WO2023098198A1 - 调节显示组件的驱动电压的方法与终端设备 - Google Patents

调节显示组件的驱动电压的方法与终端设备 Download PDF

Info

Publication number
WO2023098198A1
WO2023098198A1 PCT/CN2022/117049 CN2022117049W WO2023098198A1 WO 2023098198 A1 WO2023098198 A1 WO 2023098198A1 CN 2022117049 W CN2022117049 W CN 2022117049W WO 2023098198 A1 WO2023098198 A1 WO 2023098198A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
nth frame
voltage
display component
driving voltage
Prior art date
Application number
PCT/CN2022/117049
Other languages
English (en)
French (fr)
Inventor
赵京
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/042,641 priority Critical patent/US20240096278A1/en
Priority to EP22854458.1A priority patent/EP4213139A4/en
Publication of WO2023098198A1 publication Critical patent/WO2023098198A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel

Definitions

  • the present application relates to the field of display technology, in particular to a method for adjusting a driving voltage of a display component and a terminal device.
  • Active light-emitting display components are a display component that uses semiconductors and luminescent materials to emit light through carrier injection and recombination under the drive of an electric field. Active light-emitting display components usually use thin film transistors (thin film transistor, TFT) with capacitors to store signals to control illuminants (such as light-emitting diodes) to display grayscale brightness; for example, the display area of active light-emitting display components can include multiple rows and In the multi-column pixel matrix, each pixel may include a pixel driving circuit, and the pixel driving circuit may be composed of at least one thin film transistor and a capacitor.
  • TFT thin film transistor
  • a fixed driving voltage is usually used for active light-emitting display components; for example, if the pixel driving circuit adopts a fixed voltage working mode, the fixed voltage needs to meet the requirements of the maximum brightness of the pixel, that is, the highest gray scale of the brightness; however, The content displayed in the active light-emitting display component changes dynamically, and not all display images have the highest gray scale of brightness; the active light-emitting display component consumes a lot of power by adopting a fixed voltage working mode.
  • the present application provides a method and a terminal device for adjusting the driving voltage of a display component, which can reduce the driving voltage of the display component and reduce the power consumption of the display component under the condition of ensuring normal image display.
  • a method for adjusting the driving voltage of a display component which is applied to a terminal device, and the terminal device includes a display component that actively emits light, including:
  • the highest grayscale of the Nth frame image is obtained, and the highest grayscale of the Nth frame image refers to the maximum value of the grayscale corresponding to the pixel in the Nth frame image;
  • the driving voltage of the Nth frame image is obtained according to the highest gray scale of the Nth frame image, and the driving voltage of the Nth frame image refers to the voltage required by the display component to display the Nth frame image;
  • the voltage adjustment amount of the Nth frame of image is sent to the display component, and the voltage adjustment amount of the Nth frame of image is obtained according to the driving voltage of the Nth frame of image.
  • the driving voltage required by the display component to display the Nth frame image can be determined according to the highest gray scale in the Nth frame image, and the driving voltage of the display component can be adjusted according to the driving voltage of the Nth frame image; because In the embodiment of the present application, for different display contents, the display components can adopt different driving voltages, that is, the driving voltage of the display components can be dynamically adjusted according to the display content; The embodiment can reduce the driving voltage of the display component while ensuring normal image display, thereby reducing the power consumption of the display component.
  • the display component displays the image data of the Nth frame of image through the pixel driving circuit.
  • one frame of image corresponds to one driving voltage, that is, multiple pixel driving circuits included in one frame of image share one driving voltage; therefore, it is necessary to ensure the driving voltage so that the highest grayscale in one frame of image can be displayed normally; in this
  • the driving voltage value required by the display component to display the Nth frame image can be determined through the highest gray scale of the Nth frame image, that is, the minimum voltage required to display the Nth frame image;
  • the highest grayscale of the frame image determines the minimum voltage difference between the pixel driving circuit operating voltage and the driving voltage.
  • the operating voltage is constant. By adjusting the size of the driving voltage, it can meet the requirements of the display component to display the Nth frame image. minimum voltage difference.
  • the voltage adjustment amount of the image in the Nth frame is the voltage value of the driving voltage of the image in the Nth frame.
  • the voltage value of the driving voltage of the Nth frame may be directly sent to the display component.
  • the voltage adjustment amount of the image in the Nth frame is the voltage difference between the driving voltage of the image in the Nth frame and the first driving voltage
  • the first driving voltage refers to - Driving voltage for 1 frame image
  • the voltage difference may be directly sent to the display component, which refers to the voltage difference between the driving voltage when displaying the N-1th frame of image and the driving voltage of the Nth frame of image.
  • the highest grayscale of the Nth frame image is obtained according to the image data, including:
  • the highest gray level of the Nth frame image is obtained.
  • the display component includes a pixel driving circuit
  • the pixel driving circuit includes a first thin film transistor and a luminous body
  • the first thin film transistor is used to provide a driving current to the luminous body, according to the first
  • the highest grayscale of the N-frame image obtains the driving voltage of the N-th frame image, including:
  • the driving current of the Nth frame of image refers to the current required by the display component to display the Nth frame of image through the pixel driving circuit;
  • the driving voltage of the Nth frame of image is determined according to the driving current of the Nth frame of image and the output characteristic curve of the first thin film transistor.
  • the first thin film transistor is used to provide the driving current for the illuminant, and the operating voltage of the illuminant is proportional to the operating current; by determining the highest grayscale of the Nth frame image, it can be determined to display the Nth frame image.
  • the minimum current value according to the minimum current value, the voltage value required to display the image of the Nth frame, that is, the driving voltage value, can be determined.
  • the illuminant is any of the following:
  • Organic light emitting diodes active matrix organic light emitting diodes, flexible light emitting diodes, micro light emitting diodes, miniature organic light emitting diodes or quantum dot light emitting diodes.
  • the first slope of the output characteristic curve when the first slope of the output characteristic curve is not equal to 0, the first slope refers to the slope of the output characteristic curve in the saturation region, and the method further includes:
  • the brightness compensation amount of the Nth frame of image is determined according to the current adjustment amount of the Nth frame of image, and the brightness compensation amount of the Nth frame of image is used for the display component to perform brightness compensation on the Nth frame of image.
  • the output characteristic curve of the first thin film transistor cannot reach the ideal state under normal circumstances, that is, the output current of the first thin film transistor will change slightly with the change of voltage in the saturation region; therefore, by The amount of brightness compensation can perform brightness compensation on the displayed image, so that the brightness of the displayed image reaches the brightness corresponding to the output current in the ideal state in the saturation region.
  • the first aspect in combination with the first aspect, in some implementation manners of the first aspect, it also includes:
  • the first aspect in combination with the first aspect, in some implementation manners of the first aspect, it also includes:
  • the synchronization signal is used to instruct the display component to start displaying the Nth frame of image
  • a terminal device in a second aspect, includes an active light-emitting display component, a storage module, and a processing module;
  • the storage module is used to store the image data of the Nth frame image, and N is a positive integer;
  • the processing module is used to obtain the image data of the Nth frame image from the storage module; the highest grayscale of the Nth frame image is obtained according to the image data, and the highest grayscale of the Nth frame image refers to the grayscale corresponding to the pixel in the Nth frame image The maximum value; according to the highest grayscale of the Nth frame image, the driving voltage of the Nth frame image is obtained.
  • the Nth frame image driving voltage refers to the voltage required by the display component to display the Nth frame image; send the Nth frame image to the display component
  • the voltage adjustment amount of the image, the voltage adjustment amount of the image in the Nth frame is obtained according to the driving voltage of the image in the Nth frame.
  • the voltage adjustment amount of the image in the Nth frame is the voltage value of the driving voltage of the image in the Nth frame.
  • the voltage adjustment amount of the image in the Nth frame is the voltage difference between the driving voltage of the image in the Nth frame and the first driving voltage
  • the first driving voltage refers to the voltage difference between the driving voltage of the Nth frame image and the first driving voltage.
  • the processing module is specifically used for:
  • the highest gray level of the Nth frame image is obtained.
  • the display component includes a pixel driving circuit
  • the pixel driving circuit includes a first thin film transistor and a light emitter
  • the first thin film transistor is used to provide a driving current to the light emitter
  • the processing module Specifically for:
  • the driving current of the Nth frame of image refers to the current required by the display component to display the Nth frame of image through the pixel driving circuit;
  • the driving voltage of the Nth frame of image is determined according to the driving current of the Nth frame of image and the output characteristic curve of the first thin film transistor.
  • the processing module is further used to :
  • the brightness compensation amount of the Nth frame of image is determined according to the current adjustment amount of the Nth frame of image, and the brightness compensation amount of the Nth frame of image is used for the display component to perform brightness compensation on the Nth frame of image.
  • the processing module is also used for:
  • the processing module is also used for:
  • the synchronization signal is used to instruct the display component to start displaying the Nth frame of image
  • the illuminant is any of the following:
  • Organic light emitting diodes active matrix organic light emitting diodes, flexible light emitting diodes, micro light emitting diodes, miniature organic light emitting diodes or quantum dot light emitting diodes.
  • a terminal device in a third aspect, includes one or more processors, a memory and an active light-emitting display component; the memory is coupled to one or more processors, and the memory is used to store computer program codes, computer program codes Consists of computer instructions invoked by one or more processors to cause an end device to perform:
  • the highest grayscale of the Nth frame image is obtained, and the highest grayscale of the Nth frame image refers to the maximum value of the grayscale corresponding to the pixel in the Nth frame image;
  • the driving voltage of the Nth frame image is obtained according to the highest gray scale of the Nth frame image, and the driving voltage of the Nth frame image refers to the voltage required by the display component to display the Nth frame image;
  • the voltage adjustment amount of the Nth frame of image is sent to the display component, and the voltage adjustment amount of the Nth frame of image is obtained according to the driving voltage of the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame is the voltage value of the driving voltage.
  • the voltage adjustment amount of the image in the Nth frame is the voltage difference between the driving voltage of the image in the Nth frame and the first driving voltage
  • the first driving voltage refers to the voltage difference between the driving voltage of the Nth frame image and the first driving voltage.
  • one or more processors invoke computer instructions to cause the terminal device to execute:
  • the highest gray level of the Nth frame image is obtained.
  • the display component includes a pixel driving circuit
  • the pixel driving circuit includes a first thin film transistor and a light emitter
  • the first thin film transistor is used to provide a driving current to the light emitter, according to the first
  • the highest gray scale of N frames of images obtains the driving voltage of the Nth frame of images
  • one or more processors call computer instructions to make the terminal device execute:
  • the driving current of the Nth frame of image refers to the current required by the display component to display the Nth frame of image through the pixel driving circuit;
  • the driving voltage of the Nth frame of image is determined according to the driving current of the Nth frame of image and the output characteristic curve of the first thin film transistor.
  • the first slope of the output characteristic curve when the first slope of the output characteristic curve is not equal to 0, the first slope refers to the slope of the output characteristic curve in the saturation region, and one or more processes
  • the processor invokes computer instructions to cause the terminal device to perform:
  • the brightness compensation amount of the Nth frame of image is determined according to the current adjustment amount of the Nth frame of image, and the brightness compensation amount of the Nth frame of image is used for the display component to perform brightness compensation on the Nth frame of image.
  • one or more processors invoke computer instructions to cause the terminal device to execute:
  • one or more processors invoke computer instructions to cause the terminal device to execute:
  • the synchronization signal is used to instruct the display component to start displaying the Nth frame of image
  • the illuminant is any of the following:
  • Organic light emitting diodes active matrix organic light emitting diodes, flexible light emitting diodes, micro light emitting diodes, miniature organic light emitting diodes or quantum dot light emitting diodes.
  • a chip system is provided, the chip system is applied to a terminal device, the chip system includes one or more processors, and the processor is used to call a computer instruction so that the terminal device executes any one of the first aspect or the first aspect method.
  • a computer-readable storage medium stores computer program codes.
  • the computer program codes When the computer program codes are run by an electronic device, the electronic device executes any one of the first aspect or the first aspect. way.
  • a computer program product includes: computer program code, when the computer program code is run by an electronic device, the electronic device is made to execute the first aspect or any method in the first aspect.
  • the driving voltage required by the display component to display the Nth frame image can be determined according to the highest gray scale in the Nth frame image, and the driving voltage of the display component can be adjusted according to the driving voltage of the Nth frame image; because In the embodiment of the present application, for different display contents, the display components can adopt different driving voltages, that is, the driving voltage of the display components can be dynamically adjusted according to the display content; The embodiment can reduce the driving voltage of the display component while ensuring normal image display, thereby reducing the power consumption of the display component.
  • FIG. 1 shows a hardware system applicable to a terminal device of the present application
  • Fig. 2 shows a schematic diagram of a 7T1C pixel driving circuit applicable to the present application
  • FIG. 3 is a schematic diagram of an application scenario applicable to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario applicable to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an output characteristic curve of a thin film transistor
  • FIG. 7 is a method for adjusting the driving voltage of a display component provided by an embodiment of the present application.
  • FIG. 8 is a method for adjusting the driving voltage of a display component provided by an embodiment of the present application.
  • FIG. 9 is a method for adjusting the driving voltage of a display component provided by an embodiment of the present application.
  • FIG. 10 is a method for adjusting the driving voltage of a display component provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • OLED Organic Light-Emitting Diode
  • the display principle of OLED display components is to drive organic semiconductor materials and light-emitting materials through an electric field, and to achieve light emission after carrier injection and recombination.
  • Active matrix organic light emitting diode active-matrix organic light emitting Diode, AMOLED
  • AMOLED can use organic semiconductors and light-emitting materials to display light through carrier injection and recombination under electric field driving; for example, AMOLED can usually use thin film transistors (thin film Transistor, TFT) with capacitor storage signal to control the brightness grayscale performance of OLED display.
  • TFT thin film Transistor
  • the display area of the display component may include a multi-row and multi-column pixel matrix, each pixel may correspond to a pixel driving circuit, and different pixel points may be displayed through the pixel driving circuit;
  • the pixel driving circuit is composed of at least one thin film transistor and at least A driving circuit composed of a capacitor; for example, a pixel driving circuit may include but not limited to: 7T1C, 6T1C, 3T1C, etc.
  • the gray scale refers to dividing the brightness change between the brightest and the darkest brightness into several parts, so as to control the brightness of the screen through the input signal.
  • Fig. 1 shows a hardware system applicable to a terminal device of this application.
  • the terminal device 100 may be a mobile phone, a smart screen, a tablet computer, a wearable electronic device, a vehicle electronic device, an augmented reality (augmented reality, AR) device, a virtual reality (virtual reality, VR) device, a notebook computer, a super mobile personal computer ( Ultra-mobile personal computer, UMPC), netbook, personal digital assistant (personal digital assistant, PDA), projector, etc., the embodiment of the present application does not impose any limitation on the specific type of the terminal device 100.
  • the terminal device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • connection relationship between the modules shown in FIG. 1 is only for schematic illustration, and does not constitute a limitation on the connection relationship between the modules of the terminal device 100 .
  • each module of the terminal device 100 may also use a combination of various connection modes in the foregoing embodiments.
  • Processor 110 may include one or more processing units.
  • the processor 110 may include at least one of the following processing units: an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor) , ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, neural network processor (neural-network processing unit, NPU).
  • an application processor application processor, AP
  • modem processor graphics processing unit
  • graphics processing unit graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • the processor 110 may execute: acquire the image data of the Nth frame image, where N is a positive integer; obtain the highest grayscale of the Nth frame image according to the image data, and the highest grayscale of the Nth frame image is Refers to the maximum value of the grayscale corresponding to the pixel in the image of the Nth frame; the driving voltage of the image of the Nth frame is obtained according to the highest grayscale of the image of the Nth frame, and the driving voltage of the image of the Nth frame means that the display component displays the Nth frame The voltage required for the image; the voltage adjustment amount of the image of the Nth frame is sent to the display component, and the voltage adjustment amount of the image of the Nth frame is obtained according to the driving voltage of the image of the Nth frame.
  • the charging management module 140 is used to receive power from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 can receive the current of the wired charger through the USB interface 130 .
  • the charging management module 140 can receive electromagnetic waves through the wireless charging coil of the terminal device 100 (the current path is shown as a dotted line). While the charging management module 140 is charging the battery 142 , it can also supply power to the terminal device 100 through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (eg, leakage, impedance).
  • the power management module 141 may be set in the processor 110, or the power management module 141 and the charge management module 140 may be set in the same device.
  • the wireless communication function of the terminal device 100 may be implemented by components such as the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, a modem processor, and a baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 100 can be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • Display 194 may be used to display images or video.
  • the display screen can display the image of the Nth frame.
  • the display screen 194 may include a display panel; in the embodiment of the application, the display panel may adopt an organic light-emitting diode (organic light-emitting diode, OLED), an active-matrix organic light-emitting diode (active-matrix organic light -emitting diode, AMOLED), or micro OLED (Micro OLED), etc.
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • micro OLED Micro OLED
  • the terminal device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the processor 110 communicates with the display screen 194 through a display serial interface (display serial interface, DSI) interface to implement the display function of the terminal device 100.
  • a display serial interface display serial interface, DSI
  • the terminal device 100 may realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 , and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can optimize the algorithm of image noise, brightness and color, and ISP can also optimize parameters such as exposure and color temperature of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard red green blue (red green blue, RGB), YUV and other image signals.
  • the terminal device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the terminal device 100 may support one or more video codecs.
  • the terminal device 100 can play or record videos in multiple encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3 and MPEG4.
  • MPEG moving picture experts group
  • NPU is a processor that draws on the structure of biological neural networks. For example, it can quickly process input information by drawing on the transmission mode between neurons in the human brain, and it can also continuously learn by itself. Functions such as intelligent cognition of the terminal device 100 can be implemented through the NPU, such as image recognition, face recognition, voice recognition and text understanding.
  • the external memory interface 120 can be used to connect an external memory card, such as a secure digital (secure digital, SD) card, so as to expand the storage capacity of the terminal device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the storage program area can store an operating system and an application program required by at least one function (for example, a sound playing function and an image playing function).
  • the storage data area can store data created during the use of the terminal device 100 (for example, audio data and phonebook).
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, for example: at least one magnetic disk storage device, flash memory device, and universal flash storage (universal flash storage, UFS), etc.
  • the processor 110 executes various processing methods of the terminal device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the terminal device 100 can implement audio functions, such as music playing and recording, through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor.
  • audio functions such as music playing and recording
  • Keys 190 include a power key and a volume key.
  • the key 190 can be a mechanical key or a touch key.
  • the terminal device 100 can receive key input signals and implement functions related to case input signals.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging status and the change of the battery capacity, and can also be used to indicate messages, missed calls and notifications.
  • the structure shown in FIG. 1 does not constitute a specific limitation on the terminal device 100 .
  • the terminal device 100 may include more or fewer components than those shown in FIG. 1, or the terminal device 100 may include a combination of some of the components shown in FIG. 1, or , the terminal device 100 may include subcomponents of some of the components shown in FIG. 1 .
  • the components shown in FIG. 1 can be realized in hardware, software, or a combination of software and hardware.
  • each pixel may correspond to a pixel driving circuit, and different pixel points may be displayed through the pixel driving circuit; The working principle is described.
  • FIG. 2 shows a schematic diagram of a 7T1C pixel driving circuit suitable for this application.
  • the method for adjusting the driving voltage of the display component in the embodiment of the present application can be applied to any kind of pixel driving circuit; here, the working principle of the 7T1C pixel driving circuit is described by taking the 7T1C pixel driving circuit as an example.
  • the 7T1C pixel driving circuit may include seven thin film transistors and one capacitor; among them, the seven thin film transistors include: T 1 , T 2 , T 3 , T 4 , T 5 and two G n-1 Thin-film transistor; V DD represents the internal operating voltage of the device; V data represents the data voltage; INIT represents initialization, that is, the capacitance reaches a fixed level; V SS represents the driving voltage (for example, the supply voltage); EM represents the control signal, EM is used To control the state of the thin film transistor T3 or T4 being turned on or off.
  • the seven thin film transistors include: T 1 , T 2 , T 3 , T 4 , T 5 and two G n-1 Thin-film transistor; V DD represents the internal operating voltage of the device; V data represents the data voltage; INIT represents initialization, that is, the capacitance reaches a fixed level; V SS represents the driving voltage (for example, the supply voltage); EM represents the control signal, EM is used To control the
  • T3 and T4 controlled by the EM are only on or off, and the display brightness can be adjusted by controlling the duty cycle of the EM; T1 is used to control the turn-on current; the two One G n-1 is used to reset the grayscale content of the pixel; for example, clear the grayscale information of the previous frame image.
  • the T2 thin film transistor (an example of the first thin film transistor) can be used to provide a driving current to the luminous body (for example, OLED); for example, by adjusting the T2 thin film transistor
  • the conduction controls the driving current of the illuminant, and the current through the illuminant can control the gray scale of the pixels in the image; under a certain brightness, for an image, it is necessary to ensure that the gray scale of each pixel can express On the illuminant; that is, the current passing through the illuminant needs to meet the current required by the gray scale of all pixels; therefore, the voltage difference between V DD and V SS needs to meet the gray scale required by the illuminant to display all pixels Voltage.
  • the grayscale refers to dividing the brightness change between the brightest and the darkest brightness into several parts, so as to control the brightness of the screen through an input signal.
  • a frame of image can be composed of multiple pixels, usually each pixel can show many different colors, it is composed of three sub-pixels of red, green and blue (RGB); each sub-pixel, behind it All light sources can display different brightness levels, and the gray scale can represent different brightness levels from the darkest to the brightest; the more gray scale levels, the more delicate the picture effect that can be presented.
  • the above-mentioned luminous body may be a light-emitting diode; for example, the luminous body may refer to an OLED or other light-emitting diodes, which is not limited in this application.
  • a fixed driving voltage is usually provided for active light-emitting display components; for example, the pixel driving circuit adopts a fixed voltage working mode, and the fixed voltage meets the requirement for the maximum brightness of the pixel, that is, the highest gray scale of the brightness (for example, 8bit
  • the maximum grayscale of the display component with color depth is 255; the maximum grayscale of the display component with 10bit color depth is 1023); however, the content displayed in the active light-emitting display component changes dynamically, and not all display screens have brightness fluctuations.
  • the highest gray scale by adopting a fixed voltage working mode, the power consumption of active light-emitting display components is relatively large.
  • the present application provides a method for adjusting the driving voltage of the display component.
  • the driving voltage required for the display component to display the Nth frame of image is determined according to the highest gray scale of the Nth frame of image
  • the driving voltage of the display component is dynamically adjusted according to the driving voltage required to display the image of the Nth frame; so that the driving voltage of the display component is reduced to reduce the power consumption of the display component under the condition of ensuring the normal display of the image.
  • the method for adjusting the driving voltage of a display component provided by the embodiment of the present application can be applied to a smart screen, as shown in Figure 3; through the method of this application, the smart screen display can be determined according to the highest gray scale of a frame image.
  • the driving voltage required by the frame image; the driving voltage of the smart screen can be dynamically adjusted according to the driving voltage required by the smart screen to display the frame image; the problem of large power consumption in the use of a constant voltage is avoided, and it is implemented through this application For example, in the case of ensuring that the smart screen can display normally, reduce the driving voltage and reduce the power consumption of the smart screen.
