WO2023097680A1 - 确定相邻分子的方法、装置、设计方法和电子设备 - Google Patents
确定相邻分子的方法、装置、设计方法和电子设备 Download PDFInfo
- Publication number
- WO2023097680A1 WO2023097680A1 PCT/CN2021/135459 CN2021135459W WO2023097680A1 WO 2023097680 A1 WO2023097680 A1 WO 2023097680A1 CN 2021135459 W CN2021135459 W CN 2021135459W WO 2023097680 A1 WO2023097680 A1 WO 2023097680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecules
- distance
- molecule
- molecular
- current target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000013461 design Methods 0.000 title claims abstract description 27
- 125000004429 atom Chemical group 0.000 claims description 159
- 125000004437 phosphorous atom Chemical group 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 9
- 238000009510 drug design Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 abstract description 7
- 230000008569 process Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 23
- 238000004364 calculation method Methods 0.000 description 22
- 238000004088 simulation Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000012900 molecular simulation Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 239000000306 component Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 2
- 239000011825 aerospace material Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005426 pharmaceutical component Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C10/00—Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
Definitions
- the invention relates to the technical field of calculation and simulation, in particular to a method, device, design method and electronic equipment for determining adjacent molecules.
- the present invention provides a method, device, design method and electronic equipment for determining adjacent molecules, which can reduce the computing resources consumed by determining adjacent molecules and improve the response speed.
- the first aspect of the present invention provides a method for determining adjacent molecules, the method comprising: determining the first distance between any two molecular models in the molecular models of M molecules; If the first distance between the two molecular models is greater than the first distance threshold, the adjacent molecules are determined from the Q target molecules except N molecules among the M molecules, wherein M, N and Q are greater than zero An integer of , and M is greater than or equal to N.
- the second aspect of the present invention provides a design method, which includes: determining adjacent molecules according to the above method; performing drug design or material design based on the adjacent molecules.
- the third aspect of the present invention provides a device for determining adjacent molecules, including: a first distance determining module and a first adjacent molecule determining module.
- the first distance determination module is used to determine the first distance between the molecular models of M molecules;
- the first adjacent molecule determination module is used to determine the molecular model of N molecules.
- the first distance between is greater than the first distance threshold, then determine the adjacent molecules from the Q target molecules except N molecules among the M molecules, wherein M, N and Q are integers greater than zero, and M is greater than or equal to N.
- a fourth aspect of the present invention provides an electronic device, including: a processor; and a memory, on which executable code is stored, and when the executable code is executed by the processor, the processor is made to execute the above method.
- a fifth aspect of the present invention also provides a computer-readable storage medium, on which executable codes are stored, and when the executable codes are executed by a processor of an electronic device, the processor is made to execute the above method.
- a sixth aspect of the present invention also provides a computer program product, including executable codes, and the above method is implemented when the executable codes are executed by a processor.
- the method, device, design method and electronic equipment for determining adjacent molecules provided by the present invention first determine the first distance between the molecular models of two molecules among the multiple molecules, so that it is convenient to quickly determine the space through the first distance. significantly non-adjacent molecules in , so that there is no need to calculate the distance between the atomic coordinates of the atoms in these apparently non-adjacent molecules.
- the technical solution of the present invention effectively reduces the problem of consuming a large amount of computing resources due to the need to calculate the distance between the atomic coordinates of all atoms of each molecule in the related art, effectively improves the utilization rate and response speed of computing resources, and reduces energy consumption.
- Figure 1 schematically shows a schematic diagram of the process of determining adjacent molecules in the related art
- Fig. 2 schematically shows a schematic diagram of the process of determining adjacent molecules according to an embodiment of the present invention
- FIG. 3 schematically shows a flowchart of a method for determining adjacent molecules according to an embodiment of the present invention
- Fig. 5 schematically shows a schematic diagram of a spherical molecular model according to an embodiment of the present invention
- Fig. 6 schematically shows a schematic diagram of molecular center coordinates according to an embodiment of the present invention
- Fig. 7 schematically shows a schematic diagram of a first distance according to an embodiment of the present invention.
- Fig. 8 schematically shows a schematic diagram of a second distance according to an embodiment of the present invention.
- Fig. 9 schematically shows a schematic diagram of a third distance according to an embodiment of the present invention.
- Fig. 10 schematically shows a flow chart of a design method according to an embodiment of the present invention.
- Fig. 11 schematically shows a structural block diagram of a device for determining adjacent molecules according to an embodiment of the present invention
- Fig. 12 schematically shows a structural block diagram of a design device according to an embodiment of the present invention.
- Fig. 13 schematically shows a block diagram of an electronic device implementing a method for determining adjacent molecules according to an embodiment of the present invention.
- first, second, third and so on may be used in the present invention to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present invention, first information may also be called second information, and similarly, second information may also be called first information. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more, unless otherwise specifically defined.
- Molecular simulation refers to the use of theoretical methods and computer technology to simulate the structure and physical and chemical properties of molecules or molecular systems.
- Neighboring molecules means that when at least some atoms in the first molecule and at least some atoms in the second molecule meet the adjacent distance threshold, then the first molecule and the second molecule can be called adjacent molecules .
- a coordinate system is a reference to describe the position and attitude of an object, so it is also called a frame of reference or a frame of reference.
- the coordinate system may be a coordinate system created during simulation, such as Cartesian coordinates.
- Coordinates are used to represent the absolute position of an object in a specific coordinate system. In mathematics, the essence of coordinates is an ordered logarithm.
- the adjacent molecules of a molecule can be calculated, which involves the calculation process and judgment process of whether every two molecules in the molecular system are adjacent molecules.
- it is possible to determine whether two molecules are adjacent molecules by calculating whether the distance between all atoms between each two molecules meets the distance threshold between adjacent molecules.
- the inventor has conducted a lot of research and analysis on the above problems, and found the following problems in the related technology: In the molecular system, if two molecules are far apart in the designated coordinate system and are obviously not adjacent molecules, the related technology is still It is necessary to calculate the distance between all atoms in the two molecules, and compare the distance with the distance threshold. This calculation process not only has a large amount of calculation and high calculation cost, but also belongs to useless calculation, which leads to a great waste of calculation resources.
- Fig. 1 schematically shows a schematic diagram of the process of determining adjacent molecules in the related art.
- Fig. 1 only shows the calculation process of the distances i 1 and i 2 between two atoms in the first molecule (indicated by bold circles) and each atom in the second molecule.
- the distance between each atom in the first molecule and each atom in the second molecule needs to be calculated separately, such as the distance between any atom in the first molecule and any atom in the second molecule is less than distance threshold, it is determined that the first molecule and the second molecule are adjacent molecules, such as the distance between any atom in the first molecule and any atom in the second molecule is greater than the distance threshold, then it is determined that the first molecule and the second molecule are The second molecule is a non-adjacent molecule.
- Fig. 2 schematically shows a schematic diagram of a process of determining adjacent molecules according to an embodiment of the present invention.
- the distance i 3 between the molecules 10 is firstly determined. Specifically, the geometric center coordinates of each molecule 10, such as the center or center of gravity, can be determined first, and then the approximate distance between the molecules 10 can be determined based on the distance between the geometric center coordinates of each molecule and the size of each molecule model. After the approximate distance between the molecules 10 is determined, the process of measuring/calculating the molecules 10 that are far apart as adjacent molecules can be eliminated, which can effectively save computing resources and speed up the process of matching in molecular systems containing multiple molecules. Judgment efficiency of neighboring molecules.
