WO2023098367A1 - 网桥端到端的确定性转发方法、网桥发送端及接收端 - Google Patents

网桥端到端的确定性转发方法、网桥发送端及接收端 Download PDF

Info

Publication number
WO2023098367A1
WO2023098367A1 PCT/CN2022/128459 CN2022128459W WO2023098367A1 WO 2023098367 A1 WO2023098367 A1 WO 2023098367A1 CN 2022128459 W CN2022128459 W CN 2022128459W WO 2023098367 A1 WO2023098367 A1 WO 2023098367A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
message
time
receiving
network bridge
Prior art date
Application number
PCT/CN2022/128459
Other languages
English (en)
French (fr)
Inventor
王龙彪
杜相文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023098367A1 publication Critical patent/WO2023098367A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the embodiment of the present application relates to the field of communication transmission, and in particular to an end-to-end deterministic forwarding method of a network bridge, a sending end and a receiving end of the network bridge.
  • 5G network As a new generation of mobile communication system, the large bandwidth, high reliability, and low latency of 5G network have a wide range of application scenarios on the industrial Internet. Differentiated network customization capabilities can meet a variety of business needs. 5G network has a wide range of application scenarios, but it also faces unprecedented challenges. For example, scenarios such as industrial control and autonomous driving have strict requirements on network latency, jitter, and packet loss; this deterministic transmission requirement is difficult to achieve in current mobile networks, because traditional networks use a best-effort forwarding model, It is difficult to guarantee the delay and jitter under the worst state.
  • TSN Time Sensitive Network
  • IEEE802.1 task group a set of data link layer protocol specifications developed by the IEEE802.1 task group, with the purpose of building a more reliable, low-latency, and low-jitter Ethernet.
  • TSN can provide microsecond-level deterministic services to ensure the real-time requirements of various industries. Relying on 5G wireless access and the deterministic delay provided by TSN, 5G TSN technology can meet various indicators of deterministic communication in wireless network transmission, and is an important basis for realizing wireless industrial Internet and flexible manufacturing in the future.
  • TSN integrates the 5G system as a network bridge in the TSN system, and the TSN network and the 5G network communicate through the TSN converter function.
  • TSN converters include DS-TT (Device Side TSN Translator, device side TSN converter) and NW-TT (Network Side TSN Translator, network side TSN converter); DS-TT is located on the terminal side, and NW-TT is located on the network side , the message can enter the 5G bridge from DS-TT or NW-TT, such as the TSN logical bridge shown in the figure.
  • AMF Access and Mobility Management Function
  • SMF Session Management function
  • policy control function UPF
  • UPF The User plane function, user plane function
  • AF Application function application function
  • UE User Equipment, user equipment.
  • the TSN System module on the left side of the figure includes equipment that users hang on both ends of the bridge, such as power grid equipment, detection instruments, etc., which can be regarded as consumers of the TSN system.
  • the entire 5G network includes terminals, wireless networks, bearer networks, and core networks. There are many links for packets to pass through. Even in the case of RAN (Radio Access Network, radio access network) deterministic scheduling, packets may still have jitter and occasional disorder. sequence etc.
  • the purpose of the embodiments of the present application is to provide an end-to-end deterministic forwarding method of the bridge, the sending end and the receiving end of the bridge, so as to avoid jitter, occasional out-of-order or packet loss during message transmission.
  • the embodiment of the present application provides an end-to-end deterministic forwarding method of the bridge, which is applied to the sending end of the bridge, including the following steps: receiving the message transmitted by the receiving end of the bridge, and buffering the message ; Among them, the message carries the receiving time stamp of the message received by the bridge receiver from the time-sensitive network TSN system; according to the receiving time stamp, it is determined that the actual residence time of the cached message in the bridge reaches the set bridge In the case of a fixed residence time, send the buffered message; wherein, the fixed residence time of the bridge is less than the first preset time threshold and the proportion of the time-out message is less than the preset proportion threshold, and the time-out message is in the network bridge Packets whose actual dwell time is greater than the fixed dwell time of the bridge.
  • the embodiment of the present application also provides an end-to-end deterministic forwarding method of the bridge, which is applied to the receiving end of the bridge, including: receiving the message from the time-sensitive network TSN system, and recording the receiving time of the message; sending the message to the bridge The sending end transmits the message; wherein, the message carries a receiving time stamp indicating the receiving time, which is used for the sending end of the bridge to determine that the actual residence time of the message in the bridge reaches the set bridge fixed time according to the receiving time stamp.
  • the fixed dwell time of the bridge when sending a message, is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold, and the overtime packets are the actual residency in the bridge Packets with a time greater than the fixed dwell time of the bridge.
  • the embodiment of the present application also provides a sending end of the network bridge, including: a receiving module, configured to receive the message transmitted by the receiving end of the bridge; The receiving time stamp of the text; the cache module is used to cache the message; the sending module is used to determine that the actual residence time of the cached message in the bridge reaches the set fixed residence time of the bridge according to the receiving time stamp In this case, the buffered message is sent; wherein, the fixed residence time of the bridge is less than the first preset time threshold and the proportion of the time-out message is less than the preset proportion threshold, and the time-out message is the actual resident time in the bridge Packets with a time greater than the fixed dwell time of the bridge.
  • the embodiment of the present application also provides a bridge receiving end, including: a receiving module, used to receive a message from the time-sensitive network TSN system, and record the receiving time of the message; a sending module, used to send the message to the bridge sending end Transmission message; among them, the message carries the receiving time stamp indicating the receiving time, which is used for the sending end of the bridge to determine that the actual residence time of the message in the bridge reaches the set bridge fixed residence time according to the receiving time stamp
  • the fixed residence time of the bridge is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold.
  • the timeout message means that the actual residence time in the bridge is greater than Packets with a fixed dwell time on the bridge.
  • the embodiment of the present application also provides an electronic device, at least one processor; and a memory connected in communication with the at least one processor; wherein, the memory stores instructions executable by the at least one processor , the instructions are executed by the at least one processor, so that the at least one processor can execute the above-mentioned bridge end-to-end deterministic forwarding method applied to the bridge sending end, or execute the above-mentioned network bridge end-to-end deterministic forwarding method applied to the bridge receiving end Bridge end-to-end deterministic forwarding method.
  • Embodiments of the present application also provide a computer-readable storage medium, including: when the computer program is executed by a processor, the above-mentioned end-to-end deterministic forwarding method applied to the bridge sending end is implemented, or the above-mentioned application Bridge end-to-end deterministic forwarding method for the bridge receiver.