  • the method for adjusting the driving voltage of a display component provided by the embodiment of this application can be applied to a mobile phone, as shown in Figure 4; through the method of this application, the display component in the mobile phone can be determined according to the highest grayscale of a frame of image The driving voltage required to display the frame image; the driving voltage of the display component in the mobile phone can be dynamically adjusted according to the driving voltage required by the display component in the mobile phone to display the frame image; avoiding the large power consumption of the constant voltage Problem, through the method of the embodiment of the present application, while ensuring that the mobile phone can display normally, the driving voltage of the display component in the mobile phone is reduced, thereby reducing the power consumption of the display component in the mobile phone.
  • FIG. 5 shows a schematic diagram of a system architecture for adjusting a driving voltage of a display component applicable to an embodiment of the present application.
  • the terminal device 200 may include a display subsystem 210 and a display component 220; the display subsystem 210 may include a display buffer module 211, an image maximum gray scale calculation module 212, a voltage adjustment amount calculation module 213 and a display string line interface 215 (display serial interface, DSI).
  • the display subsystem 210 may include a display buffer module 211, an image maximum gray scale calculation module 212, a voltage adjustment amount calculation module 213 and a display string line interface 215 (display serial interface, DSI).
  • the display subsystem 210 may further include a brightness compensation calculation module 214 .
  • the display assembly 220 refers to an active light-emitting display assembly; the active light-emitting display assembly may include a display panel and a printed circuit board (printed circuit board, PCB); a pixel driving circuit is included on the PCB, and the display assembly 220 is driven by a pixel.
  • the circuit drives the image data to display on the display panel.
  • the display panel included in the active light-emitting display component can adopt organic light-emitting diode (organic light-emitting diode, OLED), active-matrix organic light-emitting diode (active-matrix organic light-emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), mini light-emitting diode (mini light-emitting diode, Mini LED), micro light-emitting diode (micro light-emitting diode, Micro LED), micro OLED (Micro OLED) or quantum dot light-emitting diode ( Any one of quantum dot light emitting diodes, QLED).
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • flexible light-emitting diode flexible light-emitting diode
  • the image maximum gray scale calculation module 212, the voltage adjustment amount calculation module 213 and the brightness compensation amount calculation module 214 may be integrated on a system-on-chip (SOC) of the terminal device 200.
  • SOC system-on-chip
  • the image highest grayscale calculation module 212, the voltage adjustment calculation module 213 and the brightness compensation calculation module 214 may be modules in the calculation example hardware in the terminal device 200; for example, it may be a central processing unit (central processing unit, CPU) or a module in a digital signal processor (DSP).
  • CPU central processing unit
  • DSP digital signal processor
  • the display cache module 211 is used for storing image or video data.
  • the image highest grayscale calculation module 212 is used to count the highest grayscale of a frame of image; the highest grayscale refers to the maximum value of grayscale corresponding to all pixels included in a frame of image.
  • the voltage adjustment calculation module 213 is used to calculate the adjustment of the driving voltage; for example, the driving voltage required for a frame of image can be determined according to the highest gray scale of a frame of image, and V SS is adjusted according to the required minimum voltage to make V SS and V SS The voltage difference between DD is minimized, thereby reducing power consumption.
  • the driving voltage (V SS ) is the same for one frame of image, in order to ensure the normal display of all pixels in one frame of image, the driving current required for one frame of image can be determined according to the highest gray scale of one frame of image; The driving voltage required for one frame of image can be determined according to the required driving current, and the driving voltage can refer to the voltage difference between the working voltage (V DD ) and the driving voltage (V SS ) as shown in FIG. 1 .
  • the display subsystem 210 may also include a brightness compensation amount calculation module 214, which is used to calculate the brightness compensation value; in the saturation region of the output characteristic curve of the T2 thin film transistor, the output current varies with the voltage difference In the case of a certain change, compensation can be made through the brightness value, so as to make up for the problem that the horizontal axis of the output characteristic curve of the T2 thin film transistor is not parallel to the X axis, as shown in FIG. 6 .
  • a brightness compensation amount calculation module 214 which is used to calculate the brightness compensation value; in the saturation region of the output characteristic curve of the T2 thin film transistor, the output current varies with the voltage difference In the case of a certain change, compensation can be made through the brightness value, so as to make up for the problem that the horizontal axis of the output characteristic curve of the T2 thin film transistor is not parallel to the X axis, as shown in FIG. 6 .
  • the display subsystem 210 may not include the brightness compensation calculation module 214 .
  • FIG. 6 shows a schematic diagram of an output characteristic curve of a thin film transistor.
  • the output characteristic curve may refer to the output characteristic curve of the T2 thin film transistor as shown in FIG. 1 .
  • EM is used to control the working state of T3 thin film transistor and T4 thin film transistor.
  • the voltage difference between T3 thin film transistor and T4 thin film transistor is approximately is 0;
  • V DD -V SS -U DS V OLED , the current required by the OLED can be determined according to the maximum gray scale of a frame of image, since the voltage of the OLED is proportional to the current, the working voltage V OLED of the OLED can be determined;
  • the horizontal axis U DS represents the voltage difference between the drain (drain) and the source (source);
  • the vertical axis ID represents the drain (drain) current; it can be seen from Figure 6 It is shown that in the linear region, there is a linear relationship between U DS and ID ; in the saturation region, when U DS changes, ID basically remains unchanged.
  • the amount of brightness compensation is described in detail in conjunction with FIG. 6 ; as shown in FIG. 6 , in an ideal state, when the T2 thin film transistor is in the saturation region, the magnitude of the output current is exactly the same, as shown in FIG. 6 in the saturation region Shown by the dotted line; however, under the influence of some factors in actual situations, there may be a slight difference in the output current of the T2 thin film transistor when it is in the saturation region, as shown in Figure 6.
  • the amount of current deviation; the amount of brightness compensation can be The current deviation of the compensation current in the saturation region.
  • the voltage difference between the working voltage (V DD ) and the driving voltage can be adjusted; since the voltage difference between the working voltage and the driving voltage changes, the capacitance The voltage across C changes; the conduction degree of the T2 thin film transistor can be controlled by the voltage on the capacitor C, thereby controlling the driving current of the light emitter (for example, OLED); for example, the light emission can be determined according to the highest gray scale in a frame of image
  • the minimum current required by the body (for example, OLED), the minimum voltage difference between the drain and the source can be obtained according to the minimum current and the output characteristic curve of the T2 thin film crystal, and the difference between the operating voltage and the driving voltage can be determined according to the minimum voltage difference
  • the required minimum voltage difference between them can further determine the required minimum driving voltage; thus, when the normal display of the image is ensured, that is, the driving voltage can meet the minimum current required by the luminous body (for example, OLED), the driving can be reduced.
  • the voltage SS the voltage difference between the working voltage (V DD ) and
  • the driving voltage required by the display component to display the frame of image can be determined according to the highest gray scale of a frame of image, so as to adjust the driving voltage of the pixel driving circuit; when the output characteristic curve of the T2 thin film transistor is in the saturation region When the output current changes with the voltage difference, the brightness compensation can be used to compensate the brightness of the image displayed by the display component.
  • FIG. 7 describes in detail the method for adjusting the driving voltage of the display component provided by the embodiment of the present application. As shown in FIG. 7 , the method includes step S301 to step S312 ; step S301 to step S312 will be described in detail below.
  • Step S301 the display buffer module sends the image data of the Nth frame to the image highest gray scale calculation module.
  • N is a positive integer.
  • a graphics processor may write image data into the display buffer module.
  • a video decoder video decoder
  • a component connected to a display component video processing unit, VPU, etc. may write image data into the display buffer module.
  • the data of the Nth frame of image may refer to the data of the current frame of image written into the display buffer module; that is, the data of the Nth frame of image refers to the data of the image frame to be displayed.
  • the display buffer module may actively send the image data to the image highest grayscale calculation module.
  • the display cache module can send the data of the Nth frame image to the image highest grayscale calculation module; for example, when the display cache module receives the image data sent by the image highest grayscale calculation module After the command is called, the display cache module can send the newly written image data to the image highest gray scale calculation module.
  • Step S302 the highest grayscale calculation module of the image determines the highest grayscale in the Nth frame of image according to the Nth frame of image data.
  • the image highest grayscale calculation module can acquire image data from the display cache module according to computing power; and determine the highest grayscale of the image according to the image data.
  • the highest grayscale of the Nth frame image can be obtained by identifying the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 255; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 230 according to the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 1023; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 900 according to the histogram of the Nth frame image.
  • the highest grayscale of the Nth frame image may be determined by traversing each pixel in the Nth frame image.
  • the maximum grayscale of the Nth frame image can be output through the previous component connected to the display buffer module;
  • the previous component connected to the display component may refer to a GPU, a video decoder (video decoder), and a component connected to the display component ( video processing unit, VPU), etc.
  • Step S303 the highest grayscale calculation module of the image sends the highest grayscale of the image of the Nth frame to the voltage adjustment calculation module.
  • Step S304 the voltage adjustment amount calculation module may determine the minimum voltage difference according to the highest gray scale of the Nth frame image; determine the voltage adjustment amount of the Nth frame image according to the minimum voltage difference.
  • the voltage adjustment calculation module can determine the minimum current required by the luminous body (for example, a light-emitting diode) in the pixel driving circuit according to the highest gray scale of the Nth frame of image; since the operating voltage of the luminous body is proportional to the operating current, therefore The minimum voltage difference between the drain and the source can be determined according to the minimum current required by the illuminant and the output characteristic curve of the T2 thin film transistor; the operation of the pixel driving circuit can be determined according to the minimum voltage difference between the drain and the source The minimum voltage difference between the voltage (V DD ) and the driving voltage (V SS ), so as to determine the voltage adjustment amount of the image of the Nth frame.
  • the luminous body for example, a light-emitting diode
  • the driving voltage of the display component can effectively reduce the power consumption of the display component.
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage (an example of the first driving voltage) of the image in the N-1th frame.
  • the driving voltage value required by the display component to display the Nth frame image can be determined by the highest grayscale of the Nth frame image, that is, the minimum voltage required to display the Nth frame image; in the case of the same brightness, the Nth frame
  • the highest grayscale of the image determines the minimum voltage difference between the working voltage of the pixel driving circuit and the driving voltage.
  • the working voltage is constant. By adjusting the size of the driving voltage, it can meet the requirements of the display component to display the image of the Nth frame. minimum voltage difference.
  • Step S305 the voltage adjustment amount calculation module sends the voltage adjustment amount of the Nth frame image to the brightness compensation amount calculation module.
  • Step S306 the voltage adjustment amount calculation module sends the voltage adjustment amount of the Nth frame image to the display interface.
  • Step S307 the brightness compensation amount calculation module obtains the brightness compensation amount of the Nth frame image according to the voltage adjustment amount of the Nth frame image and the output image curve.
  • the brightness compensation amount calculation module can determine the brightness compensation amount of the Nth frame image according to the voltage adjustment amount of the Nth frame image and the output characteristic curve of the transistor, wherein the transistor refers to the pixel driving circuit used to provide the driving current to the illuminant transistors, such as the T2 thin film transistor shown in FIG. 2 .
  • the thin film transistor used in the pixel driving circuit to provide driving current to the luminous body can always work in the saturation region, that is, the display component is displaying the highest grayscale of the image of the Nth frame.
  • the TFT used to provide driving current to the illuminant can always work in the saturation region of the output characteristic curve at the lowest gray scale and the lowest gray scale; the TFT can make the illuminant display different brightness by outputting different drain currents.
  • the essence of the brightness compensation amount can be regarded as the current compensation amount; since brightness and current are strongly correlated, as shown in Figure 6, since the output characteristic curve of the T2 thin film transistor cannot fully reach the ideal state in the saturation region , so the current needs to be compensated so that the horizontal axis of the output characteristic curve is parallel to the X-axis; through the amount of brightness compensation, the brightness of the displayed image can reach the brightness effect corresponding to the output current in the saturation region in the ideal state.
  • the output characteristic curve shown in Figure 6 can determine the slope of the curve in the saturation region (an example of the first slope), and ⁇ U can be determined according to the voltage adjustment amount; according to the slope of the output characteristic curve in the saturation region and ⁇ U can be ⁇ I is obtained, and the amount of brightness compensation can be obtained according to ⁇ I.
  • Step S308 the brightness compensation amount calculation module sends the brightness compensation amount of the Nth frame image to the display interface.
  • Step S309 the display component sends a synchronization signal to the display interface.
  • the synchronization signal may be used to instruct the display component to start displaying the Nth frame of image.
  • Step S310 the display buffer module sends the data of the Nth frame of image to the display interface.
  • the display interface can acquire the data of the Nth frame of image from the display buffer module.
  • Step S311 the display interface sends the voltage adjustment amount, the brightness compensation amount and the data of the Nth frame image to the display component.
  • the display interface sends the voltage adjustment amount of the Nth frame of image, the brightness compensation amount of the Nth frame of image, and the data of the Nth frame of image to the display component.
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage of the image in the N ⁇ 1th frame.
  • the voltage difference may refer to the voltage difference between the driving voltage when displaying the N-1th frame of image and the driving voltage of the Nth frame of image.
  • the first case the display component is a display component without a cache area.
  • the display interface can first send the voltage of the Nth frame image to the display component after receiving the synchronization signal The adjustment amount and the brightness compensation amount of the image of the Nth frame are sent to the display component.
  • the second case the display component is a display component with a cache area.
  • the display component when the display component has a buffer area, the display component can be used to buffer the data of the next frame of the current frame image being displayed, and then the display interface can send the Nth frame image at the same time after receiving the synchronization command
  • the voltage adjustment amount of the Nth frame image, the brightness compensation amount of the Nth frame image and the data of the Nth frame image; or, the data of the Nth frame image can be sent first, and then the voltage adjustment amount of the Nth frame image and the brightness of the Nth frame image Compensation amount.
  • the third case the display component is a display component with multiple cache areas.
  • the display interface needs to mark when sending the voltage adjustment amount, brightness compensation amount, and image data to the display component, that is, to mark a frame of image corresponding to the frame of image A set of voltage adjustment amount and brightness compensation amount are marked.
  • the voltage adjustment amount and brightness compensation amount are related to the highest grayscale in the image; for different images, the highest grayscale in the image is different, and the voltage adjustment amount and brightness compensation amount may be different.
  • Step S312 the display component displays the image data of the Nth frame according to the voltage adjustment amount and the brightness compensation amount.
  • the display component can be set according to the voltage adjustment amount of the Nth frame image and the brightness compensation amount of the Nth frame image, and then display the data of the Nth frame image.
  • the driving voltage of the display component may refer to V SS in the pixel driving circuit as shown in Figure 2; since the T2 thin film transistor works in the saturation region, the driving current provided by the T2 thin film transistor to the illuminant does not vary with the voltage difference changes; that is, when adjusting the driving voltage, the influence on the driving current of the luminous body (for example, OLED) is small; in addition, since the adjustment speed can reach more than 60 frames, the image displayed by the display component will not appear flickering question.
  • the voltage required for the display component to display the image of the Nth frame can be determined; adjustment, so that when the normal display of the image can be ensured, the driving voltage can be reduced to reduce the power consumption of the display component; in addition, the driving transistor in the pixel driving circuit (for example, for The output characteristic curve of the transistor that provides the driving current to the illuminant) determines the amount of brightness compensation, so as to perform brightness compensation on the image of the Nth frame.
  • a central processing unit may be included in the system chip, and then the highest grayscale calculation module of the image, the voltage adjustment calculation module and the brightness compensation calculation module may be modules in the central processing unit ; Steps S302 to S308 may be executed by the central processing unit.
  • the system-on-a-chip as shown in FIG. 7 may include a central processing unit and a graphics processing unit, and then the highest grayscale calculation module of the image, the voltage adjustment calculation module and the brightness compensation calculation module may be graphics A module in the processor; the central processing unit obtains the data of the Nth frame image from the display buffer module, and sends the data of the Nth frame image to the graphics processor, and the graphics processor can perform steps S302, S303, Steps S305 and S308; the graphics processor sends the voltage adjustment amount of the Nth frame image and the brightness compensation amount of the Nth frame image to the CPU; the CPU sends the Nth frame image voltage adjustment amount and the Nth frame image to the display interface Brightness compensation amount of N frames of images.
  • the system-on-a-chip as shown in FIG. 7 may include a central processing unit and a graphics processor, and the graphics processor may include an image highest grayscale calculation module; the central processing unit may include a voltage adjustment value
  • the calculation module and the brightness compensation amount calculation module can complete steps S302 to S308 through interaction between the central processing unit and the graphics processor, as shown in FIG. 8 .
  • graphics processor may also be other processors used for calculation, such as a digital signal processor, which is not limited in this application.
  • FIG. 8 is a detailed description of the method for adjusting the driving voltage of the display component provided by the embodiment of the present application. As shown in FIG. 8 , the method includes step S401 to step S414 ; step S401 to step S414 will be described in detail below.
  • Step S401 the display cache module sends the data of the Nth frame of image to the central processing unit.
  • the central processing unit may obtain the image data of the Nth frame from the display buffer module, where N is a positive integer.
  • a graphics processor may write image data into the display buffer module.
  • a video decoder video decoder
  • a component connected to a display component video processing unit, VPU, etc. may write image data into the display buffer module.
  • the data of the Nth frame of image may refer to the data of the current frame of image written into the display buffer module; the data of the Nth frame of image is the data of the image frame to be displayed.
  • the central processing unit may acquire the image data from the display buffer module according to the computing capability.
  • Step S402 the central processing unit sends the image data of the Nth frame to the graphics processor.
  • Step S403 the highest grayscale calculation module in the graphics processor determines the highest grayscale in the Nth frame of image according to the Nth frame of image data.
  • the image highest grayscale calculation module can acquire image data from the display cache module according to computing power; and determine the highest grayscale of the image according to the image data.
  • the highest grayscale of the Nth frame image can be obtained by identifying the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 255; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 230 according to the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 1023; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 900 according to the histogram of the Nth frame image.
  • the highest grayscale of the Nth frame image may be determined by traversing each pixel in the Nth frame image.
  • the maximum grayscale of the Nth frame image can be output through the previous component connected to the display buffer module;
  • the previous component connected to the display component may refer to a GPU, a video decoder (video decoder), and a component connected to the display component ( video processing unit, VPU), etc.
  • Step S404 the graphics processor sends the highest grayscale of the Nth frame of image to the central processing unit.
  • the CPU includes a voltage adjustment calculation module and a brightness compensation calculation module.
  • Step S405 the voltage adjustment calculation module in the central processing unit determines the minimum voltage difference according to the highest gray scale of the Nth frame image; determines the voltage adjustment value of the Nth frame image according to the minimum voltage difference.
  • the voltage adjustment calculation module can determine the minimum current required by the luminous body (for example, a light-emitting diode) in the pixel driving circuit according to the highest gray scale of the Nth frame of image; since the operating voltage of the luminous body is proportional to the operating current, therefore The minimum voltage difference between the drain and the source can be determined according to the minimum current required by the illuminant and the output characteristic curve of the T2 thin film transistor; the operation of the pixel driving circuit can be determined according to the minimum voltage difference between the drain and the source The minimum voltage difference between the voltage (V DD ) and the driving voltage (V SS ), so as to determine the voltage adjustment amount of the image of the Nth frame.
  • the luminous body for example, a light-emitting diode
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage (an example of the first driving voltage) of the image in the N-1th frame.
  • the driving voltage value required by the display component to display the Nth frame image can be determined by the highest grayscale of the Nth frame image, that is, the minimum voltage required to display the Nth frame image; in the case of the same brightness, the Nth frame
  • the highest grayscale of the image determines the minimum voltage difference between the working voltage of the pixel driving circuit and the driving voltage.
  • the working voltage is constant. By adjusting the size of the driving voltage, it can meet the requirements of the display component to display the image of the Nth frame. minimum voltage difference.
  • Step S406 the central processing unit sends the voltage adjustment amount of the image of the Nth frame to the display interface.
  • Step S407 the brightness compensation amount calculation module in the central processing unit obtains the brightness compensation amount of the Nth frame image according to the Nth frame image voltage adjustment amount and the output characteristic curve.
  • the brightness compensation amount calculation module determines the brightness compensation amount of the image of the Nth frame according to the adjustment amount of the image voltage of the Nth frame and the output characteristic curve of the transistor, wherein the transistor refers to the transistor used to provide the driving current to the illuminant in the pixel driving circuit , for example, a T2 thin film transistor as shown in FIG. 2 .
  • the thin film transistor used in the pixel driving circuit to provide driving current to the luminous body can always work in the saturation region, that is, the display component is displaying the highest grayscale of the image of the Nth frame.
  • the TFT used to provide driving current to the illuminant can always work in the saturation region of the output characteristic curve at the lowest gray scale and the lowest gray scale; the TFT can make the illuminant display different brightness by outputting different drain currents.
  • the essence of the brightness compensation amount can be regarded as the current compensation amount; since brightness and current are strongly correlated, as shown in Figure 6, since the output characteristic curve of the T2 thin film transistor cannot fully reach the ideal state in the saturation region , so the current needs to be compensated so that the horizontal axis of the output characteristic curve is parallel to the X-axis; through the amount of brightness compensation, the brightness of the displayed image can reach the brightness effect corresponding to the output current in the saturation region in the ideal state.
  • the output characteristic curve shown in Figure 6 can determine the slope of the curve in the saturation region, and ⁇ U can be determined according to the voltage adjustment amount; ⁇ I can be obtained according to the slope and ⁇ U of the output characteristic curve in the saturation region, and the brightness can be obtained according to ⁇ I Compensation amount.
  • Step S408 the central processing unit sends the brightness compensation amount of the image of the Nth frame to the display interface.
  • Step S409 the display component sends a synchronization signal to the display interface.
  • the synchronization signal may be used to instruct the display component to start displaying the Nth frame of image.
  • Step S410 the display interface sends a synchronization signal to the central processing unit.
  • Step S411 the display cache module sends the data of the Nth frame of image to the central processing unit.
  • the central processing unit after the central processing unit receives the synchronization signal, it can acquire the data of the image of the Nth frame from the display buffer module.
  • Step S412 the central processing unit sends the image data of the Nth frame to the display interface.
  • Step S413 the display interface sends the voltage adjustment amount, the brightness compensation amount and the data of the Nth frame image to the display component.
  • the display interface sends the voltage adjustment amount of the Nth frame of image, the brightness compensation amount of the Nth frame of image, and the data of the Nth frame of image to the display component.
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage of the image in the N ⁇ 1th frame.
  • the voltage difference may refer to the voltage difference between the driving voltage when displaying the N-1th frame of image and the driving voltage of the Nth frame of image.
  • the first case the display component is a display component without a cache area.
  • the display interface can first send the voltage of the Nth frame image to the display component after receiving the synchronization signal The adjustment amount and the brightness compensation amount of the image of the Nth frame are sent to the display component.
  • the second case the display component is a display component with a cache area.
  • the display component when the display component has a buffer area, the display component can be used to buffer the data of the next frame of the current frame image being displayed, and then the display interface can send the Nth frame image at the same time after receiving the synchronization command
  • the voltage adjustment amount of the Nth frame image, the brightness compensation amount of the Nth frame image and the data of the Nth frame image; or, the data of the Nth frame image can be sent first, and then the voltage adjustment amount of the Nth frame image and the brightness of the Nth frame image Compensation amount.
  • the third case the display component is a display component with multiple cache areas.
  • the display interface needs to mark when sending the voltage adjustment amount, brightness compensation amount, and image data to the display component, that is, to mark a frame of image corresponding to the frame of image A set of voltage adjustment amount and brightness compensation amount are marked.
  • the voltage adjustment amount and brightness compensation amount are related to the highest gray level in the image; for different images, the highest gray level in the image is different, and the voltage adjustment amount and brightness compensation amount can be different.
  • Step S414 the display component displays the image data of the Nth frame according to the voltage adjustment amount and the brightness compensation amount.
  • the display component can be set according to the voltage adjustment amount of the Nth frame image and the brightness compensation amount of the Nth frame image, and then display the data of the Nth frame image.
  • the driving voltage of the display component may refer to V SS in the pixel driving circuit as shown in Figure 2; since the T2 thin film transistor works in the saturation region, the driving current provided by the T2 thin film transistor to the illuminant does not vary with the voltage difference changes; that is, when adjusting the driving voltage, the influence on the driving current of the luminous body (for example, OLED) is small; in addition, since the adjustment speed can reach more than 60 frames, the image displayed by the display component will not appear flickering question.
  • the voltage required for the display component to display the image of the Nth frame can be determined; adjustment, so that when the normal display of the image can be ensured, the driving voltage can be reduced to reduce the power consumption of the display component; in addition, the driving transistor in the pixel driving circuit (for example, for The output characteristic curve of the transistor that provides the driving current to the illuminant) determines the amount of brightness compensation, so as to perform brightness compensation on the image of the Nth frame.
  • the T2 thin film transistor is in an ideal state, that is, when the T2 thin film transistor is in the saturation region, the output current is completely the same, or if the driving current corresponding to the voltage adjustment amount satisfies a certain threshold, the user When it cannot be recognized, brightness compensation may not be required when displaying the image data of the Nth frame; determine the driving voltage required by the display component to display the Nth frame image according to the highest gray scale of the Nth frame image, so as to adjust the driving voltage of the pixel driving circuit Adjustment.
  • FIG. 9 describes in detail the method for adjusting the driving voltage of the display component provided by the embodiment of the present application. As shown in FIG. 9 , the method includes step S501 to step S509 ; step S501 to step S509 will be described in detail below.
  • Step S501 the display cache module sends the data of the Nth frame of image to the image highest gray scale calculation module.
  • N is a positive integer.
  • a graphics processor may write image data into the display buffer module.
  • a video decoder video decoder
  • a component connected to a display component video processing unit, VPU, etc. may write image data into the display buffer module.
  • the data of the Nth frame of image may refer to the data of the current frame of image written into the display buffer module; the data of the Nth frame of image is the data of the image frame to be displayed.
  • the central processing unit may acquire data from the display buffer module according to computing capability.
  • the display buffer module may actively send the image data to the image highest grayscale calculation module.
  • the display cache module can send the data of the Nth frame image to the image highest grayscale calculation module; for example, when the display cache module receives the image data sent by the image highest grayscale calculation module After the command is called, the display cache module can send the newly written image data to the image highest gray scale calculation module.
  • Step S502 the highest grayscale calculation module of the image determines the highest grayscale of the Nth frame of image according to the data of the Nth frame of image.
  • the highest grayscale of the Nth frame image can be obtained by identifying the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 255; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 230 according to the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 1023; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 900 according to the histogram of the Nth frame image.
  • the highest grayscale of the Nth frame image may be determined by traversing each pixel in the Nth frame image.
  • the maximum brightness of the Nth frame image can be output by the last component connected to the display buffer module, and the highest grayscale of the Nth frame image can be determined according to the maximum brightness value of the Nth frame image; the last component connected to the display component can be Refers to the GPU, video decoder (video decoder), display component connected components (video processing unit, VPU), etc.
  • Step S503 the highest grayscale calculation module of the image sends the highest grayscale of the image of the Nth frame to the voltage adjustment calculation module.
  • Step S504 the voltage adjustment amount calculation module determines the minimum voltage difference according to the highest gray scale of the Nth frame image; determines the voltage adjustment amount of the Nth frame image according to the minimum voltage difference.
  • the voltage adjustment calculation module can determine the minimum current required by the luminous body (for example, a light-emitting diode) in the pixel driving circuit according to the highest gray scale of the Nth frame of image; since the operating voltage of the luminous body is proportional to the operating current, therefore The minimum voltage difference between the drain and the source can be determined according to the minimum current required by the illuminant and the output characteristic curve of the T2 thin film transistor; the operation of the pixel driving circuit can be determined according to the minimum voltage difference between the drain and the source The minimum voltage difference between the voltage (V DD ) and the driving voltage (V SS ), so as to determine the voltage adjustment amount of the image of the Nth frame.
  • the luminous body for example, a light-emitting diode
  • the driving voltage of the display component can effectively reduce the power consumption of the display component.
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage of the image in the N ⁇ 1th frame.
  • the driving voltage value required by the display component to display the Nth frame image can be determined by the highest grayscale of the Nth frame image, that is, the minimum voltage required to display the Nth frame image; in the case of the same brightness, the Nth frame
  • the highest grayscale of the image determines the minimum voltage difference between the working voltage of the pixel driving circuit and the driving voltage.
  • the working voltage is constant. By adjusting the size of the driving voltage, it can meet the requirements of the display component to display the image of the Nth frame. minimum voltage difference.
  • Step S505 the voltage adjustment amount calculation module sends the voltage adjustment amount of the Nth frame image to the display interface.
  • Step S506 the display component sends a synchronization signal to the display interface.
  • the synchronization signal may be used to instruct the display component to start displaying the Nth frame of image.
  • Step S507 the display buffer module sends the data of the Nth frame of image to the display interface.
  • the display interface may acquire the data of the Nth frame of image from the display buffer module.
  • Step S508 the display interface sends the voltage adjustment amount of the Nth frame image and the data of the Nth frame image to the display component.
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage of the image in the N ⁇ 1th frame.
  • the voltage difference may refer to the voltage difference between the driving voltage when displaying the N-1th frame of image and the driving voltage of the Nth frame of image.
  • the first case the display component is a display component without a cache area.
  • the display interface can first send the voltage of the Nth frame image to the display component after receiving the synchronization signal Adjust the amount, and then send the image data of the Nth frame to the display component.
  • the second case the display component is a display component with a cache area.
  • the display component when the display component has a buffer area, the display component can be used to buffer the data of the next frame of the current frame image being displayed, and then the display interface can send the Nth frame image at the same time after receiving the synchronization command
  • the voltage adjustment amount of the image and the data of the Nth frame image; or, the data of the Nth frame image can be sent first, and then the voltage adjustment amount of the Nth frame image can be sent.
  • the third case the display component is a display component with multiple cache areas.
  • the display interface needs to mark when sending the voltage adjustment amount to the display component, that is, mark a frame of image and the voltage adjustment amount corresponding to the frame of image.
  • the voltage adjustment amount is related to the highest gray level in the image; for different images, the highest gray level in the image is different, and the voltage adjustment amount may be different.
  • Step S509 displaying the image data of the Nth frame according to the voltage adjustment amount.
  • the display component can be set according to the voltage adjustment amount of the image of the Nth frame, and then display the data of the image of the Nth frame.
  • the driving voltage of the display component may refer to V SS in the pixel driving circuit as shown in Figure 2; since the T2 thin film transistor works in the saturation region, the driving current provided by the T2 thin film transistor to the illuminant does not vary with the voltage difference changes; that is, when adjusting the driving voltage, the influence on the driving current of the luminous body (for example, OLED) is small; in addition, since the adjustment speed can reach more than 60 frames, the image displayed by the display component will not appear flickering question.
  • the voltage required for the display component to display the image of the Nth frame can be determined; Adjustment is performed so that the driving voltage can be reduced to reduce the power consumption of the display component while ensuring normal image display.
  • a central processing unit may be included in the system chip as shown in FIG. Execute step S502 to step S507.
  • the system-on-a-chip as shown in FIG. 9 may include a central processing unit and a graphics processor, and then the image highest grayscale calculation module and the voltage adjustment amount calculation module may be modules in the graphics processor; Obtain the data of the Nth frame image from the display cache module by the central processing unit, and send the data of the Nth frame image to the graphics processor, and the graphics processor can perform steps S502 and S504; the graphics processor sends the Nth frame image The voltage adjustment amount of the frame image is sent to the central processing unit; the central processing unit sends the voltage adjustment amount of the Nth frame image to the display interface.
  • the system-on-a-chip as shown in FIG. 9 may include a central processing unit and a graphics processor, and the graphics processor may include an image highest grayscale calculation module; the central processing unit may include a voltage adjustment amount Computing module: Steps S502 to S507 can be completed through interaction between the central processing unit and the graphics processing unit; as shown in FIG. 10 .
  • graphics processor may also be other processors used for calculation, such as a digital signal processor, which is not limited in this application.
  • FIG. 10 is a detailed description of the method for adjusting the driving voltage of the display component provided by the embodiment of the present application. As shown in FIG. 10 , the method includes step S601 to step S612; step S601 to step S612 will be described in detail below.
  • Step S601 the display cache module sends the data of the Nth frame of image to the central processing unit.
  • the central processing unit obtains the image data of the Nth frame from the display buffer module, where N is a positive integer.
  • a graphics processor may write image data into the display buffer module.
  • a video decoder video decoder
  • a component connected to a display component video processing unit, VPU, etc. may write image data into the display buffer module.
  • the data of the Nth frame of image may refer to the data of the current frame of image written into the display buffer module; the data of the Nth frame of image is the data of the image frame to be displayed.
  • the central processing unit may acquire the image data from the display buffer module according to the computing capability.
  • Step S602 the central processing unit sends the image data of the Nth frame to the graphics processor.
  • Step S603 the highest grayscale calculation module in the graphics processor determines the highest grayscale in the Nth frame of image according to the Nth frame of image data.
  • the image highest grayscale calculation module can acquire image data from the display cache module according to computing power; and determine the highest grayscale of the image according to the image data.
  • the highest grayscale of the Nth frame image can be obtained by identifying the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 255; for the Nth frame image, the highest grayscale of the Nth frame image can be determined to be 230 according to the histogram of the Nth frame image.
  • the theoretical grayscale range is 0 to 1023; for the Nth frame of image, the highest grayscale of the Nth frame of image can be determined to be 900 according to the histogram of the Nth frame of image.
  • the highest grayscale of the Nth frame image may be determined by traversing each pixel in the Nth frame image.
  • the maximum grayscale of the Nth frame image can be output through the previous component connected to the display buffer module;
  • the previous component connected to the display component may refer to a GPU, a video decoder (video decoder), and a component connected to the display component ( video processing unit, VPU), etc.
  • Step S604 the graphics processor sends the highest grayscale of the Nth frame of image to the central processing unit.
  • the CPU includes a voltage adjustment calculation module and a brightness compensation calculation module.
  • Step S605 the voltage adjustment calculation module in the central processing unit determines the minimum voltage difference according to the highest gray scale of the Nth frame image; determines the voltage adjustment value of the Nth frame image according to the minimum voltage difference.
  • the voltage adjustment calculation module can determine the minimum current required by the luminous body (for example, a light-emitting diode) in the pixel driving circuit according to the highest gray scale of the Nth frame of image; since the operating voltage of the luminous body is proportional to the operating current, therefore The minimum voltage difference between the drain and the source can be determined according to the minimum current required by the illuminant and the output characteristic curve of the T2 thin film transistor; the operation of the pixel driving circuit can be determined according to the minimum voltage difference between the drain and the source The minimum voltage difference between the voltage (V DD ) and the driving voltage (V SS ), so as to determine the voltage adjustment amount of the image of the Nth frame.
  • the luminous body for example, a light-emitting diode
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage (an example of the first driving voltage) of the image in the N-1th frame.
  • the driving voltage value required by the display component to display the Nth frame image can be determined by the highest grayscale of the Nth frame image, that is, the minimum voltage required to display the Nth frame image; in the case of the same brightness, the Nth frame
  • the highest grayscale of the image determines the minimum voltage difference between the working voltage of the pixel driving circuit and the driving voltage.
  • the working voltage is constant. By adjusting the size of the driving voltage, it can meet the requirements of the display component to display the image of the Nth frame. minimum voltage difference.
  • Step S606 the central processing unit sends the voltage adjustment amount of the image of the Nth frame to the display interface.
  • Step S607 the display component sends a synchronization signal to the display interface.
  • the synchronization signal may be used to instruct the display component to start displaying the Nth frame of image.
  • Step S608 the display interface sends a synchronization signal to the central processing unit.
  • Step S609 the display cache module sends the data of the Nth frame of image to the central processing unit.
  • the central processing unit after the central processing unit receives the synchronization signal, it can acquire the data of the image of the Nth frame from the display buffer module.
  • Step S610 the central processing unit sends the image data of the Nth frame to the display interface.
  • Step S611 the display interface sends the voltage adjustment amount of the Nth frame of image and the data of the Nth frame of image to the display component.
  • the voltage adjustment amount of the Nth frame of image may refer to the absolute value of the driving voltage of the display component to display the Nth frame of image.
  • the voltage adjustment amount of the image in the Nth frame may refer to a voltage difference relative to the driving voltage of the image in the N-1th frame.
  • the voltage difference may refer to the voltage difference between the driving voltage when displaying the N-1th frame of image and the driving voltage of the Nth frame of image.
  • the first case the display component is a display component without a cache area.
  • the display interface can first send the voltage of the Nth frame image to the display component after receiving the synchronization signal Adjust the amount, and then send the image data of the Nth frame to the display component.
  • the second case the display component is a display component with a cache area.
  • the display component when the display component has a buffer area, the display component can be used to buffer the data of the next frame of the current frame image being displayed, and then the display interface can send the Nth frame image at the same time after receiving the synchronization command
  • the voltage adjustment amount of the image and the data of the Nth frame image; or, the data of the Nth frame image can be sent first, and then the voltage adjustment amount of the Nth frame image can be sent.
  • the third case the display component is a display component with multiple cache areas.
  • the display interface needs to mark when sending the voltage adjustment amount to the display component, that is, mark a frame of image and the voltage adjustment amount corresponding to the frame of image.
  • the voltage adjustment amount is related to the highest gray level in the image; for different images, the highest gray level in the image is different, and the voltage adjustment amount may be different.
  • Step S612 the display component displays the image data of the Nth frame according to the voltage adjustment amount.
  • the display component can be set according to the voltage adjustment amount of the image of the Nth frame, and then display the data of the image of the Nth frame.
  • the driving voltage of the display component may refer to V SS in the pixel driving circuit as shown in Figure 2; since the T2 thin film transistor works in the saturation region, the driving current provided by the T2 thin film transistor to the illuminant does not vary with the voltage difference changes; that is, when adjusting the driving voltage, the influence on the driving current of the luminous body (for example, OLED) is small; in addition, since the adjustment speed can reach more than 60 frames, the image displayed by the display component will not appear flickering question.
  • the voltage required for the display component to display the image of the Nth frame can be determined; Adjustment is performed so that the driving voltage can be reduced to reduce the power consumption of the display component while ensuring normal image display.
  • the method for adjusting the driving voltage of the display component provided by the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 10 ; the device embodiment of the present application will be described in detail below in conjunction with FIG. 11 and FIG. 12 . It should be understood that the devices in the embodiments of the present application can execute the various methods in the foregoing embodiments of the present application, that is, the specific working processes of the following various products can refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 500 includes an active light emitting display component, a storage module 710 and a processing module 720 .
  • the storage module 710 is used to store the image data of the Nth frame image, and N is a positive integer;
  • the processing module 720 is used to obtain the image data of the Nth frame image from the storage module 710; according to the The image data obtains the highest grayscale of the Nth frame of image, and the highest grayscale of the Nth frame of image refers to the maximum value of the grayscale corresponding to the pixel in the Nth frame of image; according to the Nth frame of image
  • the highest gray scale obtains the driving voltage of the image of the Nth frame, and the driving voltage of the image of the Nth frame refers to the voltage required when the display component displays the image of the Nth frame;
  • the voltage adjustment amount of the image in the Nth frame, the voltage adjustment amount of the image in the Nth frame is obtained according to the driving voltage of the image in the Nth frame.
  • the voltage adjustment amount of the image of the Nth frame is a voltage value of the driving voltage of the image of the Nth frame.
  • the voltage adjustment amount of the Nth image frame is the voltage difference between the driving voltage of the Nth image frame and the first driving voltage
  • the first driving voltage refers to the N-th Driving voltage for 1 frame of image.
  • the processing module 720 is specifically configured to:
  • the highest grayscale of the Nth frame image is obtained according to the histogram of the Nth frame image.
  • the display component includes a pixel driving circuit
  • the pixel driving circuit includes a first thin film transistor and a light emitter
  • the first thin film transistor is used to provide a driving current to the light emitter
  • the driving current of the Nth frame of image is determined according to the highest gray scale of the Nth frame of image, and the driving current of the Nth frame of image means that the display component displays the Nth frame of image through the pixel driving circuit required current;
  • the driving voltage of the Nth frame of image is determined according to the driving current of the Nth frame of image and the output characteristic curve of the first thin film transistor.
  • the processing module 720 when the first slope of the output characteristic curve is not equal to 0, the first slope refers to the slope of the output characteristic curve in the saturation region, and the processing module 720 further Used for:
  • the brightness compensation amount of the Nth frame image is determined according to the current adjustment amount of the Nth frame image, and the brightness compensation amount of the Nth frame image is used for the display component to perform brightness compensation on the Nth frame image.
  • processing module 720 is further configured to:
  • processing module 720 is further configured to:
  • the illuminant is any one of the following:
  • Organic light emitting diodes active matrix organic light emitting diodes, flexible light emitting diodes, micro light emitting diodes, miniature organic light emitting diodes or quantum dot light emitting diodes.
  • terminal device 700 is embodied in the form of functional modules.
  • module here may be implemented in the form of software and/or hardware, which is not specifically limited.
  • a “module” may be a software program, a hardware circuit or a combination of both to realize the above functions.
  • the hardware circuitry may include application specific integrated circuits (ASICs), electronic circuits, processors (such as shared processors, dedicated processors, or group processors) for executing one or more software or firmware programs. etc.) and memory, incorporating logic, and/or other suitable components to support the described functionality.
  • ASICs application specific integrated circuits
  • processors such as shared processors, dedicated processors, or group processors for executing one or more software or firmware programs. etc.
  • memory incorporating logic, and/or other suitable components to support the described functionality.
  • the units of each example described in the embodiments of the present application can be realized by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • FIG. 12 shows a schematic structural diagram of an electronic device provided by the present application.
  • the dashed line in Figure 12 indicates that the unit or the module is optional.
  • the electronic device 800 may be used to implement the methods described in the foregoing method embodiments.
  • the electronic device 800 includes one or more processors 801, and the one or more processors 801 can support the electronic device 800 to implement the method in the method embodiment.
  • the processor 801 may be a general purpose processor or a special purpose processor.
  • the processor 801 may be a central processing unit (central processing unit, CPU), a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices such as discrete gates, transistor logic devices, or discrete hardware components.
  • the processor 801 may be used to control the terminal device 800, execute software programs, and process data of the software programs.
  • the electronic device 800 may also include a communication unit 805, configured to implement input (reception) and output (send) of signals.
  • the electronic device 800 can be a chip, and the communication unit 805 can be an input and/or output circuit of the chip, or the communication unit 805 can be a communication interface of the chip, and the chip can be used as a component of a terminal device or other electronic devices .
  • the electronic device 800 may be a terminal device, and the communication unit 805 may be a transceiver of the terminal device, or the communication unit 805 may be a transceiver circuit of the terminal device.
  • the electronic device 800 may include one or more memories 802 on which a program 804 is stored.
  • the program 804 can be run by the processor 801 to generate instructions 803, so that the processor 801 executes the method described in the above method embodiments according to the instructions 803. method.
  • data may also be stored in the memory 802 .
  • the processor 801 can also read the data stored in the memory 802 (such as the image data of the Nth frame image), the data can be stored at the same storage address as the program 804, and the data can also be stored with the program 804 at different memory addresses.
  • the processor 801 and the memory 802 may be set separately, or may be integrated together, for example, integrated on a system-on-chip (system on chip, SOC) of the terminal device.
  • SOC system on chip
  • the memory 802 can be used to store the relevant program 804 of the method for adjusting the driving voltage of the display component provided in the embodiment of the present application, and the processor 801 can be used to call the program stored in the memory 802 when executing the method of adjusting the driving voltage of the display component.
  • the related program 804 of the method executes the method of the embodiment of the present application; for example, acquires the image data of the Nth frame image, where N is a positive integer; obtains the highest gray scale of the Nth frame image according to the image data, and the The highest grayscale of the Nth frame of image refers to the maximum value of the grayscale corresponding to the pixel in the Nth frame of image; the driving voltage of the Nth frame of image is obtained according to the highest grayscale of the Nth frame of image, and the The driving voltage of the Nth frame image refers to the voltage required when the display component displays the Nth frame image; the voltage adjustment amount of the Nth frame image is sent to the display component, and the Nth frame image The voltage adjustment amount is obtained according to the driving voltage of the image in the Nth frame.
  • the present application also provides a computer program product.
  • the computer program product is executed by the processor 801
  • the method for adjusting the driving voltage of the display component described in any method embodiment in the present application is implemented.
  • the computer program product may be stored in the memory 802 , such as a program 804 , and the program 804 is finally converted into an executable object file executable by the processor 801 through processes such as preprocessing, compiling, assembling and linking.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program When the computer program is executed by a computer, the method for adjusting the driving voltage of a display component described in any method embodiment of the present application is implemented.
  • the computer program may be a high-level language program or an executable object program.
  • the computer readable storage medium is, for example, the memory 802 .
  • the memory 802 may be a volatile memory or a nonvolatile memory, or, the memory 802 may include both a volatile memory and a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned electronic device 800 only shows a memory, a processor, and a communication unit, those skilled in the art should understand that the electronic device 800 may also include other devices necessary for normal operation during specific implementation. Meanwhile, according to specific needs, those skilled in the art should understand that the electronic device 800 may further include hardware devices for implementing other additional functions. In addition, those skilled in the art should understand that the above-mentioned electronic device 800 may only include components necessary to realize the embodiment of the present application, and does not necessarily include all the components shown in FIG. 12 .
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • system and “network” are often used herein interchangeably.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and A and B exist alone. There are three cases of B.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种调节显示组件的驱动电压的方法与终端设备,应用于终端设备(100),终端设备(100)包括主动发光的显示组件,包括:获取第N帧图像的图像数据,N为正整数;根据图像数据得到第N帧图像的最高灰阶,第N帧图像的最高灰阶是指第N帧图像中像素对应的灰阶的最大值;根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,第N帧图像的驱动电压是指显示组件显示第N帧图像时所需的电压;向显示组件发送第N帧图像的电压调整量,第N帧图像的电压调整量是根据第N帧图像的驱动电压得到的。在确保图像正常显示的情况下,减少显示组件的驱动电压,降低显示组件的功耗。