- the distance between all the atoms 11 of the two molecules 10 first calculate the distance i 3 between the two molecules 10, if the distance i 3 is greater than the distance threshold, then it can be determined that the distance between the two molecules 10 Impossible to be adjacent, there is no need to continue to calculate the distance between all the atoms of these two molecules 10 . This greatly reduces the number of times to calculate the distance between atoms and effectively saves computing resources.
- FIG. 3 schematically shows a flowchart of a method for determining adjacent molecules according to an embodiment of the present invention.
- this embodiment provides a method for determining adjacent molecules, the method includes operation S310 to operation S320, specifically as follows:
- M can be the number set by the user when performing molecular system simulation.
- M can be an integer greater than zero, and the unit of M can be one, ten, one hundred, one thousand, ten thousand, one hundred thousand, Millions or other counting units, etc.
- Molecules can be inorganic molecules or organic molecules, and each molecule is composed of at least two atoms, which is not limited here.
- the molecule may be a molecule of a pharmaceutical component, a molecule of a building material, or a molecule of an aviation or aerospace material, etc.
- the above method may further include: determining the molecular center coordinates of each of the M molecular models, so that based on the M molecular The center coordinates determine the first distance between any two molecular models in the molecular models of the M molecules.
- each molecular system there may be molecular models containing M molecules.
- M molecules there may be molecular models containing M molecules.
- the geometric center coordinates as the molecular center coordinates and a specified size.
- the molecule includes P atoms
- the geometric center coordinates are the weighted average geometric coordinates of the atomic coordinates of at least some of the atoms in the specified coordinate system, and P is an integer greater than zero.
- the molecular model construction process is not an operation that needs to be performed every time adjacent molecules are determined.
- molecular models constructed over historical periods can be employed.
- molecular models can be directly input, which is not limited here.
- the designated coordinate system may be a Cartesian coordinate system, a polar coordinate system, or the like.
- Each molecule can include multiple atoms, and each atom has atomic coordinates in this specified coordinate system to represent the spatial position of each atom.
- coordinates in different coordinate systems can be transformed. For example, it is easier to express the coordinates of spatial points within a certain angle range in the polar coordinate system. When you need to process objects within a certain angle range, you can first convert to the polar coordinate system for processing, and then convert after the processing is completed Cartesian coordinate system for subsequent processing.
- the same coordinate system in particular a spatial coordinate system, can be used in the determination of neighboring molecules.
- some or all of the molecular center coordinates, atomic coordinates, geometric center coordinates, and spherical center coordinates are coordinates in the same coordinate system. It should be understood that some or all of the molecular center coordinates, atomic coordinates, geometric center coordinates, and spherical center coordinates may be coordinates in different coordinate systems, but the coordinates in each coordinate system can be converted to each other.
- the weights of each atom in a molecule can be the same or different.
- the weights of the atoms in each region of the molecule are the same, or the weights of the atoms in the denser regions are greater, or the weights of the atoms in the denser regions are smaller, or the weights of atoms with larger atomic masses are greater.
- the molecular center coordinates may be the average coordinates of all atoms of the molecule in the designated coordinate system (ie, the center coordinates of all atoms) as the molecular center coordinates of the molecule.
- the molecular center coordinates may be the average coordinates of the two atoms farthest apart in the molecule in the specified coordinate system (ie, the center coordinates of the two atoms farthest apart).
- the direction of the connection line between the two furthest first atoms in the molecule is taken as the first direction, and the two furthest second atoms are searched in the second direction perpendicular to the first direction.
- the molecular central coordinates may be the average coordinates of the first atom and the second atom in the designated coordinate system (ie, the central coordinates between the two first atoms and the two second atoms).
- the above method before determining the first distance between any two molecular models in the molecular models of the M molecules, the above method further includes: determining the respective sizes of the M molecular models, based on the M molecular center coordinates and M dimensions determine the first distance between any two molecular models in the molecular models of M molecules, wherein the dimensions include the distance between the atomic coordinates of the specified atoms in the P atoms and the molecular center coordinates, wherein the specified atoms include At least one of the specified number of atoms farthest from the coordinates of the center of the molecule and the atom farthest from the coordinates of the center of the molecule within the preset angle range.
- the size of a molecular model can be used to indicate the size of the space occupied by the molecular model in a specified coordinate system.
- the size can be determined according to the distance between the farthest atomic models in the molecular model.
- the distance can be used as the maximum dimension of the molecular model in a certain direction, etc., specifically, it can be side length, diameter, etc. This facilitates the realization that the first distance between the boundaries of the two molecular models is determined based on the molecular center coordinates and dimensions.
- determining the first distance between any two molecular models in the molecular models of the M molecules may include any one of the following operations.
- the distance between the outer contours of the molecular models corresponding to any two molecules is determined.
- the distance between molecular center coordinates of molecular models corresponding to any two molecules is determined.
- the distance between the outer contour of the molecular model corresponding to one of any two molecules and the molecular center coordinates of the molecular model corresponding to the other molecule is determined.
- the distance between two molecules can be calculated based on their molecular center coordinates.
- the molecular center coordinate 1 is (x1, y1)
- the molecular center coordinate 2 is (x2, y2)
- the distance D can be shown in formula (1).
- the factor of molecular size can be removed from the distance. For example, after the distance between the centers of the two molecules is determined based on the coordinates of the centers of the two molecules, the distance occupied by the two molecules can be subtracted from the first distance.
- one or both of the sphere radii of the spherical form can be subtracted from the distance D.
- one or two half the cube side lengths can be subtracted from the distance D.
- the first distance threshold may be obtained according to expert experience or simulation.
- determining neighboring molecules from the Q target molecules other than the N molecules among the M molecules may include the following operations.
- any fourth distance is less than a fourth distance threshold, it can be determined that the current target molecule and the non-current target molecule are adjacent.
- calculate the distance between the atoms of different molecules in all Q target molecules can be determined by calculating the atomic coordinates
- judge whether the molecules that the atoms belong to are adjacent to each other according to the distance between the atomic coordinates .
- the above method may further include the following operation, performing at least one of drug design or material design based on adjacent molecules. Specifically, after the adjacent molecules are determined from a large number of molecules, it is convenient to simulate the structure and physical and chemical properties of molecules or molecular systems at least based on the adjacent molecules, and improve the efficiency of the development of new materials or new functions of materials.
- the method for determining adjacent molecules provided by the embodiments of the present invention can quickly calculate and filter molecules that are far apart in space, and greatly reduce the distance calculation process between atoms of non-adjacent molecules.
- the embodiment of the present invention effectively improves the response speed of determining adjacent molecules and reduces the consumption of computing resources without reducing the accuracy of determining adjacent molecules.
- Determining the distance between the molecular center coordinates of two molecules in the M molecules may include the following operations: First, construct a molecular model with a specified size centered on the weighted average geometric coordinates, wherein the specified size is the same as that of some atoms in the P atoms. The atomic coordinates of are related to the distance between the molecular center coordinates. Then, for any two molecules among the M molecules, the distance between the weighted average geometric coordinates corresponding to any two molecules is determined. Wherein, the above-mentioned partial atoms may be atoms far apart in the molecule.
- the above-mentioned partial atoms may be the designated atoms farthest apart in the molecule, and the designated number may be two, three, five, etc., such as the five atoms with the largest distance (Top 5 atoms).
- the molecular model includes any one of a spherical model and a three-dimensional geometric model with straight sides, wherein the spherical model takes the coordinates of the center of the molecule as the center of the sphere and takes the size as the radius.
- FIG. 4A to 4C schematically illustrate schematic diagrams of molecular models according to embodiments of the present invention.
- the molecular model can be spherical, and the construction process of the spherical model is relatively convenient. It only needs to determine the coordinates of the spherical center and the spherical radius.
- the coordinates of the center of the molecule can be used as the coordinates of the center of the sphere, and the distance between the two furthest atoms in the molecule can be used as the radius or diameter of the sphere.
- the distance between the outer contours of the molecular models corresponding to any two molecules may include: for a spherical model, the distance between the molecular center coordinates of the molecular models corresponding to any two molecules minus the The respective radii of the molecular models corresponding to any two molecules, where the spherical model takes the coordinates of the center of the molecule as the center of the sphere and the size as the radius of the sphere.
- the molecular model may be a hexahedron.
- the center of the hexahedron can be the coordinates of the center of the molecule, and at least two vertices of the hexahedron can be the two atoms that are farthest apart in the molecule.
- the other vertices of the hexahedron may be atomic coordinates in the first plane, and the first plane intersects with the line where the two atoms farthest away are located, such as being perpendicular to each other.
- the molecular model may be octahedral.
- the center of an octahedron can be the coordinates of the center of the molecule. Taking the coordinates of the center of the molecule as the origin, the space is divided into eight subspaces, and then the atoms farthest from the origin in each subspace are determined, and these atoms are used as the atoms of the octahedron. fixed point.
- the above methods for constructing molecular models are only illustrative, and are not limited here.
- the molecular model can also be a three-dimensional model with more faces, such as a football-shaped polyhedron.
- the molecular model can also be a three-dimensional model constructed by straight and curved sides, such as a cylinder.
- the designated size includes the distance between the atomic coordinates of the designated atoms among the P atoms and the molecular center coordinates, wherein the designated atoms include the designated atoms that are farthest from the molecular center coordinates within the preset angle range. At least one of the number of atoms and the furthest from the coordinates of the center of the molecule.
- the preset angle range may refer to an angle range in a polar coordinate system.
- the angle range may be represented by a first angle range and a second angle range
- the first angle range is an angle range in a horizontal plane
- the second angle range is an angle range in a plane perpendicular to the horizontal plane.
- the space corresponding to the preset angle range in the polar coordinate system can be converted into a coordinate range in the Cartesian coordinate system.
- the preset angle range can be continuous or discontinuous.
- the first angle range may include 0°-360°, or 0°-30°, 60°-90°, 120°-150°, 180°-210°, 240°-270°, 300°-330° °.
- the specified number can be adjusted, such as 1, 2, 3, 5, 10 or more. There may be long-chain molecules in the molecular system.
- the specified number is 1 and the molecular center coordinates are used to determine adjacent molecules, it may result in a large number of suspected adjacent molecules (also called candidate adjacent molecules, due to the distance threshold between molecules and The atom farthest from the molecular center coordinates in the molecule is related to the distance between the molecular center coordinates, the larger the distance threshold between molecules is set, the more suspected adjacent molecules are obtained). This may result in the need to calculate too many distances between atoms in actual non-adjacent molecules, making the response speed slow.
- the response speed can be significantly improved and the consumption of computing resources can be reduced without significantly reducing the accuracy of determining adjacent molecules.
- Fig. 5 schematically shows a schematic diagram of a spherical molecular model according to an embodiment of the present invention.
- a spherical model is taken as an example for illustration. At least some atoms may be included in the spherical space, and the center of the spherical model is the point where the molecular center coordinates are located.
- Fig. 6 schematically shows a schematic diagram of molecular center coordinates according to an embodiment of the present invention.
- the coordinate system has an X axis, a Y axis, and a Z axis, and any point in space can be represented by coordinates (x, y, z).
- Fig. 7 schematically shows a schematic diagram of a first distance according to an embodiment of the present invention.
- FIG. 7 it shows a schematic diagram of the calculation principle of the distance between two spherical models.
- the distance D between O1 and O2 can be calculated using formula (1).
- the distance I 1 between the two spherical models can then be obtained by subtracting the spherical radius of the spherical model of the first molecule and the spherical radius of the spherical model of the second molecule from the distance D.
- determining neighboring molecules from the Q target molecules other than the N molecules among the M molecules may include the following operations.
- non-current target molecules are molecules other than the current target molecule among the Q target molecules: First, determine the atomic coordinates of at least some atoms in the current target molecule and the non-current target molecules A second distance between outer contours of molecular models of target molecules. Then, if any second distance is less than a second distance threshold, it is determined that the non-current target molecule is a candidate neighbor molecule of the current target molecule.
- the distance between the atoms in the current target molecule and the outer contours of non-current target molecules is also calculated, which helps Further reduce the atom-to-atom distances that need to be calculated.
- the above method may further include the following operation: if it is determined that all the second distances for the current target molecule are greater than or equal to the second distance threshold, then determine that there is no difference between the current target molecule and all non-current target molecules. adjacent.
- the distance between all atoms in the current target molecule and the outer contour of the non-current target molecule is greater than the second distance threshold, it indicates that the current target molecule and the non-current target molecule cannot be adjacent, and there is no need to calculate the two The distance between atoms in a molecule.
- first distance threshold and the second distance threshold may be the same or different.
- Fig. 8 schematically shows a schematic diagram of the second distance according to an embodiment of the present invention.
- a spherical model is taken as an example for illustration.
- the current target molecule includes multiple atoms, and the distance I 2 between each atom and the outer contour of the non-current target molecule can be calculated respectively. Specifically, the distance between the current atomic coordinates and the geometric center coordinates of the non-current target molecule can be calculated, and then the distance I 2 can be obtained by subtracting the spherical radius of the spherical model of the non-current target molecule from the distance.
- the above method may further include the following operations.
- a third distance between the respective atomic coordinates of at least some of the atoms in the current target molecule and the respective atomic coordinates of at least some of the atoms in the candidate neighboring molecule is determined.
- at least part of the atoms in the current target molecule may be atoms whose second distance between the current target molecule and the outer contour of the molecular model of the non-current target molecule is smaller than a second distance threshold.
- at least some of the atoms in the current target molecule may be molecules that are far from the molecular center coordinates of the current target molecule.
- any third distance is smaller than a third distance threshold, it is determined that the candidate neighbor molecule is adjacent to the current target molecule.
- the above method may further include: if all the third distances are greater than or equal to the third distance threshold, determining that the current target molecule is not adjacent to the candidate adjacent molecule.
- the third distance threshold may be the same as or different from the first distance threshold and the second distance threshold, which is not limited here.
- Fig. 9 schematically shows a schematic diagram of a third distance according to an embodiment of the present invention.
- the distance between the atoms in the current target molecule and the atoms in the non-current target molecule can be calculated through their respective coordinates.
- formula (1) can be used to calculate the distance between the atomic coordinates corresponding to the atoms in the current target molecule and the atomic coordinates corresponding to the atoms in the non-current target molecule.
- calculation method of the third distance can be the same as the calculation method of the fourth distance, and the specific calculation process of the fourth distance will not be described in detail here.
- the fourth distance threshold may be the same as or different from the first distance threshold, the second distance threshold, and the third distance threshold.
- the determination of adjacent molecules can generally be achieved through the following four steps.
- the first two steps are not necessary.
- the molecular center coordinates and the maximum distance between the atomic coordinates in the molecule and the molecular center coordinates can be input by the user, which is not limited here.
- the distances between all atomic coordinates in a molecule and the molecular center coordinates of the molecule can be calculated to obtain the maximum distance between all atoms and the molecular center. Repeat the above operations to calculate the maximum distance between the atoms of all molecules in the molecular simulation system and the center of the molecule.
- molecular and atomic models can be constructed, such as a spherical model for each molecule separately.
- a spherical model for each molecule can be constructed, such as a spherical model for each molecule separately.
- the maximum distance between the atomic coordinates and the molecular center coordinates is the radius of the sphere to construct a spherical model.
- Neighbors for each molecule can then be calculated.
- the following takes the molecule A and the molecule B as spherical models as an example for illustration.
- it may first be judged whether the distance between the spherical models corresponding to the two molecules satisfies the distance threshold of adjacent molecules. For example, it can be judged whether the distance between the molecular center coordinates of two molecules minus the sum of the spherical radii of the two molecules is less than the distance threshold of adjacent molecules.
- Two molecules may be determined to be non-adjacent if the distance between the two spherical models is greater than or equal to the distance threshold for adjacent molecules. Therefore, it is no longer necessary to calculate the pairwise distances of all atoms between molecule A and molecule B. In this embodiment, molecules that are relatively far away and obviously not adjacent in space can be quickly determined, effectively increasing the speed of determining adjacent molecules, and improving the utilization rate of computing resources.
- the distance between the spherical models corresponding to molecule A and molecule B is less than the distance threshold of adjacent molecules, it can be further judged whether the distance between each atom in molecule A and molecule B satisfies the distance of adjacent molecules threshold. For example, it is calculated whether the distance between the atomic coordinates of each atom of molecule A and the outer contour of molecule B is smaller than the distance threshold of neighboring molecules.
- the distance between the atomic coordinates of each atom of molecule A and the outer contour of molecule B can be determined by calculating the distance between the atomic coordinates of each atom of molecule A and the molecular center coordinates of molecule B, and subtracting Go to the spherical radius of the spherical model of molecule B.
- molecule A is adjacent to molecule B.
- the distances between multiple atoms in molecule A and the spherical model of molecule B are all smaller than the distance threshold of adjacent molecules, you can traverse the distances between the multiple atoms in molecule A and the atoms of molecule B .
- multiple distances between an atom in molecule A and each atom in molecule B may be calculated first. If the multiple distances are all greater than or equal to the distance threshold between adjacent molecules, the distance between the next atom among the multiple atoms in the molecule A and each atom in the molecule B is calculated according to the above method. If the distances between the plurality of atoms in molecule A and all the atoms in molecule B are greater than or equal to the distance threshold, it can be determined that molecule A and molecule B are not adjacent to each other.
- each molecule in the molecular simulation system is constructed as a spherical model, and by judging the distance between the two spherical models, two molecules that are obviously not adjacent molecules in space can be quickly determined.
- atoms in molecule A that are farther away from molecule B in space can be quickly determined and filtered. This process can avoid directly calculating the atomic distance between all atoms between molecule A and molecule B.
- the above method will greatly reduce the calculation amount of adjacent molecules in the molecular simulation process, effectively reduce computing resources, improve computing efficiency, and reduce computing costs. When the above method is applied to drug design and new material development, it can effectively increase the speed of drug design and new material development.
- Whether two molecules are adjacent to each other is determined by the above method, which avoids directly calculating the distance between all atoms between the two molecules. This method can quickly calculate whether all molecules in the molecular simulation system are adjacent molecules, and consume less computing resources.
- Another aspect of the present invention also provides a design method.
- Fig. 10 schematically shows a flow chart of a design method according to an embodiment of the present invention.
- the above design method includes operation S1010 to operation S1020.
- Another aspect of the present invention provides a device for determining adjacent molecules.
- Fig. 11 schematically shows a structural block diagram of an apparatus for determining adjacent molecules according to an embodiment of the present invention.
- the device 1100 for determining adjacent molecules may include: a first distance determining module 1110 and a first adjacent molecule determining module 1120 .
- the first distance determination module 1110 is used to determine the first distance between any two molecular models in the molecular models of M molecules.
- the first neighbor molecule determination module 1120 is used for determining that the first distance between any two molecular models in the molecular models of N molecules is greater than the first distance threshold, then from among the M molecules except for the N molecules, Q Neighboring molecules are determined among target molecules, wherein M, N and Q are integers greater than zero, and M is greater than or equal to N.
- the above-mentioned device 1100 further includes: a molecular center coordinate determination module, used to determine the respective molecules of the M molecular models before determining the first distance between any two molecular models in the molecular models of the M molecules
- the central coordinates are used to determine the first distance between any two molecular models in the molecular models of the M molecules based on the central coordinates of the M molecules.
- the molecule includes P atoms
- the geometric center coordinates are the weighted average geometric coordinates of the atomic coordinates of at least some of the atoms in the P atoms in the specified coordinate system
- P is an integer greater than zero.
- the above-mentioned device 1100 further includes: a size determination module, used to determine the respective sizes of the M molecular models before determining the first distance between any two molecular models in the molecular models of the M molecules, so as to The first distance between any two molecular models in the molecular models of the M molecules is determined based on the central coordinates of the M molecules and the M dimensions.
- a size determination module used to determine the respective sizes of the M molecular models before determining the first distance between any two molecular models in the molecular models of the M molecules, so as to The first distance between any two molecular models in the molecular models of the M molecules is determined based on the central coordinates of the M molecules and the M dimensions.
- the size includes the distance between the atomic coordinates of the specified atoms in the P atoms and the molecular center coordinates, wherein the specified atoms include the specified number of atoms farthest from the molecular center coordinates within the preset angle range, and the distance from the molecular center At least one of the atoms with the furthest coordinates.
- the first distance determining module 1110 includes: any one of a first molecular distance determining unit, a second molecular distance determining unit, or a third molecular distance determining unit.
- the first molecular distance determining unit is used for determining, for any two molecules among the M molecules, the distance between the outer contours of the molecular models corresponding to any two molecules.
- the second molecular distance determining unit is used for determining, for any two molecules among the M molecules, the distance between molecular center coordinates of molecular models corresponding to any two molecules.
- the third molecular distance determination unit is used to determine the distance between the outer contour of the molecular model corresponding to one of the two molecules and the molecular center coordinates of the molecular model corresponding to the other molecule for any two molecules among the M molecules distance.
- the molecular model includes any of a spherical model, a solid geometric model with straight sides.
- the distance between the outer contours of the molecular models corresponding to any two molecules includes: for a spherical model, the distance between the geometric center coordinates of the molecular models corresponding to any two molecules minus the molecular model corresponding to any two molecules The respective radii, in which, the spherical model takes the molecular center coordinates as the spherical center coordinates, and takes the size as the radius.
- the first neighboring molecule determining module 1120 includes: a second distance determining unit, a second neighboring molecule determining unit, and a traversing unit.
- the second distance determination unit is used to determine the second distance between the atomic coordinates of at least some atoms in the current target molecule and the outer contour of the molecular model of the non-current target molecule.
- the non-current target molecules are molecules other than the current target molecule among the Q target molecules.
- the second neighboring molecule determining unit is configured to determine that the non-current target molecule is a candidate neighboring molecule of the current target molecule if the second distance is smaller than the second distance threshold.
- the traversal unit is configured to repeatedly execute the second distance determination unit and the candidate neighbor molecule determination unit until all non-current target molecules are traversed.
- the above-mentioned apparatus 1100 further includes: a second non-adjacent molecule determination module.
- the second non-adjacent molecule determining module is configured to determine that the current target molecule and all non-current target molecules are non-adjacent if it is determined that all second distances to the current target molecule are greater than or equal to the second distance threshold.
- the above-mentioned apparatus 1100 further includes: a third distance determining module and a third adjacent molecule determining module.
- the third distance determining module is used for each candidate neighboring molecule for the current target molecule, to determine the distance between the respective atomic coordinates of at least some of the atoms in the current target molecule and the respective atomic coordinates of at least some of the atoms in the candidate neighboring molecules third distance.
- the third neighboring molecule determination module is used to determine that the candidate neighboring molecule is adjacent to the current target molecule if the third distance is smaller than the third distance threshold.
- At least some of the atoms in the current target molecule are atoms whose second distance between the current target molecule and the outer contour of the molecular model of the non-current target molecule is less than a second distance threshold.
- the above-mentioned apparatus 1100 further includes: a third non-adjacent molecule determination module.
- the third non-adjacent molecule determining module is used to determine that the current target molecule is not adjacent to the candidate adjacent molecule if the third distance is greater than or equal to the third distance threshold.
- the first neighboring molecule determining module 1120 further includes: a fourth distance determining unit and a fourth neighboring molecule determining unit.
- the fourth distance determination unit is used to determine, for each of the Q target molecules, the fourth distance between the respective atomic coordinates of at least some of the atoms in the current target molecule and the respective atomic coordinates of at least some of the atoms in the non-current target molecule , where the non-current target molecule is the molecule in the Q target molecules except the current target molecule.
- the fourth adjacent molecule determining unit is configured to determine that the current target molecule and the non-current target molecule are adjacent if the fourth distance is less than a fourth distance threshold.
- Another aspect of the present invention also provides a design device.
- Fig. 12 schematically shows a structural block diagram of a design device according to an embodiment of the present invention.
- the design device 1200 may include: an adjacent molecule determination module 1210 and a design module 1220 .
- the adjacent molecule determining module 1210 is used for determining adjacent molecules using the above-mentioned apparatus 1100 for determining adjacent molecules.
- the design module 1220 is used for drug design or material design based on neighboring molecules.
- Another aspect of the present invention also provides an electronic device.
- Fig. 13 schematically shows a block diagram of an electronic device implementing a method for determining adjacent molecules according to an embodiment of the present invention.
- an electronic device 1300 includes a memory 1310 and a processor 1320 .
- the processor 1320 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), on-site Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
- the memory 1310 may include various types of storage units such as system memory, read only memory (ROM), and persistent storage.
- the ROM may store static data or instructions required by the processor 1320 or other modules of the computer.
- the persistent storage device may be a readable and writable storage device.
- Persistent storage may be a non-volatile storage device that does not lose stored instructions and data even if the computer is powered off.
- the permanent storage device adopts a mass storage device (such as a magnetic or optical disk, flash memory) as the permanent storage device.
- the permanent storage device may be a removable storage device (such as a floppy disk, an optical drive).
- the system memory can be a readable and writable storage device or a volatile readable and writable storage device, such as dynamic random access memory.
- System memory can store some or all of the instructions and data that the processor needs at runtime.
- memory 1310 may include any combination of computer-readable storage media, including various types of semiconductor memory chips (eg, DRAM, SRAM, SDRAM, flash memory, programmable read-only memory), and magnetic and/or optical disks may also be used.
- memory 1310 may include a readable and/or writable removable storage device, such as a compact disc (CD), a read-only digital versatile disc (e.g., DVD-ROM, dual-layer DVD-ROM), Read-only Blu-ray Disc, Super Density Disc, Flash memory card (such as SD card, min SD card, Micro-SD card, etc.), magnetic floppy disk, etc.
- a readable and/or writable removable storage device such as a compact disc (CD), a read-only digital versatile disc (e.g., DVD-ROM, dual-layer DVD-ROM), Read-only Blu-ray Disc, Super Density Disc, Flash memory card (such as SD card, min SD card, Micro-SD card, etc.), magnetic floppy disk, etc.
- Computer-readable storage media do not contain carrier waves and transient electronic signals transmitted by wireless or wire.
- Executable codes are stored in the memory 1310 , and when the executable codes are processed by the processor 1320 , the processor 1320 may execute part or all of the methods mentioned above.
- the method according to the present invention can also be implemented as a computer program or computer program product, the computer program or computer program product including computer program code instructions for executing some or all of the steps in the above method of the present invention.
- the present invention can also be implemented as a computer-readable storage medium (or non-transitory machine-readable storage medium or machine-readable storage medium), on which executable code (or computer program or computer instruction code) is stored,
- executable code or computer program or computer instruction code
- the processor of the electronic device or server, etc.
- the processor is made to perform part or all of the steps of the above method according to the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种确定相邻分子的方法、装置、设计方法和电子设备。该方法包括:确定M个分子的分子模型中两两分子模型之间的第一距离;如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。本发明提供的方案,能够降低确定相邻分子所消耗的计算资源,并且提升响应速度。
Description
本发明涉及计算模拟技术领域,尤其涉及一种确定相邻分子的方法、装置、设计方法和电子设备。
随着计算机技术和基础学科理论的快速发展,分子模拟的计算效率和精度都获得极大提高,使得分子模拟在多学科领域得到广泛应用。其中,确定相邻分子是分子模拟中的重要部分。
相关技术为了确定各分子之间是否相邻,可以通过计算各分子的所有原子之间的距离,并且根据所有原子之间的距离确定各分子之间是否相邻。但是,在分子体系的模拟中,可能存在几十万或更多的分子,导致需要消耗大量计算资源。
发明内容
为解决或部分解决相关技术中存在的问题,本发明提供一种确定相邻分子的方法、装置、设计方法和电子设备,能够降低确定相邻分子所消耗的计算资源,并且提升响应速度。
本发明的第一个方面提供了一种确定相邻分子的方法,上述方法包括:确定M个分子的分子模型中两两分子模型之间的第一距离;如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。
本发明的第二个方面提供了一种设计方法,该设计方法包括:根据如上述的方法确定相邻分子;基于相邻分子进行药物设计或者材料设计。
本发明的第三方面提供了一种确定相邻分子的装置,包括:第一距离确定模块和第一相邻分子确定模块。其中,第一距离确定模块用于确定M个分子的分子模型中两两分子模型之间的第一距离;第一相邻分子确定模块用于如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。
本发明的第四方面提供了一种电子设备,包括:处理器;存储器,其上存储有可执行代码,当上述可执行代码被处理器执行时,使得处理器执行上述方法。
本发明的第五方面还提供了一种计算机可读存储介质,其上存储有可执行代码,当可执行代码被电子设备的处理器执行时,使处理器执行上述方法。
本发明的第六方面还提供了一种计算机程序产品,包括可执行代码,可执行代码被处理器执行时实现上述方法。
本发明提供的确定相邻分子的方法、装置、设计方法和电子设备,先确定与多个分子中的两两分子的分子模型之间的第一距离,这样便于通过该第一距离快速确定空间中明显不相邻的分子,使得无需计算这些明显不相邻的分子中各原子的原子坐标之间的距离。本发明的技术方案有效减少了相关技术中因需要计算各分子的所有原子的原子坐标之间的距离,造成消耗大量计算资源的问题,有效提升计算资源利用率和响应速度,降低能耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
通过结合附图对本发明示例性实施方式进行更详细地描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。
图1示意性示出了相关技术中的确定相邻分子的过程示意图;
图2示意性示出了根据本发明实施例的确定相邻分子的过程示意图;
图3示意性示出了根据本发明实施例的确定相邻分子的方法的流程图;
图4A至图4C示意性示出了根据本发明实施例的分子模型的示意图;
图5示意性示出了根据本发明实施例的球形分子模型的示意图;
图6示意性示出了根据本发明实施例的分子中心坐标的示意图;
图7示意性示出了根据本发明实施例的第一距离的示意图;
