WO2023097912A1 - 定子结构、电机和电器设备 - Google Patents
定子结构、电机和电器设备 Download PDFInfo
- Publication number
- WO2023097912A1 WO2023097912A1 PCT/CN2022/078864 CN2022078864W WO2023097912A1 WO 2023097912 A1 WO2023097912 A1 WO 2023097912A1 CN 2022078864 W CN2022078864 W CN 2022078864W WO 2023097912 A1 WO2023097912 A1 WO 2023097912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- slot
- teeth
- stator teeth
- tooth
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 93
- 239000012212 insulator Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/52—Fastening salient pole windings or connections thereto
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/18—Windings for salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/12—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/325—Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/34—Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
Definitions
- the present application relates to the technical field of motors, in particular to a stator structure, a motor and an electrical device.
- the stator winding of the motor can be wound with flat wire
- the common flat wire wound motor mostly adopts distributed winding and parallel slot structure, which needs to be equipped with more complicated winding equipment, while the centralized winding is beneficial to automatic Winding, however, has a relatively low full slot rate. Therefore, how to increase the full slot rate while facilitating winding has become a technical problem to be solved urgently.
- This application aims to solve at least one of the technical problems existing in the prior art.
- the first aspect of the present application proposes a stator structure.
- a second aspect of the present application proposes an electric machine.
- the third aspect of the present application proposes an electrical device.
- the present application proposes a stator structure, including: a stator core, the stator core includes a stator yoke and a plurality of stator teeth, and the plurality of stator teeth are arranged on the stator yoke, correspondingly Stator slots are formed between adjacent stator teeth.
- the stator teeth include: a tooth body and a tooth shoe.
- the flat wire is wound on the stator teeth in multiple layers, and the number of flat wires on the layer of winding away from the stator teeth is not more than the number of flat wires on the layer of winding close to the stator teeth, wherein the tooth body is close to the tooth shoe
- the width of one side is 2 ⁇ t1
- the width of the side of the tooth body close to the stator yoke is 2 ⁇ t2, 1.5 ⁇ t1 ⁇ t2 ⁇ t1.
- the stator structure proposed by this application includes a stator core and a winding, wherein the stator core includes a stator yoke and a plurality of stator teeth arranged on the stator yoke, stator slots are formed between adjacent stator teeth, and the winding includes a flat wire , the flat wire is wound on the stator teeth to form a winding, and the flat wire adopts the form of concentrated winding, which makes the flat wire on the same stator tooth more regular, which is conducive to improving the slot fill rate, and the flat wire has a multi-layer structure Winding on the stator teeth, wherein, the number of flat wires on the layer of winding away from the stator teeth is not more than the number of flat wires on the layer of winding close to the stator teeth, and then the end of the winding away from the stator teeth is in the radial direction of the stator core The length of the winding is less than the length of the end of the winding close to the stator tooth in the radial direction of the stat
- stator teeth include: a tooth body arranged on the stator yoke; and a tooth shoe arranged on the tooth body. That is, the stator tooth includes a tooth body and a tooth shoe arranged at the end of the tooth body, and then a winding can be arranged on the tooth body, and the whole body tooth shoe improves the air gap of the motor.
- the width of the side of the tooth body close to the tooth shoe is 2 ⁇ t1
- the width of the side of the tooth body close to the stator yoke is 2 ⁇ t2
- the width of the side of the tooth body close to the tooth shoe is 2 ⁇ t1
- the width of the side of the tooth body close to the stator yoke is 2 ⁇ t2
- 1.5 times the half of the width t1 of the side of the tooth body close to the tooth shoe, half of the width t2 of the tooth body close to the stator yoke, half of the width t2 of the tooth body close to the stator yoke is greater than or equal to half t1 of the width of the tooth body close to the tooth shoe
- the two The angle between the side and side walls is moderate, which is more conducive to increasing the cross-sectional area of the stator slot and utilizing more flat wires.
- the centralized winding method is adopted to facilitate the automatic winding of the flat wire, and the full slot rate of the flat wire is improved by idling the size of the stator teeth, thereby taking into account both economic cost and motor performance.
- stator structure in the above technical solution provided by this application, it may also have the following additional technical features:
- the side of the stator yoke facing the stator teeth, and the part between adjacent stator teeth is the bottom wall of the stator slot
- the side of the stator tooth facing the stator slot is the bottom wall of the stator slot.
- the side wall wherein, the length of the section of the flat line is x, the width is y, the straight-line distance between the ends of the two side walls facing the bottom wall is n, and the straight-line distance between the ends of the two side walls away from the bottom wall is m, along the radial direction of the stator core, the distance between the two ends of the side wall is h, where 0.25 ⁇ h ⁇ m ⁇ x ⁇ y ⁇ 6 ⁇ h ⁇ n.
- the stator slot is surrounded by the stator yoke and two adjacent stator teeth, that is, the part of the stator yoke between the two adjacent stator teeth is the The bottom wall of the stator slot between them, the stator slot is surrounded by the stator yoke and two adjacent stator teeth, that is, the part of the stator yoke between the two adjacent stator teeth is the two adjacent stator teeth.
- the bottom wall of the stator slot between the stator teeth wherein the side wall of one stator tooth is the side wall of one side of the stator slot, and the side wall of the other stator tooth is the side wall of the other side of the stator slot, and,
- the length of the cross-section of the flat wire is x, the width of the cross-section of the flat wire is y, the straight-line distance between the ends of the two side walls facing the bottom wall is n, and the straight-line distance between the ends of the two side walls facing away from the bottom wall is m, and, along the radial direction
- the adjacent flat wires are attached to each other, so that the distance between the flat wires is zero, the number of flat wires that can be accommodated in the stator slot is increased, and the full capacity of the stator core is increased. slot rate.
- stator teeth are trapezoidal stator teeth or parallel stator teeth.
- stator teeth may adopt trapezoidal stator teeth or parallel stator teeth.
- the bottom wall is a plane, an arc, a combination of multiple planes, a combination of multiple arcs, or a combination of multiple arcs and planes.
- the slot bottom of the stator teeth may be a planar structure, an arcuate structure, a combination of multiple planes, a combination of multiple arcuate surfaces, or a combination of multiple planes and arcuate surfaces.
- the bottom wall is a plane, and the angle between the bottom wall and the side wall ⁇ 2- ⁇ Z1, where Z1 is the number of stator teeth.
- the angle between the bottom wall and the side wall ⁇ 2- ⁇ Z1 so that a larger angle is formed between the bottom wall and the side wall of the stator slot, thereby improving the section of the stator slot area, increase the number of flat wires that can be accommodated in the stator slot, and improve the efficiency of the motor.
- the bottom wall is an arc surface
- the angle between the side wall and the tangent passing through the intersection of the bottom wall and the side wall is ⁇ 2- ⁇ Z1, wherein Z1 is Number of stator teeth.
- the included angle ⁇ 2- ⁇ Z1 between the side wall and the tangent line passing through the bottom wall makes a relatively large angle between the bottom wall and the side wall of the stator slot, thereby lifting the stator
- the cross-sectional area of the slot increases the number of flat wires that can be accommodated in the stator slot and improves the efficiency of the motor.
- windings on two stator teeth need to be accommodated in one stator slot, and the number of flat wires of different windings in the same stator slot is the same, so that different windings can equally divide a stator slot, so that each The number of flat wires in the windings is the same, so that the magnetic field formed by the stator structure is more uniform, and the number of flat wires in each winding can be maximized.
- an insulating member is provided between the stator core and the winding.
- an insulator is arranged between the stator core and the winding, so that the current is concentrated in the winding, reducing the current absorbed by the iron core and affecting the magnetic field environment.
- the flat wire includes: a wire; and an insulating layer disposed outside the wire.
- the flat wire includes a guide and an insulating layer arranged outside the wire.
- the insulating layer enables the flat wire to conduct electricity only in the direction of winding, which is beneficial to realize electromagnetic induction and increase the strength of the magnetic field.
- the present application proposes a motor, comprising: a rotor structure; and a stator structure as provided in any one of the above technical solutions.
- the motor proposed in this application includes the stator structure proposed by any one of the above technical solutions, therefore, it has all the beneficial effects of the stator structure proposed by any one of the above technical solutions, and will not be stated here one by one.
- the present application provides an electrical device, including: the motor provided in any one of the above technical solutions.
- the electrical equipment proposed in this application includes the motor proposed by any of the above technical solutions, and therefore has all the beneficial effects of the motor proposed by any of the above technical solutions, and will not be stated one by one here.
- FIG. 1 shows a schematic structural view of a stator structure provided by an embodiment of the present application
- Fig. 2 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application
- Fig. 3 shows a structural schematic diagram of a section of a flat wire of a stator structure provided by an embodiment of the present application
- Fig. 4 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application
- Fig. 5 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application
- Fig. 6 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application
- Fig. 7 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application.
- Fig. 8 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application.
- Fig. 9 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application.
- Fig. 10 shows a partial structural schematic diagram of a stator structure provided by an embodiment of the present application.
