WO2023098280A1 - 一种平面变压器、电源转换电路以及适配器 - Google Patents

一种平面变压器、电源转换电路以及适配器 Download PDF

Info

Publication number
WO2023098280A1
WO2023098280A1 PCT/CN2022/123887 CN2022123887W WO2023098280A1 WO 2023098280 A1 WO2023098280 A1 WO 2023098280A1 CN 2022123887 W CN2022123887 W CN 2022123887W WO 2023098280 A1 WO2023098280 A1 WO 2023098280A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
sub
layer
layers
winding layer
Prior art date
Application number
PCT/CN2022/123887
Other languages
English (en)
French (fr)
Inventor
方乐安
李佳
曹阅
陈文洁
张希俊
李闯鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098280A1 publication Critical patent/WO2023098280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to the field of transformers, in particular to a planar transformer, a power conversion circuit and an adapter.
  • Adapters also known as switching power supplies and switching converters, are widely used in various fields.
  • the function of the adapter is to convert a type of input voltage into the voltage or current required by the user through different forms of architecture.
  • the input of the adapter is AC power (for example, mains) or DC power, and the output is a device that needs to use DC power.
  • noise interference mainly include: differential mode noise and common mode noise.
  • common mode noise is often the main factor causing electromagnetic interference (electro-magnetic interference, EMI).
  • EMI electromagnetic interference
  • the common mode noise mainly includes the noise between the reference ground generated by the interaction of various components in the power conversion circuit. These common mode noises will be conducted and radiated to the electrical equipment along the circuit network, and cause the electrical equipment to suffer EMI, therefore, the requirements for noise suppression in current adapters are very stringent.
  • planar transformers In order to reduce the interference caused by common mode noise, more filtering measures are often used to suppress EMI, such as increasing the common mode inductance or increasing the capacity of the capacitor across the primary and secondary circuits in the power conversion circuit, etc. , but these measures will increase the cost and volume of the adapter. With the research on noise suppression technology of planar transformers, the use of planar transformers in adapters can achieve better results in suppressing common-mode noise.
  • a planar transformer is a transformer structure with high frequency, low height and high operating frequency. Compared with traditional transformers, the biggest difference between planar transformers is the magnetic core and coil winding.
  • the planar transformer adopts a small-sized magnetic core, which is made of high-frequency power ferrite material, and has low core loss at high frequencies; the winding is made of multi-layer (printed circuit board, PCB) iterative winding, and the winding or The copper sheets are stacked on the planar iron core to form the magnetic circuit of the transformer.
  • Planar transformers have low DC copper resistance, low leakage inductance and distributed capacitance.
  • a planar transformer with a paired-layer method structure is more common, as shown in Figure 1A and Figure 1B.
  • Figure 1A is a schematic diagram of a planar transformer with a shielded winding structure
  • Figure 1B is a planar transformer with a zero-noise matching layer structure. Transformer schematic.
  • the present application provides a planar transformer, a power conversion circuit and an adapter, which adopt a symmetrical cancellation method and can achieve a better common-mode noise suppression effect in a small volume.
  • the present application provides a planar transformer.
  • the planar transformer includes N sets of transformer substructures, and each set of transformer substructures in the N sets of transformer substructures includes a first magnetic core, a second magnetic core, and a printed circuit board PCB winding.
  • N is a positive integer
  • the PCB winding board includes: a first composite winding layer and a second composite winding layer, the first composite winding layer is wound on the first magnetic core, and the second composite winding layer is wound on the second magnetic core
  • the first composite winding layer includes at least one set of first sub-winding layers and at least one second sub-winding layer; wherein, each set of first sub-winding layers includes two adjacent first sub-winding layers; each At least one second sub-winding layer is arranged between two first sub-winding layers in the first composite winding layer;
  • the second composite winding layer includes at least one third sub-winding layer and at least one fourth sub-winding layer layer; wherein, each group of third sub-winding layers includes two layers of third sub-winding layers adjacent to each other; at least one layer of fourth sub-winding is arranged between two layers of third sub-winding layers in each group of second composite winding layers layers; the total number of layers of at least two first sub-winding layers is the same as the total
  • the planar transformer structure provided by this application adopts a symmetrical cancellation method, which significantly reduces common-mode noise without increasing the volume compared with the existing technology. Compared with the existing scheme of adding shielding windings, it can reduce A shielding layer with at least two layers is easier to manufacture the winding layer of the planar transformer and reduces the loss; compared with the zero-noise matching layer scheme, the number of adjacent layers of the original and secondary sides does not need to be consistent, so that the winding The design is simple, and finally the EMI suffered by the circuit is significantly reduced.
  • Each first sub-winding layer in at least two first sub-winding layers can be connected in series through a via hole on each first sub-winding layer, and each third sub-winding layer in at least two first sub-winding layers
  • the winding layers are connected in series through the via holes on the first sub-winding layer of each layer.
  • Those skilled in the art can flexibly set the number of via holes and the positions of the via holes according to actual engineering needs, so as to better realize the planar transformer. Noise cancellation.
  • the first winding is connected in series with the third winding; the second winding is connected in series with the fourth winding.
  • the potential static point of the primary circuit of the power conversion circuit is connected to one end of the second winding and one end of the fourth winding, and the potential static point of the secondary circuit of the power conversion circuit is connected to one end of the first winding and the third winding Connected at one end, the power conversion circuit is used to convert the voltage provided by the external power supply into a voltage that meets the charging or power supply standard of the device to be charged, and to charge or supply power to the device to be charged.
  • One end of the second winding and one end of the fourth winding can be connected to the primary switching tube of the primary circuit, one end of the second winding can correspond to one end of the last coil of the second winding, and one end of the fourth winding can correspond to the last layer of the fourth winding one end of the coil.
  • One end of the first winding and one end of the third winding can be connected to the secondary rectifier tube of the secondary circuit, one end of the first winding can correspond to one end of the last coil of the first winding, and one end of the third winding can correspond to the last coil of the third winding One end of a coil.
  • the difference between the voltage flowing on the second winding and the set voltage is the first voltage
  • the difference between the voltage flowing on the fourth winding and the set voltage is the second voltage
  • the first voltage and the second The voltages are equal in magnitude and opposite in direction.
  • the potential static point of the primary circuit of the power conversion circuit is connected to one end of the first winding and one end of the third winding
  • the potential static point of the secondary circuit of the power conversion circuit is connected to one end of the second winding and the fourth winding Connected at one end
  • the power conversion circuit is used to convert the voltage provided by the external power supply into a voltage that meets the charging or power supply standard of the device to be charged, and to charge or supply power to the device to be charged.
  • the potential static point of the primary circuit of the power conversion circuit is connected to one end of the second winding and one end of the fourth winding
  • the potential static point of the secondary circuit of the power conversion circuit is connected to one end of the first winding and one end of the third winding: the second winding It is connected in series with the fourth winding to form the primary side/primary winding, and the first winding and the third winding are connected in series together to form the secondary side/secondary winding.
  • the potential static point of the primary circuit of the above-mentioned power conversion circuit may be the node where the primary side/primary winding is connected to the primary filter capacitor.
  • the potential static point of the primary circuit of the power conversion circuit may also be the ground node of the primary circuit.
  • the potential static point of the secondary circuit of the above-mentioned power conversion circuit may be the node where the secondary side/secondary winding is connected to the secondary filter capacitor.
  • the potential static point of the secondary circuit of the power conversion circuit may also be the ground node of the secondary circuit.
  • One end of the second winding and one end of the fourth winding can be connected to the secondary rectifier tube of the secondary circuit, one end of the second winding can correspond to one end of the last coil of the second winding, and one end of the fourth winding can correspond to the last coil of the fourth winding One end of a coil.
  • One end of the first winding and one end of the third winding can be connected to the primary switching tube of the primary circuit, one end of the first winding can correspond to one end of the last coil of the first winding, and one end of the third winding can correspond to the last layer of the third winding one end of the coil.
  • the difference between the voltage passing through the first winding and the set voltage is the third voltage
  • the difference between the voltage passing through the third winding and the setting voltage is the fourth voltage
  • the third voltage and the fourth The voltages are equal in magnitude and opposite in direction.
  • the first magnetic core and the second magnetic core are arranged along a first direction, and the first direction is parallel to the PCB winding board.
  • the first magnetic core and the second magnetic core are arranged along a first direction, and the first direction is parallel to the PCB winding board.
  • the first magnetic cores and the second magnetic cores arranged along the first direction jointly constitute each group of transformer substructures in the N groups of transformer substructures.
  • each set of transformer substructures in the N sets of transformer substructures is arranged along a first direction or a second direction, and the second direction is parallel to the PCB winding board and perpendicular to the first direction.
  • the transformer substructure in the planar transformer can have at least one symmetry axis or a symmetry method for symmetry, the planar transformer can maintain a good common-mode noise suppression effect.
  • the first composite winding layer includes at least one set of first composite winding sub-layers, and each set of first composite winding sub-layers in the at least one set of first composite winding sub-layers includes two layers of first A sub-winding layer and at least one second sub-winding layer; at least one second sub-winding layer is arranged between two first sub-winding layers in the first composite winding layer; the second composite winding layer includes at least one The second composite winding sub-layer, each group of second composite winding sub-layers in at least one group of second composite winding sub-layers includes two third sub-winding layers and at least one fourth sub-winding layer; the second composite winding sub-layer At least one fourth sub-winding layer is arranged between two third sub-winding layers in the layer.
  • Each composite winding layer may include multiple composite winding sub-layers, and through multiple layers, the common mode noise suppression effect is increased.
  • each second sub-winding layer in at least one second sub-winding layer has the same magnitude as the first parasitic capacitance formed by the adjacent first sub-winding layer; at least one layer of fourth sub-winding Each fourth sub-winding layer in the layers has the same magnitude as the second parasitic capacitance formed by the adjacent third sub-winding layer; the first parasitic capacitance has the same magnitude as the second parasitic capacitance.
  • the first magnetic core and the second magnetic core are EE-type, EI-type or RM-type structures.
  • the present application provides a power conversion circuit, including: a primary circuit, a secondary circuit, and the planar transformer of the first aspect, the planar transformer is arranged between the primary circuit and the secondary circuit, and the power conversion circuit is used to convert an external power supply The provided voltage is converted into a voltage that meets the charging or power supply standard of the device to be charged, and charges or supplies power to the device to be charged.
  • the present application provides an adapter, including the power conversion circuit of the second aspect, the power conversion circuit is used to convert the voltage provided by the external power supply into a voltage that meets the charging or power supply standard of the device to be charged, and charge the device to be charged or supply power.
  • FIG. 1A is a schematic diagram of a planar transformer with a shielded winding structure
  • Fig. 1B is a schematic diagram of a planar transformer with a zero-noise matching layer structure
  • FIG. 2 is a schematic diagram of an application scenario of a planar transformer
  • FIG. 3 is a schematic structural diagram of a power conversion circuit
  • FIG. 4A is a schematic structural view and a schematic cross-sectional view of a planar transformer of the present application.
  • FIG. 4B is a schematic cross-sectional view of a planar transformer of the present application.
  • FIG. 5 is a schematic plan view of the first sub-winding layer in the planar transformer of the present application.
  • FIG. 6 is a schematic diagram of the planar structure of the second sub-winding layer and the fourth sub-winding layer in the planar transformer of the present application;
  • Fig. 7 is a schematic diagram 2 of the planar structure of the second sub-winding layer and the fourth sub-winding layer in the planar transformer of the present application;
  • FIG. 8 is a first schematic diagram of the planar structure of the planar transformer of the present application.
  • FIG. 9 is a schematic plan view of the transformer substructure in the planar transformer of the present application.
  • FIG. 10 is a second schematic diagram of the planar structure of the planar transformer of the present application.
  • FIG. 11 is a schematic diagram of a possible arrangement of transformer substructures in a planar transformer.
  • Planar transformer Different from the traditional transformer structure, the magnetic core and winding of the planar transformer are planar structures.
  • the magnetic core generally adopts a small-sized E-shaped, rectangular module (RM) magnetic core structure, and the winding is generally formed by stacking multi-layer printed circuit boards. This design has small leakage inductance and distributed capacitance, and the height is very high. Small, can have a higher operating frequency.
  • RM E-shaped, rectangular module
  • Flyback converter widely used in AC-DC and DC-DC scenarios, it is a relatively common low-power adapter converter with simple structure and low cost
  • core components include power switching tubes, transformers, diodes and capacitors.
  • the power switch tube is controlled by pulse width modulation. By turning off and on, a high-frequency square wave signal is generated in the primary coil of the transformer, and then inductively coupled to the secondary coil of the transformer to realize energy transfer. Through the filtering and rectifying action of the diode and capacitor in the secondary circuit connected to the secondary coil, a stable DC output is obtained at the output end.
  • Common mode noise is also called asymmetric noise or line-to-ground noise. This noise exists in electrical equipment using alternating current. The current of common mode noise flows in the same direction on the transmission line and The phase to ground remains the same and returns via the ground wire. Common mode noise can be suppressed by using a common mode inductor or a Y capacitor between the power line and ground.
  • Differential mode noise is also known as normal type, symmetrical noise or line-to-line noise. It exists in the AC line and the neutral conductor, and the phase difference between the two is 180°. The current of differential mode noise flows out along one AC line and returns along the other AC line, there is no differential mode noise current in the ground line.
  • Potential static point In the circuit network, the amplitude of the voltage potential on the nodes of the circuit network remains relatively constant during the operation of the circuit, and there is no high-frequency jump or oscillation.
