WO2023097885A1 - 一种用于伟晶岩脉的勘探方法及系统 - Google Patents

一种用于伟晶岩脉的勘探方法及系统 Download PDF

Info

Publication number
WO2023097885A1
WO2023097885A1 PCT/CN2022/074865 CN2022074865W WO2023097885A1 WO 2023097885 A1 WO2023097885 A1 WO 2023097885A1 CN 2022074865 W CN2022074865 W CN 2022074865W WO 2023097885 A1 WO2023097885 A1 WO 2023097885A1
Authority
WO
WIPO (PCT)
Prior art keywords
pegmatite
electric field
distance
field difference
exploration
Prior art date
Application number
PCT/CN2022/074865
Other languages
English (en)
French (fr)
Inventor
周楠楠
薛国强
张顺
魏新昊
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US17/991,056 priority Critical patent/US11761944B2/en
Publication of WO2023097885A1 publication Critical patent/WO2023097885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/36Recording data

Definitions

  • the present application relates to the exploration of pegmatite-type rare metals, in particular, to an exploration method and system for pegmatite dikes.
  • Lithium beryllium and other key mineral resources are important metal raw materials for strategic emerging industries such as new energy, new materials, and information technology, as well as industries such as national defense and military industry, and are irreplaceable.
  • Metal lithium and beryllium are important metal materials for my country's "deep space exploration” and "clean energy industry”.
  • the demand for lithium and beryllium resources will develop geometrically in the next 10-15 years.
  • the dependence of lithium beryllium resources on external search is as high as more than 80%.
  • the lithium beryllium deposits currently developed in my country are mainly pegmatite type, which is the main breakthrough type for realizing self-sufficiency of rare metals such as lithium beryllium.
  • Electromagnetic prospecting is the main method to realize the prospecting of metal minerals, but the traditional electromagnetic prospecting mostly belongs to the electromagnetic induction method, which has a strong detection ability for low-resistance targets, but is relatively limited in the detection ability for high-resistance targets.
  • the electric source electromagnetic method has a certain improvement in the ability to distinguish high-resistance targets by observing the difference in the electric field, it is limited by the fact that the electromagnetic field excited by the source itself is generated in the form of a horizontal current, and the transverse electric field difference is the mainstay. Capability is still limited, and the method is not capable of resolving lateral changes in electrical structure, especially steeply sloping veinlets.
  • the application provides a method for exploration of pegmatite veins, including the following steps:
  • the resistivity change characteristics of the pegmatite dikes are obtained, and the position and lithological characteristics of the pegmatite dikes are determined according to the resistivity change characteristics.
  • the following steps are included: in the process of collecting the electric field difference between two ground electrodes, the three ground electrodes include a first spacing, a second spacing, and a third spacing;
  • the sum of the first distance and the second distance is equal to the third distance.
  • the first electric field difference of the first interval and the second electric field difference of the second interval are collected, and a multi-channel map is drawn according to the third interval.
  • Another preferred solution for drawing multi-channel maps includes the following steps:
  • the three ground electrodes include a first distance, a second distance, and a third distance
  • the sum of the first distance and the second distance is greater than the third distance.
  • the first electric field difference of the first interval and the second electric field difference of the second interval are collected, and a multi-channel map is drawn according to the first interval and the second interval.
  • the first distance and the second distance include a first angle
  • the angle range of the first included angle is 60°-160°;
  • the first electric field difference of the first interval and the second electric field difference of the second interval are collected, and a multi-channel map is drawn according to the first interval and the second interval.
  • the first distance and the second distance include a second angle
  • the second included angle is greater than 0° and less than 60°;
  • the sum of the projections of the first electric field difference and the second electric field difference on the third distance is obtained, and a multi-channel map is drawn according to the first distance and the second distance.