  • the bridge sending end receives the message transmitted by the bridge receiving end, which carries the receiving time stamp of the message received by the bridge receiving end from the time-sensitive network TSN system, which can be used to determine the actual residence time; by The relationship between the actual residence time of the message and the fixed residence time of the bridge solves the problem of message jitter and out-of-sequence, and finally reduces the message transmission delay under the premise of ensuring the deterministic forwarding of the message.
  • Fig. 1 is a schematic diagram of background technology
  • FIG. 2 is a flow chart of an end-to-end deterministic forwarding method provided by a bridge according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an end-to-end deterministic forwarding method provided by a bridge according to an embodiment of the present application
  • FIG. 4 is a flowchart of an end-to-end deterministic forwarding method provided by a bridge according to another embodiment of the present application
  • FIG. 5 is a schematic diagram of a bridge sending end provided according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a bridge receiving end provided according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an electronic device provided according to an embodiment of the present application.
  • first and second in the embodiments of the present application are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion. For example, a system, product or equipment comprising a series of components or units is not limited to the listed components or units, but optionally also includes components or units not listed, or optionally also includes the components or units for these products or Other parts or units inherent in equipment.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the TSN network regards the entire 5G system as a logical bridge, and the entire 5G network includes terminals, radio, bearer network and core network; since the base station may be interfered by the wireless environment, and the 5G core network may also be affected Deployment scheme, scale, etc. may cause packet jitter, occasional out-of-sequence, or packet loss.
  • An embodiment of the present application relates to an end-to-end deterministic forwarding method of a bridge, which is applied to a sending end of a bridge. The specific process is shown in Figure 2.
  • Step 101 receiving the message transmitted by the receiving end of the bridge, and buffering the message; wherein, the message carries the receiving timestamp of the message received by the receiving end of the bridge from the time-sensitive network TSN system;
  • Step 102 in the case of determining that the actual residence time of the cached message in the bridge reaches the set fixed residence time of the bridge according to the received timestamp, sending the cached message; wherein, the fixed residence time of the bridge is It is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold, and the overtime packets are packets whose actual residence time in the network bridge is greater than the fixed residence time of the network bridge.
  • the bridge sending end receives the message transmitted by the bridge receiving end, which carries the receiving timestamp of the message received by the bridge receiving end from the time-sensitive network TSN system, which can be used to determine the actual residence time;
  • the relationship between the actual residence time of the message and the fixed residence time of the bridge solves the problem of packet jitter and out-of-sequence, and finally, on the premise of ensuring the deterministic forwarding of the message, it can also reduce the transmission delay of the message.
  • step 101 the message transmitted by the receiving end of the bridge is received, and the message is buffered; wherein, the message carries the receiving time stamp of the message received by the receiving end of the bridge from the TSN system. That is, receiving the message obtained by the receiving end of the bridge, including the time information when the receiving end of the bridge receives the message from the TSN system.
  • clock synchronization is a prerequisite for deterministic forwarding of the TSN network, and the bridge sender and bridge receiver need to implement clock synchronization.
  • the delay of the message in the bridge is calculated based on the time stamp difference between the egress and ingress of the message on the bridge, and it is judged whether the residence time in the bridge is reached.
  • the premise is that the DS-TT Realize clock synchronization with NW-TT.
  • the receiving end of the bridge before receiving the message transmitted by the receiving end of the bridge, it also includes: setting the fixed dwell time of the bridge to an initial value, and the initial value is less than the second preset time threshold; wherein, the second preset time threshold Less than the first preset time threshold; count the proportion of overtime packets in a sampling period; when the statistical proportion is greater than the preset proportion threshold, adjust the fixed dwell time of the bridge, and the adjusted bridge is fixed
  • the dwell time is an integer multiple of the sending gating period and less than the first preset time threshold; repeat the statistics of the proportion of overtime packets in a sampling period and the adjustment of the fixed dwell time of the bridge until the proportion of overtime packets
  • the ratio is smaller than the preset proportion threshold; according to the last adjusted fixed dwell time of the bridge, the set fixed dwell time of the bridge is obtained.
  • this stage can be regarded as obtaining a suitable bridge residence time.
  • the bridge residence time can also be obtained through manual configuration or fixed measurement methods, but the obtained value Generally, it is not ideal. If the value is too large, the transmission delay will increase, and if the value is too small, the packet jitter frequency will increase.
  • the number of packets arriving overtime is defined as N over-time
  • the number of packets arriving ahead of time can be defined as N pre-arrive
  • the dwell time is used to absorb jitter.
  • the packet transmission delay is 3 to 5s
  • the jitter is the packet transmission delay, which may be any value in the range of 3 to 5s
  • the actual delay of the message is 3s, 4s or 5s, all of which are sent after meeting the sending gating period of 10s, that is, the sending delay of the message is unified and the jitter is absorbed.
  • the sending gating period is used to process different data streams. When there are multiple data streams to be sent at the same time, it controls the data streams allowed to be sent in the current time period.
  • obtaining the set fixed residence time of the network bridge according to the last adjusted fixed residence time of the network bridge includes: sending the last adjusted fixed residence time of the network bridge to the application function entity in the network bridge , for the application functional entity to determine the bridge fixed dwell time applicable to both the upstream data flow and the downstream data flow according to the bridge fixed dwell time sent by the bridge sending end and the bridge fixed dwell time sent by the bridge receiving end; All applicable bridge fixed dwell times issued by the application function entity are received as the set bridge fixed dwell time. That is, the T keep-time can be configured on an AF (Application Function, application function) entity, and the AF sends the T keep-time to both ends of the 5G network bridge respectively.
  • AF Application Function, application function
  • the uplink data flow is learned on the NW-TT, while the downlink data flow is learned on the DS-TT, and the final T keep-time must take the maximum value of the two. Because the upstream data flow and the downstream data flow are generally symmetrical, that is, the T keep-time is the same, if the maximum value of the two is not taken, there will be one side that cannot achieve the adjusted jitter absorption effect due to the short delay, so generally take the two medium maximum.
  • the receiving end of the bridge after receiving the message transmitted by the receiving end of the bridge, it also includes: performing deduplication processing on the received message according to the receiving time stamp of the received message; buffering the message, including: buffering deduplication processed message. That is, the message passes through the transmission end of the bridge to the sending end of the bridge, and after receiving the message, the sending end of the bridge deduplicates and caches the message according to the timestamp in the message.
  • the bridge sender receives the TSN service message, it decapsulates the message, obtains the receiving time stamp T in when the message enters the network bridge, and then searches the bridge according to the time stamp
  • the buffer at the sending end checks to see if there is a packet with the same timestamp. If it exists, it considers the current packet as a duplicate packet and discards it directly; otherwise, it stores the current packet in the buffer.