  • the filter capacitor rectified by the primary circuit of the power conversion circuit and the filter capacitor rectified by the secondary circuit of the power conversion circuit, the positive or negative poles of these capacitors and the network nodes directly connected to them are potential static points.
  • the moving point of the primary circuit the primary circuit in the power conversion circuit, the circuit node or network with voltage jumps when the primary switch tube is turned on and off, such as the primary power winding in the primary circuit connected to the switch tube node.
  • the moving point of the secondary circuit the secondary circuit in the power conversion circuit, with the turn-on and turn-off of the secondary rectifier switch tube (including diodes), there is a voltage jump and becomes a circuit node or network, such as in the secondary circuit The node where the secondary power winding is connected to the rectifier diode.
  • LLC circuit includes resonant capacitor, resonant inductance, transformer excitation inductance, transformer and rectifier.
  • the LLC circuit includes the following types: a half-bridge type (asymmetric type) LLC and a full-bridge type (symmetric type) LLC.
  • the primary side of the half-bridge topology is two switching devices, while the primary side of the full-bridge topology is four switching devices;
  • the input voltage waveform of the half-bridge LLC is a square wave whose positive amplitude is the bus voltage and the negative amplitude is zero, while the input voltage waveform of the full-bridge LLC is a square wave whose positive and negative amplitudes are both bus voltage values;
  • the half-bridge type is suitable for low-power occasions, while the full-bridge type is suitable for high-power occasions.
  • the application provides a planar transformer, a power conversion circuit and an adapter.
  • the planar transformer provided in the embodiment of the present application may be set in a power conversion circuit, and the power conversion circuit may be set in an adapter.
  • the adapter can be applied to a scenario of charging or powering a device.
  • FIG. 2 shows a possible application scenario of the embodiment of the present application.
  • This application scenario includes an external power supply 20 , an adapter 21 and a device to be charged 22 .
  • the device to be charged 22 may include, but not limited to, a server device, a communication device, a cellular phone, a notebook computer, a mobile terminal and the like. This application is not limited to this.
  • the adapter 21 can be connected to the external power supply 20, and the power conversion circuit included in the adapter 21 can be used to convert the voltage provided by the external power supply 20 into a voltage that meets the charging or power supply standard voltage of the device to be charged 22, and perform charging for the device 223 to be charged. Charge or power.
  • the planar transformer provided by the embodiment of the present application can reduce the noise interference generated by the adapter 21 or generated when the power conversion circuit in the adapter 21 is working.
  • the noise interference generated by the power conversion circuit may include common mode noise.
  • the above-mentioned power conversion circuit can also be called an adapter converter.
  • an adapter converter may include, but is not limited to, a flyback converter.
  • Common mode noise is mainly caused by the interaction between various devices in the adapter circuit, thereby generating common mode noise to the reference ground.
  • FIG. 3 shows a schematic structural diagram of a power conversion circuit, where the power conversion circuit 30 generally includes a primary circuit 31 , a secondary circuit 32 and a transformer 33 .
  • the primary circuit 31 may include, but is not limited to, a primary switch tube, a primary resonant inductor, and a primary resonant capacitor. Further, the primary circuit 31 may also include a rectification circuit.
  • the primary switch tube may also be referred to as a primary power switch tube.
  • the secondary circuit 32 generally includes a secondary rectifier, a secondary resonant inductor, a secondary resonant capacitor, and the like.
  • the transformer 33 includes a primary winding, a magnetic core and a secondary winding. The primary winding can be connected with the primary switching tube, the primary resonant inductor and the primary resonant capacitor, and the secondary winding can be connected with the secondary rectifier, the secondary resonant inductor and the secondary resonant capacitor.
  • the node connected to any one of the two ends of the primary resonant capacitor is the potential static point of the primary circuit 31 , or the ground node of the primary circuit 31 may also be the potential static point of the primary circuit 31 .
  • the node connected to any one of the two ends of the secondary resonant capacitor is the potential static point of the secondary circuit 32 , or the ground node of the secondary circuit 32 may also be the potential static point of the secondary circuit 32 .
  • the external power supply 20 rectifies and filters the input AC power through the primary circuit 31 , and then converts it into a stable DC power for input to the primary winding of the transformer 33 .
  • the primary switching tube connected to the primary winding couples the voltage on the primary winding to the secondary winding by switching the on state and the off state at high frequency. After the voltage coupled to the secondary winding is rectified and filtered by the secondary circuit 32 , it outputs direct current to the device to be charged 22 to charge or supply power for the device to be charged 22 .
  • the primary switching tube in the primary circuit 31 will generate a jump voltage V p due to the high-frequency switching of the on-state and the off-state, and the secondary rectifier tube will generate a jump voltage V p due to the high-frequency switching
  • the on-state and off-state will generate jump voltage V s .
  • the primary switch tube and the secondary rectifier tube in the above embodiment can be a relay, a metal oxide semiconductor field effect transistor (MOSFET), a bipolar junction transistor (bipolar junction transistor, BJT), an insulated gate
  • MOSFET metal oxide semiconductor field effect transistor
  • BJT bipolar junction transistor
  • IGBT insulated gate bipolar transistor
  • SiC silicon carbide
  • the above parasitic capacitance includes the parasitic capacitance C ps formed by the primary winding to the secondary winding, and the parasitic capacitance C sp formed by the secondary winding to the primary winding.
  • the jump voltage V p in the primary circuit 31 generates a noise current I ps flowing to the ground through C ps
  • the jump voltage V s in the secondary circuit 32 generates a noise current I sp flowing to the ground through C sp .
  • the above noise current I ps and noise current I sp are common mode noise.
  • the power conversion circuit 30 in FIG. 3 may also include a line impedance stabilization network (line Impedance stabilization network, LISN) circuit (not shown in FIG. 3 ).
  • the LISN circuit is a test circuit for detecting the total amount of common-mode noise current flowing into the ground when the power conversion circuit 30 is working. The current can be equivalent to the common mode noise generated by the power conversion circuit 30 .
  • FIG. 1A is a schematic diagram of a planar transformer with a shielded winding structure
  • FIG. 1B is a schematic diagram of a planar transformer with a zero-noise matching layer structure.
  • the planar transformer structure shown in Figure 1A needs to add an additional shielding winding at the overlap of the primary and secondary windings. Therefore, the number of layers of the PCB winding board is increased by at least 2 layers, so the loss is also increased.
  • planar transformer structure Due to the continuous improvement of the current expectations for the power density and common-mode noise suppression effect of the adapter, the existing planar transformer structure is still difficult to support the high power density and high efficiency requirements of the current adapter for the suppression of common-mode noise. Therefore, it is necessary to design a planar transformer structure that has a better suppression effect on common-mode noise than the existing structure.
  • the embodiment of the present application proposes a planar transformer capable of effectively suppressing common-mode noise, and a power conversion circuit or an adapter using the planar transformer can have higher common-mode noise suppression performance.
  • the embodiment of the present application also provides a power conversion circuit using the planar transformer, and an adapter using the power conversion circuit. Specifically, for the power conversion circuit and the adapter, reference may be made to the descriptions in FIG. 2 and FIG. 3 , which will not be repeated here.
  • the planar transformer provided in the embodiment of the present application is mainly composed of a magnetic core and a winding coil, wherein the winding coil can be fired with a traditional copper (high conductivity material) wire, or it can be formed by etching a multilayer PCB .
  • the transformer obtained by multilayer PCB etching is flatter than the transformer obtained by traditional winding, so it will be called a planar transformer.
  • FIG. 4A shows a schematic structural view and a schematic cross-sectional view of a planar transformer according to an embodiment of the present application.
  • the planar transformer 40 includes N groups of transformer substructures 41 (one group is shown in FIG. 4A ), and the N
  • Each group of transformer substructures in the group of transformer substructures 41 includes a first magnetic core 42 , a second magnetic core 43 and a printed circuit board PCB winding board 44 , and N is a positive integer.
  • the first composite winding layer 441 includes at least one set of first sub-winding layers and at least one second sub-winding layer 46; wherein, each set of first sub-winding layers includes two adjacent first sub-winding layers 45; At least one second sub-winding layer 46 is disposed between two first sub-winding layers 45 in each set of first sub-winding layers.
  • the second composite winding layer 442 includes at least one group of third sub-winding layers and at least one layer of fourth sub-winding layers 48; wherein, each group of third sub-winding layers includes two adjacent third sub-winding layers 47; At least one fourth sub-winding layer 48 is disposed between two third sub-winding layers 47 in each group of second composite winding layers.
  • the total number of layers of at least two first sub-winding layers 45 is the same as the total number of layers of at least two third sub-winding layers 47; the winding circles of each first sub-winding layer 45 and each third sub-winding layer 47 The number is the same; the total number of layers of at least one second sub-winding layer 46 is the same as the total number of layers of said at least one fourth sub-winding layer 48; the second sub-winding layer 46 of each layer is the same as the fourth sub-winding layer of each layer 48 have the same number of winding turns and opposite winding directions.
  • the number of coil turns on each neutron winding layer can be an integer or not.
  • the number of turns of the coil can be 2.5 turns, 3.8 turns, etc., but the application implements Examples are not limited to this.
  • the PCB winding board 44 in the above-mentioned planar transformer 40 is arranged on a multi-layer PCB assembly.
  • the multilayer PCB assembly may be a printed circuit board based on epoxy glass fiber cloth substrate, composite substrate, ceramic substrate, metal substrate or thermoplastic substrate.
  • the embodiment of the present application does not limit the materials of the first magnetic core 42 and the second magnetic core 43 .
  • the above-mentioned first magnetic core 42 and second magnetic core 43 may be of EE type, EI type or RM type structure.
  • the winding posts of the first magnetic core 42 and the second magnetic core 43 may be provided with windings composed of multi-layer circuit boards.
  • FIG. 4A shows a schematic diagram of the cross section of the PCB winding board 44 .
  • the section can be located on the ZR plane formed by the Z axis and the R axis, wherein the Z axis is vertically located on the plane where the surface of the PCB winding board 44 is (can be referred to as the first plane), and the R axis is perpendicular to the Z axis and points to the PCB.
  • the direction of the center of the winding plate 44 can be located on the ZR plane formed by the Z axis and the R axis, wherein the Z axis is vertically located on the plane where the surface of the PCB winding board 44 is (can be referred to as the first plane), and the R axis is perpendicular to the Z axis and points to the PCB.
  • the direction of the center of the winding plate 44 is
  • At least two first sub-winding layers 45 and at least one second sub-winding layer 46 in the first composite winding layer 441, at least two third sub-winding layers 47 and at least one second sub-winding layer 442 in the second composite winding layer 441 The four sub-winding layers 48 are located in the above section.
  • each first sub-winding layer 45 in the above-mentioned first composite winding layer 441 may be connected in series, and the coils arranged on each second sub-winding layer 46 may be connected in series.
  • the second sub-winding layer 46 is connected to the secondary circuit 32 in the power conversion circuit 30 after being connected in series. If the first sub-winding layer 45 is connected to the secondary circuit 32 in the power conversion circuit 30 after being connected in series, the second sub-winding layer 46 is connected to the primary circuit 31 in the power conversion circuit 30 after being connected in series.
  • the sub-winding connected to the primary circuit 31 in the power conversion circuit 30 may be referred to as a primary side/primary sub-winding layer, which may be denoted by P or P 1 , P 2 . . . P n in the following.
  • the sub-winding connected to the secondary circuit 32 in the power conversion circuit 30 may be referred to as a secondary/secondary sub-winding layer, which may be denoted by S, or may be denoted by S 1 , S 2 . . . S n in the following.
  • each third sub-winding layer 47 in the second compound winding layer 442 may be connected in series, and the coils disposed on each fourth sub-winding layer 48 in the second compound winding layer 442 may be connected in series.
  • the fourth sub-winding layer 48 is connected to the secondary circuit 32 in the power conversion circuit 30 after being connected in series. If the third sub-winding layer 47 is connected to the secondary circuit 32 in the power conversion circuit 30 after being connected in series, the fourth sub-winding layer 48 is connected to the primary circuit 31 in the power conversion circuit 30 after being connected in series.
  • the sub-winding connected to the primary circuit 31 in the power conversion circuit 30 may be referred to as a primary side/primary sub-winding layer.
  • the sub-winding connected to the secondary circuit 32 in the power conversion circuit 30 may be referred to as a secondary/secondary sub-winding layer.
  • FIG. 4B shows a schematic cross-sectional view of a planar transformer in an embodiment of the present application
  • the first composite winding layer 441 includes at least one set of first composite winding sub-layers 4411
  • Each group of first composite winding sub-layers 4411 in the at least one group of first composite winding sub-layers 4411 includes: two adjacent layers of first sub-winding layers 45 and at least one layer second sub-winding layer 46 .
  • the second composite winding layer 442 includes at least one group of second composite winding sublayers 4421, and each group of second composite winding sublayers 4421 in the at least one group of second composite winding sublayers 4421 includes: two adjacent A third sub-winding layer 47 and at least one fourth sub-winding layer 48 arranged between the two adjacent layers.
  • the first composite winding layer 441 only includes two layers of the first sub-winding layer 45 and one layer of the second sub-winding layer 45
  • the first sub-winding layer 45 and the secondary circuit in the power conversion circuit 30 32 connection when the second sub-winding layer 46 is connected to the primary circuit 31 in the power conversion circuit 30, the structure of the first composite winding layer 441 is the first sub-winding layer 45-the second sub-winding layer 46-the first sub-winding layer 45 (i.e.
  • the structure of the layer 441 is the first sub-winding layer 45 - the second sub-winding layer 46 - the first sub-winding layer 45 (ie S-P-S structure).
  • the first composite winding layer 441 includes at least two layers of the first sub-winding layer 45 and at least one layer of the second sub-winding layer 45, if the at least two layers of the first sub-winding layer 45 and the power conversion circuit are connected in series
  • the secondary circuit 32 in 30 is connected, and the at least one second sub-winding layer 46 is connected to the primary circuit 31 in the power conversion circuit 30 after being connected in series
  • the structure of the first composite winding layer 441 is the first sub-winding layer 45 - second sub-winding layer 46 - first sub-winding layer 45 ... first sub-winding layer 45 - second sub-winding layer 46 - first sub-winding layer 45 (ie P-S-P ... P-S-P structure).
  • the at least two first sub-winding layers 45 are connected to the primary circuit 31 in the power conversion circuit 30 after being connected in series, the at least one second sub-winding layer 46 is connected to the secondary circuit in the power conversion circuit 30 after being connected in series.