  • the first distance and the second distance include a third angle
  • the third included angle is greater than 160° and less than 180°;
  • the invention also discloses an exploration system for pegmatite veins, including:
  • the data acquisition module is used to set three ground electrodes at each measuring point based on the target area where the pegmatite dike is located, and collect the electric field difference between the two groups of ground electrodes;
  • the data processing module is used to draw multi-channel maps based on the setting position of the ground electrode and the electric field difference;
  • the data analysis module is used to obtain the resistivity change characteristics of pegmatite dikes according to the lateral changes of the multi-track map, and determine the position and lithological characteristics of the pegmatite dikes according to the resistivity change characteristics;
  • the display module is used to display the target area, multi-track map, the location of pegmatite dikes and lithological characteristics.
  • the data processing module is used to execute the step of drawing multi-channel maps.
  • the present invention proposes a method for exploration of pegmatite dikes, which utilizes the transient electromagnetic field difference of electrical sources to relatively high resistivity.
  • Resolution ability innovatively proposed to observe the electric field difference between adjacent measuring points, eliminate the influence of the background electrical structure, strengthen the lateral change of the electrical structure, realize the fine detection of steeply inclined pegmatite veinlets, and overcome the traditional electric field between two points Poor observation methods have poor resolution of steeply inclined high-resistance veinlets and other issues.
  • Fig. 1 is traditional electric field difference observation mode described in the present invention
  • Fig. 2 is the innovative observation mode described in the present invention.
  • Fig. 3 is the proportion of TE, TM and TEM field in the adjacent electric field difference difference of the present invention
  • Fig. 4 is the proportion of TE and TM in the traditional observation mode of the present invention.
  • Fig. 5 is the original data profile of the innovative way observation of the present invention.
  • Fig. 6 is the raw data profile of traditional mode observation of the present invention.
  • Fig. 7 is a verification sectional view of the present invention.
  • Fig. 8 is a schematic flow chart of the method of the present invention.
  • the present invention provides an exploration method for pegmatite dikes, comprising the following steps:
  • the resistivity change characteristics of the pegmatite dikes are obtained, and the position and lithological characteristics of the pegmatite dikes are determined according to the resistivity change characteristics.
  • the following steps are included: in the process of collecting the electric field difference between two groups of ground electrodes, the three ground electrodes include a first spacing, a second spacing, and a third spacing;
  • the sum of the first distance and the second distance is equal to the third distance.
  • the first electric field difference of the first interval and the second electric field difference of the second interval are collected, and a multi-channel map is drawn according to the third interval.
  • Another preferred solution for drawing multi-channel maps includes the following steps:
  • the three ground electrodes include a first spacing, a second spacing, and a third spacing
  • the sum of the first distance and the second distance is greater than the third distance.
  • the first electric field difference of the first interval and the second electric field difference of the second interval are collected, and a multi-channel map is drawn according to the first interval and the second interval.
  • the first distance and the second distance include a first angle
  • the angle range of the first included angle is 60°-160°;
  • the first electric field difference of the first interval and the second electric field difference of the second interval are collected, and a multi-channel map is drawn according to the first interval and the second interval.
  • the first distance and the second distance include a second angle
  • the second included angle is greater than 0° and less than 60°;
  • the sum of the projections of the first electric field difference and the second electric field difference on the third distance is obtained, and a multi-channel map is drawn according to the first distance and the second distance.