Description

调节显示组件的驱动电压的方法与终端设备
本申请要求于2021年12月03日提交国家知识产权局、申请号为202111471055.7、申请名称为“调节显示组件的驱动电压的方法与终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体地涉及一种调节显示组件的驱动电压的方法与终端设备。
背景技术
主动发光式显示组件是一种利用半导体和发光材料在电场驱动下,通过载流子注入和复合而发光的显示组件。主动发光式显示组件通常利用薄膜晶体管(thin film transistor,TFT)搭配电容存储信号来控制发光体(例如,发光二极管)显示亮度灰阶;例如,主动发光式显示组件的显示区域可以包括多行和多列像素矩阵,每个像素可以包括一个像素驱动电路,像素驱动电路可以由至少一个薄膜晶体管和一个电容构成。
目前,通常对主动发光式显示组件采用固定的驱动电压;例如,像素驱动电路采用的为固定电压工作方式,则该固定电压需要满足像素最大亮度的要求,即满足亮度的最高灰阶;但是,主动发光式显示组件中显示的内容是动态变化的,并非所有显示画面均出现亮度的最高灰阶;通过采用固定电压工作方式使得主动发光式显示组件的功耗较大。
因此,在确保正常显示的情况下如何调节显示组件的驱动电压,降低显示组件的功耗成为一个亟需解决的问题。
发明内容
本申请提供了一种调节显示组件的驱动电压的方法与终端设备,能够在确保图像正常显示的情况下,降低显示组件的驱动电压减少显示组件的功耗。
第一方面,提供了一种调节显示组件的驱动电压的方法,应用于终端设备,终端设备包括主动发光的显示组件,包括:
获取第N帧图像的图像数据,N为正整数;
根据图像数据得到第N帧图像的最高灰阶,第N帧图像的最高灰阶是指第N帧图像中像素对应的灰阶的最大值;
根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,第N帧图像的驱动电压是指显示组件显示第N帧图像时所需的电压;
向显示组件发送第N帧图像的电压调整量,第N帧图像的电压调整量是根据第N帧图像的驱动电压得到的。
在本申请的实施例中,根据第N帧图像中的最高灰阶可以确定显示组件显示第N帧图像所需的驱动电压,根据第N帧图像的驱动电压可以调节显示组件的驱动电压;由于在本申请的实施例中对于不同的显示内容,显示组件可以采用不同的驱动电压,即能够根据显示内容动态调节显示组件的驱动电压;与显示组件采样恒定驱动电压方式相比,在本申请的实施例能够在确保图像正常显示的情况下,减少显示组件的驱动电压,从而降低显示组件的功耗。
应理解,在本申请的实施例中,显示组件通过像素驱动电路对第N帧图像的图像数据进行显示。
还应理解,由于一帧图像对应一个驱动电压,即一帧图像包括的多个像素驱动电路共享一个驱动电压;因此,需要确保驱动电压使得一帧图像中的最高灰阶可以正常显示;在本申请的实施例中,通过第N帧图像的最高灰阶可以确定显示组件显示第N帧图像所需的驱动电压值,即显示第N帧图像所需的最小电压;同等亮度情况下,第N帧图像的最高灰阶决定了像素驱动电路工作电压与驱动电压之间的最小电压差,通常情况下工作电压是不变的,通过调节驱动电压的大小使得满足显示组件显示第N帧图像所需的最小电压差。
结合第一方面,在第一方面的某些实现方式中,第N帧图像的电压调整量为第N帧图像的驱动电压的电压值。
可选地,在一种实现方式中,可以直接向显示组件发送第N帧驱动电压的电压值。
结合第一方面,在第一方面的某些实现方式中,第N帧图像的电压调整量为第N帧图像的驱动电压与第一驱动电压的电压差值,第一驱动电压是指第N-1帧图像的驱动电压。
可选地,在一种实现方式中,可以直接向显示组件发送电压差值,指显示第N-1帧图像时的驱动电压与第N帧图像的驱动电压之间的电压差。
结合第一方面,在第一方面的某些实现方式中,根据图像数据得到第N帧图像的最高灰阶,包括:
根据图像数据得到第N帧图像的直方图;
根据第N帧图像的直方图得到第N帧图像的最高灰阶。
结合第一方面,在第一方面的某些实现方式中,显示组件包括像素驱动电路,像素驱动电路包括第一薄膜晶体管与发光体,第一薄膜晶体管用于向发光体提供驱动电流,根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,包括:
根据第N帧图像的最高灰阶确定第N帧图像的驱动电流,第N帧图像的驱动电流是指显示组件通过像素驱动电路显示第N帧图像时所需的电流;
根据第N帧图像的驱动电流与第一薄膜晶体管的输出特性曲线确定第N帧图像的驱动电压。
在本申请的实施例中,第一薄膜晶体管用于为发光体提供驱动电流,发光体的工作电压正比于工作电流;通过确定第N帧图像的最高灰阶可以确定显示第N帧图像所需的最小电流值,根据最小电流值可以确定显示第N帧图像所需的电压值即驱动电压值。
结合第一方面,在第一方面的某些实现方式中,发光体为以下任意一项:
有机发光二极管、有源矩阵有机发光二极体、柔性发光二极管、微型发光二极管、微型有机发光二极管或者量子点发光二极管。
结合第一方面,在第一方面的某些实现方式中,在输出特性曲线的第一斜率不等于0的情况下,第一斜率是指输出特性曲线在饱和区的斜率,方法还包括:
根据第N帧图像的驱动电压与第一斜率确定第N帧图像的电流调整量;
根据第N帧图像的电流调整量确定第N帧图像的亮度补偿量,第N帧图像的亮度补偿量用于显示组件对第N帧图像进行亮度补偿。
在本申请的实施例中,由于第一薄膜晶体管的输出特性曲线通常情况下无法达到理想状态,即在饱和区域第一薄膜晶体管的输出电流会随着电压的改变发生微小的变化;因此,通过亮度补偿量可以对显示的图像进行亮度补偿,从而使得显示的图像的亮度达到饱和区处于理想状态下的输出电流对应的亮度。
结合第一方面,在第一方面的某些实现方式中,还包括:
向显示组件发送第N帧图像的亮度补偿量。
结合第一方面,在第一方面的某些实现方式中,还包括:
接收显示组件发送的同步信号,同步信号用于指示显示组件开始显示第N帧图像;
向显示组件发送第N帧图像的图像数据。
第二方面,提供了一种终端设备,终端设备包括主动发光的显示组件、存储模块与处理模块;
存储模块用于存储第N帧图像的图像数据,N为正整数;
处理模块用于从存储模块获取第N帧图像的图像数据;根据图像数据得到第N帧图像的最高灰阶,第N帧图像的最高灰阶是指第N帧图像中像素对应的灰阶的最大值;根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,第N帧图像的驱动电压是指显示组件显示第N帧图像时所需的电压;向显示组件发送第N帧图像的电压调整量,第N帧图像的电压调整量是根据第N帧图像的驱动电压得到的。
结合第二方面,在第二方面的某些实现方式中,第N帧图像的电压调整量为第N帧图像的驱动电压的电压值。
结合第二方面,在第二方面的某些实现方式中,第N帧图像的电压调整量为第N帧图像的驱动电压与第一驱动电压的电压差值,第一驱动电压是指第N-1帧图像的驱动电压。
结合第二方面,在第二方面的某些实现方式中,处理模块具体用于:
根据图像数据得到第N帧图像的直方图;
根据第N帧图像的直方图得到第N帧图像的最高灰阶。
结合第二方面,在第二方面的某些实现方式中,显示组件包括像素驱动电路,像素驱动电路包括第一薄膜晶体管与发光体,第一薄膜晶体管用于向发光体提供驱动电流,处理模块具体用于:
根据第N帧图像的最高灰阶确定第N帧图像的驱动电流,第N帧图像的驱动电流是指显示组件通过像素驱动电路显示第N帧图像时所需的电流;
根据第N帧图像的驱动电流与第一薄膜晶体管的输出特性曲线确定第N帧图像的驱动电压。
结合第二方面,在第二方面的某些实现方式中,在输出特性曲线的第一斜率不等于0的情况下,第一斜率是指输出特性曲线在饱和区的斜率,处理模块还用于:
根据第N帧图像的驱动电压与第一斜率确定第N帧图像的电流调整量;
根据第N帧图像的电流调整量确定第N帧图像的亮度补偿量,第N帧图像的亮度补偿量用于显示组件对第N帧图像进行亮度补偿。
结合第二方面,在第二方面的某些实现方式中,处理模块还用于:
向显示组件发送第N帧图像的亮度补偿量。
结合第二方面,在第二方面的某些实现方式中,处理模块还用于:
接收显示组件发送的同步信号,同步信号用于指示显示组件开始显示第N帧图像;
向显示组件发送第N帧图像的图像数据。
结合第二方面,在第二方面的某些实现方式中,发光体为以下任意一项:
有机发光二极管、有源矩阵有机发光二极体、柔性发光二极管、微型发光二极管、微型有机发光二极管或者量子点发光二极管。
第三方面,提供了一种终端设备,终端设备包括一个或多个处理器、存储器与主动发光的显示组件;存储器与一个或多个处理器耦合,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,一个或多个处理器调用计算机指令以使得终端设备执行:
获取第N帧图像的图像数据,N为正整数;
根据图像数据得到第N帧图像的最高灰阶,第N帧图像的最高灰阶是指第N帧图像中像素对应的灰阶的最大值;
根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,第N帧图像的驱动电压是指显示组件显示第N帧图像时所需的电压;
向显示组件发送第N帧图像的电压调整量,第N帧图像的电压调整量是根据第N帧图像的驱动电压得到的。
结合第三方面,在第三方面的某些实现方式中,第N帧图像的电压调整量为驱动电压的电压值。
结合第三方面,在第三方面的某些实现方式中,第N帧图像的电压调整量为第N帧图像的驱动电压与第一驱动电压的电压差值,第一驱动电压是指第N-1帧图像的驱动电压。
结合第三方面,在第三方面的某些实现方式中,一个或多个处理器调用计算机指令以使得终端设备执行:
根据图像数据得到第N帧图像的直方图;
根据第N帧图像的直方图得到第N帧图像的最高灰阶。
结合第三方面,在第三方面的某些实现方式中,显示组件包括像素驱动电路,像素驱动电路包括第一薄膜晶体管与发光体,第一薄膜晶体管用于向发光体提供驱动电流,根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,一个或多个处理器调用计算机指令以使得终端设备执行:
根据第N帧图像的最高灰阶确定第N帧图像的驱动电流,第N帧图像的驱动电流是指显示组件通过像素驱动电路显示第N帧图像时所需的电流;
根据第N帧图像的驱动电流与第一薄膜晶体管的输出特性曲线确定第N帧图像的驱动电压。
结合第三方面,在第三方面的某些实现方式中,在输出特性曲线的第一斜率不等于0的情况下,第一斜率是指输出特性曲线在饱和区的斜率,一个或多个处理器调用计算机指令以使得终端设备执行:
根据第N帧图像的驱动电压与第一斜率确定第N帧图像的电流调整量;
根据第N帧图像的电流调整量确定第N帧图像的亮度补偿量,第N帧图像的亮度补偿量用于显示组件对第N帧图像进行亮度补偿。
结合第三方面,在第三方面的某些实现方式中,一个或多个处理器调用计算机指令以使得终端设备执行:
向显示组件发送第N帧图像的亮度补偿量。
结合第三方面,在第三方面的某些实现方式中,一个或多个处理器调用计算机指令以使得终端设备执行:
接收显示组件发送的同步信号,同步信号用于指示显示组件开始显示第N帧图像;
向显示组件发送第N帧图像的图像数据。
结合第三方面,在第三方面的某些实现方式中,发光体为以下任意一项:
有机发光二极管、有源矩阵有机发光二极体、柔性发光二极管、微型发光二极管、微型有机发光二极管或者量子点发光二极管。
第四方面,提供了一种芯片系统,芯片系统应用于终端设备,芯片系统包括一个或多个处理器,处理器用于调用计算机指令以使得终端设备执行第一方面或第一方面中任一种方法。
第五方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序代码,当计算机程序代码被电子设备运行时,使得该电子设备执行第一方面或第一方面中任一种方法。
第六方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码被电子设备运行时,使得该电子设备执行第一方面或第一方面中任一种方法。
在本申请的实施例中,根据第N帧图像中的最高灰阶可以确定显示组件显示第N帧图像所需的驱动电压,根据第N帧图像的驱动电压可以调节显示组件的驱动电压;由于在本申请的实施例中对于不同的显示内容,显示组件可以采用不同的驱动电压,即能够根据显示内容动态调节显示组件的驱动电压;与显示组件采样恒定驱动电压方式相比,在本申请的实施例能够在确保图像正常显示的情况下,减少显示组件的驱动电压,从而降低显示组件的功耗。
附图说明
图1示出了一种适用于本申请的终端设备的硬件系统;
图2示出了一种适用于本申请的7T1C像素驱动电路的示意图;
图3是一种适用于本申请实施例的应用场景的示意图;
图4是一种适用于本申请实施例的应用场景的示意图;
图5是一种适用于本申请实施例的系统架构的示意图;
图6是一种薄膜晶体管的输出特性曲线的示意图;
图7是本申请实施例提供的一种调节显示组件的驱动电压的方法;
图8是本申请实施例提供的一种调节显示组件的驱动电压的方法;
图9是本申请实施例提供的一种调节显示组件的驱动电压的方法;
图10是本申请实施例提供的一种调节显示组件的驱动电压的方法;
图11是本申请实施例提供的一种终端设备的结构示意图;
图12是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了便于理解,首先对本申请实施例可能涉及的相关术语和概念进行说明。
1、有机发光二极管(Organic Light-Emitting Diode,OLED)显示组件
OLED显示组件的显示原理是通过电场驱动有机半导体材料和发光材料,通过载流子注入和复合后实现发光。
2、有源矩阵有机发光二级管(active-matrix organic light emitting Diode,AMOLED)
有机发光二极管的驱动方式可以分为被动驱动与主动驱动,AMOLED可以利用有机半导体和发光材料在电场驱动下,通过载流子注入和复合而发光显示;比如,AMOLED通常可以利用薄膜晶体管(thin film transistor,TFT)搭配电容存储信号来控制OLED显示的亮度灰阶表现。
3、像素驱动电路
显示组件的显示区域可以包括多行和多列像素矩阵,每个像素可以对应一个像素驱动电路,通过像素驱动电路可以对不同的像素点进行显示;像素驱动电路是指由至少一个薄膜晶体管和至少一个电容构成的驱动电路;比如,像素驱动电路可以包括但不限于:7T1C、6T1C、3T1C等。
4、灰阶
灰阶是指将亮度的最亮与最暗之间的亮度变化划分为若干份,以便于通过输入信号对屏幕亮度进行控制。
下面将结合附图,对本申请实施例中的技术方案进行详细的描述。
图1示出了一种适用于本申请的终端设备的硬件系统。
终端设备100可以是手机、智慧屏、平板电脑、可穿戴电子设备、车载电子设备、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)、投影仪等等,本申请实施例对终端设备100的具体类型不作任何限制。
终端设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber  identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
应理解,图1所示的各模块间的连接关系只是示意性说明,并不构成对终端设备100的各模块间的连接关系的限定。可选地,终端设备100的各模块也可以采用上述实施例中多种连接方式的组合。
处理器110可以包括一个或多个处理单元。例如,处理器110可以包括以下处理单元中的至少一个:应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器、神经网络处理器(neural-network processing unit,NPU)。其中,不同的处理单元可以是独立的器件,也可以是集成的器件。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在本申请的实施例中,处理器110可以执行:获取第N帧图像的图像数据,N为正整数;根据图像数据得到第N帧图像的最高灰阶,第N帧图像的最高灰阶是指第N帧图像中像素对应的灰阶的最大值;根据第N帧图像的最高灰阶得到第N帧图像的驱动电压,第N帧图像的驱动电压是指所述显示组件显示第N帧图像时所需的电压;向显示组件发送第N帧图像的电压调整量,第N帧图像的电压调整量是根据第N帧图像的驱动电压得到的。
充电管理模块140用于从充电器接收电力。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的电流。在一些无线充电的实施例中,充电管理模块140可以通过终端设备100的无线充电线圈接收电磁波(电流路径如虚线所示)。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备100供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量、电池循环次数和电池健康状态(例如,漏电、阻抗)等参数。可选地,电源管理模块141可以设置于处理器110中,或者,电源管理模块141和充电管理模块140可以设置于同一个器件中。
终端设备100的无线通信功能可以通过天线1、天线2、移动通信模块150、无线通信模块160、调制解调处理器以及基带处理器等器件实现。
天线1和天线2用于发射和接收电磁波信号。终端设备100中的每个天线可用于 覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
终端设备100可以通过GPU、显示屏194以及应用处理器实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194可以用于显示图像或视频。例如,显示屏可以显示第N帧图像。
示例性地,显示屏194可以包括显示面板;在本申请的实施例中显示面板可以采用有机发光二极管(organic light-emitting diode,OLED)、有源矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)、或者微型OLED(Micro OLED)等。
在一些实施例中,终端设备100可以包括1个或N个显示屏194,N为大于1的正整数。
在一些实施例中,处理器110与显示屏194通过显示屏串行接口(display serial interface,DSI)接口通信,实现终端设备100的显示功能。
终端设备100可以通过ISP、摄像头193、视频编解码器、GPU、显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP可以对图像的噪点、亮度和色彩进行算法优化,ISP还可以优化拍摄场景的曝光和色温等参数。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的红绿蓝(red green blue,RGB),YUV等格式的图像信号。在一些实施例中,终端设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端设备100可以支持一种或多种视频编解码器。这样,终端设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1、MPEG2、MPEG3和MPEG4。
NPU是一种借鉴生物神经网络结构的处理器,例如借鉴人脑神经元之间传递模式对输入信息快速处理,还可以不断地自学习。通过NPU可以实现终端设备100的智能认知等功能,例如:图像识别、人脸识别、语音识别和文本理解。
外部存储器接口120可以用于连接外部存储卡,例如安全数码(secure digital,SD)卡,实现扩展终端设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能(例如,声音播放功能和图像播放功能)所需的应用程序。存储数据区可存储终端设备100使用过程中所创建的数据(例如,音频数据和电话本)。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如:至少一个磁盘存储器件、闪存器件和通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令和/或存储在设置于处理器中的存储器的指令,执行终端设备100的各种处理方法。