  • the circuit 32 is connected, and the structure of the first composite winding layer 441 is the first sub-winding layer 45-the second sub-winding layer 46-the first sub-winding layer 45...the first sub-winding layer 45-the second sub-winding layer 46-the first Sub-winding layers 45 (ie S-P-S . . . S-P-S).
  • the structure of the second composite winding layer 442 is the third sub-winding layer 47-the fourth sub-winding layer 48-the third sub-winding layer 47 (ie P-S-P structure); if the third sub-winding layer 47 is connected to the primary circuit 31 in the power conversion circuit 30, when the third sub-winding layer 47 is connected to the secondary circuit 32 in the power conversion circuit 30, the structure of the second composite winding layer 442 It is the third sub-winding layer 47-the fourth sub-winding layer 48-the third sub-winding layer 47 (that is, the S-P-S structure).
  • the second composite winding layer 442 includes at least two layers of the third sub-winding layer 47 and at least one layer of the fourth sub-winding layer 48
  • the at least two layers of the third sub-winding layer 47 and the power conversion circuit are connected in series
  • the secondary circuit 32 in 30 is connected, and the at least one fourth sub-winding layer 48 is connected to the primary circuit 31 in the power conversion circuit 30 after being connected in series
  • the structure of the second composite winding layer 442 is the third sub-winding layer 47 - fourth sub-winding layer 48 - third sub-winding layer 47 ... third sub-winding layer 47 - fourth sub-winding layer 48 - third sub-winding layer 47 (ie P-S-P ... P-S-P structure).
  • the at least two third sub-winding layers 47 are connected to the primary circuit 31 in the power conversion circuit 30 after being connected in series
  • the at least one fourth sub-winding layer 48 is connected to the secondary in the power conversion circuit 30 after being connected in series.
  • the circuit 32 is connected, and the structure of the second composite winding layer 442 is the third sub-winding layer 47-the fourth sub-winding layer 48-the third sub-winding layer 45...the third sub-winding layer 47-the fourth sub-winding layer 48-the third Sub-winding layers 47 (ie S-P-S . . . S-P-S).
  • the first composite winding layer 441 and the second composite winding layer 442 have smaller leakage inductance, thereby reducing the loss of the planar transformer 40 , the leakage inductance refers to the magnetic flux leaked in the planar transformer 40 .
  • FIG. 5 shows a schematic diagram of the planar structure of the first sub-winding layer in the planar transformer of the embodiment of the present application, wherein the first sub-winding layer 45 in FIG. 5 may be the first composite winding layer 441 Any one of the at least two layers of the first sub-winding layer 45.
  • the planar structure of the third sub-winding layer 47 in the planar transformer 40 is based on the same idea as that of the first sub-winding layer 45 , which will not be repeated here.
  • each first sub-winding layer 45 of the at least two layers of first sub-winding layers 45 is connected in series to form the first winding, and the at least two layers of third sub-winding layers Each third sub-winding layer is connected in series to form the third winding.
  • each first sub-winding layer 45 of the at least two first sub-winding layers 45 can be connected in series through a via hole on each first sub-winding layer 45 (not shown in FIG. 5 ), so
  • Each of the third sub-winding layers 47 in the at least two layers of the first sub-winding layer 47 is connected in series through the via holes on the first sub-winding layer 47 of each layer.
  • those skilled in the art can make the connection according to actual engineering needs.
  • the number of via holes and the location of the via holes can be flexibly set to better cancel the noise in the planar transformer.
  • FIG. 6 shows a schematic diagram of the planar structure of the second sub-winding layer and the fourth sub-winding layer in the planar transformer of the embodiment of the present application, wherein the second sub-winding layer 46 in FIG. 6 can be is any one of the at least one first sub-winding layer 45 in the first composite winding layer 441 .
  • the fourth sub-winding layer 48 in FIG. 6 can be any one of the at least one fourth sub-winding layer 48 in the second composite winding layer 442.
  • the second sub-winding layer 46 can be connected in series with the fourth sub-winding layer 48, as shown in FIG.
  • the second sub-winding layer 46 and the fourth sub-winding layer 48 when printing the second sub-winding layer 46 and the fourth sub-winding layer 48, the second sub-winding layer can be directly The layer 46 and the fourth sub-winding layer 48 are printed on the same PCB board, so that the second sub-winding layer 46 and the fourth sub-winding layer 48 are connected in series.
  • the second sub-winding layer 46 and the fourth sub-winding layer 48 may also be connected in series through via holes (not shown in FIG. 6 ), which should be known by those skilled in the art, and will not be repeated here.
  • FIG. 7 shows a second schematic diagram of the planar structure of the second sub-winding layer and the fourth sub-winding layer in the planar transformer of the embodiment of the present application. It can be seen from FIG. 7 that those skilled in the art can flexibly set the number of turns of the second sub-winding layer 46 and the fourth sub-winding layer 48 according to actual engineering needs, so as to cancel the noise in the planar transformer.
  • each second sub-winding layer in the at least one layer of second sub-winding layers 46 is connected in series to form the second winding, and the at least one layer of fourth sub-winding layers Each of the fourth sub-winding layers is connected in series to form the fourth winding.
  • each first sub-winding layer 46 in the at least one second sub-winding layer 46 can be connected in series through a via hole on each first sub-winding layer 46 (not shown in FIGS. 6 and 7 ).
  • each third sub-winding layer 47 in the first sub-winding layer 47 of the at least one layer is connected in series through the via hole on each layer of the third sub-winding layer 47.
  • those skilled in the art can The number of via holes and the location of the via holes need to be flexibly set to better cancel the noise in the planar transformer.
  • the potential static point of the primary circuit 31 of the power conversion circuit 30 is connected to one end of the second winding and one end of the fourth winding, and the potential static point of the secondary circuit 32 of the power conversion circuit 30 is connected to one end of the fourth winding.
  • One end of the first winding is connected to one end of the third winding.
  • one end of the second winding and one end of the fourth winding can be connected to the primary switch tube of the primary circuit 31, and one end of the second winding can correspond to one end of the last coil of the second winding, and the fourth winding One end may correspond to one end of the coil of the last layer of the fourth winding.
  • One end of the first winding and one end of the third winding can be connected to the secondary rectifier tube of the secondary circuit 32, one end of the first winding can correspond to one end of the last layer of the first winding, and the third winding One end may correspond to one end of the coil of the last layer of the third winding.
  • the potential static point of the primary circuit 31 of the power conversion circuit 30 is connected to one end of the second winding and one end of the fourth winding, and the potential static point of the secondary circuit of the power conversion circuit is connected to one end of the first winding. And after one end of the third winding is connected: the second winding and the fourth winding are connected in series to form a primary/primary winding, and the first winding and the third winding are connected in series to form a secondary/secondary winding.
  • the potential static point of the primary circuit 31 of the power conversion circuit 30 may be the node where the primary side/primary winding is connected to the primary filter capacitor.
  • the potential static point of the primary circuit 31 of the power conversion circuit 30 may also be the ground node of the primary circuit 31 .
  • the potential static point of the secondary circuit 32 of the above-mentioned power conversion circuit 30 may be the node where the secondary side/secondary winding is connected to the secondary filter capacitor.
  • the potential static point of the secondary circuit 32 of the power conversion circuit 30 may also be the ground node of the secondary circuit 32 .
  • the embodiment of the present application may be applied to a symmetrical LLC circuit.
  • a resonant inductor and a resonant capacitor are divided into two and arranged symmetrically on both sides of a planar transformer.
  • the embodiments of the present application may be applied to any static point symmetric topology scenario.
  • the symmetrical arrangement design of the planar transformer 40 it can be ensured that the displacement current on the first magnetic core 42 on the planar transformer 40 and the displacement current on the second magnetic core 43 can cancel each other out, and the primary side/primary winding and the secondary side/secondary
  • the reasonable interleaving of the windings with the same potential (dv/dt) distribution of the windings can approximately achieve zero common-mode noise, thereby reducing the common-mode noise of the planar transformer, and the interleaved design of the windings can also reduce the winding loss.
  • the common mode noise mainly includes two noise current sources, one is the jump voltage V p in the primary circuit 31 passing through C ps to generate a noise current I ps flowing to the ground, and the other is the jump voltage in the secondary circuit 32
  • the varying voltage V s generates a noise current I sp flowing to ground through C sp .
  • the above noise current I ps and noise current I sp are common mode noise.
  • FIG. 8 is a schematic diagram of a plane structure of a planar transformer, assuming that the endpoints of the first sub-winding layer 45 are c1-d1, and the second sub-winding layers 46(1)-46(2)
  • the end point is b1-a1
  • the second sub-winding layer 46 (1) is the first turn of the second sub-winding layer 46
  • the second sub-winding layer 46 (2) is the second turn of the second sub-winding layer 46
  • the endpoint of the third sub-winding layer 47 is c2-d2
  • the endpoint of the fourth sub-winding layer 48(1)-48(2) is b2-a2
  • the fourth sub-winding layer 48(1) is the second sub-winding layer
  • the first turn of the winding layer 48 , the second sub-winding layer 48 ( 2 ) is the second turn of the second sub-winding layer 48 .
  • point a is the primary side/primary side high voltage jump point endpoint
  • c is the secondary side/secondary side high voltage jump point endpoint
  • first sub-winding layer 45 and the second sub-winding layer 46(1)- The magnitude of the I CM1 displacement current between 46(2) is:
  • ICM2 displacement current size between the third sub-winding layer 47 and the fourth sub-winding layer 48(1)-48(2) is:
  • the voltage jump point of the primary side/primary side high voltage jump point terminal and the secondary side/secondary side high voltage jump point terminal point are the same in size and opposite in direction. That is to say: as well as
  • the difference between the voltage passing through the second winding and the set voltage is the first voltage
  • the voltage passing through the fourth winding is equal to the set voltage
  • the difference is a second voltage
  • the first voltage and the second voltage are the same in magnitude and opposite in direction.
  • the set voltage can be 0, or other values, which can be determined by those skilled in the art according to the static point voltage of the primary circuit 31 in the power conversion circuit 30.
  • the static point voltage can be equal to half of the bus voltage.
  • each second sub-winding layer 46 in the at least one second sub-winding layer 46 forms a first sub-winding layer 46 with an adjacent first sub-winding layer 45.
  • the parasitic capacitances are the same in size; each fourth sub-winding layer 48 in the at least one fourth sub-winding layer 48 has the same size as the second parasitic capacitance formed by the adjacent third sub-winding layer 47; the first parasitic The capacitance is the same as the second parasitic capacitance.
  • each second sub-winding layer 46 in the at least one second sub-winding layer 46 forms a first sub-winding layer 46 with an adjacent first sub-winding layer 45.
  • the size of a parasitic capacitance is within the set capacitance size interval; the set capacitance size interval formed by each fourth sub-winding layer 48 in the at least one fourth sub-winding layer 48 and the adjacent third sub-winding layer 47 Inside.
  • each second sub-winding layer 46 in at least one second sub-winding layer 46 and the adjacent first sub-winding layer 45 means that there is no gap between the second sub-winding layer 46 and the first sub-winding layer 45. There are other winding layers.
  • the planar transformer provided in the embodiment of the present application is based on the principle of symmetric cancellation, and its noise index is much better than that shown in FIG. 1A and FIG. 1B .
  • the switching frequency of the switching devices in the power conversion circuit 30 is 500KHz
  • the common mode noise is reduced by 22dB compared with the zero noise matching layer solution in FIG. 1B
  • the common mode noise is also significantly reduced at other switching frequencies
  • the loss of the planar transformer provided in the embodiment of the present application is reduced by about 20% compared with the existing planar transformer.
  • the number of transformer substructures 41 in the planar transformer 40 may be N (for example, one, two or more), which is not limited in this embodiment of the present application.
  • N for example, one, two or more
  • FIG. 9 is a schematic plan view of the transformer substructure in a planar transformer; the first magnetic core 42 and the second magnetic core 43 are arranged along a first direction, and the first direction is parallel to the PCB winding board.
  • the first magnetic cores 42 and the second magnetic cores 43 arranged along the first direction jointly constitute each group of transformer substructures 41 in the N groups of transformer substructures 41 .
  • FIG. 10 is a schematic diagram of a plane structure of a planar transformer; the N groups of transformer substructures Each set of transformer substructures in 41 is arranged along the first direction and or the second direction, and the second direction is parallel to the PCB winding board 44 and perpendicular to the first direction.
  • each set of transformer substructures in the N sets of transformer substructures 41 in the embodiment of the present application is not limited to the way defined in the above embodiment, as shown in FIG. 11 , which shows several planar transformers Possible arrangements of transformer substructures in .
  • Fig. 11 takes planar transformer 40 to include 4 transformer substructures 41 as an example, (A), (B), (C) and (D) in Fig. 11 all can be possible transformer substructures 41 in planar transformer 40 arrangement, but the present application is not limited to the above arrangement.
  • the transformer substructure 41 in the planar transformer 40 can be symmetrical with at least one axis of symmetry or in a symmetrical manner, the planar transformer 40 can maintain a better suppression effect of common-mode noise.
  • a symmetrical cancellation method is adopted, which significantly reduces the common mode noise without increasing the volume compared with the existing technology, and compared with the existing scheme of adding shielding windings , can reduce the shielding layer of at least two layers, making the winding layer of the planar transformer simpler and reducing the loss; compared with the zero-noise matching layer scheme, the number of adjacent layers of the original and secondary sides does not need to be consistent, This simplifies the design of the windings and ultimately reduces the EMI suffered by the circuit significantly.
  • the embodiment of the present application also provides a power conversion circuit, which includes: a primary circuit, a secondary circuit, and the planar transformer 40 described in the above embodiment, the planar transformer 40 is arranged between the primary circuit and the secondary circuit In between, the power conversion circuit is used to convert the voltage provided by the external power supply into a voltage that meets the charging or power supply standard of the device to be charged, and to charge or supply power to the device to be charged.
  • a power conversion circuit which includes: a primary circuit, a secondary circuit, and the planar transformer 40 described in the above embodiment, the planar transformer 40 is arranged between the primary circuit and the secondary circuit In between, the power conversion circuit is used to convert the voltage provided by the external power supply into a voltage that meets the charging or power supply standard of the device to be charged, and to charge or supply power to the device to be charged.
  • the embodiment of the present application also provides an adapter, which includes the power conversion circuit described in the above embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种平面变压器、电源转换电路以及适配器,该平面变压器包括N组变压器子结构,每组变压器子结构中包括第一磁芯、第二磁芯及PCB绕组板;PCB绕组板包括第一复合绕组层以及第二复合绕组层;第一复合绕组层包括第一子绕组层及第二子绕组层;每相邻两层第一子绕组层之间设置第二子绕组层;第二复合绕组层包括两层第三子绕组层及一层第四子绕组层;每相邻两层第三子绕组层之间设置第四子绕组层;第一子绕组层与第三子绕组层绕制圈数相同;第二子绕组层与第四子绕组层绕制圈数相同,绕制方向相反。利用本申请提供的平面变压器,平面变压器内的原边绕组以及副边绕组采用对称相消的方式进行设计,能在很小体积下,达到更好的共模噪声抑制效果。

Description

一种平面变压器、电源转换电路以及适配器
相关申请的交叉引用
本申请要求在2021年12月03日提交中国专利局、申请号为202111466811.7、申请名称为“一种平面变压器、电源转换电路以及适配器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及变压器领域,特别涉及一种平面变压器、电源转换电路以及适配器。
背景技术
适配器又称交换式电源、开关变换器,被广泛应用在各个领域。适配器的功能是将一个类型的输入电压,通过不同形式的架构转换为用户端所需求的电压或电流。适配器的输入是交流电源(例如市电)或是直流电源,输出是需要使用直流电源的设备。
适配器在工作过程中遭受噪声干扰的问题非常突出,其这些噪声主要包括:差模噪声以及共模噪声。在实际应用中,往往共模噪声是导致电磁干扰(electro-magnetic interference,EMI)的主要因素。而共模噪声主要包括由电源转换电路中各器件相互作用而产生的对参考地之间的噪声,这些共模噪声会沿着电路网络传导和辐射到用电设备,并导致该用电设备遭受EMI,因此,目前适配器对噪声抑制的要求非常严格。
为降低共模噪声产生的干扰,目前常采用更多的滤波措施来实现对于EMI的抑制,比如增大共模电感或者增大电源转换电路中跨接初次级电路之间电容的容量等等措施,但这些措施会增加适配器的成本和体积。随着平面变压器抑制噪声技术的研究,在适配器中使用平面变压器,对于抑制共模噪声能取得较好的效果。
平面变压器(planar transformer)是一种高频、高度很低且工作频率很高的变压器结构。平面变压器与传统的变压器相比最大的区别在磁芯及线圈绕组。平面变压器采用小尺寸磁芯,由高频功率铁氧体材料制成,在高频下有较低的磁芯损耗;绕组采用多层(printed circuit board,PCB)迭代绕制而成,绕组或铜片迭在平面的铁芯上构成变压器的磁回路。平面变压器具有低的直流铜阻、低的漏感和分布电容。目前较为常见的为零噪声匹配层(paired-layer method)结构的平面变压器,参阅图1A以及图1B所示,图1A为屏蔽绕组结构的平面变压器示意图,图1B为零噪声匹配层结构的平面变压器示意图。
随着对适配器的功率密度及共模噪声抑制效果期望的不断提升,图1A以及图1B所示的平面变压器结构对于共模噪声的抑制,难以支撑目前适配器对于噪声抑制的要求。有鉴于此,需要设计一种相比于现有结构对共模噪声抑制效果更好的平面变压器结构。
发明内容
本申请提供一种平面变压器、电源转换电路以及适配器,采用对称相消的方式,能够在很小的体积下,达到更好的共模噪声抑制效果。
第一方面,本申请提供一种平面变压器,平面变压器包括N组变压器子结构,N组变 压器子结构中的每组变压器子结构中包括第一磁芯、第二磁芯以及印刷电路板PCB绕组板,N为正整数;PCB绕组板包括:第一复合绕组层以及第二复合绕组层,第一复合绕组层绕制在第一磁芯上,第二复合绕组层绕制在第二磁芯上;第一复合绕组层中包括至少一组第一子绕组层以及至少一层第二子绕组层;其中,每组第一子绕组层包括位置相邻的两层第一子绕组层;每组第一复合绕组层中两层第一子绕组层之间设置有至少一层第二子绕组层;第二复合绕组层中包括至少一组第三子绕组层以及至少一层第四子绕组层;其中,每组第三子绕组层包括位置相邻的两层第三子绕组层;每组第二复合绕组层中两层第三子绕组层之间设置有至少一层第四子绕组层;至少两层第一子绕组层的总层数与至少两层第三子绕组层的总层数相同;每层第一子绕组层与每层第三子绕组层的绕制圈数相同;至少一层第二子绕组层的总层数与至少一层第四子绕组层的总层数相同;每层第二子绕组层与每层第四子绕组层的绕制圈数相同,绕制方向相反。
本申请提供的平面变压器结构,采用了对称相消方式,相比现有技术在不提升体积的前提下,明显的降低了共模噪声,相比于现有的增加屏蔽绕组的方案,可以减小至少两层以上的屏蔽层,在制作平面变压器的绕组层时更加简单,并且降低了损耗;而相比于零噪声匹配层方案,原副边的相邻层圈数无需一致,从而使得绕组的设计简单,最终使得电路遭受的EMI显著减小。
作为一种可能的实施方式,至少两层的第一子绕组层中的每层第一子绕组层串联连接构成第一绕组,至少两层的第二子绕组层中的每层第二子绕组层串联连接构成第二绕组,至少一组的第三子绕组层中的每层第三子绕组层串联连接构成第三绕组,至少一层的第四子绕组层中的每层第四子绕组层串联连接构成第四绕组。至少两层的第一子绕组层中的每个第一子绕组层可以通过每层第一子绕组层上的过孔进行串联,至少两层的第一子绕组层中的每个第三子绕组层通过每层第一子绕组层上的过孔进行串联,本领域技术人员可以根据实际工程需要对过孔的数量以及过孔的位置,进行灵活设置,以更好的实现平面变压器中的噪声的抵消。作为一种可能的实施方式,第一绕组与第三绕组串联连接;第二绕组与第四绕组串联连接。
作为一种可能的实施方式,电源转换电路的初级电路的电位静点与第二绕组一端以及第四绕组一端连接,电源转换电路的次级电路的电位静点与第一绕组一端以及第三绕组一端连接,电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
第二绕组一端以及第四绕组一端可以连接初级电路的初级开关管,第二绕组一端可以对应于第二绕组的最后一层线圈的一端,第四绕组一端可以对应于第四绕组的最后一层线圈的一端。第一绕组一端以及第三绕组一端可以连接次级电路的次级整流管,第一绕组一端可以对应于第一绕组的最后一层线圈的一端,第三绕组一端可以对应于第三绕组的最后一层线圈的一端。
作为一种可能的实施方式,第二绕组上流经的电压与设定电压之差为第一电压,第四绕组上流经的电压与设定电压之差为第二电压,第一电压与第二电压大小相同且方向相反。
作为一种可能的实施方式,电源转换电路的初级电路的电位静点与第一绕组一端以及第三绕组一端连接,电源转换电路的次级电路的电位静点与第二绕组一端以及第四绕组一端连接,电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
在电源转换电路的初级电路的电位静点与第二绕组一端以及第四绕组一端连接,电源转换电路的次级电路的电位静点与第一绕组一端以及第三绕组一端连接后:第二绕组与第四绕组共同串联构成原边/初级绕组,第一绕组与第三绕组共同串联构成副边/次级绕组。上述电源转换电路的初级电路的电位静点可以是原边/初级绕组与初级滤波电容相连的节点。或者,上述电源转换电路的初级电路的电位静点也可以是初级电路的地节点。上述电源转换电路的次级电路的电位静点可以是副边/次级绕组与次级滤波电容相连的节点。或者,上述电源转换电路的次级电路的电位静点也可以是次级电路的地节点。
第二绕组一端以及第四绕组一端可以连接次级电路的次级整流管,第二绕组一端可以对应于第二绕组的最后一层线圈的一端,第四绕组一端可以对应于第四绕组的最后一层线圈的一端。第一绕组一端以及第三绕组一端可以连接初级电路的初级开关管,第一绕组一端可以对应于第一绕组的最后一层线圈的一端,第三绕组一端可以对应于第三绕组的最后一层线圈的一端。
作为一种可能的实施方式,第一绕组上经过的电压与设定电压之差为第三电压,第三绕组上经过的电压与设定电压之差为第四电压,第三电压与第四电压大小相同且方向相反。
作为一种可能的实施方式,第一磁芯与第二磁芯沿第一方向排列,第一方向与PCB绕组板平行。本申请第一磁芯与第二磁芯沿第一方向排列,第一方向与PCB绕组板平行。沿第一方向排列的第一磁芯与第二磁芯共同构成N组变压器子结构中的每组变压器子结构。
作为一种可能的实施方式,N组变压器子结构中的每组变压器子结构,沿第一方向和或第二方向排列,第二方向与PCB绕组板平行,且与第一方向垂直。此外,实际上在保证平面变压器中的变压器子结构能存在至少一条对称轴或一种对称方式进行对称时,平面变压器均能保持较好的共模噪声的抑制效果。
作为一种可能的实施方式,第一复合绕组层中包括至少一组第一复合绕组分层,至少一组第一复合绕组分层中的每组第一复合绕组分层中包括两层第一子绕组层以及至少一层第二子绕组层;第一复合绕组分层中两层第一子绕组层之间设置有至少一层第二子绕组层;第二复合绕组层中包括至少一组第二复合绕组分层,至少一组第二复合绕组分层中的每组第二复合绕组分层中包括两层第三子绕组层以及至少一层第四子绕组层;第二复合绕组分层中两层第三子绕组层之间设置有至少一层第四子绕组层。每个复合绕组层中可能包括多个复合绕组分层,通过多个分层,来增加共模噪声抑制效果。
作为一种可能的实施方式,至少一层第二子绕组层中的每个第二子绕组层与相邻的第一子绕组层形成的第一寄生电容大小相同;至少一层第四子绕组层中的每个第四子绕组层与相邻的第三子绕组层形成的第二寄生电容大小相同;第一寄生电容与第二寄生电容大小相同。本申请所限定的对称相消的第二条件:相邻的绕组层之间寄生电容相同。通过寄生电容大小的限定,间接的限定了绕组层间的间距,以及绕组层间的重叠覆盖情况。
作为一种可能的实施方式,为了降低制备平面电容器的难度,至少一层第二子绕组层中的每个第二子绕组层与相邻的第一子绕组层形成的第一寄生电容大小在设定电容大小区间内;至少一层第四子绕组层中的每个第四子绕组层与相邻的第三子绕组层形成的设定电容大小区间内。
作为一种可能的实施方式,第一磁芯和第二磁芯为EE型、EI型或者RM型结构。
第二方面,本申请提供一种电源转换电路,包括:初级电路、次级电路以及第一方面的平面变压器,平面变压器设置在初级电路和次级电路之间,电源转换电路用于将外部电 源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
第三方面,本申请提供一种适配器,包括第二方面的电源转换电路,电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1A为屏蔽绕组结构的平面变压器示意图;
图1B为零噪声匹配层结构的平面变压器示意图;
图2为平面变压器的应用场景示意图;
图3为一种电源转换电路的结构示意图;
图4A为本申请的平面变压器的结构示意图以及截面示意图;
图4B为本申请的平面变压器截面示意图;
图5为本申请的平面变压器中的第一子绕组层的平面结构示意图;
图6为本申请的平面变压器中的第二子绕组层以及第四子绕组层的平面结构示意图一;
图7为本申请的平面变压器中的第二子绕组层以及第四子绕组层的平面结构示意图二;
图8为本申请的平面变压器的平面结构示意图一;
图9为本申请的平面变压器中变压器子结构的平面结构示意图;
图10为本申请的平面变压器的平面结构示意图二;
图11为平面变压器中的变压器子结构可能的排布方式示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。有鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为使本申请的目的、特征和优点能够更加明显易懂,以及便于对本申请实施例技术方 案的充分理解,首先对本申请涉及的技术术语或概念进行介绍。