  • the first distance and the second distance include a third angle
  • the third included angle is greater than 160° and less than 180°;
  • the invention also discloses an exploration system for pegmatite veins, including:
  • the data acquisition module is used to set three ground electrodes based on the target area where the pegmatite dike is located, and collect the electric field difference between the two ground electrodes;
  • the data processing module is used to draw multi-channel maps based on the setting position of the ground electrode and the electric field difference;
  • the data analysis module is used to obtain the resistivity change characteristics of pegmatite dikes according to the lateral changes of the multi-track map, and determine the position and lithological characteristics of the pegmatite dikes according to the resistivity change characteristics;
  • the display module is used to display the target area, multi-track map, the location of pegmatite dikes and lithological characteristics.
  • the data processing module is used to execute the step of drawing multi-channel maps.
  • the invention also includes setting more than three grounding electrodes, each grounding electrode is set on the same straight line, and the electric field difference between every two electrodes is collected to draw a multi-channel map.
  • Example 1 The traditional observation method uses two ground electrodes MN to observe the potential difference between MNs, that is, the electric field difference at the middle point of the MN.
  • the electric field difference reflects the electrical characteristics of the electrical structure below and around the point, which is easy Affected by geological bodies not below the point, the inversion results often cannot accurately reflect the electrical characteristics below the point, and the horizontal resolution is also affected by the single-point observation method.
  • the horizontal electric field difference Ex observed at the same time is mainly generated by the horizontal current, mainly the transverse electric field difference, which has limitations in the ability to distinguish high-resistance targets.
  • the innovative observation method increases the ground electrode at the middle position and uses three electrodes M 1 -NM 2 to observe the electric field difference.
  • the observation is the electric field difference at the middle point N. Since the observation electrode distance is small, it can effectively eliminate the M
  • the information of the underground electrical structure reflected by the two electric field differences of 1 N and M 2 N enhances the change characteristics of the horizontal direction, that is, the lateral electrical structure, and realizes more precise exploration of steeply inclined veinlets.
  • the proportion of the transverse magnetic field included in the observed electric field difference has been increased, and the transverse magnetic field has a higher resolution than the transverse electric field difference. Based on these characteristics, the innovative method can realize steep-slope vein-shaped high-resistance pegmatite rock fine exploration.
  • the TE field (except during the period of sign inversion) is stronger than the TM field, and the measured TEM field is dominated by the TE field.
  • TM is smaller than the TE field except in the very short period of sign reversal (near 0.1s), and is larger than the TE field at other times, and it is much larger than the TE field after 10-3s.
  • the horizontal electric field difference of the new observation method is mainly based on the TM field observation. Taking advantage of the advantages of the TM field’s strong detection ability for high-resistance targets, it can greatly improve the detection ability of electrical source transient electromagnetics for high-resistance targets.
  • the mining area is generally distributed in a north-southwest-east direction, with a length of 2100m from east to west, a width of 200-400m from north to south, and an area of 0.48km 2 .
  • the apparent resistivity of the hornblende schist is the lowest, the apparent resistivity of the marble is relatively high, the apparent resistivity of the granite pegmatite is high, and the apparent resistivity of the quartz vein is the highest.
  • the method observation results have obvious response characteristic changes in the range of 30-45 and 130-150 measuring points, corresponding to the actual occurrence space of pegmatite dikes.
  • the traditional method will increase the spatial area of this response feature due to the influence of the volume effect and reduce the lateral resolution capability.

Abstract

一种用于伟晶岩脉的勘探方法及系统,包括以下步骤:基于伟晶岩脉所在的目标地区,在每一个测点设置三个接地电极,采集两组接地电极之间的电场差;基于接地电极的设置位置,依据电场差,绘制多测道图;根据多测道图的横向变化,获取伟晶岩脉的电阻率变化特征,并依据电阻率变化特征确定伟晶岩脉的位置以及岩性特征;采用具有不同功能的功能模块,组成了勘探系统,用于实现提到的勘探方法;通过实现对陡倾斜伟晶岩细脉的精细探测,克服传统两点之间电场差观测方式对陡倾斜高阻细脉分辨能力差等问题。

Description

一种用于伟晶岩脉的勘探方法及系统 技术领域
本申请涉及伟晶岩型稀有金属勘探,具体而言,涉及一种用于伟晶岩脉的勘探方法及系统。
背景技术
锂铍等关键矿产资源是新能源、新材料、信息技术等战略性新兴产业和国防军工等行业的重要金属原材料,具有不可替代性。金属锂和铍是我国“深空探测”和“洁净能源产业”重要的金属材料,未来10-15年对锂铍资源的需求将呈几何数量级发展。目前锂铍资源对外寻找依存度高达80%以上,我国目前开发的锂铍矿床以伟晶岩型为主,是实现锂铍等稀有金属自给自足的主要突破类型。
虽然主要的锂铍矿床类型与岩浆及热液活动密切相关,但受限于锂铍矿床丰度,针对锂铍矿床的探测方法包括光谱研究、物性参数、高精度-高分辨率的航空磁测技术,无法直接对隐伏伟晶岩型锂铍资源进行探测。电磁勘探是实现金属矿产勘探的主要方法,但传统的电磁勘探多属于电磁感应类方法,对低阻目标的探测能力较强,对高阻目标的探测能力受到较大限制。电性源电磁方法虽然通过观测电场差分量对高阻目标的分辨能力有一定的提升,但受限于源本身激发的电磁场以水平电流形式产生,以横电场差为主,对高阻的探测能力依然受限,同时,该方法对电性结构的横向变化,特别是陡倾斜细脉的分辨能力不足。
发明内容
为了解决现有的技术问题,本申请提供了一种用于伟晶岩脉的勘探方法,包括以下步骤:
基于伟晶岩脉所在的目标地区,在每一个测点设置三个接地电极,采集两组接地电极之间的电场差差;
基于接地电极的设置位置,依据电场差,绘制多测道图;
根据多测道图的横向变化,获取伟晶岩脉的电阻率变化特征,并依据电阻率变化特征确定伟晶岩脉的位置以及岩性特征。
一个绘制多测道图的优选方案中,包括以下步骤:在采集两个接地电极之间的电场差的过程中,三个接地电极之间包括第一间距、第二间距、第三间距;
第一间距与第二间距的和等于第三间距。
采集第一间距的第一电场差、第二间距的第二电场差,根据第三间距,绘制多测道图。
另一个绘制多测道图的优选方案中,包括以下步骤:
在采集两组接地电极之间的电场差的过程中,三个接地电极之间包括第一间距、第二间距、第三间距;
第一间距与第二间距的和大于第三间距。
采集第一间距的第一电场差、第二间距的第二电场差,根据第一间距、第二间距,绘制多测道图。
优选地,在绘制多测道图的过程中,第一间距和第二间距包括第一夹角;
第一夹角的夹角范围为60°-160°;
采集第一间距的第一电场差、第二间距的第二电场差,根据第一间距、第二间距,绘制多测道图。
优选地,在绘制多测道图的过程中,第一间距和第二间距包括第二夹角;
第二夹角大于0°且小于60°;
基于第二夹角,获取第一电场差、第二电场差在第三间距上的投影之和,并根据第一间距、第二间距,绘制多测道图。
优选地,在绘制多测道图的过程中,第一间距和第二间距包括第三夹角;
第三夹角大于160°且小于180°;
根据第三间距以及第一电场差和第二电场差之和,绘制多测道图。
本发明还公开了一种用于伟晶岩脉的勘探系统,包括:
数据采集模块,用于基于伟晶岩脉所在的目标地区,在每一个测点设置三个接地电极,采集两组接地电极之间的电场差差;
数据处理模块,用于基于接地电极的设置位置,依据电场差,绘制多测道图;
