下网关300是如何接收到终端设备或终端设备上的传感器发送的告警通知的。摄像机上安装有红外传感器及仅仅可供红外传感器工作的小型电源。摄像机与网关300的供电控制模块连接,供电控制模块用于控制摄像机采集工作所需的用电,且摄像机内部设置有充断电机制。小型电源不受网关300的供电控制模块的限制,无论摄像机处于通电状态还是断电状态,小型电源均可自行为红外传感器供电,以保障红外传感器正常工作。供电控制模块能够感知到摄像机是处于充电状态还是断电状态。
在摄像机处于休眠状态的情况下,当红外传感器检测到异常时,摄像机自动启动充电,以使供电控制模块对摄像机进行充电,供电控制模块检测到摄像机启动充电后,供电控制模块对Wi-Fi模块进行供电,以唤醒Wi-Fi模块,使Wi-Fi模块将摄像机采集的数据高速传输至控制器。
可选的,在一种示例中,摄像机可以具有独立的电源,摄像机与网关300之间通信连接,当摄像机检测到数据异常时,摄像机向网关300发送告警通知,网关300接收到告警通知后,控制供电控制模块对Wi-Fi模块进行供电。其中,摄像机检测到数据异常的方法例如可以是摄像机具有数据处理能力,能够对采集到的数据进行检测,确定出数据是否存在异常;又例如,摄像机上的其他类型的传感器,例如红外传感器,可以检测到数据异常,等等,本申请对摄像机检测数据异常的方法不做限定。
可选的,图10所示的示例中,物联网板上或AP板上还可以包括一个或多个其他处理器,用于辅助网关300上的低功耗模块或Wi-Fi模块解析消息、处理数据等。本申请对网关300上其他处理器的数量或位置不作限定。
与图10所示的网关300不同的是,图11所示的网关300将Wi-Fi模块和低功耗模块布署于同一个单板上,关于网关300中的低功耗模块是如何唤醒Wi-Fi模块的及网关300如何接收到摄像机发送的告警通知的等内容与图10中所述的方法相同,具体可参见图10相关内容的描述,为了说明书的简洁,在此不再赘述。图10和图11为本申请示例性地提供的一种网关的结构示意图,仅仅用于举例,并不构成对本申请的限定。
本申请实施例的网关300可对应于上述各个方法实施例中的第一网关或第二网关,例如,网关300可以是图1中的网关1、网关2、网关3、网关4、网关5、网关6、网关7,并且, 该网关300中的各个功能模块可以实现上述各个方法实施例中的设备所具有的功能和/或所实施的各种步骤和方法。为了简洁,在此不再赘述。
本申请还提供了一种系统,所述系统包括控制器和多个网关,多个网关可以是图1至图11中涉及的任意网关,例如,方法实施例中所描述的第一网关和第二网关,装置实施例中图9或图10或图11所述的网关,控制器可以为图1至图11中所涉及的任意控制器,例如,系统架构图1或图8中的控制器,方法实施例中所描述的控制器等等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和模块,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参见前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例中方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或 者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD)、或者半导体介质(例如固态硬盘)等。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种唤醒方法,其特征在于,所述方法包括:
    第一网关的低功耗模块接收到第一消息;
    确定所述第一消息包含所述第一网关的地址;
    响应于确定所述第一消息包含所述第一网关的地址,唤醒所述第一网关的无线联盟Wi-Fi模块。
  2. 根据权利要求1所述的方法,其特征在于,所述低功耗模块包括蓝牙模块、ZigBee模块、空口通信模块或北斗通信模块中的一种。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网关的地址包括所述第一网关的低功耗模块的地址或所述第一网关的Wi-Fi模块的地址。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一消息是由第二网关在触发条件下生成并发送的;所述第一消息用于指示唤醒由所述第二网关至控制器所在链路上各个网关的Wi-Fi模块。
  5. 根据权利要求4所述的方法,其特征在于,所述触发条件包括所述第二网关接收到终端设备发送的告警通知,其中,所述告警通知是在所述传感器检测到数据异常的情况下发出的。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一消息是由控制器或根节点网关发送的,所述根节点网关是与所述控制器直接连接的网关。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一消息是以单播的方式发送的,所述第一消息中包括接收地址和目的地址,所述接收地址为下一跳需要唤醒的网关的地址,所述目的地址为最后一个需要唤醒的网关的地址;
    所述方法还包括:
    根据所述目的地址更新所述第一消息中的所述接收地址,将更新后的第一消息发送出去。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一消息中包括需要唤醒的各个网关的地址,所述第一消息是以单播或广播的方式发送的。
  9. 根据权利要求8所述的方法,其特征在于,所述需要唤醒的各个网关的地址以位图Bitmap的形式存在。
  10. 一种网关,其特征在于,包括低功耗模块和无线联盟Wi-Fi模块,所述Wi-Fi模块处于休眠状态,所述低功耗模块用于将处于休眠状态的所述Wi-Fi模块唤醒。
  11. 根据权利要求10所述的网关,其特征在于,所述低功耗模块包括蓝牙模块、ZigBee 模块、空口通信模块或北斗通信模块中的一种。
  12. 根据权利要求10或11所述的网关,其特征在于,所述休眠状态为未通电状态;
    所述网关还包括处理器和供电控制模块,所述低功耗模块与所述处理器连接,所述处理器与所述供电控制模块连接;所述供电控制模块用于,控制对所述Wi-Fi模块的供电;
    所述低功耗模块用于:接收第一消息,确定所述第一消息包含所述网关的地址,响应于确定所述第一消息包含所述网关的地址,向所述处理器发送唤醒通知,所述唤醒通知用于指示所述处理器唤醒所述Wi-Fi模块;
    所述处理器用于:根据所述唤醒通知控制所述供电控制模块对所述Wi-Fi模块进行供电,来唤醒所述Wi-Fi模块。
  13. 根据权利要求12所述的网关,其特征在于,所述网关的地址包括所述网关的低功耗模块的地址或所述网关的Wi-Fi模块的地址。
  14. 根据权利要求12或13所述的网关,其特征在于,所述第一消息是由第一网关在触发条件下生成并发送的;所述第一消息用于指示唤醒由所述第一网关至控制器所在链路上各个网关的Wi-Fi模块。
  15. 根据权利要求14所述的网关,其特征在于,所述触发条件包括所述第一网关接收到终端设备发送的告警通知,其中,所述告警通知是在所述终端设备检测到数据异常的情况下发出的。
  16. 根据权利要求12或13所述的网关,其特征在于,所述第一消息是由控制器或根节点网关发送的,所述根节点网关是与所述控制器直接连接的网关。
  17. 根据权利要求12-16任一项所述的网关,其特征在于,所述第一消息是以单播的方式发送的,所述第一消息中包括接收地址和目的地址,所述接收地址为下一跳需要唤醒的网关的地址,所述目的地址为最后一个需要唤醒的网关的地址;
    所述网关用于:
    根据所述目的地址更新所述第一消息中的所述接收地址,将更新后的第一消息发送出去。
  18. 根据权利要求12-16任一项所述的网关,其特征在于,所述第一消息中包括需要唤醒的各个网关的地址,所述第一消息是以单播或广播的方式发送的。
  19. 一种系统,其特征在于,包括多个网关,其中,所述多个网关中的每个网关包括低功耗模块和无线联盟Wi-Fi模块,其中,所述Wi-Fi模块处于休眠状态,所述低功耗模块用于将处于休眠状态的所述Wi-Fi模块唤醒。
  20. 根据权利要求19所述的系统,其特征在于,所述低功耗模块包括蓝牙模块、ZigBee模块、空口通信模块或北斗通信模块中的一种。
  21. 根据权利要求19或20所述的系统,其特征在于,所述多个网关包括第一网关;
    所述第一网关的低功耗模块用于,接收第一消息;所述第一消息中包括广播地址,所述广播地址用于指示唤醒所述多个网关中的每个网关的Wi-Fi模块;
    所述第一网关的低功耗模块还用于,根据所述第一消息唤醒所述第一网关的Wi-Fi模块。
  22. 根据权利要求21所述的系统,其特征在于,所述系统还包括控制器,所述第一消息是由所述控制器或根节点网关发送的,所述根节点网关是所述多个网关中与所述控制器直接连接的网关。
  23. 根据权利要求21或22所述的系统,其特征在于,所述第一网关的Wi-Fi模块还用于:
    向控制器发送注册请求;
    接收所述控制器返回的所述第一网关的Wi-Fi模块的注册标识。
  24. 根据权利要求23所述的系统,其特征在于,所述第一网关的Wi-Fi模块还用于,将所述Wi-Fi模块的标识发送至所述第一网关的低功耗模块。
  25. 根据权利要求24所述的系统,其特征在于,所述第一网关的Wi-Fi模块还用于:
    接收相邻网关的Wi-Fi模块发送的所述相邻网关的Wi-Fi模块的标识、所述相邻网关的低功耗模块的标识;
    将所述相邻网关的Wi-Fi模块的标识、所述相邻网关的低功耗模块的标识及所述第一网关的Wi-Fi模块的标识发送至所述第一网关的低功耗模块;
    其中,所述相邻网关指的是所述第一网关通过一跳可到达的网关。
  26. 根据权利要求25所述的系统,其特征在于,所述第一网关的低功耗模块还用于低速传输数据,所述第一网关的Wi-Fi模块还用于高速传输数据。
PCT/CN2022/134650 2021-11-30 2022-11-28 一种唤醒方法、网关及系统 WO2023098615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111446161.XA CN116208442A (zh) 2021-11-30 2021-11-30 一种唤醒方法、网关及系统
CN202111446161.X 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098615A1 true WO2023098615A1 (zh) 2023-06-08

Family

ID=86513427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134650 WO2023098615A1 (zh) 2021-11-30 2022-11-28 一种唤醒方法、网关及系统

Country Status (2)

Country Link
CN (1) CN116208442A (zh)
WO (1) WO2023098615A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659984A (zh) * 2016-07-25 2018-02-02 苹果公司 唤醒无线电辅助wlan功率节省技术
WO2018157437A1 (zh) * 2017-03-02 2018-09-07 华为技术有限公司 一种唤醒无线设备的方法及设备
CN109548120A (zh) * 2017-09-22 2019-03-29 珠海市魅族科技有限公司 无线局域网的通信方法、装置、站点设备和接入点设备
CN110383899A (zh) * 2017-03-02 2019-10-25 黑莓有限公司 用于通过带外通信的唤醒触发的方法和系统
WO2020220368A1 (en) * 2019-05-01 2020-11-05 Hewlett Packard Enterprise Development Lp Wake-up by a network device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659984A (zh) * 2016-07-25 2018-02-02 苹果公司 唤醒无线电辅助wlan功率节省技术
WO2018157437A1 (zh) * 2017-03-02 2018-09-07 华为技术有限公司 一种唤醒无线设备的方法及设备
CN110383899A (zh) * 2017-03-02 2019-10-25 黑莓有限公司 用于通过带外通信的唤醒触发的方法和系统
CN109548120A (zh) * 2017-09-22 2019-03-29 珠海市魅族科技有限公司 无线局域网的通信方法、装置、站点设备和接入点设备
WO2020220368A1 (en) * 2019-05-01 2020-11-05 Hewlett Packard Enterprise Development Lp Wake-up by a network device

Also Published As

Publication number Publication date
CN116208442A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US11751135B2 (en) Method and system for wirelessly transmitting data
CN107846674B (zh) 基于蓝牙网格协议的户外通信方法、移动终端及存储介质
EP3609135B1 (en) Ip camera control method, apparatus, and system
CN110383899A (zh) 用于通过带外通信的唤醒触发的方法和系统
US9201488B2 (en) Access point rotation for sharing power load
CN102449983B (zh) 用于无线局域网(wlan)省电的无缓冲通信量指示的方法和系统
CN101971675B (zh) 包括后组播时间的无线网络
US10788879B2 (en) Method and system for for low power internetwork communication with machine devices
WO2016106730A1 (zh) 主从网络休眠及唤醒的方法、装置及主从网络省电系统
US11467647B2 (en) Method and system for low power internetwork communication with machine devices
CN109743717B (zh) 数据处理方法、装置、终端设备及存储介质
US20140192691A1 (en) Reliable delivery of data specified for transmission by multicasting in wireless networks
CN115643595A (zh) 一种宽窄带融合自组网通信装置及其控制方法
CN110475321B (zh) 无线局域网ap的节电最佳化方法及装置
WO2024120230A1 (zh) 网络设备管理方法、装置及存储介质
WO2023098615A1 (zh) 一种唤醒方法、网关及系统
CN106714264B (zh) 物联网节点节能方法及系统
WO2012031542A1 (zh) 一种无线传感网建立通信的方法、系统及装置
EP2840838B1 (en) Network discovery method, access point, and terminal device
CN112333805A (zh) 空气质量连续监测系统及其监测流程
CN117768979A (zh) 无线通信链路的管理方法、装置及通信网络
US20240224179A1 (en) Radio wake-up for radio control of electronic devices
WO2024144827A1 (en) Radio wake-up for radio control of electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE