WO2023098442A1 - 临近空间浮空器的吊舱性能测试系统及方法 - Google Patents

临近空间浮空器的吊舱性能测试系统及方法 Download PDF

Info

Publication number
WO2023098442A1
WO2023098442A1 PCT/CN2022/131040 CN2022131040W WO2023098442A1 WO 2023098442 A1 WO2023098442 A1 WO 2023098442A1 CN 2022131040 W CN2022131040 W CN 2022131040W WO 2023098442 A1 WO2023098442 A1 WO 2023098442A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
pod
control device
motion simulation
performance
Prior art date
Application number
PCT/CN2022/131040
Other languages
English (en)
French (fr)
Inventor
冯慧
崔燕香
张冬辉
林文亮
李伯恩
周谨
Original Assignee
中国科学院空天信息创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院空天信息创新研究院 filed Critical 中国科学院空天信息创新研究院
Publication of WO2023098442A1 publication Critical patent/WO2023098442A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems

Definitions

  • the invention relates to the technical field of near space, in particular to a pod performance testing system and method of an aerostat in near space.
  • the high-altitude balloon has the characteristics of high flight altitude, low cost, short preparation period, and easy and flexible implementation. After carrying the pod, it can carry out operations such as astronomical observation, atmospheric environment detection, relay communication, and navigation. has a huge effect.
  • the pod In order to ensure the normal work of the high-altitude balloon, it is a necessary safety measure to conduct a performance test on the pod.
  • the pod In the related art, the pod is usually suspended on the crane frame, and the performance test is performed on the pod during the motion state of the pod slowly tends to be stationary from the initial rotation, so as to obtain the results of different motion states of the pod. performance test below.
  • the invention provides a pod performance testing system and method for an adjacent space aerostat, which is used to solve the defect of the limited performance testing range of the pod in the prior art and expand the performance testing range of the pod.
  • the present invention provides a pod performance testing system for an adjacent space aerostat, including: human-computer interaction test control equipment, motion simulation control equipment, suspension devices, and motion simulation anti-twisting mechanism; wherein:
  • the suspension device is used to mount the motion simulation anti-twist mechanism
  • the human-computer interaction test control device is electrically connected to the motion simulation control device, the motion simulation anti-twisting mechanism, and the pod of the adjacent space aerostat, and is used to: receive motion control parameters input by the user;
  • the motion simulation control device sends the motion control parameters and performance test parameters to the pod; receives the motion state information returned by the motion simulation anti-twisting mechanism; receives the performance state information returned by the pod; displays the Motion state information and said performance state information;
  • the motion simulation control device is electrically connected to the motion simulation anti-twisting mechanism, and is used to receive the motion control parameters sent by the human-computer interaction test control device, and to simulate the motion based on the motion control parameters.
  • Anti-twisting mechanism for motion control ;
  • the motion-simulating anti-twisting mechanism is connected to the pod through a connecting piece, and is used to drive the pod to move under the control of the motion-simulating control device.
  • the suspension device adopts a gantry structure, and the gantry structure includes three parts: the middle beam, the side beam and the bottom support; wherein, the The side beam and the bottom support are trapezoidal structures;
  • the bottom of the middle beam is provided with at least one first through hole for mounting the motion-simulating anti-twist mechanism.
  • the motion simulation anti-twisting mechanism includes a long sleeve, a flange support, a pin shaft, a bearing, a bearing seat, a motor base, a servo motor, Box body, lifting ring screws;
  • the flange support includes a top ring and a bottom ring, the top ring and the bottom ring are provided with a coaxial second through hole, and the first end of the long sleeve is arranged in the second through hole Middle; the top ring is provided with a plurality of third through-hole bolts passing through the first through-hole and the third through-hole to cooperate with nuts for fixing the gantry and the flange support together;
  • the pin shaft passes through the bottom ring and the long sleeve;
  • the outer side of the second end of the long shaft sleeve is covered with the bearing, and the outer side of the bearing is covered with the bearing seat;
  • the end of the second end of the long sleeve is connected to the servo motor by screws;
  • the motor base is arranged on the lower end of the servo motor, and the upper end of the motor base is connected with the bearing seat by screws;
  • the box is arranged on the periphery of the bearing seat and the motor base, and the lower end of the box is fixed on the motor base by screws.
  • the motion simulation control equipment includes: a power supply, a power board, a transformer, a voltage stabilizer, a reverse twist controller, a power supply interface, and a first interface signal a processing unit and a second interface signal processing unit;
  • the power supply is respectively connected to the transformer and the power supply board, the transformer is connected to the voltage stabilizer and the power supply interface in turn, the power supply board is connected to the reverse twist controller, and the reverse twist control connected to the first interface signal processing unit and the second interface signal processing unit respectively;
  • the power interface is electrically connected to the motion simulation anti-twist mechanism through a cable, and is used to supply power to the motion simulation anti-twist mechanism;
  • the first interface signal processing unit is electrically connected to the human-computer interaction test control device through a cable, and is used to receive the motion control parameters sent by the human-computer interaction test control device;
  • the second interface signal processing unit is electrically connected to the motion analog anti-twist mechanism through a cable, and is used for motion control of the motion analog anti-twist mechanism.
  • the human-computer interaction testing control device includes a control module and a display module;
  • the control module is used to: receive motion control parameters input by the user, send the motion control parameters to the first interface signal processing unit, and receive motion state information and the The performance status information sent by the cabin;
  • the display module is used to display the exercise state information and the performance state information.
  • the motion state parameters include at least one of the following: motion mode, angular velocity, angular acceleration, motion cycle and frequency; wherein the motion mode includes Uniform motion, triangular motion, forward motion, and random motion.
  • the connecting body is a knotted cable.
  • the present invention provides a method for testing the performance of a pod of an aerostat in an adjacent space, which is applied to a performance testing system for a pod of an aerostat in an adjacent space.
  • the system for testing the performance of a pod of an aerostat in an adjacent space includes a human A machine-interactive test control device, a motion simulation control device, a suspension device, and a motion simulation anti-twisting mechanism, the method comprising:
  • the human-computer interaction test control device receives motion control parameters and performance test parameters input by the user;
  • the human-computer interaction test control device sends the motion control parameters to the motion simulation control device, and sends performance test parameters to the pod;
  • the motion simulation control device controls the motion simulation anti-twist mechanism to rotate according to the motion control parameters
  • the human-computer interaction test control device receives the motion state information returned by the motion simulation anti-twisting mechanism
  • the human-computer interaction test control device receives the performance status information returned by the pod
  • the human-computer interaction test control device displays the motion state information and the performance state information.
  • the motion simulation control device controls the rotation of the motion simulation anti-twisting mechanism according to the motion control parameters, including:
  • the motion simulation control device generates a motion control signal according to the motion control parameter
  • the motion simulation control device sends the motion control signal to the motion simulation anti-twist mechanism to control the motion simulation anti-twist mechanism to rotate.
  • the motion state parameters include at least one of the following: motion mode, angular velocity, angular acceleration, motion cycle, and frequency; wherein the motion mode includes Uniform motion, triangular motion, forward motion, and random motion.
  • the present invention provides a pod performance testing device for an aerostat in an adjacent space, which is applied to a performance testing system for a pod of an aerostat in an adjacent space, and the performance testing system for a pod of an aerostat in an adjacent space includes a human Machine interaction test control equipment, motion simulation control equipment, suspension device and motion simulation anti-twisting mechanism, said device includes:
  • the first control module is used for the human-computer interaction test control device to receive motion control parameters and performance test parameters input by the user;
  • the first sending module is used for the human-computer interaction test control device, sends the motion control parameters to the motion simulation control device, and sends performance test parameters to the pod;
  • the second control module is used for the motion simulation control device to control the motion simulation anti-twist mechanism to rotate according to the motion control parameters;
  • the first receiving module is used for the human-computer interaction test control device to receive the motion state information returned by the motion simulation anti-twisting mechanism;
  • the second receiving module is used for the human-computer interaction test control device to receive the performance status information returned by the pod;
  • the display module is used for the human-computer interaction test control device to display the motion state information and the performance state information.
  • the second control module is specifically used for:
  • the motion simulation control device generates a motion control signal according to the motion control parameter
  • the motion simulation control device sends the motion control signal to the motion simulation anti-twist mechanism to control the motion simulation anti-twist mechanism to rotate.
  • the motion state parameters include at least one of the following: motion mode, angular velocity, angular acceleration, motion cycle, and frequency; wherein the motion mode includes Uniform motion, triangular motion, forward motion, and random motion.
  • the present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. Describe the steps of the pod performance test method for the adjacent space aerostat.
  • the present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the pod of any one of the above-mentioned adjacent space aerostats is realized. The steps of the performance testing method.
  • the present invention further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the steps of any one of the methods for testing the performance of the pod of the adjacent space aerostat described above are implemented.
  • the pod performance testing system and method of the adjacent space aerostat provided by the present invention, the system includes: human-computer interaction test control equipment, motion simulation control equipment, suspension device and motion simulation anti-twisting mechanism; wherein: the suspension The suspension device is used to mount the motion simulation anti-twisting mechanism; the human-computer interaction test control equipment is connected to the motion simulation control equipment, the motion simulation anti-twisting mechanism and the pod of the adjacent space aerostat.
  • the connection is used to: receive motion control parameters input by the user; send the motion control parameters to the motion simulation control device and send performance test parameters to the pod; receive motion state information returned by the motion simulation anti-twisting mechanism ; receiving the performance status information returned by the pod; displaying the motion status information and the performance status information;
  • the motion simulation control device is electrically connected to the motion simulation anti-twisting mechanism for receiving the man-machine interactively testing the motion control parameters sent by the control device, and based on the motion control parameters, performing motion control on the motion simulation anti-twist mechanism;
  • the motion simulation anti-twist mechanism is connected to the pod through a connector, It is used to drive the pod to move under the control of the motion simulation control device.
  • the present invention is based on the motion control parameters sent by the human-computer interaction test control device, and the motion simulation control device can control the motion simulation anti-twisting mechanism to simulate various complex motion states of adjacent aerostats in the air, so that the pod is in various complex states.
  • Motion state When the pod is in various complex motion states, the performance test of the pod can be performed, and the performance test results of the pod in various complex motion states can be obtained, which expands the scope of the performance test of the pod.
  • Fig. 1 is the schematic diagram of the pod performance testing system of the adjacent space aerostat provided by the present invention
  • FIG. 2 is a schematic diagram of a suspension device provided by an embodiment of the present invention.
  • Fig. 3 is the schematic diagram of motion simulation anti-twisting mechanism provided by the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a motion simulation control device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a human-computer interaction test control device provided by an embodiment of the present invention.
  • Fig. 6 is one of the schematic flow charts of the pod performance testing method of the adjacent space aerostat provided by the present invention.
  • Fig. 7 is the second schematic flow chart of the pod performance testing method of the adjacent space aerostat provided by the present invention.
  • FIG. 8 is a schematic diagram of the physical structure of the electronic device provided by the present invention.
  • Motion simulation anti-twisting mechanism 101 Motion simulation anti-twisting mechanism 101.
  • Power supply 102 Power supply board
  • Control module 202 Control module 202.
  • Display module 301 Gantry structure
  • the pod performance testing system of the adjacent space aerostat of the present invention will be described below with reference to FIGS. 1-5 .
  • Fig. 1 is the schematic diagram of the pod performance testing system of the adjacent space aerostat provided by the present invention, as shown in Fig. 1, the pod performance testing system 1 of the adjacent space aerostat comprises: human-computer interaction test control device 10, Motion simulation control equipment 20 , suspension device 30 and motion simulation anti-twist mechanism 40 . in:
  • the suspension device 30 is used to mount the motion-simulating anti-twist mechanism 40 .
  • the human-computer interaction test control device 10 is used to receive the motion control parameters input by the user; the human-computer interaction test control device 10 is electrically connected to the motion simulation control device 20, and is used to send the motion control parameters to the motion simulation control device 20, and to make the motion simulation The control device 20 receives motion control parameters.
  • the human-computer interaction test control device 10 is electrically connected to the motion simulation anti-twisting mechanism 40, and is used to receive the motion state information returned by the motion simulation anti-twisting mechanism 40 and display the motion state information.
  • the motion simulation control device 20 is electrically connected to the motion simulation anti-twist mechanism 40, so that the motion simulation control device 20 can control the motion of the motion simulation anti-twist mechanism 40 based on motion control parameters.
  • the motion simulation anti-twisting mechanism 40 is connected with the pod 60 through the connecting piece 50 , and is used to drive the pod 60 to move under the control of the motion simulation control device 20 .
  • the pod 60 is a pod to be detected.
  • a connecting piece 50 is connected to the lower end of the motion simulation anti-twisting mechanism 40 .
  • one end of the connecting piece 50 is connected with the lower end of the dynamic analog anti-twist mechanism 40
  • the other end of the connecting piece 50 is connected with the pod 60 . Therefore, while the motion simulation control device 20 controls the motion simulation anti-twist mechanism 40 to rotate, the motion simulation anti-twist mechanism 40 can drive the pod 60 to move under the action of the connecting body 50 .
  • the connecting body 50 may be a knotted cable.
  • the human-computer interaction test control device 10 is electrically connected to the pod 60, so that the human-computer interaction test control device 10 sends performance test parameters to the pod 60 And receive the performance status information returned from the pod 60, and display the performance status information.
  • the pod performance testing system of the adjacent space aerostat provided by the present invention, the computer interactive test control equipment, the motion simulation control equipment, the suspension device and the motion simulation anti-twisting mechanism; wherein: the suspension device is used to mount the motion simulation anti-twist Twisting mechanism; human-computer interaction test and control equipment, which are electrically connected to the motion simulation control equipment, motion simulation anti-twisting mechanism and the pod of the adjacent space aerostat, for: receiving the motion control parameters input by the user; Send motion control parameters and send performance test parameters to the pod; receive motion status information returned by the motion simulation anti-twisting mechanism; receive performance status information returned by the pod; display motion status information and performance status information; motion simulation control equipment, and motion
  • the analog anti-twisting mechanism is electrically connected to receive the motion control parameters sent by the human-computer interaction test control equipment, and based on the motion control parameters, perform motion control on the motion analog anti-twisting mechanism; the motion analog anti-twisting mechanism, through the connector and the pod The connection is used to drive the
  • the present invention is based on the motion control parameters sent by the human-computer interaction test control device, and the motion simulation control device can control the motion simulation anti-twisting mechanism to simulate various complex motion states of adjacent aerostats in the air, so that the pod is in various complex states.
  • Motion state When the pod is in various complex motion states, the performance test of the pod can be performed, and the performance test results of the pod in various complex motion states can be obtained, which expands the scope of the performance test of the pod.
  • FIG. 2 is the implementation of the present invention
  • Figure 3 is a schematic diagram of a motion simulation anti-twisting mechanism provided by an embodiment of the present invention
  • Figure 4 is a schematic diagram of a motion simulation control device provided by an embodiment of the present invention
  • Figure 5 is a schematic diagram of a motion simulation control device provided by an embodiment of the present invention Schematic diagram of the human-computer interaction test control device.
  • the suspension device 30 adopts a gantry structure 301 .
  • the gantry structure 301 includes three parts: a middle beam 3011 , a side beam 3012 and a bottom support 3013 . Wherein, the side beam 3012 and the bottom support 3013 have a trapezoidal structure.
  • the bottom of the middle beam 3011 is provided with at least one first through hole 3014, which is used to mount a motion-simulating anti-twist mechanism.
  • the motion simulation anti-twisting mechanism 40 includes a long shaft sleeve 401, a flange support 402, a pin shaft 403, a bearing 404, a bearing seat 405, a motor base 406, a servo motor 407, a box body 408, and an eyebolt screw 409 .
  • the flange support 402 includes a top ring 4021 and a bottom ring 4022 , the top ring and the bottom ring are provided with a second through hole 4024 coaxial, and the first end of the long sleeve 401 is disposed in the second through hole 4024 .
  • a plurality of third through holes 4025 are provided on the top ring 4021 . Bolts pass through the first through holes 3014 and the third through holes 4025 to cooperate with nuts for fixing the gantry structure 301 and the flange support 402 together.
  • the pin shaft 403 passes through the bottom ring 4022 and the long sleeve 401 .
  • a bearing 404 is sleeved on the outside of the second end of the long shaft sleeve 401 , and a bearing seat 405 is sleeved on the outside of the bearing 404 .
  • the end of the second end of the long shaft sleeve 401 is connected with the servo motor 407 by screws.
  • the motor base 406 is arranged on the lower end of the servo motor 407, and the upper end of the motor base 406 is connected with the bearing seat 405 by screws.
  • the box body 408 is arranged on the periphery of the bearing seat 405 and the motor base 406 , and the lower end of the box body 408 is fixed on the motor base 406 by screws.
  • An eyebolt 409 is fixed on the motor base 406 for connecting with the connecting body 50 .
  • the motion simulation control device 10 includes: a power supply 101, a power board 102, a transformer 103, a voltage stabilizer 104, an anti-twist controller 105, a power interface 106, a first interface signal processing unit 107 and a second interface signal processing unit 108 .
  • the power supply 101 is respectively connected with the transformer 103 and the power supply board 102, the transformer 103 is connected with the voltage stabilizer 104 and the power supply interface 106 in turn, the power supply board 102 is connected with the reverse twist controller 105, and the reverse twist controller 105 is respectively connected with the first interface signal processing unit 107 is connected to the second interface signal processing unit 108;
  • the power interface 106 is electrically connected to the motion simulation anti-twist mechanism 40 through a cable, so that the motion simulation control device 10 supplies power to the motion simulation anti-twist mechanism 40 through the power interface 106 .
  • the first interface signal processing unit 107 is electrically connected to the human-computer interaction test control device 20 through a cable, so that the motion simulation control device 10 receives the motion sent from the human-computer interaction test control device 20 through the first interface signal processing unit 107. Control parameters.
  • the motion state parameters include at least one of the following: motion mode, angular velocity, angular acceleration, motion period, and frequency; wherein, the motion mode includes uniform motion, triangular motion, forward motion, and random motion.
  • the exercise state parameters and exercise modes can be set according to specific requirements, without limitation.
  • the motion simulation control device can generate various motion control signals according to the motion control parameters to control the motion simulation anti-twisting mechanism to move in different motion modes, different angular velocities, angular accelerations, motion periods and frequencies.
  • the second interface signal processing unit 108 is electrically connected to the motion simulation anti-twisting mechanism 40 through a cable, so that the motion simulation control device 10 can control the motion of the motion simulation anti-twisting mechanism 40 through the second interface signal processing unit 108 .
  • the human-computer interaction test control device 20 includes a control module 201 and a display module 202 .
  • the control module 201 is configured to receive the motion control parameters input by the user, send the motion control parameters to the first interface signal processing unit 107, and receive the motion state information sent by the motion simulation anti-twisting mechanism 40 and the performance state information sent by the pod 60 .
  • the display module 202 is used to display the performance status information of the pod 60 when the motion simulation anti-twist mechanism 40 is in motion state information.
  • the pod performance testing system of the adjacent space aerostat provided by the present invention returns motion state information to the human-computer interaction test control equipment through the motion simulation anti-twist mechanism, and the human-computer interaction test control equipment obtains the actual motion of the motion simulation anti-twist mechanism State, not the motion state corresponding to the motion control parameters.
  • the performance state information obtained when the motion control parameters and performance test parameters are input to the pod performance test system of the adjacent space aerostat, and the motion state corresponding to this performance state parameter is determined as the motion state information, which improves the performance The accuracy of the test.
  • Fig. 6 is one of the schematic flow charts of the pod performance testing method of the adjacent space aerostat provided by the present invention. As shown in Fig. 6, the method includes:
  • Step 610 the human-computer interaction test control device receives motion control parameters and performance test parameters input by the user.
  • the motion control parameters and performance test parameters need to be input into the human-computer interaction test control device.
  • the motion control parameters are used to enable the motion simulation control device to control the rotation of the motion simulation anti-twist mechanism according to the motion control parameters.
  • the performance test parameters are test parameters corresponding to the performance of the pod to be tested.
  • Step 620 the human-computer interaction test control device sends motion control parameters to the motion simulation control device, and sends performance test parameters to the pod.
  • the human-computer interaction test control device sends the motion control parameters to the first interface signal processing unit of the motion simulation control device, and sends the performance test parameters to the pod.
  • Step 630 the motion simulation control device controls the motion simulation anti-twist mechanism to rotate according to the motion control parameters.
  • the motion simulation control device receives the motion control parameters sent from the human-computer interaction test control device through the first interface signal processing unit. Next, the motion simulation control device controls the motion simulation anti-twisting mechanism according to the motion control parameters. turn.
  • Fig. 7 is the second schematic flow diagram of the pod performance testing method of the adjacent space aerostat provided by the present invention.
  • the implementation of step 630 may include step 710-step 720, wherein:
  • Step 710 the motion simulation control device generates a motion control signal according to the motion control parameters.
  • the motion state parameters include at least one of the following: motion mode, angular velocity, angular acceleration, motion cycle, and frequency.
  • the movement modes include uniform movement, triangular movement, forward movement and random movement. Therefore, the motion simulation control device can generate various motion control signals according to the motion control parameters to control the motion simulation anti-twisting mechanism to move in different motion modes, different angular velocities, angular accelerations, motion periods and frequencies.
  • Step 720 the motion simulation control device sends a motion control signal to the motion simulation anti-twist mechanism to control the motion simulation anti-twist mechanism to rotate.
  • the motion simulation control device sends a motion control signal to the motion simulation anti-twisting mechanism through the second interface signal processing unit, so that the motion simulation anti-twisting mechanism rotates after receiving the motion control signal.
  • Step 640 the human-computer interaction test control device receives the motion state information returned by the motion simulation anti-twisting mechanism.
  • the motion simulation control device controls the motion simulation anti-twist mechanism to rotate according to the motion control parameters. Due to various reasons or interference, the actual motion state of the motion simulation anti-twist mechanism is inconsistent with the motion state corresponding to the motion control parameters. Therefore, in order to obtain the actual motion state of the motion-simulated anti-twist mechanism, the motion-simulated anti-twist mechanism returns its motion state information to the human-computer interaction test control device.
  • Step 650 the human-computer interaction test control device receives the performance status information returned by the pod.
  • the pod Based on the above step 620, after the human-computer interaction test control device sends the performance test parameters to the pod, the pod performs a performance test according to the performance test parameters, obtains performance status information after the performance test, and sends the performance status information to the human-machine interaction test controlling device.
  • the human-computer interaction test control device receives the performance status information returned by the pod.
  • Step 660 the human-computer interaction test control device displays the motion state information and the performance state information.
  • the human-computer interaction test control device receives the motion state information and the performance state information, and displays the performance test result through the display module of the human-computer interaction test control device.
  • the display module displays exercise state information and performance state information.
  • the human-computer interaction test control device receives the motion control parameters and performance test parameters input by the user; the human-computer interaction test control device sends the motion control parameters to the motion simulation control device , and send performance test parameters to the pod; the motion simulation control device controls the motion simulation anti-twisting mechanism to rotate according to the motion control parameters; the human-computer interaction test control device receives the motion status information returned by the motion simulation anti-twisting mechanism; the human-computer interaction test The control device receives the performance status information returned by the pod; the human-computer interaction test control device displays the motion status information and performance status information.
  • the present invention is based on the motion control parameters sent by the human-computer interaction test control device, and the motion simulation control device can control the motion simulation anti-twisting mechanism to simulate various complex motion states of adjacent aerostats in the air, so that the pod is in various complex states.
  • Motion state When the pod is in various complex motion states, the performance test of the pod can be performed, and the performance test results of the pod in various complex motion states can be obtained, which expands the scope of the performance test of the pod.
  • the present invention provides an electronic device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the above-mentioned near-space floating.
  • FIG. 8 is a schematic diagram of the physical structure of the electronic device provided by the present invention.
  • the electronic device 800 may include: a processor (processor) 810, a communication interface (Communications Interface) 820, a memory (memory) 830 and a communication bus 840 , wherein the processor 810 , the communication interface 820 , and the memory 830 communicate with each other through the communication bus 840 .
  • the processor 810 can call the logic instructions in the memory 830 to execute the pod performance test method of the adjacent space aerostat, the method includes: the human-computer interaction test control device receives the motion control parameters and performance test parameters input by the user; The interactive test control equipment sends motion control parameters to the motion simulation control equipment, and sends performance test parameters to the pod; the motion simulation control equipment controls the motion simulation anti-twisting mechanism to rotate according to the motion control parameters; the human-computer interaction test control equipment receives motion Simulate the motion state information returned by the anti-twisting mechanism; the human-computer interaction test control equipment receives the performance state information returned by the pod; the human-computer interaction test control equipment displays motion state information and performance state information.
  • the above logic instructions in the memory 830 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present invention also provides a computer program product.
  • the computer program product includes a computer program that can be stored on a non-transitory computer-readable storage medium.
  • the computer can Execute the pod performance testing method of the adjacent space aerostat provided by the above methods, the method includes: the human-computer interaction test control device receives the motion control parameters and performance test parameters input by the user; The simulation control device sends motion control parameters and performance test parameters to the pod; the motion simulation control device controls the motion simulation anti-twist mechanism to rotate according to the motion control parameters; the human-computer interaction test control device receives the motion returned by the motion simulation anti-twist mechanism Status information; the human-computer interaction test control equipment receives the performance status information returned by the pod; the human-computer interaction test control equipment displays motion status information and performance status information.
  • the present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to execute the pod of the adjacent space aerostat provided by the above methods.
  • a performance testing method comprising: the human-computer interaction test control device receives motion control parameters and performance test parameters input by the user; the human-computer interaction test control device sends the motion control parameters to the motion simulation control device, and sends the performance test parameters to the pod parameters; the motion simulation control equipment controls the motion simulation anti-twisting mechanism to rotate according to the motion control parameters; the human-computer interaction test control equipment receives the motion status information returned by the motion simulation anti-twisting mechanism; the human-computer interaction test control equipment receives the performance returned by the pod Status information; human-computer interaction test control equipment displays motion status information and performance status information.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种临近空间浮空器的吊舱(60)性能测试系统(1)及方法,系统(1)包括:人机交互测试控制设备(10)、运动模拟控制设备(20)、悬吊装置(30)以及运动模拟反捻机构(40);人机交互测试控制设备(10)分别和运动模拟控制设备(20)、运动模拟反捻机构(40)及临近空间浮空器的吊舱(60)电连接;运动模拟控制设备(20)与运动模拟反捻机构(40)电连接;运动模拟反捻机构(40)通过连接件(50)与吊舱(60)连接。基于人机交互测试控制设备(10)发送的运动控制参数,运动模拟控制设备(20)可以控制运动模拟反捻机构(40)模拟各种复杂的运动状态,从而使得吊舱(60)处于各种复杂的运动状态;在吊舱(60)处于各种复杂的运动状态时对吊舱(60)进行性能测试以及得到各种运动状态对应的性能测试结果。

Description

临近空间浮空器的吊舱性能测试系统及方法 技术领域
本发明涉及临近空间技术领域,尤其涉及一种临近空间浮空器的吊舱性能测试系统及方法。
背景技术
作为空间飞行器中的一种,高空气球具有飞行高度高,成本低,准备周期短,易于灵活实施等特点,搭载吊舱后可开展天文观测、大气环境探测、中继通信与导航等作业,发挥着巨大作用。
为保证高空气球的正常工作,对吊舱进行性能测试是一项必要的安全措施。在相关技术中,通常将吊舱悬挂于吊车架上,在吊舱的运动状态由开始的旋转慢慢趋于静止的过程中,对吊舱进行性能测试,以获得吊舱在不同运动状态下的性能测试。
然而,在实际作业中吊舱的运动状态要复杂的多,不能完全模拟实际运动,导致对吊舱的性能测试范围有限。
发明内容
本发明提供一种临近空间浮空器的吊舱性能测试系统及方法,用以解决现有技术中对吊舱的性能测试范围有限的缺陷,扩大对吊舱的性能测试范围。
第一方面,本发明提供一种临近空间浮空器的吊舱性能测试系统,包括:人机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构;其中:
所述悬吊装置,用于挂载所述运动模拟反捻机构;
所述人机交互测试控制设备,分别和所述运动模拟控制设备、所 述运动模拟反捻机构及临近空间浮空器的吊舱电连接,用于:接收用户输入的运动控制参数;向所述运动模拟控制设备发送所述运动控制参数以及向所述吊舱发送性能测试参数;接收所述运动模拟反捻机构返回的运动状态信息;接收所述吊舱返回的性能状态信息;显示所述运动状态信息及所述性能状态信息;
所述运动模拟控制设备,与所述运动模拟反捻机构电连接,用于接收所述人机交互测试控制设备发送的所述运动控制参数,及基于所述运动控制参数,对所述运动模拟反捻机构进行运动控制;
所述运动模拟反捻机构,通过连接件与所述吊舱连接,用于在所述运动模拟控制设备的控制下,带动所述吊舱进行运动。
根据本发明提供的一种临近空间浮空器的吊舱性能测试系统,所述悬吊装置采用龙门架结构,所述龙门架结构包括中间梁、侧梁以及底部支座三部分;其中,所述侧梁和所述底部支座呈梯形结构;
所述中间梁底部设置有至少一个第一通孔,用于挂载所述运动模拟反捻机构。
根据本发明提供的一种临近空间浮空器的吊舱性能测试系统,所述运动模拟反捻机构包括长轴套、法兰支座、销轴、轴承、轴承座、电机底座、伺服电机、箱体、吊环螺钉;
所述法兰支座包括顶环和底环,所述顶环和所述底环设有同轴心的第二通孔,所述长轴套的第一端设置于所述第二通孔中;所述顶环上设有多个第三通孔螺栓穿过所述第一通孔和所述第三通孔与螺母配合,用于将所述龙门架与所述法兰支座固定在一起;
所述销轴穿过所述底环和所述长轴套;
所述长轴套的第二端外侧套有所述轴承,所述轴承外侧套有所述轴承座;
所述长轴套的第二端的末端与所述伺服电机通过螺丝连接;
所述电机底座设置于所述伺服电机的下端,所述电机底座的上端 与所述轴承座通过螺丝连接;
所述箱体设置在所述轴承座和所述电机底座的外围,所述箱体的下端通过螺钉固定于所述电机底座上。
根据本发明提供的一种临近空间浮空器的吊舱性能测试系统,所述运动模拟控制设备包括:电源、电源板、变压器、稳压器、反捻控制器、电源接口、第一接口信号处理单元以及第二接口信号处理单元;
所述电源分别与所述变压器和所述电源板连接,所述变压器依次与所述稳压器和所述电源接口连接,所述电源板与所述反捻控制器连接,所述反捻控制器分别与所述第一接口信号处理单元和所述第二接口信号处理单元连接;
所述电源接口,与所述运动模拟反捻机构之间通过线缆电连接,用于向所述运动模拟反捻机构供电;
所述第一接口信号处理单元,与所述人机交互测试控制设备之间通过线缆电连接,用于接收所述人机交互测试控制设备发送的运动控制参数;
所述第二接口信号处理单元,与所述运动模拟反捻机构之间通过线缆电连接,用于对所述运动模拟反捻机构进行运动控制。
根据本发明提供的一种临近空间浮空器的吊舱性能测试系统,所述人机交互测试控制设备包括控制模块和显示模块;
所述控制模块用于:接收用户输入的运动控制参数,将所述运动控制参数发送至所述第一接口信号处理单元,以及接收所述运动模拟反捻机构发送的运动状态信息和所述吊舱发送的性能状态信息;
所述显示模块用于显示所述运动状态信息和所述性能状态信息。
根据本发明提供的一种临近空间浮空器的吊舱性能测试系统,所述运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率;其中,所述运动模式包括匀速运动、三角运动、正向运动以及随机运动。
根据本发明提供的一种临近空间浮空器的吊舱性能测试系统,所述连接体为结缆。
第二方面,本发明提供一种临近空间浮空器的吊舱性能测试方法,应用于临近空间浮空器的吊舱性能测试系统,所述临近空间浮空器的吊舱性能测试系统包括人机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构,所述方法包括:
所述人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;
所述人机交互测试控制设备,向所述运动模拟控制设备发送所述运动控制参数,以及向所述吊舱发送性能测试参数;
所述运动模拟控制设备根据所述运动控制参数,控制所述运动模拟反捻机构进行转动;
所述人机交互测试控制设备接收所述运动模拟反捻机构返回的运动状态信息;
所述人机交互测试控制设备接收所述吊舱返回的性能状态信息;
所述人机交互测试控制设备显示所述运动状态信息及所述性能状态信息。
根据本发明提供的一种临近空间浮空器的吊舱性能测试方法,所述运动模拟控制设备根据所述运动控制参数,控制所述运动模拟反捻机构进行转动,包括:
所述运动模拟控制设备根据所述运动控制参数,生成运动控制信号;
所述运动模拟控制设备向所述运动模拟反捻机构发送所述运动控制信号,控制所述运动模拟反捻机构进行转动。
根据本发明提供的一种临近空间浮空器的吊舱性能测试方法,所述运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率;其中,所述运动模式包括匀速运动、三角运动、 正向运动以及随机运动。
第三方面,本发明提供一种临近空间浮空器的吊舱性能测试装置,应用于临近空间浮空器的吊舱性能测试系统,所述临近空间浮空器的吊舱性能测试系统包括人机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构,所述装置包括:
第一控制模块,用于所述人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;
第一发送模块,用于所述人机交互测试控制设备,向所述运动模拟控制设备发送所述运动控制参数,以及向所述吊舱发送性能测试参数;
第二控制模块,用于所述运动模拟控制设备根据所述运动控制参数,控制所述运动模拟反捻机构进行转动;
第一接收模块,用于所述人机交互测试控制设备接收所述运动模拟反捻机构返回的运动状态信息;
第二接收模块,用于所述人机交互测试控制设备接收所述吊舱返回的性能状态信息;
显示模块,用于所述人机交互测试控制设备显示所述运动状态信息及所述性能状态信息。
根据本发明提供的一种临近空间浮空器的吊舱性能测试装置,所述第二控制模块,具体用于:
所述运动模拟控制设备根据所述运动控制参数,生成运动控制信号;
所述运动模拟控制设备向所述运动模拟反捻机构发送所述运动控制信号,控制所述运动模拟反捻机构进行转动。
根据本发明提供的一种临近空间浮空器的吊舱性能测试装置,所述运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率;其中,所述运动模式包括匀速运动、三角运动、 正向运动以及随机运动。
第三方面,本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述临近空间浮空器的吊舱性能测试方法的步骤。
第四方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述临近空间浮空器的吊舱性能测试方法的步骤。
第五方面,本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述临近空间浮空器的吊舱性能测试方法的步骤。
本发明提供的临近空间浮空器的吊舱性能测试系统及方法,所述系统包括:人机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构;其中:所述悬吊装置,用于挂载所述运动模拟反捻机构;所述人机交互测试控制设备,分别和所述运动模拟控制设备、所述运动模拟反捻机构及临近空间浮空器的吊舱电连接,用于:接收用户输入的运动控制参数;向所述运动模拟控制设备发送所述运动控制参数以及向所述吊舱发送性能测试参数;接收所述运动模拟反捻机构返回的运动状态信息;接收所述吊舱返回的性能状态信息;显示所述运动状态信息及所述性能状态信息;所述运动模拟控制设备,与所述运动模拟反捻机构电连接,用于接收所述人机交互测试控制设备发送的所述运动控制参数,及基于所述运动控制参数,对所述运动模拟反捻机构进行运动控制;所述运动模拟反捻机构,通过连接件与所述吊舱连接,用于在所述运动模拟控制设备的控制下,带动所述吊舱进行运动。本发明基于人机交互测试控制设备发送的运动控制参数,运动模拟控制设备可以控制运动模拟反捻机构模拟临近浮空器在空中的各种复杂的运动状态,从而使得吊舱处于各种复杂的运动状态; 在吊舱处于各种复杂的运动状态时对吊舱进行性能测试,可以得到吊舱处于各种复杂的运动状态时性能测试结果,这扩大了对吊舱的性能测试范围。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的临近空间浮空器的吊舱性能测试系统的示意图;
图2为本发明实施例提供的悬吊装置的示意图;
图3为本发明实施例提供的运动模拟反捻机构的示意图;
图4为本发明实施例提供的运动模拟控制设备的示意图;
图5为本发明实施例提供的人机交互测试控制设备的示意图;
图6为本发明提供的临近空间浮空器的吊舱性能测试方法的流程示意图之一;
图7为本发明提供的临近空间浮空器的吊舱性能测试方法的流程示意图之二;
图8为本发明提供的电子设备的实体结构示意图。
附图标记:
1、临近空间浮空器的吊舱性能测试系统
10、人机交互测试控制 20、运动模拟控制      30、悬吊装置
设备                 设备
40、运动模拟反捻机构 101、电源             102、电源板
103、变压器          104、稳压器           105、反捻控制器
106、电源接口           107、第一接口信号    108、第二接口号
                       处理单元              处理单元
201、控制模块          202、显示模块         301、龙门架结构
3011、中间梁           3012、侧梁            3013、底部支座
401、长轴套            402、法兰支座         403、销轴
404、轴承              405、轴承座           406、电机底座
407、伺服电机          408、箱体             409、吊环螺钉
50、连接体             60、吊舱
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合图1-图5描述本发明的临近空间浮空器的吊舱性能测试系统。
图1为本发明提供的临近空间浮空器的吊舱性能测试系统的示意图,如图1所示,该临近空间浮空器的吊舱性能测试系统1包括:人机交互测试控制设备10、运动模拟控制设备20、悬吊装置30以及运动模拟反捻机构40。其中:
悬吊装置30,用于挂载运动模拟反捻机构40。
人机交互测试控制设备10用于接收用户输入的运动控制参数;人机交互测试控制设备10与运动模拟控制设备20电连接,用于向运动模拟控制设备20发送运动控制参数,以及使得运动模拟控制设备20接收运动控制参数。
人机交互测试控制设备10与运动模拟反捻机构40电连接,用于 接收运动模拟反捻机构40返回的运动状态信息并显示该运动状态信息。
运动模拟控制设备20与运动模拟反捻机构40电连接,以实现运动模拟控制设备20基于运动控制参数,对运动模拟反捻机构40进行运动控制。
运动模拟反捻机构40,通过连接件50与吊舱60连接,用于在运动模拟控制设备20的控制下,带动吊舱60进行运动。
需要说明的是,吊舱60为待检测吊舱。在使用本发明提供的临近空间浮空器的吊舱性能测试系统对该吊舱60进行性能测试时,在运动模拟反捻机构40的下端连接一个连接件50。其中,连接件50的一端与动模拟反捻机构40的下端连接,连接件50的另一端连接吊舱60。因此,在运动模拟控制设备20控制运动模拟反捻机构40转动的同时,可以实现运动模拟反捻机构40在连接体50的作用下带动吊舱60进行运动。
可选地,连接体50可以为结缆。
在运动模拟反捻机构40通过连接件50与吊舱60连接之后,将人机交互测试控制设备10与吊舱60电连接,以实现人机交互测试控制设备10向吊舱60发送性能测试参数以及接收来自吊舱60返回的性能状态信息,并显示该性能状态信息。
本发明提供的临近空间浮空器的吊舱性能测试系统,机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构;其中:悬吊装置,用于挂载运动模拟反捻机构;人机交互测试控制设备,分别和运动模拟控制设备、运动模拟反捻机构及临近空间浮空器的吊舱电连接,用于:接收用户输入的运动控制参数;向运动模拟控制设备发送运动控制参数以及向吊舱发送性能测试参数;接收运动模拟反捻机构返回的运动状态信息;接收吊舱返回的性能状态信息;显示运动状态信息及性能状态信息;运动模拟控制设备,与运动模拟反捻机 构电连接,用于接收人机交互测试控制设备发送的运动控制参数,及基于运动控制参数,对运动模拟反捻机构进行运动控制;运动模拟反捻机构,通过连接件与吊舱连接,用于在运动模拟控制设备的控制下,带动吊舱进行运动。本发明基于人机交互测试控制设备发送的运动控制参数,运动模拟控制设备可以控制运动模拟反捻机构模拟临近浮空器在空中的各种复杂的运动状态,从而使得吊舱处于各种复杂的运动状态;在吊舱处于各种复杂的运动状态时对吊舱进行性能测试,可以得到吊舱处于各种复杂的运动状态时性能测试结果,这扩大了对吊舱的性能测试范围。
在上述实施例的基础上,下面结合一个具体的实施例对本发明提供的临近空间浮空器的吊舱性能测试系统进行进一步的介绍,结合图2-图5进行介绍,图2为本发明实施例提供的悬吊装置的示意图,图3为本发明实施例提供的运动模拟反捻机构的示意图,图4为本发明实施例提供的运动模拟控制设备的示意图,图5为本发明实施例提供的人机交互测试控制设备的示意图。
如图2所示,悬吊装置30采用龙门架结构301。龙门架结构301包括中间梁3011、侧梁3012以及底部支座3013三部分。其中,侧梁3012和底部支座3013呈梯形结构。
中间梁3011底部设置有至少一个第一通孔3014,用于挂载运动模拟反捻机构。
如图3所示,运动模拟反捻机构40包括长轴套401、法兰支座402、销轴403、轴承404、轴承座405、电机底座406、伺服电机407、箱体408、吊环螺钉409。
法兰支座402包括顶环4021和底环4022,顶环和底环设有同轴心的第二通孔4024,长轴套401的第一端设置于第二通孔4024中。顶环4021上设有多个第三通孔4025螺栓穿过第一通孔3014和第三通孔4025与螺母配合,用于将龙门架结构301与法兰支座402固定 在一起。
销轴403穿过底环4022和长轴套401。
长轴套401的第二端外侧套有轴承404,轴承404外侧套有轴承座405。
长轴套401的第二端的末端与伺服电机407通过螺丝连接。
电机底座406设置于伺服电机407的下端,电机底座406的上端与轴承座405通过螺丝连接。
箱体408设置在轴承座405和电机底座406的外围,箱体408的下端通过螺钉固定于电机底座406上。
吊环螺钉409固定在电机底座406上,用于与连接体50连接。
如图4所示,运动模拟控制设备10包括:电源101、电源板102、变压器103、稳压器104、反捻控制器105、电源接口106、第一接口信号处理单元107以及第二接口信号处理单元108。
电源101分别与变压器103和电源板102连接,变压器103依次与稳压器104和电源接口106连接,电源板102与反捻控制器105连接,反捻控制器105分别与第一接口信号处理单元107和第二接口信号处理单元108连接;
电源接口106与运动模拟反捻机构40之间通过线缆电连接,以实现运动模拟控制设备10通过电源接口106向运动模拟反捻机构40供电。
第一接口信号处理单元107与人机交互测试控制设备20之间通过线缆电连接,以实现运动模拟控制设备10通过第一接口信号处理单元107接收来自人机交互测试控制设备20发送的运动控制参数。
可选地,运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率;其中,运动模式包括匀速运动、三角运动、正向运动以及随机运动。运动状态参数和运动模式可以根据具体需求进行设置,对此不作限制。
因此,运动模拟控制设备可以根据运动控制参数,生成各种不同的运动控制信号,以控制运动模拟反捻机构以不同的运动模式、不同的角速度、角加速度、运动周期以及频率进行运动。
第二接口信号处理单元108与运动模拟反捻机构40之间通过线缆电连接,以实现运动模拟控制设备10通过第二接口信号处理单元108对运动模拟反捻机构40进行运动控制。
如图5所示,人机交互测试控制设备20包括控制模块201和显示模块202。
控制模块201,用于接收用户输入的运动控制参数,将运动控制参数发送至第一接口信号处理单元107,以及接收运动模拟反捻机构40发送的运动状态信息和吊舱60发送的性能状态信息。
显示模块202,用于显示运动模拟反捻机构40在运动状态为运动状态信息的情况下吊舱60的性能状态信息。
本发明提供的临近空间浮空器的吊舱性能测试系统,通过运动模拟反捻机构向人机交互测试控制设备返回运动状态信息,人机交互测试控制设备得到了运动模拟反捻机构的实际运动状态,而并不是运动控制参数对应的运动状态。将向临近空间浮空器的吊舱性能测试系统,输入运动控制参数和性能测试参数的情况下得到的性能状态信息,将此性能状态参数对应的运动状态确定为运动状态信息,这提高了性能测试的准确性。
下面结合图6-图7描述本发明提供的临近空间浮空器的吊舱性能测试方法。
图6为本发明提供的临近空间浮空器的吊舱性能测试方法的流程示意图之一,如图6所示,该方法包括:
步骤610、人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数。
需要的说明的是,在用户进行吊舱性能测试时,需要在人机交互 测试控制设备中输入运动控制参数和性能测试参数。其中,运动控制参数用于以使运动模拟控制设备根据运动控制参数对运动模拟反捻机构进行控制转动。
其中,性能测试参数为所要测试吊舱性能所对应的测试参数。
步骤620、人机交互测试控制设备,向运动模拟控制设备发送运动控制参数,以及向吊舱发送性能测试参数。
可选地,人机交互测试控制设备将运动控制参数发送至运动模拟控制设备的第一接口信号处理单元,以及向吊舱发送性能测试参数。
步骤630、运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动。
基于上述步骤620,运动模拟控制设备通过第一接口信号处理单元接收到来自人机交互测试控制设备发送的运动控制参数,接下来,运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动。
可选地,图7为本发明提供的临近空间浮空器的吊舱性能测试方法的流程示意图之二,如图7所示,步骤630的实现方式可以包括步骤710-步骤720,其中:
步骤710、运动模拟控制设备根据运动控制参数,生成运动控制信号。
可选地运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率。其中,运动模式包括匀速运动、三角运动、正向运动以及随机运动。因此,运动模拟控制设备可以根据运动控制参数,生成各种不同的运动控制信号,以控制运动模拟反捻机构以不同的运动模式、不同的角速度、角加速度、运动周期以及频率进行运动。
步骤720、运动模拟控制设备向运动模拟反捻机构发送运动控制信号,控制运动模拟反捻机构进行转动。
可选地,运动模拟控制设备通过第二接口信号处理单元向运动模拟反捻机构发送运动控制信号,以使运动模拟反捻机构在接收到运动控制信号进行转动。
步骤640、人机交互测试控制设备接收运动模拟反捻机构返回的运动状态信息。
需要说明的是,运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动。由于各种原因或干扰,运动模拟反捻机构的实际运动状态与运动控制参数对应的运动状态不一致。因此,为得到运动模拟反捻机构的实际运动状态,运动模拟反捻机构向人机交互测试控制设备返回其运动状态信息。
步骤650、人机交互测试控制设备接收吊舱返回的性能状态信息。
基于上述步骤620,人机交互测试控制设备向吊舱发送性能测试参数后,吊舱根据性能测试参数进行性能测试,性能测试结束后得到性能状态信息并将该性能状态信息发送给人机交互测试控制设备。
人机交互测试控制设备接收吊舱返回的性能状态信息。
步骤660、人机交互测试控制设备显示运动状态信息及性能状态信息。
基于上述步骤,人机交互测试控制设备接收到运动状态信息及性能状态信息,通过人机交互测试控制设备的显示模块对性能测试结果进行显示。
可选地,显示模块显示运动状态信息及性能状态信息。
本发明提供的临近空间浮空器的吊舱性能测试方法,人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;人机交互测试控制设备,向运动模拟控制设备发送运动控制参数,以及向吊舱发送性能测试参数;运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动;人机交互测试控制设备接收运动模拟反捻机构返回的运动状态信息;人机交互测试控制设备接收吊舱返回的性能 状态信息;人机交互测试控制设备显示运动状态信息及性能状态信息。本发明基于人机交互测试控制设备发送的运动控制参数,运动模拟控制设备可以控制运动模拟反捻机构模拟临近浮空器在空中的各种复杂的运动状态,从而使得吊舱处于各种复杂的运动状态;在吊舱处于各种复杂的运动状态时对吊舱进行性能测试,可以得到吊舱处于各种复杂的运动状态时性能测试结果,这扩大了对吊舱的性能测试范围。
可选地,本发明提供一种电子设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述临近空间浮空器的吊舱性能测试方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图8为本发明提供的电子设备的实体结构示意图,如图8所示,该电子设备800可以包括:处理器(processor)810、通信接口(Communications Interface)820、存储器(memory)830和通信总线840,其中,处理器810,通信接口820,存储器830通过通信总线840完成相互间的通信。处理器810可以调用存储器830中的逻辑指令,以执行临近空间浮空器的吊舱性能测试方法,该方法包括:人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;人机交互测试控制设备,向运动模拟控制设备发送运动控制参数,以及向吊舱发送性能测试参数;运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动;人机交互测试控制设备接收运动模拟反捻机构返回的运动状态信息;人机交互测试控制设备接收吊舱返回的性能状态信息;人机交互测试控制设备显示运动状态信息及性能状态信息。
此外,上述的存储器830中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若 干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的临近空间浮空器的吊舱性能测试方法,该方法包括:人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;人机交互测试控制设备,向运动模拟控制设备发送运动控制参数,以及向吊舱发送性能测试参数;运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动;人机交互测试控制设备接收运动模拟反捻机构返回的运动状态信息;人机交互测试控制设备接收吊舱返回的性能状态信息;人机交互测试控制设备显示运动状态信息及性能状态信息。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的临近空间浮空器的吊舱性能测试方法,该方法包括:人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;人机交互测试控制设备,向运动模拟控制设备发送运动控制参数,以及向吊舱发送性能测试参数;运动模拟控制设备根据运动控制参数,控制运动模拟反捻机构进行转动;人机交互测试控制设备接收运动模拟反捻机构返回的运动状态信息;人机交互测试控制设备接收吊舱返回的性能状态信息;人机交互测试控制设备显示运动状态信息及性能状态信息。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部 件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种临近空间浮空器的吊舱性能测试系统,其特征在于,包括:
    人机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构;其中:
    所述悬吊装置,用于挂载所述运动模拟反捻机构;
    所述人机交互测试控制设备,分别和所述运动模拟控制设备、所述运动模拟反捻机构及临近空间浮空器的吊舱电连接,用于:接收用户输入的运动控制参数;向所述运动模拟控制设备发送所述运动控制参数以及向所述吊舱发送性能测试参数;接收所述运动模拟反捻机构返回的运动状态信息;接收所述吊舱返回的性能状态信息;显示所述运动状态信息及所述性能状态信息;
    所述运动模拟控制设备,与所述运动模拟反捻机构电连接,用于接收所述人机交互测试控制设备发送的所述运动控制参数,及基于所述运动控制参数,对所述运动模拟反捻机构进行运动控制;
    所述运动模拟反捻机构,通过连接件与所述吊舱连接,用于在所述运动模拟控制设备的控制下,带动所述吊舱进行运动。
  2. 根据权利要求1所述的临近空间浮空器的吊舱性能测试系统,其特征在于,所述悬吊装置采用龙门架结构,所述龙门架结构包括中间梁、侧梁以及底部支座三部分;其中,所述侧梁和所述底部支座呈梯形结构;
    所述中间梁底部设置有至少一个第一通孔,用于挂载所述运动模拟反捻机构。
  3. 根据权利要求2所述的临近空间浮空器的吊舱性能测试系统,其特征在于,所述运动模拟反捻机构包括长轴套、法兰支座、销轴、轴承、轴承座、电机底座、伺服电机、箱体、吊环螺钉;
    所述法兰支座包括顶环和底环,所述顶环和所述底环设有同轴心 的第二通孔,所述长轴套的第一端设置于所述第二通孔中;所述顶环上设有多个第三通孔螺栓穿过所述第一通孔和所述第三通孔与螺母配合,用于将所述龙门架与所述法兰支座固定在一起;
    所述销轴穿过所述底环和所述长轴套;
    所述长轴套的第二端外侧套有所述轴承,所述轴承外侧套有所述轴承座;
    所述长轴套的第二端的末端与所伺服电机通过螺丝连接;
    所述电机底座设置于所述伺服电机的下端,所述电机底座的上端与所述轴承座通过螺丝连接;
    所述箱体设置在所述轴承座和所述电机底座的外围,所述箱体的下端通过螺钉固定于所述电机底座上。
  4. 根据权利要求3所述的临近空间浮空器的吊舱性能测试系统,其特征在于,所述运动模拟控制设备包括:电源、电源板、变压器、稳压器、反捻控制器、电源接口、第一接口信号处理单元以及第二接口信号处理单元;
    所述电源分别与所述变压器和所述电源板连接,所述变压器依次与所述稳压器和所述电源接口连接,所述电源板与所述反捻控制器连接,所述反捻控制器分别与所述第一接口信号处理单元和所述第二接口信号处理单元连接;
    所述电源接口,与所述运动模拟反捻机构之间通过线缆电连接,用于向所述运动模拟反捻机构供电;
    所述第一接口信号处理单元,与所述人机交互测试控制设备之间通过线缆电连接,用于接收所述人机交互测试控制设备发送的运动控制参数;
    所述第二接口信号处理单元,与所述运动模拟反捻机构之间通过线缆电连接,用于对所述运动模拟反捻机构进行运动控制。
  5. 根据权利要求4所述的临近空间浮空器的吊舱性能测试系统, 其特征在于,所述人机交互测试控制设备包括控制模块和显示模块;
    所述控制模块用于:接收用户输入的运动控制参数,将所述运动控制参数发送至所述第一接口信号处理单元,以及接收所述运动模拟反捻机构发送的运动状态信息和所述吊舱发送的性能状态信息;
    所述显示模块用于显示所述运动状态信息和所述性能状态信息。
  6. 根据权利要求1所述的临近空间浮空器的吊舱性能测试系统,其特征在于,所述运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率;其中,所述运动模式包括匀速运动、三角运动、正向运动以及随机运动。
  7. 根据权利要求1所述的临近空间浮空器的吊舱性能测试系统,其特征在于,所述连接体为结缆。
  8. 一种临近空间浮空器的吊舱性能测试方法,应用于临近空间浮空器的吊舱性能测试系统,所述临近空间浮空器的吊舱性能测试系统包括人机交互测试控制设备、运动模拟控制设备、悬吊装置以及运动模拟反捻机构,所述方法包括:
    所述人机交互测试控制设备接收用户输入的运动控制参数和性能测试参数;
    所述人机交互测试控制设备,向所述运动模拟控制设备发送所述运动控制参数,以及向所述吊舱发送性能测试参数;
    所述运动模拟控制设备根据所述运动控制参数,控制所述运动模拟反捻机构进行转动;
    所述人机交互测试控制设备接收所述运动模拟反捻机构返回的运动状态信息;
    所述人机交互测试控制设备接收所述吊舱返回的性能状态信息;
    所述人机交互测试控制设备显示所述运动状态信息及所述性能状态信息。
  9. 根据权利要求8所述的临近空间浮空器的吊舱性能测试方法, 其特征在于,所述运动模拟控制设备根据所述运动控制参数,控制所述运动模拟反捻机构进行转动,包括:
    所述运动模拟控制设备根据所述运动控制参数,生成运动控制信号;
    所述运动模拟控制设备向所述运动模拟反捻机构发送所述运动控制信号,控制所述运动模拟反捻机构进行转动。
  10. 根据权利要求8所述的临近空间浮空器的吊舱性能测试方法,其特征在于,所述运动状态参数包括以下至少一种:运动模式、角速度、角加速度、运动周期以及频率;其中,所述运动模式包括匀速运动、三角运动、正向运动以及随机运动。
PCT/CN2022/131040 2021-11-30 2022-11-10 临近空间浮空器的吊舱性能测试系统及方法 WO2023098442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111442002.2A CN114368492A (zh) 2021-11-30 2021-11-30 临近空间浮空器的吊舱性能测试系统及方法
CN202111442002.2 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098442A1 true WO2023098442A1 (zh) 2023-06-08

Family

ID=81139510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131040 WO2023098442A1 (zh) 2021-11-30 2022-11-10 临近空间浮空器的吊舱性能测试系统及方法

Country Status (2)

Country Link
CN (1) CN114368492A (zh)
WO (1) WO2023098442A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368492A (zh) * 2021-11-30 2022-04-19 中国科学院空天信息创新研究院 临近空间浮空器的吊舱性能测试系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2539985Y (zh) * 2001-12-31 2003-03-12 中国科学院紫金山天文台 定向姿态控制吊蓝
US20140191893A1 (en) * 2012-04-25 2014-07-10 Raven Industries, Inc. System and method for wide-area stratospheric surveillance
CN106124147A (zh) * 2016-07-14 2016-11-16 天津航天中为数据系统科技有限公司 一种吊舱稳定精度的检测方法及系统
CN112650193A (zh) * 2020-12-04 2021-04-13 北京电子工程总体研究所 一种两体动力学模型试验验证方法
CN112729342A (zh) * 2020-12-29 2021-04-30 中国科学院力学研究所广东空天科技研究院 一种临近空间垂直投放发射机载导航系统地面试验装置
CN113483978A (zh) * 2021-07-30 2021-10-08 北京奥航坤宇科技有限公司 一种飞行器模态试验自由边界模拟单元及模拟系统
CN114368492A (zh) * 2021-11-30 2022-04-19 中国科学院空天信息创新研究院 临近空间浮空器的吊舱性能测试系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2539985Y (zh) * 2001-12-31 2003-03-12 中国科学院紫金山天文台 定向姿态控制吊蓝
US20140191893A1 (en) * 2012-04-25 2014-07-10 Raven Industries, Inc. System and method for wide-area stratospheric surveillance
CN106124147A (zh) * 2016-07-14 2016-11-16 天津航天中为数据系统科技有限公司 一种吊舱稳定精度的检测方法及系统
CN112650193A (zh) * 2020-12-04 2021-04-13 北京电子工程总体研究所 一种两体动力学模型试验验证方法
CN112729342A (zh) * 2020-12-29 2021-04-30 中国科学院力学研究所广东空天科技研究院 一种临近空间垂直投放发射机载导航系统地面试验装置
CN113483978A (zh) * 2021-07-30 2021-10-08 北京奥航坤宇科技有限公司 一种飞行器模态试验自由边界模拟单元及模拟系统
CN114368492A (zh) * 2021-11-30 2022-04-19 中国科学院空天信息创新研究院 临近空间浮空器的吊舱性能测试系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, DAWEI ET AL.: "A Simplified Design of Decoupling Control System in Balloon Gondola", AEROSPACE CONTROL, vol. 34, no. 4, 15 August 2016 (2016-08-15), XP009546827, ISSN: 1006-3242 *

Also Published As

Publication number Publication date
CN114368492A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023098442A1 (zh) 临近空间浮空器的吊舱性能测试系统及方法
CN102566441A (zh) 用于无人机的可视仿真试验系统
CN111694376B (zh) 飞行模拟方法、装置、电子设备及无人机
CA2960525C (en) Motion and vibration cuing system
CN109559590B (zh) 飞行模拟器及其使用方法
US3083473A (en) Space flight environmental simulator
CN103794103A (zh) 一种便携式两通道港口起重机模拟器构建方法
CA2963255C (en) Troubleshooting a model defining a dynamic behavior of a simulated interactive object
KR20160024201A (ko) 앰블런스 시뮬레이터 구동을 위한 6축 액추에이터 제어를 위한 프로토콜
CN106768771A (zh) 一种振动试验装置
KR20100007060A (ko) 교관석 운영 시스템
CN106896738A (zh) 一种多维度四旋翼飞行器姿态控制仿真实验平台
US20220335175A1 (en) Efficient creation of computer-generated force (cgf) entities using frequency response matrices
US20170193840A1 (en) Sound Generator for Virtual Switches in a Simulator
CN212484651U (zh) 教练机飞行模拟训练系统
CN117492383A (zh) 一种基于半实物仿真的无人机自动化测试系统及方法
CN214824253U (zh) 一种用于多旋翼飞行器动态姿态测试调参的被动式操作台
CN206583592U (zh) 一种振动试验装置
CN213844443U (zh) 飞行模拟器
CN112201115A (zh) 飞行模拟器
WO2012083409A1 (en) Simulator with lift-in drop-out cockpit module
CN113486438A (zh) 失速尾旋实时飞行仿真建模及失速尾旋飞行模拟方法
CN108550294B (zh) 模拟星球登陆的教学方法以及装置
Ji et al. Wire-driven parallel robot suspension system for SDM in a low-speed wind tunnel
Martínez et al. Attitude control research with educational nanosatellites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900247

Country of ref document: EP

Kind code of ref document: A1