数据分析模块,用于根据多测道图的横向变化,获取伟晶岩脉的电阻率变化特征,并依据电阻率变化特征确定伟晶岩脉的位置以及岩性特征;
显示模块,用于显示目标地区、多测道图、伟晶岩脉的位置以及岩性特征。
优选地,数据处理模块用于执行绘制多测道图的步骤。
本发明公开了以下技术效果:
考虑到伟晶岩脉具有高电阻率、细、陡倾斜分布的特征,本发明提出一种用于伟晶岩脉的勘探方法,利用电性源瞬变电磁电场差对高阻相对较高的分辨能力,创新提出观测相邻测点电场差差,消除背景电性结构的影响,强化电性结构的横向变化,实现对陡倾斜伟晶岩细脉的精细探测,克服传统两点之间电场差观测方式对陡倾斜高阻细脉分辨能力差等问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所述的传统的电场差观测方式;
图2为本发明所述的创新观测方式;
图3为本发明所述的相邻电电场差差中TE、TM与TEM场的占比;
图4为本发明所述的传统观测方式中TE、TM占比;
图5为本发明所述的创新方式观测的原始数据剖面;
图6为本发明所述的传统方式观测的原始数据剖面;
图7为本发明所述的验证剖面图;
图8为本发明所述的方法流程示意图。
具体实施方式
下为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1-8所示,本发明提供了一种用于伟晶岩脉的勘探方法,包括以下步骤:
基于伟晶岩脉所在的目标地区,在每一个测点设置三个接地电极,采集两组接地电极之间的电场差;
基于接地电极的设置位置,依据电场差,绘制多测道图;
根据多测道图的横向变化,获取伟晶岩脉的电阻率变化特征,并依据电阻率变化特征确定伟晶岩脉的位置以及岩性特征。
一个绘制多测道图的优选方案中,包括以下步骤:在采集两组接地电极之间的电场差的过程中,三个接地电极之间包括第一间距、第二间距、第三间距;
第一间距与第二间距的和等于第三间距。
采集第一间距的第一电场差、第二间距的第二电场差,根据第三间距,绘制多测道图。
另一个绘制多测道图的优选方案中,包括以下步骤:
在采集两个接地电极之间的电场差的过程中,三个接地电极之间包括第一间距、第二间距、第三间距;
第一间距与第二间距的和大于第三间距。
采集第一间距的第一电场差、第二间距的第二电场差,根据第一间距、第二间距,绘制多测道图。
另一个绘制多测道图的优选方案中,进一步优选地,在绘制多测道图的过程中,第一间距和第二间距包括第一夹角;
第一夹角的夹角范围为60°-160°;
采集第一间距的第一电场差、第二间距的第二电场差,根据第一间距、第二间距,绘制多测道图。
另一个绘制多测道图的优选方案中,进一步优选地,在绘制多测道图的过程中,第一间距和第二间距包括第二夹角;
第二夹角大于0°且小于60°;
基于第二夹角,获取第一电场差、第二电场差在第三间距上的投影之和,并根据第一间距、第二间距,绘制多测道图。
另一个绘制多测道图的优选方案中,进一步优选地,在绘制多测道图的过程中,第一间距和第二间距包括第三夹角;
第三夹角大于160°且小于180°;
根据第三间距以及第一电场差和第二电场差之和,绘制多测道 图。
本发明还公开了一种用于伟晶岩脉的勘探系统,包括:
数据采集模块,用于基于伟晶岩脉所在的目标地区,设置三个接地电极,采集两个接地电极之间的电场差;
数据处理模块,用于基于接地电极的设置位置,依据电场差,绘制多测道图;
数据分析模块,用于根据多测道图的横向变化,获取伟晶岩脉的电阻率变化特征,并依据电阻率变化特征确定伟晶岩脉的位置以及岩性特征;
显示模块,用于显示目标地区、多测道图、伟晶岩脉的位置以及岩性特征。
进一步优选地,数据处理模块用于执行绘制多测道图的步骤。
本发明还包括设置三个以上的接地电极,每个接地电极设置在同一直线上,且采集每两个电极之间的电场差,绘制多测道图。
实施例1:传统的观测方式通过两个接地电极MN来观测MN之间的电位差,即MN中间点的电场差,电场差反映的是该点下方及周边电性结构的电性特征,容易受到来自非本点下方地质体的影响,反演的结果往往不能精确反映本点下方的电性特征,横向分辨能力也受到单点观测方式的影响。同时观测的水平电场差Ex主要由水平电流产生,以横电场差为主,对高阻目标的分辨能力有局限性。
创新的观测方式通过增加中间位置的接地电极,利用M 1-N-M 2三个电极进行电场差的观测,观测的是中间点N处的电场差差,由于观 测电极距较小,可以有效消除M 1N和M 2N两个电场差反映的地下电性结构的信息,增强水平方向即横向电性结构的变化特征,实现对陡倾斜细脉的更精细勘探。同时,观测电场差差包含的横磁场占比得到加大提升,横磁场具有相较于横电场差更高的分辨能力,基于这些特性,创新的方法可以实现陡倾斜细脉状高阻伟晶岩的精细勘探。
以均匀大地为例,同一测点的水平电场差和相邻点电场差差中TM场的占比对比结果;
在传统观测方式中,实际观测水平电场差(TEM)中,TE场(除在符号反转存在时间段外)强于TM场,实测TEM场以TE场为主。而在新的观测方式下,TM除在符号反转的极短的时间段(0.1s附近)小于TE场,其他时间都是大于TE场的,在10-3s以后更是远大于TE场,新观测方式的水平电场差是以TM场观测为主的,利用TM场对高阻目标探测能力强的优点,可以极大提升电性源瞬变电磁对高阻目标的探测能力。
具体的步骤:1)在实际观测时,在传统采用的两个接地电极的中间位置增加一个新接地电极,如图2所示,M 1N和NM 2同时记录这两对电极之间的电场差,M 1和M 2共用接收仪器上的一个接线柱,N用另一个接线柱。这样采集的数据就是N电极位置的电场差差,而传统MN记录的是MN中间点的电场差,电场差信息包含测点下方和周边的信息,而M 1NM 2采集方式可以减少相邻点之间的地表信息;
2)将在整条测线获得的数据绘制多测道图,通过多测道图曲线的横向变化,并根据数值横向变化的增高或者降低判断地下电性目标 体的电阻率变化特征。
应用实例:伟晶岩型稀有金属矿勘探实例:矿区总体呈北西南东向展布,东西长2100m,南北宽200~400m,面积0.48km 2
通过本发明的方法统计了矿区内各种岩性电性参数,见表1。
表1
Figure PCTCN2022074865-appb-000001
从上表岩性视电阻率统计上看:角闪片岩视电阻率最低,大理岩视电阻率偏高,花岗伟晶岩视电阻率高,石英脉视电阻率最高。这些电性差异为地球物理测量地层(岩性)及构造的划分和识别提供了电性参数参考依据。
如图5-7所示,方法观测结果在30-45,130-150测点范围内存在明显的响应特征变化,与实际的伟晶岩脉的赋存空间对应。而传统方式会因体积效应的影响增大这种响应特征的空间区域,降低横向分辨能力。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅 用于区分描述,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种用于伟晶岩脉的勘探方法,其特征在于,包括以下步骤:
    基于伟晶岩脉所在的目标地区,每一个测点设置三个接地电极,采集两组所述接地电极之间的电场差;
    基于所述接地电极的设置位置,依据所述电场差,绘制多测道图;
    根据所述多测道图的横向变化,获取所述伟晶岩脉的电阻率变化特征,并依据所述电阻率变化特征确定所述伟晶岩脉的位置以及岩性特征。
  2. 根据权利要求1所述一种用于伟晶岩脉的勘探方法,其特征在于:
    在采集两组所述接地电极之间的电场差的过程中,三个所述接地电极之间包括第一间距、第二间距、第三间距;
    所述第一间距与所述第二间距的和等于所述第三间距。
  3. 根据权利要求2所述一种用于伟晶岩脉的勘探方法,其特征在于:
    采集所述第一间距的第一电场差、所述第二间距的第二电场差,根据所述第三间距,绘制所述多测道图。
  4. 根据权利要求1所述一种用于伟晶岩脉的勘探方法,其特征在于:
    在采集两个所述接地电极之间的电场差的过程中,三个所述接地电极之间包括第一间距、第二间距、第三间距;
    所述第一间距与所述第二间距的和大于所述第三间距。
  5. 根据权利要求4所述一种用于伟晶岩脉的勘探方法,其特征在 于:
    采集所述第一间距的第一电场差、所述第二间距的第二电场差,根据所述第一间距、所述第二间距,绘制所述多测道图。
  6. 根据权利要求4所述一种用于伟晶岩脉的勘探方法,其特征在于:
    在绘制所述多测道图的过程中,所述第一间距和所述第二间距包括第一夹角;
    所述第一夹角的夹角范围为60°-160°;
    采集所述第一间距的第一电场差、所述第二间距的第二电场差,根据所述第一间距、所述第二间距,绘制所述多测道图。
  7. 根据权利要求6所述一种用于伟晶岩脉的勘探方法,其特征在于:
    在绘制所述多测道图的过程中,所述第一间距和所述第二间距包括第二夹角;
    所述第二夹角大于0°且小于60°;
    基于所述第二夹角,获取所述第一电场差、所述第二电场差在所述第三间距上的投影之和,并根据所述第一间距、所述第二间距,绘制所述多测道图。
  8. 根据权利要求7所述一种用于伟晶岩脉的勘探方法,其特征在于:
    在绘制所述多测道图的过程中,所述第一间距和所述第二间距包括第三夹角;
    所述第三夹角大于160°且小于180°;
    根据所述第三间距以及所述第一电场差和所述第二电场差之和,绘制所述多测道图。
  9. 一种用于伟晶岩脉的勘探系统,其特征在于,包括:
    数据采集模块,用于基于伟晶岩脉所在的目标地区,设置三个接地电极,采集两个所述接地电极之间的电场差;
    数据处理模块,用于基于所述接地电极的设置位置,依据所述电场差,绘制多测道图;
    数据分析模块,用于根据所述多测道图的横向变化,获取所述伟晶岩脉的电阻率变化特征,并依据所述电阻率变化特征确定所述伟晶岩脉的位置以及岩性特征;
    显示模块,用于显示所述目标地区、所述多测道图、所述伟晶岩脉的所述位置以及所述岩性特征。
  10. 根据权利要求9所述一种用于伟晶岩脉的勘探系统,其特征在于:
    所述数据处理模块用于执行权利要求2-8的任一权利要求所述的一种用于伟晶岩脉的勘探方法。
PCT/CN2022/074865 2021-12-01 2022-01-29 一种用于伟晶岩脉的勘探方法及系统 WO2023097885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/991,056 US11761944B2 (en) 2021-12-01 2022-11-21 Exploration method and system for pegmatite veins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111453224.4A CN114137619B (zh) 2021-12-01 2021-12-01 一种用于伟晶岩脉的勘探方法及系统
CN202111453224.4 2021-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/991,056 Continuation US11761944B2 (en) 2021-12-01 2022-11-21 Exploration method and system for pegmatite veins

Publications (1)

Publication Number Publication Date
WO2023097885A1 true WO2023097885A1 (zh) 2023-06-08

Family

ID=80387054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074865 WO2023097885A1 (zh) 2021-12-01 2022-01-29 一种用于伟晶岩脉的勘探方法及系统

Country Status (2)

Country Link
CN (1) CN114137619B (zh)
WO (1) WO2023097885A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894500B2 (en) * 2001-09-06 2005-05-17 Schlumberger Technology Corporation Method and apparatus for determining the resistivity of a formation surrounding a cased well
CN1846150A (zh) * 2003-07-10 2006-10-11 普拉德研究及发展中心 地下层成像的方法及装置
CN101749013A (zh) * 2009-12-31 2010-06-23 西安思坦仪器股份有限公司 一种透过套管测量油井周围地层电阻率的方法
CN103487843A (zh) * 2013-10-10 2014-01-01 河海大学 一种基于电阻率成像技术的地下水量测量方法
CN110031901A (zh) * 2019-03-20 2019-07-19 武汉捷探科技有限公司 一种变深电法勘测系统和一种勘测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB899979A (en) * 1959-06-16 1962-06-27 Schlumberger Well Surv Corp Apparatus for investigating the electrical resistivity of earth formations
US4591791A (en) * 1984-07-31 1986-05-27 Board Of Regents, University Of Texas System Electromagnetic array profiling survey method
US5043668A (en) * 1987-08-26 1991-08-27 Paramagnetic Logging Inc. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing
RU2302019C1 (ru) * 2006-04-18 2007-06-27 Общество С Ограниченной Ответственностью "Интерлог" Способ электрического каротажа обсаженных скважин
RU2382385C1 (ru) * 2009-01-26 2010-02-20 Валентин Цой Способ электрического каротажа обсаженных скважин
CN106842342B (zh) * 2016-12-05 2019-10-11 北京印刷学院 电极测量影响自动校正型过套管电阻率测井方法和装置
CN107765314A (zh) * 2017-10-19 2018-03-06 中南大学 一种三极装置的电阻率监测方法
CN109100808B (zh) * 2018-08-15 2020-12-29 中国科学院地质与地球物理研究所 一种多线源瞬变电磁横磁极化场探测方法
CN111175832B (zh) * 2020-02-21 2021-04-27 中南大学 一种估算地下水三维流动特性的频域电磁感应勘探方法
CN112730567A (zh) * 2020-12-30 2021-04-30 中核武汉核电运行技术股份有限公司 一种基于双参比电极的极低电位等势线绘制系统与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894500B2 (en) * 2001-09-06 2005-05-17 Schlumberger Technology Corporation Method and apparatus for determining the resistivity of a formation surrounding a cased well
CN1846150A (zh) * 2003-07-10 2006-10-11 普拉德研究及发展中心 地下层成像的方法及装置
CN101749013A (zh) * 2009-12-31 2010-06-23 西安思坦仪器股份有限公司 一种透过套管测量油井周围地层电阻率的方法
CN103487843A (zh) * 2013-10-10 2014-01-01 河海大学 一种基于电阻率成像技术的地下水量测量方法
CN110031901A (zh) * 2019-03-20 2019-07-19 武汉捷探科技有限公司 一种变深电法勘测系统和一种勘测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAO, FENNING: "The Application of Transient Electromagnetic Method in A Coal Mine Gob Survey", SHANXI ARCHITECTURE, vol. 42, no. 29, 10 October 2016 (2016-10-10), pages 57 - 59, XP009546705, ISSN: 1009-6825, DOI: 10.13719/j.cnki.cn14-1279/tu.2016.29.032 *

Also Published As

Publication number Publication date
CN114137619A (zh) 2022-03-04
CN114137619B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Edge et al. The principles and practice of geophysical prospecting: being the report of the Imperial Geophysical Experimental Survey
WO2021042952A1 (zh) 一种接地导线源瞬变电磁响应中ip信息的提取方法
CN103913776B (zh) 盾构施工中球状孤石的探测方法
Boniger et al. Subsurface utility extraction and characterization: Combining GPR symmetry and polarization attributes
Salem et al. Interpretation of magnetic data using an enhanced local wavenumber (ELW) method
CN106291722B (zh) 一种地-井激发极化测量方法及相关设备
CN106556861B (zh) 一种基于全方位地震资料的方位avo反演方法
Bastani et al. Delineating hydrothermal stockwork copper deposits using controlled-source and radio-magnetotelluric methods: A case study from northeast Iran
Ma et al. Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal
Nimeck et al. A progressive geophysical exploration strategy at the Shea Creek uranium deposit
Chen et al. Response of surface-to-borehole SOTEM method on 2D earth
CN104749643B (zh) 一种用于电磁干扰地区的csamt测量方法和装置
CN108693562B (zh) 一种用电成像测井测定古流向的方法
WO2023097885A1 (zh) 一种用于伟晶岩脉的勘探方法及系统
CN111045087A (zh) 一种隐伏伟晶状白岗岩型铀矿的勘查方法
CN110231661A (zh) 岩石标本与野外勘探测量激电参数的对应方法
Jiang et al. Application of three-dimensional electrical resistivity tomography in urban zones by arbitrary electrode distribution survey design
Bolshakov et al. New step in anisotropy studies: arrow-type array
US11761944B2 (en) Exploration method and system for pegmatite veins
Zhu et al. Use of seismic-based new rose diagram to determine the major sediment-supply direction of progradational systems
CN108957562B (zh) 一种基于多通道天然电场选频仪的天然电场勘探方法
Taha et al. Induced polarization measurements for gold exploration at the Eastern Desert of Egypt
US3309607A (en) Method for the determination of direction of effective strike and dip from telluric potentials utilizing a tspread quadrupole electrode array
CN104111480A (zh) 高分辨率放射系数探测方法
Rust Jr Typical electrical prospecting methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899710

Country of ref document: EP

Kind code of ref document: A1