- Fig. 11 shows a comparison chart of the slot fill ratio, efficiency and copper loss of the stator structure provided by some embodiments of the present application applied to the motor and the motor in the related technology.
- stator structure 110 stator core, 112 stator yoke, 114 stator tooth, 116 tooth body, 118 tooth shoe, 120 stator slot, 122 bottom wall, 124 first side wall, 126 second side wall, 130 winding, 132 flat Line, 134 wires, 136 insulation layers, 140 insulation pieces.
- a stator structure 100 , a motor and electrical equipment provided according to some embodiments of the present application are described below with reference to FIGS. 1 to 11 .
- the present application provides a stator structure 100, comprising: a stator core 110 is wound around the stator The winding 130 of the iron core 110, wherein the winding 130 adopts a concentrated winding winding method, the stator core 110 includes a stator slot 120 and a plurality of stator teeth 114, the stator yoke 112 is annular, and the plurality of stator teeth 114 are spaced apart is arranged on the inner ring of the stator yoke 112, and the stator slot 120 is formed between the adjacent stator teeth 114, the winding 130 is wound on the stator tooth 114, and partly located in the stator slot 120, wherein the winding 130 adopts a flat wire 132, each stator tooth 114 is wound with a multi-layer flat wire 132, and the multi-layer flat wire 132 is set outward from the stator tooth
- the stator structure 100 provided in the present application includes a stator core 110 and a winding 130, wherein the stator core 110 includes a stator yoke 112 and a plurality of stator teeth 114 arranged on the stator yoke 112, and a stator tooth 114 is formed between adjacent stator teeth 114.
- the stator slot 120, and the winding 130 includes a flat wire 132, the flat wire 132 is wound on the stator tooth 114 to form the winding 130, and the flat wire 132 adopts the form of concentrated winding, so that the flat wire 132 on the same stator tooth 114 It is more regular, which is conducive to improving the slot fill rate, and the flat wire 132 is wound on the stator tooth 114 in a multi-layer structure, wherein the number of flat wires 132 on the layer of the winding 130 away from the stator tooth 114 is no more than that of the winding 130 close to The number of flat wires 132 in one layer of the stator teeth 114, and the length of the end of the winding 130 away from the stator teeth 114 in the radial direction of the stator core 110 is smaller than the length of the end of the winding 130 close to the stator teeth 114 in the radial direction of the stator core 110 , and furthermore, the winding 130 on a stator tooth 114 in a stator slot
- the flat wire 132 is a wire with a rectangular cross-section, and specifically, the dimensions of the cross-sections of the flat wire 132 are consistent.
- the stator tooth 114 includes: a tooth body 116 and a tooth shoe 118 , one end of the tooth body 116 is connected to the stator yoke 112 , and the other end is connected to the tooth shoe 118 .
- the stator tooth 114 includes a tooth body 116 and a tooth shoe 118 disposed at the end of the tooth body 116 , and further a winding 130 can be provided on the tooth body 116 , and the whole tooth shoe 118 improves the air gap of the motor.
- the width of the side of the tooth body 116 close to the tooth shoe 118 is 2 ⁇ t1
- the width of the side of the tooth body 116 close to the stator yoke 112 is 2 ⁇ t2, 1.5 ⁇ t1 ⁇ t2 ⁇ t1.
- the width of the side of the tooth body 116 close to the tooth shoe 118 is 2 ⁇ t1
- the width of the side of the tooth body 116 close to the stator yoke 112 is 2 ⁇ t2
- Half of the width t1 of the side of the tooth body 116 is greater than or equal to half the width t2 of the side of the tooth body 116 close to the stator yoke 112
- the half t2 of the width of the side of the tooth body 116 close to the stator yoke 112 is greater than or equal to half of the width t2 of the tooth body 116 close to the tooth shoe Half the width t1 of one side of 118
- the angle between the two side walls of the stator slot 120 is moderate, which is more conducive to increasing the cross-sectional area of the stator slot 120 and utilizing more flat wires 132 to accommodate.
- a stator slot 120 is surrounded by part of the stator yoke 112 and two adjacent stator teeth 114, as shown in Figure 2 and Figure 10, a complete stator slot 120, part of the stator Yoke 112, and each half of the two stator teeth 114 adjacent to both sides of the stator slot 120, therefore, t2 of the stator teeth 114 in Fig. 2 and Fig. 10 is half of the tooth body 116 near the side of the stator yoke 112 t1 is half the width of the side of the tooth body 116 close to the tooth shoe 118 .
- the stator slot 120 Furthermore, based on 1.5 ⁇ t1 ⁇ t2 ⁇ t1, it is possible to ensure that the ⁇ angle is within a certain range, so as to prevent the capacity of the stator slot 120 from being too low, and, in the radial direction of the stator core 110, the stator slot 120 also has a certain length , so that more flat wires 132 can be accommodated.
- stator yoke 112 faces the side of the stator teeth 114, and the part between the adjacent stator teeth 114 is the stator slot 120.
- one side of the stator teeth 114 facing the stator slot 120 is the first side wall 124 of the stator slot 120, and the other side of the stator teeth 114 facing the stator slot 120 is the second side wall of the stator slot 120 126
- the length of the section of the flat wire 132 is x
- the width is y
- the linear distance between the ends of the two side walls facing the bottom wall 122 is n
- the linear distance between the ends of the two side walls away from the bottom wall 122 is m
- the distance between the two ends of the side wall is h, wherein, 0.25 ⁇ h ⁇ m ⁇ x ⁇ y ⁇ 6 ⁇ h ⁇ n.
- stator slot 120 is surrounded by the stator yoke 112 and two adjacent stator teeth 114, that is, the part of the stator yoke 112 between the two adjacent stator teeth 114 is the two adjacent stator teeth 114.
- the bottom wall 122 of the stator slot 120 between adjacent stator teeth 114, wherein the side wall of one stator tooth 114 is the first side wall 124 of the stator slot 120, and the side wall of the other stator tooth 114 is the stator slot 120 The second side wall 126.
- the length of the cross section of the flat wire 132 is x
- the width of the cross section of the flat wire 132 is y
- the linear distance between the ends of the two side walls facing the bottom wall 122 is n
- the distance between the ends of the two side walls away from the bottom wall 122 is The linear distance is m
- the distance between the two ends of the side wall is h, which satisfies 0.25 ⁇ h ⁇ m ⁇ x ⁇ y ⁇ 6 ⁇ h ⁇ n, and then the stator can be
- the cross-section of the slot 120 is regarded as a trapezoid, and then the upper bottom, lower bottom and height of the trapezoid are set, and the relationship between the length and width of the flat wire 132 is limited, so that the waste of the internal space of the stator slot 120 can be reduced as much as possible.
- the slot fill rate of the stator slot 120 is greatly improved.
- the flat wire 132 is accommodated inside the stator slot 120, and if the size of the flat wire 132 does not match the size of the stator slot 120, it may result in waste of space in the stator slot 120, thereby limiting the length of the flat wire 132 section.
- the width ratio, the ratio of the height of the stator slot 120 to the upper bottom, and the ratio of the height of the stator slot 120 to the lower bottom can make the number of layers of flat wires 132 and the number of single-layer flat wires 132 match the stator slot 120, It is avoided that there is too much space left in the stator slot 120 and the flat wire 132 cannot be placed.
- the adjacent flat wires 132 are attached to each other, so that the distance between the flat wires 132 is zero, the number of flat wires 132 that can be accommodated in the stator slot 120 is increased, and the flat wires 132 are increased.
- the full slot ratio of the stator core 110 is the full slot ratio of the stator core 110 .
- adjacent flat wires 132 are bonded together, so that more wires can be accommodated in the same layer of flat wires 132, which helps to improve the full slot rate.
- the adjacent flat wires 132 are attached to each other, so that the distance between the flat wires 132 is zero, the number of flat wires 132 that can be accommodated in the stator slot 120 is increased, and the The full slot ratio of the stator core 110 .
- the flat wires 132 of adjacent layers are bonded together, so that the winding 130 can accommodate more layers of wires, which helps to improve the full slot rate.
- the stator teeth 114 adopt trapezoidal stator teeth 114 .
- the trapezoidal stator tooth 114 means that there is a certain angle between two surfaces of the stator tooth 114 facing different stator slots 120 .
- stator teeth 114 employ parallel stator teeth 114 .
- Parallel stator teeth 114 means that two surfaces of the stator teeth 114 facing different stator slots 120 are parallel to each other.
- stator teeth 114 can affect the slot profile of the stator slots 120 .
- Embodiment 6 is a diagrammatic representation of Embodiment 6
- the stator yoke 112 faces the side of the stator tooth 114 and is located on the adjacent stator tooth 114 The part between is the bottom wall 122 of the stator slot 120, the side of the stator teeth 114 facing the stator slot 120 is the first side wall 124 of the stator slot 120, and the stator teeth 114 on the other side are facing the side of the stator slot 120
- the second side wall 126 and the bottom wall 122 of the stator slot 120 are planar structures.
- the stator slot 120 is surrounded by the stator yoke 112 and two adjacent stator teeth 114, that is, the part of the stator yoke 112 between the two adjacent stator teeth 114 is the two adjacent stator teeth 114.
- the second side wall 126 of the stator tooth 114 and thus the slot bottom of the stator tooth 114 may be a planar structure.
- the included angle between the bottom wall 122 and the second side wall 126 is equal to ⁇ .
- the large angle increases the cross-sectional area of the stator slot 120, increases the number of flat wires 132 that the stator slot 120 can accommodate, and improves the efficiency of the motor. Specifically, taking the number of stator teeth 114 as 12 as an example, ⁇ 2 ⁇ 12, and then ⁇ 5 ⁇ 12. Furthermore, the angle ⁇ is prevented from being too small, and the ability of the stator slot 120 to accommodate the flat wire 132 is improved. Likewise, the angle ⁇ between the bottom wall 122 and the second side wall 126 is equal, which has the same effect.
- Embodiment 7 is a diagrammatic representation of Embodiment 7:
- the stator yoke 112 faces the side of the stator teeth 114, and the part between the adjacent stator teeth 114 is a stator slot.
- the bottom wall 122 of 120, the stator tooth 114 on one side is the first side wall 124 of the stator slot 120 on the side facing the stator slot 120, and the stator tooth 114 on the other side is facing the second side wall of the stator slot 120 on the side of the stator slot 120.
- the side wall 126 and the bottom wall 122 are a combination of multiple planes.
- the stator slot 120 is surrounded by the stator yoke 112 and two adjacent stator teeth 114, that is, the part of the stator yoke 112 between the two adjacent stator teeth 114 is the two adjacent stator teeth 114.
- the second side wall 126 of the stator tooth 114 and the slot bottom of the stator tooth 114 may be a structure combining multiple planes.
- the bottom wall 122 of the stator slot 120 is composed of two sections of planes, and the junction of the two sections of planes is the bisector plane where the stator slot 120 is located, and then the stator slots 120 on both sides are axisymmetric with the bisector plane of the stator slot 120 as the reference .
- the included angle between the bottom wall 122 and the second side wall 126 is equal to ⁇ .
- the large angle increases the cross-sectional area of the stator slot 120, increases the number of flat wires 132 that the stator slot 120 can accommodate, and improves the efficiency of the motor. Specifically, taking the number of stator teeth 114 as 12 as an example, ⁇ 2 ⁇ 12, and then ⁇ 5 ⁇ 12. Furthermore, the angle ⁇ is prevented from being too small, and the ability of the stator slot 120 to accommodate the flat wire 132 is improved. Likewise, the angle ⁇ between the bottom wall 122 and the second side wall 126 is equal, which has the same effect.
- Embodiment 8 is a diagrammatic representation of Embodiment 8
- the stator yoke 112 faces the side of the stator teeth 114 , and the part between the adjacent stator teeth 114 is a stator slot.
- the bottom wall 122 of 120, the stator tooth 114 on one side is the first side wall 124 of the stator slot 120 on the side facing the stator slot 120, and the stator tooth 114 on the other side is facing the second side wall of the stator slot 120 on the side of the stator slot 120.
- the side wall 126 and the bottom wall 122 are arc-shaped structures.
- the stator slot 120 is surrounded by the stator yoke 112 and two adjacent stator teeth 114, that is, the part of the stator yoke 112 between the two adjacent stator teeth 114 is the two adjacent stator teeth 114.
- the second side wall 126 of the stator tooth 114 and the slot bottom of the stator teeth 114 may be arc-shaped.
- the angle between the tangent b passing through the junction of the bottom wall 122 and the second side wall 126 and the second side wall 126 is equal to ⁇ .
- the angle ⁇ is prevented from being too small, and the ability of the stator slot 120 to accommodate the flat wire 132 is improved.
- the angle ⁇ between the bottom wall 122 and the second side wall 126 is equal, which has the same effect.
- Embodiment 9 is a diagrammatic representation of Embodiment 9:
- the stator yoke 112 faces the side of the stator teeth 114, and the part between the adjacent stator teeth 114 is the bottom wall 122 of the stator slot 120, One side of the stator teeth 114 facing the stator slot 120 is the first side wall 124 of the stator slot 120, the other side of the stator teeth 114 is facing the second side wall 126 of the stator slot 120 on the side of the stator slot 120, and the bottom wall 122 is a combination structure of multiple arc surfaces.
- the stator slot 120 is surrounded by the stator yoke 112 and two adjacent stator teeth 114, that is, the part of the stator yoke 112 between the two adjacent stator teeth 114 is the two adjacent stator teeth 114.
- the second side wall 126 of the stator tooth 114 and the bottom of the slot of the stator tooth 114 may be a combination of multiple arc surfaces.
- the bottom wall 122 of the stator slot 120 is composed of two sections of arc surfaces, and the junction of the two sections of arc surfaces is the bisector plane on which the stator slot 120 is located, and then the stator slots 120 on both sides are formed based on the bisector plane of the stator slot 120. Axisymmetric.
- the included angle between the tangent line b passing through the junction of the bottom wall 122 and the second side wall 126 and the second side wall 126 is equal to ⁇ .
- the angle ⁇ is prevented from being too small, and the ability of the stator slot 120 to accommodate the flat wire 132 is improved.
- the angle ⁇ between the bottom wall 122 and the second side wall 126 is equal, which has the same effect.
- the stator yoke 112 faces the side of the stator teeth 114, and the part between the adjacent stator teeth 114 is the bottom wall 122 of the stator slot 120, One side of the stator teeth 114 facing the stator slot 120 is the first side wall 124 of the stator slot 120, the other side of the stator teeth 114 is facing the second side wall 126 of the stator slot 120 on the side of the stator slot 120, and the bottom wall 122 is a combination of multiple planes and curved surfaces.
- the stator slot 120 is surrounded by the stator yoke 112 and two adjacent stator teeth 114, that is, the part of the stator yoke 112 between the two adjacent stator teeth 114 is the two adjacent stator teeth 114.
- the second side wall 126 of the stator tooth 114 and the slot bottom of the stator tooth 114 may be a combination of multiple planes and arc surfaces.
- the bottom wall 122 connected to the first side wall 124 is a planar structure, it is applicable to the angle ⁇ 2- ⁇ Z1 between the bottom wall 122 and the first side wall 124, wherein, Z1 is the number of stator teeth 114 .
- the bottom wall 122 connected to the second side wall 126 is also a planar structure, and the angle between the bottom wall 122 and the second side wall 126 is equal to ⁇ .
- the bottom wall 122 connected to the first side wall 124 is an arc surface structure, it is suitable for the angle ⁇ between the tangent b at the junction of the bottom wall 122 and the first side wall 124 and the first side wall 124 ⁇ 2 ⁇ Z1, where Z1 is the number of stator teeth 114 .
- the bottom wall 122 connected to the second side wall 126 is also an arc structure, and the angle and ⁇ between the tangent line b at the junction of the bottom wall 122 and the second side wall 126 and the second side wall 126 equal.
- the number of flat wires 132 of different windings 130 in the same stator slot 120 is the same.
- one stator slot 120 needs to accommodate the windings 130 on two stator teeth 114, and then the number of flat wires 132 of different windings 130 in the same stator slot 120 is the same, so that different windings 130 can equally divide one
- the stator slots 120 make the number of flat wires 132 in each winding 130 the same, so that the magnetic field formed by the stator structure 100 is more uniform, and the number of flat wires 132 in each winding 130 can be maximized.
- each stator tooth 114 has the same structure.
- an insulating member 140 is provided between the stator core 110 and the winding 130 .
- an insulator 140 is provided between the stator core 110 and the winding 130 , so that the current is concentrated in the winding 130 , reducing the current absorbed by the iron core and affecting the magnetic field environment.
- the thickness of the insulating member 140 is usually relatively thin, so in practical applications, the insulating member 140 may not be considered.
- the thickness of the insulator 140 can also be considered, so that the parameters of the stator slot 120 are set slightly larger.
- the flat wire 132 includes a wire 134 and an insulating layer 136 , and the insulating layer 136 is disposed outside the wire 134 .
- the flat wire 132 includes an insulating layer 136 guided and arranged outside the wire 134.
- the insulating layer 136 enables the flat wire 132 to conduct electricity only in the direction of winding, thereby facilitating the realization of electromagnetic induction and increasing the strength of the magnetic field.
- the insulation layer 136 has a uniform thickness around the wire 134 , and its thickness is L.
- the wire 134 can be a copper wire or an aluminum wire.
- t1 t2 in the stator teeth 114 .
- Three layers of flat wires 132 are arranged in the axial direction of the stator teeth 114, and each layer includes q flat wires 132 (q ⁇ 1).
- Adjacent windings 130 are attached radially, and the number of flat wires 132 of the winding 130 on the side away from the stator teeth 114 of the circumferential winding 130 is not higher than the number of flat wires 132 on the side of the circumferential winding 130 near the stator teeth 114 .
- the cross-sectional length of the flat wire 132 is x, and the cross-sectional width is y.