终端设备100可以通过音频模块170、扬声器170A、受话器170B、麦克风170C、耳机接口170D以及应用处理器等实现音频功能,例如,音乐播放和录音。
按键190包括开机键和音量键。按键190可以是机械按键,也可以是触摸式按键。终端设备100可以接收按键输入信号,实现于案件输入信号相关的功能。
指示器192可以是指示灯,可以用于指示充电状态和电量变化,也可以用于指示消息、未接来电和通知。
需要说明的是,图1所示的结构并不构成对终端设备100的具体限定。在本申请另一些实施例中,终端设备100可以包括比图1所示的部件更多或更少的部件,或者,终端设备100可以包括图1所示的部件中某些部件的组合,或者,终端设备100可以包括图1所示的部件中某些部件的子部件。图1示的部件可以以硬件、软件、或软件和硬件的组合实现。
由于图1所示的终端设备的显示屏中可以包括显示面板,因此每个像素可以对应一个像素驱动电路,通过像素驱动电路可以对不同的像素点进行显示;下面结合图2对像素驱动电路的工作原理进行描述。
图2示出了一种适用于本申请的7T1C像素驱动电路的示意图。
应理解,本申请实施例的调节显示组件的驱动电压的方法可以适用于任意一种像素驱动电路;此处以7T1C像素驱动电路为例,对7T1C像素驱动电路的工作原理进行说明。
如图2所示,7T1C像素驱动电路中可以包括七个薄膜晶体管与一个电容;其中,七个薄膜晶体管包括:T 1、T 2、T 3、T 4、T 5以及两个G n-1薄膜晶体管;V DD表示器件内部的工作电压;V data表示数据电压;INIT表示初始化,即使得电容达到固定电平值;V SS表示驱动电压(例如,供电电压);EM表示控制信号,EM用于控制薄膜晶体管T 3或者T 4导通或者断开的状态。需要说明的是,通过EM的控制T 3与T 4的工作状态只有导通或者断开两种工作状态,通过控制EM的占空比,可以调节显示亮度;T 1用于控制开启电流;两个G n-1用于像素灰阶内容的复位;比如,清空上一帧图像的灰阶信息。
根据如图2所示的根据7T1C像素驱动电路,T 2薄膜晶体管(第一薄膜晶体管的一个示例)可以用于向发光体(例如,OLED)提供驱动电流;比如,通过调节T 2薄 膜晶体管的导通控制发光体的驱动电流大小,通过发光体的电流大小从而能够控制图像中像素的灰阶;在一定的亮度下,对于一张图像而言,需要保证每一个像素的灰阶都能表现在发光体上;即通过发光体的电流需要满足所有像素的灰阶所需的电流;因此,V DD与V SS之间的电压压差,需要满足发光体显示所有像素的灰阶所需的电压。
应理解,灰阶是指是将亮度的最亮与最暗之间的亮度变化划分为若干份,以便于通过输入信号对屏幕亮度进行控制。比如,一帧图像可以由多个像素点组成,通常每一个像素可以呈现出许多不同的颜色,它是由红、绿、蓝(RGB)三个子像素组成的;每一个子像素,其背后的光源都可以显现出不同的亮度级别,通过灰阶则可以表示由最暗到最亮之间不同亮度的层次级别;灰阶的层次级别越多,所能够呈现的画面效果也就越细腻。
还应理解,上述发光体可以是发光二极管;比如,发光体可以是指OLED,或者其他发光二级管,本申请对此不做任何限定。
目前,通常对主动发光式显示组件提供固定的驱动电压;例如,像素驱动电路采用的为固定电压工作方式,则该固定电压满足像素最大亮度的要求,即满足亮度的最高灰阶(例如,8bit色深的显示组件的最高灰阶为255;10bit色深的显示组件的最高灰阶为1023);但是,主动发光式显示组件中显示的内容是动态变化的,并非所有显示画面均出现亮度的最高灰阶;通过采用固定电压工作方式使得主动发光式显示组件的功耗较大。
有鉴于此,本申请提供了一种调节显示组件的驱动电压的方法,在本申请的实施例中根据第N帧图像的最高灰阶确定显示组件显示第N帧图像时所需的驱动电压,根据显示第N帧图像所需的驱动电压对显示组件的驱动电压进行动态调节;使得在确保图像正常显示的情况下,减少显示组件的驱动电压从而降低显示组件的功耗。
在一个示例中,本申请实施例提供的调节显示组件的驱动电压的方法可以应用于智慧屏,如图3所示;通过本申请的方法,可以根据一帧图像的最高灰阶确定智慧屏显示该帧图像所需的驱动电压;根据智慧屏显示该帧图像所需的驱动电压可以对智慧屏驱动电压进行动态调节;避免了采用恒定电压所存在的功耗较大的问题,通过本申请实施例的方法,在确保智慧屏能够正常显示的情况下,减少驱动电压降低智慧屏的功耗。
在一个示例中,本申请实施例提供的调节显示组件的驱动电压的方法可以应用于手机,如图4所示;通过本申请的方法,可以根据一帧图像的最高灰阶确定手机中显示组件显示该帧图像所需的驱动电压;根据手机中显示组件显示该帧图像所需的驱动电压可以对手机中显示组件的驱动电压进行动态调节;避免了采用恒定电压所存在的功耗较大的问题,通过本申请实施例的方法,在确保手机能够正常显示的情况下,减少手机中显示组件的驱动电压,从而降低手机中显示组件的功耗。
应理解,上述为对应用场景的举例说明,并不对本申请的应用场景作任何限定;本申请实施例提供的方法可以适用于任何通过像素驱动电路进行显示的终端设备。
图5示出了一种适用于本申请实施例的调节显示组件的驱动电压的系统架构的示意图。
如图5所述,终端设备200中可以包括显示子系统210与显示组件220;显示子 系统210中可以包括显示缓存模块211、图像最高灰阶计算模块212、电压调整量计算模块213与显示串行接口215(display serial interface,DSI)。
可选地,显示子系统210中还可以包括亮度补偿量计算模块214。
示例性地,显示组件220是指主动发光的显示组件;主动发光的显示组件可以包括显示面板与印制线路板(printed circuit board,PCB);PCB上包括像素驱动电路,显示组件220通过像素驱动电路驱动图像数据在显示面板上进行显示。
例如,主动发光的显示组件包括的显示面板可以采用有机发光二极管(organic light-emitting diode,OLED)、有源矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)、柔性发光二极管(flex light-emitting diode,FLED)、迷你发光二极管(mini light-emitting diode,Mini LED)、微型发光二极管(micro light-emitting diode,Micro LED)、微型OLED(Micro OLED)或者量子点发光二极管(quantum dot light emitting diodes,QLED)中的任意一种。
可选地,图像最高灰阶计算模块212、电压调整量计算模块213与亮度补偿量计算模块214可以集成在终端设备200的系统级芯片(system on chip,SOC)上。
可选地,图像最高灰阶计算模块212、电压调整量计算模块213与亮度补偿量计算模块214可以是终端设备200中算例硬件中的模块;例如,可以是中央处理器(central processing unit,CPU)或者数字信号处理器(digital signal processor,DSP)中的模块。
示例性地,显示缓存模块211用于存储图像或者视频数据。图像最高灰阶计算模块212用于统计一帧图像的最高灰阶;最高灰阶是指一帧图像中包括的所有像素对应的灰阶的最大值。电压调整量计算模块213用于计算驱动电压的调整量;比如,根据一帧图像的最高灰阶可以确定一帧图像所需的驱动电压,根据所需的最小电压调整V SS使得V SS与V DD之间电压差的最小化,从而降低功耗。
应理解,对于一帧图像而言驱动电压(V SS)是相同的,为了确保一帧图像中所有像素的正常显示,根据一帧图像的最高灰阶可以确定一帧图像所需的驱动电流;根据所需的驱动电流可以确定一帧图像所需的驱动电压,驱动电压可以是指如图1所示的工作电压(V DD)与驱动电压(V SS)之间的电压差。
可选地,显示子系统210中还可以包括亮度补偿量计算模块214,亮度补偿量计算模块214用于计算亮度补偿值;在T 2薄膜晶体管的输出特性曲线的饱和区中输出电流随电压差发生一定变化的情况下,可以通过亮度值进行补偿,从而弥补T 2薄膜晶体管的输出特性曲线的横轴不平行于X轴的问题,如图6所示。
可选地,在一种可能的实现方式中,若T 2薄膜晶体管处于理想状态下,即T 2薄膜晶体管处于饱和区时输出的电流大小完全是相同的,或者,电压调整量对应的驱动电流满足一定阈值的情况下,用户无法识别时,显示子系统210中可以不包括亮度补偿量计算模块214。
图6示出了一种薄膜晶体管的输出特性曲线的示意图。该输出特性曲线可以是指如图1所示的T 2薄膜晶体管的输出特性曲线。
如图6所示,EM用于控制T 3薄膜晶体管与T 4薄膜晶体管的工作状态,在T 3薄膜晶体管与T 4薄膜晶体管导通时,T 3薄膜晶体管与T 4薄膜晶体管的电压差近似为0;V DD-V SS-U DS=V OLED,根据一帧图像的最大灰阶可以确定OLED所需的电流,由于OLED 的电压正比于电流,因此可以确定OLED的工作电压V OLED;在T 2薄膜晶体管的输出特性曲线中,横轴U DS表示漏极(drain)与源极(source)之间的电压差;纵轴I D表示漏极(drain)电流;从图6中可以看出,在线性区中,U DS与I D之间呈线性关系;在饱和区中,U DS发生改变则I D基本上保持不变。由于T 2薄膜晶体管用于控制发光体(例如,OLED)的驱动电流;在T 2薄膜晶体处于饱和区时,在确保提供的驱动电流满足发光体(例如,OLED)所需的最小电流的情况下,可以减小U DS即T 2薄膜晶体的漏极与源极之间的电压差;例如,在确保驱动电流满足一帧图像的最大灰阶时U DS可以选择为线性区与饱和区的临界点;在驱动电流不变的情况下,由于V DD-V SS-U DS=V OLED,V OLED是根据驱动电流确定的,U DS越小则V DD-V SS越小;通常情况下V DD是保持不变的,V SS是负电压值,因此V DD-V SS越小驱动电压V SS的绝对值越小,从而能够减小显示组件的驱动电压,有效地降低显示组件的功耗。
示例性地,结合图6对亮度补偿量进行详细的说明;如图6所示,在理想状态下T 2薄膜晶体管处于饱和区时输出的电流大小完全是相同的,如图6中饱和区的虚线所示;但是,在实际情况下受到一些因素的影响,T 2薄膜晶体管处于饱和区时输出的电流可能会存在一定微小的差异,如图6所示的电流偏差量;通过亮度补偿量可以补偿电流在饱和区的电流偏差量。
应理解,由于电流与亮度存在关联关系,通过改变电流则可以改变显示的亮度;因此,可以通过亮度补偿量对显示图像进行亮度补偿从而能够弥补在饱和区时T 2薄膜晶体管的输出特性曲线的横轴不平行于X轴的问题。
在本申请的实施例中,通过调整驱动电压(V SS)的大小,能够调整工作电压(V DD)与驱动电压之间的电压差;由于工作电压与驱动电压之间的电压差改变,电容C两端的电压改变;通过电容C上的电压可以控制T 2薄膜晶体管的导通程度,从而控制发光体(例如,OLED)的驱动电流;例如,根据一帧图像中的最高灰阶可以确定发光体(例如,OLED)所需的最小电流,根据最小电流与T 2薄膜晶体的输出特性曲线可以得到漏极与源极之间的最小电压差,根据最小电压差可以确定工作电压与驱动电压之间所需的最小电压差,进一步可以确定所需的最小驱动电压;从而能够在确保图像正常显示时,即驱动电压能够满足发光体(例如,OLED)所需的最小电流的情况下,减少驱动电压降低显示组件的功耗。
下面结合图7至图10对本申请实施例提供的调节显示组件的驱动电压的方法进行详细描述。
实现方式一
在一个示例中,可以根据一帧图像的最高灰阶确定显示组件显示该帧图像所需的驱动电压,从而对像素驱动电路的驱动电压进行调整;当T 2薄膜晶体管的输出特性曲线在饱和区时输出电流随电压差发生一定变化的情况下,可以通过亮度补偿量对显示组件显示的图像进行亮度补偿。
图7对本申请实施例提供的调节显示组件的驱动电压的方法进行详细的描述。如图7所示,该方法包括步骤S301至步骤S312;下面分别对步骤S301至步骤S312进行详细的描述。
步骤S301、显示缓存模块向图像最高灰阶计算模块发送第N帧图像的数据。
其中,N为正整数。
示例性地,图形处理器、视频解码器(video decoder)或者显示组件连接的部件(video processing unit,VPU)等可以向显示缓存模块中写入图像数据。
应理解,第N帧图像的数据可以是指写入显示缓存模块的当前帧图像的数据;即第N帧图像的数据是指待显示的图像帧的数据。可选地,当显示缓存模块中写入新的图像数据时,显示缓存模块可以主动向图像最高灰阶计算模块发送图像数据。
可选地,在显示缓存模块收到指令时,显示缓存模块可以向图像最高灰阶计算模块发送第N帧图像的数据;比如,在显示缓存模块收到图像最高灰阶计算模块发送的图像数据调用指令后,显示缓存模块可以将新写入的图像数据发送至图像最高灰阶计算模块。
步骤S302、图像最高灰阶计算模块根据第N帧图像数据确定第N帧图像中的最高灰阶。
示例性地,显示缓存模块中的存储的多帧图像数据;图像最高灰阶计算模块可以根据运算能力从显示缓存模块中获取图像的数据;并根据图像的数据确定该图像的最高灰阶。示例性地,可以通过识别第N帧图像的直方图得到第N帧图像的最高灰阶。
例如,对于8bit色深的显示组件,理论灰阶范围为0~255;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为230。
例如,对于10bit色深的显示组件,理论灰阶范围为0~1023;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为900。
示例性地,可以通过遍历第N帧图像中的每个像素点确定第N帧图像的最高灰阶。
示例性地,可以通过显示缓存模块连接的上一部件输出第N帧图像的最大灰阶;显示组件连接的上一部件可以是指GPU、视频解码器(video decoder),显示组件连接的部件(video processing unit,VPU)等。
步骤S303、图像最高灰阶计算模块向电压调整量计算模块发送第N帧图像的最高灰阶。
步骤S304、电压调整量计算模块可以根据第N帧图像的最高灰阶确定最小电压差;根据最小电压差确定第N帧图像的电压调整量。
示例性地,电压调整量计算模块根据第N帧图像的最高灰阶可以确定像素驱动电路中发光体(例如,发光二极管)所需的最小电流;由于发光体的工作电压正比于工作电流,因此根据发光体所需的最小电流与T 2薄膜晶体管的输出特性曲线可以确定漏极与源极之间的最小电压差;根据漏极与源极之间的最小电压差可以确定像素驱动电路的工作电压(V DD)与驱动电压(V SS)之间的最小电压差,从而确定第N帧图像的电压调整量。
例如,如图6所示,EM用于控制T 3薄膜晶体管与T 4薄膜晶体管的工作状态,在T 3薄膜晶体管与T 4薄膜晶体管导通时,T 3薄膜晶体管与T 4薄膜晶体管的电压差近似为0,则V DD-V SS-U DS=V OLED;根据第N帧图像的最大灰阶可以确定发光体(例如,OLED)所需的最小电流,由于发光体的电压正比于电流,因此可以确定发光体的工作电压V OLED;根据T 2薄膜晶体管的输出特性曲线,在确保驱动电流满足第N帧图像的最大灰阶时,T 2薄膜晶体管的U DS可以选择线性区与饱和区的临界点;由于 V DD-V SS-U DS=V OLED,在确定U DS与V OLED的情况下,可以得到V DD-V SS;V DD通常保持不变,从而能够确定V SS即确定第N帧图像的电压调整量。
应理解,在T 2薄膜晶体管的输出特性曲线的饱和区中驱动电流是不变的,由于V DD-V SS-U DS=V OLED,V OLED是根据驱动电流确定的,U DS越小则V DD-V SS越小;通常情况下V DD是保持不变的,V SS是负电压值,因此V DD-V SS越小,则驱动电压V SS的绝对值越小,从而能够减小显示组件的驱动电压,有效地降低显示组件的功耗。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压(第一驱动电压的一个示例)的电压差。
应理解,由于一帧图像对应一个驱动电压,即一帧图像包括的多个像素驱动电路共享一个驱动电压;因此,需要确保驱动电压使得一帧图像中的最高灰阶可以正常显示;在本申请的实施例中,通过第N帧图像的最高灰阶可以确定显示组件显示第N帧图像所需的驱动电压值,即显示第N帧图像所需的最小电压;同等亮度情况下,第N帧图像的最高灰阶决定了像素驱动电路工作电压与驱动电压之间的最小电压差,通常情况下工作电压是不变的,通过调节驱动电压的大小使得满足显示组件显示第N帧图像所需的最小电压差。
步骤S305、电压调整量计算模块向亮度补偿量计算模块发送第N帧图像的电压调整量。
步骤S306、电压调整量计算模块向显示接口发送第N帧图像的电压调整量。
步骤S307、亮度补偿量计算模块根据第N帧图像的电压调整量与输出图像曲线得到第N帧图像的亮度补偿量。
例如,亮度补偿量计算模块可以根据第N帧图像的电压调整量与晶体管的输出特性曲线确定第N帧图像的亮度补偿量,其中,晶体管是指像素驱动电路中用于向发光体提供驱动电流的晶体管,比如,如图2中所示的T 2薄膜晶体管。
应理解,在本申请的实施例中,像素驱动电路中用于向发光体(例如,OLED)提供驱动电流的薄膜晶体管可以始终工作在饱和区,即显示组件在显示第N帧图像的最高灰阶和最低灰阶时,用于向发光体提供驱动电流的薄膜晶体管可以始终工作在输出特性曲线的饱和区;薄膜晶体管通过输出不同的漏极电流使得发光体显示不同的亮度。
需要说明的是,亮度补偿量的实质可以看作是电流补偿量;由于亮度与电流是强相关的,如图6所示,由于T 2薄膜晶体管的输出特性曲线在饱和区无法完全达到理想状态,因此需要对电流进行补偿使得输出特性曲线的横轴平行于X轴;通过亮度补偿量可以使得显示的图像亮度达到理想状态下饱和区的输出电流对应的亮度效果。
示例性地,如图6所示的输出特性曲线可以确定曲线在饱和区的斜率(第一斜率的一个示例),根据电压调整量可以确定ΔU;根据输出特性曲线在饱和区的斜率与ΔU可以得到ΔI,根据ΔI可以得到亮度补偿量。
步骤S308、亮度补偿量计算模块向显示接口发送第N帧图像的亮度补偿量。
步骤S309、显示组件向显示接口发送同步信号。
示例性地,同步信号可以用于指示显示组件开始显示第N帧图像。
步骤S310、显示缓存模块向显示接口发送第N帧图像的数据。
例如,显示接口在接收到同步信号后可以从显示缓存模块中获取第N帧图像的数据。
步骤S311、显示接口向显示组件发送电压调整量、亮度补偿量与第N帧图像的数据。
示例性地,显示接口向显示组件发送第N帧图像的电压调整量、第N帧图像的亮度补偿量与第N帧图像的数据。
可选地,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压的电压差。
例如,电压差可以是指显示第N-1帧图像时的驱动电压与第N帧图像的驱动电压之间的电压差。
第一种情况:显示组件为不具有缓存区域的显示组件。
在一个示例中,在显示组件不具有缓存区域时,则显示组件无法对第N帧图像的数据进行缓存;因此,显示接口在接收到同步信号后可以先向显示组件发送第N帧图像的电压调整量与第N帧图像的亮度补偿量,再向显示组件发送第N帧图像的数据。
第二种情况:显示组件为具有一个缓存区域的显示组件。
在一个示例中,在显示组件具有一个缓存区域时,显示组件可以用于缓存正在显示的当前帧图像的下一帧图像的数据,则显示接口在收到同步指令后可以同时发送第N帧图像的电压调整量、第N帧图像的亮度补偿量与第N帧图像的数据;或者,可以先发送第N帧图像的数据,再发送第N帧图像的电压调整量与第N帧图像的亮度补偿量。
第三种情况:显示组件为具有多个缓存区域的显示组件。
在一个示例中,在显示组件为具有多个缓存区域时,显示接口在向显示组件发送电压调整量、亮度补偿量与图像的数据时需要进行标记,即对一帧图像与该帧图像对应的一组电压调整量与亮度补偿量进行标记。
应理解,电压调整量与亮度补偿量是与图像中的最高灰阶相关的;对于不同的图像,图像中的最高灰阶不同,电压调整量与亮度补偿量可以不同。
步骤S312、显示组件根据电压调整量与亮度补偿量对第N帧图像的数据进行显示。
例如,显示组件可以根据第N帧图像的电压调整量与第N帧图像的亮度补偿量进行设定,然后显示第N帧图像的数据。
应理解,显示组件的驱动电压可以是指如图2所示的像素驱动电路中的V SS;由于T 2薄膜晶体管工作在饱和区,因此T 2薄膜晶体管向发光体提供的驱动电流不随电压差的变化而改变;即在调节驱动电压时对发光体(例如,OLED)的驱动电流产生的影响较小;此外,由于调节速度可以达到60帧以上,因此显示组件显示的图像不会出现闪烁的问题。
在本申请的实施例中,根据第N帧图像的最高灰阶可以确定显示组件显示第N帧 图像时所需的电压大小;根据显示第N帧图像所需的电压大小对显示组件的驱动电压进行调节,从而能够在确保图像正常显示时,减小驱动电压降低显示组件的功耗;此外,还可以根据第N帧图像所需的电压大小与像素驱动电路中的驱动晶体管(例如,用于向发光体提供驱动电流的晶体管)的输出特性曲线确定亮度补偿量,从而对第N帧图像进行亮度补偿。
可选地,在一个示例中,如图7所示系统芯片中可以包括中央处理器,则图像最高灰阶计算模块、电压调整量计算模块与亮度补偿量计算模块可以是中央处理器中的模块;可以由中央处理器执行步骤S302至步骤S308。
可选地,在一个示例中,如图7所示的芯片系统中可以包括中央处理器与图形处理器,则图像最高灰阶计算模块、电压调整量计算模块与亮度补偿量计算模块可以是图形处理器中的模块;由中央处理器从显示缓存模块中获取第N帧图像的数据,并将第N帧图像的数据发送至图形处理器中,可以由图形处理器执行步骤S302、步骤S303、步骤S305与步骤S308;图形处理器将第N帧图像的电压调整量与第N帧图像的亮度补偿量发送至中央处理器;中央处理器向显示接口发送第N帧图像的电压调整量与第N帧图像的亮度补偿量。可选地,在一个示例中,如图7所示的芯片系统中可以包括中央处理器与图形处理器,图形处理器中可以包括图像最高灰阶计算模块;中央处理器中可以包括电压调整量计算模块与亮度补偿量计算模块,可以由中央处理器与图形处理器之间交互完成步骤S302至步骤S308,如图8所示。
需要说明的是,上述的图形处理器还可以是其他的用于运算的处理器,比如,数字信号处理器,本申请对此不作任何限定。
图8是本申请实施例提供的调节显示组件的驱动电压的方法进行详细的描述。如图8所示,该方法包括步骤S401至步骤S414;下面分别对步骤S401至步骤S414进行详细的描述。
步骤S401、显示缓存模块向中央处理器发送第N帧图像的数据。
示例性地,中央处理器可以从显示缓存模块获取第N帧图像的数据,N为正整数。
示例性地,图形处理器、视频解码器(video decoder)或者显示组件连接的部件(video processing unit,VPU)等可以向显示缓存模块中写入图像数据。
应理解,第N帧图像的数据可以是指写入显示缓存模块的当前帧图像的数据;第N帧图像的数据为待显示的图像帧的数据。
示例性地,在显示缓存模块中写入第N帧图像的数据时,中央处理器可以根据运算能力从显示缓存模块中获取图像的数据。
步骤S402、中央处理器向图形处理器发送第N帧图像的数据。
步骤S403、图形处理器中的图像最高灰阶计算模块据第N帧图像数据确定第N帧图像中的最高灰阶。
示例性地,显示缓存模块中的存储的多帧图像数据;图像最高灰阶计算模块可以根据运算能力从显示缓存模块中获取图像的数据;并根据图像的数据确定该图像的最高灰阶。示例性地,可以通过识别第N帧图像的直方图得到第N帧图像的最高灰阶。
例如,对于8bit色深的显示组件,理论灰阶范围为0~255;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为230。
例如,对于10bit色深的显示组件,理论灰阶范围为0~1023;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为900。
示例性地,可以通过遍历第N帧图像中的每个像素点确定第N帧图像的最高灰阶。
示例性地,可以通过显示缓存模块连接的上一部件输出第N帧图像的最大灰阶;显示组件连接的上一部件可以是指GPU、视频解码器(video decoder),显示组件连接的部件(video processing unit,VPU)等。
步骤S404、图形处理器向中央处理器发送第N帧图像的最高灰阶。
示例性地,中央处理器中包括电压调整量计算模块与亮度补偿计算模块。
步骤S405、中央处理器中的电压调整量计算模块根据第N帧图像的最高灰阶确定最小电压差;根据最小电压差确定第N帧图像的电压调整量。
示例性地,电压调整量计算模块根据第N帧图像的最高灰阶可以确定像素驱动电路中发光体(例如,发光二极管)所需的最小电流;由于发光体的工作电压正比于工作电流,因此根据发光体所需的最小电流与T 2薄膜晶体管的输出特性曲线可以确定漏极与源极之间的最小电压差;根据漏极与源极之间的最小电压差可以确定像素驱动电路的工作电压(V DD)与驱动电压(V SS)之间的最小电压差,从而确定第N帧图像的电压调整量。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压(第一驱动电压的一个示例)的电压差。
应理解,由于一帧图像对应一个驱动电压,即一帧图像包括的多个像素驱动电路共享一个驱动电压;因此,需要确保驱动电压使得一帧图像中的最高灰阶可以正常显示;在本申请的实施例中,通过第N帧图像的最高灰阶可以确定显示组件显示第N帧图像所需的驱动电压值,即显示第N帧图像所需的最小电压;同等亮度情况下,第N帧图像的最高灰阶决定了像素驱动电路工作电压与驱动电压之间的最小电压差,通常情况下工作电压是不变的,通过调节驱动电压的大小使得满足显示组件显示第N帧图像所需的最小电压差。
步骤S406、中央处理器向显示接口发送第N帧图像的电压调整量。
步骤S407、中央处理器中的亮度补偿量计算模块根据第N帧图像电压调整量与输出特性曲线得到第N帧图像的亮度补偿量。
例如,亮度补偿量计算模块根据第N帧图像电压调整量与晶体管的输出特性曲线确定第N帧图像的亮度补偿量,其中,晶体管是指像素驱动电路中用于向发光体提供驱动电流的晶体管,比如,如图2中所示的T 2薄膜晶体管。
应理解,在本申请的实施例中,像素驱动电路中用于向发光体(例如,OLED)提供驱动电流的薄膜晶体管可以始终工作在饱和区,即显示组件在显示第N帧图像的最高灰阶和最低灰阶时,用于向发光体提供驱动电流的薄膜晶体管可以始终工作在输出特性曲线的饱和区;薄膜晶体管通过输出不同的漏极电流使得发光体显示不同的亮度。
需要说明的是,亮度补偿量的实质可以看作是电流补偿量;由于亮度与电流是强 相关的,如图6所示,由于T 2薄膜晶体管的输出特性曲线在饱和区无法完全达到理想状态,因此需要对电流进行补偿使得输出特性曲线的横轴平行于X轴;通过亮度补偿量可以使得显示的图像亮度达到理想状态下饱和区的输出电流对应的亮度效果。
示例性地,如图6所示的输出特性曲线可以确定曲线在饱和区的斜率,根据电压调整量可以确定ΔU;根据输出特性曲线在饱和区的斜率与ΔU可以得到ΔI,根据ΔI可以得到亮度补偿量。
步骤S408、中央处理器向显示接口发送第N帧图像的亮度补偿量。
步骤S409、显示组件向显示接口发送同步信号。
示例性地,同步信号可以用于指示显示组件开始显示第N帧图像。
步骤S410、显示接口向中央处理器发送同步信号。
步骤S411、显示缓存模块向中央处理器发送第N帧图像的数据。
示例性地,中央处理器在接收到同步信号后,可以从显示缓存模块中获取第N帧图像的数据。
步骤S412、中央处理器向显示接口发送第N帧图像的数据。
步骤S413、显示接口向显示组件发送电压调整量、亮度补偿量与第N帧图像的数据。
示例性地,显示接口向显示组件发送第N帧图像的电压调整量、第N帧图像的亮度补偿量与第N帧图像的数据。
可选地,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压的电压差。
例如,电压差可以是指显示第N-1帧图像时的驱动电压与第N帧图像的驱动电压之间的电压差。
第一种情况:显示组件为不具有缓存区域的显示组件。
在一个示例中,在显示组件不具有缓存区域时,则显示组件无法对第N帧图像的数据进行缓存;因此,显示接口在接收到同步信号后可以先向显示组件发送第N帧图像的电压调整量与第N帧图像的亮度补偿量,再向显示组件发送第N帧图像的数据。
第二种情况:显示组件为具有一个缓存区域的显示组件。
在一个示例中,在显示组件具有一个缓存区域时,显示组件可以用于缓存正在显示的当前帧图像的下一帧图像的数据,则显示接口在收到同步指令后可以同时发送第N帧图像的电压调整量、第N帧图像的亮度补偿量与第N帧图像的数据;或者,可以先发送第N帧图像的数据,再发送第N帧图像的电压调整量与第N帧图像的亮度补偿量。
第三种情况:显示组件为具有多个缓存区域的显示组件。
在一个示例中,在显示组件为具有多个缓存区域时,显示接口在向显示组件发送电压调整量、亮度补偿量与图像的数据时需要进行标记,即对一帧图像与该帧图像对应的一组电压调整量与亮度补偿量进行标记。
应理解,电压调整量与亮度补偿量是与图像中的最高灰阶相关的;对于不同的图 像,图像中的最高灰阶不同,电压调整量与亮度补偿量可以不同。
步骤S414、显示组件根据电压调整量与亮度补偿量对第N帧图像的数据进行显示。
例如,显示组件可以根据第N帧图像的电压调整量与第N帧图像的亮度补偿量进行设定,然后显示第N帧图像的数据。
应理解,显示组件的驱动电压可以是指如图2所示的像素驱动电路中的V SS;由于T 2薄膜晶体管工作在饱和区,因此T 2薄膜晶体管向发光体提供的驱动电流不随电压差的变化而改变;即在调节驱动电压时对发光体(例如,OLED)的驱动电流产生的影响较小;此外,由于调节速度可以达到60帧以上,因此显示组件显示的图像不会出现闪烁的问题。
在本申请的实施例中,根据第N帧图像的最高灰阶可以确定显示组件显示第N帧图像时所需的电压大小;根据显示第N帧图像所需的电压大小对显示组件的驱动电压进行调节,从而能够在确保图像正常显示时,减小驱动电压降低显示组件的功耗;此外,还可以根据第N帧图像所需的电压大小与像素驱动电路中的驱动晶体管(例如,用于向发光体提供驱动电流的晶体管)的输出特性曲线确定亮度补偿量,从而对第N帧图像进行亮度补偿。
实现方式二
在一个示例中,若T 2薄膜晶体管处于理想状态下,即T 2薄膜晶体管处于饱和区时输出的电流大小完全是相同的,或者,电压调整量对应的驱动电流满足一定阈值的情况下,用户无法识别时,在显示第N帧图像数据时可以无需进行亮度补偿;根据第N帧图像的最高灰阶确定显示组件显示第N帧图像所需的驱动电压,从而对像素驱动电路的驱动电压进行调整。
图9对本申请实施例提供的调节显示组件的驱动电压的方法进行详细的描述。如图9所示,该方法包括步骤S501至步骤S509;下面分别对步骤S501至步骤S509进行详细的描述。
步骤S501、显示缓存模块向图像最高灰阶计算模块发送第N帧图像的数据。
其中,N为正整数。
示例性地,图形处理器、视频解码器(video decoder)或者显示组件连接的部件(video processing unit,VPU)等可以向显示缓存模块中写入图像数据。
应理解,第N帧图像的数据可以是指写入显示缓存模块的当前帧图像的数据;第N帧图像的数据为待显示的图像帧的数据。
示例性地,在显示缓存模块中可以包括多帧图像的数据时,中央处理器可以根据运算能力从显示缓存模块中获取数据。可选地,当显示缓存模块中写入新的图像数据时,显示缓存模块可以主动向图像最高灰阶计算模块发送图像数据。
可选地,在显示缓存模块收到指令时,显示缓存模块可以向图像最高灰阶计算模块发送第N帧图像的数据;比如,在显示缓存模块收到图像最高灰阶计算模块发送的图像数据调用指令后,显示缓存模块可以将新写入的图像数据发送至图像最高灰阶计算模块。
步骤S502、图像最高灰阶计算模块根据第N帧图像的数据确定第N帧图像的最高灰阶。
示例性地,可以通过识别第N帧图像的直方图得到第N帧图像的最高灰阶。
例如,对于8bit色深的显示组件,理论灰阶范围为0~255;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为230。
例如,对于10bit色深的显示组件,理论灰阶范围为0~1023;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为900。
示例性地,可以通过遍历第N帧图像中的每个像素点确定第N帧图像的最高灰阶。
示例性地,可以通过显示缓存模块连接的上一部件输出第N帧图像的最大亮,根据第N帧图像的最大亮度值确定第N帧图像的最高灰阶;显示组件连接的上一部件可以是指GPU、视频解码器(video decoder),显示组件连接的部件(video processing unit,VPU)等。
步骤S503、图像最高灰阶计算模块向电压调整量计算模块发送第N帧图像的最高灰阶。
步骤S504、电压调整量计算模块根据第N帧图像的最高灰阶确定最小电压差;根据最小电压差确定第N帧图像的电压调整量。
示例性地,电压调整量计算模块根据第N帧图像的最高灰阶可以确定像素驱动电路中发光体(例如,发光二极管)所需的最小电流;由于发光体的工作电压正比于工作电流,因此根据发光体所需的最小电流与T 2薄膜晶体管的输出特性曲线可以确定漏极与源极之间的最小电压差;根据漏极与源极之间的最小电压差可以确定像素驱动电路的工作电压(V DD)与驱动电压(V SS)之间的最小电压差,从而确定第N帧图像的电压调整量。
例如,如图6所示,EM用于控制T 3薄膜晶体管与T 4薄膜晶体管的工作状态,在T 3薄膜晶体管与T 4薄膜晶体管导通时,T 3薄膜晶体管与T 4薄膜晶体管的电压差近似为0,则V DD-V SS-U DS=V OLED;根据第N帧图像的最大灰阶可以确定发光体(例如,OLED)所需的最小电流,由于发光体的电压正比于电流,因此可以确定发光体的工作电压V OLED;根据T 2薄膜晶体管的输出特性曲线,在确保驱动电流满足第N帧图像的最大灰阶时,T 2薄膜晶体管的U DS可以选择线性区与饱和区的临界点;由于V DD-V SS-U DS=V OLED,在确定U DS与V OLED的情况下,可以得到V DD-V SS;V DD通常保持不变,从而能够确定V SS即确定第N帧图像的电压调整量。
应理解,在T 2薄膜晶体管的输出特性曲线的饱和区中驱动电流是不变的,由于V DD-V SS-U DS=V OLED,V OLED是根据驱动电流确定的,U DS越小则V DD-V SS越小;通常情况下V DD是保持不变的,V SS是负电压值,因此V DD-V SS越小,则驱动电压V SS的绝对值越小,从而能够减小显示组件的驱动电压,有效地降低显示组件的功耗。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压的电压差。
应理解,由于一帧图像对应一个驱动电压,即一帧图像包括的多个像素驱动电路共享一个驱动电压;因此,需要确保驱动电压使得一帧图像中的最高灰阶可以正常显示;在本申请的实施例中,通过第N帧图像的最高灰阶可以确定显示组件显示第N帧 图像所需的驱动电压值,即显示第N帧图像所需的最小电压;同等亮度情况下,第N帧图像的最高灰阶决定了像素驱动电路工作电压与驱动电压之间的最小电压差,通常情况下工作电压是不变的,通过调节驱动电压的大小使得满足显示组件显示第N帧图像所需的最小电压差。
步骤S505、电压调整量计算模块向显示接口发送第N帧图像的电压调整量。
步骤S506、显示组件向显示接口发送同步信号。
示例性地,同步信号可以用于指示显示组件开始显示第N帧图像。
步骤S507、显示缓存模块向显示接口发送第N帧图像的数据。
示例性地,显示接口在接收到同步信号后,可以从显示缓存模块中获取第N帧图像的数据。
步骤S508、显示接口向显示组件发送第N帧图像的电压调整量与第N帧图像的数据。
可选地,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压的电压差。
例如,电压差可以是指显示第N-1帧图像时的驱动电压与第N帧图像的驱动电压之间的电压差。
第一种情况:显示组件为不具有缓存区域的显示组件。
在一个示例中,在显示组件不具有缓存区域时,则显示组件无法对第N帧图像的数据进行缓存;因此,显示接口在接收到同步信号后可以先向显示组件发送第N帧图像的电压调整量,再向显示组件发送第N帧图像的数据。
第二种情况:显示组件为具有一个缓存区域的显示组件。
在一个示例中,在显示组件具有一个缓存区域时,显示组件可以用于缓存正在显示的当前帧图像的下一帧图像的数据,则显示接口在收到同步指令后可以同时发送第N帧图像的电压调整量与第N帧图像的数据;或者,可以先发送第N帧图像的数据,再发送第N帧图像的电压调整量。
第三种情况:显示组件为具有多个缓存区域的显示组件。
在一个示例中,在显示组件为具有多个缓存区域时,显示接口在向显示组件发送电压调整量时需要进行标记,即对一帧图像与该帧图像对应的电压调整量进行标记。
应理解,电压调整量与图像中的最高灰阶相关的;对于不同的图像,图像中的最高灰阶不同,电压调整量可以不同。
步骤S509、根据电压调整量对第N帧图像的数据进行显示。
例如,显示组件可以根据第N帧图像的电压调整量进行设定,然后显示第N帧图像的数据。
应理解,显示组件的驱动电压可以是指如图2所示的像素驱动电路中的V SS;由于T 2薄膜晶体管工作在饱和区,因此T 2薄膜晶体管向发光体提供的驱动电流不随电压差的变化而改变;即在调节驱动电压时对发光体(例如,OLED)的驱动电流产生的影响较小;此外,由于调节速度可以达到60帧以上,因此显示组件显示的图像不会 出现闪烁的问题。
在本申请的实施例中,根据第N帧图像的最高灰阶可以确定显示组件显示第N帧图像时所需的电压大小;根据显示第N帧图像所需的电压大小对显示组件的驱动电压进行调节,从而能够在确保图像正常显示时,减小驱动电压降低显示组件的功耗。
可选地,在一个示例中,如图9所示系统芯片中可以包括中央处理器,则图像最高灰阶计算模块与电压调整量计算模块可以是中央处理器中的模块;可以由中央处理器执行步骤S502至步骤S507。
可选地,在一个示例中,如图9所示的芯片系统中可以包括中央处理器与图形处理器,则图像最高灰阶计算模块与电压调整量计算模块可以是图形处理器中的模块;由中央处理器从显示缓存模块中获取第N帧图像的数据,并将第N帧图像的数据发送至图形处理器中,可以由图形处理器执行步骤S502与步骤S504;图形处理器将第N帧图像的电压调整量发送至中央处理器;中央处理器向显示接口发送第N帧图像的电压调整量。
可选地,在一个示例中,如图9所示的芯片系统中可以包括中央处理器与图形处理器,图形处理器中可以包括图像最高灰阶计算模块;中央处理器中可以包括电压调整量计算模块;可以由中央处理器与图形处理器之间交互完成步骤S502至步骤S507;如图10所示。
需要说明的是,上述的图形处理器还可以是其他的用于运算的处理器,比如,数字信号处理器,本申请对此不作任何限定。
图10是本申请实施例提供的调节显示组件的驱动电压的方法进行详细的描述。如图10所示,该方法包括步骤S601至步骤S612;下面分别对步骤S601至步骤S612进行详细的描述。
步骤S601、显示缓存模块向中央处理器发送第N帧图像的数据。
示例性地,中央处理器从显示缓存模块获取第N帧图像的数据,N为正整数。
示例性地,图形处理器、视频解码器(video decoder)或者显示组件连接的部件(video processing unit,VPU)等可以向显示缓存模块中写入图像数据。
应理解,第N帧图像的数据可以是指写入显示缓存模块的当前帧图像的数据;第N帧图像的数据为待显示的图像帧的数据。
示例性地,在显示缓存模块中写入第N帧图像的数据时,中央处理器可以根据运算能力从显示缓存模块中获取图像的数据。
步骤S602、中央处理器向图形处理器发送第N帧图像的数据。
步骤S603、图形处理器中的图像最高灰阶计算模块根据第N帧图像数据确定第N帧图像中的最高灰阶。
示例性地,显示缓存模块中的存储的多帧图像数据;图像最高灰阶计算模块可以根据运算能力从显示缓存模块中获取图像的数据;并根据图像的数据确定该图像的最高灰阶。示例性地,可以通过识别第N帧图像的直方图得到第N帧图像的最高灰阶。
例如,对于8bit色深的显示组件,理论灰阶范围为0~255;对于第N帧图像,可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为230。
例如,对于10bit色深的显示组件,理论灰阶范围为0~1023;对于第N帧图像, 可以根据第N帧图像的直方图确定第N帧图像的最高灰阶为900。
示例性地,可以通过遍历第N帧图像中的每个像素点确定第N帧图像的最高灰阶。
示例性地,可以通过显示缓存模块连接的上一部件输出第N帧图像的最大灰阶;显示组件连接的上一部件可以是指GPU、视频解码器(video decoder),显示组件连接的部件(video processing unit,VPU)等。
步骤S604、图形处理器向中央处理器发送第N帧图像的最高灰阶。
示例性地,中央处理器中包括电压调整量计算模块与亮度补偿计算模块。
步骤S605、中央处理器中的电压调整量计算模块根据第N帧图像的最高灰阶确定最小电压差;根据最小电压差确定第N帧图像的电压调整量。
示例性地,电压调整量计算模块根据第N帧图像的最高灰阶可以确定像素驱动电路中发光体(例如,发光二极管)所需的最小电流;由于发光体的工作电压正比于工作电流,因此根据发光体所需的最小电流与T 2薄膜晶体管的输出特性曲线可以确定漏极与源极之间的最小电压差;根据漏极与源极之间的最小电压差可以确定像素驱动电路的工作电压(V DD)与驱动电压(V SS)之间的最小电压差,从而确定第N帧图像的电压调整量。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,在一种可能的实现方式中,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压(第一驱动电压的一个示例)的电压差。
应理解,由于一帧图像对应一个驱动电压,即一帧图像包括的多个像素驱动电路共享一个驱动电压;因此,需要确保驱动电压使得一帧图像中的最高灰阶可以正常显示;在本申请的实施例中,通过第N帧图像的最高灰阶可以确定显示组件显示第N帧图像所需的驱动电压值,即显示第N帧图像所需的最小电压;同等亮度情况下,第N帧图像的最高灰阶决定了像素驱动电路工作电压与驱动电压之间的最小电压差,通常情况下工作电压是不变的,通过调节驱动电压的大小使得满足显示组件显示第N帧图像所需的最小电压差。
步骤S606、中央处理器向显示接口发送第N帧图像的电压调整量。
步骤S607、显示组件向显示接口发送同步信号。
示例性地,同步信号可以用于指示显示组件开始显示第N帧图像。
步骤S608、显示接口向中央处理器发送同步信号。
步骤S609、显示缓存模块向中央处理器发送第N帧图像的数据。
示例性地,中央处理器在接收到同步信号后,可以从显示缓存模块中获取第N帧图像的数据。
步骤S610、中央处理器向显示接口发送第N帧图像的数据。
步骤S611、显示接口向显示组件发送第N帧图像的电压调整量与第N帧图像的数据。
可选地,第N帧图像的电压调整量可以是指显示组件显示第N帧图像的驱动电压的绝对值。
可选地,第N帧图像的电压调整量可以是指相对于第N-1帧图像的驱动电压的电 压差。
例如,电压差可以是指显示第N-1帧图像时的驱动电压与第N帧图像的驱动电压之间的电压差。
第一种情况:显示组件为不具有缓存区域的显示组件。
在一个示例中,在显示组件不具有缓存区域时,则显示组件无法对第N帧图像的数据进行缓存;因此,显示接口在接收到同步信号后可以先向显示组件发送第N帧图像的电压调整量,再向显示组件发送第N帧图像的数据。
第二种情况:显示组件为具有一个缓存区域的显示组件。
在一个示例中,在显示组件具有一个缓存区域时,显示组件可以用于缓存正在显示的当前帧图像的下一帧图像的数据,则显示接口在收到同步指令后可以同时发送第N帧图像的电压调整量与第N帧图像的数据;或者,可以先发送第N帧图像的数据,再发送第N帧图像的电压调整量。
第三种情况:显示组件为具有多个缓存区域的显示组件。
在一个示例中,在显示组件为具有多个缓存区域时,显示接口在向显示组件发送电压调整量时需要进行标记,即对一帧图像与该帧图像对应的电压调整量进行标记。
应理解,电压调整量与图像中的最高灰阶相关的;对于不同的图像,图像中的最高灰阶不同,电压调整量可以不同。
步骤S612、显示组件根据电压调整量对第N帧图像的数据进行显示。
例如,显示组件可以根据第N帧图像的电压调整量进行设定,然后显示第N帧图像的数据。
应理解,显示组件的驱动电压可以是指如图2所示的像素驱动电路中的V SS;由于T 2薄膜晶体管工作在饱和区,因此T 2薄膜晶体管向发光体提供的驱动电流不随电压差的变化而改变;即在调节驱动电压时对发光体(例如,OLED)的驱动电流产生的影响较小;此外,由于调节速度可以达到60帧以上,因此显示组件显示的图像不会出现闪烁的问题。
在本申请的实施例中,根据第N帧图像的最高灰阶可以确定显示组件显示第N帧图像时所需的电压大小;根据显示第N帧图像所需的电压大小对显示组件的驱动电压进行调节,从而能够在确保图像正常显示时,减小驱动电压降低显示组件的功耗。
应理解,上述举例说明是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的上述举例说明,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
上文结合图1至图10详细描述了本申请实施例提供的调节显示组件的驱动电压的方法;下面将结合图11与图12详细描述本申请的装置实施例。应理解,本申请实施例中的装置可以执行前述本申请实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图11是本申请实施例提供的一种终端设备的结构示意图。该终端设备500包括主动发光的显示组件、存储模块710与处理模块720。
其中,所述存储模块710用于存储第N帧图像的图像数据,N为正整数;所述处 理模块720用于从所述存储模块710获取所述第N帧图像的图像数据;根据所述图像数据得到所述第N帧图像的最高灰阶,所述第N帧图像的最高灰阶是指所述第N帧图像中像素对应的灰阶的最大值;根据所述第N帧图像的最高灰阶得到所述第N帧图像的驱动电压,所述第N帧图像的驱动电压是指所述显示组件显示所述第N帧图像时所需的电压;向所述显示组件发送所述第N帧图像的电压调整量,所述第N帧图像的电压调整量是根据所述第N帧图像的驱动电压得到的。
可选地,作为一个实施例,所述第N帧图像的电压调整量为所述第N帧图像的驱动电压的电压值。
可选地,作为一个实施例,所述第N帧图像的电压调整量为所述第N帧图像的驱动电压与第一驱动电压的电压差值,所述第一驱动电压是指第N-1帧图像的驱动电压。
可选地,作为一个实施例,所述处理模块720具体用于:
根据所述图像数据得到所述第N帧图像的直方图;
根据所述第N帧图像的直方图得到所述第N帧图像的最高灰阶。
可选地,作为一个实施例,所述显示组件包括像素驱动电路,所述像素驱动电路包括第一薄膜晶体管与发光体,所述第一薄膜晶体管用于向所述发光体提供驱动电流,所述处理模块720具体用于:
根据所述第N帧图像的最高灰阶确定所述第N帧图像的驱动电流,所述第N帧图像的驱动电流是指所述显示组件通过所述像素驱动电路显示所述第N帧图像时所需的电流;
根据所述第N帧图像的驱动电流与所述第一薄膜晶体管的输出特性曲线确定所述第N帧图像的驱动电压。
可选地,作为一个实施例,在所述输出特性曲线的第一斜率不等于0的情况下,所述第一斜率是指所述输出特性曲线在饱和区的斜率,所述处理模块720还用于:
根据所述第N帧图像的驱动电压与所述第一斜率确定所述第N帧图像的电流调整量;
根据所述第N帧图像的电流调整量确定所述第N帧图像的亮度补偿量,所述第N帧图像的亮度补偿量用于所述显示组件对所述第N帧图像进行亮度补偿。
可选地,作为一个实施例,所述处理模块720还用于:
向所述显示组件发送所述第N帧图像的亮度补偿量。
可选地,作为一个实施例,所述处理模块720还用于:
接收所述显示组件发送的同步信号,所述同步信号用于指示所述显示组件开始显示所述第N帧图像;
向所述显示组件发送所述第N帧图像的图像数据。
可选地,作为一个实施例,所述发光体为以下任意一项:
有机发光二极管、有源矩阵有机发光二极体、柔性发光二极管、微型发光二极管、微型有机发光二极管或者量子点发光二极管。
需要说明的是,上述终端设备700以功能模块的形式体现。这里的术语“模块”可以通过软件和/或硬件形式实现,对此不作具体限定。
例如,“模块”可以是实现上述功能的软件程序、硬件电路或二者结合。所述硬 件电路可能包括应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
因此,在本申请的实施例中描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图12示出了本申请提供的一种电子设备的结构示意图。图12中的虚线表示该单元或该模块为可选的。电子设备800可用于实现上述方法实施例中描述的方法。
电子设备800包括一个或多个处理器801,该一个或多个处理器801可支持电子设备800实现方法实施例中的方法。处理器801可以是通用处理器或者专用处理器。例如,处理器801可以是中央处理器(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,如分立门、晶体管逻辑器件或分立硬件组件。
处理器801可以用于对终端设备800进行控制,执行软件程序,处理软件程序的数据。电子设备800还可以包括通信单元805,用以实现信号的输入(接收)和输出(发送)。
例如,电子设备800可以是芯片,通信单元805可以是该芯片的输入和/或输出电路,或者,通信单元805可以是该芯片的通信接口,该芯片可以作为终端设备或其它电子设备的组成部分。
又例如,电子设备800可以是终端设备,通信单元805可以是该终端设备的收发器,或者,通信单元805可以是该终端设备的收发电路。
例如,电子设备800中可以包括一个或多个存储器802,其上存有程序804,程序804可被处理器801运行,生成指令803,使得处理器801根据指令803执行上述方法实施例中描述的方法。
可选地,存储器802中还可以存储有数据。可选地,处理器801还可以读取存储器802中存储的数据(如,第N帧图像的图像数据),该数据可以与程序804存储在相同的存储地址,该数据也可以与程序804存储在不同的存储地址。
可选地,处理器801和存储器802可以单独设置,也可以集成在一起,例如,集成在终端设备的系统级芯片(system on chip,SOC)上。
示例性地,存储器802可以用于存储本申请实施例中提供的调节显示组件的驱动电压的方法的相关程序804,处理器801可以用于在执行调节显示组件的驱动电压时调用存储器802中存储的方法的相关程序804,执行本申请实施例的方法;例如,获取第N帧图像的图像数据,N为正整数;根据所述图像数据得到所述第N帧图像的最高灰阶,所述第N帧图像的最高灰阶是指所述第N帧图像中像素对应的灰阶的最大值;根据所述第N帧图像的最高灰阶得到所述第N帧图像的驱动电压,所述第N帧图像的驱动电压是指所述显示组件显示所述第N帧图像时所需的电压;向所述显示组件发送所述第N帧图像的电压调整量,所述第N帧图像的电压调整量是根据所述第N帧 图像的驱动电压得到的。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器801执行时实现本申请中任一方法实施例所述的调节显示组件的驱动电压的方法。
该计算机程序产品可以存储在存储器802中,例如是程序804,程序804经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器801执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的调节显示组件的驱动电压的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器802。存储器802可以是易失性存储器或非易失性存储器,或者,存储器802可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
应注意,尽管上述电子设备800仅仅示出了存储器、处理器与通信单元,但是在具体实现过程中,本领域的技术人员应当理解,电子设备800还可以包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,上述电子设备800还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,上述电子设备800也可仅仅包括实现本申请实施例所必须的器件,而不必包括图12所示的全部器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种调节显示组件的驱动电压的方法,其特征在于,应用于终端设备,所述终端设备包括主动发光的显示组件,所述方法包括:
    获取第N帧图像的图像数据,N为正整数;
    根据所述图像数据得到所述第N帧图像的最高灰阶,所述第N帧图像的最高灰阶是指所述第N帧图像中像素对应的灰阶的最大值;
    根据所述第N帧图像的最高灰阶得到所述第N帧图像的驱动电压,所述第N帧图像的驱动电压是指所述显示组件显示所述第N帧图像时所需的电压;
    向所述显示组件发送所述第N帧图像的电压调整量,所述第N帧图像的电压调整量是根据所述第N帧图像的驱动电压得到的。
  2. 如权利要求1所述的方法,其特征在于,所述第N帧图像的电压调整量为所述第N帧图像的驱动电压的电压值。
  3. 如权利要求1所述的方法,其特征在于,所述第N帧图像的电压调整量为所述第N帧图像的驱动电压与第一驱动电压的电压差值,所述第一驱动电压是指第N-1帧图像的驱动电压。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述根据所述图像数据得到所述第N帧图像的最高灰阶,包括:
    根据所述图像数据得到所述第N帧图像的直方图;
    根据所述第N帧图像的直方图得到所述第N帧图像的最高灰阶。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述显示组件包括像素驱动电路,所述像素驱动电路包括第一薄膜晶体管与发光体,所述第一薄膜晶体管用于向所述发光体提供驱动电流,所述根据所述第N帧图像的最高灰阶得到所述第N帧图像的驱动电压,包括:
    根据所述第N帧图像的最高灰阶确定所述第N帧图像的驱动电流,所述第N帧图像的驱动电流是指所述显示组件通过所述像素驱动电路显示所述第N帧图像时所需的电流;
    根据所述第N帧图像的驱动电流与所述第一薄膜晶体管的输出特性曲线确定所述第N帧图像的驱动电压。
  6. 如权利要求5所述的方法,其特征在于,在所述输出特性曲线的第一斜率不等于0的情况下,所述第一斜率是指所述输出特性曲线在饱和区的斜率,所述方法还包括:
    根据所述第N帧图像的驱动电压与所述第一斜率确定所述第N帧图像的电流调整量;
    根据所述第N帧图像的电流调整量确定所述第N帧图像的亮度补偿量,所述第N帧图像的亮度补偿量用于所述显示组件对所述第N帧图像进行亮度补偿。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    向所述显示组件发送所述第N帧图像的亮度补偿量。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,还包括:
    接收所述显示组件发送的同步信号,所述同步信号用于指示所述显示组件开始显 示所述第N帧图像;
    向所述显示组件发送所述第N帧图像的图像数据。
  9. 如权利要求5至8中任一项所述的方法,其特征在于,所述发光体为以下任意一项:
    有机发光二极管、有源矩阵有机发光二极体、柔性发光二极管、微型发光二极管、微型有机发光二极管或者量子点发光二极管。
  10. 一种终端设备,其特征在于,所述终端设备包括主动发光的显示组件、存储模块与处理模块;
    所述存储模块用于存储第N帧图像的图像数据,N为正整数;
    所述处理模块用于从所述存储模块获取所述第N帧图像的图像数据;根据所述图像数据得到所述第N帧图像的最高灰阶,所述第N帧图像的最高灰阶是指所述第N帧图像中像素对应的灰阶的最大值;根据所述第N帧图像的最高灰阶得到所述第N帧图像的驱动电压,所述第N帧图像的驱动电压是指所述显示组件显示所述第N帧图像时所需的电压;向所述显示组件发送所述第N帧图像的电压调整量,所述第N帧图像的电压调整量是根据所述第N帧图像的驱动电压得到的。
  11. 如权利要求10所述的终端设备,其特征在于,所述第N帧图像的电压调整量为所述第N帧图像的驱动电压的电压值。
  12. 如权利要求10所述的终端设备,其特征在于,所述第N帧图像的电压调整量为所述第N帧图像的驱动电压与第一驱动电压的电压差值,所述第一驱动电压是指第N-1帧图像的驱动电压。
  13. 如权利要求10至12中任一项所述的终端设备,其特征在于,所述处理模块具体用于:
    根据所述图像数据得到所述第N帧图像的直方图;
    根据所述第N帧图像的直方图得到所述第N帧图像的最高灰阶。
  14. 如权利要求10至13中任一项所述的终端设备,其特征在于,所述显示组件包括像素驱动电路,所述像素驱动电路包括第一薄膜晶体管与发光体,所述第一薄膜晶体管用于向所述发光体提供驱动电流,所述处理模块具体用于:
    根据所述第N帧图像的最高灰阶确定所述第N帧图像的驱动电流,所述第N帧图像的驱动电流是指所述显示组件通过所述像素驱动电路显示所述第N帧图像时所需的电流;
    根据所述第N帧图像的驱动电流与所述第一薄膜晶体管的输出特性曲线确定所述第N帧图像的驱动电压。
  15. 如权利要求14所述的终端设备,其特征在于,在所述输出特性曲线的第一斜率不等于0的情况下,所述第一斜率是指所述输出特性曲线在饱和区的斜率,所述处理模块还用于:
    根据所述第N帧图像的驱动电压与所述第一斜率确定所述第N帧图像的电流调整量;
    根据所述第N帧图像的电流调整量确定所述第N帧图像的亮度补偿量,所述第N帧图像的亮度补偿量用于所述显示组件对所述第N帧图像进行亮度补偿。
  16. 如权利要求15所述的终端设备,其特征在于,所述处理模块还用于:
    向所述显示组件发送所述第N帧图像的亮度补偿量。
  17. 如权利要求10至16中任一项所述的终端设备,其特征在于,所述处理模块还用于:
    接收所述显示组件发送的同步信号,所述同步信号用于指示所述显示组件开始显示所述第N帧图像;
    向所述显示组件发送所述第N帧图像的图像数据。
  18. 如权利要求14至17中任一项所述的终端设备,其特征在于,所述发光体为以下任意一项:
    有机发光二极管、有源矩阵有机发光二极体、柔性发光二极管、微型发光二极管、微型有机发光二极管或者量子点发光二极管。
  19. 一种终端设备,其特征在于,包括:
    一个或多个处理器、存储器和主动发光的显示组件;
    所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器调用所述计算机指令以使得所述终端执行如权利要求1至9中任一项所述的方法。
  20. 一种芯片系统,其特征在于,所述芯片系统应用于终端设备,所述芯片系统包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述终端设备执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行权利要求1至9中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被处理器执行时,使得处理器执行权利要求1至9中任一项所述的方法。
PCT/CN2022/117049 2021-12-03 2022-09-05 调节显示组件的驱动电压的方法与终端设备 WO2023098198A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/042,641 US20240096278A1 (en) 2021-12-03 2022-09-05 Method for adjusting drive voltage of display assembly and terminal device
EP22854458.1A EP4213139A4 (en) 2021-12-03 2022-09-05 METHOD FOR ADJUSTING AN EXCITATION VOLTAGE OF A DISPLAY ASSEMBLY, AND TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111471055.7A CN116229876B (zh) 2021-12-03 2021-12-03 调节显示组件的驱动电压的方法与终端设备
CN202111471055.7 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023098198A1 true WO2023098198A1 (zh) 2023-06-08

Family

ID=85979497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117049 WO2023098198A1 (zh) 2021-12-03 2022-09-05 调节显示组件的驱动电压的方法与终端设备

Country Status (4)

Country Link
US (1) US20240096278A1 (zh)
EP (1) EP4213139A4 (zh)
CN (1) CN116229876B (zh)
WO (1) WO2023098198A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109030A (ko) * 2006-05-09 2007-11-15 삼성에스디아이 주식회사 전자방출표시소자 및 그의 구동방법
CN102427517A (zh) * 2011-09-30 2012-04-25 青岛海信电器股份有限公司 动态对比度的调整方法及装置、液晶电视机
CN103177693A (zh) * 2013-01-22 2013-06-26 友达光电股份有限公司 有机发光二极管显示装置及其驱动方法
CN104793423A (zh) * 2015-05-11 2015-07-22 京东方科技集团股份有限公司 一种显示方法及装置
CN106791743A (zh) * 2016-12-08 2017-05-31 海信集团有限公司 投影图像显示的方法与装置
CN113223470A (zh) * 2021-04-20 2021-08-06 绵阳惠科光电科技有限公司 显示面板的驱动方法、显示装置的驱动模块和计算机可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100018322A (ko) * 2008-08-06 2010-02-17 삼성전자주식회사 액정 표시 장치 및 그것의 제어 방법
KR102074719B1 (ko) * 2013-10-08 2020-02-07 엘지디스플레이 주식회사 유기 발광 표시 장치
CN103594065A (zh) * 2013-11-08 2014-02-19 深圳市华星光电技术有限公司 珈玛电压调整装置的调整方法
CN106292016B (zh) * 2015-05-29 2019-08-13 鸿富锦精密工业(深圳)有限公司 显示装置
CN105528994B (zh) * 2016-02-22 2019-03-15 深圳市华星光电技术有限公司 一种降低显示面板功耗的方法及系统
CN110197641B (zh) * 2019-05-22 2021-08-24 武汉华星光电技术有限公司 面板驱动电压调整方法、显示设备和具有存储功能的装置
KR102641386B1 (ko) * 2019-08-29 2024-02-28 삼성디스플레이 주식회사 표시 장치, 및 전원 전압 결정 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109030A (ko) * 2006-05-09 2007-11-15 삼성에스디아이 주식회사 전자방출표시소자 및 그의 구동방법
CN102427517A (zh) * 2011-09-30 2012-04-25 青岛海信电器股份有限公司 动态对比度的调整方法及装置、液晶电视机
CN103177693A (zh) * 2013-01-22 2013-06-26 友达光电股份有限公司 有机发光二极管显示装置及其驱动方法
CN104793423A (zh) * 2015-05-11 2015-07-22 京东方科技集团股份有限公司 一种显示方法及装置
CN106791743A (zh) * 2016-12-08 2017-05-31 海信集团有限公司 投影图像显示的方法与装置
CN113223470A (zh) * 2021-04-20 2021-08-06 绵阳惠科光电科技有限公司 显示面板的驱动方法、显示装置的驱动模块和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4213139A4

Also Published As

Publication number Publication date
CN116229876A (zh) 2023-06-06
EP4213139A4 (en) 2023-12-20
EP4213139A1 (en) 2023-07-19
US20240096278A1 (en) 2024-03-21
CN116229876B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
US10535286B2 (en) Sensing for compensation of pixel voltages
EP2889860A2 (en) Organic light emitting diode display device and method of driving the same
KR102007369B1 (ko) 타이밍 컨트롤러 및 그 구동 방법과 이를 이용한 표시장치
US9460675B2 (en) Display device having signal processing circuits, electronic apparatus having display device, driving method of display device, and signal processing method
KR20150134167A (ko) 디스플레이 장치, 전자 장치 및 전자 장치의 동작 방법
WO2020192382A1 (zh) 像素驱动电路、显示装置及像素驱动方法
US10438526B2 (en) Display driver, and display device and system including the same
TW201947575A (zh) 像素內記憶體顯示器
WO2021147904A1 (zh) 图像处理方法、图像处理模组及显示装置
US11990075B2 (en) Drive control method and related device
US20230335064A1 (en) Electronic device for driving plurality of display areas of display at different driving frequencies
US20200388205A1 (en) Electronic device for controlling source driving of pixel on basis of characteristics of image, and image output method using electronic device
WO2022166624A1 (zh) 一种屏幕显示方法及相关装置
CN116386564A (zh) 校正输入图像数据的方法和执行该方法的发光显示设备
US11721272B2 (en) Display driving integrated circuit, display device and method of operating same
WO2022001383A1 (zh) 显示处理方法及装置
US9774781B2 (en) Local tone mapping circuits and mobile computing devices including the same
WO2023098198A1 (zh) 调节显示组件的驱动电压的方法与终端设备
WO2024067026A1 (zh) 电压调节方法、终端设备、芯片及存储介质
WO2023273466A1 (zh) 显示控制装置、显示装置以及电子设备
US8576146B2 (en) Display device and driving method thereof
CN109102770B (zh) 一种面向高性能计算的低功耗低带宽显示面板驱动芯片
WO2024072058A1 (ko) 이미지의 적응적 스캔을 위한 전자 장치
US20220051602A1 (en) Display apparatus and driving method thereof
CN117995115A (zh) 显示面板及其驱动方法和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18042641

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022854458

Country of ref document: EP

Effective date: 20230215