WO2023098498A1 - 一种基于Ni薄膜的MEMS呼吸流量装置 - Google Patents

一种基于Ni薄膜的MEMS呼吸流量装置 Download PDF

Info

Publication number
WO2023098498A1
WO2023098498A1 PCT/CN2022/133143 CN2022133143W WO2023098498A1 WO 2023098498 A1 WO2023098498 A1 WO 2023098498A1 CN 2022133143 W CN2022133143 W CN 2022133143W WO 2023098498 A1 WO2023098498 A1 WO 2023098498A1
Authority
WO
WIPO (PCT)
Prior art keywords
mems
thin film
fixedly connected
respiratory flow
chip
Prior art date
Application number
PCT/CN2022/133143
Other languages
English (en)
French (fr)
Inventor
蔡智华
Original Assignee
轻动科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 轻动科技(深圳)有限公司 filed Critical 轻动科技(深圳)有限公司
Publication of WO2023098498A1 publication Critical patent/WO2023098498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]

Definitions

  • the invention relates to the technical field of flexible flow sensors, in particular to a Ni film-based MEMS respiratory flow device.
  • SAHS Sleep apnea hypopnea syndrome
  • MEMS micro-electromechanical system, which refers to Smaller sensor devices, whose internal structure is generally on the order of microns or even nanometers, are an independent intelligent system.
  • MEMS is to miniaturize the mechanical components of traditional sensors, fix the devices on silicon wafers (wafers) through three-dimensional stacking technologies, such as three-dimensional through-silicon vias (TSVs), and finally use special customized sensors according to different applications.
  • TSVs three-dimensional through-silicon vias
  • the packaging form, the silicon-based sensor that is finally cut and assembled, benefits from the cost advantage brought by the mass production of IC silicon wafer processing that ordinary sensors cannot match, and MEMS also has the miniaturization and high integration that ordinary sensors cannot possess.
  • Devices based on MEMS technology have been widely used in industrial control, automotive electronics, medical equipment, analytical instruments, air quality testing and other fields. Compared with traditional mechanical flowmeters, MEMS flow devices have small size, light weight, and low power consumption. , Easy to integrate and realize the characteristics of intelligence.
  • a MEMS flow sensor chip includes a substrate with a cavity, a cavity protection layer arranged under the substrate, a resistive element support layer stacked above the substrate, and a resistive element mounted on a resistor.
  • the flow-measuring element is correspondingly disposed directly above the cavity; the temperature-sensing element is disposed above the base at a position not corresponding to the cavity.
  • the MEMS flow sensor chip of the present invention is widely used, and is especially suitable for measuring the fluid velocity of small and micro flow; it has the characteristics of simple circuit structure, high measurement accuracy and low cost; it improves the measurement sensitivity and measurement range; and has a longer service life.
  • MEMS flow devices involve multidisciplinary fields, with high technical difficulty and high processing requirements, resulting in high production costs.
  • most MEMS flow devices are limited by the production process, with high defect rates, poor consistency, and poor mechanical reliability.
  • the present invention provides a flow sensor device with lower cost, better consistency, and higher mechanical reliability.
  • the present invention provides a MEMS breathing flow device based on Ni thin film, which solves the problems of high defect rate, poor consistency and mechanical reliability of most existing MEMS flow devices, which are limited by the production process. Poor question.
  • a Ni film-based MEMS respiratory flow device comprising a device base, one side of the top surface of the device base is fixedly connected with a support leg, the support leg and the device
  • the top surface of the base is fixedly connected with a film base
  • the top surface of the film base is fixedly connected with an elastic adhesive layer
  • the top surface of the elastic adhesive layer is fixedly connected with a chip protection layer
  • the chip protection layer is attached to the elastic adhesive layer.
  • a thin-film electrode is fixedly connected between the layers, and one end of the thin-film electrode is fixedly connected to a pad, and an air cavity is opened between the thin-film base, the supporting legs and the device base.
  • the film substrate is polyimide, novolac epoxy resin, polyether ether ketone, and the polyimide and polyether ether ketone are processed by compression molding).
  • the elastic adhesive layer is epichlorohydrin rubber.
  • the thin film electrode is a Ni thin film electrode, which is made by wet etching in the MEMS photolithography process, and the thin film electrode is a Ni thin film electrode with a thickness of 5um.
  • the chip protection layer is polyimide, novolac epoxy resin, polyether ether ketone, and the thickness of the chip protection layer is 10 um.
  • the novolac epoxy resin of the film base is added to the bisphenol A epoxy resin and used in conjunction with the bisphenol A epoxy resin, and the added amount of the novolac epoxy resin is 20%-30% of the bisphenol A epoxy resin.
  • the polyimide film of the chip protection layer is made by a continuous dipping method, and the polyether ether ketone is made by a casting method.
  • the pad is made of nickel-chromium alloy, and the pad is processed by numerical control wire electric discharge cutting.
  • the invention provides a Ni film-based MEMS breathing flow device. Has the following beneficial effects:
  • the NI thin film electrode is placed above the air cavity to reduce the heat transfer to the bottom when the NI thin film electrode heats up, and ensure that the temperature field range generated by the flow measuring element is concentrated on the upper surface of the chip, thereby improving the measurement sensitivity and measurement range ;
  • the sampling NI film electrode of the present invention compared with platinum, gold and other sensor electrode materials, greatly reduces the material cost, has the characteristics of simple circuit structure, high measurement accuracy, low cost, good consistency, high mechanical reliability, and long service life longer.
  • the present invention is based on a wet etching process. Compared with dry etching, it has lower manufacturing and processing costs, and the precision of the produced sensor chip can reach 0.2 ohms, and has better measurement consistency.
  • the NI thin film electrode of the present invention The thickness is controlled at 5um, and the thickness of the protective layer is controlled at 10um, which can protect the inside of the chip from the erosion of water vapor, oxygen or other elements, improve the stability of chip measurement and ensure the high mechanical reliability of the chip.
  • Fig. 1 is a schematic diagram of the internal structure of the main body of the present invention.
  • Fig. 2 is the left side structural diagram of main body interior of the present invention.
  • Fig. 3 is a right schematic view of the interior of the main body of the present invention.
  • a kind of MEMS respiratory flow device based on Ni thin film comprises device base 1, and one side of the top surface of described device base 1 is fixedly connected with support leg 8, and described support leg 8 and device base 1 is fixedly connected with a film substrate 5, the top surface of the film substrate 5 is fixedly connected with an elastic adhesive layer 6, and the top surface of the elastic adhesive layer 6 is fixedly connected with a chip protection layer 2, and the chip protection A film electrode 3 is fixedly connected between the layer 2 and the elastic adhesive layer 6, and one end of the film electrode 3 is fixedly connected to the pad 4, and an air cavity is opened between the film substrate 5, the supporting leg 8 and the device base 1 7.
  • the film substrate 5 is made of polyimide PI, epoxy novolac resin EPN, and polyetheretherketone PEEK, and polyimide PI and polyetheretherketone PEEK are processed by compression molding.
  • Polyimide PI is currently one of the best heat-resistant varieties of engineering plastics. It has good mechanical properties, fatigue resistance, flame retardancy, dimensional stability, and electrical properties. It has low molding shrinkage and is resistant to oil, general acids and organic solvents.
  • PEEK resin is a crystalline, super heat-resistant thermoplastic polymer, with physical and chemical properties such as high temperature resistance, chemical corrosion resistance, etc., can be used as high temperature resistant structural materials And electrical insulation materials, PEEK has the characteristics of flame retardancy, good coating processability (melt extrusion without solvent), good peel resistance, good abrasion resistance and strong radiation resistance, etc., elastic adhesive layer 6 Epichlorohydrin rubber ECO, epichlorohydrin rubber ECO has excellent air tightness, and still maintains excellent oil resistance in a wide range of operating temperatures.
  • the film electrode 3 is a Ni film electrode, which is made by MEMS photolithography It is made by wet etching process in the process, and the thickness of the film electrode 3 is 5um, the precision of the produced sensor chip can reach 0.2 ohms, and the chip protection layer 2 is polyimide PI, phenolic epoxy resin EPN, polyether ether Ketone PEEK, and the thickness of the chip protection layer 2 protective layer is 10um, the novolac epoxy resin EPN of the film substrate 5 is added to the bisphenol A type epoxy resin, and the addition amount of the novolac epoxy resin EPN is bisphenol A type 20%-30% of epoxy resin, novolac epoxy resin EPN epoxy group content is high, high viscosity, high crosslinking density after curing, its fiber reinforced plastic has good physical and mechanical properties, the poly Imide PI film made by continuous impregnation method, and polyether ether ketone PEEK film made by casting method (wire cutting) process, the pad 4 is nickel-chromium alloy, and the pad 4 is nickel-
  • the NI thin film electrode of the thin film electrode 3 is placed above the air cavity 7 to reduce the heat transfer to the bottom when the NI thin film electrode heats up, and ensure that the temperature field range generated by the flow measuring element is concentrated on the upper surface of the chip, thereby improving the measurement sensitivity
  • the present invention uses NI thin film electrodes, which greatly reduces material costs, and has the characteristics of simple circuit structure, high measurement accuracy, low cost, good consistency, and high mechanical reliability.
  • the thin film electrode 3 is a Ni thin film electrode, which is made by wet etching in the MEMS photolithography process, and the method based on the wet etching process has lower manufacturing and processing costs than dry etching , the precision of the produced sensor chip can reach 0.2 ohms, and has good measurement consistency.
  • the thickness of the NI film electrode of the present invention is controlled at 5um, and the thickness of the protective layer is controlled at 10um, which can protect the inside of the chip from water vapor, oxygen or other elements The erosion of the chip improves the stability of the chip measurement and ensures the high mechanical reliability of the chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)

Abstract

一种基于Ni薄膜的MEMS呼吸流量装置,涉及柔性流量传感器技术领域,包括装置底座(1),装置底座(1)的顶面一侧固定连接有支撑腿(8),支撑腿(8)和装置底座(1)的顶面固定连接有薄膜基底(5),采用薄膜电极(3)为NI薄膜电极,并置于空气腔体(7)上方,减少NI薄膜电极发热时的热量向底部传递,保证测流元件产生的温度场范围集中在芯片上表面,从而提升测量灵敏度和测量范围,同时大幅度降低材料成本,具有电路结构简单,测量精度高、成本低、一致性好、机械可靠性高的特点,使用寿命更长,基于湿法蚀刻工艺,具有更低的制造加工成本,具有较好的测量一致性,芯片保护层(2)能够保护芯片内部不受水汽、氧或其它元素的侵蚀,提高了芯片测量稳定性的同时保证了芯片的机械高可靠性。

Description

一种基于Ni薄膜的MEMS呼吸流量装置 技术领域
本发明涉及柔性流量传感器技术领域,具体为一种基于Ni薄膜的MEMS呼吸流量装置。
背景技术
呼吸,是人类机体与外界环境进行呼吸交换的过程,是保证人类机体正常工作的最基本生理活动,因此一旦呼吸出现问题便很可能造成不可挽回的影响,睡眠呼吸暂停低通气综合征(SAHS)是指各种原因导致睡眠状态下反复出现呼吸暂停和(或)低通气、睡眠中断,从而使机体发生一系列病理生理改变的临床综合征,MEMS是微机电系统,是指尺寸在几毫米乃至更小的传感器装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。简单来说,MEMS就是将传统传感器的机械部件微型化后,通过三维堆叠技术,例如三维硅穿孔TSV等技术把器件固定在硅晶元(wafer)上,最后根据不同的应用场合采用特殊定制的封装形式,最终切割组装而成的硅基传感器,受益于普通传感器无法企及的IC硅片加工批量化生产带来的成本优势,MEMS同时又具备普通传感器无法具备的微型化和高集成度,目前基于MEMS技术的装置已广泛的应用于工业控制、汽车电子、医疗器械、分析仪器、空气质量检测等领域,与传统机械式流量计相比,MEMS流量装置具有体积小、重量轻、功耗低、易于集成和实现智能化的特点。
根据公开号CN111220224B了一种MEMS流量传感器芯片,所述MEMS流量传感器芯片包括具有腔体的基底、设置在基底下方的腔体保护层、叠设于基底上方的电阻元件支承层、载置于电阻元件支承层的感温元件和测流元件、覆盖感温元件和所测流元件的电阻元件保护层以及设置在所述电阻元件保护层上方的芯片保护层。其中,所述测流元件对应设置在所述腔体的正上方;所述感温元件设置在所述基底上方的非腔体对应的位置。本发明的MEMS流量 传感器芯片应用广泛,特别适用于小微流量的流体流速测量;具有电路结构简单,测量精度高、成本低的特点;提升了测量灵敏度和测量范围;并且使用寿命更长。
MEMS流量装置涉及多学科领域,技术难度大,加工要求高,导致生产成本很高,此外,多数MEMS流量装置受生产工艺的限制,不良率较高,一致性较差,机械可靠性较差,因此,本发明提供一种成本更低、一致性更好、机械可靠性更高的流量传感器装置。
发明内容
解决的技术问题
针对现有技术的不足,本发明提供了一种基于Ni薄膜的MEMS呼吸流量装置,解决了现有的多数MEMS流量装置受生产工艺的限制,不良率较高,一致性较差,机械可靠性较差的问题。
技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种基于Ni薄膜的MEMS呼吸流量装置,包括装置底座,所述装置底座的顶面一侧固定连接有支撑腿,所述支撑腿和装置底座的顶面固定连接有薄膜基底,所述薄膜基底的顶面固定连接有弹性粘附层,所述弹性粘附层的顶面固定连接有芯片保护层,所述芯片保护层与弹性粘附层之间固定连接有薄膜电极,所述薄膜电极的一端固定连接焊盘,所述薄膜基底、支撑腿和装置底座之间开设有空气腔体。
优选的,所述薄膜基底为聚酰亚胺、酚醛环氧树脂、聚醚醚酮,且聚酰亚胺与聚醚醚酮通过压缩模塑的方式加工而成)。
优选的,所述弹性粘附层为环氧氯丙烷橡胶。
优选的,所述薄膜电极为Ni薄膜电极,通过MEMS光刻工艺中的湿法腐蚀加工制成,且薄膜电极为Ni薄膜电极厚度为5um。
优选的,所述芯片保护层为聚酰亚胺、酚醛环氧树脂、聚醚醚酮,且芯片保护层保护层厚度为10um。
优选的,所述薄膜基底的酚醛环氧树脂添加在双酚A型环氧树脂中配合使用,且酚醛环氧树脂的添加量为双酚A型环氧树脂的20%-30%。
优选的,所述芯片保护层的聚酰亚胺通过连续浸渍法制成的薄膜,且聚醚醚酮采用流延法制成的薄膜。
优选的,所述接焊盘为镍铬合金,且接焊盘为镍铬合金通过数控电火花线切割的方法加工而成。
有益效果
本发明提供了一种基于Ni薄膜的MEMS呼吸流量装置。具备以下有益效果:
1、本发明采用将NI薄膜电极置于空气腔体上方,减少NI薄膜电极发热时的热量向底部传递,保证测流元件产生的温度场范围集中在芯片上表面,从而提升测量灵敏度和测量范围;本发明采样NI薄膜电极,相较于铂、金等传感器电极材料,大幅度降低材料成本,具有电路结构简单,测量精度高、成本低、一致性好、机械可靠性高的特点,使用寿命更长。
2、本发明基于湿法蚀刻工艺,相较于干法蚀刻,具有更低的制造加工成本,生产出来的传感器芯片精度可以达到0.2欧,具有较好的测量一致性,本发明的NI薄膜电极厚度控制在5um,保护层厚度控制在10um,能够保护芯片内部不受水汽、氧或其它元素的侵蚀,提高了芯片测量稳定性的同时保证了芯片的机械高可靠性。
附图说明
图1为本发明的主体内部结构示意图;
图2为本发明的主体内部的左侧结构图;
图3为本发明的主体内部的右侧示意图。
其中:1、装置底座;2、芯片保护层;3、薄膜电极;4、焊盘;5、薄膜基底;6、弹性粘附层;7、空气腔体;8、支撑腿。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例一:
如图1-图3所示,一种基于Ni薄膜的MEMS呼吸流量装置,包括装置底座1,所述装置底座1的顶面一侧固定连接有支撑腿8,所述支撑腿8和装置底座1的顶面固定连接有薄膜基底5,所述薄膜基底5的顶面固定连接有弹性粘附层6,所述弹性粘附层6的顶面固定连接有芯片保护层2,所述芯片保护层2与弹性粘附层6之间固定连接有薄膜电极3,所述薄膜电极3的一端固定连接焊盘4,所述薄膜基底5、支撑腿8和装置底座1之间开设有空气腔体7,薄膜基底5为聚酰亚胺PI、酚醛环氧树脂EPN、聚醚醚酮PEEK,且聚酰亚胺PI与聚醚醚酮PEEK通过压缩模塑的方式加工而成,聚酰亚胺PI是目前工程塑料中耐热性最好的品种之一,机械性能、耐疲劳性能、难燃性、尺寸稳定性、电性能都好,成型收缩率小,耐油、一般酸和有机溶剂,不耐碱,有优良的耐摩擦性能,聚醚醚酮PEEK树脂是一种结晶性、超耐热型热塑性聚合物,具有耐高温、耐化学药品腐蚀等物理化学性能,可用作耐高温结构材料和电绝缘材料,PEEK具有阻燃、包覆加工性好(可熔融挤出,而不用溶剂)、耐剥离性好、耐磨耗性好及耐辐照性强等特点,弹性粘附层6为环氧氯丙烷橡胶ECO,环氧氯丙烷橡胶ECO都具备优良的气密性,并且在广泛的使用温度范围下仍保持绝佳的耐油性,薄膜电极3为Ni薄膜电极,通过MEMS光刻工艺中的湿法腐蚀加工制成,,且薄膜电极3厚度为5um,生产出来的传感器芯片精 度可以达到0.2欧,芯片保护层2为聚酰亚胺PI、酚醛环氧树脂EPN、聚醚醚酮PEEK,且芯片保护层2保护层厚度为10um,薄膜基底5的酚醛环氧树脂EPN添加在双酚A型环氧树脂中配合使用,且酚醛环氧树脂EPN的添加量为双酚A型环氧树脂的20%-30%,酚醛环氧树脂EPN环氧基含量高,黏度较大,固化后产物交联密度高,其纤维增强塑料具有良好的物理机械性能,芯片保护层2的聚酰亚胺PI通过连续浸渍法制成的薄膜,且聚醚醚酮PEEK采用流延法(线切割)工艺制成的薄膜,接焊盘4为镍铬合金,且接焊盘4为镍铬合金通过数控电火花线切割的方法加工而成,线切割能加工各种高硬度﹑高强度﹑高韧度和高熔点的导电材料,由于线切割加工的特殊性,其加工不受所加工材料硬度等物理性质影响。
具体实施例二:
本发明采用将薄膜电极3的NI薄膜电极置于空气腔体7上方,减少NI薄膜电极发热时的热量向底部传递,保证测流元件产生的温度场范围集中在芯片上表面,从而提升测量灵敏度和测量范围,本发明采用NI薄膜电极,相较于铂、金等传感器电极材料,大幅度降低材料成本,具有电路结构简单,测量精度高、成本低、一致性好、机械可靠性高的特点,使用寿命更长,薄膜电极3为Ni薄膜电极,通过MEMS光刻工艺中的湿法腐蚀加工制成,基于湿法蚀刻工艺的方法,相较于干法蚀刻,具有更低的制造加工成本,生产出来的传感器芯片精度可以达到0.2欧,具有较好的测量一致性,本发明的NI薄膜电极厚度控制在5um,保护层厚度控制在10um,能够保护芯片内部不受水汽、氧或其它元素的侵蚀,提高了芯片测量稳定性的同时保证了芯片的机械高可靠性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系 列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个引用结构”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种基于Ni薄膜的MEMS呼吸流量装置,包括装置底座(1),其特征在于:所述装置底座(1)的顶面一侧固定连接有支撑腿(8),所述支撑腿(8)和装置底座(1)的顶面固定连接有薄膜基底(5),所述薄膜基底(5)的顶面固定连接有弹性粘附层(6),所述弹性粘附层(6)的顶面固定连接有芯片保护层(2),所述芯片保护层(2)与弹性粘附层(6)之间固定连接有薄膜电极(3),所述薄膜电极(3)的一端固定连接焊盘(4),所述薄膜基底(5)、支撑腿(8)和装置底座(1)之间开设有空气腔体(7)。
  2. 根据权利要求1所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特征在于:所述薄膜基底(5)为聚酰亚胺PI、酚醛环氧树脂EPN、聚醚醚酮PEEK,且聚酰亚胺PI与聚醚醚酮PEEK通过压缩模塑的方式加工而成。
  3. 根据权利要求1所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特征在于:所述弹性粘附层(6)为环氧氯丙烷橡胶ECO。
  4. 根据权利要求1所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特征在于:所述薄膜电极(3)为Ni薄膜电极,通过MEMS光刻工艺中的湿法腐蚀加工制成,且薄膜电极(3)的Ni薄膜电极厚度为5um。
  5. 根据权利要求2所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特征在于:所述芯片保护层(2)为聚酰亚胺PI、酚醛环氧树脂EPN、聚醚醚酮PEEK,且芯片保护层(2)保护层厚度为10um。
  6. 根据权利要求1所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特征在于:所述薄膜基底(5)的酚醛环氧树脂EPN添加在双酚A型环氧树脂中配合使用,且酚醛环氧树脂EPN的添加量为双酚A型环氧树脂的20%-30%。
  7. 根据权利要求6所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特征在于:所述芯片保护层(2)的聚酰亚胺PI通过连续浸渍法制成的薄膜,且聚醚醚酮PEEK采用流延法制成的薄膜。
  8. 根据权利要求3所述的一种基于Ni薄膜的MEMS呼吸流量装置,其特 征在于:所述接焊盘(4)为镍铬合金,且接焊盘(4)为镍铬合金通过数控电火花线切割的方法加工而成。
PCT/CN2022/133143 2021-11-30 2022-11-21 一种基于Ni薄膜的MEMS呼吸流量装置 WO2023098498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111439863.5A CN115047210A (zh) 2021-11-30 2021-11-30 一种基于Ni薄膜的MEMS呼吸流量装置
CN202111439863.5 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098498A1 true WO2023098498A1 (zh) 2023-06-08

Family

ID=83156702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133143 WO2023098498A1 (zh) 2021-11-30 2022-11-21 一种基于Ni薄膜的MEMS呼吸流量装置

Country Status (2)

Country Link
CN (1) CN115047210A (zh)
WO (1) WO2023098498A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047210A (zh) * 2021-11-30 2022-09-13 轻动科技(深圳)有限公司 一种基于Ni薄膜的MEMS呼吸流量装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571493A1 (fr) * 1984-10-05 1986-04-11 Gradient Fluxmetre thermique a resistances
JPH0634411A (ja) * 1992-07-17 1994-02-08 Fuji Electric Co Ltd フローセンサの製造方法およびフローセンサ
CN101290240A (zh) * 2008-04-18 2008-10-22 杭州精诚光电子有限公司 柔性薄膜Ni电阻传感器及其制备方法
US20120318058A1 (en) * 2011-02-18 2012-12-20 Tohoku Gakuin Heat conduction-type sensor for calibrating effects of temperature and type of fluid, and thermal flow sensor and thermal barometric sensor using this sensor
CN104891425A (zh) * 2015-06-12 2015-09-09 武汉飞恩微电子有限公司 基于石墨烯的流量传感器芯片及其制备方法
CN107643421A (zh) * 2017-11-10 2018-01-30 苏州原位芯片科技有限责任公司 基于mems的流速传感器、流速测量电路及方法
CN111220224A (zh) * 2018-11-26 2020-06-02 苏州原位芯片科技有限责任公司 一种mems流量传感器芯片
CN115047210A (zh) * 2021-11-30 2022-09-13 轻动科技(深圳)有限公司 一种基于Ni薄膜的MEMS呼吸流量装置
CN217739215U (zh) * 2021-11-30 2022-11-04 轻动科技(深圳)有限公司 一种基于Ni薄膜的MEMS呼吸流量装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571493A1 (fr) * 1984-10-05 1986-04-11 Gradient Fluxmetre thermique a resistances
JPH0634411A (ja) * 1992-07-17 1994-02-08 Fuji Electric Co Ltd フローセンサの製造方法およびフローセンサ
CN101290240A (zh) * 2008-04-18 2008-10-22 杭州精诚光电子有限公司 柔性薄膜Ni电阻传感器及其制备方法
US20120318058A1 (en) * 2011-02-18 2012-12-20 Tohoku Gakuin Heat conduction-type sensor for calibrating effects of temperature and type of fluid, and thermal flow sensor and thermal barometric sensor using this sensor
CN104891425A (zh) * 2015-06-12 2015-09-09 武汉飞恩微电子有限公司 基于石墨烯的流量传感器芯片及其制备方法
CN107643421A (zh) * 2017-11-10 2018-01-30 苏州原位芯片科技有限责任公司 基于mems的流速传感器、流速测量电路及方法
CN111220224A (zh) * 2018-11-26 2020-06-02 苏州原位芯片科技有限责任公司 一种mems流量传感器芯片
CN115047210A (zh) * 2021-11-30 2022-09-13 轻动科技(深圳)有限公司 一种基于Ni薄膜的MEMS呼吸流量装置
CN217739215U (zh) * 2021-11-30 2022-11-04 轻动科技(深圳)有限公司 一种基于Ni薄膜的MEMS呼吸流量装置

Also Published As

Publication number Publication date
CN115047210A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2023098498A1 (zh) 一种基于Ni薄膜的MEMS呼吸流量装置
US8161811B2 (en) Flow sensors having nanoscale coating for corrosion resistance
Zhao et al. Flexible bimodal sensor for simultaneous and independent perceiving of pressure and temperature stimuli
CN110174195A (zh) 一种仿生柔性压力传感器
RU2398195C1 (ru) Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
US20070209433A1 (en) Thermal mass gas flow sensor and method of forming same
JP5626689B2 (ja) 生体埋め込み型流量センサ
CN110823423B (zh) 一种液态金属柔性压力传感器及其制备方法
US20030107467A1 (en) Sensor package for harsh environments
CN105136873B (zh) 一种集成传感器及其制备方法
CN105547371A (zh) 基于陶瓷封装的二维热式风速风向传感器及其制作方法
CN217739215U (zh) 一种基于Ni薄膜的MEMS呼吸流量装置
EP3677904B1 (en) Hygroscopic sensor
CN109764971A (zh) 柔性温度传感器及其制作方法和柔性设备
Sun et al. A facile strategy for low Young's modulus PDMS microbeads enhanced flexible capacitive pressure sensors
Li et al. Polymer flip-chip bonding of pressure sensors on a flexible Kapton film for neonatal catheters
CN111044181B (zh) 梯度零泊松比结构电容式柔性触觉传感器及其制备方法
US11473951B2 (en) Flow direction sensor
Jiang et al. Highly sensitive, low voltage operation, and low power consumption resistive strain sensors based on vertically oriented graphene nanosheets
CN109211342B (zh) 一种气流流量计、mems硅基温敏芯片及其制备方法
Zhu et al. Large‐Area Hand‐Covering Elastomeric Electronic Skin Sensor with Distributed Multifunctional Sensing Capability
CN111007107A (zh) 一种基于碳基柔性湿敏器件的露点测量方法
CN111220224A (zh) 一种mems流量传感器芯片
Fang et al. An Electrochemical Impedance-Based Flexible Flow Sensor With Ultra-Low Limit of Detection
Li et al. Soft, flexible pressure sensors for pressure monitoring under large hydrostatic pressure and harsh ocean environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900303

Country of ref document: EP

Kind code of ref document: A1