- the slot full rate of its actual wire 134 can reach 64.77%.
- the winding 130 is a concentrated winding 130
- the slot shape of the stator slot 120 is equivalent to a trapezoid
- the related technology uses round wires, and when the concentrated winding 130 round wires are used, in addition to the fact that the stator slot 120 cannot be completely covered, there are still gaps between the round wires and the round wires. gap, so the slot full rate of the actual copper conductor is not high, only 46.70%, the copper loss is close to 18W, and the efficiency is 91.91%.
- the slot full rate reaches 49.10%, the copper loss is slightly higher than 16W, and the efficiency is 92.20%.
- the slot full rate of the motor increases and the copper loss decreases, so that the motor efficiency increases by 0.3%.
- the winding 130 has three layers of flat wires 132 , the number of flat wires 132 from the layer close to the stator teeth 114 to the number of flat wires 132 on the layer away from the stator teeth 114 are 7, 6 and 5 in sequence.
- the related technology uses round wires, and when the concentrated winding 130 round wires are used, in addition to the fact that the stator slot 120 cannot be completely covered, there is still a gap between the round wires, so
- the slot full rate of the actual copper conductor is not high, only 46.70%, the copper loss is close to 18W, and the efficiency is 91.91%.
- the x and y dimensions of the flat wire 132 are optimized and improved, the slot full rate reaches 68.90%, the copper is lower than 12W, the efficiency is 93.90%, the motor slot full rate increases, and the copper loss further decreases. Makes the motor efficiency increase by 2%.
- the winding 130 has six layers of flat wires 132, the number of the flat wires 132 of the layer close to the stator teeth 114 to the number of the flat wires 132 of the layer far away from the stator teeth 114 are 4, 4, 4, 3 sticks, 2 sticks and 1 stick.
- the related technology uses round wires, and when the concentrated winding 130 round wires are used, in addition to the fact that the stator slot 120 cannot be completely covered, there are still gaps between the round wires and the round wires. gap, so the slot full rate of the actual copper conductor is not high, only 46.7%, the copper loss is close to 18W, and the efficiency is 91.91%.
- this embodiment adopts the structure of stator teeth 114 with unequal width, so that the number of layers of flat wire 132 is reduced to 3 layers, which is more conducive to winding, the slot fill rate reaches 69.90%, and the copper is lower than 12W , the efficiency is 93.90%, the full rate of the motor slot increases, the copper loss further decreases, and the motor efficiency increases by 2%.
- the winding 130 has three layers of flat wires 132 , the number of flat wires 132 from the layer close to the stator teeth 114 to the number of flat wires 132 on the layer away from the stator teeth 114 are 8, 8 and 2 in sequence.
- the present application provides a motor, including: a rotor structure; and the stator structure 100 provided in any one of the above-mentioned embodiments.
- the motor proposed in the present application includes the stator structure 100 provided by any of the above embodiments, therefore, it has all the beneficial effects of the stator structure 100 provided by any of the above embodiments, and will not be stated here one by one.
- the present application provides an electrical device, including: the motor provided in any one of the above embodiments.
- the electrical equipment provided by the present application includes the motor provided by any one of the above embodiments, and therefore has all the beneficial effects of the motor provided by any one of the above embodiments, and will not be stated here one by one.
- connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
一种定子结构(100)、电机和电器设备,定子结构包括:定子铁芯(110),定子铁芯包括定子轭(112)和多个定子齿(114),多个定子齿设置在定子轭上,相邻的定子齿之间形成定子槽(120),定子齿包括:齿身(116)和齿靴(118),齿身设于定子轭,齿靴设于齿身;绕组(130),设于定子齿,绕组包括集中卷绕于定子齿上的扁线(132),扁线在定子齿上卷绕多层,绕组远离定子齿的一层的扁线数量,不多于绕组靠近定子齿的一层的扁线数量,其中,齿身靠近齿靴的一侧的宽度为2×t1,齿身靠近定子轭的一侧的宽度为2×t2,1.5×t1≥t2≥t1。采用集中卷绕的形式,便于扁线的自动化绕线,以及,通过对定子齿的尺寸的设置,提升了扁线的满槽率,进而兼顾经济成本和电机性能。
Description
本申请要求于2021年12月03日提交中国专利局、申请号为“202111469930.8”、申请名称为“定子结构、电机和电器设备”的中国专利申请的优先权,以及于2021年12月03日提交中国专利局、申请号为“202123022611.0”、申请名称为“定子结构、电机和电器设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电机技术领域,具体而言涉及一种定子结构、一种电机和一种电器设备。
相关技术中,电机的定子绕组可以采用扁线绕制,而常见的扁线绕组式的电机较多采用分布绕组、平行槽结构,需要配备较为复杂的绕线设备,而集中式绕组虽然利于自动绕线,但是,其满槽率较低,因此,如何在便于绕线的情况下,提升满槽率成为亟待解决的技术问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种定子结构。
本申请的第二方面提出了一种电机。
本申请的第三方面提出了一种电器设备。
有鉴于此,根据本申请的第一方面,本申请提出了一种定子结构,包括:定子铁芯,定子铁芯包括定子轭和多个定子齿,多个定子齿设置在定子轭上,相邻的定子齿之间形成定子槽,定子齿包括:齿身和齿靴,齿身设于定子轭,齿靴设于齿身;绕组,设于定子齿,绕组包括集中卷绕于定子齿上的扁线,扁线在定子齿上卷绕多层,绕组远离定子齿的一层的扁线数量,不多于绕组靠近定子齿的一层的扁线数量,其中,齿身靠近齿靴的一侧的宽度为2×t1,齿身 靠近定子轭的一侧的宽度为2×t2,1.5×t1≥t2≥t1。
本申请提出的定子结构,包括定子铁芯和绕组,其中,定子铁芯包括定子轭和设置在定子轭上的多个定子齿,相邻的定子齿之间形成定子槽,而绕组包括扁线,扁线在定子齿上绕设形成绕组,并且,扁线采用集中卷绕的形式,进而使得同一定子齿上的扁线更加规则,利于提升槽满率,并且,扁线呈多层结构的卷绕在定子齿上,其中,绕组远离定子齿的一层的扁线数量,不多于绕组靠近定子齿的一层的扁线数量,进而绕组远离定子齿的一端在定子铁芯径向上的长度,要小于绕组靠近定子齿的一端在定子铁芯径向上的长度,进而一个定子槽内的一个定子齿上的绕组形成一个类似于三角形的结构,进而可以降低两个不同定子齿上绕组相交的几率,同等情况下,一个定子槽内可能容纳更多的扁线,从而提升定子铁芯的满槽率,提升电机的效率。
并且,定子齿包括:齿身,设于定子轭;齿靴,设于齿身。即定子齿包括齿身和设置在齿身末端的齿靴,进而可以在齿身上设置绕组,通体齿靴改善电机的气隙。
进一步地,齿身靠近齿靴的一侧的宽度为2×t1,齿身靠近定子轭的一侧的宽度为2×t2,1.5×t1≥t2≥t1。
也就是,齿身靠近齿靴的一侧的宽度为2×t1,齿身靠近定子轭的一侧的宽度为2×t2,1.5倍的齿身靠近齿靴的一侧的宽度的一半t1,大于等于齿身靠近定子轭的一侧的宽度的一半t2,齿身靠近定子轭的一侧的宽度的一半t2大于等于齿身靠近齿靴的一侧的宽度的一半t1,进而定子槽的两侧侧壁之间的夹角适中,更利于增大定子槽的截面面积,利用容纳更得多的扁线。
并且,采用集中卷绕的形式,便于扁线的自动化绕线,以及,通过对定子齿的尺寸的闲置,提升了扁线的满槽率,进而兼顾经济成本和电机性能。
另外,根据本申请提供的上述技术方案中的定子结构,还可以具有如下附加技术特征:
在上述技术方案的基础上,进一步地,定子轭朝向定子齿的一侧,并且,位于相邻的定子齿之间部分为定子槽的底壁,定子齿朝向定子槽的一侧为定子槽的侧壁,其中,扁线的截面的长度为x,宽度为y,两个侧壁朝向底壁的一端之间的直线距离为n,两个侧壁背离底壁的一端之间的直线距离为 m,沿定子铁芯的径向,侧壁的两端之间的距离为h,其中,0.25×h÷m<x÷y<6×h÷n。
在该技术方案中,定子槽由定子轭和两个相邻的定子齿围设而成,也就是,定子轭位于两个相邻的定子齿之间的部分为这两个相邻的定子齿之间的定子槽的底壁,定子槽由定子轭和两个相邻的定子齿围设而成,也就是,定子轭位于两个相邻的定子齿之间的部分为这两个相邻的定子齿之间的定子槽的底壁,其中一个定子齿的侧壁为这个定子槽的一侧侧壁,另一个定子齿的侧壁为这个定子槽的另一侧的侧壁,并且,扁线的截面的长度为x,扁线的截面的宽度为y,两个侧壁朝向底壁的一端之间的直线距离为n,两个侧壁背离底壁的一端之间的直线距离为m,并且,沿定子铁芯的径向,侧壁的两端之间的距离为h,满足0.25×h÷m<x÷y<6×h÷n,进而可以将定子槽的截面看作一个梯形,进而设置梯形的上底、下底和高,与扁线的长度和宽度之间的关系进行限定,可以尽可能减少定子槽内部空间的浪费,尽可能地提升定子槽的槽满率。
在上述任一技术方案的基础上,进一步地,沿定子铁芯的径向,相邻的扁线之间相贴合。
在该技术方案中,沿定子铁芯的径向,相邻的扁线之间相贴合,进而扁线之间零距离,提升定子槽内能够容纳扁线的数量,提升定子铁芯的满槽率。
在上述任一技术方案的基础上,进一步地,沿定子铁芯的周向,相邻的扁线之间相贴合。
在该技术方案中,沿定子铁芯的周向,相邻的扁线之间相贴合,进而扁线之间零距离,提升定子槽内能够容纳扁线的数量,提升定子铁芯的满槽率。
在上述任一技术方案的基础上,进一步地,定子齿为梯形定子齿或平行定子齿。
在该技术方案中,定子齿可以采用梯形定子齿或平行定子齿。
在上述任一技术方案的基础上,进一步地,底壁为平面、弧面、多个平面组合、多个弧面组合或多个弧面和平面的组合。
在该技术方案中,定子齿的槽底可以是平面的结构、弧面的结构、多 个平面相结合的结构、多个弧面相结合的结构或者是多个平面和弧面相结合的结构。
在上述任一技术方案的基础上,进一步地,底壁为平面,底壁和侧壁之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿的数量。
在该技术方案中,底壁和侧壁之间的夹角β≥π÷2-π÷Z1,进而使得定子槽的底壁和侧壁之间形成一个较大角度,从而提升定子槽的截面面积,提升定子槽能够容纳扁线的数量,提升电机的效率。
在上述任一技术方案的基础上,进一步地,底壁为弧面,侧壁和过底壁和侧壁交点的切线之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿的数量。
在该技术方案中,侧壁和过底壁的切线之间的夹角β≥π÷2-π÷Z1,进而使得定子槽的底壁和侧壁之间形成一个较大角度,从而提升定子槽的截面面积,提升定子槽能够容纳扁线的数量,提升电机的效率。
在上述任一技术方案的基础上,进一步地,同一定子槽内的不同绕组的扁线的数量相同。
在该技术方案中,一个定子槽内需要容纳两个定子齿上的绕组,进而同一定子槽内的不同绕组的扁线的数量相同,可以使得不同的绕组平分一个定子槽,进而使得每个绕组的扁线的数量都相同,从而使得定子结构形成的磁场更加的均匀,且每个绕组的扁线数量都能够最大化。
在上述任一技术方案的基础上,进一步地,定子铁芯和绕组之间设置有绝缘件。
在该技术方案中,定子铁芯和绕组之间设置绝缘件,使得电流集中于绕组,减少铁芯吸收电流而影响磁场环境。
在上述任一技术方案的基础上,进一步地,扁线包括:导线;绝缘层,设于导线的外部。
在该技术方案中,扁线包括导向和设置在导线外部的绝缘层,绝缘层使得扁线只能通过卷绕的方向导电,进而利于实现电磁感应,提升磁场强度。
根据本申请的第二方面,本申请提出了一种电机,包括:转子结构;如上述任一技术方案提出的定子结构。
本申请提出的电机,因包括如上述技术方案中任一项提出的定子结构,因此,具有如上述技术方案中任一项提出的定子结构的全部有益效果,在此不再一一陈述。
根据本申请的第三方面,本申请提出了一种电器设备,包括:如上述任一技术方案提出的电机。
本申请提出的电器设备,因包括如上述任一技术方案提出的电机,因此,具有如上述任一技术方案提出的电机的全部有益效果,在此不再一一陈述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出本申请一个实施例提供的定子结构的结构示意图;
图2示出本申请一个实施例提供的定子结构的局部的结构示意图;
图3示出本申请一个实施例提供的定子结构的扁线的截面的结构示意图;
图4示出本申请一个实施例提供的定子结构的局部的结构示意图;
图5示出本申请一个实施例提供的定子结构的局部的结构示意图;
图6示出本申请一个实施例提供的定子结构的局部的结构示意图;
图7示出本申请一个实施例提供的定子结构的局部的结构示意图;
图8示出本申请一个实施例提供的定子结构的局部的结构示意图;
图9示出本申请一个实施例提供的定子结构的局部的结构示意图;
图10示出本申请一个实施例提供的定子结构的局部的结构示意图;
图11示出本申请一些实施例提供的定子结构应用于电机和相关技术中的电机的槽满率、效率和铜损的对比图。
其中,图1至图10中附图标记与部件名称之间的对应关系为:
100定子结构,110定子铁芯,112定子轭,114定子齿,116齿身, 118齿靴,120定子槽,122底壁,124第一侧壁,126第二侧壁,130绕组,132扁线,134导线,136绝缘层,140绝缘件。
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图11来描述根据本申请一些实施例提供的定子结构100、电机和电器设备。
实施例1:
如图1、图2、图4、图5、图6、图7、图8、图9和图10所示,本申请提供了一种定子结构100,包括:定子铁芯110绕设于定子铁芯110的绕组130,其中,绕组130采用集中卷绕的绕线方式,定子铁芯110包括定子槽120和多个定子齿114,定子轭112的呈环状,多个定子齿114相间隔地设置在定子轭112的内圈,并且相邻的定子齿114之间形成定子槽120,绕组130绕设在定子齿114上,并且在部分位于定子槽120中,其中,绕组130采用扁线132,每个定子齿114上绕设有多层扁线132,多层扁线132由定子齿114向外部设置,其中,定子齿114上靠近定子齿114的一层扁线132的扁线132数量,不小于定子齿114上远离定子齿114的一层扁线132的扁线132数量。
本申请提供的定子结构100,包括定子铁芯110和绕组130,其中,定子铁芯110包括定子轭112和设置在定子轭112上的多个定子齿114,相邻的定子齿114之间形成定子槽120,而绕组130包括扁线132,扁线132在定子齿114上绕设形成绕组130,并且,扁线132采用集中卷绕的形式,进而使得同一定子齿114上的扁线132更加规则,利于提升槽满率,并且,扁线132呈多层结构的卷绕在定子齿114上,其中,绕组130远离定子齿114的一层的扁线132数量,不多于绕组130靠近定子齿114的一层的扁线132 数量,进而绕组130远离定子齿114的一端在定子铁芯110径向上的长度,要小于绕组130靠近定子齿114的一端在定子铁芯110径向上的长度,进而一个定子槽120内的一个定子齿114上的绕组130形成一个类似于三角形的结构,进而可以降低两个不同定子齿114上绕组130相交的几率,同等情况下,一个定子槽120内可能容纳更多的扁线132,从而提升定子铁芯110的满槽率,提升电机的效率。
具体地,扁线132为截面为矩形的线材,具体地,扁线132的各处截面的尺寸一致。
如图1、图2和图10所示,进一步地,定子齿114包括:齿身116和齿靴118,齿身116的一端与定子轭112相连接,另一端与齿靴118相连接。
在该实施例中,定子齿114包括齿身116和设置在齿身116末端的齿靴118,进而可以在齿身116上设置绕组130,通体齿靴118改善电机的气隙。
更进一步地,如图2和图10所示,齿身116靠近齿靴118的一侧的宽度为2×t1,齿身116靠近定子轭112的一侧的宽度为2×t2,1.5×t1≥t2≥t1。
在该实施例中,齿身116靠近齿靴118的一侧的宽度为2×t1,齿身116靠近定子轭112的一侧的宽度为2×t2,1.5倍的齿身116靠近齿靴118的一侧的宽度的一半t1,大于等于齿身116靠近定子轭112的一侧的宽度的一半t2,齿身116靠近定子轭112的一侧的宽度的一半t2大于等于齿身116靠近齿靴118的一侧的宽度的一半t1,进而定子槽120的两侧侧壁之间的夹角适中,更利于增大定子槽120的截面面积,利用容纳更得多的扁线132。
如图2和图10所示,一个定子槽120,由部分定子轭112以及相邻的两个定子齿114围设出,在图2和图10示出,一个完整的定子槽120,部分定子轭112,和与定子槽120两侧相邻的两个定子齿114的各一半,因此,在图2和图10中的定子齿114的t2是一半的齿身116靠近定子轭112的一侧的宽度,t1是一半的齿身116靠近齿靴118的一侧的宽度。
进而基于1.5×t1≥t2≥t1,可以确保β角在一定的范围内,从而避免定子槽120的容纳能力过低,并且,在定子铁芯110的径向上,定子槽120也具有一定的长度,从而可以容纳更多的扁线132。
例如:t1=5mm,则7.5mm≥t2≥5mm,t1=4mm,则6mm≥t2≥4mm,以上只是距离说明,本申请中t1和t2的取值可以是任意符合1.5×t1≥t2≥t1的数值。
并且,采用集中卷绕的形式,便于扁线132的自动化绕线,以及,通过对定子齿114的尺寸的闲置,提升了扁线132的满槽率,进而兼顾经济成本和电机性能。
实施例2:
如图5、图8和图9所示,在实施例1的基础上,进一步地,定子轭112朝向定子齿114的一侧,且位于相邻的定子齿114之间部分为定子槽120的底壁122,一侧的定子齿114朝向定子槽120的一侧为定子槽120的第一侧壁124,另一侧的定子齿114朝向定子槽120的一侧定子槽120的第二侧壁126,扁线132的截面的长度为x,宽度为y,两个侧壁朝向底壁122的一端之间的直线距离为n,两个侧壁背离底壁122的一端之间的直线距离为m,沿定子铁芯110的径向,侧壁的两端之间的距离为h,其中,0.25×h÷m<x÷y<6×h÷n。
在该实施例中,定子槽120由定子轭112和两个相邻的定子齿114围设而成,也就是,定子轭112位于两个相邻的定子齿114之间的部分为这两个相邻的定子齿114之间的定子槽120的底壁122,其中一个定子齿114的侧壁为这个定子槽120的第一侧壁124,另一个定子齿114的侧壁为这个定子槽120的第二侧壁126。
扁线132的截面的长度为x,扁线132的截面的宽度为y,两个侧壁朝向底壁122的一端之间的直线距离为n,两个侧壁背离底壁122的一端之间的直线距离为m,并且,沿定子铁芯110的径向,侧壁的两端之间的距离为h,满足0.25×h÷m<x÷y<6×h÷n,进而可以将定子槽120的截面看作一个梯形,进而设置梯形的上底、下底和高,与扁线132的长度和宽度之间的关系进行限定,可以尽可能减少定子槽120内部空间的浪费,尽可能地提升定子槽120的槽满率。
具体地,扁线132是容纳于定子槽120内部的,进而扁线132的尺寸和定子槽120的尺寸若不契合,则可能导致定子槽120内空间的浪费,进而限定扁线132截面的长宽比、定子槽120的高和上底的比,以及定子槽120的高和下底的比,进而可以使得扁线132的层数和单层扁线132的数量都和定子槽120 契合,避免剩余过多的定子槽120的空间而无法放入扁线132。
实施例3:
如图2、图4、图5、图6、图7、图8、图9和图10所示,在实施例1或实施例2的基础上,进一步地,沿定子铁芯110的径向,相邻的扁线132之间相贴合。
在该实施例中,沿定子铁芯110的径向,相邻的扁线132之间相贴合,进而扁线132之间零距离,提升定子槽120内能够容纳扁线132的数量,提升定子铁芯110的满槽率。
具体地,同一层扁线132中,相邻的扁线132相贴合,进而同一层扁线132中可以容纳更多的数量的线材,有助于提升满槽率。
实施例4:
如图2、图4、图5、图6、图7、图8、图9和图10所示,在实施例1至实施例3中任一者的基础上,进一步地,沿定子铁芯110的周向,相邻的扁线132之间相贴合。
在该实施例中,沿定子铁芯110的周向,相邻的扁线132之间相贴合,进而扁线132之间零距离,提升定子槽120内能够容纳扁线132的数量,提升定子铁芯110的满槽率。
具体地,相邻层的扁线132相贴合,进而绕组130可以容纳更多层的线材,有助于提升满槽率。
并且,同一层扁线132中,相邻的扁线132相贴合,相邻层的扁线132相贴合,从而使得定子槽120中可以容纳更多的线材,有助于提升满槽率。
实施例5:
如图2所示,在实施例1至实施例4中任一项的基础上,进一步地,定子齿114采用梯形定子齿114。梯形定子齿114是指,定子齿114朝向不同定子槽120的两个面之间具有一定的角度。
或者,定子齿114采用平行定子齿114。平行定子齿114是指,定子齿114朝向不同定子槽120的两个面之间相平行。
进而定子齿114的形状可以影响定子槽120的槽型。
实施例6:
如图5、图8和图9所示,在实施例1至实施例5中任一项的基础上,进一步地,定子轭112朝向定子齿114的一侧,且位于相邻的定子齿114之间部分为定子槽120的底壁122,一侧的定子齿114朝向定子槽120的一侧为定子槽120的第一侧壁124,另一侧的定子齿114朝向定子槽120的一侧定子槽120的第二侧壁126,底壁122为平面的结构。
在该实施例中,定子槽120由定子轭112和两个相邻的定子齿114围设而成,也就是,定子轭112位于两个相邻的定子齿114之间的部分为这两个相邻的定子齿114之间的定子槽120的底壁122,其中一个定子齿114的侧壁为这个定子槽120的第一侧壁124,另一个定子齿114的侧壁为这个定子槽120的第二侧壁126,进而定子齿114的槽底可以是平面的结构。
进一步地,底壁122和第一侧壁124之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿114的数量。同样地,底壁122和第二侧壁126之间的夹角和β相等。
在该实施例中,底壁122和第一侧壁124之间的夹角β≥π÷2-π÷Z1,进而使得定子槽120的底壁122和第一侧壁124之间形成一个较大角度,从而提升定子槽120的截面面积,提升定子槽120能够容纳扁线132的数量,提升电机的效率。具体地,以定子齿114的数量为12为例,β≥π÷2-π÷12,进而β≥5π÷12。进而避免β角度过小,提升定子槽120的容纳扁线132的能力。同样地,底壁122和第二侧壁126之间的夹角和β相等,其具有同样的效果。
实施例7:
如图6所示,在实施例1至实施例5中任一项的基础上,进一步地,定子轭112朝向定子齿114的一侧,且位于相邻的定子齿114之间部分为定子槽120的底壁122,一侧的定子齿114朝向定子槽120的一侧为定子槽120的第一侧壁124,另一侧的定子齿114朝向定子槽120的一侧定子槽120的第二侧壁126,底壁122为多个平面组合。
在该实施例中,定子槽120由定子轭112和两个相邻的定子齿114围设而成,也就是,定子轭112位于两个相邻的定子齿114之间的部分为这两个相邻的定子齿114之间的定子槽120的底壁122,其中一个定子齿114 的侧壁为这个定子槽120的第一侧壁124,另一个定子齿114的侧壁为这个定子槽120的第二侧壁126,进而定子齿114的槽底可以是多个平面组合的结构。
具体地,定子槽120的底壁122,由两段平面组成,两段平面交界为定子槽120位于的平分面上,进而两侧的定子槽120以定子槽120的平分面为基准成轴对称。
进一步地,底壁122和第一侧壁124之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿114的数量。同样地,底壁122和第二侧壁126之间的夹角和β相等。
在该实施例中,底壁122和第一侧壁124之间的夹角β≥π÷2-π÷Z1,进而使得定子槽120的底壁122和第一侧壁124之间形成一个较大角度,从而提升定子槽120的截面面积,提升定子槽120能够容纳扁线132的数量,提升电机的效率。具体地,以定子齿114的数量为12为例,β≥π÷2-π÷12,进而β≥5π÷12。进而避免β角度过小,提升定子槽120的容纳扁线132的能力。同样地,底壁122和第二侧壁126之间的夹角和β相等,其具有同样的效果。
实施例8:
如图7所示,在实施例1至实施例5中任一项的基础上,进一步地,定子轭112朝向定子齿114的一侧,且位于相邻的定子齿114之间部分为定子槽120的底壁122,一侧的定子齿114朝向定子槽120的一侧为定子槽120的第一侧壁124,另一侧的定子齿114朝向定子槽120的一侧定子槽120的第二侧壁126,底壁122为弧面的结构。
在该实施例中,定子槽120由定子轭112和两个相邻的定子齿114围设而成,也就是,定子轭112位于两个相邻的定子齿114之间的部分为这两个相邻的定子齿114之间的定子槽120的底壁122,其中一个定子齿114的侧壁为这个定子槽120的第一侧壁124,另一个定子齿114的侧壁为这个定子槽120的第二侧壁126,进而定子齿114的槽底可以是弧面的结构。
进一步地,过底壁122和第一侧壁124的交界处的切线b和第一侧壁124之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿114的数量。过底壁122和第 二侧壁126的交界处的切线b和第二侧壁126之间的夹角和β相等。
在该实施例中,第一侧壁124和过底壁122的切线b之间的夹角β≥π÷2-π÷Z1,进而使得定子槽120的底壁122和第一侧壁124之间形成一个较大角度,从而提升定子槽120的截面面积,提升定子槽120能够容纳扁线132的数量,提升电机的效率。具体地,以定子齿114的数量为12为例,β≥π÷2-π÷12,进而β≥5π÷12。进而避免β角度过小,提升定子槽120的容纳扁线132的能力。同样地,底壁122和第二侧壁126之间的夹角和β相等,其具有同样的效果。
实施例9:
在实施例1至实施例5中任一项的基础上,进一步地,定子轭112朝向定子齿114的一侧,且位于相邻的定子齿114之间部分为定子槽120的底壁122,一侧的定子齿114朝向定子槽120的一侧为定子槽120的第一侧壁124,另一侧的定子齿114朝向定子槽120的一侧定子槽120的第二侧壁126,底壁122为多个弧面组合的结构。
在该实施例中,定子槽120由定子轭112和两个相邻的定子齿114围设而成,也就是,定子轭112位于两个相邻的定子齿114之间的部分为这两个相邻的定子齿114之间的定子槽120的底壁122,其中一个定子齿114的侧壁为这个定子槽120的第一侧壁124,另一个定子齿114的侧壁为这个定子槽120的第二侧壁126,进而定子齿114的槽底可以是多个弧面组合的结构。
具体地,定子槽120的底壁122,由两段弧面组成,两段弧面交界为定子槽120位于的平分面上,进而两侧的定子槽120以定子槽120的平分面为基准成轴对称。
进一步地,过底壁122和第一侧壁124的交界处的切线b和第一侧壁124之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿114的数量。过底壁122和第二侧壁126的交界处的切线b和第二侧壁126之间的夹角和β相等。
在该实施例中,第一侧壁124和过底壁122的切线b之间的夹角β≥π÷2-π÷Z1,进而使得定子槽120的底壁122和第一侧壁124之间形成一个较大角度,从而提升定子槽120的截面面积,提升定子槽120能够容纳 扁线132的数量,提升电机的效率。具体地,以定子齿114的数量为12为例,β≥π÷2-π÷12,进而β≥5π÷12。进而避免β角度过小,提升定子槽120的容纳扁线132的能力。同样地,底壁122和第二侧壁126之间的夹角和β相等,其具有同样的效果。
实施例10:
在实施例1至实施例5中任一项的基础上,进一步地,定子轭112朝向定子齿114的一侧,且位于相邻的定子齿114之间部分为定子槽120的底壁122,一侧的定子齿114朝向定子槽120的一侧为定子槽120的第一侧壁124,另一侧的定子齿114朝向定子槽120的一侧定子槽120的第二侧壁126,底壁122为多个平面和弧面相结合的结构。
在该实施例中,定子槽120由定子轭112和两个相邻的定子齿114围设而成,也就是,定子轭112位于两个相邻的定子齿114之间的部分为这两个相邻的定子齿114之间的定子槽120的底壁122,其中一个定子齿114的侧壁为这个定子槽120的第一侧壁124,另一个定子齿114的侧壁为这个定子槽120的第二侧壁126,进而定子齿114的槽底可以是多个平面和弧面相结合的结构。
进一步地,若和第一侧壁124相连接的底壁122为平面结构,则适用于底壁122和第一侧壁124之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿114的数量。同样地,和第二侧壁126相连接的底壁122也为平面结构,底壁122和第二侧壁126之间的夹角和β相等。
若和第一侧壁124相连接的底壁122为弧面面结构,则适用于过底壁122和第一侧壁124的交界处的切线b和第一侧壁124之间的夹角β≥π÷2-π÷Z1,其中,Z1为定子齿114的数量。同样地,和第二侧壁126相连接的底壁122也为弧面结构,过底壁122和第二侧壁126的交界处的切线b和第二侧壁126之间的夹角和β相等。
实施例11:
如图2、图4和图10所示,在实施例1至实施例10中任一项的基础上,进一步地,同一定子槽120内的不同绕组130的扁线132的数量相同。
在该实施例中,一个定子槽120内需要容纳两个定子齿114上的绕组 130,进而同一定子槽120内的不同绕组130的扁线132的数量相同,可以使得不同的绕组130平分一个定子槽120,进而使得每个绕组130的扁线132的数量都相同,从而使得定子结构100形成的磁场更加的均匀,且每个绕组130的扁线132数量都能够最大化。
具体地,每个定子齿114上的绕组130结构相同。
实施例12:
如图2和图10所示,在实施例1至实施例11中任一项的基础上,进一步地,定子铁芯110和绕组130之间设置有绝缘件140。
在该实施例中,定子铁芯110和绕组130之间设置绝缘件140,使得电流集中于绕组130,减少铁芯吸收电流而影响磁场环境。
具体地,绝缘件140的厚度通常较薄,进而在实际应用中,可不考虑绝缘件140。当然,也可以考虑绝缘件140的厚度,从而在将定子槽120的参数设置略大。
实施例13:
如图3所示,在实施例1至实施例11中任一项的基础上,进一步地,扁线132包括导线134和绝缘层136,绝缘层136设置在导线134的外部。
在该实施例中,扁线132包括导向和设置在导线134外部的绝缘层136,绝缘层136使得扁线132只能通过卷绕的方向导电,进而利于实现电磁感应,提升磁场强度。
具体地,绝缘层136在导线134四周的厚度均匀,其厚度为L。其中,导线134可以铜线或铝线。
实施例14:
如图2所示,本申请一个实施例提供的定子结构100,定子齿114中的t1=t2。定子齿114的齿数Z1=12,而β=π÷2-π÷Z1=5π÷12。定子齿114的轴向设置有三层扁线132,各层各包含q个扁线132(q≥1)。相邻绕组130沿径向贴合,周向绕组130远离定子齿114侧的绕组130的扁线132数不高于周向绕组130靠近定子齿114侧的扁线132的数量。
如图3所示,其中扁线132中导体的尺寸加上绝缘层136的厚度L后,扁线132的截面长度为x,截面宽度为y。其实际导线134的槽满率可达到 64.77%。
具体地,如图4所示,绕组130为集中绕组130,定子槽120的槽型等效为梯形,Z1=12,进而β=π÷2-π÷Z1=5π÷12,梯形尺寸参数分别为m=5.01、n=11.46、h=12.03,其中齿身116、槽口和槽底具有绝缘件140,扁线132沿着绝缘件140各部分整齐排布,排布总导体数N=23。
实施例15:
如图5、图6和图7所示,本申请一个实施例提供的定子结构100,定子槽120的槽型等效为梯形,其中,β1=5π÷12=π÷2-π÷Z1,槽底为尖角梯形,β2=4π÷9>π÷2-π÷Z1,
槽底为圆底梯形时,β3=π÷2>π÷2-π÷Z1。当扁线132采用x=y=2mm,进而形成尖角梯形和圆底梯形均N=9,其大于平底梯形N=8,进而可以实现匝数的提升。
实施例16:
如图8所示,本申请一个实施例提供的定子结构100,其槽型结构和实施例16相同,即t1等于t2,槽型与绕组130匹配,β=π÷2-π÷Z1=5π÷12,导体采用x=1.6mm,y=1.03mm。
如图11所示,具体地,同等匝数N=18情况下,相关技术采用圆线,采用集中绕组130圆线时,除了定子槽120无法完全覆盖以外,圆线和圆线之间还存在间隙,因此实际铜导体的槽满率不高,仅为46.70%,铜损接近18W,效率为91.91%。本实施例采用扁线132情况下,槽满率达到49.10%,铜损略高于16W,效率为92.20%,电机槽满率上升,铜损下降,使得电机效率提升0.3%。
其中,绕组130具有三层扁线132,靠近定子齿114的一层的扁线132的数量到远离定子齿114的一层的扁线132的数量,依次为7根、6根和5根。
实施例17:
如图9所示,本申请一个实施例提供的定子结构100,其槽型结构和实施例16相同,即t1等于t2,槽型与绕组130匹配,β=π÷2-π÷Z1=5π÷12,导体采用x=2.9mm,y=0.8mm。
如图11所示,同等匝数N=18情况下,相关技术采用圆线,采用集中绕组130圆线时,除了定子槽120无法完全覆盖以外,圆线和圆线之间还存在间隙,因此实际铜导体的槽满率不高,仅为46.70%,铜损接近18W,效率为91.91%。本实施例在实施例16基础上优化改善了扁线132的x和y的尺寸,槽满率达到68.90%,铜低于12W,效率为93.90%,电机槽满率上升,铜损进一步下降,使得电机效率提升2%。
其中,绕组130具有六层扁线132,靠近定子齿114的一层的扁线132的数量到远离定子齿114的一层的扁线132的数量,依次为4根、4根、4根、3根、2根和1根。
实施例18:
如图10所示,本申请一个实施例提供的定子结构100,t1不等于t2,槽型与绕组130匹配,β=π÷2-π÷Z1=5π÷12,该实施例定子齿114采用不等宽结构,m=6.15mm、n=10.40mm、h=12.03mm,t1=2.92mm,t2=4.09mm,满足1.5×t1≥t2≥t1,槽面积与实施例16、实施例18和实施例19一致,采用x=1.49mm,y=1.53mm。
如图11所示,具体地,同等匝数N=18情况下,相关技术采用圆线,采用集中绕组130圆线时,除了定子槽120无法完全覆盖以外,圆线和圆线之间还存在间隙,因此实际铜导体的槽满率不高,仅为46.7%,铜损接近18W,效率为91.91%。本实施例在实施例17的基础上,采用定子齿114不等宽的结构,使得扁线132的层数降低为3层,更有利于绕制,槽满率达到69.90%,铜低于12W,效率为93.90%,电机槽满率上升,铜损进一步下降,使得电机效率提升2%。
其中,绕组130具有三层扁线132,靠近定子齿114的一层的扁线132的数量到远离定子齿114的一层的扁线132的数量,依次为8根、8根和2根。
实施例19:
本申请提供了一种电机,包括:转子结构;如上述任一实施例提供的定子结构100。
本申请提出的电机,因包括如上述任一实施例提供的定子结构100, 因此,具有如上述任一实施例提供的定子结构100的全部有益效果,在此不再一一陈述。
实施例20:
本申请提供了一种电器设备,包括:如上述任一实施例提供的电机。
本申请提供的电器设备,因包括如上述任一实施例提供的电机,因此,具有如上述任一实施例提供的电机的全部有益效果,在此不再一一陈述。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (13)
- 一种定子结构,其中,包括:定子铁芯,所述定子铁芯包括定子轭和多个定子齿,多个所述定子齿设置在所述定子轭上,相邻的所述定子齿之间形成定子槽,所述定子齿包括:齿身和齿靴,所述齿身设于所述定子轭,所述齿靴设于所述齿身;绕组,设于所述定子齿,所述绕组包括集中卷绕于所述定子齿上的扁线,所述扁线在所述定子齿上卷绕多层,所述绕组远离所述定子齿的一层的扁线数量,不多于所述绕组靠近所述定子齿的一层的扁线数量,其中,所述齿身靠近所述齿靴的一侧的宽度为2×t1,所述齿身靠近所述定子轭的一侧的宽度为2×t2,1.5×t1≥t2≥t1。
- 根据权利要求1所述的定子结构,其中,定子轭朝向定子齿的一侧,并且,位于相邻的所述定子齿之间部分为所述定子槽的底壁,所述定子齿朝向所述定子槽的一侧为定子槽的侧壁,其中,所述扁线的截面的长度为x,宽度为y,两个所述侧壁朝向所述底壁的一端之间的直线距离为n,两个所述侧壁背离所述底壁的一端之间的直线距离为m,沿所述定子铁芯的径向,所述侧壁的两端之间的距离为h,其中,0.25×h÷m<x÷y<6×h÷n。
- 根据权利要求1所述的定子结构,其中,沿所述定子铁芯的径向,相邻的所述扁线之间相贴合。
- 根据权利要求1所述的定子结构,其中,沿所述定子铁芯的周向,相邻的所述扁线之间相贴合。
- 根据权利要求1所述的定子结构,其中,所述定子齿为梯形定子齿或平行定子齿。
- 根据权利要求2所述的定子结构,其中,所述底壁为平面、弧面、多个平面组合、多个弧面组合或多个弧面和平面的组合。
- 根据权利要求6所述的定子结构,其中,所述底壁为平面,所述底壁和所述侧壁之间的夹角β≥π÷2-π÷Z1,其中,Z1为所述定子齿的数量。
- 根据权利要求6所述的定子结构,其中,所述底壁为弧面,所述侧壁和过所述底壁和所述侧壁交点的切线之间的夹角β≥π÷2-π÷Z1,其中,Z1为所述定子齿的数量。
- 根据权利要求1至5中任一项所述的定子结构,其中,同一所述定子槽内的不同所述绕组的扁线的数量相同。
- 根据权利要求1至5中任一项所述的定子结构,其中,所述定子铁芯和所述绕组之间设置有绝缘件。
- 根据权利要求1至5中任一项所述的定子结构,其中,所述扁线包括:导线;绝缘层,设于所述导线的外部。
- 一种电机,其中,包括:转子结构;如上述权利要求1至11中任一项所述的定子结构。
- 一种电器设备,其中,包括:如权利要求12所述的电机。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22899735.9A EP4429077A1 (en) | 2021-12-03 | 2022-03-02 | Stator structure, motor, and electrical equipment |
US18/676,856 US20240313597A1 (en) | 2021-12-03 | 2024-05-29 | Stator structure, motor, and electrical equipment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123022611.0U CN216356119U (zh) | 2021-12-03 | 2021-12-03 | 定子结构、电机和电器设备 |
CN202111469930.8 | 2021-12-03 | ||
CN202123022611.0 | 2021-12-03 | ||
CN202111469930.8A CN114094730A (zh) | 2021-12-03 | 2021-12-03 | 定子结构、电机和电器设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/676,856 Continuation US20240313597A1 (en) | 2021-12-03 | 2024-05-29 | Stator structure, motor, and electrical equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023097912A1 true WO2023097912A1 (zh) | 2023-06-08 |
Family
ID=86611466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/078864 WO2023097912A1 (zh) | 2021-12-03 | 2022-03-02 | 定子结构、电机和电器设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240313597A1 (zh) |
EP (1) | EP4429077A1 (zh) |
WO (1) | WO2023097912A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118232581A (zh) * | 2024-05-27 | 2024-06-21 | 浙江大学 | 一种高槽满率的集中扁线绕组布局结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131811A (ja) * | 2006-11-22 | 2008-06-05 | Sumitomo Electric Ind Ltd | モータ用分割コア |
CN203942340U (zh) * | 2014-06-26 | 2014-11-12 | 杨雯博 | 一种外转子电机的定子冲片 |
CN110266126A (zh) * | 2019-07-19 | 2019-09-20 | 珠海格力节能环保制冷技术研究中心有限公司 | 定子铁芯、定子、电机和空调器 |
CN110768404A (zh) * | 2018-07-27 | 2020-02-07 | 广东美芝制冷设备有限公司 | 用于电机的定子、具有其的永磁电机及压缩机 |
CN114094730A (zh) * | 2021-12-03 | 2022-02-25 | 威灵(芜湖)电机制造有限公司 | 定子结构、电机和电器设备 |
-
2022
- 2022-03-02 EP EP22899735.9A patent/EP4429077A1/en active Pending
- 2022-03-02 WO PCT/CN2022/078864 patent/WO2023097912A1/zh active Application Filing
-
2024
- 2024-05-29 US US18/676,856 patent/US20240313597A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131811A (ja) * | 2006-11-22 | 2008-06-05 | Sumitomo Electric Ind Ltd | モータ用分割コア |
CN203942340U (zh) * | 2014-06-26 | 2014-11-12 | 杨雯博 | 一种外转子电机的定子冲片 |
CN110768404A (zh) * | 2018-07-27 | 2020-02-07 | 广东美芝制冷设备有限公司 | 用于电机的定子、具有其的永磁电机及压缩机 |
CN110266126A (zh) * | 2019-07-19 | 2019-09-20 | 珠海格力节能环保制冷技术研究中心有限公司 | 定子铁芯、定子、电机和空调器 |
CN114094730A (zh) * | 2021-12-03 | 2022-02-25 | 威灵(芜湖)电机制造有限公司 | 定子结构、电机和电器设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118232581A (zh) * | 2024-05-27 | 2024-06-21 | 浙江大学 | 一种高槽满率的集中扁线绕组布局结构 |
Also Published As
Publication number | Publication date |
---|---|
US20240313597A1 (en) | 2024-09-19 |
EP4429077A1 (en) | 2024-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE48457E1 (en) | Electric wire for high frequency, high voltage and large current | |
JP2018085911A (ja) | ステータ | |
US20240313597A1 (en) | Stator structure, motor, and electrical equipment | |
JP2014171384A (ja) | 電気機械用の高熱伝導絶縁 | |
CN114094730A (zh) | 定子结构、电机和电器设备 | |
CN203386500U (zh) | 一种海上风电用双云母亚胺烧结绕组线 | |
CN114362406A (zh) | 一种基于3d打印扁线背绕式绕组的高速永磁电机定子 | |
JP2544870B2 (ja) | 直流ofケ―ブル | |
CN100576692C (zh) | 圆筒式潜油直线电机的定子绕组及其绕制方法 | |
WO2022121269A1 (zh) | 一种含绝缘结构的电机定子 | |
CN216356119U (zh) | 定子结构、电机和电器设备 | |
CN113451017A (zh) | 一种干式绝缘高压变压器高压绕组结构 | |
CN210431061U (zh) | 一种绝缘骨架及具有其的定子组件和电机 | |
CN220653054U (zh) | 定子组件及电机 | |
CN201038981Y (zh) | 圆筒式潜油直线电机的定子绕组结构 | |
CN107359761B (zh) | 单相感应电机和压缩机 | |
CN112216481A (zh) | 磁感线圈 | |
CN215496326U (zh) | 一种干式绝缘高压变压器高压绕组结构 | |
WO2023207406A1 (zh) | 电机、压缩机、制冷设备和车辆 | |
CN210349539U (zh) | 一种变压器绕组散热结构 | |
CN201725612U (zh) | 聚酯网包换位导线 | |
CN210325464U (zh) | 磁感线圈 | |
CN221746990U (zh) | 一种方形绕组线结构 | |
CN221551521U (zh) | 扁线、定子及电机 | |
CN213754119U (zh) | 定子、电机和家电设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22899735 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022899735 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022899735 Country of ref document: EP Effective date: 20240605 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |