WO2023098094A1 - 用于远端单元开站的方法、基带单元、通信系统和介质 - Google Patents

用于远端单元开站的方法、基带单元、通信系统和介质 Download PDF

Info

Publication number
WO2023098094A1
WO2023098094A1 PCT/CN2022/106370 CN2022106370W WO2023098094A1 WO 2023098094 A1 WO2023098094 A1 WO 2023098094A1 CN 2022106370 W CN2022106370 W CN 2022106370W WO 2023098094 A1 WO2023098094 A1 WO 2023098094A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
remote radio
opening
power consumption
radio frequency
Prior art date
Application number
PCT/CN2022/106370
Other languages
English (en)
French (fr)
Inventor
喻志浩
张航
范存孝
Original Assignee
普罗斯通信技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普罗斯通信技术(苏州)有限公司 filed Critical 普罗斯通信技术(苏州)有限公司
Publication of WO2023098094A1 publication Critical patent/WO2023098094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the communication field, and specifically relate to a method for opening a station of multiple remote radio frequency units, a baseband unit, a communication system, and a computer storage medium.
  • the current wireless communication system site usually includes a baseband unit (Baseband Unit, BBU) and a plurality of remote radio frequency units (Remote Radio Unit, RRU).
  • BBU Baseband Unit
  • RRU Remote Radio Unit
  • the baseband unit is used for encoding and modulating the communication data to generate a signal to be transmitted, and transmit the signal to be transmitted to the remote radio frequency unit.
  • the remote radio frequency unit is used to transmit the signal to be transmitted via the antenna.
  • the maximum power consumption of the entire site can reach thousands of watts.
  • the power consumption of the baseband unit is usually relatively stable, but the power consumption of the remote radio frequency unit usually changes with service changes. The power consumption is high when the service load is high, and the power consumption is low when the service load is low.
  • the remote radio unit After the site is powered on and started, the remote radio unit needs to perform calibration and standing wave detection (also called station opening). In this process, it is necessary to transmit test signals with higher transmission power. At this time, if all remote radio frequency units transmit test signals at the same time, the power consumption of the site will reach or approach the maximum power consumption level of the entire station. In some sites with heavy grid loads or areas where the grid is not stable, the site power supply may not meet the above maximum load requirements, causing the power supply unit to trip or reset, and the entire site will restart at this time.
  • calibration and standing wave detection also called station opening
  • a method for reducing the instantaneous total power consumption of multiple remote radio frequency units coupled to the baseband unit.
  • a method for opening a station of multiple remote radio frequency units includes: in response to receiving a plurality of ready messages from a plurality of remote radio frequency units coupled to the baseband unit, obtaining station deployment configuration data for a plurality of remote radio frequency units, the station deployment configuration data indicating a plurality of The remote radio frequency unit is divided into multiple remote radio frequency unit sets and multiple station opening batches associated with the multiple remote radio frequency unit sets.
  • the station opening includes calibration and standing wave detection; sending a start-up message from the centralized first set of remote radio units, the first set of remote radio units being associated with the first set-up batch; and in response to receiving a complete start-up message from the first set of remote radio units set, and send a station opening message to the second remote radio unit set in the plurality of remote radio unit sets, the second remote radio unit set is associated with the second station opening batch, and the second station opening batch is located in the first After opening batches.
  • a baseband unit includes: at least one processor, and a memory communicatively connected to the at least one processor, wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor The method according to the first aspect can be performed.
  • a communication system includes: the baseband unit according to the second aspect of the present disclosure; and a plurality of remote radio frequency units coupled to the baseband unit.
  • a computer-readable storage medium on which a computer program is stored, the program implements the method according to the first aspect of the present disclosure when executed by a processor.
  • the embodiment of the present disclosure by dividing the multiple remote radio frequency units coupled to the baseband unit into multiple station opening batches, and starting the next batch of station opening after the previous batch of station opening is completed, it is possible The instantaneous total power consumption of multiple remote radio frequency units coupled to the baseband unit is reduced.
  • FIG. 1 is a schematic diagram of a communication system 100 according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram of a method 200 for deploying multiple remote radio frequency units according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a process 300 for opening a station of multiple remote radio units according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a comparison 400 of power consumption in the prior art and in an embodiment of the present disclosure.
  • FIG. 5 is a flow chart of a method 500 for obtaining out-of-site configuration data for multiple remote radio units according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a method 600 for opening a station of multiple remote radio frequency units according to an embodiment of the present disclosure.
  • Fig. 7 is a block diagram of an electronic device used to implement the method for opening a station of multiple remote radio frequency units according to an embodiment of the present disclosure.
  • the term “comprise” and its variants mean open inclusion, ie “including but not limited to”.
  • the term “or” means “and/or” unless otherwise stated.
  • the term “based on” means “based at least in part on”.
  • the terms “one example embodiment” and “one embodiment” mean “at least one example embodiment.”
  • the term “another embodiment” means “at least one further embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object. Other definitions, both express and implied, may also be included below.
  • exemplary embodiments of the present disclosure propose a solution for opening a station of multiple remote radio frequency units.
  • the baseband unit acquires station opening configuration data for a plurality of remote radio frequency units in response to receiving a plurality of ready messages from a plurality of remote radio frequency units coupled to the baseband unit, and the station opening configuration data Indicates multiple remote radio frequency unit sets into which multiple remote radio frequency units are divided, and multiple station opening batches associated with the multiple remote radio frequency unit sets, where station opening includes calibration and standing wave detection.
  • the baseband unit sends a station opening message to a first remote radio frequency unit set in the plurality of remote radio frequency unit sets, and the first remote radio frequency unit set is associated with the first station opening batch.
  • the baseband unit sends a station opening message to a second remote radio unit set in a plurality of remote radio unit sets in response to receiving the station opening message set from the first remote radio unit set, and the second remote radio unit set
  • the unit set is associated with the second opening batch, and the second opening batch is located after the first opening batch.
  • the embodiment of the present disclosure by dividing the multiple remote radio frequency units coupled to the baseband unit into multiple station opening batches, and starting the next batch of station opening after the previous batch of station opening is completed, it is possible The instantaneous total power consumption of multiple remote radio frequency units coupled to the baseband unit is reduced.
  • FIG. 1 shows a schematic diagram of an example of a communication system 100 according to an embodiment of the present disclosure.
  • the communication device 100 may include a baseband unit 110 and a plurality of remote radio frequency units 120 - 1 to 120 - n (remote radio frequency units are collectively referred to as 120 hereinafter) coupled to the baseband unit 110 , where n is greater than or equal to 2.
  • the baseband unit 110 may store deployment configuration data 130 for multiple remote radio frequency units 120 .
  • the baseband unit 110 may also obtain the station opening configuration data 130 from the remote maintenance center or the local maintenance station.
  • the station opening configuration data 130 can be manually configured remotely or locally via a graphical or command line configuration interface.
  • an example of station opening configuration data is: set startupBatch 1 RRU1 RRU2 RRU3; set startupBatch 2 RRU4 RRU5 RRU6; set startupBatch 3 RRU7 RRU8 RRU9, where set startupBatch means setting the station opening batch, and the above configuration data sets the first opening batch
  • the station batch involves RRU1, RRU2, and RRU3, the second station opening batch involves RRU4, RRU5, and RRU6, and the third station opening batch involves RRU7, RRU8, and RRU9.
  • the station opening configuration data can be saved as xml files, database files or other parsable formats.
  • the remote radio unit 120 will send a ready message to the baseband unit 110 when ready.
  • the ready message may be sent to the baseband unit 110 through the fronthaul link, for example, through the common public radio interface (Common Public Radio Interface, CPRI) protocol or the enhanced common public radio interface (enhanced CPRI, eCPRI) protocol.
  • CPRI Common Public Radio Interface
  • eCPRI enhanced common public radio interface
  • the baseband unit 110 is configured to, in response to receiving a plurality of ready messages from the plurality of remote radio frequency units 120 coupled to the baseband unit 110, obtain the station opening configuration data 130 for the plurality of remote radio frequency units 120, and open the station
  • the configuration data 130 indicates a plurality of remote radio frequency unit sets into which the plurality of remote radio frequency units 120 are divided and a plurality of station opening batches associated with the plurality of remote radio frequency unit sets, and station opening includes calibration and standing wave detection; Sending a start station opening message to a first remote radio frequency unit set in a plurality of remote radio frequency unit sets, where the first remote radio frequency unit set is associated with a first station opening batch; and in response to receiving a message from the first remote radio frequency unit
  • the station opening message set of the unit set is completed, and the station opening message is sent to the second remote radio unit set in the plurality of remote radio unit sets.
  • the second remote radio unit set is associated with the second station opening batch, and the second The station opening batch is located after the first station opening batch.
  • the cost of the baseband unit can be reduced. Instantaneous total power consumption of multiple connected remote radio units.
  • Fig. 2 shows a flowchart of a method 200 for deploying multiple remote radio frequency units according to an embodiment of the present disclosure.
  • the method 200 may be performed by the baseband unit 110 as shown in FIG. 1 .
  • method 200 may also include additional blocks not shown and/or blocks shown may be omitted, and that the scope of the present disclosure is not limited in this respect.
  • the baseband unit 110 receives a plurality of ready messages from a plurality of remote radio frequency units 120 coupled to the baseband unit 110 .
  • baseband unit 110 acquires The station development configuration data 130 of 120, the station development configuration data 130 indicates the plurality of remote radio frequency unit sets into which the plurality of remote radio frequency units 120 are divided and the plurality of station development batches associated with the plurality of remote radio frequency unit sets , Opening the station includes calibration and standing wave detection.
  • association of the station development batch with the remote radio frequency unit set means that the remote radio frequency unit set is deployed in the station development batch.
  • Multiple site development batches being associated with multiple remote radio frequency unit sets means that the multiple remote radio frequency unit sets are respectively deployed in multiple site development batches.
  • the baseband unit 110 sends a station opening message to a first remote radio unit set in a plurality of remote radio unit sets, and the first remote radio unit set is associated with a first station opening batch.
  • the association of the first remote radio frequency unit set with the first station development batch means that the first remote radio frequency unit set is deployed in the first station development batch.
  • the baseband unit 110 receives a set of complete open station messages from the first set of remote radio units.
  • the baseband unit 110 Responsive to the baseband unit 110 receiving the complete station opening message set from the first remote radio unit set at block 208, at block 210, the baseband unit 110 sends a second remote radio unit set of the plurality of remote radio unit sets A station opening start message is sent, the second remote radio frequency unit set is associated with a second station opening batch, and the second station opening batch is located after the first station opening batch.
  • the association of the second remote radio frequency unit set with the second station development batch means that the second remote radio frequency unit set is deployed in the second station development batch.
  • the above-mentioned process may be performed sequentially according to multiple startup batches, until the multiple remote radio frequency unit sets of the multiple startup batches complete station opening.
  • the baseband unit 110 may also send a station opening message to a third remote radio unit set in the plurality of remote radio unit sets in response to receiving the station opening message set from the second remote radio unit set, and the third The remote radio frequency unit set is associated with the third station opening batch, and the third station opening batch is located after the second station opening batch.
  • the cost of the baseband unit can be reduced.
  • the situation of tripping, and avoiding the situation that the site cannot provide services due to the high consistency of software and hardware of multiple remote radio frequency units may cause the site to repeatedly start, calibrate, and power down after tripping.
  • FIG. 3 shows a flowchart of a process 300 for opening a station of multiple remote radio frequency units according to an embodiment of the present disclosure. It should be appreciated that method 300 may also include additional blocks not shown and/or blocks shown may be omitted, and that the scope of the present disclosure is not limited in this respect. It should be understood that although three batches of remote radio unit sets are shown in FIG. unit sets, the scope of the present disclosure is not limited herein.
  • the baseband unit and the three batches of remote radio frequency unit sets start to be powered on at 301 and software is loaded and run.
  • the remote radio unit sets of the respective batches send ready messages to the baseband unit.
  • the baseband unit sends a station opening message to the first batch of remote radio frequency unit sets.
  • the remote radio frequency unit set of the first batch is opened at 306 , that is, calibration and standing wave detection.
  • the remote radio frequency unit set of the first batch sends a station opening completion message to the baseband unit at 307 .
  • the baseband unit sends a station opening message to the second batch of remote radio frequency unit sets.
  • the remote radio frequency unit set of the second batch is opened at 309 , that is, calibration and standing wave detection.
  • the remote radio frequency unit set of the second batch sends a station opening completion message to the baseband unit at 310 .
  • the baseband unit sends a station opening message to the third batch of remote radio frequency unit sets.
  • the remote radio frequency unit set of the third batch is opened at 312 , that is, calibration and standing wave detection.
  • the remote radio frequency unit set of the third batch sends a station opening completion message to the baseband unit at 313 . So far, three batches of remote radio frequency unit sets have been opened.
  • FIG. 4 shows a schematic diagram of a comparison 400 of power consumption in the prior art and in an embodiment of the present disclosure.
  • n remote radio frequency units coupled to the baseband unit perform station opening (that is, calibration and standing wave detection) at the same time, the power consumption of the entire station is quite high.
  • the n remote radio frequency units coupled to the baseband unit are divided into 3 batches for site development, the power consumption of the entire site is extremely reduced. big reduction. It should be understood that the 3 batches here are just examples, and other batches, such as 2 batches, or more than 3 batches may also be used.
  • Fig. 5 shows a flow chart of a method 500 for acquiring configuration data for multiple remote radio frequency units according to an embodiment of the present disclosure.
  • the method 500 may be performed by the baseband unit 110 as shown in FIG. 1 .
  • method 500 may also include additional blocks not shown and/or blocks shown may be omitted, and that the scope of the present disclosure is not limited in this respect.
  • the baseband unit 110 determines a total number of remote radio units coupled to the baseband unit 110 based on the plurality of ready messages.
  • the baseband unit 110 acquires preset power consumption for opening a site and available power for a current site.
  • the preset start-up power consumption is, for example, generated based on the historical start-up power consumption of the remote radio unit.
  • the current site available power is generated based on, for example, the available power balance of the site where the baseband unit 110 is located.
  • the baseband unit 110 generates station deployment configuration data based on the preset power consumption for station deployment, the current available power of the station, and the total quantity.
  • station deployment configuration data in real time according to the total number of remote radio frequency units currently coupled to the baseband unit, the preset station deployment power consumption, and the current site available power, so that the station deployment configuration data can reflect the current status of the baseband unit in a timely manner. Condition.
  • Fig. 6 shows a flow chart of a method 600 for deploying multiple remote radio frequency units according to an embodiment of the present disclosure.
  • the method 600 may be performed by the baseband unit 110 as shown in FIG. 1 .
  • method 600 may also include additional blocks not shown and/or blocks shown may be omitted, and that the scope of the present disclosure is not limited in this respect.
  • the baseband unit 110 receives a plurality of ready messages from a plurality of remote radio frequency units 120 coupled to the baseband unit 110 .
  • the baseband unit 110 determines a total number of remote radio units coupled to the baseband unit 110 based on the plurality of ready messages.
  • the baseband unit 110 acquires preset power consumption for opening a site and available power for a current site.
  • the baseband unit 110 generates station deployment configuration data 130 for a plurality of remote radio frequency units 120 based on the preset station deployment power consumption, the current site available power, and the total number, and the station deployment configuration data 130 indicates a plurality of remote radio frequency units.
  • the end radio frequency unit 120 is divided into a plurality of remote radio frequency unit sets and a plurality of site development batches associated with the multiple remote radio frequency unit sets.
  • the site development includes calibration and standing wave detection.
  • the baseband unit 110 sends a station opening message to a first remote radio unit set in a plurality of remote radio unit sets, the first remote radio unit set being associated with a first station opening batch.
  • the baseband unit 110 monitors a set of on-site power consumption of the first set of remote radio units and determines a maximum on-site power consumption in the set of on-site power consumption. For example, the baseband unit 110 may monitor in real time the open-site power consumption of each remote radio unit in the first remote radio unit set through the fronthaul link.
  • the baseband unit 110 receives a complete set of open station messages from the first set of remote radio units.
  • the baseband unit 110 determines whether the maximum start-up power consumption is greater than a preset start-up power consumption.
  • the baseband unit 110 determines at block 616 that the maximum power consumption for opening a station is less than or equal to a preset power consumption for opening a station, then it sends a start station opening message to the second remote radio frequency unit set, and the second remote radio frequency unit set and the station opening configuration
  • the second opening batch in the data is associated, and the second opening batch is located after the first opening batch (not shown).
  • the baseband unit 110 determines at block 616 that the maximum power consumption for opening the station is greater than the preset power consumption for opening the station, then at block 618 based on the maximum power consumption for opening the station, the available power of the current station, and the remote radio frequency coupled to the baseband unit 110 The total number of units, update the station configuration data 130.
  • the baseband unit 110 may determine the number of remote radio units to be deployed based on the total number of remote radio units coupled to the baseband unit 110 and the number of remote radio units in the first remote radio unit set. For example, if the total number is N, and the number of remote radio units in the first remote radio unit set is M1, then the number of remote radio units to be deployed is N-M1. It should be understood that this is the case where the first station opening batch is the first station opening batch. For the situation that the first station opening batch is not the first station opening batch, the number of remote radio frequency units to be opened may be is N—the number of deployed remote radio units.
  • the baseband unit 110 sends a station opening message to the second remote radio unit set, the second remote radio unit set is associated with the second station opening batch in the updated station opening configuration data, and the second The station opening batch is located after the first station opening batch.
  • the cost of the baseband unit can be reduced.
  • Instantaneous total power consumption of multiple connected remote radio units by monitoring the power consumption set of the first remote radio frequency unit set in real time, and updating the configuration data when the maximum power consumption in the power consumption set is greater than the preset power consumption, it is possible to avoid In the event that the instantaneous total power consumption of the remaining station opening batches exceeds the available power of the current station, tripping is avoided.
  • the baseband unit 110 determines that the maximum power consumption is greater than the preset power consumption, update the preset power consumption based on the maximum power consumption. For example, the preset power consumption for opening a station is updated to the maximum power consumption for opening a station. In this way, the maximum power consumption of power consumption during power station development can be used to update the power consumption of preset power consumption, which is convenient for subsequent power consumption of power stations.
  • the baseband unit 110 may also acquire multiple maximum open station power consumptions associated with multiple remote radio frequency unit sets.
  • the maximum power consumption associated with the remote radio unit set refers to the maximum power consumption in the set of power consumption of the remote radio unit set, which may also be referred to as the peak power consumption of a power batch.
  • the baseband unit 110 may determine a first maximum open station power consumption from multiple maximum open station power consumptions. That is to determine the largest peak power consumption of a batch of opening batches among the peak power consumption of a plurality of opening batches. For example, if there are 3 site opening batches and corresponding 3 site opening batch power consumption peaks, the largest power consumption peak value of the site opening batch is determined from these 3 site opening batch power consumption peaks.
  • the baseband unit 110 may determine whether the first maximum power consumption for opening a station is less than a preset power consumption for opening a station. If the baseband unit 110 determines that the first maximum power consumption for opening a station is less than a preset power consumption for opening a station, update the preset power consumption for opening a station. The updated preset power consumption for opening a station can be used for the next batch opening of a station. If the baseband unit 110 determines that the first maximum power consumption for opening a station is greater than or equal to a preset power consumption for opening a station, it does not update the preset power consumption for opening a station.
  • the baseband unit 110 may also update the updated station deployment configuration data based on the updated preset station deployment power consumption, current site available power, and total quantity in response to determining that the station deployment of multiple remote radio units is completed. For example, the baseband unit 110 may determine that the station opening of the multiple remote radio frequency units is completed by determining that multiple station opening completion messages from the multiple remote radio frequency units 120 are received.
  • the preset power consumption for updating the maximum power consumption counted during the deployment process can be used to update the deployment configuration data again, so that the deployment The station configuration data is more accurate to the actual station opening situation, so as to avoid the situation of tripping during the next station opening process.
  • Fig. 7 shows a schematic block diagram of an example device 700 that may be used to implement embodiments of the present disclosure.
  • the baseband unit 110 as shown in FIG. 1 may be implemented by the device 700 .
  • the device 700 includes a central processing unit (CPU) 701 that can execute commands according to computer program instructions stored in a read only memory (ROM) 702 or loaded from a storage unit 708 into a random access memory (RAM) 703. computer program instructions to perform various appropriate actions and processes.
  • RAM random access memory
  • the central processing unit 701 , the read only memory 702 and the random access memory 703 are connected to each other through a bus 704 .
  • An input/output (I/O) interface 705 is also connected to the bus 704 .
  • the input/output interface 705 including: an input unit 706, such as a keyboard, mouse, microphone, etc.; an output unit 707, such as various types of displays, speakers, etc.; a storage unit 708, such as a disk, CD, etc.; and a communication unit 709, such as a network card, a modem, a wireless communication transceiver, and the like.
  • the communication unit 709 allows the device 700 to exchange information/data with other devices over a computer network such as the Internet and/or various telecommunication networks.
  • methods 200 , 300 , 500 , and 600 can be executed by the central processing unit 701 .
  • methods 200 , 300 , 500 , 600 may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as storage unit 708 .
  • part or all of the computer program may be loaded and/or installed on the device 700 via the read-only memory 702 and/or the communication unit 709 .
  • the computer program is loaded into the random access memory 703 and executed by the central processing unit 701, one or more actions of the methods 200, 300, 500, 600 described above may be performed.
  • a computer program product may include computer readable program instructions for carrying out various aspects of the present disclosure.
  • a computer readable storage medium may be a tangible device that can retain and store instructions for use by an instruction execution device.
  • a computer readable storage medium may be, for example, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or flash memory), static random access memory (SRAM), compact disc read only memory (CD-ROM), digital versatile disc (DVD), memory stick, floppy disk, mechanically encoded device, such as a printer with instructions stored thereon A hole card or a raised structure in a groove, and any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory static random access memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • memory stick floppy disk
  • mechanically encoded device such as a printer with instructions stored thereon
  • a hole card or a raised structure in a groove and any suitable combination of the above.
  • computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., pulses of light through fiber optic cables), or transmitted electrical signals.
  • Computer readable program instructions described herein may be downloaded from a computer readable storage medium to a respective computing/processing device, or downloaded to an external computer or external storage device over a network, such as the Internet, local area network, wide area network, and/or wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or a network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • Computer program instructions for performing the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or Source or object code written in any combination, including object-oriented programming languages—such as Smalltalk, C++, etc., and conventional procedural programming languages—such as the “C” language or similar programming languages.
  • Computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as via the Internet using an Internet service provider). connect).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, field programmable gate array (FPGA), or programmable logic array (PLA)
  • FPGA field programmable gate array
  • PDA programmable logic array
  • These computer readable program instructions may be provided to a processing unit of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine such that when executed by the processing unit of the computer or other programmable data processing apparatus , producing an apparatus for realizing the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • These computer-readable program instructions can also be stored in a computer-readable storage medium, and these instructions cause computers, programmable data processing devices and/or other devices to work in a specific way, so that the computer-readable medium storing instructions includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks in flowcharts and/or block diagrams.
  • each block in a flowchart or block diagram may represent a module, a portion of a program segment, or an instruction that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例涉及用于远端单元开站的方法、基带单元、通信系统和介质,涉及通信领域。根据该方法,响应于接收到来自多个远端射频单元的多个就绪消息,获取开站配置数据,开站配置数据指示多个远端射频单元被划分成的多个远端射频单元集以及相关联的多个开站批次,开站包括校准和驻波检测;向第一远端射频单元集发送启动开站消息,第一远端射频单元集与第一开站批次相关联;以及响应于接收到来自第一远端射频单元集的完成开站消息集,向第二远端射频单元集发送启动开站消息,第二远端射频单元集与第二开站批次相关联,第二开站批次位于第一开站批次之后。由此,能够降低基带单元所耦接的多个远端射频单元的开站瞬时总功耗。

Description

用于远端单元开站的方法、基带单元、通信系统和介质 技术领域
本公开的实施例总体涉及通信领域,具体涉及用于多个远端射频单元的开站的方法、基带单元、通信系统和计算机存储介质。
背景技术
当前无线通信系统站点通常包括基带单元(Baseband Unit,BBU)和多个远端射频单元(Remote Radio Unit,RRU)。基带单元用于对通信数据进行编码、调制等处理,以生成待发射信号,以及将待发射信号传输给远端射频单元。远端射频单元用于将待发射信号经由天线进行发射。整个站点的最大功耗可达数千瓦。基带单元的功耗通常比较稳定,但是远端射频单元的功耗通常随着业务变化而变化,高业务负载时功耗高,低业务负载时功耗低。
在站点上电启动后,远端射频单元需要进行校准和驻波检测(也称为开站)。在这一过程中,需要以较高的发射功率发射测试信号。此时,如果所有远端射频单元同时发射测试信号会导致站点功耗达到或接近整站最大功耗水平。在部分电网负荷较重的站点或者电网不太稳定的区域,站点供电可能不能满足以上最大负荷的要求,导致供电单元跳闸或复位,此时整个站点将重启。由于多个远端射频单元的软硬件一致性,可能循环出现以下现象:站点上电启动-多个远端射频单元同时发射测试信号校准-电源过载-掉电,从而导致站点一直在重复启动,无法提供业务。
发明内容
提供了一种用于多个远端射频单元的开站的方法、基带单元、通信系统和计算机存储介质,能够降低基带单元所耦接的多个远端射频单元的开站瞬时总功耗。
根据本公开的第一方面,提供了一种用于多个远端射频单元的开站的方法。该方法包括:响应于接收到来自与基带单元相耦接的多个远端射频单元的多个就绪消息,获取用于多个远端射频单元的开站配置数据,开站配置数据指示多个远端射频单元被划分成的多个远端射频单元集以及与多个远端射频单元集相关联的多个开站批次,开站包括校准和驻波检测;向多个远端射频单元集中的第一远端射频单元集发送启动开站消息,第一远端射频单元集与第一开站批次相关联;以及响应于接收到来自第一远端射频单元集的完成开站消息集,向多个远端射频单元集中的第二远端射频单元集发送启动开站消息,第二远端射频单元集与第二开站批次相关联,第二开站批次位于第一开站批次之后。
根据本公开的第二方面,提供了一种基带单元。该基带单元包括:至少一个处理器,以及与至少一个处理器通信连接的存储器,其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行根据第一方面所述的方法。
根据本公开的第三方面,提供了一种通信系统。该通信系统包括:根据本公开的第二方面所述的基带单元;以及多个远端射频单元,与该基带单元相耦接。
在本公开的第四方面中,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现根据本公开的第一方面的方法。
根据本公开的实施例,通过将基带单元所耦接的多个远端射频单元划分为多个开站批次,并在前一批次开站完成后再启动下一批次开站,能够降低基带单元所耦接的多个远端射频单元的开站瞬时总功耗。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特 征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素。
图1是根据本公开的实施例的通信系统100的示意图。
图2是根据本公开的实施例的用于多个远端射频单元的开站的方法200的示意图。
图3是根据本公开的实施例的用于多个远端射频单元的开站的过程300的示意图。
图4是现有技术的功耗与本公开的实施例的功耗的对比400的示意图。
图5是根据本公开的实施例的用于获取用于多个远端射频单元的开站配置数据的方法500的流程图。
图6是根据本公开的实施例的用于多个远端射频单元的开站的方法600的示意图。
图7是用来实现本公开实施例的用于多个远端射频单元的开站的方法的电子设备的框图。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
如上所述,传统方案中,所有远端射频单元同时进行校准和驻波检测导致整个站点供电负荷高,在电网不稳定区域或者供电不足区域 容易导致电源跳闸。此外,多个远端射频单元的软硬件一致性较高,可能导致站点跳闸后重复进行上述启动、校准、掉电过程,无法提供业务。
为了至少部分地解决上述问题以及其他潜在问题中的一个或者多个,本公开的示例实施例提出了一种用于多个远端射频单元的开站的方案。在该方案中,基带单元响应于接收到来自与基带单元相耦接的多个远端射频单元的多个就绪消息,获取用于多个远端射频单元的开站配置数据,开站配置数据指示多个远端射频单元被划分成的多个远端射频单元集以及与多个远端射频单元集相关联的多个开站批次,开站包括校准和驻波检测。随后,基带单元向多个远端射频单元集中的第一远端射频单元集发送启动开站消息,第一远端射频单元集与第一开站批次相关联。接着,基带单元响应于接收到来自第一远端射频单元集的完成开站消息集,向多个远端射频单元集中的第二远端射频单元集发送启动开站消息,第二远端射频单元集与第二开站批次相关联,第二开站批次位于第一开站批次之后。根据本公开的实施例,通过将基带单元所耦接的多个远端射频单元划分为多个开站批次,并在前一批次开站完成后再启动下一批次开站,能够降低基带单元所耦接的多个远端射频单元的开站瞬时总功耗。
在下文中,将结合附图更详细地描述本方案的具体示例。
图1示出了根据本公开的实施例的通信系统100的示例的示意图。通信设备100可以包括基带单元110和与基带单元110相耦接的多个远端射频单元120-1至120-n(下文将远端射频单元统称为120),其中n大于等于2。
基带单元110可以存储有用于多个远端射频单元120的开站配置数据130。此外,基带单元110也可以从远端维护中心或近端维护台获取开站配置数据130。例如,开站配置数据130可以通过人工远端或近端地经由图形化或者命令行的配置接口而被配置的。
开站配置数据130可以指示多个远端射频单元120被划分成的多个远端射频单元集以及与多个远端射频单元集相关联的多个开站批次。例如,以n=9为例,开站配置数据可以指示9个远端射频单元被 划分为3个开站批次,每个开站批次3个远端射频单元。例如,开站配置数据的一个示例为:set startupBatch 1 RRU1 RRU2 RRU3;set startupBatch 2 RRU4 RRU5 RRU6;set startupBatch 3 RRU7 RRU8 RRU9,其中set startupBatch表示设置开站批次,上述配置数据设置了第1开站批次,涉及RRU1、RRU2和RRU3,第2开站批次,涉及RRU4、RRU5和RRU6,以及第3开站批次,涉及RRU7、RRU8和RRU9。开站配置数据可以保存为xml文件、数据库文件或者可解析的其他格式。
远端射频单元120在就绪后会向基带单元110发送就绪消息。就绪消息例如可以通过前传链路发送到基带单元110,例如可以通过通用公共无线电接口(Common Public Radio Interface,CPRI)协议或增强通用公共无线电接口(enhanced CPRI,eCPRI)协议。
基带单元110用于响应于接收到来自与基带单元110相耦接的多个远端射频单元120的多个就绪消息,获取用于多个远端射频单元120的开站配置数据130,开站配置数据130指示多个远端射频单元120被划分成的多个远端射频单元集以及与多个远端射频单元集相关联的多个开站批次,开站包括校准和驻波检测;向多个远端射频单元集中的第一远端射频单元集发送启动开站消息,第一远端射频单元集与第一开站批次相关联;以及响应于接收到来自第一远端射频单元集的完成开站消息集,向多个远端射频单元集中的第二远端射频单元集发送启动开站消息,第二远端射频单元集与第二开站批次相关联,第二开站批次位于第一开站批次之后。
由此,通过将基带单元所耦接的多个远端射频单元划分为多个开站批次,并在前一批次开站完成后再启动下一批次开站,能够降低基带单元所耦接的多个远端射频单元的开站瞬时总功耗。
图2示出了根据本公开的实施例的用于多个远端射频单元的开站的方法200的流程图。例如,方法200可以由如图1所示的基带单元110来执行。应当理解的是,方法200还可以包括未示出的附加框和/或可以省略所示出的框,本公开的范围在此方面不受限制。
在框202处,基带单元110接收来自与基带单元110相耦接的多 个远端射频单元120的多个就绪消息。
响应于在框202处基带单元110接收到来自与基带单元110相耦接的多个远端射频单元120的多个就绪消息,在框204处,基带单元110获取用于多个远端射频单元120的开站配置数据130,开站配置数据130指示多个远端射频单元120被划分成的多个远端射频单元集以及与多个远端射频单元集相关联的多个开站批次,开站包括校准和驻波检测。
应当理解,开站批次与远端射频单元集相关联的意思是远端射频单元集在该开站批次进行开站。多个开站批次与多个远端射频单元集相关联的意思是多个远端射频单元集分别在多个开站批次进行开站。
在框206处,基带单元110向多个远端射频单元集中的第一远端射频单元集发送启动开站消息,第一远端射频单元集与第一开站批次相关联。
第一远端射频单元集与第一开站批次相关联的意思是第一远端射频单元集在第一开站批次进行开站。
在框208处,基带单元110接收来自第一远端射频单元集的完成开站消息集。
响应于在框208处基带单元110接收到来自第一远端射频单元集的完成开站消息集,在框210处,基站单元110向多个远端射频单元集中的第二远端射频单元集发送启动开站消息,第二远端射频单元集与第二开站批次相关联,第二开站批次位于第一开站批次之后。
第二远端射频单元集与第二开站批次相关联的意思是第二远端射频单元集在第二开站批次进行开站。
上述过程可以按照多个启动批次顺序进行,直至多个启动批次的多个远端射频单元集完成开站。例如,基带单元110还可以响应于接收到来自第二远端射频单元集的完成开站消息集,向多个远端射频单元集中的第三远端射频单元集发送启动开站消息,第三远端射频单元集与第三开站批次相关联,第三开站批次位于第二开站批次之后。
由此,通过将基带单元所耦接的多个远端射频单元划分为多个开站批次,并在前一批次开站完成后再启动下一批次开站,能够降低基 带单元所耦接的多个远端射频单元的开站瞬时总功耗,从而避免所有远端射频单元同时进行校准和驻波检测导致整个站点供电负荷高,在电网不稳定区域或者供电不足区域容易导致电源跳闸的情况,以及避免由于多个远端射频单元的软硬件一致性较高可能导致站点跳闸后重复进行启动、校准、掉电过程而无法提供业务的情况。
图3示出了根据本公开的实施例的用于多个远端射频单元的开站的过程300的流程图。应当理解的是,方法300还可以包括未示出的附加框和/或可以省略所示出的框,本公开的范围在此方面不受限制。应当理解,虽然图3中示出了3个批次的远端射频单元集,但是这只是举例说明,可以具有2个批次的远端射频单元集或者多于3个批次的远端射频单元集,本公开的范围在此不受限制。
如图3所示,基带单元和3个批次的远端射频单元集在301处开始上电启动并进行软件加载和运行。
随后,各个批次的远端射频单元集在302、303、304处向基带单元发送就绪消息。
基带单元在305处向第1批次的远端射频单元集发送启动开站消息。第1批次的远端射频单元集在306处进行开站,也就是校准和驻波检测。在开站完成后,第1批次的远端射频单元集在307处向基带单元发送完成开站消息。
基带单元在308处向第2批次的远端射频单元集发送启动开站消息。第2批次的远端射频单元集在309处进行开站,也就是校准和驻波检测。在开站完成后,第2批次的远端射频单元集在310处向基带单元发送完成开站消息。
基带单元在311处向第3批次的远端射频单元集发送启动开站消息。第3批次的远端射频单元集在312处进行开站,也就是校准和驻波检测。在开站完成后,第3批次的远端射频单元集在313处向基带单元发送完成开站消息。至此,3个批次的远端射频单元集完成开站。
图4示出了现有技术的功耗与本公开的实施例的功耗的对比400的示意图。如图4的左侧所示,在现有技术中,由于基带单元相耦接的n个远端射频单元同时进行开站(也就是校准和驻波检测),整个 站点的功耗相当高。与之相对,如图4的右侧所示,根据本公开的实施例,由于基带单元相耦接的n个远端射频单元分成3个批次进行开站,整个站点的功耗得到了极大的降低。应当理解,这里的3个批次仅是举例说明,也可以采用其他批次,例如2个批次,或多于3个批次。
图5示出了根据本公开的实施例的用于获取用于多个远端射频单元的开站配置数据的方法500的流程图。例如,方法500可以由如图1所示的基带单元110来执行。应当理解的是,方法500还可以包括未示出的附加框和/或可以省略所示出的框,本公开的范围在此方面不受限制。
在框502处,基带单元110基于多个就绪消息,确定与基带单元110相耦接的远端射频单元的总数量。
在框504处,基带单元110获取预设开站功耗和当前站点可用功率。预设开站功耗例如是基于远端射频单元的历史开站功耗而生成的。当前站点可用功率例如是基于基带单元110所在站点的可用电力余额而生成的。
在框506处,基带单元110基于预设开站功耗、当前站点可用功率以及总数量,生成开站配置数据。
具体来说,基带单元110可以基于预设开站功耗和当前站点可用功率,确定用于每个开站批次的远端射频单元的最大允许数量。例如,预设开站功耗为P1,当前站点可用功率为T,则用于每个开站批次的远端射频单元的最大允许数量M1=向下取整(T/P1)。
随后,基带单元110可以基于所确定的最大允许数量和与基带单元110相耦接的远端射频单元的总数量,生成多个开站批次以及多个远端射频单元集。例如,与基带单元110相耦接的远端射频单元的总数量为N,则可以得到S1个开站批次,S1=向上取整(N/M1),将多个远端射频单元120可以按照最大允许数量M1和S1个开站批次进行划分,得到S1个远端射频单元集,其中每个远端射频单元集中的远端射频单元的数量不超过M1。
由此,能够实时根据基带单元当前耦接的远端射频单元的总数量、 预设开站功耗和当前站点可用功率,生成开站配置数据,从而使得开站配置数据及时反映基带单元的当前情况。
图6示出了根据本公开的实施例的用于多个远端射频单元的开站的方法600的流程图。例如,方法600可以由如图1所示的基带单元110来执行。应当理解的是,方法600还可以包括未示出的附加框和/或可以省略所示出的框,本公开的范围在此方面不受限制。
在框602处,基带单元110接收来自与基带单元110相耦接的多个远端射频单元120的多个就绪消息。
在框604处,基带单元110基于多个就绪消息,确定与基带单元110相耦接的远端射频单元的总数量。
在框606处,基带单元110获取预设开站功耗和当前站点可用功率。
在框608处,基带单元110基于预设开站功耗、当前站点可用功率以及总数量,生成用于多个远端射频单元120的开站配置数据130,开站配置数据130指示多个远端射频单元120被划分成的多个远端射频单元集以及与多个远端射频单元集相关联的多个开站批次,开站包括校准和驻波检测。
在框610处,基带单元110向多个远端射频单元集中的第一远端射频单元集发送启动开站消息,第一远端射频单元集与第一开站批次相关联。
在框612处,基带单元110监测第一远端射频单元集的开站功耗集并确定开站功耗集中的最大开站功耗。例如,基带单元110可以通过前传链路实时监测第一远端射频单元集中的各个远端射频单元的开站功耗。
在框614处,基带单元110接收来自第一远端射频单元集的完成开站消息集。
响应于在框6104基带单元110接收到来自第一远端射频单元集的完成开站消息集,在框616处,基带单元110确定最大开站功耗是否大于预设开站功耗。
基带单元110如果在框616处确定最大开站功耗小于或等于预设 开站功耗,则向第二远端射频单元集发送启动开站消息,第二远端射频单元集与开站配置数据中的第二开站批次相关联,第二开站批次位于第一开站批次之后(未示出)。
基带单元110如果在框616处确定最大开站功耗大于预设开站功耗,则在框618处基于最大开站功耗、当前站点可用功率以及与基带单元110相耦接的远端射频单元的总数量,更新开站配置数据130。
具体来说,基带单元110可以基于最大开站功耗和当前站点可用功率,确定用于每个剩余开站批次的远端射频单元的最大允许数量,每个剩余开站批次位于第一开站批次之后。例如,最大开站功耗为Pmax,当前站点可用功率为T,则用于每个剩余开站批次的远端射频单元的最大允许数量M2=向下取整(T/Pmax)。
随后,基带单元110可以基于与基带单元110相耦接的远端射频单元的总数量和第一远端射频单元集中的远端射频单元的数量,确定待开站的远端射频单元的数量。例如,总数量为N,第一远端射频单元集中的远端射频单元的数量为M1,则待开站的远端射频单元的数量为N-M1。应当理解,这是对于第一开站批次是首次开站批次的情况,对于第一开站批次非首次开站批次的情形而言,待开站的远端射频单元的数量可以为N-已开站远端射频单元的数量。
接着,基带单元110可以基于用于每个剩余开站批次的远端射频单元的最大允许数量和待开站的远端射频单元的数量,生成多个剩余开站批次和与多个剩余开站批次相关联的多个远端射频单元集。例如,可以得到S2个剩余开站批次,S2=向上取整(N-M1/M2),将N-M1个待开站的远端射频单元120可以按照最大允许数量M2和S2个剩余开站批次进行划分,得到S2个远端射频单元集,其中每个远端射频单元集中的远端射频单元的数量不超过M2。
在框616处,基带单元110向第二远端射频单元集发送启动开站消息,第二远端射频单元集与经更新的开站配置数据中的第二开站批次相关联,第二开站批次位于第一开站批次之后。
由此,通过将基带单元所耦接的多个远端射频单元划分为多个开站批次,并在前一批次开站完成后再启动下一批次开站,能够降低基 带单元所耦接的多个远端射频单元的开站瞬时总功耗。此外,通过实时监测第一远端射频单元集的开站功耗集,并在开站功耗集中的最大开站功耗大于预设开站功耗的情况下更新开站配置数据,能够避免剩余开站批次发生开站瞬时总功耗超过当前站点可用功率的情况下,从而避免跳闸。
在一些实施例中,基带单元110如果确定最大开站功耗大于预设开站功耗,则基于最大开站功耗,更新预设开站功耗。例如,将预设开站功耗更新为最大开站功耗。由此,能够将开站过程中统计的最大开站功耗用于更新预设开站功耗,便于后续开站使用。
在一些实施例中,基带单元110还可以获取与多个远端射频单元集相关联的多个最大开站功耗。应当理解,与远端射频单元集相关联的最大开站功耗指的是远端射频单元集的开站功耗集中的最大开站功耗,也可以称为开站批次功耗峰值。对于多个开站批次的情况,存在多个开站批次功耗峰值,例如如果存在3个开站批次,则存在对应的3个开站批次功耗峰值。
基带单元110可以从多个最大开站功耗确定最大的第一最大开站功耗。也就是确定多个开站批次功耗峰值中最大的一个开站批次功耗峰值。例如存在3个开站批次以及对应的3个开站批次功耗峰值,则从这3个开站批次功耗峰值确定最大的一个开站批次功耗峰值。
基带单元110可以确定第一最大开站功耗是否小于预设开站功耗。基带单元110如果确定第一最大开站功耗小于预设开站功耗,则更新预设开站功耗。更新的预设开站功耗可以用于下次分批次开站。基带单元110如果确定第一最大开站功耗大于或等于预设开站功耗,则不更新预设开站功耗。
由此,能够确定多个开站批次的多个远端射频单元集中的第一最大开站功耗,并且在第一最大开站功耗小于预设开站功耗的情况下,更新预设开站功耗,从而使得预设开站功耗更真实反馈实际情况,便于下次自动分批次开站更准确划分。
此外,基带单元110还可以响应于确定多个远端射频单元开站完成,基于经更新的预设开站功耗、当前站点可用功率以及总数量,更 新经更新的开站配置数据。例如,基带单元110可以通过确定接收到来自多个远端射频单元120的多个开站完成消息,来确定多个远端射频单元开站完成。
具体来说,基带单元110可以基于经更新的预设开站功耗和当前站点可用功率,确定用于每个开站批次的远端射频单元的最大允许数量。例如,经更新的预设开站功耗为P2,当前站点可用功率为T,则用于每个开站批次的远端射频单元的最大允许数量M3=向下取整(T/P2)。
随后,基带单元110可以基于所确定的最大允许数量和与基带单元110相耦接的远端射频单元的总数量,生成多个开站批次以及多个远端射频单元集。例如,与基带单元110相耦接的远端射频单元的总数量为N,则可以得到S3个开站批次,S3=向上取整(N/M3),将多个远端射频单元120可以按照最大允许数量M3和S3个开站批次进行划分,得到S3个远端射频单元集,其中每个远端射频单元集中的远端射频单元的数量不超过M3。
由此,能够在多批次的远端射频单元集开站完成后,将开站过程中统计的最大开站功耗更新的预设开站功耗用于再次更新开站配置数据,使得开站配置数据更加准确地实际开站情况,从而避免在下次开站过程中导致跳闸的情况。
图7示出了可以用来实施本公开内容的实施例的示例设备700的示意性框图。例如,如图1所示的基带单元110可以由设备700来实施。如图所示,设备700包括中央处理单元(CPU)701,其可以根据存储在只读存储器(ROM)702中的计算机程序指令或者从存储单元708加载到随机存取存储器(RAM)703中的计算机程序指令,来执行各种适当的动作和处理。在随机存取存储器703中,还可存储设备700操作所需的各种程序和数据。中央处理单元701、只读存储器702以及随机存取存储器703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
设备700中的多个部件连接至输入/输出接口705,包括:输入单元706,例如键盘、鼠标、麦克风等;输出单元707,例如各种类型 的显示器、扬声器等;存储单元708,例如磁盘、光盘等;以及通信单元709,例如网卡、调制解调器、无线通信收发机等。通信单元709允许设备700通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
上文所描述的各个过程和处理,例如方法200、300、500、600,可由中央处理单元701执行。例如,在一些实施例中,方法200、300、500、600可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元708。在一些实施例中,计算机程序的部分或者全部可以经由只读存储器702和/或通信单元709而被载入和/或安装到设备700上。当计算机程序被加载到随机存取存储器703并由中央处理单元701执行时,可以执行上文描述的方法200、300、500、600的一个或多个动作。
本公开涉及方法、装置、系统、通信设备、计算机可读存储介质和/或计算机程序产品。计算机程序产品可以包括用于执行本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广 域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理单元,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理单元执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特 定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (12)

  1. 一种用于多个远端射频单元的开站的方法,包括:
    响应于接收到来自与基带单元相耦接的多个远端射频单元的多个就绪消息,获取用于所述多个远端射频单元的开站配置数据,所述开站配置数据指示所述多个远端射频单元被划分成的多个远端射频单元集以及与所述多个远端射频单元集相关联的多个开站批次,开站包括校准和驻波检测;
    向所述多个远端射频单元集中的第一远端射频单元集发送启动开站消息,所述第一远端射频单元集与第一开站批次相关联;以及
    响应于接收到来自所述第一远端射频单元集的完成开站消息集,向所述多个远端射频单元集中的第二远端射频单元集发送启动开站消息,所述第二远端射频单元集与第二开站批次相关联,所述第二开站批次位于所述第一开站批次之后。
  2. 根据权利要求1所述的方法,其中获取用于所述多个远端射频单元的所述开站配置数据包括:
    基于所述多个就绪消息,确定与所述基带单元相耦接的远端射频单元的总数量;
    获取预设开站功耗和当前站点可用功率;以及
    基于所述预设开站功耗、所述当前站点可用功率以及所述总数量,生成所述开站配置数据。
  3. 根据权利要求2所述的方法,其中生成所述开站配置数据包括:
    基于所述预设开站功耗和所述当前站点可用功率,确定用于每个开站批次的远端射频单元的最大允许数量;以及
    基于所确定的最大允许数量和所述总数量,生成所述多个开站批次以及所述多个远端射频单元集。
  4. 根据权利要求2所述的方法,还包括:
    监测所述第一远端射频单元集的开站功耗集;
    确定所述开站功耗集中的最大开站功耗;
    响应于接收到来自所述第一远端射频单元集的完成开站消息集, 确定所述最大开站功耗是否大于所述预设开站功耗;
    如果确定所述最大开站功耗大于所述预设开站功耗,则基于所述最大开站功耗、所述当前站点可用功率以及所述总数量,更新所述开站配置数据;以及
    向所述第二远端射频单元集发送所述启动开站消息,所述第二远端射频单元集与经更新的开站配置数据中的第二开站批次相关联。
  5. 根据权利要求4所述的方法,其中更新所述开站配置数据包括:
    基于所述最大开站功耗和所述当前站点可用功率,确定用于每个剩余开站批次的远端射频单元的最大允许数量,所述每个剩余开站批次位于所述第一开站批次之后;
    基于所述总数量和所述第一远端射频单元集中的远端射频单元的数量,确定待开站的远端射频单元的数量;
    基于用于每个剩余开站批次的远端射频单元的最大允许数量和待开站的远端射频单元的数量,生成多个剩余开站批次和与所述多个剩余开站批次相关联的多个远端射频单元集。
  6. 根据权利要求4所述的方法,还包括:
    如果确定所述最大开站功耗大于所述预设开站功耗,则基于所述最大开站功耗,更新所述预设开站功耗。
  7. 根据权利要求4所述的方法,还包括:
    获取与所述多个远端射频单元集相关联的多个最大开站功耗;
    从所述多个最大开站功耗确定最大的第一最大开站功耗;以及
    如果确定所述第一最大开站功耗小于所述预设开站功耗,则更新所述预设开站功耗。
  8. 根据权利要求6或7所述的方法,还包括:
    响应于确定所述多个远端射频单元开站完成,基于经更新的预设开站功耗、所述当前站点可用功率以及所述总数量,更新经更新的开站配置数据。
  9. 根据权利要求1-7中任一项所述的方法,还包括:
    响应于接收到来自所述第二远端射频单元集的完成开站消息集,向所述多个远端射频单元集中的第三远端射频单元集发送启动开站 消息,所述第三远端射频单元集与第三开站批次相关联,所述第三开站批次位于所述第二开站批次之后。
  10. 一种基带单元,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-9中任一项所述的方法。
  11. 一种通信系统,包括:
    根据权利要求10所述的基带单元;以及
    多个远端射频单元,与所述基带单元相耦接。
  12. 一种存储有计算机指令的非瞬时计算机可读存储介质,其特征在于,所述计算机指令用于使所述计算机执行权利要求1-9中任一项所述的方法。
PCT/CN2022/106370 2021-12-01 2022-07-19 用于远端单元开站的方法、基带单元、通信系统和介质 WO2023098094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111456044.1 2021-12-01
CN202111456044.1A CN114040485B (zh) 2021-12-01 2021-12-01 用于远端单元开站的方法、基带单元、通信系统和介质

Publications (1)

Publication Number Publication Date
WO2023098094A1 true WO2023098094A1 (zh) 2023-06-08

Family

ID=80139692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106370 WO2023098094A1 (zh) 2021-12-01 2022-07-19 用于远端单元开站的方法、基带单元、通信系统和介质

Country Status (2)

Country Link
CN (1) CN114040485B (zh)
WO (1) WO2023098094A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040485B (zh) * 2021-12-01 2024-06-21 普罗斯通信技术(苏州)有限公司 用于远端单元开站的方法、基带单元、通信系统和介质
CN115208473B (zh) * 2022-06-30 2024-05-14 京信网络系统股份有限公司 光纤分布系统的开站方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468425A (zh) * 2013-09-13 2015-03-25 华为技术有限公司 一种远端射频单元通道校正方法、装置和系统
WO2016145801A1 (zh) * 2015-08-10 2016-09-22 中兴通讯股份有限公司 基站开通方法及设备、系统、计算机存储介质
CN106656538A (zh) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 微波通信设备开站方法及微波通信系统
CN106658481A (zh) * 2017-01-23 2017-05-10 福建三元达网络技术有限公司 一种批量基站的开站方法及系统
CN110875826A (zh) * 2018-08-31 2020-03-10 上海华为技术有限公司 一种获取开站数据的方法及装置
CN114040485A (zh) * 2021-12-01 2022-02-11 罗森伯格技术有限公司 用于远端单元开站的方法、基带单元、通信系统和介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355680B (zh) * 2011-09-27 2014-06-11 华为技术有限公司 一种基站开站的方法及装置
US10009784B1 (en) * 2016-06-01 2018-06-26 Yupana, Inc. Remote detection and analysis of passive intermodulation problems in radio base stations
CN109218106A (zh) * 2018-10-11 2019-01-15 广东超讯通信技术股份有限公司 一种小基站的开站方法
CN112584393B (zh) * 2019-09-27 2022-07-22 上海华为技术有限公司 一种基站配置方法、装置、设备及介质
CN111030760B (zh) * 2019-12-23 2022-04-22 京信网络系统股份有限公司 一种驻波检测的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468425A (zh) * 2013-09-13 2015-03-25 华为技术有限公司 一种远端射频单元通道校正方法、装置和系统
WO2016145801A1 (zh) * 2015-08-10 2016-09-22 中兴通讯股份有限公司 基站开通方法及设备、系统、计算机存储介质
CN106656538A (zh) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 微波通信设备开站方法及微波通信系统
CN106658481A (zh) * 2017-01-23 2017-05-10 福建三元达网络技术有限公司 一种批量基站的开站方法及系统
CN110875826A (zh) * 2018-08-31 2020-03-10 上海华为技术有限公司 一种获取开站数据的方法及装置
CN114040485A (zh) * 2021-12-01 2022-02-11 罗森伯格技术有限公司 用于远端单元开站的方法、基带单元、通信系统和介质

Also Published As

Publication number Publication date
CN114040485A (zh) 2022-02-11
CN114040485B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2023098094A1 (zh) 用于远端单元开站的方法、基带单元、通信系统和介质
WO2020182023A1 (zh) 储能系统的远程升级方法、能量管理系统和电池管理系统
CN107800565B (zh) 巡检方法、装置、系统、计算机设备和存储介质
CN113742031B (zh) 节点状态信息获取方法、装置、电子设备及可读存储介质
EP1978767A2 (en) Configuration and management of wireless network devices
CN112860451A (zh) 一种基于SaaS的多租户数据处理方法和装置
US11636016B2 (en) Cloud simulation and validation system
CN103428046A (zh) 一种测试接口协议的方法及终端
CN104579840A (zh) 一种基于zabbix的网络监控系统
US11281829B2 (en) Device, system, and method for adaptive simulation
CN114448802B (zh) 网关配置方法、装置、电子设备及存储介质
CN114430366B (zh) 信息采集应用下发方法、相关装置及计算机程序产品
CN108076155B (zh) 跨机房业务调度的方法、装置、系统及服务器
CN113608970A (zh) 核心板,服务器,故障修复方法、装置以及存储介质
CN115658218B (zh) 边缘设备接入云端的方法、装置、设备以及存储介质
WO2023124109A1 (zh) 遥测数据采集方法及相关设备
CN110855003A (zh) 一种主站自适应配置召唤与比对的方法及装置
CN115437865A (zh) 一种硬盘异常掉电测试方法、装置、设备及介质
CN114070884A (zh) 一种远程管理方法、远程管理设备、模块及可读存储介质
WO2022068564A1 (zh) 设备异常监测方法及设备
CN113419880A (zh) 云手机根权限获取方法、相关装置及计算机程序产品
CN104200305A (zh) 一种配电终端的工艺自动控制生产方法
US20230067756A1 (en) Using machine learning for security anomaly detection and user experience inference
CN109542489A (zh) 升级方法、装置及服务器
LU505330B1 (en) Low power consumption control method for switching equipment based on business sensing and same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899914

Country of ref document: EP

Kind code of ref document: A1