  • step 102 when it is determined that the actual residence time of the buffered message in the network bridge reaches the set fixed residence time of the network bridge according to the received timestamp, the cached message is sent;
  • the retention time is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold, and the overtime packets are packets whose actual residence time in the bridge is greater than the fixed residence time of the bridge. That is, the fixed residence time of the network bridge must be less than the first preset time threshold, and the proportion of overtime packets selected according to the fixed residence time of the network bridge must be less than the preset proportion threshold.
  • sending the buffered message includes: If it is detected that the actual residence time of the cached message in the bridge is less than the fixed residence time of the bridge, and the difference between the fixed residence time of the bridge and the fixed residence time of the bridge is less than the sending gating period, the cached message will be Move into the sending area, and the messages in the sending area are sent according to the sending gating period. That is, the sending end of the bridge scans the buffer area cyclically, and judges whether the message reaches the bridge residence time according to the timestamp. If it reaches the time, the message will be transferred to the sending state and moved into the sending area, and the message will be sent when the gate control arrives.
  • the sending end of the bridge obtains the current time T current , circularly scans the buffer area, and compares the current time with the received time stamp T in of the message in the buffer area, for example (T current -T in ) ⁇ T keep-time and (T current -T in )>(T keep-time -1/m*TimeInterval), that is, when the difference with the fixed dwell time of the bridge is less than the sending gating period, the message enters the waiting state and moves into the sending area , sent when the gate is opened.
  • TimeInterval is the message sending gating period, in order to eliminate the error, the window for extracting the message from the buffer area is shifted to the left by 1/m sending gating period, and m is a positive number greater than 1.
  • the transmission reliability of the message is improved through the duplication and elimination mechanism; the fixed survival time of the message in the network bridge is used to solve the problem of message jitter and disorder.
  • Adaptive learning to solve the problem of increased transmission delay caused by a large value and increased message jitter probability caused by a small value, and finally reduce the message transmission delay as much as possible on the premise of ensuring the deterministic forwarding of the message.
  • a method is provided to ensure end-to-end deterministic forwarding of a bridge, which can be a 5G bridge, and will effectively solve the problems of jitter, out-of-order or packet loss when TSN packets are transmitted in the bridge.
  • An embodiment of the present application relates to an end-to-end deterministic forwarding method of a network bridge, which is applied to the receiving end of the network bridge, as shown in FIG. 4 , including:
  • Step 201 receiving a message from the time-sensitive network TSN system, and recording the receiving time of the message;
  • Step 202 transmit the message to the sending end of the bridge; wherein, the message carries a receiving time stamp indicating the receiving time, which is used for the sending end of the bridge to determine the actual residence time of the message in the bridge according to the receiving time stamp
  • the message is sent.
  • the fixed residence time of the bridge is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold.
  • the timeout packets are on the network. Packets whose actual dwell time in the bridge is greater than the fixed dwell time of the bridge.
  • transmitting the message to the bridge sender includes: copying n copies of the message, where n is a natural number greater than 0; Indicates the receiving time stamp of the receiving moment, and n is dynamically adjusted according to the congestion situation of the wireless network. That is, the message enters the 5G bridge from the receiving end. After receiving the message, the receiving end adds a packet receiving timestamp to the TSN message, and then copies the message in n copies and sends it.
  • the message enters the 5G bridge from the receiving end.
  • the current timestamp T in is recorded.
  • the message is stamped with a time stamp T in to improve transmission reliability.
  • the message can be copied and sent in n copies, and the copied messages have the same time stamp T in .
  • the value of n is too large, it will bring a burden to the network and cause network congestion; the value of n can be dynamically adjusted under the premise of meeting the packet loss rate according to the congestion situation fed back by the wireless network.
  • clock synchronization is a prerequisite for realizing deterministic forwarding of a TSN network, and the bridge receiving end and the bridge sending end need to realize clock synchronization;
  • the message enters the bridge from the bridge receiver, and the bridge receiver adds a packet receiving timestamp to the TSN message after receiving the message , and then copy the message to n copies (n is greater than or equal to 0), and the value of n can be adjusted adaptively according to the network congestion;
  • the time stamp in the message deduplicates and caches the message;
  • the sending end of the bridge scans the buffer area cyclically, and judges whether the message reaches the bridge residence time according to the time stamp. If it does, the message is transferred to the sending state. Move into the sending area, and send the message when the gate control is reached.
  • the bridge receiving end transmits a message to the bridge sending end, which carries the receiving time stamp of the message received by the bridge receiving end from the time-sensitive network TSN system, which can be used to determine the actual residence time;
  • the relationship between the actual residence time of the message and the fixed residence time of the bridge solves the problem of packet jitter and out-of-sequence, and finally, on the premise of ensuring the deterministic forwarding of the message, it can also reduce the transmission delay of the message.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • An embodiment of the present application relates to a bridge sending end, as shown in FIG. 5 , including:
  • the receiving module 301 is configured to receive the message transmitted by the receiving end of the bridge; wherein, the message carries the receiving timestamp of the message received by the receiving end of the bridge from the time-sensitive network TSN system;
  • the sending module 303 is configured to send the cached message when the actual residence time of the cached message in the network bridge reaches the set fixed residence time of the network bridge according to the receiving timestamp; wherein, the network bridge is fixed
  • the residence time is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold, and the overtime packets are packets whose actual residence time in the bridge is greater than the fixed residence time of the bridge.
  • the receiving module 301 before receiving the message transmitted by the receiving end of the bridge, it also includes: setting the fixed dwell time of the bridge as an initial value, and the initial value is less than the second preset time threshold ; Wherein, the second preset time threshold is less than the first preset time threshold; counting the proportion of overtime packets within a sampling period; when the statistical proportion is greater than the preset proportion threshold
  • adjust the fixed dwell time of the network bridge, and the adjusted fixed dwell time of the bridge is an integer multiple of the sending gating period and is less than the first preset time threshold; repeat the statistics for one sampling The proportion of the overtime message in the cycle and the adjustment of the fixed dwell time of the bridge until the proportion of the overtime message is less than the preset proportion threshold; according to the fixed dwell time of the bridge adjusted last time , to obtain the set fixed dwell time of the network bridge.
  • the obtaining the set bridge fixed dwell time according to the last adjusted bridge fixed dwell time includes: sending the last adjusted bridge fixed dwell time For the application function entity in the network bridge, the supply application function entity determines the uplink data flow according to the fixed dwell time of the bridge sent by the sending end of the bridge and the fixed dwell time of the bridge sent by the receiving end of the bridge The bridge fixed dwell time applicable to both downlink data streams; receiving the bridge fixed dwell time applicable to both from the application function entity as the set bridge fixed dwell time.
  • the method further includes: performing deduplication processing on the received message according to the receiving time stamp of the received message.
  • caching the packets includes: caching the packets that have undergone the deduplication processing.
  • the sending The buffered message includes: after detecting that the actual residence time of the buffered message in the bridge is less than the fixed residence time of the bridge according to the receiving timestamp, and is consistent with the bridge When the difference between the fixed dwell times is less than the sending gating period, the buffered message is moved into the sending area, and the messages in the sending area are sent according to the sending gating period.
  • the buffered message is discarded.
  • the bridge sending end receives the message transmitted by the bridge receiving end, which carries the receiving time stamp of the message received by the bridge receiving end from the time-sensitive network TSN system, which can be used to determine the actual residence time; by The relationship between the actual residence time of the message and the fixed residence time of the bridge solves the problem of message jitter and out-of-sequence, and finally reduces the message transmission delay under the premise of ensuring the deterministic forwarding of the message.
  • this implementation manner is a system embodiment corresponding to the first implementation manner, and this implementation manner can be implemented in cooperation with the foregoing implementation manners.
  • the relevant technical details mentioned in the foregoing implementation manners are still valid in this implementation manner, and will not be repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this implementation manner may also be applied in the foregoing implementation manners.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problems proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • An embodiment of the present application relates to a bridge receiving end, as shown in FIG. 6 , including:
  • the receiving module 401 is configured to receive a message from the time-sensitive network TSN system, and record the receiving time of the message;
  • the sending module 402 is configured to transmit a message to the sending end of the bridge; wherein, the message carries a receiving timestamp indicating the receiving time, and is used for the sending end of the bridge to determine the actual time of the message in the bridge according to the receiving timestamp.
  • the resident time reaches the set fixed resident time of the bridge, the message is sent.
  • the fixed resident time of the bridge is less than the first preset time threshold and the proportion of overtime packets is less than the preset proportion threshold. It refers to the packets whose actual residence time in the bridge is greater than the fixed residence time of the bridge.
  • the transmitting the message to the sending end of the network bridge includes: copying n copies of the message, where n is a natural number greater than 0; transmitting the message to the sending end of the bridge
  • the n messages, wherein, the n messages all carry a receiving time stamp indicating the receiving time, and the n is dynamically adjusted according to the congestion situation of the wireless network.
  • the bridge receiving end transmits a message to the bridge sending end, which carries the receiving time stamp of the message received by the bridge receiving end from the time-sensitive network TSN system, which can be used to determine the actual residence time;
  • the relationship between the actual residence time of the message and the fixed residence time of the bridge solves the problem of packet jitter and out-of-sequence, and finally, on the premise of ensuring the deterministic forwarding of the message, it can also reduce the transmission delay of the message.
  • One embodiment of the present application relates to an electronic device, as shown in FIG. 7 , including at least one processor 501; and a memory 502 connected in communication with the at least one processor 501; Instructions executed by the at least one processor 501, the instructions are executed by the at least one processor 501, so that the at least one processor 501 can perform the above-mentioned bridge end-to-end determinism applied to the bridge sending end forwarding method, or implement a bridge-end-to-end deterministic forwarding method applied to the receiving end of the bridge.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • One embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例涉及通信传输领域,特别涉及网桥端到端的确定性转发方法、网桥发送端及接收端。该方法应用于网桥发送端,包括:接收网桥接收端传输的报文,并缓存报文;其中,报文携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳;在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文;其中,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。

Description

网桥端到端的确定性转发方法、网桥发送端及接收端
相关申请
本申请要求于2021年12月2日申请的、申请号为202111463117.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信传输领域,特别涉及网桥端到端的确定性转发方法、网桥发送端及接收端。
背景技术
作为新一代移动通信系统,5G网络的大带宽、高可靠、低时延,在工业互联网上有着广泛的应用场景,其不但可以满足工业互联网设备的灵活移动性,助力工厂柔性化生产;还具有差异化的网络定制能力,能够满足多种多样的业务需求。5G网络有着广泛的应用场景,但同时也面临前所未有的挑战。例如,工业控制和自动驾驶等场景对网络有着严格的时延、抖动、丢包要求;这种确定性传输要求在当前移动网络中难以实现,因为传统网络采用的是尽力而为的转发模型,难以保证最差状态下的时延和抖动。
TSN(Time Sensitive Network,时间敏感网络)是IEEE802.1任务组开发的一套数据链路层协议规范,目的是构建更可靠、低时延、低抖动的以太网。TSN能够提供微秒级确定性服务,保证各行业的实时性需求。依赖于5G的无线接入与TSN提供的确定性时延,5G TSN技术能够满足无线网络传输中的确定性通信的各类指标,是未来实现工业互联网无线化及柔性制造的重要基础。
如图1所示,TSN将5G系统作为一个网桥集成在TSN系统,TSN网络与5G网络之间通过TSN转换器功能进行互通。TSN转换器包括DS-TT(Device Side TSN Translator,设备侧TSN转换器)和NW-TT(Network Side TSN Translator,网络侧TSN转换器);其中DS-TT位于终端侧,NW-TT位于网络侧,报文可以从DS-TT或NW-TT进入5G网桥,如图示的TSN逻辑网桥。其中,AMF为Access and Mobility Management Function,接入和移动性管理功能,SMF为Session Management function,会话管理功能,PCF为Policy Control function,策略控制功能,UPF为The User plane function,用户面功能;AF为Application function,应用功能;UE为User Equipment,用户设备,图中左侧TSN System模块包括用户挂在网桥两端的设备,例如电网设备,检测的仪表等,可视为TSN系统的消费者。整个5G网络包括终端、无线、承载网和核心网,报文经过环节较多,即使在RAN(Radio Access Network,无线接入网)确定性调度的情况下,报文仍然可能存在抖动、偶发乱序等情况。
发明内容
本申请实施方式的目的在于提供一种网桥端到端的确定性转发方法、网桥发送端及接收端,避免报文传输过程中产生抖动、偶发乱序或丢包。
为解决上述技术问题,本申请的实施方式提供了一种网桥端到端的确定性转发方法,应用于网桥发送端,包括以下步骤:接收网桥接收端传输的报文,并缓存报文;其中,报文携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳;在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文;其中,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
本申请的实施方式还提供了一种网桥端到端的确定性转发方法,应用于网桥接收端,包括:从时间敏感网络TSN系统接收报文,并记录报文的接收时刻;向网桥发送端传输报文;其中,报文携带指示接收时刻的接收时间戳,用于供网桥发送端在根据接收时间戳,确定报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送报文,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
本申请的实施方式还提供了一种网桥发送端,包括:接收模块,用于接收网桥接收端传输的报文;其中,报文携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳;缓存模块,用于缓存报文;发送模块,用于在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文;其中,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
本申请的实施方式还提供了一种网桥接收端,包括:接收模块,用于从时间敏感网络TSN系统接收报文,并记录报文的接收时刻;发送模块,用于向网桥发送端传输报文;其中,报文携带指示接收时刻的接收时间戳,用于供网桥发送端在根据接收时间戳,确定报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送报文,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
本申请的实施方式还提供了一种电子设备,至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述应用于网桥发送端的网桥端到端的确定性转发方法,或执行上述应用于网桥接收端的网桥端到端的确定性转发方法。
本申请的实施方式还提供了一种计算机可读存储介质,包括:所述计算机程序被处理器执行时实现上述应用于网桥发送端的网桥端到端的确定性转发方法,或实现上述应用于网桥接收端的网桥端到端的确定性转发方法。
本申请实施方式中,网桥发送端接收网桥接收端传输的报文,其中携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳,可用于确定实际驻留时间;通过报文实际驻留时间与网桥固定驻留时间的关系,解决报文抖动和乱序问题,最终在保证报文确定性转发的前提下,还能降低报文传输时延。
附图说明
图1是背景技术示意图;
图2是根据本申请一个实施方式所提供的网桥端到端的确定性转发方法的流程图;
图3是根据本申请一个实施方式所提供的网桥端到端的确定性转发方法的示意图;
图4是根据本申请另一个实施方式所提供的网桥端到端的确定性转发方法的流程图;
图5是根据本申请一个实施方式所提供的网桥发送端的示意图;
图6是根据本申请一个实施方式所提供的网桥接收端的示意图;
图7是根据本申请一个实施方式所提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列部件或单元的系统、产品或设备没有限定于已列出的部件或单元,而是可选地还包括没有列出的部件或单元,或可选地还包括对于这些产品或设备固有的其它部件或单元。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
正如技术背景所述,TSN网络将整个5G系统看做一个逻辑网桥,而整个5G网络包括终端、无线、承载网和核心网;由于基站可能受无线环境的干扰,且5G核心网也可能受部署方案、规模等影响,导致报文有概率出现抖动、偶发乱序或丢包。本申请的一个实施方式涉及一种网桥端到端的确定性转发方法,应用于网桥发送端。具体流程如图2所示。
步骤101,接收网桥接收端传输的报文,并缓存报文;其中,报文携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳;
步骤102,在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文;其中,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
本实施例中,网桥发送端接收网桥接收端传输的报文,其中携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳,可用于确定实际驻留时间;通过报文实际驻留时间与网桥固定驻留时间的关系,解决报文抖动和乱序问题,最终在保证报文确定性转发的前提下,还能降低报文传输时延。
下面对本实施方式的网桥端到端的确定性转发方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,接收网桥接收端传输的报文,并缓存报文;其中,报文携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳。即,接收网桥接收端获取的报文,其中 包括网桥接收端从TSN系统中收到报文的时间信息。
此外,时钟同步是实现TSN网络确定性转发的前提,网桥发送端和网桥接收端需要实现时钟同步。具体地,通过报文在网桥的出口和入口的时间戳差值,计算报文在网桥内的延迟,并以此判断是否达到在网桥的驻留时间,前提就需要在DS-TT和NW-TT上实现时钟同步。
在一个例子中,在接收网桥接收端传输的报文之前,还包括:将网桥固定驻留时间设置为初始值,初始值小于第二预设时间门限;其中,第二预设时间门限小于第一预设时间门限;统计一个采样周期内的超时报文的占比;在统计的占比大于预设占比门限的情况下,调整网桥固定驻留时间,调整后的网桥固定驻留时间为发送门控周期的整数倍且小于第一预设时间门限;重复执行统计一个采样周期内的超时报文的占比以及网桥固定驻留时间的调整,直至超时报文的占比小于预设占比门限;根据最后一次调整的网桥固定驻留时间,获取到设置的网桥固定驻留时间。具体地,该阶段可认为是获取一个合适的网桥驻留时间,在满足用户时延和抖动的前提下,通过人工配置或者固定测量方法也能获取到网桥驻留时间,但获取的值一般不太理想,值偏大则会导致的传输时延的增加,值偏小则会引入报文抖动频率变高。
在一个具体实现过程中,报文在网桥内存在一个网桥固定驻留时间T keep-time,而通过计算报文在网桥发送端和接收端的时间戳之差,可以得到报文实际在网桥的驻留时间为T。则报文到达网桥发送端可分为两种情形,一种是提前到达(T<T keep-time),一种是超时到达(T>=T keep-time);对于提前到达的报文,可通过缓存机制解决;而对于超时到达的报文,可以理解为,该报文已经没有意义,可以选择丢弃或者发送。如果超时到达的报文越多,则代表抖动频率越高。
超时到达的报文数目定义为N over-time,提前到达的报文数目可定义为N pre-arrive,则超时到达的报文占比为R=N over-time/(N over-time+N pre-arrive);假设,超时到达的报文的比例不得超过R set,且用户要求的时延不得超过第一预设时间门限T set。其中,第二预设时间门限小于第一预设时间门限,例如趋近于0,,即将初始阶段报文在5G网桥驻留时间T keep-time为0,在初始采样周期内(一段时间或者接收到N个报文),5G网桥发送端所有接收的报文均为超时报文,超时到达的报文占比为R=1;此时对T keep-time进行调整,但T keep-time的取值需要满足是发送门控周期的整数倍且T keep-time<T set,调整后开始下一个采样周期的统计和计算。经过多个采样周期后,T keep-time不断被调整,超时到达的报文占比R也在不断降低,当满足R<R set并且T keep-time<T set,则T keep-time就是获取的固定网桥驻留时间。
其中,驻留时间用于吸收抖动,例如报文发送时延为3~5s,抖动为报文发送时延不定,可能3~5s中任一数值;设置发送门控周期为10s,则不论报文实际时延是3s,4s或5s,均在满足发送门控周期10s之后进行发送,即统一了报文发送时延,吸收了抖动。发送门控周期用于处理不同的数据流,在同时存在多条数据流需要发送时,控制当前时间段允许发送的数据流。
在一个例子中,根据最后一次调整的网桥固定驻留时间,获取到设置的网桥固定驻留时间,包括:将最后一次调整的网桥固定驻留时间发送给网桥内的应用功能实体,供应用功能实体根据网桥发送端发送的网桥固定驻留时间以及网桥接收端发送的网桥固定驻留时间,确定上行数据流与下行数据流均适用的网桥固定驻留时间;接收应用功能实体下发的均适用的网桥固定驻留时间,作为设置的网桥固定驻留时间。即,可将T keep-time配置在AF(Application Function,应用功能)实体上,由AF将T keep-time分别下发给5G网桥的两端。其中,上行数据 流是在NW-TT上进行驻留时间的学习,而下行数据流是在DS-TT上进行学习,最终的T keep-time还要取两者中的最大值。因为上行数据流与下行数据流一般对称,即T keep-time一致,若不取两者中最大值,则会存在一方由于时延较短无法实现调整后的抖动吸收效果,所以一般取两者中最大值。
在一个例子中,在接收网桥接收端传输的报文后,还包括:根据接收的报文的接收时间戳,对接收的报文进行排重处理;缓存报文,包括:缓存经排重处理后的报文。即,报文经过网桥的传输端到达网桥发送端,网桥发送端收到报文后,根据报文中的时间戳对报文进行排重和缓存处理。具体地,如图3所示结构,网桥发送端收到TSN业务报文后,对报文进行解封装,获取报文进入网桥的接收时间戳T in,之后根据该时间戳检索网桥发送端的缓存区,查看是否存在相同时间戳的报文,如果存在,则认为当前报文为复制报文,直接丢弃;否则,将当前报文存入缓存区。
在步骤102中,在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文;其中,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。即,网桥固定驻留时间需满足小于第一预设时间门限,还要满足按照网桥固定驻留时间所选出的超时报文的占比需小于预设占比门限。
在一个例子中,在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文,包括:在根据接收时间戳,检测到缓存的报文在网桥内的实际驻留时间小于网桥固定驻留时间,且与网桥固定驻留时间的差值小于发送门控周期的情况下,将缓存的报文移入发送区,发送区内的报文根据发送门控周期进行发送。即,网桥发送端循环扫描缓存区,根据时间戳判断报文是否达到网桥驻留时间,如果达到,则报文转为发送态,移入发送区,待门控到达将报文发送。
具体地,网桥发送端获取当前时间T current,循环扫描缓存区,将当前时间与缓存区报文的接收时间戳T in比较,例如(T current-T in)<T keep-time并且(T current-T in)>(T keep-time-1/m*TimeInterval),即与网桥固定驻留时间的差值小于发送门控周期的情况下,则报文进入待发送状态,移入发送区,待门控打开时发送。其中,TimeInterval是报文发送门控周期,为消除误差,从缓存区提取报文的窗口往左偏移1/m个发送门控周期,且m为大于1的正数。
在一个例子中,方法还包括:在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间超出网桥固定驻留时间的情况下,丢弃缓存的报文。具体地,如果(T current-T in)>=T keep-time,说明此包是超时到达的报文,可将此包丢弃;此外,还可以根据用户需求对超时到达的报文进行设置,例如该报文重要性较高,则可移入发送区。
本申请的实施方式中,通过复制与消除机制,提高报文的传输可靠性;通过报文在网桥内驻留固定的生存时间,解决报文抖动和乱序问题,该驻留时间支持自适应学习,以解决值偏大导致的传输时延增加及值偏小引入的报文抖动概率变大问题,最终在保证报文确定性转发的前提下,尽可能降低报文传输时延。提供一种保障网桥端到端确定性转发的方法,该网桥可为5G网桥,将有效解决TSN报文在网桥中传输时的抖动、乱序或丢包问题。
本申请的一个实施方式涉及一种网桥端到端的确定性转发方法,应用于网桥接收端,如图4所示,包括:
步骤201,从时间敏感网络TSN系统接收报文,并记录报文的接收时刻;
步骤202,向网桥发送端传输报文;其中,报文携带指示接收时刻的接收时间戳,用于供网桥发送端在根据接收时间戳,确定报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送报文,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
在一个例子中,向网桥发送端传输报文,包括:将报文复制n份,n为大于0的自然数;向网桥发送端传输n份报文,其中,n份报文中均携带指示接收时刻的接收时间戳,n根据无线网络的拥塞情况动态调整。即报文从接收端进入5G网桥,接收端收到报文后,在TSN报文中添加收包时间戳,然后将报文复制n份发送。
具体地,报文从接收端进入5G网桥,在收到报文时,记录当前时间戳T in,当完成报文的处理流程后,给报文打上时间戳T in,为提高传输可靠性,防止由于干扰或网络故障导致的丢包,可将报文复制n份发送,复制的报文具有相同的时间戳T in。但n的取值若过大,会给网络带来负担,导致网络拥塞;可根据无线网络反馈的拥塞情况,在满足丢包率的前提下动态调整n的值。
结合上述实施方式,在一个具体实现中,例如:时钟同步是实现TSN网络确定性转发的前提,网桥接收端和网桥发送端需要实现时钟的同步;报文在网桥驻留时间的自适应学习,并将学习结果同步到网桥发送端和网桥接收端;报文从网桥接收端进入网桥,网桥接收端收到报文后,在TSN报文中添加收包时间戳,然后将报文复制n份(n大于等于0),n值可通过网络拥塞情况自适应调整;报文经过网桥的传输到达网桥发送端,网桥发送端收到报文后,根据报文中的时间戳对报文进行排重和缓存处理;网桥发送端循环扫描缓存区,根据时间戳判断报文是否达到网桥驻留时间,如果达到,则报文转为发送态,移入发送区,待门控到达将报文发送。
本申请实施方式中,网桥接收端向网桥发送端传输报文,其中携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳,可用于确定实际驻留时间;通过报文实际驻留时间与网桥固定驻留时间的关系,解决报文抖动和乱序问题,最终在保证报文确定性转发的前提下,还能降低报文传输时延。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的一个实施方式涉及一种网桥发送端,如图5所示,包括:
接收模块301,用于接收网桥接收端传输的报文;其中,报文携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳;
缓存模块302,用于缓存报文;
发送模块303,用于在根据接收时间戳,确定缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送缓存的报文;其中,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
对于接收模块301,在一个例子中,在所述接收网桥接收端传输的报文之前,还包括:将网桥固定驻留时间设置为初始值,所述初始值小于第二预设时间门限;其中,所述第二预设 时间门限小于所述第一预设时间门限;统计一个采样周期内的超时报文的占比;在所述统计的占比大于所述预设占比门限的情况下,调整所述网桥固定驻留时间,所述调整后的网桥固定驻留时间为发送门控周期的整数倍且小于所述第一预设时间门限;重复执行所述统计一个采样周期内的超时报文的占比以及所述网桥固定驻留时间的调整,直至所述超时报文的占比小于预设占比门限;根据最后一次调整的所述网桥固定驻留时间,获取到所述设置的网桥固定驻留时间。
在一个例子中,所述根据最后一次调整的所述网桥固定驻留时间,获取到所述设置的网桥固定驻留时间,包括:将最后一次调整的所述网桥固定驻留时间发送给所述网桥内的应用功能实体,供应用功能实体根据所述网桥发送端发送的网桥固定驻留时间以及所述网桥接收端发送的网桥固定驻留时间,确定上行数据流与下行数据流均适用的网桥固定驻留时间;接收所述应用功能实体下发的所述均适用的网桥固定驻留时间,作为所述设置的网桥固定驻留时间。
在一个例子中,在所述接收网桥接收端传输的报文后,还包括:根据所述接收的报文的接收时间戳,对所述接收的报文进行排重处理。
对于缓存模块302,在一个例子中,所述缓存所述报文,包括:缓存经所述排重处理后的报文。
对于发送模块303,在一个例子中,所述在根据所述接收时间戳,确定所述缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送所述缓存的报文,包括:在根据所述接收时间戳,检测到所述缓存的报文在网桥内的实际驻留时间小于所述网桥固定驻留时间,且与所述网桥固定驻留时间的差值小于所述发送门控周期的情况下,将所述缓存的报文移入发送区,所述发送区内的报文根据所述发送门控周期进行发送。
在一个例子中,在根据所述接收时间戳,确定所述缓存的报文在网桥内的实际驻留时间超出所述网桥固定驻留时间的情况下,丢弃所述缓存的报文。
本申请实施方式中,网桥发送端接收网桥接收端传输的报文,其中携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳,可用于确定实际驻留时间;通过报文实际驻留时间与网桥固定驻留时间的关系,解决报文抖动和乱序问题,最终在保证报文确定性转发的前提下,还能降低报文传输时延。
不难发现,本实施方式为与第一实施方式相对应的系统实施例,本实施方式可与上述实施方式互相配合实施。上述实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述实施方式中。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请的一个实施方式涉及一种网桥接收端,如图6所示,包括:
接收模块401,用于从时间敏感网络TSN系统接收报文,并记录报文的接收时刻;
发送模块402,用于向网桥发送端传输报文;其中,报文携带指示接收时刻的接收时间戳,用于供网桥发送端在根据接收时间戳,确定报文在网桥内的实际驻留时间达到设置的网 桥固定驻留时间的情况下,发送报文,网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,超时报文为在网桥内的实际驻留时间大于网桥固定驻留时间的报文。
对于发送模块402,在一个例子中,所述向网桥发送端传输所述报文,包括:将所述报文复制n份,所述n为大于0的自然数;向网桥发送端传输所述n份报文,其中,所述n份报文中均携带指示所述接收时刻的接收时间戳,所述n根据无线网络的拥塞情况动态调整。
本申请实施方式中,网桥接收端向网桥发送端传输报文,其中携带网桥接收端从时间敏感网络TSN系统接收到报文的接收时间戳,可用于确定实际驻留时间;通过报文实际驻留时间与网桥固定驻留时间的关系,解决报文抖动和乱序问题,最终在保证报文确定性转发的前提下,还能降低报文传输时延。
本申请的一个实施方式涉及一种电子设备,如图7所示,包括至少一个处理器501;以及,与所述至少一个处理器501通信连接的存储器502;其中,所述存储器502存储有可被所述至少一个处理器501执行的指令,所述指令被所述至少一个处理器501执行,以使所述至少一个处理器501能够执行上述应用于网桥发送端的网桥端到端的确定性转发方法,或执行应用于网桥接收端的网桥端到端的确定性转发方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请的一个实施方式涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种网桥端到端的确定性转发方法,应用于网桥发送端,包括:
    接收网桥接收端传输的报文,并缓存所述报文;其中,所述报文携带所述网桥接收端从时间敏感网络TSN系统接收到所述报文的接收时间戳;
    在根据所述接收时间戳,确定所述缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送所述缓存的报文;
    其中,所述网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,所述超时报文为在网桥内的实际驻留时间大于所述网桥固定驻留时间的报文。
  2. 根据权利要求1所述的网桥端到端的确定性转发方法,其中,在所述接收网桥接收端传输的报文之前,所述方法还包括:
    将网桥固定驻留时间设置为初始值,所述初始值小于第二预设时间门限;其中,所述第二预设时间门限小于所述第一预设时间门限;
    统计一个采样周期内的超时报文的占比;
    在所述统计的占比大于所述预设占比门限的情况下,调整所述网桥固定驻留时间,所述调整后的网桥固定驻留时间为发送门控周期的整数倍且小于所述第一预设时间门限;
    重复执行所述统计一个采样周期内的超时报文的占比以及所述网桥固定驻留时间的调整,直至所述超时报文的占比小于预设占比门限;
    根据最后一次调整的所述网桥固定驻留时间,获取到所述设置的网桥固定驻留时间。
  3. 根据权利要求2所述的网桥端到端的确定性转发方法,其中,所述根据最后一次调整的所述网桥固定驻留时间,获取到所述设置的网桥固定驻留时间,包括:
    将最后一次调整的所述网桥固定驻留时间发送给所述网桥内的应用功能实体,供应用功能实体根据所述网桥发送端发送的网桥固定驻留时间以及所述网桥接收端发送的网桥固定驻留时间,确定上行数据流与下行数据流均适用的网桥固定驻留时间;
    接收所述应用功能实体下发的所述均适用的网桥固定驻留时间,作为所述设置的网桥固定驻留时间。
  4. 根据权利要求2所述的网桥端到端的确定性转发方法,其中,所述在根据所述接收时间戳,确定所述缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送所述缓存的报文,包括:
    在根据所述接收时间戳,检测到所述缓存的报文在网桥内的实际驻留时间小于所述网桥固定驻留时间,且与所述网桥固定驻留时间的差值小于所述发送门控周期的情况下,将所述缓存的报文移入发送区,所述发送区内的报文根据所述发送门控周期进行发送。
  5. 根据权利要求1至4中任一项所述的网桥端到端的确定性转发方法,其中,所述方法还包括:
    在根据所述接收时间戳,确定所述缓存的报文在网桥内的实际驻留时间超出所述网桥固 定驻留时间的情况下,丢弃所述缓存的报文。
  6. 根据权利要求1至4中任一项所述的网桥端到端的确定性转发方法,其中,在所述接收网桥接收端传输的报文后,所述方法还包括:
    根据所述接收的报文的接收时间戳,对所述接收的报文进行排重处理;
    所述缓存所述报文,包括:
    缓存经所述排重处理后的报文。
  7. 一种网桥端到端的确定性转发方法,应用于网桥接收端,包括:
    从时间敏感网络TSN系统接收报文,并记录所述报文的接收时刻;
    向网桥发送端传输所述报文;
    其中,所述报文携带指示所述接收时刻的接收时间戳,用于供所述网桥发送端在根据所述接收时间戳,确定所述报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送所述报文,所述网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,所述超时报文为在网桥内的实际驻留时间大于所述网桥固定驻留时间的报文。
  8. 根据权利要求7所述的网桥端到端的确定性转发方法,其中,所述向网桥发送端传输所述报文,包括:
    将所述报文复制n份,所述n为大于0的自然数;
    向网桥发送端传输所述n份报文,其中,所述n份报文中均携带指示所述接收时刻的接收时间戳,所述n根据无线网络的拥塞情况动态调整。
  9. 一种网桥发送端,包括:
    接收模块,用于接收网桥接收端传输的报文;其中,所述报文携带所述网桥接收端从时间敏感网络TSN系统接收到所述报文的接收时间戳;
    缓存模块,用于缓存所述报文;
    发送模块,用于在根据所述接收时间戳,确定所述缓存的报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送所述缓存的报文;
    其中,所述网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,所述超时报文为在网桥内的实际驻留时间大于所述网桥固定驻留时间的报文。
  10. 一种网桥接收端,包括:
    接收模块,用于从时间敏感网络TSN系统接收报文,并记录所述报文的接收时刻;
    发送模块,用于向网桥发送端传输所述报文;
    其中,所述报文携带指示所述接收时刻的接收时间戳,用于供所述网桥发送端在根据所述接收时间戳,确定所述报文在网桥内的实际驻留时间达到设置的网桥固定驻留时间的情况下,发送所述报文,所述网桥固定驻留时间小于第一预设时间门限且超时报文的占比小于预设占比门限,所述超时报文为在网桥内的实际驻留时间大于所述网桥固定驻留时间的报文。
  11. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至6中任一项所述的网桥端到端的确定性转发方法,或执行如权利要求7或8所述的网桥端到端的确定性转发方法。
  12. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述的网桥端到端的确定性转发方法,或实现权利要求7或8所述的网桥端到端的确定性转发方法。
PCT/CN2022/128459 2021-12-02 2022-10-29 网桥端到端的确定性转发方法、网桥发送端及接收端 WO2023098367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111463117.XA CN116260772A (zh) 2021-12-02 2021-12-02 网桥端到端的确定性转发方法、网桥发送端及接收端
CN202111463117.X 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023098367A1 true WO2023098367A1 (zh) 2023-06-08

Family

ID=86611476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128459 WO2023098367A1 (zh) 2021-12-02 2022-10-29 网桥端到端的确定性转发方法、网桥发送端及接收端

Country Status (2)

Country Link
CN (1) CN116260772A (zh)
WO (1) WO2023098367A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560109A (zh) * 2024-01-11 2024-02-13 鹏城实验室 时间同步方法、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117478615B (zh) * 2023-12-28 2024-02-27 贵州大学 一种确定性网络中可靠传输的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585895A (zh) * 2020-05-12 2020-08-25 北京交通大学 无需时间同步的时间触发的数据传输方法
CN113300798A (zh) * 2021-05-27 2021-08-24 北京交通大学 一种异步终端的传输确定性接入方法
WO2021213660A1 (en) * 2020-04-23 2021-10-28 Telefonaktiebolaget Lm Ericsson (Publ) Technique for determining radio device residence time and scheduling
CN113574813A (zh) * 2019-03-21 2021-10-29 华为技术有限公司 用于确定时间信息的无线网络系统的网络实体和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574813A (zh) * 2019-03-21 2021-10-29 华为技术有限公司 用于确定时间信息的无线网络系统的网络实体和方法
WO2021213660A1 (en) * 2020-04-23 2021-10-28 Telefonaktiebolaget Lm Ericsson (Publ) Technique for determining radio device residence time and scheduling
CN111585895A (zh) * 2020-05-12 2020-08-25 北京交通大学 无需时间同步的时间触发的数据传输方法
CN113300798A (zh) * 2021-05-27 2021-08-24 北京交通大学 一种异步终端的传输确定性接入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, HUAWEI, ZTE: "proposal of merge (Solution11 option3 and solution28)", 3GPP DRAFT; S2-1903372_SYNC MERGE_V9, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Xi’AN, China; 20190405 - 20190412, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051719535 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560109A (zh) * 2024-01-11 2024-02-13 鹏城实验室 时间同步方法、设备及存储介质
CN117560109B (zh) * 2024-01-11 2024-04-12 鹏城实验室 时间同步方法、设备及存储介质

Also Published As

Publication number Publication date
CN116260772A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2023098367A1 (zh) 网桥端到端的确定性转发方法、网桥发送端及接收端
US11601323B2 (en) Techniques for wireless access and wireline network integration
JP5974159B2 (ja) 通信ネットワーク内でtcpプロトコルにより引き起こされたバックオフを緩和する装置及び方法
KR20090006157A (ko) 고속 미디어 액세스 제어를 위한 메모리 관리
Bjϕmstad et al. Handling delay in 5G Ethernet mobile fronthaul networks
WO2010099718A1 (zh) 一种数据传输控制方法、装置及系统
KR20230023775A (ko) 유량 제어 방법 및 장치
US8929210B2 (en) System and method for enabling energy efficient ethernet networks with time-sensitive protocols
CN1983869B (zh) 无线接入控制器和基站间进行传输信道定时调整的方法
WO2012155557A1 (zh) 一种异构网络中业务流的同步传输方法及系统
CN117917065A (zh) 用于为时间敏感性网络配置网络切片的系统和方法
CN113966641B (zh) 用于确定信道接入优先级的方法、装置和介质
CN111711994B (zh) 一种多通道LoRaWAN网关下行调度方法
WO2014139307A1 (zh) 切换mcs的方法和装置
Li et al. How far are wireless networks from being truly deterministic?
EP3625916B1 (en) Techniques for wireless access and wireline network integration
CN109587728B (zh) 拥塞检测的方法和装置
WO2011015058A1 (zh) 一种分组数据传输系统和方法
Miyamoto et al. Mobile backhaul uplink jitter reduction techniques with optical-wireless cooperative control
WO2024066419A1 (zh) 业务传输方法及装置
CN116366570B (zh) 一种报文转发方法、装置及可编程器件
CN112313894B (zh) 数据传输涉及的用户设备和基站
WO2024058550A1 (en) Method and device for dynamically modifying radio access network (ran) configuration
CN112105054A (zh) 一种下行传输方法和系统
Dossa et al. A Duty-Cycle-Efficient Synchronization Protocol for Slotted-Aloha in LoRaWAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE