WO2023097712A1 - 一种频率和极化方式可调圆极化天线和天线调节方法 - Google Patents

一种频率和极化方式可调圆极化天线和天线调节方法 Download PDF

Info

Publication number
WO2023097712A1
WO2023097712A1 PCT/CN2021/136169 CN2021136169W WO2023097712A1 WO 2023097712 A1 WO2023097712 A1 WO 2023097712A1 CN 2021136169 W CN2021136169 W CN 2021136169W WO 2023097712 A1 WO2023097712 A1 WO 2023097712A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
annular gap
circularly polarized
dielectric substrate
polarized antenna
Prior art date
Application number
PCT/CN2021/136169
Other languages
English (en)
French (fr)
Inventor
胡传灯
张现利
吴旭
Original Assignee
深圳市环波科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市环波科技有限责任公司 filed Critical 深圳市环波科技有限责任公司
Publication of WO2023097712A1 publication Critical patent/WO2023097712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the field of microwave technology, in particular to a circularly polarized antenna with adjustable frequency and polarization mode.
  • SIW Substrate Integrated Waveguide
  • the antenna is divided into linear polarization, elliptical polarization, and circular polarization according to the trajectory of the end of its radiated electric field.
  • the circular polarization antenna can receive any linearly polarized electromagnetic wave signal. In the transceiver system, it is relative to the linearly polarized antenna. It can work normally without strict polarization matching, and it has good anti-interference ability because it cannot receive electromagnetic wave signals with opposite hand direction. However, in the current circularly polarized antennas, the frequency and the polarization mode are fixed, and cannot be adjusted according to different usage situations.
  • the purpose of the present application is to provide a circularly polarized antenna with adjustable frequency and polarization mode, which can improve the above problems.
  • the present application provides a circularly polarized antenna with adjustable frequency and polarization mode, which includes: an upper dielectric substrate and a lower dielectric substrate that are identical in size and overlapped,
  • a first metal plate is provided in the center of the top surface of the upper dielectric substrate; a first feed-in terminal and a second feed-in terminal respectively connected to the first metal plate are provided on opposite sides of the upper dielectric substrate ;
  • the central axis of the upper dielectric substrate extends along the direction from the first feed-in end to the second feed-in end, and the first metal plate is respectively provided with first annular gaps on both sides of the central axis and the second annular gap; the areas of the first metal plate surrounded by the first annular gap and the second annular gap are respectively the first area and the second area, and the other areas of the first metal plate are the first Three areas;
  • Both the first region and the second region are provided with a first conductive through hole, and the first conductive through hole respectively extends to the bottom surface of the lower dielectric substrate and is electrically connected to the corresponding DC bias line;
  • Two diodes are respectively arranged on the first annular gap and the second annular gap, and the diodes on the first annular gap are used to connect the first area and the third area, and the The diode on the second annular gap is used to connect the second area and the third area.
  • the present application discloses a circularly polarized antenna with adjustable frequency and polarization, which is provided with two annular slots on both sides of the central axis of the substrate integrated waveguide, which is equivalent to opening two complementary inductance-capacitance resonance (complimentary Electric LC, cELC) gap structure, place a diode on one side of the gap and apply a bias circuit on its lower layer, control the capacitance of the diode through the bias circuit, in order to achieve polarization switching and frequency adjustment, so as to match more Usage.
  • cELC complementary inductance-capacitance resonance
  • the working frequency of the circularly polarized antenna can be adjusted.
  • the polarization mode of the circularly polarized antenna can be adjusted by individually adjusting the capacitance of a certain diode in the first annular slot or the second annular slot.
  • the first annular gap and the second annular gap are respectively provided with a first PIN diode and a second PIN diode, and one end of the first PIN diode is connected to the first region, the other end of the first PIN diode is connected to the third region, one end of the second PIN diode is connected to the second region, and the other end of the first PIN diode is connected to the third area.
  • both the first annular gap and the second annular gap are H-shaped rings, and the sides of the H-shaped rings are not parallel to the central axis.
  • both the first annular slit and the second annular slit are rectangular rings, and the sides of the rectangular rings are not parallel to the central axis.
  • the side of the first annular gap is not parallel to the side of the second annular gap.
  • both the first annular slit and the second annular slit are rectangular rings, and the sides of the rectangular rings are not parallel to the central axis.
  • the end of the DC bias line is designed with a fan-shaped structure to prevent DC signal interference.
  • the upper dielectric substrate has a first edge and a second edge parallel to the central axis, the first edge and the second edge are oppositely arranged, and the first metal A first metal strip extends along the first edge of the plate, a second metal strip extends along the second edge of the first metal plate, and the first metal strip and the second metal strip are respectively provided with A second conductive through hole; the bottom surface of the upper dielectric substrate is covered with a second metal plate, and the second conductive through hole extends to the second metal plate.
  • the size of the first metal plate is smaller than the size of the upper dielectric substrate;
  • the orthographic projection area is the fourth area, and other areas on the lower dielectric substrate except the fourth area are the fifth area; the fifth area is provided with a third conductive via hole, and the third conductive via hole Correspondingly conducting with the corresponding second conductive via.
  • a third metal plate and a fourth metal plate are further arranged on the bottom surface of the lower dielectric substrate, neither the third metal plate nor the fourth metal plate is in contact with the first metal plate.
  • the four areas overlap, and the third conductive vias extend to the third metal plate and the fourth metal plate respectively.
  • both the first feed-in terminal and the second feed-in terminal feed in signals through SMA connectors, and the SMA connectors are respectively matched through corresponding microstrip lines
  • the structure conducts with the first metal plate.
  • the SubMiniature version A (SMA) connector is suitable for applications in the microwave field with a frequency range up to 26.5GHz.
  • Applications such as telecommunications, networking, wireless communications, and testing and measuring instruments. It has the characteristics of wide frequency range, excellent performance, high reliability and long life.
  • the present application provides an antenna adjustment method, which is applied to the frequency and polarization adjustable circularly polarized antenna described in any one of the first aspect, and the method includes:
  • the operating frequency of the circularly polarized antenna can be adjusted.
  • the polarization mode of the circularly polarized antenna can be adjusted by individually adjusting the capacitance of a certain diode in the first annular slot and the second annular slot.
  • This application discloses a circularly polarized antenna with adjustable frequency and polarization mode, which is provided with two annular slots on both sides of the central axis of the substrate integrated waveguide, which is equivalent to opening two complementary inductance-capacitance resonance (complimentary electric LC, cELC) slot structure, place a diode on one side of the slot and apply a bias circuit on its lower layer, control the capacitance of the diode through the bias circuit to achieve frequency adjustment and polarization switching, so as to match more usage conditions.
  • LC complementary inductance-capacitance resonance
  • Fig. 1 is a structural schematic diagram of a circularly polarized antenna with adjustable frequency and polarization provided by the present application;
  • Fig. 2 is a schematic diagram of the top surface of the upper dielectric substrate of the antenna shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the bottom surface of the upper dielectric substrate of the antenna shown in Fig. 1;
  • Fig. 4 is a schematic diagram of the top surface of the lower dielectric substrate of the antenna shown in Fig. 1;
  • FIG. 5 is a schematic diagram of the bottom surface of the lower dielectric substrate of the antenna shown in FIG. 1;
  • Figure 6 is a schematic diagram of cELC resonant slot loading bias circuit and sector structure
  • Figure 7 is a schematic diagram of the diode loading of the cELC resonant slot
  • Figure 8 is a diagram of the simulated return loss of the antenna changing with frequency when two diodes are loaded with different capacitance values at the same time;
  • Figure 9 is a diagram of the simulated insertion loss of the antenna as a function of frequency when two diodes are loaded with different capacitances at the same time;
  • Figure 10 is a diagram of the variation of the simulated axial ratio of the antenna with frequency when two diodes are loaded with different capacitance values at the same time;
  • Figure 11 is a graph showing the variation of the simulated return loss of the antenna with frequency when the capacitance loaded by one diode is kept constant and the capacitance loaded by the other diode is changed;
  • Figure 12 is a diagram of the simulation insertion loss of the antenna as a function of frequency when the capacitance loaded by one diode is kept constant and the capacitance loaded by the other diode is changed;
  • Fig. 13 is a graph showing the variation of the simulated axial ratio of the antenna with frequency under the condition that the capacitance loaded by one diode is kept constant and the capacitance loaded by the other diode is changed.
  • the present application provides a frequency- and polarization-adjustable circularly polarized antenna, which includes: an upper dielectric substrate 10 and a lower dielectric substrate 20 that are identical in size and overlapped.
  • a first metal plate 30 is provided in the center of the top surface of the upper dielectric substrate 10 ; a first feed-in terminal and a second feed-in terminal respectively connected to the first metal plate 30 are provided on opposite sides of the upper dielectric substrate 10 .
  • the central axis of the upper dielectric substrate 10 extends along the direction from the first feed-in end to the second feed-in end, and the first metal plate 30 is respectively provided with first annular gaps 41 on both sides of the central axis. and the second annular gap 42; the area of the first metal plate 30 surrounded by the first annular gap 41 and the second annular gap 42 is respectively the first area 31 and the second area 32, and the other areas of the first metal plate 30 are the third Area 33.
  • Each of the first area 31 and the second area 32 is respectively provided with a first conductive via 51 , and the first conductive via 51 respectively extends to the bottom surface of the lower dielectric substrate 20 and is electrically connected to the corresponding DC bias line 60 .
  • two diodes 70 are respectively arranged on the first annular gap 41 and the second annular gap 42 , and the diodes 70 are used to connect the first region 31 or the second region 32 with the third region 33 .
  • the diode 70 on the first annular gap 41 is used to connect the first region 31 and the third region 32
  • the diode 70 on the second annular gap 42 The diode 70 is used to connect the second region 32 and the third region 33 .
  • the effect of the first annular gap 41 is in order to insulate the first region 31 and the third region 33
  • the effect of the second annular gap 42 is in order to insulate the second region 32 and the third region 33, so the first annular gap 41 and the second
  • the two annular gaps 42 can be directly hollowed out, or can be hollowed out and then filled with other insulating materials.
  • the present application discloses a circularly polarized antenna with adjustable frequency and polarization, which is provided with two annular slots on both sides of the central axis of the substrate integrated waveguide, which is equivalent to opening two complementary inductance-capacitance resonance (complimentary Electric LC, cELC) gap structure, place a diode on one side of the gap and apply a bias circuit on its lower layer, control the capacitance of the diode through the bias circuit, in order to achieve polarization switching and frequency adjustment, so as to match more Usage.
  • cELC complementary inductance-capacitance resonance
  • the working frequency of the circularly polarized antenna can be adjusted.
  • the polarization mode of the circularly polarized antenna can be adjusted by individually adjusting the capacitance of a certain diode in the first annular slot 41 and the second annular slot 42 .
  • the first annular gap 41 and the second annular gap 42 are respectively provided with a first PIN diode and a second PIN diode, one end of the first PIN diode is connected to the first region 31, and the first PIN diode The other end of the diode is connected to the third region 33 , one end of the second PIN diode is connected to the second region 32 , and the other end of the first PIN diode is connected to the third region 33 .
  • PIN diodes are composed of PN junctions.
  • a thin layer of low-doped intrinsic (Intrinsic) semiconductor layer is added between the P and N semiconductor materials, and the diode of this P-I-N structure is a PIN diode.
  • the intrinsic (Intrinsic) layer PIN diodes are widely used, from low frequency to high frequency applications, mainly in the RF field, used as RF switches and RF protection circuits, and also used as photodiodes (Photo Diode).
  • PIN diodes include PIN photodiodes and PIN switch diodes.
  • both the first annular gap 41 and the second annular gap 42 are H-shaped rings, and the sides of the H-shaped rings are not parallel to the central axis.
  • the sides of the first annular gap 41 and the sides of the second annular gap 42 are also not parallel.
  • first annular slot 41 and the second annular slot 42 affect the axial ratio of the circularly polarized antenna. Therefore, those skilled in the art can set the relative angles of the two rectangular rings according to the actual model.
  • a fan-shaped structure 80 is designed at the end of the DC bias line 60 to prevent DC signal interference.
  • the upper dielectric substrate 10 has a first edge and a second edge parallel to the central axis, the first edge and the second edge are oppositely arranged, and the first metal plate 30
  • a first metal strip 34 extends along the edge
  • a second metal strip 35 extends along the second edge of the first metal plate 30.
  • a second conductive via hole 52 is respectively opened on the first metal strip 34 and the second metal strip 35;
  • the bottom surface of the substrate 10 is covered with the second metal plate 11 , and the second conductive via 52 extends to the second metal plate 11 .
  • the size of the first metal plate 30 is smaller than the size of the upper dielectric substrate 10; the orthographic projection area of the first metal plate 30 on the lower dielectric substrate 20 is the fourth area, the area on the lower dielectric substrate 20 except the fourth area is the fifth area; the fifth area is provided with a third conductive via 53, and the third conductive via 53 is correspondingly connected to the corresponding second conductive via 52 .
  • a third metal plate 91 and a fourth metal plate 92 are further provided on the bottom surface of the lower dielectric substrate 20, and neither the third metal plate 91 nor the fourth metal plate 92 overlaps with the fourth area.
  • the third conductive via 53 extends to the third metal plate 91 and the fourth metal plate 92 .
  • both the first feed end and the second feed end feed signals through the SMA connector 12, and the SMA connector 12 is respectively connected to the first metal wire through the corresponding microstrip line matching structure 13.
  • Plate 30 conducts.
  • the present application provides an antenna adjustment method, which is applied to the circularly polarized antenna with adjustable frequency and polarization mode in any one of the first aspect, and the method includes:
  • the first capacitance value and the second capacitance value are respectively applied to the two diodes on the first annular gap and the second annular gap at the same time, one of the first capacitance value and the second capacitance value is kept unchanged, and the other value is adjusted.
  • the operating frequency of the circularly polarized antenna can be adjusted.
  • the simulated return loss, insertion loss, and axial ratio of the circularly polarized antenna of the present application are varied with frequency under the condition that two diodes are loaded with different capacitance values at the same time. It can be seen that when the cELC When the capacitance of the diode loaded in the resonant slot changes, the return loss, insertion loss and axial ratio of the circularly polarized antenna of the present application will change accordingly, and the operating frequency will shift accordingly, which can explain the circular polarization of the present application.
  • the embodiment of the polarized antenna has the function of adjustable frequency.
  • the embodiment of the circularly polarized antenna of the present application keeps the capacitance loaded by one diode constant and changes the capacitance loaded by the other diode to simulate return loss, insertion loss, and axial ratio.
  • the AR value of the antenna is 1.84 on the 5.37GHz operating frequency
  • the antenna embodiment of the present application is in a circular polarization state at this time, and when C1 remains unchanged and
  • the AR values of the antenna embodiment of the present application at the working frequency of 5.37GHz are 6.97 and 10.09, and the antenna has been converted from circular polarization to linear polarization at this time.
  • the embodiment of the circularly polarized antenna of the present application has the function of adjusting the polarization mode. It should be noted that in this example, keeping C1 unchanged and changing C2 is just to illustrate the polarization adjustable function of this application. Similarly, keeping C2 unchanged and changing the value of C1 is also sufficient to illustrate the above function, so the two adjustments All methods should belong to the protection scope of this application.
  • first, second, the first or “the second” used in various embodiments of the present disclosure may modify various components regardless of order and/or importance , but these expressions do not limit the corresponding components.
  • the above expressions are configured only for the purpose of distinguishing an element from other elements.
  • the first user equipment and the second user equipment represent different user equipments, although both are user equipments.
  • a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种频率和极化方式可调圆极化天线和天线调节方法,其在基片集成波导中轴线两侧设置有两个环形缝隙,相当于开设了两个cELC缝隙结构,在缝隙一侧放置二极管并在其下层施加偏置电路,通过偏置电路控制二极管的容值,以实现频率的调节和极化方式的切换。

Description

一种频率和极化方式可调圆极化天线和天线调节方法 技术领域
本申请涉及微波技术领域,特别涉及一种频率和极化方式可调圆极化天线。
背景技术
随着移动通信技术的不断发展,基片集成波导(Substrate Integrated Waveguide,SIW)被广泛应用于平面结构的无源器件设计以及缝隙阵列天线设计中,其相对于传统金属波导而言同样具有良好的传播特性、高品质因数以及低辐射损耗等特点,同时又克服了传统金属波导在工艺及结构尺寸和重量上的不足,并且由于印刷电路板(Printed Circuit Board,PCB)多层板制造工艺已日趋成熟,SIW的加工难度大大减小,使得其更容易在多层PCB或者低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)工艺中与其他无源器件一起集成。
天线根据其辐射电场末端运动轨迹有线极化、椭圆极化、以及圆极化之分,圆极化天线可以接收任意线极化的电磁波信号,在收发系统中其相对于线极化天线来说不需要进行严苛的极化匹配便可正常工作,并且由于其无法接收旋向相反的电磁波信号,因此其具有良好的抗干扰能力。但目前的圆极化天线中,频率和极化方式均是固定的,无法根据不同的使用情况进行调节。
发明内容
本申请的目的在于提供一种频率和极化方式可调圆极化天线,其能够改善上述问题。
本申请的实施例是这样实现的:
第一方面,本申请提供一种频率和极化方式可调圆极化天线,其包括:尺寸一致且重叠设置的上层介质基板和下层介质基板,
所述上层介质基板的顶面中央设置有第一金属板;所述上层介质基板的相对两侧分别设置有分别与所述第一金属板导通的第一馈入端和第二馈入端;
所述上层介质基板的中轴线沿所述第一馈入端朝向所述第二馈入端的方向延伸,所述第一金属板上且在所述中轴线的两侧分别设置有第一环形缝隙和第二环形缝隙;所述第一环形缝隙和所述第二环形缝隙所包围所述第一金属板的区域分别为第一区域和第二区域,所述第一金属板的其他区域为第三区域;
所述第一区域和所述第二区域上均设置有一个第一导电通孔,所述第一导电通孔分别延伸至所述下层介质基板的底面与对应的直流偏置线电连接;
所述第一环形缝隙和所述第二环形缝隙上还分别设置有两个二极管,所述第一环形缝隙上的所述二极管用于连通所述第一区域和所述第三区域,所述第二环形缝隙上的所述二极管用于连通所述第二区域和所述第三区域。
可以理解,本申请公开了一种频率和极化方式可调圆极化天线,其在基片集成波导中轴线两侧设置有两个环形缝隙,相当于开设了两个互补电感电容谐振(complimentary electric LC,cELC)缝隙结构,在缝隙一侧放置二极管并在其下层施加偏置电路,通过偏置电路控制二极管的容值,以实现极化方式的切换和频率的调节,从而匹配更多的使用情况。
其中,同时调节设置于第一环形缝隙和第二环形缝隙上的两个二极管的容值,可以调节该圆极化天线的工作频率。单独调节第一环形缝隙或者第二环形缝隙中某一个二极管的容值,可以调节该圆极化天线的极化方式。
在本申请可选的实施例中,所述第一环形缝隙和所述第二环形缝隙分 别设置有第一PIN二极管和第二PIN二极管,所述第一PIN二极管的一端连接于所述第一区域,所述第一PIN二极管的另一端连接于所述第三区域,所述第二PIN二极管的一端连接于所述第二区域,所述第一PIN二极管的另一端连接于所述第三区域。
在本申请可选的实施例中,所述第一环形缝隙和所述第二环形缝隙均为H型环,所述H型环的侧边均与所述中轴线不平行。
更好地,第一环形缝隙和第二环形缝隙均为矩形环,该矩形环的侧边均与所述中轴线不平行。
可以理解,第一环形缝隙和第二环形缝隙偏离中轴线的距离影响着该圆极化天线的回波损耗和插入损耗。因此,本领域技术人员可以根据实际型号设定两个矩形环的位置和设置角度。
在本申请可选的实施例中,所述第一环形缝隙的侧边不与和所述第二环形缝隙的侧边也不平行。
更好地,第一环形缝隙和第二环形缝隙均为矩形环,该矩形环的侧边均与所述中轴线不平行。
可以理解,第一环形缝隙和第二环形缝隙之间的角度及距离影响着该圆极化天线轴比。因此,本领域技术人员可以根据实际型号设定两个矩形环相对角度。
在本申请可选的实施例中,所述直流偏置线的末端设计有扇型结构,防止直流信号干扰。
在本申请可选的实施例中,所述上层介质基板具有与所述中轴线平行的第一边缘和第二边缘,所第一边缘和所述第二边缘述相对设置,所述第一金属板沿所述第一边缘延伸有第一金属条,所述第一金属板沿所述第二边缘延伸有第二金属条,所述第一金属条和所述第二金属条上分别开设有第二导电通孔;所述上层介质基板的底面覆盖有第二金属板,所述第二导电通孔延伸至所述第二金属板。
在本申请可选的实施例中,在所述中轴线的延伸方向上,所述第一金属板的尺寸小于所述上层介质基板的尺寸;所述第一金属板在所述下层介质基板的正投影区域为第四区域,所述下层介质基板上除所述第四区域外的其他区域为第五区域;所述第五区域上设置有第三导电通孔,所述第三导电通孔与对应的所述第二导电通孔对应导通。
在本申请可选的实施例中,所述下层介质基板的底面上还设置有第三金属板和第四金属板,所述第三金属板和所述第四金属板均不与所述第四区域重叠,所述第三导电通孔分别延伸至所述第三金属板和所述第四金属板上。
在本申请可选的实施例中,所述第一馈入端和所述第二馈入端均通过SMA连接器馈入信号,且所述SMA连接器分别通过对应的所述微带线匹配结构与所述第一金属板导通。
其中,超小型A型(SubMiniature version A,SMA)连接器适用于频率范围直至26.5GHz的微波领域的应用。应用范围如电信通讯、网络、无线通讯以及检测和测量仪器。它具有频带宽、性能优、高可靠、寿命长的特点。
第二方面,本申请提供了天线调节方法,该方法应用于第一方面任一项所述的频率和极化方式可调圆极化天线,所述方法包括:
向所述第一环形缝隙和所述第二环形缝隙上的两个所述二极管同时分别加载第一容值和第二容值,保持所述第一容值和所述第二容值相同;
或者,
向所述第一环形缝隙和所述第二环形缝隙上的两个所述二极管同时分别加载第一容值和第二容值,保持所述第一容值和所述第二容值中的一个值不变,调节另一个值。
可以理解,同时调节设置于第一环形缝隙和第二环形缝隙上的两个二极管的容值,可以调节该圆极化天线的工作频率。单独调节第一环形缝隙和第二环形缝隙中某一个二极管的容值,可以调节该圆极化天线的极化方 式。
有益效果:
本申请公开了一种频率和极化方式可调圆极化天线,其在基片集成波导中轴线两侧设置有两个环形缝隙,相当于开设了两个互补电感电容谐振(complimentary electric LC,cELC)缝隙结构,在缝隙一侧放置二极管并在其下层施加偏置电路,通过偏置电路控制二极管的容值,以实现频率的调节和极化方式的切换,从而匹配更多的使用情况。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本申请提供的一种频率和极化方式可调圆极化天线的结构示意图;
图2是图1所示的天线的上层介质基板顶面示意图;
图3是图1所示的天线的上层介质基板底面示意图;
图4是图1所示的天线的下层介质基板顶面示意图;
图5是是图1所示的天线的下层介质基板底面示意图;
图6为cELC谐振缝加载偏置电路和扇形结构示意图;
图7为cELC谐振缝的二极管加载示意图;
图8为在两个二极管同时加载不同的容值下,天线的仿真回波损耗随频率的变化图;
图9为在两个二极管同时加载不同的容值下,天线的仿真插入损耗随频率的变化图;
图10为在两个二极管同时加载不同的容值下,天线的仿真轴比随频率的变化图;
图11为在保持一个二极管加载的容值不变,改变另一个二极管加载的容值情况下,天线的仿真回波损耗随频率的变化图;
图12为在保持一个二极管加载的容值不变,改变另一个二极管加载的容值情况下,天线的仿真插入损耗随频率的变化图;
图13为在保持一个二极管加载的容值不变,改变另一个二极管加载的容值情况下,天线的仿真轴比随频率的变化图。
附图标号:
上层介质基板10、第二金属板11、SMA连接器12、微带线匹配结构13、下层介质基板20、第一金属板30、第一区域31、第二区域32、第三区域33、第一金属条34、第二金属条35、第一环形缝隙41、第二环形缝隙42、第一导电通孔51、第二导电通孔52、第三导电通孔53、直流偏置线60、二极管70、扇型结构80、第三金属板91、第四金属板92。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第一方面,如图1至图7所示,本申请提供一种频率和极化方式可调圆极化天线,其包括:尺寸一致且重叠设置的上层介质基板10和下层介质基板20。
上层介质基板10的顶面中央设置有第一金属板30;上层介质基板10 的相对两侧分别设置有分别与第一金属板30导通的第一馈入端和第二馈入端。
上层介质基板10的中轴线(图中虚线所示)沿第一馈入端朝向第二馈入端的方向延伸,第一金属板30上且在中轴线的两侧分别设置有第一环形缝隙41和第二环形缝隙42;第一环形缝隙41和第二环形缝隙42所包围第一金属板30的区域分别为第一区域31和第二区域32,第一金属板30的其他区域为第三区域33。
第一区域31和第二区域32上均分别设置有一个第一导电通孔51,第一导电通孔51分别延伸至下层介质基板20的底面与对应的直流偏置线60电连接。
如图7所示,第一环形缝隙41和第二环形缝隙42上还分别设置有两个二极管70,二极管70用于连通第一区域31或第二区域32与第三区域33。以第一环形缝隙41上的二极管70为例,第一环形缝隙41上的所述二极管70用于连通所述第一区域31和所述第三区域32,所述第二环形缝隙42上的所述二极管70用于连通所述第二区域32和所述第三区域33。
其中,第一环形缝隙41的作用是为了绝缘第一区域31和第三区域33,第二环形缝隙42的作用是为了绝缘第二区域32和第三区域33,因此第一环形缝隙41和第二环形缝隙42可以直接是镂空的缝隙,也可以是镂空缝隙后再填充其他绝缘材料的结构。
可以理解,本申请公开了一种频率和极化方式可调圆极化天线,其在基片集成波导中轴线两侧设置有两个环形缝隙,相当于开设了两个互补电感电容谐振(complimentary electric LC,cELC)缝隙结构,在缝隙一侧放置二极管并在其下层施加偏置电路,通过偏置电路控制二极管的容值,以实现极化方式的切换和频率的调节,从而匹配更多的使用情况。
其中,同时调节设置于第一环形缝隙41和第二环形缝隙42上的两个二极管的容值,可以调节该圆极化天线的工作频率。
其中,单独调节第一环形缝隙41和第二环形缝隙42中某一个二极管的容值,可以调节该圆极化天线的极化方式。
在本申请可选的实施例中,第一环形缝隙41和第二环形缝隙42分别设置有第一PIN二极管和第二PIN二极管,第一PIN二极管的一端连接于第一区域31,第一PIN二极管的另一端连接于第三区域33,第二PIN二极管的一端连接于第二区域32,第一PIN二极管的另一端连接于第三区域33。
其中,普通的二极管由PN结组成。在P和N半导体材料之间加入一薄层低掺杂的本征(Intrinsic)半导体层,组成的这种P-I-N结构的二极管就是PIN二极管。正因为有本征(Intrinsic)层的存在,PIN二极管应用很广泛,从低频到高频的应用都有,主要用在RF领域,用作RF开关和RF保护电路,也有用作光电二极管(Photo Diode)。PIN二极管包括PIN光电二极管和PIN开关二极管。
如图1和图2所示,在本申请可选的实施例中,第一环形缝隙41和第二环形缝隙42均为H型环,H型环的侧边均与中轴线不平行。
可以理解,第一环形缝隙41和第二环形缝隙42偏离中轴线的距离影响着该圆极化天线的回波损耗和插入损耗。因此,本领域技术人员可以根据实际型号设定两个矩形环的位置和设置角度。
在本申请可选的实施例中,第一环形缝隙41的侧边和第二环形缝隙42的侧边也不平行。
可以理解,第一环形缝隙41和第二环形缝隙42之间的角度及距离影响着该圆极化天线轴比。因此,本领域技术人员可以根据实际型号设定两个矩形环相对角度。
如图5和图6所示,在本申请可选的实施例中,直流偏置线60的末端设计有扇型结构80,防止直流信号干扰。
在本申请可选的实施例中,上层介质基板10具有与中轴线平行的第一边缘和第二边缘,所第一边缘和所述第二边缘述相对设置,第一金属板30 沿第一边缘延伸有第一金属条34,第一金属板30沿第二边缘延伸有第二金属条35,第一金属条34和第二金属条35上分别开设有第二导电通孔52;上层介质基板10的底面覆盖有第二金属板11,第二导电通孔52延伸至第二金属板11。
在本申请可选的实施例中,在中轴线的延伸方向上,第一金属板30的尺寸小于上层介质基板10的尺寸;第一金属板30在下层介质基板20的正投影区域为第四区域,下层介质基板20上除开第四区域的其他区域为第五区域;第五区域上设置有第三导电通孔53,第三导电通孔53与对应的第二导电通孔52对应导通。
在本申请可选的实施例中,下层介质基板20的底面上还设置有第三金属板91和第四金属板92,第三金属板91和第四金属板92均与第四区域不重叠,第三导电通孔53延伸至第三金属板91和第四金属板92上。
在本申请可选的实施例中,第一馈入端和第二馈入端均通过SMA连接器12馈入信号,且SMA连接器12分别通过对应的微带线匹配结构13与第一金属板30导通。
第二方面,本申请提供了天线调节方法,该方法应用于第一方面任一项的频率和极化方式可调圆极化天线,方法包括:
向第一环形缝隙和第二环形缝隙上的两个二极管同时分别加载第一容值和第二容值,保持第一容值和第二容值相同;
或者,
向第一环形缝隙和第二环形缝隙上的两个二极管同时分别加载第一容值和第二容值,保持第一容值和第二容值中的一个值不变,调节另一个值。
可以理解,同时调节设置于第一环形缝隙41和第二环形缝隙42上的两个二极管的容值,可以调节该圆极化天线的工作频率。
如图8至图10所示为本申请的圆极化天线在两个二极管同时加载不同的容值情况下的仿真回波损耗和插入损耗以及轴比随频率的变化图,可以看出当cELC谐振缝中加载的二极管的容值改变时,本申请的圆极化天线的 回波损耗和插入损耗以及轴比都随之改变,工作频率发生相应的偏移,由此可以说明本申请的圆极化天线实施例具有频率可调的功能。
可以理解,单独调节第一环形缝隙41和第二环形缝隙42中某一个二极管的容值,可以调节该圆极化天线的极化方式。
如图11至图13所示为本申请的圆极化天线实施例在保持一个二极管加载的容值不变,改变另一个二极管加载的容值情况下仿真回波损耗和插入损耗以及轴比随频率的变化图,可以看出当C1=C2=0.05pF时,天线在5.37GHz工作频率上AR值为1.84,本申请的天线实施例此时为圆极化状态,而当C1保持不变而C2变化至0.1pF和0.15pF时,本申请的天线实施例的在5.37GHz工作频率上AR值为6.97和10.09,此时天线已经由圆极化转化为线极化。由此可以说明本申请的圆极化天线实施例具有极化方式可调的功能。需要注意的是本实例中保持C1不变而改变C2只是为了说明本申请的极化可调功能,同理情况下,保持C2不变而改变C1的值也足以说明上述功能,因此两种调节方式都应属于本申请的保护范围。
在本公开的各种实施方式中所使用的表述“第一”、“第二”、“所述第一”或“所述第二”可修饰各种部件而与顺序和/或重要性无关,但是这些表述不限制相应部件。以上表述仅配置为将元件与其它元件区分开的目的。例如,第一用户设备和第二用户设备表示不同的用户设备,虽然两者均是用户设备。例如,在不背离本公开的范围的前提下,第一元件可称作第二元件,类似地,第二元件可称作第一元件。
以上描述仅为本申请的可选实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种频率和极化方式可调圆极化天线,其特征在于,包括:尺寸一致且重叠设置的上层介质基板和下层介质基板,
    所述上层介质基板的顶面设置有第一金属板;所述上层介质基板的相对两侧分别设置有分别与所述第一金属板导通的第一馈入端和第二馈入端;
    所述上层介质基板的中轴线沿所述第一馈入端朝向所述第二馈入端的方向延伸,所述第一金属板上且在所述中轴线的两侧分别设置有第一环形缝隙和第二环形缝隙;所述第一环形缝隙和所述第二环形缝隙所包围所述第一金属板的区域分别为第一区域和第二区域,所述第一金属板的其他区域为第三区域;
    所述第一区域和所述第二区域上均分别设置有一个第一导电通孔,所述第一导电通孔分别延伸至所述下层介质基板的底面与对应的直流偏置线电连接;
    所述第一环形缝隙和所述第二环形缝隙上还分别设置有两个二极管,所述第一环形缝隙上的所述二极管用于连通所述第一区域和所述第三区域,所述第二环形缝隙上的所述二极管用于连通所述第二区域和所述第三区域。
  2. 根据权利要求1所述的频率和极化方式可调圆极化天线,其特征在于,
    所述第一环形缝隙和所述第二环形缝隙分别设置有第一PIN二极管和第二PIN二极管,所述第一PIN二极管的一端连接于所述第一区域,所述第一PIN二极管的另一端连接于所述第三区域,所述第二PIN二极管的一端连接于所述第二区域,所述第一PIN二极管的另一端连接于所述第三区域。
  3. 根据权利要求1所述的频率和极化方式可调圆极化天线,其特征在 于,
    所述第一环形缝隙和所述第二环形缝隙均为H型环,所述H型环的侧边均不与所述中轴线平行。
  4. 根据权利要求3所述的频率和极化方式可调圆极化天线,其特征在于,
    所述第一环形缝隙的侧边不与所述第二环形缝隙的侧边平行。
  5. 根据权利要求1所述的频率和极化方式可调圆极化天线,其特征在于,
    所述直流偏置线的一端设计有扇型结构。
  6. 根据权利要求1所述的频率和极化方式可调圆极化天线,其特征在于,
    所述上层介质基板具有与所述中轴线平行的第一边缘和第二边缘,所第一边缘和所述第二边缘相对设置,所述第一金属板沿所述第一边缘延伸有第一金属条,所述第一金属板沿所述第二边缘延伸有第二金属条,所述第一金属条和所述第二金属条上分别开设有第二导电通孔;
    所述上层介质基板的底面覆盖有第二金属板,所述第二导电通孔延伸至所述第二金属板。
  7. 根据权利要求6所述的频率和极化方式可调圆极化天线,其特征在于,
    在所述中轴线的延伸方向上,所述第一金属板的尺寸小于所述上层介质基板的尺寸;
    所述第一金属板在所述下层介质基板的正投影区域为第四区域,所述下层介质基板上除所述第四区域外的其他区域为第五区域;
    所述第五区域上设置有第三导电通孔,所述第三导电通孔与对应的所述第二导电通孔对应导通。
  8. 根据权利要求7所述的频率和极化方式可调圆极化天线,其特征在 于,
    所述下层介质基板的底面上还设置有第三金属板和第四金属板,所述第三金属板和所述第四金属板均不与所述第四区域重叠,所述第三导电通孔分别延伸至所述第三金属板和所述第四金属板上。
  9. 根据权利要求1所述的频率和极化方式可调圆极化天线,其特征在于,
    所述第一馈入端和所述第二馈入端均通过SMA连接器馈入信号,且所述SMA连接器分别通过对应的微带线匹配结构与所述第一金属板导通。
  10. 一种天线调节方法,其特征在于,所述方法应用于如权利要求1至9任一项所述的频率和极化方式可调圆极化天线,所述方法包括:
    向所述第一环形缝隙和所述第二环形缝隙上的两个所述二极管同时分别加载第一容值和第二容值,保持所述第一容值和所述第二容值相同;
    或者,
    向所述第一环形缝隙和所述第二环形缝隙上的两个所述二极管同时分别加载第一容值和第二容值,保持所述第一容值和所述第二容值中的一个值不变,调节另一个值。
PCT/CN2021/136169 2021-11-30 2021-12-07 一种频率和极化方式可调圆极化天线和天线调节方法 WO2023097712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111454990.2 2021-11-30
CN202111454990.2A CN114204258B (zh) 2021-11-30 2021-11-30 一种频率和极化方式可调圆极化天线和天线调节方法

Publications (1)

Publication Number Publication Date
WO2023097712A1 true WO2023097712A1 (zh) 2023-06-08

Family

ID=80650041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136169 WO2023097712A1 (zh) 2021-11-30 2021-12-07 一种频率和极化方式可调圆极化天线和天线调节方法

Country Status (2)

Country Link
CN (1) CN114204258B (zh)
WO (1) WO2023097712A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100109962A1 (en) * 2008-11-04 2010-05-06 Wistron Neweb Corp. Circularly polarized antenna and an electronic device having the circularly polarized antenna
CN107026327A (zh) * 2017-03-13 2017-08-08 北京航空航天大学 一种半模基片集成波导漏波天线
CN107978869A (zh) * 2017-12-14 2018-05-01 南京航空航天大学 一种宽带多极化重构缝隙天线及其极化方法
CN210272694U (zh) * 2019-08-08 2020-04-07 深圳光启尖端技术有限责任公司 一种基片集成波导缝隙扫描天线
CN112467344A (zh) * 2020-09-30 2021-03-09 北京航空航天大学 一种基于基片集成波导的频率可重构天线及制备方法
CN113013622A (zh) * 2021-02-22 2021-06-22 深圳市环波科技有限责任公司 基于基片集成波导的波束可调圆极化阵列天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808439B2 (en) * 2007-09-07 2010-10-05 University Of Tennessee Reserch Foundation Substrate integrated waveguide antenna array
CN109004347B (zh) * 2018-08-07 2020-12-11 江西师范大学 圆极化及双圆极化波导阵列天线及其制作方法
CN214797747U (zh) * 2021-02-22 2021-11-19 深圳市环波科技有限责任公司 基于基片集成波导的波束可调圆极化阵列天线
CN113013627B (zh) * 2021-02-22 2022-11-15 深圳市环波科技有限责任公司 基于基片集成波导的可调控缝隙阵列天线
CN113472414A (zh) * 2021-08-20 2021-10-01 杭州腓腓科技有限公司 基于可重构全息超表面的串行天线波束成形方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100109962A1 (en) * 2008-11-04 2010-05-06 Wistron Neweb Corp. Circularly polarized antenna and an electronic device having the circularly polarized antenna
CN107026327A (zh) * 2017-03-13 2017-08-08 北京航空航天大学 一种半模基片集成波导漏波天线
CN107978869A (zh) * 2017-12-14 2018-05-01 南京航空航天大学 一种宽带多极化重构缝隙天线及其极化方法
CN210272694U (zh) * 2019-08-08 2020-04-07 深圳光启尖端技术有限责任公司 一种基片集成波导缝隙扫描天线
CN112467344A (zh) * 2020-09-30 2021-03-09 北京航空航天大学 一种基于基片集成波导的频率可重构天线及制备方法
CN113013622A (zh) * 2021-02-22 2021-06-22 深圳市环波科技有限责任公司 基于基片集成波导的波束可调圆极化阵列天线

Also Published As

Publication number Publication date
CN114204258A (zh) 2022-03-18
CN114204258B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
Deckmyn et al. Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems
US10218071B2 (en) Antenna and electronic device
Tang et al. Integration design of filtering antenna with load-insensitive multilayer balun filter
US6525623B2 (en) Multi-layer microwave circuits and methods of manufacture
US20100073238A1 (en) Microstrip patch antenna with high gain and wide band characteristics
US8570114B2 (en) Defected ground structure with shielding effect
US9711849B1 (en) Antenna reconfigurable circuit
US6975186B2 (en) Filter circuit
KR20040018130A (ko) 유전 공진기로 구성되는 광대역 안테나
US11217868B2 (en) Liquid crystal phase shifter and electronic device
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
Goel et al. A low-cost phased array antenna integrated with phase shifters cofabricated on the laminate
WO2021015961A1 (en) Patch antenna
Alkaraki et al. 10-GHz Low-Loss Liquid Metal SIW Phase Shifter for Phased Array Antennas
Al Khanjar et al. Highly reconfigurable patch coupler with frequency and power-dividing ratio control for millimeter-wave applications
US12074373B2 (en) Phased array antenna system and electronic device
WO2023097712A1 (zh) 一种频率和极化方式可调圆极化天线和天线调节方法
CN210296620U (zh) 一种宽带双圆极化贴片天线
US12068534B2 (en) Antenna unit, preparation method therefor, and electronic device
Hasan et al. A quad-polarization and beam agile array antenna using rat-race coupler and switched-line phase shifter
CN113193368A (zh) 介质谐振器天线、介质谐振器天线模组及电子设备
RU2670216C1 (ru) Планарный поляризационный селектор
Nakajima et al. A wideband 60GHz chip antenna
CN114336026B (zh) 一种毫米波天线
CN116979266B (zh) 微带滤波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE