WO2023098508A1 - 波束控制装置、设备以及方法 - Google Patents

波束控制装置、设备以及方法 Download PDF

Info

Publication number
WO2023098508A1
WO2023098508A1 PCT/CN2022/133327 CN2022133327W WO2023098508A1 WO 2023098508 A1 WO2023098508 A1 WO 2023098508A1 CN 2022133327 W CN2022133327 W CN 2022133327W WO 2023098508 A1 WO2023098508 A1 WO 2023098508A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signals
light beams
light beam
optical
phase control
Prior art date
Application number
PCT/CN2022/133327
Other languages
English (en)
French (fr)
Inventor
杜明德
王天祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098508A1 publication Critical patent/WO2023098508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)

Definitions

  • the present application relates to the technical field of communication, and in particular, to a beam control device, device and method.
  • phased array system In some communication systems, such as the 5th generation wireless system (5G), network equipment needs to modulate the phase through the phased array system based on the beamforming technology during the process of uplink transmission or downlink reception. array, so that signals from some angles obtain constructive interference and signals from other angles obtain destructive interference.
  • 5G 5th generation wireless system
  • the delay device in the phased array system corresponds to the antenna (array) one by one, and each antenna needs a
  • the corresponding delay device adjusts the phase of the signal to be transmitted to realize beamforming.
  • the embodiments of the present application provide a beam control device, equipment, and method in order to improve the phase control capability of the phased array system, reduce the number of delay devices in the system, and further reduce the cost and size of the phased array system.
  • the embodiment of the present application provides a beam control device, including: a first phase control module and an electrical signal conversion module; the first phase control module is used to convert the first light beam into N second light beams, where N is A positive integer greater than 1, the first light beam and the i-th second light beam of the N second light beams both include M optical signals of different wavelengths, M is a positive integer greater than 1, the phase in the first light beam There is a first phase difference between adjacent optical signals, and there is a second phase difference between the j-th optical signal in the i-th second light beam and the j-th optical signal in the i+1-th second light beam, where i is greater than 0 and a positive integer less than or equal to N, j is a positive integer greater than 0 and less than or equal to M; the electrical signal conversion module is used to convert the N times M optical signals corresponding to the N second light beams into N times M electrical signals , the N by M electrical signals are sent by N by M antenna arrays.
  • M optical signals with different phases in the first beam can be converted into N times M optical signals with different phases corresponding to N second beams.
  • the first phase control module realizes Perform phase control on the light beam instead of phase control on each optical signal.
  • the electrical signal conversion module converts N times M optical signals with different phases into electrical signals, and converts N times M antennas (antenna array or antenna Array port) to achieve beamforming, compared to the need to set a corresponding delay device for each antenna for phase control, effectively reducing the number of delay devices, thereby reducing the cost and volume of the phased array system .
  • the first phase control module includes an optical beam splitter and N first delay lines; the optical splitter is used to convert the first light beam into N third light beams, and the first The three light beams include M optical signals; the N delay lines are used to respectively perform phase control on the N third light beams to obtain the N second light beams.
  • the process of converting the first beam into N second beams is realized based on the optical beam splitter and N first delay lines, and the first beam is converted into N second beams through the optical beam splitter.
  • the phase control of an optical signal improves the phase control capability and reduces the number of delay devices.
  • the device further includes: N first wavelength division multiplexers; the N first wavelength division multiplexers are used to convert the N second light beams into the N times M light beams Signal.
  • M optical signals in each second light beam can be obtained through N first wavelength division multiplexers, which facilitates the electrical signal conversion module to convert optical signals.
  • the device further includes: a second phase control module and a second wavelength division multiplexer; the second phase control module is used to perform phase control on the M optical signals; the second wave The demultiplexer synthesizes the phase-controlled M optical signals into the first light beam, and then sends the first light beam to the first phase control unit.
  • the phase control of the M optical signals is performed on the first stage through the second phase control module, and then the phase-controlled M optical signals are synthesized into the first stage through the second wavelength division multiplexer.
  • the light beam is sent to the first phase control module, so that the second phase control module performs second-level phase control based on the first light beam.
  • the second phase control module includes M second delay lines; the M second delay lines are used to respectively perform phase control on the M optical signals.
  • phase control is performed on M optical signals based on the M second delay lines, so that there is a first phase difference between adjacent optical signals among the M optical signals.
  • the device further includes: an optical signal conversion module; the optical signal conversion module is configured to convert the baseband signal into the M optical signals, and the M optical signals have different wavelengths.
  • the optical signal conversion module converts the baseband signal to the optical domain, so as to implement beamforming in the optical domain with abundant frequency domain resources.
  • the optical signal conversion module includes M laser units.
  • baseband signals are converted into M optical signals based on M different laser units, so that the wavelengths of the M optical signals are all different.
  • the embodiment of the present application provides a beam control device, including: a third phase control module and an optical signal conversion module; the optical signal conversion module is used to convert N times M electrical signals into N fourth light beams corresponding N times M optical signals, the N times M electrical signals are received through N times M antenna arrays; the third phase control module is used to convert N fourth light beams into fifth light beams, and N is greater than 1 A positive integer, the p-th fourth beam of the N fourth beams and the fifth beam both include M optical signals of different wavelengths, M is a positive integer greater than 1, and the adjacent optical signals in the fifth beam There is a first phase difference between them, there is a second phase difference between the qth optical signal in the pth fourth beam and the qth optical signal in the p+1th fourth beam, p is greater than 0 and less than or equal to N is a positive integer, q is a positive integer greater than 0 and less than or equal to M.
  • the third phase control module includes N third delay lines and an optical beam combiner; the N third delay lines are used to respectively perform phase control on the N fourth light beams, To obtain N sixth beams, there is no phase difference between the mth optical signal in the kth sixth beam and the mth optical signal in the k+1th sixth beam, and k is greater than 0 and less than or A positive integer equal to N, m is a positive integer greater than 0 and less than or equal to M; the optical beam combiner is used to convert the N sixth light beams into the fifth light beam.
  • the device further includes: N third wavelength division multiplexers; the N third wavelength division multiplexers are used to convert the N times M optical signals into the N fourth wavelength division multiplexers beam.
  • the device further includes: a fourth phase control module and a fourth wavelength division multiplexer; the fourth wavelength division multiplexer is used to convert the fifth light beam into M optical signals; the The fourth phase control module is used to perform phase control on the M optical signals.
  • the fourth phase control module includes: M fourth delay lines; the M fourth delay lines are used to respectively perform phase control on the M optical signals.
  • the device further includes: an electrical signal conversion module; the electrical signal conversion module is configured to convert the M optical signals into baseband signals.
  • beneficial effects of the beam control device provided by the above second aspect and each possible implementation manner of the above second aspect can be referred to the beneficial effects brought by the above first aspect and each possible implementation manner of the first aspect, here I won't repeat them here.
  • an embodiment of the present application provides a communication device, including: the first aspect and the beam control device in each possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication device, including: the first aspect and the beam control device in each possible implementation manner of the first aspect.
  • the embodiment of the present application provides a beam control method, including: converting the first light beam into N second light beams, where N is a positive integer greater than 1, the first light beam and the N second light beams
  • the i-th second light beam includes M optical signals of different wavelengths, M is a positive integer greater than 1, there is a first phase difference between adjacent optical signals in the first light beam, and the first phase difference in the i-th second light beam
  • There is a second phase difference between the j optical signal and the jth optical signal in the i+1th second light beam i is a positive integer greater than 0 and less than or equal to N, and j is a positive integer greater than 0 and less than or equal to M ;
  • converting the first light beam into N second light beams includes: converting the first light beam into N third light beams, where the third light beams include M optical signals; Phase control is performed on the third light beams respectively to obtain the N second light beams.
  • the method further includes: converting the N second light beams into the N ⁇ M optical signals.
  • the method further includes: performing phase control on the M optical signals; combining the M optical signals subjected to phase control into the first light beam; sending the first light beam to the first Phase control unit.
  • the method further includes: converting the baseband signal into the M optical signals, and the M optical signals have different wavelengths.
  • the embodiment of the present application provides a beam control method, including: converting N by M electrical signals into N by M optical signals corresponding to N fourth light beams, and the N by M electrical signals are transmitted through N Multiplied by M antenna arrays received; N fourth light beams are converted into fifth light beams, N is a positive integer greater than 1, and the p-th fourth light beam and the fifth light beam in the N fourth light beams include M optical signals of different wavelengths, M is a positive integer greater than 1, there is a first phase difference between adjacent optical signals in the fifth light beam, and the qth optical signal and the p+1th optical signal in the pth fourth light beam There is a second phase difference between the qth optical signals in the fourth light beams, p is a positive integer greater than 0 and less than or equal to N, and q is a positive integer greater than 0 and less than or equal to M.
  • converting the N fourth light beams into fifth light beams includes: performing phase control on the N fourth light beams respectively to obtain N sixth light beams, wherein the kth sixth light beams There is no phase difference between the mth optical signal of the k+1th sixth light beam and the mth optical signal in the k+1th sixth light beam; converting the N sixth light beams into the fifth light beam.
  • the method further includes: converting the N times M optical signals into the N third light beams.
  • the method further includes: converting the fifth light beam into M optical signals; performing phase control on the M optical signals.
  • the method further includes: converting the M optical signals into baseband signals.
  • an embodiment of the present application provides a communication device, including a processor; the processor is coupled to a memory; the memory is used to store instructions; and the processor is used to execute the instructions, so that the fifth aspect, The method in the sixth aspect or each possible implementation manner is executed.
  • the embodiments of the present application provide a computer-readable storage medium for storing computer program instructions, and the computer program causes a computer to execute the method in the fifth aspect, the sixth aspect, or each possible implementation manner.
  • the embodiment of the present application provides a computer program product, including computer program instructions, the computer program instructions cause the computer to execute the method in the fifth aspect, the sixth aspect or each possible implementation manner.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application
  • FIG. 2a is a schematic structural diagram of a phased array system 200a with an electronic architecture provided by the present application;
  • FIG. 2b is a schematic structural diagram of a microwave photonic phased array system 200b provided by the present application.
  • FIG. 2c is a schematic structural diagram of a microwave photonic phased array system 200c provided in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a microwave photonic phased array system 300 provided by an embodiment of the present application.
  • FIG. 4a is a schematic structural diagram of a beam control device 400a provided in an embodiment of the present application.
  • FIG. 4b is a schematic structural diagram of a beam control device 400b provided in an embodiment of the present application.
  • FIG. 4c is a schematic structural diagram of a beam control device 400c provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a beam control device 500 provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a beam control device 600 provided in an embodiment of the present application.
  • FIG. 7a is a schematic structural diagram of a beam control device 700a provided by an embodiment of the present application.
  • FIG. 7b is a schematic structural diagram of a beam control device 700b provided in an embodiment of the present application.
  • FIG. 7c is a schematic structural diagram of a beam control device 700c provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a beam control device 800 provided in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a beam control method 900 provided in an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a beam control method 1000 provided in an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, for example: Long Term Evolution (Long Term Evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunication system (universal mobile telecommunication system, UMTS), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, future fifth generation (5th Generation, 5G) mobile communication system or new wireless Access technology (new radio access technology, NR) and three application scenarios of 5G mobile communication system enhanced mobile broadband (eMBB), ultra reliable low latency communications (uRLLC), And massive machine type communications (massive machine type communications, mMTC), device-to-device (device-to-device, D2D) communication system, satellite communication system, Internet of things (Internet of things, IoT), narrowband Internet of things (narrow band internet) of things, NB-IoT) system, global system for mobile communications (GSM), enhanced data
  • the communication method provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system and the like. This application is not limited to this.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a network device 120 and at least one terminal device (such as terminal device 130 and terminal device 140 in FIG. 1).
  • the terminal equipment is connected to the network equipment in a wireless manner, and the network equipment is connected to the core network equipment in a wireless or wired manner.
  • Core network equipment and network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical equipment, or a physical equipment can integrate part of the core network equipment. device functions and functions of some network devices.
  • Terminal equipment can be fixed or mobile.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, network devices and terminal devices included in the mobile communication system.
  • the network device is the access device that the terminal device accesses the mobile communication system wirelessly, and it can be a base station NodeB, an evolved base station eNodeB, a base station in the NR mobile communication system, a base station in the future mobile communication system, or a WiFi system access nodes, etc., the embodiments of the present application do not limit the specific technology and specific equipment form adopted by the network equipment.
  • the terminal device may also be called a terminal terminal, user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Communication between network devices and terminal devices and between terminal devices can be performed through licensed spectrum, or through unlicensed spectrum, or through both licensed spectrum and unlicensed spectrum communication.
  • the communication between network equipment and terminal equipment and between terminal equipment can be carried out through the frequency spectrum below 6G, the frequency spectrum above 6G can also be used for communication, and the frequency spectrum below 6G and frequency spectrum above 6G can also be used for communication at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the network device and the terminal device.
  • Beamforming also known as beamforming or spatial filtering, is a signal processing technique that uses an array of sensors to send and/or receive signals in a direction. Through beamforming, signals at some angles can obtain constructive interference, and signals at other angles can obtain destructive interference.
  • the phased array system is based on the beamforming technology, which applies appropriate phase shift (or delay) to the signals of the regularly arranged array elements, so that the signals at some angles can obtain constructive interference, thereby obtaining beam deflection.
  • FIG. 2a is a schematic structural diagram of a phased array system 200a with an electronic architecture provided in the present application.
  • the phased array system 200a includes W phase shifters, W is a positive integer greater than 1, such as phase shifters 1 to W, and the phase shifters in the phased array system 200a generally work in centimeter wave, In the range of decimeter wave or millimeter wave (for example, the wavelength is 1-200 mm), after the phase shifter controls the phase of the signals in the wavelength range, the phase-controlled signals are respectively sent through W antennas.
  • phase control capability of the phase shifter results in a low phase control (ie, beam control) capability of the phased array system 200a.
  • Fig. 2b is a schematic structural diagram of a microwave photonic phased array system 200b provided in the present application.
  • the microwave photonic phased array system takes advantage of the advantages of microwave photonic technology, such as anti-electromagnetic interference, light weight, small size, low loss, and large bandwidth, and can replace the electronic technology with the highest bandwidth to meet the needs of radar and communication systems.
  • the microwave photonic phased array system 200b uses W delay lines (also called photon true delay lines or true delay lines) as shown in FIG. 2b Time lines), such as delay lines 1 to W, realize delay (phase) control, and the delay lines can realize beamforming by processing optical signals at optical wavelengths (900-1800nm).
  • the microwave photonic phased array system 200b also includes W photodetectors, which are used to convert the phase-controlled optical signal into an electrical signal, so that the electrical signal is sent through the W antennas respectively.
  • Fig. 2c is a schematic structural diagram of a microwave photonic phased array system 200c provided in an embodiment of the present application.
  • the M laser sources 210c in the microwave photonic phased array system 200c respectively emit optical signals of different wavelengths (such as ⁇ 1 to ⁇ M ), and optical signals of different wavelengths (such as ⁇ 1 to ⁇ M ) phase control of optical signals of different wavelengths (such as ⁇ 1 to ⁇ M ) is realized through M delay lines 220c, and further, optical signals of different wavelengths (such as ⁇ 1 ⁇ M ) is synthesized into a light beam 1, and the light beam 1 is transmitted to the far end through an optical fiber or an optical waveguide, and the wave division multiplexer 240c at the far end decomposes the light beam 1 to obtain M optical signals, M optical detectors 250c respectively detect M optical signals, convert them into M electrical signals, and transmit them by the antenna array 260c.
  • the antenna (or called antenna array element, antenna array element port, antenna array) corresponds to a delay device (such as a phase shifter or a delay line) one by one, that is, each antenna needs There is a corresponding delay device (such as a phase shifter or a delay line) to implement beamforming.
  • a delay device such as a phase shifter or a delay line
  • the scale of antennas continues to increase to meet the high requirements for communication quality, so the number of delay devices (such as phase shifters or delay lines) in the phased array system is large, resulting in phased array Array systems are expensive and bulky.
  • the beam control device and method provided in the embodiments of the present application, aiming at the problem of a large number of delay devices (such as phase shifters or delay lines) in the above-mentioned phased array system, in the process of beam control Convert the first beam (such as beam 1 in Figure 2c) into N second beams, and perform phase control on the N second beams. After phase control of the second beams, it can be realized that the M optical signals with different phases are converted into N times M optical signals with different phases. By controlling the phase of the beam instead of controlling the phase of each optical signal, the number of delay devices is effectively reduced, thereby reducing the phase control cost and size of the array system.
  • delay devices such as phase shifters or delay lines
  • FIG. 3 is a schematic structural diagram of a microwave photonic phased array system 300 provided in an embodiment of the present application.
  • the microwave photonics phased array system 300 includes: a backend microwave photonics functional component 310 , a microwave photonics-based radio remote and beam shaping network 320 , and an optoelectronic hybrid integrated front end 330 .
  • the back-end microwave photon functional component 310 includes: a digital signal processing (digital signal processing, DSP) module, an arbitrary waveform generator (arbitrary waveform generator, AWG) (such as a microwave photon AWG), a microwave photon up-conversion module, a microwave photon down-conversion module, and a microwave photon down-conversion module.
  • DSP digital signal processing
  • AWG arbitrary waveform generator
  • a frequency conversion module a digital-to-digital conversion (analogue-to-digital conversion, ADC) module (such as a microwave photonic ADC) and a circulator.
  • the photoelectric hybrid integrated front end 330 includes: a wavelength division multiplexing (wavelength division multiplexing, WDM) device, a photoelectric signal conversion module, a radio frequency amplification module, an amplification and filtering module, and a circulator.
  • the photoelectric hybrid integrated front end 330 may also include an antenna (antenna array, antenna array port).
  • the wavelength division multiplexer may be used to realize the function of a multiplexer (multiplexer, MUX) or a demultiplexer (demultiplexer, DEMUX).
  • the back-end microwave photonic functional component 310 can perform long-distance communication with the microwave photonic-based remote radio frequency and beam shaping network 320 through remote radio frequency, so as to realize physical separation from the antenna.
  • the back-end microwave photonic functional component 310 can be deployed on the ground equipment of the base station, and the microwave photonic-based remote radio frequency and beam shaping network 320 and the photoelectric hybrid integrated front-end 330 can be deployed on the tower equipment of the base station.
  • the transmission link is: the arbitrary waveform generator outputs the clock control signal according to the digital signal processing module; The frequency of the local oscillator signal is up-converted, the stray signal is filtered out by the optical filter, and sent to the beam forming network through the radio frequency optical pull.
  • the beam shaping network After the beam shaping network completes the dynamic configuration among the transmitting channels, it sends the optical signal to the corresponding photoelectric hybrid integrated front end 330 .
  • the phase control of the optical signal is realized through the delay line, and then the radio frequency excitation signal is recovered after photoelectric conversion, and then radiated by the antenna after radio frequency amplification.
  • the receiving link is as follows: the radar echo signal detected by the antenna is first amplified and filtered by radio frequency preprocessing (such as the amplification and filtering module), and then the electrical signal is modulated into the optical domain by the photoelectric signal conversion module. After the optical domain completes the corresponding phase control through the delay line, the subarray-level beamforming is completed through the beam forming network, and then transmitted back to the back-end microwave photon functional component 310 through radio frequency optical pull.
  • the detected high-frequency signal is down-converted to an intermediate frequency by the microwave photonic down-conversion module, and the intermediate frequency signal is processed after optical filtering and photoelectric conversion.
  • ADC technology can also be used to directly process the high-frequency signal. Bandpass sampling. The sampled digital signal is then sent to the data signal processing module to complete relevant signal processing.
  • Fig. 4a is a schematic structural diagram of a beam control apparatus 400a provided by an embodiment of the present application.
  • the beam control device 400a includes a first phase control module 410a and an electrical signal conversion module 420a.
  • the first phase control module 410a is used to convert the first light beam into N second light beams, N is a positive integer greater than 1
  • the electrical signal conversion module 420a is used to convert the N times M light beams corresponding to the N second light beams
  • the signal is converted into N by M electrical signals, where M is a positive integer greater than 1, and the N by M electrical signals are sent by N by M antenna arrays.
  • the first light beam includes M optical signals of different wavelengths, and there is a first phase difference among the M optical signals.
  • the M optical signals (wavelengths ⁇ 1 - ⁇ M ) of the first light beam satisfy a phase shift matrix: [0 ⁇ ... (M-1) ⁇ ], where ⁇ is the first phase difference.
  • the first light beam may be synthesized by phase-controlled M optical signals.
  • the phase control of the first light beam may be implemented by the beam control apparatus 400a in this application or by a phase control module of other devices, which is not limited in this application.
  • the i-th second light beam among the N second light beams includes M optical signals of different wavelengths, i is a positive integer greater than 0 and less than N, in other words, each of the N second light beams includes M Optical signals of different wavelengths.
  • the M optical signals in the second light beam correspond to the M optical signals in the first light beam one by one, and each have the same wavelength.
  • the wavelengths of the M optical signals in the first light beam are ⁇ 1 , ⁇ 2 ... ⁇ M
  • the wavelengths of the M optical signals in the second light beam are also ⁇ 1 , ⁇ 2 ... ⁇ M . That is, when the first phase control module converts the first light beam into N second light beams, the wavelength of the optical signal in the light beam remains unchanged.
  • the N times M optical signals corresponding to the N second light beams are expressed as
  • the corresponding wavelength can be expressed as
  • j is An integer greater than 0 and less than or equal to M, that is, there is a second phase difference between optical signals corresponding to S ij and S (i+1)j .
  • the N times M optical signals corresponding to the N second light beams should satisfy the following phase shift matrix (1):
  • is the first phase difference
  • is the second phase difference
  • the first phase control module can convert the M optical signals with different phases in the first light beam into N times M optical signals with different phases corresponding to the N second light beams.
  • the light beam is phase-controlled instead of phase-controlled for each optical signal.
  • the electrical signal conversion module 420a converts N times M optical signals with different phases into electrical signals, and converts N times M antennas (antenna arrays or antennas) into electrical signals.
  • Array port to achieve beamforming, compared to the need to set a corresponding delay device for each antenna for phase control, effectively reducing the number of delay devices, thereby reducing the cost and volume of the phased array system .
  • the first phase control module 410a in FIG. 4a may be deployed in the beam shaping network in FIG. 3, for example, and the electrical signal conversion module 420a may be the photoelectric signal conversion module 1 in FIG. 3, for example.
  • Fig. 4b is a schematic structural diagram of a beam control device 400b provided by an embodiment of the present application.
  • the beam control device 400b includes a first phase control module 410b and an electrical signal conversion module 420b, wherein the first phase control module 410b includes an optical beam splitter 411b and N first delay lines (412b-1 to 412b-N).
  • the optical beam splitter 411b is used to convert the first light beam into N third light beams, and the N first time delay lines (412b-1 to 412b-N) are used to respectively perform phase control on the N third light beams to obtain the N second beams.
  • the electrical signal conversion module 420b is the same as the electrical signal conversion module 420a in the embodiment shown in FIG. 4a , and will not be repeated here.
  • the description of the first light beam and the second light beam is the same as the description about the first light beam and the second light beam in the embodiment shown in FIG. 4 a , and will not be repeated here.
  • the third light beam includes M optical signals, and the M optical signals are optical signals of different wavelengths.
  • the M optical signals in the third light beam correspond to the M optical signals in the first light beam one by one, and each have the same wavelength.
  • the wavelengths of the M optical signals in the first light beam are ⁇ 1 , ⁇ 2 ... ⁇ M
  • the wavelengths of the M optical signals in the third light beam are also ⁇ 1 , ⁇ 2 ... ⁇ M . That is, when the optical beam splitter 411b converts the first light beam into N third light beams, the wavelength of the optical signal in the light beam remains unchanged.
  • the N times M optical signals corresponding to the N third light beams are expressed as
  • the corresponding wavelength can be expressed as
  • the M optical signals in each third light beam correspond to the M optical signals in the first light beam one-to-one, and the decomposition has the same phase, that is, the adjacent M optical signals in each third light beam There is a first phase difference between the optical signals.
  • phase shift matrix (2) [0 ⁇ ... (M-1) ⁇ ]
  • the optical beam splitter 411b splits the first beam into multiple outputs to obtain N third beams, and the M optical signals in the third beam have the same wavelength and phase as the M optical signals in the first beam.
  • the third beams of the N third beams are respectively input into the first delay lines, and the N first delay lines can respectively perform phase control on the N third beams based on the following phase shift matrix (3), N second light beams are obtained, so that the N second light beams satisfy the phase shift matrix (1).
  • the process of converting the first light beam into N second light beams is realized based on the optical beam splitter 411b and N first delay lines, and the first light beam is converted into N second light beams by the optical beam splitter 411b phase control of the N third beams through N first delay lines, so that the phase control capability of the first phase control module for the first beams presents a multiple increase, compared to passing through a delay line pair
  • An optical signal performs phase control, which improves the phase control capability and reduces the number of delay devices.
  • the first phase control module 410b in FIG. 4b may be deployed in the beam shaping network in FIG. 3, for example, and the electrical signal conversion module 420a may be the photoelectric signal conversion module 1 in FIG. 3, for example.
  • Fig. 4c is a schematic structural diagram of a beam control apparatus 400c provided in an embodiment of the present application.
  • the beam control device 400c includes a first phase control module 410c, N first wavelength division multiplexers (430c-1, 430c-2...430c-N) and an electrical signal conversion module 420c.
  • the first phase control module 410c is the same as 410b in the embodiment shown in FIG. 4b
  • the electrical signal conversion module 420c is the same as 420a and 420b in the embodiment shown in FIGS. 4a and 4b , so details will not be repeated here.
  • N first wave Demultiplexers (430c-1, 430c-2...430c-N).
  • the N first wavelength division multiplexers (430c-1, 430c-2...430c-N) are used to convert the N second light beams into N by M optical signals.
  • N first wavelength division multiplexers (430c-1, 430c-2...430c-N) correspond to N second light beams one by one, and one first wavelength division multiplexer (for example, the first wavelength division multiplexer The multiplexer 430c-1) decomposes the first second light beam among the N second light beams to obtain M optical signals in the first second light beam, and by analogy, N second light beams corresponding to The N by M optical signals, so that the electrical signal conversion module 420c can convert the photoelectric signal based on the N by M optical signals to obtain N by M electrical signals.
  • M optical signals in each second light beam can be obtained through N first wavelength division multiplexers, which is convenient for the electrical signal conversion module to convert optical signals.
  • the first phase control module 410c in FIG. 4c may be deployed in the beam shaping network in FIG. 3, for example, and the electrical signal conversion module 420c may be the photoelectric signal conversion module 1 in FIG. 3, for example.
  • the N first wavelength division multiplexers (430c-1 to 430c-N) in FIG. 4c may be, for example, the wavelength division multiplexers in FIG. 3 .
  • the N first wavelength division multiplexers (430c-1 to 430c-N) in FIG. 4c are all used to realize the function of DEMUX.
  • FIG. 5 is a schematic structural diagram of a beam control apparatus 500 provided in an embodiment of the present application.
  • the beam control device in the present application includes at least a first phase control module and an electrical signal conversion module.
  • the beam control device 500 includes a first phase control module 530 and an electrical signal conversion module 540 .
  • the beam control device 500 may further include: an optical signal conversion module 510 and/or a second phase control module 520 .
  • the optical signal conversion module 510 is used to convert the baseband signal into M optical signals, and the wavelengths of the M optical signals are all different (such as the above-mentioned ⁇ 1 , ⁇ 2 ... ⁇ M )
  • the second phase control module 520 is used to perform phase control on the M optical signals, so that there is a first phase difference between adjacent optical signals in the M optical signals, for example, based on the above-mentioned phase shift matrix (2) for the M optical signals Phase control is performed on the signals, so that the phase-controlled M optical signals satisfy the phase shift matrix (2), and the phase-controlled M optical signals can be synthesized into the above-mentioned first light beam.
  • the beam control device does not include the optical signal conversion module 510 and/or the second phase control module 520, the processes performed by it may be performed by other devices.
  • the first phase control module 530 in FIG. 5 can be deployed in the beam shaping network in FIG. 3 , for example, and the electrical signal conversion module 540 can be the photoelectric signal conversion module 1 in FIG. 3 , for example.
  • the second phase control module 520 in FIG. 5 may be deployed in the back-end functional component 310 in FIG. 3 , for example, in a microwave photonic up-conversion module.
  • the optical signal conversion module 510 in FIG. 5 may be deployed in the backend functional component 310 in FIG. 3 , for example, the arbitrary waveform generator in the backend functional component 310 .
  • FIG. 6 is a schematic structural diagram of a beam control apparatus 600 provided in an embodiment of the present application.
  • the beam control apparatus 600 shown in FIG. 6 can be used in the beamforming process of the transmitting end, and can also be used in the beamforming process of the receiving end.
  • the beam control device 600 When the beam control device 600 shown in FIG. 6 is used for the beamforming process at the transmitting end, the beam control device 600 includes an optical signal conversion module 610, M second delay lines 620, a second wavelength division multiplexer 630, An optical beam splitter 640 , N first delay lines 650 , N first wavelength division multiplexers 660 , and an electrical signal conversion module 670 . In some embodiments, the beam steering apparatus 600 may further include an N by M antenna array 680 .
  • the optical signal conversion module 610 may include, for example, M laser units, and the optical signal conversion module 610 may respectively generate M optical signals of different wavelengths based on the baseband signal through the M laser units.
  • the M second delay lines 620 can be, for example, the above-mentioned second phase control module, and the M second delay lines are used to respectively perform phase control on the M optical signals, for example, based on the above-mentioned phase shift matrix (2) for the M optical signals
  • the optical signals are phase-controlled so that the phase-controlled M optical signals satisfy the phase shift matrix (2).
  • the second wavelength division multiplexer 630 is used to synthesize the phase-controlled M optical signals into the above-mentioned first light beam, and send the first light beam to the optical beam splitter 640 .
  • the beam splitter 640 is used to split the first light beam into N third light beams, and input the N third light beams into the N first delay lines 650 .
  • the optical beam splitter 640 can respectively input each third light beam into the corresponding first delay line, and make each first delay line perform phase control on it to obtain N second light beams.
  • Each first delay line inputs the second light beam into the corresponding first wavelength division multiplexer 660 .
  • Each first wavelength division multiplexer 660 decomposes the input second light beam into M optical signals, and inputs the M optical signals into M photodetectors respectively, and converts the M optical signals into M optical signals through the M photodetectors. an electrical signal. It should be understood that the electrical signal conversion module 670 includes N by M photodetectors.
  • the M optical signals, the first light beam, the second light beam, and the third light beam are described in the embodiments shown in FIGS. 4 a to 4 c and FIG. 5 , and will not be repeated here.
  • the optical signal conversion module 610 in FIG. 6 may be deployed in the backend functional component 310 in FIG. 3 , for example, the arbitrary waveform generator in the backend functional component 310 .
  • the M second delay lines 620 may be deployed in the back-end functional component 310 in FIG. 3 , for example, deployed in a microwave photonic up-conversion module.
  • the second wavelength division multiplexer 630 may be deployed in the back-end functional component 310 in FIG. 3 , for example, deployed in a microwave photonic up-conversion module.
  • the optical beam splitter 640 can be deployed in the beam shaping network in FIG. 3 .
  • the N first delay lines 650 may be deployed in the beam shaping network in FIG. 3 .
  • the N first wavelength division multiplexers 660 may be the wavelength division multiplexers in FIG. 3 .
  • the electrical signal conversion module 670 may be the photoelectric signal conversion module 1 in FIG. 3 .
  • FIG. 5 and FIG. 6 are all described for the beam control apparatus applied to beamforming at the transmitting end.
  • the beam control apparatus applied to the beamforming at the receiving end will be described below with reference to FIG. 7a to FIG. 7c , FIG. 8 and FIG. 6 .
  • Fig. 7a is a schematic structural diagram of a beam control apparatus 700a provided by an embodiment of the present application.
  • the beam control device 700a includes a third phase control module 710a and an optical signal conversion module 720a.
  • the optical signal conversion module 720a is configured to convert the N by M electrical signals into N by M optical signals corresponding to the N fourth light beams, and the N by M electrical signals are received by the N by M antenna arrays;
  • the third phase control module is used to convert the N fourth light beams into fifth light beams.
  • N times M optical signals are expressed as The phases of the N times M optical signals should satisfy the aforementioned phase shift matrix (1).
  • an optical signal having a first phase difference between two of the N times M optical signals may be used as a fourth light beam to obtain N fourth light beams.
  • Q 11 , Q 12 ... Q 1M is the first fourth beam
  • Q 21 , Q 22 ... Q 2M is the second fourth beam ... Q N1
  • Q N2 ... Q NM is the first N fourth light beams.
  • the p-th fourth light beam among the N fourth light beams includes M optical signals of different wavelengths.
  • There is a second phase difference between the qth optical signal in the pth fourth beam and the qth optical signal in the p+1th fourth beam for example, there is a second phase difference between Q pq and Q (p+1)q
  • Two phase differences there is a first phase difference between the qth optical signal in the pth fourth beam and the q+1th optical signal in the pth fourth beam, such as Qpq and Qp(q+1)
  • p is a positive integer greater than 0 and less than or equal to N
  • q is a positive integer greater than 0 and less than or equal to M.
  • the fifth light beam includes M optical signals of different wavelengths, and there is a first phase difference between adjacent optical signals in the fifth light beam.
  • the M optical signals of the fifth light beam satisfy the phase shift matrix [0 ⁇ ... (M -1) ⁇ ].
  • the third phase control module can realize the conversion of N times M optical signals with different phases corresponding to the N fourth light beams into M optical signals with different phases in the fifth light beam.
  • the phase control of the light beam instead of phase control of each optical signal effectively reduces the number of delay devices, thereby reducing the cost and volume of the phased array system.
  • the third phase control module 710a may be deployed in the beam shaping network in FIG. 3 , for example.
  • the optical signal conversion module 720a may be, for example, the photoelectric signal conversion module 2 in FIG. 3 .
  • Fig. 7b is a schematic structural diagram of a beam control device 700b provided in an embodiment of the present application.
  • the beam control device 700b includes a third phase control module 710b and an optical signal conversion module 720b, wherein the third phase control module 710b includes an optical beam combiner 711b and N third delay lines (712b-1 to 712b- N).
  • N third delay lines (712b-1 to 712b-N) are used to phase control the N fourth light beams respectively to obtain N sixth light beams; the optical beam combiner 711b is used to convert the N sixth light beams into Fifth beam.
  • optical signal conversion module 720b is the same as the optical signal conversion module 720a in the embodiment shown in FIG. 7a , and will not be repeated here.
  • the description of the fourth light beam and the fifth light beam is the same as the description about the fourth light beam and the fifth light beam in the embodiment shown in FIG. 7 a , and will not be repeated here.
  • N times M optical signals corresponding to the N sixth light beams can be expressed as
  • N sixth light beams there is no phase difference between the m-th optical signal in the k-th sixth light beam and the m-th optical signal in the k+1-th sixth light beam, and k is greater than 0 and less than or It is a positive integer equal to N, and m is a positive integer greater than 0 and less than or equal to M.
  • k is greater than 0 and less than or It is a positive integer equal to N
  • m is a positive integer greater than 0 and less than or equal to M.
  • H km and H (k+1)m there is no phase difference between H km and H (k+1)m . That is, the phases of the N times M optical signals corresponding to the N sixth light beams should satisfy the aforementioned phase shift matrix (2).
  • the M optical signals of the fifth light beam satisfy the phase shift matrix [0 ⁇ ... (M-1) ⁇ ].
  • the optical beam combiner 711b combines N sixth beams from multiple inputs into one output to obtain a fifth beam, and the wavelength and phase of the M optical signals in the fifth beam are the same as those of the M optical signals in each sixth beam.
  • the signals are the same.
  • the process of converting the fourth light beam into N fifth light beams is realized based on the optical beam combiner 711b and N third delay lines, and the fourth light beam is converted into N fifth light beams through the optical beam combiner 711b Five beams, phase control of N sixth beams through N third delay lines, so that the phase control ability of the third phase control module on the fourth beam is multiplied, compared with the phase control of one beam through one delay line
  • the phase control of the signal improves the phase control capability and reduces the number of delay devices.
  • the third phase control module 710b may be deployed in the beam shaping network in FIG. 3 , for example.
  • the optical signal conversion module 670 may be, for example, the photoelectric signal conversion module 2 in FIG. 3 .
  • FIG. 7c is a schematic structural diagram of a beam control device 700c provided in an embodiment of the present application.
  • the beam control device 700c includes a third phase control module 710c, N third wavelength division multiplexers (730c-1 to 730c-N) and an optical signal conversion module 720c.
  • the third phase control module 710c is the same as 710b in the embodiment shown in FIG. 7b
  • the optical signal conversion module 720c is the same as 720a and 720b in the embodiment shown in FIGS. 7a and 7b , which will not be repeated here.
  • the N third wavelength division multiplexers (730c-1 to 730c-N) are used to convert N by M optical signals into N fourth light beams.
  • N third wavelength division multiplexers (730c-1 to 730c-N) are in one-to-one correspondence with N fourth light beams, and one third wavelength division multiplexer (such as the third wavelength division multiplexer 730c -1) converting the M optical signals of the first group into the first fourth light beams, and by analogy, N fourth light beams can be obtained.
  • N fourth light beams can be obtained through N third wavelength division multiplexers, so that the third phase control module 710c can perform phase control on each fourth light beam, and avoid performing phase control on each optical signal. phase control.
  • the third phase control module 710c may be deployed in the beam shaping network in FIG. 3 , for example.
  • the N third wavelength division multiplexers (730c-1 to 730c-N) may be, for example, the wavelength division multiplexers in FIG. 3 .
  • the third wavelength division multiplexer is used to realize the function of MUX.
  • the optical signal conversion module 720c may be, for example, the photoelectric signal conversion module 2 in FIG. 3 .
  • FIG. 8 is a schematic structural diagram of a beam control apparatus 800 provided in an embodiment of the present application.
  • the beam control device includes at least a third phase control module and an optical signal conversion module.
  • the beam control device 800 includes a third phase control module 830 and an optical signal conversion module 840.
  • the beam control device 800 may further include: an electrical signal conversion module 810 and/or a fourth phase control module 820.
  • the fourth phase control module 820 is configured to perform phase control on the M optical signals in the fifth light beam, so that there is no phase difference between adjacent optical signals among the M optical signals.
  • the electrical signal conversion module 810 is used to convert the M optical signals without phase difference into baseband signals.
  • the beam control apparatus 800 does not include the electrical signal conversion module 810 and/or the fourth phase control module 820, the processes performed by it may be performed by other devices.
  • the beam control device 600 When the beam control device 600 shown in FIG. 6 is used for the beamforming process at the receiving end, the beam control device 600 includes an optical signal conversion module 670, N third wavelength division multiplexers 660, and N third delay lines 650 , an optical beam combiner 640 , a fourth wavelength division multiplexer 630 , M fourth delay lines 620 and an electrical signal conversion module 610 .
  • the beam steering apparatus 600 may further include an N by M antenna array 680 .
  • N by M antenna array 680 is used to receive N by M electrical signals.
  • the optical signal conversion module 670 includes M laser units, which are used to convert the N by M electrical signals into N by M optical signals corresponding to the N fourth light beams, and send the N by M optical signals to the N fourth light beams respectively.
  • Three wavelength division multiplexer 660 is used to convert the N by M electrical signals into N by M optical signals corresponding to the N fourth light beams, and send the N by M optical signals to the N fourth light beams respectively.
  • Each third wavelength division multiplexer 660 synthesizes the M received optical signals into a fourth light beam, and sends the combined fourth light beam to the N third delay lines 650 .
  • Each of the N third delay lines 650 performs phase control on the input fourth beam to obtain a sixth beam, and each third delay line inputs the sixth beam to the optical beam combiner 640 .
  • the optical beam combiner 640 combines the received N sixth light beams into a fifth light beam, and sends the fifth light beam to the fourth wavelength division multiplexer 630 .
  • the fourth wavelength division multiplexer 630 converts the fifth light beam into M optical signals, which can also be expressed as that the fourth wavelength division multiplexer 630 decomposes to obtain M optical signals in the fifth light beam, and then converts the obtained M optical signals
  • the optical signals are respectively input into the M fourth delay lines 620 .
  • Each fourth delay line controls the phase of the received optical signal, so that there is no phase difference among the M optical signals.
  • the electrical signal converting module 610 converts the M optical signals sent by the M fourth delay lines into M electrical signals.
  • the electrical signal conversion module 610 may process the converted M electrical signal data into units.
  • the M optical signals, the fourth light beam, the fifth light beam, and the sixth light beam are described in the embodiments shown in FIGS. 7 a to 7 c and FIG. 8 , and will not be repeated here.
  • the electrical signal conversion module 610 in FIG. 6 may be deployed in the backend functional component 310 in FIG. 3 , for example, between the digital-to-analog conversion module and the microwave photonic down-conversion module in the backend functional component 310 .
  • the M fourth delay lines 620 may be deployed, for example, in the back-end functional component 310 in FIG. 3 , for example, in a microwave photonic up-conversion module.
  • the fourth wavelength division multiplexer 630 may be deployed, for example, in the back-end functional component 310 in FIG. 3 , for example, in a microwave photonic up-conversion module.
  • the fourth wavelength division multiplexer 630 for example, can be used to realize the function of DEMUX
  • the optical beam combiner 640 may be deployed in the beam shaping network in FIG. 3 , for example.
  • the N third delay lines 650 may be deployed in the beam shaping network in FIG. 3 , for example.
  • the N third wavelength division multiplexers 660 may be, for example, the wavelength division multiplexers in FIG. 3 .
  • the third wavelength division multiplexer is used to realize the function of MUX.
  • the optical signal conversion module 670 may be, for example, the photoelectric signal conversion module 2 in FIG. 3 .
  • FIG. 9 is a schematic flowchart of a beam control method 900 provided in an embodiment of the present application. As shown in FIG. 9, the method 900 includes:
  • N is a positive integer greater than 1
  • the first light beam and the i-th second light beam among the N second light beams both include M optical signals of different wavelengths
  • M is a positive integer greater than 1
  • There is a second phase difference between the j optical signals i is a positive integer greater than 0 and less than or equal to N
  • j is a positive integer greater than 0 and less than or equal to M;
  • converting the first light beam into N second light beams includes: converting the first light beam into N third light beams, where the third light beams include M optical signals; Phase control is performed on the light beams respectively to obtain the N second light beams.
  • the method 900 further includes: converting the N second light beams into the N by M optical signals.
  • the method 900 further includes: performing phase control on the M optical signals; combining the phase-controlled M optical signals into the first light beam; sending the first light beam to the first phase control unit.
  • the method 900 further includes: converting the baseband signal into the M optical signals, and the wavelengths of the M optical signals are all different.
  • the method 900 in the embodiment shown in Figure 9 can be applied to any beam control device applied to the sending end shown in Figure 4a to Figure 4c, Figure 5 and Figure 6 above, and its technical solution and beneficial effects are similar , which will not be repeated here.
  • FIG. 10 is a schematic flowchart of a beam control method 1000 provided in an embodiment of the present application. As shown in FIG. 10, the method 1000 includes:
  • N is a positive integer greater than 1
  • the p-th fourth light beam and the fifth light beam among the N fourth light beams include M optical signals of different wavelengths
  • M is a positive integer greater than 1
  • p is a positive integer greater than 0 and less than or equal to N
  • q is a positive integer greater than 0 and less than or equal to M.
  • converting the N fourth light beams into fifth light beams includes: performing phase control on the N fourth light beams respectively to obtain N sixth light beams, and the mth light beam in the kth sixth light beams There is no phase difference between the nth optical signal and the mth optical signal in the k+1th sixth light beam; converting the N sixth light beams into the fifth light beam.
  • the method 1000 further includes: converting the N by M optical signals into the N third light beams.
  • the method 1000 further includes: converting the fifth light beam into M optical signals; performing phase control on the M optical signals.
  • the method 1000 further includes: converting the M optical signals into baseband signals.
  • the method 1000 in the embodiment shown in Figure 10 can be applied to any beam control device applied to the receiving end shown in Figure 7a to Figure 7c, Figure 8 and Figure 6 above, and its technical solution and beneficial effects are similar , which will not be repeated here.
  • FIG. 11 is another schematic block diagram of a communication device 1100 provided by an embodiment of the present application.
  • the apparatus 1100 may include: a processor 1110 , a transceiver 1120 and a memory 1130 .
  • the processor 1110, the transceiver 1120 and the memory 1130 communicate with each other through an internal connection path, the memory 1130 is used to store instructions, and the processor 1110 is used to execute the instructions stored in the memory 1130 to control the transceiver 1120 to send signals and /or to receive a signal.
  • the communication apparatus 1100 may correspond to a network device.
  • the memory 1130 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 1130 may be an independent device, or may be integrated in the processor 1110 .
  • the processor 1110 can be used to execute the instructions stored in the memory 1130, and when the processor 1110 executes the instructions stored in the memory, the processor 1110 can be used to execute various steps and/or processes of the above method embodiments.
  • the transceiver 1120 may include a transmitter and a receiver.
  • the transceiver 1120 may further include antennas, and the number of antennas may be one or more.
  • the processor 1110, the memory 1130 and the transceiver 1120 may be devices integrated on different chips.
  • the processor 1110 and the memory 1130 may be integrated in a baseband chip, and the transceiver 1120 may be integrated in a radio frequency chip.
  • the processor 1110, the memory 1130 and the transceiver 1120 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 1100 is a component configured in a network device, such as a chip, a chip system, and the like.
  • the transceiver 1120 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 1120, the processor 1110 and the memory 1120 may be integrated in the same chip, such as a baseband chip.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method or network performed by the terminal device in the above method embodiment The method implemented by the device.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the methods in the above method embodiments.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the computer shown in Figure 9 or Figure 10. The method executed in the exemplary embodiment or each possible implementation manner.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the method shown in FIG. The method executed in the embodiment shown in 10 or a possible implementation manner.
  • the network device in this embodiment of the present application includes the device deployed with the beam control apparatus in any of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供一种波束控制装置、设备以及方法。该装置包括:第一相位控制模块和电信号转换模块;第一相位控制模块用于将第一光束转换为N个第二光束,N为大于1的正整数,第一光束和N个第二光束中的第i个第二光束均包括M个不同波长的光信号,M为大于1的正整数,该第一光束中的相邻光信号之间存在第一相位差,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差;电信号转换模块用于将该N个第二光束对应的N乘M个光信号转换为N乘M个电信号,该N乘M个电信号由N乘M个天线阵列发送。实现了对光束进行相位控制而非对每个光信号进行相位控制,降低了延时器件的数量,进而降低了相控阵系统的成本和体积。

Description

波束控制装置、设备以及方法
本申请要求于2021年12月02日提交中国专利局、申请号为202111467887.1、申请名称为“波束控制装置、设备以及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束控制装置、设备以及方法。
背景技术
在一些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,网络设备需要在上行发送或者下行接收的过程中,常基于波束赋形技术,通过相控阵系统调制相位阵列,以使一些角度的信号获得相长干涉,使另一些角度的信号获得相消干涉。
目前,相控阵系统基于延时器件(例如移相器或延时线)进行相位调整时,相控阵系统中的延时器件与天线(阵列)的一一对应,每个天线需要有一个对应的延时器件对其将要发射的信号进行相位调整,以实现波束赋形。
然而,随着通信技术的不断发展,天线规模不断提升以满足对通信质量的高要求,此种情况下,相控阵系统的延时器件的数量越来越多,导致相控阵系统的成本较高、体积较大。
发明内容
本申请实施例提供的一种波束控制装置、设备以及方法,以期提高相控阵系统的相位控制能力,减少系统中延时器件的数量,进而降低相控阵系统的成本,缩小其体积。
第一方面,本申请实施例提供一种波束控制装置,包括:第一相位控制模块和电信号转换模块;该第一相位控制模块用于将第一光束转换为N个第二光束,N为大于1的正整数,该第一光束和该N个第二光束中的第i个第二光束均包括M个不同波长的光信号,M为大于1的正整数,该第一光束中的相邻光信号之间存在第一相位差,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差,i为大于0且小于等于N的正整数,j为大于0且小于等于M的正整数;该电信号转换模块用于将该N个第二光束对应的N乘M个光信号转换为N乘M个电信号,该N乘M个电信号由N乘M个天线阵列发送。
通过该实施方式提供的波束控制装置,可以实现将第一光束中M个相位不同的光信号转换为N个第二光束对应的N乘M个相位不同的光信号,第一相位控制模块实现了对光束进行相位控制而非对每个光信号进行相位控制,进一步地,电信号转换模块将N乘M个相位不同的光信号转换为电信号,并由N乘M个天线(天线阵列或天 线阵列端口)发送,实现波束赋形,相比于针对每个天线需要设置对应的延时器件进行相位控制而言,有效降低了延时器件的数量,进而降低了相控阵系统的成本和体积。
在一种可能的实施方式中,该第一相位控制模块包括光分束器和N个第一延时线;该光分路器用于将该第一光束转换为N个第三光束,该第三光束包括M个光信号;该N个延时线用于对该N个第三光束分别进行相位控制,得到该N个第二光束。
通过该实施方式提供的波束控制装置,基于光分束器和N个第一延时线实现了将第一光束转换为N个第二光束的过程,通过光分束器将第一光束转换为N个第三光束,通过N个第一延时线对N个第三光束进行相位控制,使得第一相位控制模块对第一光束的相位控制能力呈现倍数增长,相比于通过一个延时线对一个光信号进行相位控制,提升了相位控制能力,减少了延时器件的数量。
在一种可能的实施方式中,该装置还包括:N个第一波分复用器;该N个第一波分复用器用于将该N个第二光束转换为该N乘M个光信号。
通过该实施方式提供的波束控制装置,通过N个第一波分复用器可以得到各第二光束中的M个光信号,便于电信号转换模块进行光电信号的转换。
在一种可能的实施方式中,该装置还包括:第二相位控制模块和第二波分复用器;该第二相位控制模块用于对该M个光信号进行相位控制;该第二波分复用器将经过相位控制的M个光信号合成为该第一光束,再将该第一光束发送至该第一相位控制单元。
通过该实施方式提供的波束控制装置,通过第二相位控制模块对M个光信号进行第一级的相位控制,再通过第二波分复用器将经过相位控制的M个光信号合成第一光束发送至第一相位控制模块,使第二相位控制模块基于第一光束进行第二级的相位控制。
在一种可能的实施方式中,该第二相位控制模块包括M个第二延时线;该M个第二延时线用于对该M个光信号分别进行相位控制。
通过该实施方式提供的波束控制装置,基于M个第二延时线对M个光信号分别进行相位控制,使M个光信号中相邻的光信号之间存在第一相位差。
在一种可能的实施方式中,该装置还包括:光信号转换模块;该光信号转换模块用于将基带信号转换为该M个光信号,该M个光信号的波长均不相同。
通过该实施方式提供的波束控制装置,光信号转换模块将基带信号转换至光域,以实现在频域资源丰富的光域中进行波束赋形。
在一种可能的实施方式中,该光信号转换模块包括M个激光单元。
通过该实施方式提供的波束控制装置,基于M个不同的激光单元将基带信号转换为M个光信号,使M个光信号之间的波长均不相同。
第二方面,本申请实施例提供一种波束控制装置,包括:第三相位控制模块和光信号转换模块;该光信号转换模块用于将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,该N乘M个电信号为经过N乘M个天线阵列接收的;该第三相位控制模块用于将N个第四光束转换为第五光束,N为大于1的正整数,该N个第四光束中的第p个第四光束和该第五光束均包括M个不同波长的光信号,M为大于1的正整数,该第五光束中的相邻光信号之间存在第一相位差,第p个第四光束中第q个光信号和第p+1个第四光束中第q个光信号之间存在第二相位差,p为大于0且小 于等于N的正整数,q为大于0且小于等于M的正整数。
在一种可能的实施方式中,该第三相位控制模块包括N个第三延时线和光合束器;该N个第三延时线用于对该N个第四光束分别进行相位控制,得到N个第六光束,第k个第六光束中的第m个光信号和第k+1个第六光束中的第m个光信号之间不存在相位差,k为大于0且小于或等于N的正整数,m为大于0且小于或等于M的正整数;该光合束器用于将该N个第六光束转换为该第五光束。
在一种可能的实施方式中,该装置还包括:N个第三波分复用器;该N个第三波分复用器用于将该N乘M个光信号转换为该N个第四光束。
在一种可能的实施方式中,该装置还包括:第四相位控制模块和第四波分复用器;该第四波分复用器用于将该第五光束转换为M个光信号;该第四相位控制模块用于对该M个光信号进行相位控制。
在一种可能的实施方式中,该第四相位控制模块包括:M个第四延时线;该M个第四延时线用于对该M个光信号分别进行相位控制。
在一种可能的实施方式中,该装置还包括:电信号转换模块;该电信号转换模块用于将该M个光信号转换为基带信号。
上述第二方面以及上述第二方面的各可能的实施方式所提供的波束控制装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括:第一方面以及第一方面各可能的实施方式中的波束控制装置。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:第一方面以及第一方面各可能的实施方式中的波束控制装置。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种波束控制方法,包括:将第一光束转换为N个第二光束,N为大于1的正整数,该第一光束和该N个第二光束中的第i个第二光束均包括M个不同波长的光信号,M为大于1的正整数,该第一光束中的相邻光信号之间存在第一相位差,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差,i为大于0且小于等于N的正整数,j为大于0且小于等于M的正整数;将该N个第二光束对应的N乘M个光信号转换为N乘M个电信号,该N乘M个电信号由N乘M个天线阵列发送。
在一种可能的实施方式中,该将第一光束转换为N个第二光束,包括:将该第一光束转换为N个第三光束,该第三光束包括M个光信号;对该N个第三光束分别进行相位控制,得到该N个第二光束。
在一种可能的实施方式中,该方法还包括:将该N个第二光束转换为该N乘M 个光信号。
在一种可能的实施方式中,该方法还包括:对该M个光信号进行相位控制;将经过相位控制的M个光信号合成为该第一光束;将该第一光束发送至该第一相位控制单元。
在一种可能的实施方式中,该方法还包括:将基带信号转换为该M个光信号,该M个光信号的波长均不相同。
上述第五方面以及上述第五方面的各可能的实施方式所提供的波束控制方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第六方面,本申请实施例提供一种波束控制方法,包括:将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,该N乘M个电信号为经过N乘M个天线阵列接收的;将N个第四光束转换为第五光束,N为大于1的正整数,该N个第四光束中的第p个第四光束和该第五光束均包括M个不同波长的光信号,M为大于1的正整数,该第五光束中的相邻光信号之间存在第一相位差,第p个第四光束中第q个光信号和第p+1个第四光束中第q个光信号之间存在第二相位差,p为大于0且小于等于N的正整数,q为大于0且小于等于M的正整数。
在一种可能的实施方式中,该将N个第四光束转换为第五光束,包括:对该N个第四光束分别进行相位控制,得到N个第六光束,第k个第六光束中的第m个光信号和第k+1个第六光束中的第m个光信号之间不存在相位差;将该N个第六光束转换为该第五光束。
在一种可能的实施方式中,该方法还包括:将该N乘M个光信号转换为该N个第三光束。
在一种可能的实施方式中,该方法还包括:将该第五光束转换为M个光信号;对该M个光信号进行相位控制。
在一种可能的实施方式中,该方法还包括:将该M个光信号转换为基带信号。
上述第六方面以及上述第六方面的各可能的实施方式所提供的波束控制方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第七方面,本申请实施例提供一种通信装置,包括处理器;所述处理器与存储器耦合;所述存储器用于存储指令;所述处理器用于执行所述指令,以使第五方面、第六方面或各可能的实现方式中的方法被执行。
第八方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,所述计算机程序使得计算机执行如第五方面、第六方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第五方面、第六方面或各可能的实现方式中的方法。
附图说明
图1是本申请的实施例应用的通信系统的架构示意图;
图2a为本申请提供的一种电子架构的相控阵系统200a的结构示意图;
图2b为本申请提供的一种微波光子相控阵系统200b的结构示意图;
图2c为本申请实施例提供的一种微波光子相控阵系统200c的结构示意图;
图3为本申请实施例提供的一种微波光子相控阵系统300的结构示意图;
图4a为本申请实施例提供的一种波束控制装置400a的结构示意图;
图4b为本申请实施例提供的一种波束控制装置400b的结构示意图;
图4c为本申请实施例提供的一种波束控制装置400c的结构示意图;
图5为本申请实施例提供的一种波束控制装置500的结构示意图;
图6为本申请实施例提供的一种波束控制装置600的结构示意图;
图7a为本申请实施例提供的一种波束控制装置700a的结构示意图;
图7b为本申请实施例提供的一种波束控制装置700b的结构示意图;
图7c为本申请实施例提供的一种波束控制装置700c的结构示意图;
图8为本申请实施例提供的一种波束控制装置800的结构示意图;
图9为本申请实施例提供的一种波束控制方法900的流程示意图;
图10为本申请实施例提供的一种波束控制方法1000的流程示意图;
图11为本申请实施例提供的通信装置1100的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)以及5G移动通信系统的三大应用场景增强型移动带宽(enhanced mobile broadband,eMBB),超可靠、低时延通信(ultra reliable low latency communications,uRLLC)、和海量机器类通信(massive machine type communications,mMTC),设备到设备(device-to-device,D2D)通信系统、卫星通信系统、物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)系统、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的通信方法还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
图1是本申请的实施例应用的通信系统的架构示意图。如图1所示,该移动通信 系统包括核心网设备110、网络设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与网络设备相连,网络设备通过无线或有线方式与核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、NR移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
应理解,本申请对于网络设备和终端设备的具体形式均不作限定。
下面对本申请设计的波束赋形进行说明:
波束赋形,又称作波束成形或空域滤波,是一种使用传感器阵列定向发送和/或接收信号的信号处理技术。通过波束赋形可以使一些角度的信号获得相长干涉,另一些角度的信号获得相消干涉。相控阵系统正是基于波束赋形技术,对规律性排列的基阵阵元的信号加以适当的移相(或延时),使得一些角度的信号获得相长干涉,从而获得波束的偏转。
图2a为本申请提供的一种电子架构的相控阵系统200a的结构示意图。如图2a所示,相控阵系统200a包括W个移相器,W为大于1的正整数,例如移相器1至W, 相控阵系统200a中的移相器一般工作在厘米波、分米波或毫米波范围(例如波长1~200毫米)内,移相器对波长范围内的信号进行相位控制后,经过相位控制的信号分别通过W个天线发送。一方面,移相器工作的波长较大,将导致移相器的物理尺寸较大,占用较大的物理空间;另一方面,移相器可利用的频谱资源有限,无法在频域上扩展移相器的相位控制能力,导致相控阵系统200a的相位控制(也即波束控制)能力较低。
图2b为本申请提供的一种微波光子相控阵系统200b的结构示意图。微波光子相控阵系统利用微波光子技术的抗电磁干扰、重量轻、体积小、低损耗、大带宽等优势,可以替代带宽首先的电子技术满足雷达、通信系统的需求。与电子架构的相控阵系统采用移相器时实现波束赋形不同,微波光子相控阵系统200b通过如图2b所示的W个延时线(也称作光子真延时线或真延时线),例如延时线1至W,实现延时(相位)控制,延时线可以在光波长(900~1800nm)通过对光信号的处理实现波束赋形。微波光子相控阵系统200b还包括W个光探测器,用于将经过相位控制的光信号转换为电信号,使电信号分别通过W个天线发送。
图2c为本申请实施例提供的一种微波光子相控阵系统200c的结构示意图。作为一种示例,参见图2c,微波光子相控阵系统200c中的M个激光源210c分别发射不同波长的光信号(如λ 1~λ M),不同波长的光信号(如λ 1~λ M)分别通过M个延时线220c,实现对不同波长的光信号(如λ 1~λ M)的相位控制,进一步地,通过波分复用器230c将不同波长的光信号(如λ 1~λ M)合成为光束1,通过一个光纤或者光波导将光束1传输到远端,远端的波分解复用器240c,波分解复用器240c对光束1进行分解得到M个光信号,M个光探测器250c分别对M个光信号进行探测,将其转换为M个电信号,由天线阵列260c进行发送。
结合图2a和图2b所示,天线(或称作天线阵元、天线阵元端口、天线阵列)与延时器件(例如移相器或延时线)一一对应,即每个天线均需要有一个对应的延时器件(例如移相器或延时线),实现波束赋形。然而,随着通信技术的不断发展,天线规模不断提升以满足对通信质量的高要求,那么相控阵系统的延时器件(例如移相器或延时线)的数量较大,导致相控阵系统的成本较高、体积较大。
针对上述技术问题,本申请实施例提供的波束控制装置以及方法,针对上述相控阵系统的延时器件(例如移相器或延时线)的数量较大的问题,在波束控制的过程中将第一光束(例如图2c中的光束1)转换为N个第二光束,并对N个第二光束进行相位控制,在对第二光束进行相位控制后,可以实现将第一光束中的M个相位不同的光信号转换为N乘M个相位不同的光信号,通过对光束进行相位控制而非对每个光信号进行相位控制,有效降低了延时器件的数量,进而降低了相控阵系统的成本和体积。
图3为本申请实施例提供的一种微波光子相控阵系统300的结构示意图。如图3所示,该微波光子相控阵系统300包括:后端微波光子功能组件310、基于微波光子的射频拉远和光束成形网络320以及光电混合集成前端330。
其中,后端微波光子功能组件310包括:数字信号处理(digital signal processing,DSP)模块、任意波形发生器(arbitrary waveform generator,AWG)(例如微波光子AWG)、微波光子上变频模块、微波光子下变频模块、数模转换(analogue-to-digitalconversion,ADC)模块(例如微波光子ADC)以及环形器。
光电混合集成前端330包括:波分复用(wavelength division multiplexing,WDM)器、光电信号转换模块、射频放大模块、放大和滤波模块、环形器。可选的,光电混合集成前端330还可以包括天线(天线阵列、天线阵列端口)。其中,波分复用器可以用于实现复用器(multiplexer,MUX)或者解复用器(demultiplexer,DEMUX)的功能。
后端微波光子功能组件310可以通过射频拉远与基于微波光子的射频拉远和光束成形网络320进行远距离通信,实现与天线物理分离。可选的,后端微波光子功能组件310可以部署于基站的地面设备,基于微波光子的射频拉远和光束成形网络320以及光电混合集成前端330可以部署与基站的塔上设备。
在上述微波光子相控阵系统300中,发射链路为:任意波形发生器根据数字信号处理模块输出的时钟控制信号,微波光子上变频模块通过电光调制将数据/基带信号与光电振荡器生成的本振信号进行上变频,经过光滤波器滤除杂散信号经射频光拉远送至光束成形网络。光束成形网络完成发射通道间的动态配置后,将光信号发送至对应的光电混合集成前端330。在光电混合集成前端330中,通过延迟线实现对光信号相位的控制,再经光电变换后恢复出射频激励信号,再经射频放大后由天线辐射。
与之对应,接收链路为:天线探测到的雷达回波信号首先进行射频预处理(如放大和滤波模块)进行放大和滤波后,通过光电信号转换模块,将电信号调制到光域,在光域通过延时线完成相应的相位控制后,经光束成形网络完成子阵级波束合成后通过射频光拉远传回后端微波光子功能组件310。在后端微波光子功能组件310中,通过微波光子下变频模块将探测到的高频信号下变频至中频,经过光学滤波、光电转换后处理中频信号,也可以利用ADC技术直接对高频信号进行带通采样。采样后的数字信号再送至数据信号处理模块完成相关信号处理。
下面将结合附图对本申请实施例提供的波束控制装置以及方法做详细说明。
图4a为本申请实施例提供的一种波束控制装置400a的结构示意图。
参见图4a,该波束控制装置400a包括第一相位控制模块410a和电信号转换模块420a。其中,第一相位控制模块410a用于将第一光束转换为N个第二光束,N为大于1的正整数,电信号转换模块420a用于将N个第二光束对应的N乘M个光信号转换为N乘M个电信号,M为大于1的正整数,该N乘M个电信号由N乘M个天线阵列发送。
需要说明的是,第一光束包括M个不同波长的光信号,且该M个光信号之间存在第一相位差。例如第一光束的M个光信号(波长λ 1~λ M)之间满足移相矩阵:[0 α … (M-1) α],其中α为第一相位差。
可选的,第一光束可以是经过相位控制的M个光信号合成的。对第一光束进行相位控制可以是本申请中的波束控制装置400a实现的或者其他设备的相位控制模块实现的,本申请对此不做限定。
N个第二光束中第i个第二光束包括M个不同波长的光信号,i为大于0且小于N的正整数,换言之,N个第二光束中的每个第二光束均包括M个不同波长的光信号。一般来说,第二光束中的M个光信号与第一光束中的M个光信号一一对应,分别具有相同的波长,例如假设第一光束中的M个光信号的波长分别为λ 1、λ 2……λ M,第 二光束中的M个光信号的波长也分别为λ 1、λ 2……λ M。也即,第一相位控制模块将第一光束转换为N个第二光束的过程中,光束中光信号的波长不变。
例如,将N个第二光束对应的N乘M个光信号表示为
Figure PCTCN2022133327-appb-000001
对应的波长可以表示为
Figure PCTCN2022133327-appb-000002
需要说明的是,在N个第二光束中,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差,j为大于0且小于等于M的整数,也即S ij和S (i+1)j对应的光信号之间存在第二相位差。
在N个第二光束中,第i个第二光束中第j个光信号和第i个第二光束中第j+1个光信号之间存在第一相位差,也即S ij和S i(j+1)对应的光信号之间存在第一相位差。
例如,N个第二光束对应的N乘M个光信号应满足如下移相矩阵(1):
Figure PCTCN2022133327-appb-000003
其中,α为第一相位差,β为第二相位差。
由此可见,第一相位控制模块可以实现将第一光束中M个相位不同的光信号转换为N个第二光束对应的N乘M个相位不同的光信号,第一相位控制模块实现了对光束进行相位控制而非对每个光信号进行相位控制,进一步地,电信号转换模块420a将N乘M个相位不同的光信号转换为电信号,并由N乘M个天线(天线阵列或天线阵列端口)发送,实现波束赋形,相比于针对每个天线需要设置对应的延时器件进行相位控制而言,有效降低了延时器件的数量,进而降低了相控阵系统的成本和体积。
可选的,图4a中的第一相位控制模块410a例如可以部署于图3中的光束成形网络,电信号转换模块420a例如可以是图3中的光电信号转换模块1。
图4b为本申请实施例提供的一种波束控制装置400b的结构示意图。
参见图4b,该波束控制装置400b包括第一相位控制模块410b和电信号转换模块420b,其中,第一相位控制模块410b包括光分束器411b和N个第一时延线(412b-1至412b-N)。
光分束器411b用于将第一光束转换为N个第三光束,N个第一时延线(412b-1至412b-N)用于对N个第三光束分别进行相位控制,得到该N个第二光束。
其中,电信号转换模块420b与图4a所示实施例中的电信号转换模块420a相同,此处不再赘述。
第一光束和第二光束的说明与图4a所示实施例中关于第一光束和第二光束的说明一致,此处不再赘述。
需要说明的是,第三光束包括M个光信号,该M个光信号为不同波长的光信号。一般来说,第三光束中的M个光信号与第一光束中的M个光信号一一对应,分别具有相同的波长,例如假设第一光束中的M个光信号的波长分别为λ 1、λ 2……λ M,第三光束中的M个光信号的波长也分别为λ 1、λ 2……λ M。也即,光分束器411b将第一光束转换为N个第三光束的过程中,光束中光信号的波长不变。
例如,将N个第三光束对应的N乘M个光信号表示为
Figure PCTCN2022133327-appb-000004
对应的波长可以表示为
Figure PCTCN2022133327-appb-000005
还应理解的是,各第三光束中的M个光信号与第一光束中的M个光信号一一对应,分解具有相同的相位,也即各第三光束的M个光信号中相邻的光信号之间存在第一相位差。
例如,第一光束的M个光信号之间的相位满足移相矩阵:[0 α … (M-1) α],其中α为第一相位差。那么N个第三光束对应的N乘M个光信号的相位应满足如下移相矩阵(2):
Figure PCTCN2022133327-appb-000006
可见,光分束器411b将第一光束分成多路输出,得到N个第三光束,而第三光束中的M个光信号的波长和相位均与第一光束中的M个光信号相同。
进一步地,N个第三光束中的各第三光束分别输入各第一延时线,N个第一延时线可以基于如下移相矩阵(3)分别对N个第三光束进行相位控制,得到N个第二光束,以使N个第二光束满足上述移相矩阵(1)。
Figure PCTCN2022133327-appb-000007
图4b所示实施例中基于光分束器411b和N个第一延时线实现了将第一光束转换为N个第二光束的过程,通过光分束器411b将第一光束转换为N个第三光束,通过N个第一延时线对N个第三光束进行相位控制,使得第一相位控制模块对第一光束的相位控制能力呈现倍数增长,相比于通过一个延时线对一个光信号进行相位控制,提升了相位控制能力,减少了延时器件的数量。
可选的,图4b中的第一相位控制模块410b例如可以部署于图3中的光束成形网络,电信号转换模块420a例如可以是图3中的光电信号转换模块1。
图4c为本申请实施例提供的一种波束控制装置400c的结构示意图。
参见图4c,该波束控制装置400c包括第一相位控制模块410c、N个第一波分复用器(430c-1、430c-2…430c-N)和电信号转换模块420c。其中,第一相位控制模块410c与图4b所示实施例中的410b相同,电信号转换模块420c与图4a和图4b所示实施例中的420a和420b相同,此处不再赘述。
图4c所示实施例与图4b所示实施例的区别在于:图4c所示的波束控制装置400c中,第一相位控制模块410c和电信号转换模块420c之间还部署有N个第一波分复用器(430c-1、430c-2…430c-N)。
该N个第一波分复用器(430c-1、430c-2…430c-N)用于将N个第二光束转换为N乘M个光信号。示例性的,N个第一波分复用器(430c-1、430c-2…430c-N)与N个第二光束一一对应,一个第一波分复用器(例如第一波分复用器430c-1)将N个第二光束中的第1个第二光束进行分解,得到第1个第二光束中的M个光信号,以此类推,可以得到N个第二光束对应的N乘M个光信号,使得电信号转换模块420c可以基于该N乘M个光信号进行光电信号的转换,得到N乘M个电信号。
图4c所示实施例中通过N个第一波分复用器可以得到各第二光束中的M个光信号,便于电信号转换模块进行光电信号的转换。
可选的,图4c中的第一相位控制模块410c例如可以部署于图3中的光束成形网络,电信号转换模块420c例如可以是图3中的光电信号转换模块1。
可选的,图4c中的N个第一波分复用器(430c-1至430c-N)例如可以是图3中的波分复用器。图4c中的N个第一波分复用器(430c-1至430c-N)均用于实现DEMUX的功能。
图5为本申请实施例提供的一种波束控制装置500的结构示意图。
基于上述实施例可知,本申请中波束控制装置至少包括第一相位控制模块和电信号转换模块。参见图5,波束控制装置500包括第一相位控制模块530和电信号转换模块540。
在此基础上,参见图5,波束控制装置500还可以包括:光信号转换模块510和/或第二相位控制模块520。
其中,光信号转换模块510用于将基带信号转换为M个光信号,且M个光信号的波长均不相同(例如上述λ 1、λ 2……λ M)
第二相位控制模块520用于对M个光信号进行相位控制,以使M个光信号中相邻的光信号之间存在第一相位差,例如基于上述移相矩阵(2)对M个光信号进行相位控制,使得相位控制后的M个光信号满足上述移相矩阵(2),经过相位控制后的M个光信号可以合成上述第一光束。
可以理解的是,当波束控制装置不包括光信号转换模块510和/或第二相位控制模块520时,其所执行的过程可以由其他设备执行。
可选的,图5中的第一相位控制模块530例如可以部署于图3中的光束成形网络,电信号转换模块540例如可以是图3中的光电信号转换模块1。
可选的,图5中的第二相位控制模块520可以部署于图3中的后端功能组件310,例如部署于微波光子上变频模块。
可选的,图5中的光信号转换模块510可以部署于图3中的后端功能组件310,例如为后端功能组件310中的任意波形发生器。
图6为本申请实施例提供的一种波束控制装置600的结构示意图。
图6所示的波束控制装置600可以用于发送端的波束赋形过程,也可以用于接收端的波束赋形过程。
当图6所示的波束控制装置600用于发送端的波束赋形过程时,该波束控制装置600包括光信号转换模块610、M个第二延时线620、第二波分复用器630、光分束器640、N个第一延时线650、N个第一波分复用器660、电信号转换模块670。在一些实施例中,波束控制装置600还可以包括N乘M天线阵列680。
光信号转换模块610例如可以包括M个激光单元,光信号转换模块610可以通过M个激光单元分别基于基带信号生成M个不同波长的光信号。
M个第二延时线620例如可以是上述第二相位控制模块,该M个第二延时线用于对M个光信号分别进行相位控制,例如基于上述移相矩阵(2)对M个光信号进行相位控制,使得相位控制后的M个光信号满足上述移相矩阵(2)。
第二波分复用器630用于将相位控制后的M个光信号合成上述第一光束,并将第一光束发送至光分束器640。
光分束器640用于将第一光束分成N个第三光束,并将N个第三光束输入N个第一延时线650。光分束器640可以将各第三光束分别输入对应的第一延时线,使各第一延时线对其进行相位控制,得到N个第二光束。
各第一延时线将第二光束输入对应的第一波分复用器660。
各第一波分复用器660将输入的第二光束分解为M个光信号,并将M个光信号分别输入M个光电探测器,通过M个光电探测器将M个光信号转换为M个电信号。应理解,电信号转换模块670包括N乘M个光电探测器。
图6所示实施例中,M个光信号、第一光束、第二光束、第三光束等在图4a至图4c、图5所示实施例中说明,此处不再赘述。
可选的,图6中的光信号转换模块610可以部署于图3中的后端功能组件310,例如为后端功能组件310中的任意波形发生器。
可选的,M个第二延时线620可以部署于图3中的后端功能组件310,例如部署于微波光子上变频模块。
可选的,第二波分复用器630可以部署于图3中的后端功能组件310,例如部署于微波光子上变频模块。
可选的,光分束器640可以部署于图3中的光束成形网络。
可选的,N个第一延时线650可以部署于图3中的光束成形网络。
可选的,N个第一波分复用器660可以是图3中的波分复用器。
可选的,电信号转换模块670可以是图3中的光电信号转换模块1。
上述图4a至图4c、图5和图6均针对应用于发送端波束赋形的波束控制装置进行说明。下面将结合图7a至图7c、图8和图6,对应用于接收端波束赋形的波束控制装置进行说明。
图7a为本申请实施例提供的一种波束控制装置700a的结构示意图。
参见图7a,该波束控制装置700a包括第三相位控制模块710a和光信号转换模块720a。其中,光信号转换模块720a用于将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,该N乘M个电信号为经过N乘M个天线阵列接收的;第三相位控制模块用于将N个第四光束转换为第五光束。
需要说明的是,N乘M天线阵列接收的N乘M个电信号的相位均不相同,光信号转换模块720a转换得到的N乘M个光信号的相位也均不相同。示例性的,将N乘M个光信号表示为
Figure PCTCN2022133327-appb-000008
N乘M个光信号的相位应满足前述移相矩阵(1)。
可选的,可以将N乘M个光信号中两两之间存在第一相位差的光信号作为一个第四光束,得到N个第四光束。例如将Q 11、Q 12……Q 1M作为第1个第四光束,将Q 21、Q 22……Q 2M作为第2个第四光束……将Q N1、Q N2……Q NM作为第N个第四光束。
基于此,N个第四光束中的第p个第四光束包括M个不同波长的光信号。第p个第四光束中第q个光信号和第p+1个第四光束中第q个光信号之间存在第二相位差,例如Q pq和Q (p+1)q之间存在第二相位差,第p个第四光束中第q个光信号和第p个第四光束中第q+1个光信号之间存在第一相位差,例如Q pq和Q p(q+1)之间存在第一相位差,p为大于0且小于等于N的正整数,q为大于0且小于等于M的正整数。
第五光束包括M个不同波长的光信号,第五光束中的相邻光信号之间存在第一相位差,例如第五光束的M个光信号之间满足移相矩阵[0 α … (M-1) α]。
由此可见,第三相位控制模块可以实现将N个第四光束对应的N乘M个相位不同的光信号转换为第五光束中M个相位不同的光信号,第三相位控制模块实现了对光束进行相位控制而非对每个光信号进行相位控制,有效降低了时延器件的数量,进而降低了相控阵系统的成本和体积。
可选的,第三相位控制模块710a例如可以部署于图3中的光束成形网络。
可选的,光信号转换模块720a例如可以是图3中的光电信号转换模块2。
图7b为本申请实施例提供的一种波束控制装置700b的结构示意图。
参见图7b,该波束控制装置700b包括第三相位控制模块710b和光信号转换模块720b,其中,第三相位控制模块710b包括光合束器711b和N个第三延时线(712b-1至712b-N)。
N个第三延时线(712b-1至712b-N)用于对N个第四光束分别进行相位控制,得到N个第六光束;光合束器711b用于将N个第六光束转换为第五光束。
其中,光信号转换模块720b与图7a所示实施例中的光信号转换模块720a相同,此处不再赘述。
第四光束和第五光束的说明与图7a所示实施例中关于第四光束和第五光束的说明一致,此处不再赘述。
需要说明的是,N个第六光束对应的N乘M个光信号可以表示为
Figure PCTCN2022133327-appb-000009
N个第六光束中,第k个第六光束中的第m个光信号和第k+1个第六光束中的第m个光信号之间不存在相位差,k为大于0且小于或等于N的正整数,m为大于0且小于或等于M的正整数。例如,H km和H (k+1)m之间不存在相位差。也即N个第六光束对应的N乘M个光信号的相位应满足前述移相矩阵(2)。
前已述及,第五光束的M个光信号之间满足移相矩阵[0 α … (M-1) α]。
可见,光合束器711b将N个第六光束由多路输入合成为一路输出,得到第五光束,而第五光束中M个光信号的波长和相位均与各第六光束中的M个光信号相同。
图7b所示实施例中基于光合束器711b和N个第三延时线实现了将第四光束转换为N个第五光束的过程,通过光合束器711b将第四光束转换为N个第五光束,通过N个第三延时线对N个第六光束进行相位控制,使得第三相位控制模块对第四光束的相位控制能力呈现倍数增长,相比于通过一个延时线对一个光信号进行相位控制,提升了相位控制能力,减少了延时器件的数量。
可选的,第三相位控制模块710b例如可以部署于图3中的光束成形网络。
可选的,光信号转换模块670例如可以是图3中的光电信号转换模块2。
图7c为本申请实施例提供的一种波束控制装置700c的结构示意图。
参见图7c,该波束控制装置700c包括第三相位控制模块710c、N个第三波分复用器(730c-1至730c-N)和光信号转换模块720c。其中,第三相位控制模块710c与图7b所示实施例中的710b相同,光信号转换模块720c与图7a和图7b所示实施例中的720a和720b相同,此处不再赘述。
图7c所示实施例与图7b所示实施例的区别在于:图7c所示的波束控制装置700c中,第三相位控制模块710c与光信号转换模块720c之间还部署有N个第三波分复用器(730c-1至730c-N)。
该N个第三波分复用器(730c-1至730c-N)用于将N乘M个光信号转换为N个第四光束。示例性的,N个第三波分复用器(730c-1至730c-N)与N个第四光束一一对应,一个第三波分复用器(例如第三波分复用器730c-1)将第1个组M个光信号转换为第1个第四光束,以此类推,可以得到N个第四光束。
图7c所示实施例中通过N个第三波分复用器可以得到N个第四光束,便于第三相位控制模块710c对每个第四光束进行相位控制,而避免对每个光信号进行相位控制。
可选的,第三相位控制模块710c例如可以部署于图3中的光束成形网络。
可选的,N个第三波分复用器(730c-1至730c-N)例如可以是图3中的波分复用器。第三波分复用器用于实现MUX的功能。
可选的,光信号转换模块720c例如可以是图3中的光电信号转换模块2。
图8为本申请实施例提供的一种波束控制装置800的结构示意图。
基于上述实施例可知,波束控制装置至少包括第三相位控制模块和光信号转换模块。参见图8,波束控制装置800包括第三相位控制模块830和光信号转换模块840.
在此基础上,参见图5,波束控制装置800还可以包括:电信号转换模块810和/或第四相位控制模块820.
其中,第四相位控制模块820用于对第五光束中的M个光信号进行相位控制,以使M个光信号中相邻的光信号之间不存在相位差。
电信号转换模块810用于将不存在相位差的M个光信号转换为基带信号。
可以理解的是,当波束控制装置800不包括电信号转换模块810和/或第四相位控制模块820时,其所执行的过程可以由其他设备执行。
当图6所示的波束控制装置600用于接收端的波束赋形过程时,该波束控制装置600包括光信号转换模块670、N个第三波分复用器660、N个第三延时线650、光合束器640、第四波分复用器630、M个第四延时线620和电信号转换模块610。在一些实施例中,波束控制装置600还可以包括N乘M天线阵列680。
N乘M天线阵列680用于接收N乘M个电信号。
光信号转换模块670包括M个激光单元,用于将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,并将N乘M个光信号分别发送至N个第三波分复用器660。
各第三波分复用器660将接收到的M个光信号合成为第四光束,并将合成的第四光束发送至N个第三延时线650。
N个第三延时线650中各第三延时线对输入的第四光束进行相位控制,得到第六光束,各第三延时线将第六光束输入光合束器640。
光合束器640将接收到的N个第六光束合成为第五光束,并将第五光束发送至第四波分复用器630。
第四波分复用器630将第五光束转换为M个光信号,也可以表述为第四波分复用器630分解得到第五光束中的M个光信号,进而,将得到的M个光信号分别输入M个第四延时线620。
各第四延时线对接收到的光信号进行相位控制,以使M个光信号之间不存在相位差。
电信号转换模块610将M个第四延时线发送的M个光信号转换为M个电信号。可选的,电信号转换模块610可以将转换得到的M个电信号数据处理单元。
图6所示实施例中,M个光信号、第四光束、第五光束、第六光束等在图7a至图7c、图8所示实施例中说明,此处不再赘述。
可选的,图6中的电信号转换模块610例如可以部署于图3中的后端功能组件310,例如为后端功能组件310中的数模转换模块与微波光子下变频模块之间。
可选的,M个第四延时线620例如可以部署于图3中的后端功能组件310,例如部署于微波光子上变频模块。
可选的,第四波分复用器630例如可以部署于图3中的后端功能组件310,例如部署于微波光子上变频模块。第四波分复用器630例如可以用于实现DEMUX的功能
可选的,光合束器640例如可以部署于图3中的光束成形网络。
可选的,N个第三延时线650例如可以部署于图3中的光束成形网络。
可选的,N个第三波分复用器660例如可以是图3中的波分复用器。第三波分复 用器用于实现MUX的功能。
可选的,光信号转换模块670例如可以是图3中的光电信号转换模块2。
图9为本申请实施例提供的一种波束控制方法900的流程示意图。结合图9所示,该方法900包括:
S910,将第一光束转换为N个第二光束,N为大于1的正整数,该第一光束和该N个第二光束中的第i个第二光束均包括M个不同波长的光信号,M为大于1的正整数,该第一光束中的相邻光信号之间存在第一相位差,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差,i为大于0且小于等于N的正整数,j为大于0且小于等于M的正整数;
S920,将该N个第二光束对应的N乘M个光信号转换为N乘M个电信号,该N乘M个电信号由N乘M个天线阵列发送。
在一些实施例中,该将第一光束转换为N个第二光束,包括:将该第一光束转换为N个第三光束,该第三光束包括M个光信号;对该N个第三光束分别进行相位控制,得到该N个第二光束。
在一些实施例中,该方法900还包括:将该N个第二光束转换为该N乘M个光信号。
在一些实施例中,该方法900还包括:对该M个光信号进行相位控制;将经过相位控制的M个光信号合成为该第一光束;将该第一光束发送至该第一相位控制单元。
在一些实施例中,该方法900还包括:将基带信号转换为该M个光信号,该M个光信号的波长均不相同。
图9所示实施例中的方法900可以应用于上述图4a至图4c、图5和图6所示的任一应用于发送端的波束控制装置中,其技术方案以及所带来的有益效果类似,此处不再赘述。
图10为本申请实施例提供的一种波束控制方法1000的流程示意图。结合图10所示,该方法1000包括:
S1010,将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,该N乘M个电信号为经过N乘M个天线阵列接收的;
S1020,将N个第四光束转换为第五光束,N为大于1的正整数,该N个第四光束中的第p个第四光束和该第五光束均包括M个不同波长的光信号,M为大于1的正整数,该第五光束中的相邻光信号之间存在第一相位差,第p个第四光束中第q个光信号和第p+1个第四光束中第q个光信号之间存在第二相位差,p为大于0且小于等于N的正整数,q为大于0且小于等于M的正整数。
在一些实施例中,该将N个第四光束转换为第五光束,包括:对该N个第四光束分别进行相位控制,得到N个第六光束,第k个第六光束中的第m个光信号和第k+1个第六光束中的第m个光信号之间不存在相位差;将该N个第六光束转换为该第五光束。
在一些实施例中,该方法1000还包括:将该N乘M个光信号转换为该N个第三光束。
在一些实施例中,该方法1000还包括:将该第五光束转换为M个光信号;对该M 个光信号进行相位控制。
在一些实施例中,该方法1000还包括:将该M个光信号转换为基带信号。
图10所示实施例中的方法1000可以应用于上述图7a至图7c、图8和图6所示的任一应用于接收端的波束控制装置中,其技术方案以及所带来的有益效果类似,此处不再赘述。
图11为本申请实施例提供的通信装置1100的另一示意性框图。如图11所示,该装置1100可以包括:处理器1110、收发器1120和存储器1130。其中,处理器1110、收发器1120和存储器1130通过内部连接通路互相通信,该存储器1130用于存储指令,该处理器1110用于执行该存储器1130存储的指令,以控制该收发器1120发送信号和/或接收信号。
应理解,该通信装置1100可以对应于网络设备。可选地,该存储器1130可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器1130可以是一个单独的器件,也可以集成在处理器1110中。该处理器1110可以用于执行存储器1130中存储的指令,并且当该处理器1110执行存储器中存储的指令时,该处理器1110用于执行上述方法实施例的各个步骤和/或流程。
其中,收发器1120可以包括发射机和接收机。收发器1120还可以进一步包括天线,天线的数量可以为一个或多个。该处理器1110和存储器1130与收发器1120可以是集成在不同芯片上的器件。如,处理器1110和存储器1130可以集成在基带芯片中,收发器1120可以集成在射频芯片中。该处理器1110和存储器1130与收发器1120也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置1100是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器1120也可以是通信接口,如输入/输出接口、电路等。该收发器1120与处理器1110和存储器1120都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处 理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图9或图10所示实施例或各可能实现方式中执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图9或图10所示实施例或个可能实现方式中执行的方法。
本申请实施例中的网络设备包括部署有上述任一实施例中的波束控制装置的设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种波束控制装置,其特征在于,包括:第一相位控制模块和电信号转换模块;
    所述第一相位控制模块用于将第一光束转换为N个第二光束,N为大于1的正整数,所述第一光束和所述N个第二光束中的第i个第二光束均包括M个不同波长的光信号,M为大于1的正整数,所述第一光束中的相邻光信号之间存在第一相位差,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差,i为大于0且小于等于N的正整数,j为大于0且小于等于M的正整数;
    所述电信号转换模块用于将所述N个第二光束对应的N乘M个光信号转换为N乘M个电信号,所述N乘M个电信号由N乘M个天线阵列发送。
  2. 根据权利要求1所述的装置,其特征在于,所述第一相位控制模块包括光分束器和N个第一延时线;
    所述光分路器用于将所述第一光束转换为N个第三光束,所述第三光束包括M个光信号;
    所述N个延时线用于对所述N个第三光束分别进行相位控制,得到所述N个第二光束。
  3. 根据权利要求1或2所述的装置,其特征在于,所述装置还包括:N个第一波分复用器;
    所述N个第一波分复用器用于将所述N个第二光束转换为所述N乘M个光信号。
  4. 根据权利要求1至3任一项所述的装置,其特征在于,所述装置还包括:第二相位控制模块和第二波分复用器;
    所述第二相位控制模块用于对所述M个光信号进行相位控制;
    所述第二波分复用器将经过相位控制的M个光信号合成为所述第一光束,再将所述第一光束发送至所述第一相位控制单元。
  5. 根据权利要求4所述的装置,其特征在于,所述第二相位控制模块包括M个第二延时线;
    所述M个第二延时线用于对所述M个光信号分别进行相位控制。
  6. 根据权利要求1至5任一项所述的装置,其特征在于,所述装置还包括:光信号转换模块;
    所述光信号转换模块用于将基带信号转换为所述M个光信号,所述M个光信号的波长均不相同。
  7. 根据权利要求6所述的装置,其特征在于,所述光信号转换模块包括M个激光单元。
  8. 一种波束控制装置,其特征在于,包括:第三相位控制模块和光信号转换模块;
    所述光信号转换模块用于将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,所述N乘M个电信号为经过N乘M个天线阵列接收的;
    所述第三相位控制模块用于将N个第四光束转换为第五光束,N为大于1的正整数,所述N个第四光束中的第p个第四光束和所述第五光束均包括M个不同波长的光信号,M为大于1的正整数,所述第五光束中的相邻光信号之间存在第一相位差,第p个第四光束中第q个光信号和第p+1个第四光束中第q个光信号之间存在第二相位 差,p为大于0且小于等于N的正整数,q为大于0且小于等于M的正整数。
  9. 根据权利要求8所述的装置,其特征在于,所述第三相位控制模块包括N个第三延时线和光合束器;
    所述N个第三延时线用于对所述N个第四光束分别进行相位控制,得到N个第六光束,第k个第六光束中的第m个光信号和第k+1个第六光束中的第m个光信号之间不存在相位差,k为大于0且小于或等于N的正整数,m为大于0且小于或等于M的正整数;
    所述光合束器用于将所述N个第六光束转换为所述第五光束。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括:N个第三波分复用器;
    所述N个第三波分复用器用于将所述N乘M个光信号转换为所述N个第四光束。
  11. 根据权利要求8至10任一项所述的装置,其特征在于,所述装置还包括:第四相位控制模块和第四波分复用器;
    所述第四波分复用器用于将所述第五光束转换为M个光信号;
    所述第四相位控制模块用于对所述M个光信号进行相位控制。
  12. 根据权利要求11所述的装置,其特征在于,所述第四相位控制模块包括:M个第四延时线;
    所述M个第四延时线用于对所述M个光信号分别进行相位控制。
  13. 根据权利要求8至12任一项所述的装置,其特征在于,所述装置还包括:电信号转换模块;
    所述电信号转换模块用于将所述M个光信号转换为基带信号。
  14. 一种通信装置,其特征在于,包括:如权利要求1至7任一项所述的波束控制装置。
  15. 一种通信装置,其特征在于,包括:如权利要求8至13任一项所述的波束控制装置。
  16. 一种波束控制方法,其特征在于,包括:
    将第一光束转换为N个第二光束,N为大于1的正整数,所述第一光束和所述N个第二光束中的第i个第二光束均包括M个不同波长的光信号,M为大于1的正整数,所述第一光束中的相邻光信号之间存在第一相位差,第i个第二光束中第j个光信号和第i+1个第二光束中第j个光信号之间存在第二相位差,i为大于0且小于等于N的正整数,j为大于0且小于等于M的正整数;
    将所述N个第二光束对应的N乘M个光信号转换为N乘M个电信号,所述N乘M个电信号由N乘M个天线阵列发送。
  17. 根据权利要求16所述的方法,其特征在于,所述将第一光束转换为N个第二光束,包括:
    将所述第一光束转换为N个第三光束,所述第三光束包括M个光信号;
    对所述N个第三光束分别进行相位控制,得到所述N个第二光束。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    将所述N个第二光束转换为所述N乘M个光信号。
  19. 根据权利要求16至18任一项所述的方法,其特征在于,所述方法还包括:
    对所述M个光信号进行相位控制;
    将经过相位控制的M个光信号合成为所述第一光束;
    将所述第一光束发送至所述第一相位控制单元。
  20. 根据权利要求16至19任一项所述的方法,其特征在于,所述方法还包括:
    将基带信号转换为所述M个光信号,所述M个光信号的波长均不相同。
  21. 一种波束控制方法,其特征在于,包括:
    将N乘M个电信号转换为N个第四光束对应的N乘M个光信号,所述N乘M个电信号为经过N乘M个天线阵列接收的;
    将N个第四光束转换为第五光束,N为大于1的正整数,所述N个第四光束中的第p个第四光束和所述第五光束均包括M个不同波长的光信号,M为大于1的正整数,所述第五光束中的相邻光信号之间存在第一相位差,第p个第四光束中第q个光信号和第p+1个第四光束中第q个光信号之间存在第二相位差,p为大于0且小于等于N的正整数,q为大于0且小于等于M的正整数。
  22. 根据权利要求21所述的方法,其特征在于,所述将N个第四光束转换为第五光束,包括:
    对所述N个第四光束分别进行相位控制,得到N个第六光束,第k个第六光束中的第m个光信号和第k+1个第六光束中的第m个光信号之间不存在相位差;
    将所述N个第六光束转换为所述第五光束。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    将所述N乘M个光信号转换为所述N个第三光束。
  24. 根据权利要求21至23任一项所述的方法,其特征在于,所述方法还包括:
    将所述第五光束转换为M个光信号;
    对所述M个光信号进行相位控制。
  25. 根据权利要求21至24任一项所述的方法,其特征在于,所述方法还包括:
    将所述M个光信号转换为基带信号。
  26. 一种通信装置,其特征在于,包括处理器;
    所述处理器与存储器耦合;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求16-20或权利要求21-25任一项所述的方法被执行。
  27. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求16-20或权利要求21-25中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16-20或权利要求21-25中任一项所述的方法。
PCT/CN2022/133327 2021-12-02 2022-11-21 波束控制装置、设备以及方法 WO2023098508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111467887.1 2021-12-02
CN202111467887.1A CN116232389A (zh) 2021-12-02 2021-12-02 波束控制装置、设备以及方法

Publications (1)

Publication Number Publication Date
WO2023098508A1 true WO2023098508A1 (zh) 2023-06-08

Family

ID=86583012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133327 WO2023098508A1 (zh) 2021-12-02 2022-11-21 波束控制装置、设备以及方法

Country Status (2)

Country Link
CN (1) CN116232389A (zh)
WO (1) WO2023098508A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146196A1 (en) * 2015-03-19 2016-09-22 Telefonaktiebolaget Lm Ericsson (Publ) A beamforming receiver
CN106972881A (zh) * 2017-02-22 2017-07-21 上海华为技术有限公司 一种波束赋形bf权值赋值的方法和装置
CN107911189A (zh) * 2017-11-15 2018-04-13 西南交通大学 基于阵列波导光栅的光载无线通信波束赋形装置及其方法
CN113067635A (zh) * 2021-03-22 2021-07-02 中国电子科技集团公司第三十八研究所 基于集成光延迟芯片的收发一体相控阵波束合成装置
CN113451775A (zh) * 2021-03-16 2021-09-28 长沙思木锐信息技术有限公司 光控射频相控阵集成控制系统以及波束形成方法
CN113608228A (zh) * 2021-08-02 2021-11-05 中国科学院空天信息创新研究院 一种基于Blass矩阵的二维多波束激光雷达快速扫描装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146196A1 (en) * 2015-03-19 2016-09-22 Telefonaktiebolaget Lm Ericsson (Publ) A beamforming receiver
CN106972881A (zh) * 2017-02-22 2017-07-21 上海华为技术有限公司 一种波束赋形bf权值赋值的方法和装置
CN107911189A (zh) * 2017-11-15 2018-04-13 西南交通大学 基于阵列波导光栅的光载无线通信波束赋形装置及其方法
CN113451775A (zh) * 2021-03-16 2021-09-28 长沙思木锐信息技术有限公司 光控射频相控阵集成控制系统以及波束形成方法
CN113067635A (zh) * 2021-03-22 2021-07-02 中国电子科技集团公司第三十八研究所 基于集成光延迟芯片的收发一体相控阵波束合成装置
CN113608228A (zh) * 2021-08-02 2021-11-05 中国科学院空天信息创新研究院 一种基于Blass矩阵的二维多波束激光雷达快速扫描装置和方法

Also Published As

Publication number Publication date
CN116232389A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
RU2656236C1 (ru) Формирование диаграммы направленности с использованием антенной решетки
US10129821B2 (en) Multichannel radio frequency apparatus and method
US20190089064A1 (en) Symmetrical front-end chip for dual-pole antenna array
US11605901B2 (en) Beam reconstruction method, antenna, and microwave device
EP3576314A1 (en) Weight assignment method and apparatus in beamforming (bf)
WO2010135862A1 (zh) 一种天线装置
CN102868432B (zh) 一种双阶段神经网络下的盲波束形成装置及其形成方法
US20130113657A1 (en) Systems and methods to increase the number of simultaneous pixels in a wireless imaging system
TWI574456B (zh) 階層式波束成型方法及其基地台與使用者設備
EP3698477B1 (en) Full-duplex transceiver apparatus
Brady et al. Multi-beam MIMO prototype for real-time multiuser communication at 28 GHz
US11437737B2 (en) Antenna arrangements for a radio transceiver device
US20230299825A1 (en) Beamforming method and device in wireless communication system
CN110266387A (zh) 基于弱模群耦合与概率整形的多波段光载射频系统及方法
WO2023098508A1 (zh) 波束控制装置、设备以及方法
CN107819524A (zh) 多重叠加态射频轨道角动量信号光控传输方法、系统
WO2017097107A1 (zh) 一种有源天线设备及其测试方法
US20220303020A1 (en) Central unit, remote unit, small cell system, and communication method
WO2022206520A1 (zh) 一种信号转发方法和装置
AU2009201717A1 (en) A module for transforming between a RF signal and a digital multiplexed optical signal
WO2017088724A1 (zh) 一种光信号处理方法及光交叉装置
US11716145B2 (en) DAS for multi-frequency band and multi-carrier based on O-RAN standard
WO2023098823A1 (zh) 信号发送方法及装置
Tomasin Use of millimeter wave carrier frequencies in 5G
WO2024002099A1 (zh) 基站信号的传输方法、设备、装置、存储介质及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900313

Country of ref document: EP

Kind code of ref document: A1