(1)平面变压器:区别于传统的变压器结构,平面变压器的磁芯、绕组是平面结构。磁芯一般采用小尺寸的E型、方型(rectangular module,RM)磁芯结构,绕组一般采用多层印刷电路板迭绕而成,这种设计有较小的漏感和分布电容,高度很小,可以有较高的工作频率。
(2)反激变换器(flyback converter):广泛应用于交流转直流(AC-DC)和直流转直流(DC-DC)场景,是较为常见的小功率适配器变换器,具有结构简单,成本低廉的优点。其核心部件包括功率开关管,变压器、二极管和电容。功率开关管由脉冲宽度调制控制,通过关断与导通在变压器初级线圈中产生高频方波信号,再感应耦合到变压器的次级线圈,实现能量的传递。通过与次级线圈连接的次级电路中的二极管和电容的滤波整流作用,在输出端得到稳定的直流输出。
(3)共模噪声:共模噪声又称为非对称噪声或线路对地的噪声,在使用交流电的电气设备都存在这种噪声,共模噪声的电流在输电线上以相同的方向流动且对地的相位保持相同,并通过地线返回。共模噪声可以通过在共模电感或者在输电线和地之间使用Y电容进行抑制。
(4)差模噪声:差模噪声又称为正常型、对称噪声或线路间噪声,它存在于交流线路和中性导线中,二者相位差为180°。差模噪声的电流沿着一条交流线流出,并沿着另一条交流线返回,在地线中不存在差模噪声电流。
(5)电位静点:在电路网络中,该电路网络的节点上的电压电位幅值在电路工作过程中保持相对恒定,没有高频的跳跃或者震荡。比如:电源转换电路的初级电路整流后的滤波电容和电源转换电路的次级电路整流后的滤波电容,这些电容的正极或者负极及直接与其相连接的网络节点即为电位静点。
(6)初级电路的动点:电源转换电路中的初级电路,随着初级开关管的开通与关断有着电压跳变的电路节点或者网络,如初级电路中的初级功率绕组与开关管连接的节点。
(7)次级电路的动点:电源转换电路中的次级电路,随着次级整流开关管(包括二极管)的开通与关断有着电压跳变得电路节点或者网络,如次级电路中的次级功率绕组与整流二极管连接的节点。
(8)对称电感-电感-电容组成谐振的变换器(inductor-inductor-capcitor,LLC)电路:LLC电路中包括谐振电容、谐振电感、变压器励磁电感、变压器和整流器组成。LLC电路包括以下几种类型:半桥型(非对称型)LLC以及全桥型(对称型)LLC。其中,从拓扑结构来看,半桥型的拓扑结构原边是两个开关器件,而全桥型的拓扑结构原边是四个开关器件;其次,从谐振腔网络的输入端电压波形看,半桥型LLC的输入端电压波形是正幅值为母线电压,负幅值为零的方波,而全桥型LLC的输入端电压波形是正负幅值均为母线电压值的方波;最后,从应用场合分析,半桥型适用于小功率场合,而全桥型适用于大功率场合。
本申请提供了一种平面变压器、电源转换电路以及适配器。其中,本申请实施例提供的平面变压器可以设置于电源转换电路中,所述电源转换电路可以设置于适配器中。
具体地,适配器可以应用于为设备充电或供电的场景。参阅图2所示,图2示出了本申请实施例的一种可能的应用场景。该应用场景包括外部电源20、适配器21以及待充电设备22。示例性的,所述待充电设备22可以包括但不限于服务器设备、通信设备、蜂窝电话、笔记本电脑、移动终端等等。本申请对此并不限定。通常情况下,适配器21可以 与外部电源20连接,适配器21包含的电源转换电路可以用于将外部电源20提供的电压转换为符合待充电设备22充电或供电标准电压,并为待充电设备223进行充电或供电。
本申请实施例提供的平面变压器能够降低适配器21产生的或适配器21中的电源转换电路工作时产生的噪声干扰,所述电源转换电路工作时产生的噪声干扰可以包括共模噪声。上述电源转换电路又可以称为适配器变换器。例如,适配器变换器可以但不限于包括反激变换器。共模噪声主要由适配器电路中各器件间相互作用,从而产生对参考地的共模噪声。
图3示出了一种电源转换电路的结构示意图,其中,电源转换电路30通常包括初级电路31、次级电路32以及变压器33。参阅图3所示,初级电路31可以但不限于包括初级开关管、初级谐振电感以及初级谐振电容等等。进一步的,初级电路31还可以包括整流电路。所述初级开关管还可以被称为初级功率开关管。次级电路32通常包括次级整流管、次级谐振电感以及次级谐振电容等等。变压器33包括原边绕组、磁芯以及副边绕组。原边绕组可以与初级开关管、初级谐振电感以及初级谐振电容相连,副边绕组可以与次级整流管、次级谐振电感以及次级谐振电容相连。
通常情况下,与初级谐振电容的两端中的任意一端相连的节点为初级电路31的电位静点,或者,初级电路31的地节点也可以为初级电路31的电位静点。与次级谐振电容的两端中的任意一端相连的节点为次级电路32的电位静点,或者,次级电路32的地节点也可以为次级电路32的电位静点。
下面结合图2和图3,简要介绍共模噪声的产生以及传输的方式。具体的,在电源转换电路30工作时,外部电源20将输入的交流电通过初级电路31进行整流滤波之后,转变为稳定的直流电输入至变压器33的原边绕组。与原边绕组相连的初级开关管通过高频次的切换导通状态与关断状态,将原边绕组上的电压耦合到副边绕组上。耦合到副边绕组的电压通过次级电路32的整流滤波之后,向待充电设备22输出直流电,为待充电设备22充电或供电。在上述电源转换电路30的工作过程中,初级电路31中的初级开关管由于高频次的切换导通状态与关断状态会产生跳变电压V p,次级整流管由于高频次的切换导通状态与关断状态,会产生跳变电压V s。上述实施例中的初级开关管以及次级整流管可以为继电器、金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET),双极结型管(bipolar junction transistor,BJT),绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),碳化硅(SiC)功率管等多种类型的开关器件中的一种或多种,本申请实施例对此不再一一列举。
而由于变压器33的原边绕组和副边绕组之间形成寄生电容,跳变电压V p和V s通过原边绕组和副边绕组之间形成寄生电容在电源转换电路30中产生共模噪声。具体的,上述寄生电容包括原边绕组对副边绕组形成的寄生电容C ps,以及副边绕组对原边绕组的寄生电容C sp。初级电路31中的跳变电压V p通过C ps产生流向地的噪声电流I ps,次级电路32中的跳变电压V s通过C sp产生流向地的噪声电流I sp。上述噪声电流I ps和噪声电流I sp即共模噪声。
需要说明的是,图3中的电源转换电路30还可以包括线路阻抗稳定网络(lineImpedance stabilization network,LISN)电路(图3中未示出)。所述LISN电路是一种测试电路,用于检测电源转换电路30工作时流入地的共模噪声电流总量,换言之,可以认为电源转换电路30流入LISN电路后,由LISN电路检测到的对地电流可以等效为电源转换电路30产生的共模噪声。
目前的可能平面变压器结构,可以参阅图1A以及图1B所示,图1A为屏蔽绕组结构的平面变压器示意图,图1B为零噪声匹配层结构的平面变压器示意图。其中,图1A所示的平面变压器结构在原副边绕组的交叠处,需要额外增加一个屏蔽绕组,因此,PCB绕组板的层数增加了至少2层以上,因此所带来的损耗也增加。图1B所示的平面变压器结构,需要确保原副边绕组交叠处的绕组匝数完全相同,因此平面变压器的设计难度增加,带来的损耗也会增加。
由于目前对于适配器的功率密度及共模噪声抑制效果期望的不断提升,现有的平面变压器结构对于共模噪声的抑制,仍然难以支撑目前适配器的高功率密度、高效率要求。因此需要设计一种相比于现有结构对共模噪声抑制效果更好的平面变压器结构。
针对上述问题,本申请实施例提出了一种能够有效抑制共模噪声的平面变压器,利用该平面变压器的电源变换电路或适配器能有较高的共模噪声抑制性能。另外,本申请实施例还提供了一种应用该平面变压器的电源变换电路,以及应用该电源变换电路的适配器。具体的,对于电源转换电路以及适配器可以参见图2、图3中的描述,这里不再赘述。
本申请实施例中提供的平面变压器,主要由磁芯和绕组线圈构成,其中,绕组线圈可以是传统的铜(高电导率材质)线烧制,也可以是由多层PCB经过刻蚀而成。多层PCB刻蚀得到的变压器相比前者传统绕制得到的变压器扁平化,所以会被称为平面变压器。图4A示出了本申请实施例的平面变压器的结构示意图以及截面示意图,参阅图4A所示,所述平面变压器40包括N组变压器子结构41(图4A中示出一组),所述N组变压器子结构41中的每组变压器子结构中包括第一磁芯42、第二磁芯43以及印刷电路板PCB绕组板44,所述N为正整数。
PCB绕组板44包括:第一复合绕组层441以及第二复合绕组层442,所述第一复合绕组层441绕制在所述第一磁芯42上,所述第二复合绕组层442绕制在所述第二磁芯43上。
第一复合绕组层441中包括至少一组第一子绕组层以及至少一层第二子绕组层46;其中,每组第一子绕组层包括位置相邻的两层第一子绕组层45;每组第一子绕组层中两层第一子绕组层45之间设置有至少一层第二子绕组层46。
第二复合绕组层442中包括至少一组第三子绕组层以及至少一层第四子绕组层48;其中,每组第三子绕组层包括位置相邻的两层第三子绕组层47;每组第二复合绕组层中两层第三子绕组层47之间设置有至少一层第四子绕组层48。
至少两层第一子绕组层45的总层数与至少两层第三子绕组层47的总层数相同;每层第一子绕组层45与每层第三子绕组层47的绕制圈数相同;至少一层第二子绕组层46的总层数与所述至少一层第四子绕组层48的总层数相同;每层第二子绕组层46与每层第四子绕组层48的绕制圈数相同,绕制方向相反。
在实际应用中,由于绕组的特征和原理,每中子绕组层上的线圈匝数可以是整数,也可以不是整数,例如线圈的圈数可以为2.5匝,3.8匝等等,但本申请实施例并不限于此。
其中,上述平面变压器40中的PCB绕组板44被设置于多层PCB组件上。该多层PCB组件可以是基于环氧玻纤布基材、复合基材、陶瓷类基材、金属类基材或者热塑性基材的印刷电路板。
本申请实施例对第一磁芯42以及第二磁芯43的材质不作限定。上述第一磁芯42以及第二磁芯43可以是EE型、EI型或者RM型结构。上述第一磁芯42以及第二磁芯43绕线柱上可以设置有多层电路板构成的绕组。
具体的,图4A下方展示了PCB绕组板44的截面的示意图。作为示例,该截面可以位于Z轴和R轴形成的ZR平面,其中Z轴垂直位于PCB绕组板44的表面所在的平面(可以称为第一平面),R轴为垂直与Z轴且指向PCB绕组板44中心的方向。第一复合绕组层441中的至少两层第一子绕组层45以及至少一层第二子绕组层46、第二复合绕组层442中包括至少两层第三子绕组层47以及至少一层第四子绕组层48位于上述截面内。
继续参阅图4A,上述第一复合绕组层441中的每个第一子绕组层45上设置的线圈可以相互串联、每个第二子绕组层46上设置的线圈可以相互串联。
若相互串联后所述第一子绕组层45与电源转换电路30中的初级电路31连接,则相互串联后所述第二子绕组层46与电源转换电路30中的次级电路32连接。若相互串联后所述第一子绕组层45与电源转换电路30中的次级电路32连接,则相互串联后所述第二子绕组层46与电源转换电路30中的初级电路31连接。其中,与电源转换电路30中的初级电路31连接的子绕组可以称为原边/初级子绕组层,在下文中,可以用P表示,或者可以用P 1、P 2…P n表示。与电源转换电路30中的次级电路32连接的子绕组可以称为副边/次级子绕组层,在下文中,可以用S表示,或者可以用S 1、S 2…S n表示。
第二复合绕组层442中的每个第三子绕组层47上设置的线圈可以相互串联,第二复合绕组层442中的每个第四子绕组层48上设置的线圈可以相互串联。
若相互串联后所述第三子绕组层47与电源转换电路30中的初级电路31连接,则相互串联后所述第四子绕组层48与电源转换电路30中的次级电路32连接。若相互串联后所述第三子绕组层47与电源转换电路30中的次级电路32连接,则相互串联后所述第四子绕组层48与电源转换电路30中的初级电路31连接。其中,与电源转换电路30中的初级电路31连接的子绕组可以称为原边/初级子绕组层。与电源转换电路30中的次级电路32连接的子绕组可以称为副边/次级子绕组层。
作为一种可能的实施方式,参阅图4B所示,图4B示出了本申请实施例的平面变压器截面示意图;所述第一复合绕组层441中包括至少一组第一复合绕组分层4411,所述至少一组第一复合绕组分层4411中的每组第一复合绕组分层4411中包括:相邻两层第一子绕组层45以及在所述相邻两层之间设置的至少一层第二子绕组层46。
所述第二复合绕组层442中包括至少一组第二复合绕组分层4421,所述至少一组第二复合绕组分层4421中的每组第二复合绕组分层4421中包括:相邻两层第三子绕组层47以及在所述相邻两层之间设置的至少一层第四子绕组层48。
示例性的,当第一复合绕组层441中只包括两层第一子绕组层45以及一层第二子绕组层45时,若第一子绕组层45与电源转换电路30中的次级电路32连接,第二子绕组层46与电源转换电路30中的初级电路31连接时,第一复合绕组层441的结构为第一子绕组层45-第二子绕组层46-第一子绕组层45(即P-S-P结构);若第一子绕组层45与电源转换电路30中的初级电路31连接,第一子绕组层45与电源转换电路30中的次级电路32连接时,第一复合绕组层441的结构为第一子绕组层45-第二子绕组层46-第一子绕组层45(即S-P-S结构)。
而当第一复合绕组层441中包括至少两层第一子绕组层45以及至少一层第二子绕组层45时,若相互串联后所述至少两层第一子绕组层45与电源转换电路30中的次级电路32连接,相互串联后所述至少一层第二子绕组层46与电源转换电路30中的初级电路31连接,第一复合绕组层441的结构为第一子绕组层45-第二子绕组层46-第一子绕组层45… 第一子绕组层45-第二子绕组层46-第一子绕组层45(即P-S-P…P-S-P结构)。若相互串联后所述至少两层第一子绕组层45与电源转换电路30中的初级电路31连接,相互串联后所述至少一层第二子绕组层46与电源转换电路30中的次级电路32连接,第一复合绕组层441的结构为第一子绕组层45-第二子绕组层46-第一子绕组层45…第一子绕组层45-第二子绕组层46-第一子绕组层45(即S-P-S…S-P-S)。
当第二复合绕组层442中只包括两层第三子绕组层47以及一层第四子绕组层48时,若第三子绕组层47与电源转换电路30中的次级电路32连接,第四子绕组层48与电源转换电路30中的初级电路31连接时,第二复合绕组层442的结构为第三子绕组层47-第四子绕组层48-第三子绕组层47(即P-S-P结构);若第三子绕组层47与电源转换电路30中的初级电路31连接,第三子绕组层47与电源转换电路30中的次级电路32连接时,第二复合绕组层442的结构为第三子绕组层47-第四子绕组层48-第三子绕组层47(即S-P-S结构)。
而当第二复合绕组层442中包括至少两层第三子绕组层47以及至少一层第四子绕组层48时,若相互串联后所述至少两层第三子绕组层47与电源转换电路30中的次级电路32连接,相互串联后所述至少一层第四子绕组层48与电源转换电路30中的初级电路31连接,第二复合绕组层442的结构为第三子绕组层47-第四子绕组层48-第三子绕组层47…第三子绕组层47-第四子绕组层48-第三子绕组层47(即P-S-P…P-S-P结构)。若相互串联后所述至少两层第三子绕组层47与电源转换电路30中的初级电路31连接,相互串联后所述至少一层第四子绕组层48与电源转换电路30中的次级电路32连接,第二复合绕组层442的结构为第三子绕组层47-第四子绕组层48-第三子绕组层45…第三子绕组层47-第四子绕组层48-第三子绕组层47(即S-P-S…S-P-S)。
由于原边/初级子绕组层的两侧均有副边/次级子绕组层,或者,在副边/次级子绕组层均有原边/初级子绕组层,因此,第一复合绕组层441以及第二复合绕组层442具有更小的漏感,从而可以减小平面变压器40的损耗,所述漏感是指平面变压器40中漏掉的磁通量。
参阅图5所示,图5示出了本申请实施例的平面变压器中的第一子绕组层的平面结构示意图,其中,图5中的第一子绕组层45可以是第一复合绕组层441中的所述至少两层第一子绕组层45中的任意一层。进一步地,本领域技术人员可以根据实际工程需要对第一子绕组层45的层数以及圈数进行灵活设置,以实现平面变压器中的共模噪声的抵消。另外,在平面变压器40中的所述第三子绕组层47的平面结构与所述第一子绕组层45基于同一构思,这里不再重复示出。
作为一种可能的实施方式,所述至少两层的第一子绕组层45中的每个第一子绕组层45串联连接构成所述第一绕组,所述至少两层的第三子绕组层中的每个第三子绕组层串联连接构成所述第三绕组。具体的,所述至少两层的第一子绕组层45中的每个第一子绕组层45可以通过每层第一子绕组层45上的过孔进行串联(图5未示出),所述至少两层的第一子绕组层47中的每个第三子绕组层47通过每层第一子绕组层47上的过孔进行串联,具体的,本领域技术人员可以根据实际工程需要对过孔的数量以及过孔的位置,进行灵活设置,以更好的实现平面变压器中的噪声的抵消。
参阅图6所示,图6示出了本申请实施例的平面变压器中的第二子绕组层以及第四子绕组层的平面结构示意图一,其中,图6中的第二子绕组层46可以是第一复合绕组层441中的所述至少一层第一子绕组层45中的任意一层。图6中的第四子绕组层48可以是第二 复合绕组层442中的所述至少一层第四子绕组层48中的任意一层。其中,第二子绕组层46可以与第四子绕组层48串联连接,如图6所示,在印制第二子绕组层46与第四子绕组层48时,可以直接将第二子绕组层46与第四子绕组层48印制在同一层PCB板上,从而使得第二子绕组层46与第四子绕组层48串联连接。此外,第二子绕组层46与第四子绕组层48还可以通过过孔进行串联(图6未示出),本领域人员应当知晓,这里不做过多赘述。
参阅图7所示,图7示出了本申请实施例的平面变压器中的第二子绕组层以及第四子绕组层的平面结构示意图二。从图7中可以看出,本领域技术人员可以根据实际工程需要对第二子绕组层46以及第四子绕组层48的圈数进行灵活设置,以实现平面变压器中的噪声的抵消。
作为一种可能的实施方式,所述至少一层的第二子绕组层46中的每个第二子绕组层串联连接构成所述第二绕组,所述至少一层的第四子绕组层中的每个第四子绕组层串联连接构成所述第四绕组。具体的,所述至少一层的第二子绕组层46中的每个第一子绕组层46可以通过每层第一子绕组层46上的过孔进行串联(图6、7未示出),所述至少一层的第一子绕组层47中的每个第三子绕组层47通过每层第三子绕组层47上的过孔进行串联,具体的,本领域技术人员可以根据实际工程需要对过孔的数量以及过孔的位置,进行灵活设置,以更好的实现平面变压器中的噪声的抵消。
作为一种可能的实施方式,电源转换电路30的初级电路31的电位静点与所述第二绕组一端以及所述第四绕组一端连接,电源转换电路30的次级电路32的电位静点与所述第一绕组一端以及所述第三绕组一端连接。
其中,所述第二绕组一端以及所述第四绕组一端可以连接初级电路31的初级开关管,所述第二绕组一端可以对应于第二绕组的最后一层线圈的一端,所述第四绕组一端可以对应于第四绕组的最后一层线圈的一端。所述第一绕组一端以及所述第三绕组一端可以连接次级电路32的次级整流管,所述第一绕组一端可以对应于第一绕组的最后一层线圈的一端,所述第三绕组一端可以对应于第三绕组的最后一层线圈的一端。
具体的,在电源转换电路30的初级电路31的电位静点与所述第二绕组一端以及所述第四绕组一端连接,电源转换电路的次级电路的电位静点与所述第一绕组一端以及所述第三绕组一端连接后:第二绕组与第四绕组共同串联构成原边/初级绕组,第一绕组与第三绕组共同串联构成副边/次级绕组。其中,上述电源转换电路30的初级电路31的电位静点可以是原边/初级绕组与初级滤波电容相连的节点。或者,上述电源转换电路30的初级电路31的电位静点也可以是初级电路31的地节点。上述电源转换电路30的次级电路32的电位静点可以是副边/次级绕组与次级滤波电容相连的节点。或者,上述电源转换电路30的次级电路32的电位静点也可以是次级电路32的地节点。
在保证满足原边/初级绕组与副边/次级绕组上的位移电流大小相同、方向相反后,即可实现对于共模噪声的消除。其中,本申请实施例可以应用于对称LLC电路,示例性的,在对称LLC电路中,谐振电感以及谐振电容分成两个对称布置在平面变压器的两侧。或者换言之,本申请实施例可以应用于任何存在有静点对称拓扑场景下。
通过平面变压器40的对称排列设计,能确保平面变压器40上的第一磁芯42上的位移电流与第二磁芯43上的位移电流能够相互抵消,原边/初级绕组和副边/次级绕组相同电势(dv/dt)分布的绕组之间合理交错,可以近似实现0共模噪声,从而降低平面变压器的 共模噪声,同时绕组的交错设计也能带来绕组损耗的降低。
具体的,共模噪声主要是包含了两个噪声电流源,一个是初级电路31中的跳变电压V p通过C ps产生流向地的噪声电流I ps,另一个是次级电路32中的跳变电压V s通过C sp产生流向地的噪声电流I sp。上述噪声电流I ps和噪声电流I sp即共模噪声。
示例性的,参阅图8所示,图8为一种平面变压器的平面结构示意图,假设第一子绕组层45的端点为c1-d1,第二子绕组层46(1)-46(2)的端点为b1-a1,所述第二子绕组层46(1)为第二子绕组层46的第一圈,第二子绕组层46(2)为第二子绕组层46的第二圈,第三子绕组层47的端点为c2-d2,第四子绕组层48(1)-48(2)的端点为b2-a2,所述第四子绕组层48(1)为第二子绕组层48的第一圈,第二子绕组层48(2)为第二子绕组层48的第二圈。其中,a点为原边侧/初级侧高电压跳点端点,c为副边侧/次级侧高电压跳点端点,则第一子绕组层45和第二子绕组层46(1)-46(2)之间的I CM1位移电流大小为:
Figure PCTCN2022123887-appb-000001
而第三子绕组层47和第四子绕组层48(1)-48(2)之间的I CM2位移电流大小为:
Figure PCTCN2022123887-appb-000002
因此,若确保原边/初级绕组与副边/次级绕组上的位移电流大小相同、方向相反,即,需要保证I CM1=I CM2
若能确定如下两个条件的成立,则可以保证I CM1=I CM2
(1)原边侧/初级侧高电压跳点端点与副边侧/次级侧高电压跳点端点电压跳点大小一致、方向相反。即满足:
Figure PCTCN2022123887-appb-000003
以及
Figure PCTCN2022123887-appb-000004
(2)相邻的子绕组层形成的寄生电容大小相同。即满足:C a1c1=C a2c2、C a1d1=C a2d2、C b1c1=C b2c2以及C b1d1=C b2d2
因此,基于上述(1)条件,作为一种可能的实施方式,所述第二绕组上经过的电压与设定电压之差为第一电压,所述第四绕组上经过的电压与设定电压之差为第二电压,所述第一电压与所述第二电压大小相同且方向相反。其中,所述设定电压可以为0,也可以为其他大小的值,本领域技术人员可以根据电源转换电路30中初级电路31的静点电压大小进行确定,示例性的,静点电压可以等于母线电压一半。
基于上述(2)条件,作为一种可能的实施方式,所述至少一层第二子绕组层46中的每个第二子绕组层46与相邻的第一子绕组层45形成的第一寄生电容大小相同;所述至少一层第四子绕组层48中的每个第四子绕组层48与相邻的第三子绕组层47形成的第二寄生电容大小相同;所述第一寄生电容与所述第二寄生电容大小相同。
为了降低制备平面电容器的难度,作为一种可能的实施方式,所述至少一层第二子绕组层46中的每个第二子绕组层46与相邻的第一子绕组层45形成的第一寄生电容大小在设定电容大小区间内;所述至少一层第四子绕组层48中的每个第四子绕组层48与相邻的第三子绕组层47形成的设定电容大小区间内。
需要说明的是,本申请实施例中两个绕组层相邻,指的是该两个绕组层之间不存在其他绕组层。例如,至少一层第二子绕组层46中的每个第二子绕组层46与相邻的第一子绕组层45,是指第二子绕组层46与第一子绕组层45之间不存在其他绕组层。
本申请实施例提供的平面变压器,基于对称相消的原理,其噪声指标远优于图1A以及图1B所示的方案。示例性的,在电源转换电路30中的开关器件的开关频率为500KHz时,共模噪声相比图1B的零噪声匹配层方案下降22dB,并且,在其它开关频率下共模噪声同样会明显下降,在本申请实施例提供的平面变压器相比于现有的平面变压器损耗降低20%左右。
平面变压器40中变压器子结构41的个数可以为N个(例如一个、两个或多个),本申请实施例对此不作限定。当平面变压器40中变压器子结构41为一个时,作为一种可能的实施方式,参阅图9所示,图9为一种平面变压器中变压器子结构的平面结构示意图;所述第一磁芯42与所述第二磁芯43沿第一方向排列,所述第一方向与所述PCB绕组板平行。具体,沿第一方向排列的所述第一磁芯42与所述第二磁芯43共同构成所述N组变压器子结构41中的每组变压器子结构41。
当平面变压器40中变压器子结构41为大于或等于两个时,作为一种可能的实施方式,参阅图10所示,图10为一种平面变压器的平面结构示意图;所述N组变压器子结构41中的每组变压器子结构,沿所述第一方向和或第二方向排列,所述第二方向与所述PCB绕组板44平行,且与所述第一方向垂直。
可选的,本申请实施例中的N组变压器子结构41中的每组变压器子结构的排布方式不限于上述实施例所限定的方式,参阅图11所示,图11为几种平面变压器中的变压器子结构可能的排布方式。图11以平面变压器40包括4个变压子结构41为例,图11中的(A)、(B)、(C)以及(D)均可以为平面变压器40中的变压器子结构41可能的排布方式,但本申请并不限于上述排布方式。换言之,在保证平面变压器40中的变压器子结构41能存在至少一条对称轴或一种对称方式进行对称时,平面变压器40均能保持较好的共模噪声的抑制效果。
利用本申请实施例提供的平面变压器结构,采用了对称相消方式,相比现有技术在不提升体积的前提下,明显的降低了共模噪声,相比于现有的增加屏蔽绕组的方案,可以减小至少两层以上的屏蔽层,在制作平面变压器的绕组层时更加简单,并且降低了损耗;而相比于零噪声匹配层方案,原副边的相邻层圈数无需一致,从而使得绕组的设计简单,最终使得电路遭受的EMI显著减小。
本申请实施例还提供了一种电源转换电路,其包括:初级电路、次级电路以及上述实施例所述的平面变压器40,所述平面变压器40设置在所述初级电路和所述次级电路之间,所述电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
进一步地,本申请实施例还提供了一种适配器,该适配器包括上述实施例所述的电源转换电路。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/ 或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种平面变压器,其特征在于,所述平面变压器包括N组变压器子结构,所述N组变压器子结构中的每组变压器子结构中包括第一磁芯、第二磁芯以及印刷电路板PCB绕组板,所述N为正整数;
    所述PCB绕组板包括:第一复合绕组层以及第二复合绕组层,所述第一复合绕组层绕制在所述第一磁芯上,所述第二复合绕组层绕制在所述第二磁芯上;
    所述第一复合绕组层中包括至少一组第一子绕组层以及至少一层第二子绕组层;其中,每组第一子绕组层包括位置相邻的两层第一子绕组层;每组第一复合绕组层中两层第一子绕组层之间设置有至少一层第二子绕组层;
    所述第二复合绕组层中包括至少一组第三子绕组层以及至少一层第四子绕组层;其中,每组第三子绕组层包括位置相邻的两层第三子绕组层;每组第二复合绕组层中两层第三子绕组层之间设置有至少一层第四子绕组层;
    所述至少两层第一子绕组层的总层数与所述至少两层第三子绕组层的总层数相同;每层第一子绕组层与每层第三子绕组层的绕制圈数相同;所述至少一层第二子绕组层的总层数与所述至少一层第四子绕组层的总层数相同;每层第二子绕组层与每层第四子绕组层的绕制圈数相同,绕制方向相反。
  2. 根据权利要求1所述的平面变压器,其特征在于,所述至少两层的第一子绕组层中的每层第一子绕组层串联连接构成所述第一绕组,所述至少一层的第二子绕组层中的每层第二子绕组层串联连接构成所述第二绕组,所述至少两层的第三子绕组层中的每层第三子绕组层串联连接构成所述第三绕组,所述至少一层的第四子绕组层中的每层第四子绕组层串联连接构成所述第四绕组。
  3. 根据权利要求2所述的平面变压器,其特征在于,所述第一绕组与所述第三绕组串联连接;所述第二绕组与所述第四绕组串联连接。
  4. 根据权利要求2或3所述的平面变压器,其特征在于,电源转换电路的初级电路的电位静点与所述第二绕组一端以及所述第四绕组一端连接,电源转换电路的次级电路的电位静点与所述第一绕组一端以及所述第三绕组一端连接,所述电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
  5. 根据权利要求4所述的平面变压器,其特征在于,所述第二绕组上流经的电压与设定电压之差为第一电压,所述第四绕组上流经的电压与设定电压之差为第二电压,所述第一电压与所述第二电压大小相同且方向相反。
  6. 根据权利要求2或3所述的平面变压器,其特征在于,电源转换电路的初级电路的电位静点与所述第一绕组一端以及所述第三绕组一端连接,电源转换电路的次级电路的电位静点与所述第二绕组一端以及所述第四绕组一端连接,所述电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
  7. 根据权利要求6所述的平面变压器,其特征在于,所述第一绕组上经过的电压与设定电压之差为第三电压,所述第三绕组上经过的电压与设定电压之差为第四电压,所述第三电压与所述第四电压大小相同且方向相反。
  8. 根据权利要求1-7任一所述的平面变压器,其特征在于,所述第一磁芯与所述第二磁芯沿第一方向排列,所述第一方向与所述PCB绕组板平行。
  9. 根据权利要求8所述的平面变压器,其特征在于,所述N组变压器子结构中的每组变压器子结构,沿所述第一方向和/或第二方向排列;所述第二方向与所述PCB绕组板平行,且与所述第一方向垂直。
  10. 根据权利要求1-9任一所述的平面变压器,其特征在于,所述第一复合绕组层中包括至少一组第一复合绕组分层,所述至少一组第一复合绕组分层中的每组第一复合绕组分层中包括:相邻两层第一子绕组层以及在所述相邻两层之间设置的至少一层第二子绕组层;
    所述第二复合绕组层中包括至少一组第二复合绕组分层,所述至少一组第二复合绕组分层中的每组第二复合绕组分层中包括:相邻两层第三子绕组层以及在所述相邻两层之间设置的至少一层第四子绕组层。
  11. 根据权利要求1-10任一所述的平面变压器,其特征在于,所述至少一层第二子绕组层中的每个第二子绕组层与相邻的第一子绕组层形成的第一寄生电容大小相同;所述至少一层第四子绕组层中的每个第四子绕组层与相邻的第三子绕组层形成的第二寄生电容大小相同;所述第一寄生电容与所述第二寄生电容大小相同。
  12. 根据权利要求1-11任一所述的平面变压器,其特征在于,所述第一磁芯和所述第二磁芯为EE型、EI型或者RM型结构。
  13. 一种电源转换电路,其特征在于,包括:初级电路、次级电路以及如权利要求1至12中任一项所述的平面变压器,所述平面变压器设置在所述初级电路和所述次级电路之间,所述电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
  14. 一种适配器,其特征在于,包括如权利要求13所述的电源转换电路,所述电源转换电路用于将外部电源提供的电压转换为符合待充电设备充电或供电标准的电压,并为待充电设备充电或供电。
PCT/CN2022/123887 2021-12-03 2022-10-08 一种平面变压器、电源转换电路以及适配器 WO2023098280A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111466811.7 2021-12-03
CN202111466811.7A CN114373613A (zh) 2021-12-03 2021-12-03 一种平面变压器、电源转换电路以及适配器

Publications (1)

Publication Number Publication Date
WO2023098280A1 true WO2023098280A1 (zh) 2023-06-08

Family

ID=81140795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123887 WO2023098280A1 (zh) 2021-12-03 2022-10-08 一种平面变压器、电源转换电路以及适配器

Country Status (2)

Country Link
CN (1) CN114373613A (zh)
WO (1) WO2023098280A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373613A (zh) * 2021-12-03 2022-04-19 华为技术有限公司 一种平面变压器、电源转换电路以及适配器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152326A1 (en) * 2005-01-12 2006-07-13 Medtronic, Inc. Integrated planar flyback transformer
CN207068607U (zh) * 2017-07-18 2018-03-02 昆明理工大学 一种磁集成的平面变压器
TWI747508B (zh) * 2020-09-17 2021-11-21 群光電能科技股份有限公司 平板繞組變壓器
CN114373613A (zh) * 2021-12-03 2022-04-19 华为技术有限公司 一种平面变压器、电源转换电路以及适配器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152326A1 (en) * 2005-01-12 2006-07-13 Medtronic, Inc. Integrated planar flyback transformer
CN207068607U (zh) * 2017-07-18 2018-03-02 昆明理工大学 一种磁集成的平面变压器
TWI747508B (zh) * 2020-09-17 2021-11-21 群光電能科技股份有限公司 平板繞組變壓器
CN114373613A (zh) * 2021-12-03 2022-04-19 华为技术有限公司 一种平面变压器、电源转换电路以及适配器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LONG XIAO, WU LIANG, LI XIN, ZHAO JUN, CHEN GUOZHU: "Optimal Design of Planar Magnetic Integrated Matrix Transformer for High Frequency LLC Converter", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 35, no. 4, 25 February 2020 (2020-02-25), pages 758 - 766, XP093068676, ISSN: 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.181943 *

Also Published As

Publication number Publication date
CN114373613A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020248672A1 (zh) 平面变压器、电源转换电路以及适配器
Fei et al. Shielding technique for planar matrix transformers to suppress common-mode EMI noise and improve efficiency
US10269484B2 (en) Magnetic component and power conversion device using the same
WO2019091393A1 (zh) 平面变压器、电源转换电路以及适配器
CN107786090A (zh) 具有用于变压器绕组和电感器绕组的集成磁芯的多相电源转换器
TWI497908B (zh) 改善濾波器性能的方法及功率變換裝置
KR20180129470A (ko) 변압기 및 이를 가지는 llc 공진형 컨버터
US11398344B2 (en) Transformer
KR20200126910A (ko) 전력 공급 멀티 탭 자동변압기
WO2023098280A1 (zh) 一种平面变压器、电源转换电路以及适配器
JP2009142088A (ja) 表示装置用dc−dcコンバータ
TW200807460A (en) Power source transforming device and transformer thereof
JP2012054549A (ja) インダクター一体型トランスフォーマー
Ahmed et al. A low-cost, high-power-density DC-DC converter for hybrid and electric vehicle applications
Saket et al. Common-mode noise elimination in planar transformers for LLC resonant converters
US11562845B2 (en) Inductor devices and implementations
JP2016213383A (ja) 磁気部品及びこれを用いた電源回路
US10601325B2 (en) DC-to-dC converter circuit and circuit board layout structure for the same
WO2022088728A1 (zh) 平面变压器、电源转换电路及适配器
EP2647117A2 (en) A method for increasing power transferred by an integrated inductor and a resonant-mode power supply with an integrated inductor
KR102453928B1 (ko) 균형 공진 탱크를 갖는 낮은 공통모드 노이즈 풀-브리지 llc 공진 컨버터
CN214177157U (zh) 一种单级滤波器
KR20220159773A (ko) 작은 공통모드 노이즈 특성을 갖는 정전압 포인트와 연결된 변압기 기반의 llc 공진형 컨버터
US20240079965A1 (en) LLC Resonant Converter with Windings Fabricated on PCB
Wang PCB-Based Heterogeneous Integration of PFC/Inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900087

Country of ref document: EP

Kind code of ref document: A1