图8示意性示出了根据本发明实施例的第二距离的示意图;
图9示意性示出了根据本发明实施例的第三距离的示意图;
图10示意性示出了根据本发明实施例的一种设计方法的流程图;
图11示意性示出了根据本发明实施例的一种确定相邻分子的装置的结构框图;
图12示意性示出了根据本发明实施例的一种设计装置的结构框图;
图13示意性示出了实现本发明实施例的一种确定相邻分子的方法的电子设备的方框图。
下面将参照附图更详细地描述本发明的实施方式。虽然附图中显示了本发明的实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在此使用的术语“包括”、“包含”等表明了特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
应当理解,尽管在本发明可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在对本发明的技术方案进行描述之前,先对本发明涉及的本领域的部分技术术语进行说明。
分子模拟,是指利用理论方法和计算机技术,模拟分子或分子体系的结构和物理化学性质。
相邻分子,是指当第一个分子中至少部分原子与第二分子中至少部分原子之间符合相邻距离阈值,则第一个分子和第二个分子之间可以互相称为相邻分子。
坐标系(Frame),是描述物体位置和姿态的参考,因此也被称为参考系或参照系。例如,坐标系可以是在进行仿真模拟时创建的坐标系,如笛卡尔坐标系(Cartesian coordinates)。
坐标,是用于表示对象在特定坐标系下的绝对位置,在数学上坐标的实质是有序对数。
在分子体系的模拟过程中,可以计算一个分子的相邻分子,涉及分子体系中每两 个分子间是否为相邻分子的计算过程和判断过程。相关技术中为了实现确定相邻分子,可以通过计算每两个分子间的所有原子两两之间的距离是否存在符合相邻分子间的距离阈值,确定两个分子是否为相邻分子。
具体地,相关技术在确定相邻分子的过程中,需要计算分子体系中所有分子间的所有原子两两之间的原子距离。然后,将该原子距离与相邻分子的距离阈值进行比较,来判断某两个分子之间是否相邻。上述方法涉及的计算方法虽然简单,但是计算量大,效率较低,导致浪费大量计算资源。
发明人对上述问题进行了大量研究和分析,发现相关技术中存在如下问题:在分子体系中,假设两个分子在指定坐标系中的位置相距较远,明显不是相邻分子时,相关技术仍需计算这两个分子间所有原子两两之间的距离,并且将该距离分别与距离阈值之间进行比较。该计算过程不但计算量大,计算成本高,并且属于无用计算,这就导致极大地浪费了计算资源。
图1示意性示出了相关技术中的确定相邻分子的过程示意图。
如图1所示,示出了两个分子10,为了便于说明相关技术中确定相邻分子的过程,将图1中左边的分子表示为第一分子,将图1中右边的分子表示为第二分子。其中,为了简便直观,以圆球来表示原子11和分子10。
相关技术中无论第一分子和第二分子之间相距多远,在确定相邻分子时,都需要计算这两个分子中任意两个原子之间的距离,以确定第一分子和第二分子之间是否相邻(即两者互为相邻分子)。图1中仅示出了第一分子中的两个原子(加粗圆圈所示)与第二分子中各原子之间的距离i
1、i
2计算过程。相关技术中需要分别计算第一分子中每个原子和第二分子中每个原子之间的距离,如存在第一分子中的任一个原子和第二分子中的任一原子之间的距离小于距离阈值,则判定第一分子和第二分子为相邻分子,如第一分子中的任一个原子和第二分子中的任一原子之间的距离均大于距离阈值,则判定第一分子和第二分子为非相邻分子。
在分子体系的仿真模拟过程中,可能涉及到几十万个分子10,甚至上百万个分子10或更多分子10,每个分子10由多个原子11构成。但是,其中多数分子10在空间中的位置均相距较远,计算这些相距较远的分子10的原子11之间的距离,属于无用计算,导致大量的计算资源被浪费。
针对上述问题,亟待开发出一种能够快速确定相邻分子的技术方案,并且能够降低计算量,提高计算效率和计算资源的有效利用率。本发明实施例的技术方案能够有 效节约计算资源,并且加快分子体系的仿真、模拟进程。
图2示意性示出了根据本发明实施例的确定相邻分子的过程示意图。
如图2所示,本实施例中,在确定相邻分子的过程中,首先确定各分子10之间的距离i
3。具体地,可以先确定各分子10的几何中心坐标,如中心或者重心等,接着基于各分子的几何中心坐标之间的距离和各分子模型的尺寸确定各分子10之间的大致距离。在确定各分子10之间的大致距离后,就可以排除掉相距较远的分子10被作为相邻分子进行测算/计算的过程,可有效节约计算资源,加快含有多个分子的分子体系中相邻分子的判定效率。
具体地,在计算两个分子10的所有原子11之间的距离之前,首先计算两个分子10之间的距离i
3,如果距离i
3大于距离阈值,则可以确定这两个分子10之间不可能相邻,无需再继续计算这两个分子10的所有原子之间的距离。这样就极大程度地降低了计算原子间距离的次数,有效节约了计算资源。
以下将通过图3至图11对本发明实施例的一种确定相邻分子的方法、装置和设计方法进行详细描述。
图3示意性示出了根据本发明实施例的确定相邻分子的方法的流程图。
如图3所示,该实施例提供了一种确定相邻分子的方法,该方法包括操作S310~操作S320,具体如下:
在操作S310中,确定M个分子的分子模型中两两分子模型之间的第一距离。
其中,M可以是用户在进行分子体系仿真模拟时设定的个数,如M可以是大于零的整数,M的单位可以是个、十个、百个、千个、万个、十万个、百万个或者其他计数单位等。
分子可以为无机分子或者有机分子,每个分子由至少两个原子构成,在此不做限定。例如,分子可以为医药成分的分子,分子也可以是建筑材料的分子,分子也可以是航空、航天材料的分子等。
在某些实施例中,上述方法在确定M个分子的分子模型中两两分子模型之间的第一距离之前,还可以包括:确定M个分子模型各自的分子中心坐标,以基于M个分子中心坐标确定M个分子的分子模型中两两分子模型之间的第一距离。
例如,对于每个分子体系,可以含M个分子的分子模型。具体地,可以构建以几何中心坐标为分子中心坐标,并且具有指定尺寸的分子模型。其中,分子包括P个原子,几何中心坐标是P个原子中至少部分原子各自在指定坐标系中的原子坐标的加权 平均几何坐标,P是大于零的整数。
需要说明的是,分子模型的构建过程不是每次确定相邻分子都需要执行的操作。例如,可以采用历史时段构建的分子模型。例如,可以直接输入分子模型,在此不做限定。
其中,指定坐标系可以是笛卡尔坐标系、极坐标系等。每个分子可以包括多个原子,每个原子在该指定坐标系中都有原子坐标,以表示每个原子的空间位置。需要说明的是,不同坐标系下的坐标之间可以进行转换。例如,极坐标系下更容易表达某个角度范围内的空间点的坐标,在需要对某个角度范围内的对象进行处理时,可以先转换至极坐标系下进行处理,在处理完成后再转换至笛卡尔坐标系下进行后续处理。此外,在确定相邻分子的过程中可以采用同一坐标系,特别是空间坐标系。例如,分子中心坐标、原子坐标、几何中心坐标和球心坐标中的部分或者全部是在同一坐标系下的坐标。应当能够理解的是,分子中心坐标、原子坐标、几何中心坐标和球心坐标中的部分或者全部也可以是在不同坐标系下的坐标,但是各坐标系下的坐标之间可以相互转换。
在确定几何中心坐标的过程中,一个分子内的各原子的权重可以相同或不同。例如,分子中各区域的原子的权重都相同,或者,原子密集区域的原子的权重更大,或者,原子密集区域的原子的权重更小,或者,原子质量越大的原子的权重越大。
例如,分子中心坐标可以是该分子的所有原子在该指定坐标系下的平均坐标(即所有原子的中心坐标)作为该分子的分子中心坐标。
又例如,分子中心坐标可以是该分子中的相距最远的两个原子在该指定坐标系下的平均坐标(即相距最远的两个原子的中心坐标)。
又例如,以分子中的相距最远的两个第一原子之间的连线方向作为第一方向,在垂直于第一方向的第二方向上寻找相距最远的两个第二原子。分子中心坐标可以是该第一原子和该第二原子在该指定坐标系下的平均坐标(即两个第一原子和两个第二原子之间的中心坐标)。
在某些实施例中,上述方法在确定M个分子的分子模型中两两分子模型之间的第一距离之前,还包括:确定M个分子模型各自的尺寸,以基于M个分子中心坐标和M个尺寸确定M个分子的分子模型中两两分子模型之间的第一距离,其中,尺寸包括P个原子中的指定原子的原子坐标与分子中心坐标之间的距离,其中,指定原子包括在预设角度范围内的距离分子中心坐标最远的指定个数原子、距离分子中心坐标最远的 原子中至少一种。
例如,分子模型的尺寸可以用于指示该分子模型在指定坐标系下占据的空间大小。具体地,为了使得分子模型能够尽可能的包括所有原子模型,尺寸可以根据分子模型中相距最远的原子模型之间的距离来确定。如将该距离作为分子模型在某个方向的最大尺寸等,具体可以为边长、直径等。这样便于实现:基于分子中心坐标和尺寸确定两个分子模型的边界之间的第一距离。
在某些实施例中,对于M个分子中任意两个分子,确定M个分子的分子模型中两两分子模型之间的第一距离可以包括如下任意一种操作。
例如,确定与任意两个分子对应的分子模型的外轮廓之间的距离。
例如,确定与任意两个分子对应的分子模型的分子中心坐标之间的距离。
例如,确定与任意两个分子中一个分子对应的分子模型的外轮廓,和与另一个分子对应的分子模型的分子中心坐标之间的距离。
在本实施例中,可以基于两个分子的分子中心坐标来计算这两个分子之间的距离。例如,分子中心坐标1为(x1,y1),分子中心坐标2为(x2,y2),则距离D可以如式(1)所示。
D=[(x2-x1)
2+(y2-y1)
2]
1/2 式(1)
需要说明的是,在计算原子坐标之间的距离或者计算原子坐标与分子中心坐标之间的距离时,同样可以采用式(1)的公式进行计算。
此外,为了降低各分子的尺寸不同对确定的相邻分子结果准确率的影响,可以在距离中去除分子尺寸的因素。例如,在基于两个分子的分子中心坐标确定了这两个分子中心之间的距离之后,可以利用第一距离减去两个分子各自所占的距离。
以球形模型表示分子时,可以从距离D中减去一个或者两个球形模型的球半径。以立方体模型表示分子时,可以从距离D中减去一个或者两个立方体模型的一半边长。
在操作S320中,如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。
在本实施例中,如果两个分子之间的第一距离大于预设的第一距离阈值,则可以确定这两个分子之间不相邻,无需计算这两个分子中各原子之间的距离。其中,第一距离阈值可以是根据专家经验或者仿真模拟得到的。
需要说明的是,在排除了不可能相邻的分子的基础上,可以采用多种方式来从剩 余的分子中确定相邻分子。
在某些实施例中,对于Q个目标分子中的每一个,从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子可以包括如下操作。
首先,确定当前目标分子中至少部分原子各自的原子坐标与非当前目标分子中至少部分原子各自的原子坐标之间的第四距离,其中,非当前目标分子是Q个目标分子中除当前目标分子之外的分子。
然后,如果任一第四距离小于第四距离阈值,则可以确定当前目标分子和非当前目标分子之间相邻。
例如,分别计算所有Q个目标分子中的不同分子的原子之间的距离(可以通过对原子坐标的计算来确定),并且根据原子坐标之间的距离来判断原子所属的分子之间是否相邻。
此外,也可以采用相关技术中确定两个分子是否相邻的计算方法,在此不做限定。
在某些实施例中,上述方法还可以包括如下操作,基于相邻分子进行药物设计或者材料设计中至少一种。具体地,在从大量分子中确定了相邻分子之后,便于至少基于相邻分子来模拟分子或分子体系的结构和物理化学性质,提升新材料或材料新功能开发的效率。
本发明实施例提供的确定相邻分子的方法,可以对空间中相距较远的分子进行快速计算和过滤,大幅度减少了非相邻分子的原子之间的距离计算过程。本发明实施例在不降低确定相邻分子的准确度的基础上,有效提升确定相邻分子的响应速度和降低计算资源消耗。
以下对分子模型的构建过程进行示例性说明。
确定M个分子中两两分子的分子中心坐标之间的距离可以包括如下操作:首先,以加权平均几何坐标为中心构建具有指定尺寸的分子模型,其中,指定尺寸与P个原子中的部分原子的原子坐标与分子中心坐标之间的距离相关。然后,对于M个分子中任意两个分子,确定与任意两个分子对应的加权平均几何坐标之间的距离。其中,上述部分原子可以是分子中相距较远的原子。例如,上述部分原子可以是分子中相距最远的指定原子,指定个数可以是两个、三个、五个等,如距离最大的五个原子(Top 5原子)。此外,也可以以分子中心坐标为原点,将空间划分为多个子空间,然后分别获取各空间中距离原点最远的原子。
在某些实施例中,分子模型包括球形模型、具有直边的立体几何模型中任意一种, 其中,球形模型以分子中心坐标为球心,以尺寸为半径。
图4A至图4C示意性示出了根据本发明实施例的分子模型的示意图。
如图4A所示,分子模型可以是球形,球形模型的构建过程比较便捷,只需要确定球形的球心的坐标和球半径即可。例如,可以以分子中心坐标作为球心的坐标,可以以分子中相距最远的两个原子之间的距离作为球半径或者球直径。
在某些实施例中,与任意两个分子对应的分子模型的外轮廓之间的距离可以包括:对于球形模型,与任意两个分子对应的分子模型的分子中心坐标之间的距离减去与任意两个分子对应的分子模型各自的半径,其中,球形模型以分子中心坐标为球心,以尺寸为球半径。
如图4B所示,分子模型可以是六面体。例如,六面体的中心可以是分子中心坐标,六面体的至少两个顶点可以是分子中相距最远的两个原子。六面体的其它顶点可以是在第一平面中的原子坐标,第一平面与相距最远的两个原子所在的连线相交,如相互垂直。
如图4C所示,分子模型可以是八面体。例如,八面体的中心可以是分子中心坐标,以分子中心坐标为原点,将空间分为八个子空间,然后确定各子空间中与原点相距最远的原子,并且将这些原子作为八面体的各定点。
需要说明的是,以上构建分子模型的方法仅为示例性说明,在此不做限定。例如,分子模型还可以是具有更多面的立体模型,如足球形多面体等。此外,分子模型也可以是直边和曲边共同构建的立体模型,如圆柱形等。
在某些实施例中,指定尺寸包括P个原子中的指定原子的原子坐标与分子中心坐标之间的距离,其中,指定原子包括在预设角度范围内的距离分子中心坐标最远的指定个数原子、距离分子中心坐标最远的原子中至少一种。
其中,预设角度范围可以是指在极坐标系下的角度范围。例如,角度范围可以通过第一角度范围和第二角度范围进行表示,第一角度范围是在水平面内的角度范围,第二角度范围是在垂直于水平面的平面内的角度范围。需要说明的是,在极坐标系下与预设角度范围对应的空间,可以转换为在笛卡尔坐标系下的坐标范围。预设角度范围可以是连续的,也可以是非连续的。例如,第一角度范围可以包括0°-360°,或者,0°-30°、60°-90°、120°-150°、180°-210°、240°-270°、300°-330°。
指定个数是可以调整的,如1个、2个、3个、5个、10个或者更多个。分子体 系中可能存在长链分子,当指定个数为1,利用分子中心坐标确定相邻分子时,可能导致得到大量疑似的相邻分子(也称为候选相邻分子,由于分子间距离阈值和分子内距离分子中心坐标最远的原子与分子中心坐标之间的距离相关,该分子间距离阈值设置的越大,则得到的疑似的相邻分子越多)。这可能造成需要计算过多的实际非相邻分子内原子之间的距离,使得响应速度变低。为了提升响应速度,可以尝试选取多个距离分子中心坐标远的原子,并且以该多个原子与分子中心坐标之间的距离的加权均值来确定尺寸,如球半径、立方体边长的一半等。这样可以在不会明显降低确定相邻分子的准确率的基础上,显著提高响应速度,并且减少计算资源的消耗。
图5示意性示出了根据本发明实施例的球形分子模型的示意图。
如图5所示,以球形模型为例进行示例性说明。球形空间中可以包括至少部分原子,球形模型的球心是分子中心坐标所在的点。
图6示意性示出了根据本发明实施例的分子中心坐标的示意图。
如图6所示,坐标系具有X轴、Y轴和Z轴,空间中任意一个点可以采用坐标(x,y,z)进行表示。坐标系的原点坐标(0,0,0),图6中具有六个原子,则分子中心坐标O可以表示为((x
1+x
2+x
3+x
4+x
5+x
6)/6,(y
1+y
2+y
3+y
4+y
5+y
6)/6,(z
1+z
2+z
3+z
4+z
5+z
6)/6)。
图7示意性示出了根据本发明实施例的第一距离的示意图。
如图7所示,示出了两个球形模型之间的距离的计算原理示意图。在确定了第一分子的分子中心坐标O
1和第二分子的分子中心坐标O
2之后,可以采用式(1)计算出O
1和O
2之间的距离D。然后可以利用距离D减去第一分子的球形模型的球半径和第二分子的球形模型的球半径,得到两个球形模型之间的距离I
1。
以下对确定相邻分子的过程进行示例性说明。
在某些实施例中,对于Q个目标分子中的每个当前目标分子,从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子可以包括如下操作。
重复以下操作直至遍历完所有非当前目标分子,其中,非当前目标分子是Q个目标分子中除当前目标分子之外的分子:首先,确定当前目标分子中的至少部分原子的原子坐标与非当前目标分子的分子模型的外轮廓之间的第二距离。然后,如果任一第二距离小于第二距离阈值,则确定非当前目标分子是当前目标分子的候选相邻分子。
本实施例中,在计算上述Q个目标分子中不同分子的所有原子之间的原子距离之前,还计算了当前目标分子中原子和非当前目标分子的外轮廓之间的距离,这样有助 于进一步减少需要计算的原子与原子之间的距离。
在某些实施例中,上述方法还可以包括如下操作:如果确定针对当前目标分子中所有的第二距离都大于或者等于第二距离阈值,则确定当前目标分子和所有非当前目标分子之间非相邻。
例如,如果当前目标分子中所有原子与非当前目标分子的外轮廓之间的距离大于第二距离阈值,则表明当前目标分子和非当前目标分子之间不可能相邻,无需再计算这两个分子中各原子之间的距离。
需要说明的是,第一距离阈值和第二距离阈值可以相同或不同。
图8示意性示出了根据本发明实施例的第二距离的示意图。
如图8所示,以球形模型为例进行示例性说明。当前目标分子中包括多个原子,可以分别计算各原子与非当前目标分子的外轮廓之间的距离I
2。具体地,可以计算当前原子坐标与非当前目标分子的几何中心坐标之间的距离,然后,利用该距离减去非当前目标分子的球形模型的球半径,即可得到距离I
2。
在某些实施例中,对于针对当前目标分子的每个候选相邻分子,上述方法还可以包括如下操作。
首先,确定当前目标分子中至少部分原子各自的原子坐标与候选相邻分子中至少部分原子各自的原子坐标之间的第三距离。其中,当前目标分子中至少部分原子可以是当前目标分子中与非当前目标分子的分子模型的外轮廓之间的第二距离小于第二距离阈值的原子。此外,当前目标分子中至少部分原子还可以是距离当前目标分子的分子中心坐标较远的分子。
然后,如果任一第三距离小于第三距离阈值,则确定候选相邻分子和当前目标分子之间相邻。
在某些实施例中,上述方法还可以包括:如果所有的第三距离大于或者等于第三距离阈值,则确定当前目标分子与候选相邻分子之间非相邻。其中,第三距离阈值可以与第一距离阈值、第二距离阈值相同或不同,在此不做限定。
图9示意性示出了根据本发明实施例的第三距离的示意图。
如图9所示,当前目标分子中原子与非当前目标分子中原子之间的距离可以通过各自的坐标进行计算。例如,在指定坐标系中,可以利用式(1)计算与当前目标分子中原子对应的原子坐标和与非当前目标分子中原子对应的原子坐标之间的距离。
需要说明的是,第三距离的计算方法可以和第四距离的计算方法相同,在此不再 对第四距离的具体计算过程进行详述。第四距离阈值可以和第一距离阈值、第二距离阈值、第三距离阈值相同或不同。
在一个具体实施例中,可以大体通过如下四个步骤来实现确定相邻分子。
首先,计算分子中心坐标。具体地,根据分子的每个原子指定坐标系中的原子坐标,计算该分子的所有原子在指定坐标系中的平均坐标作为该分子中心坐标;计算模拟体系中所有分子的分子中心坐标。
然后,计算分子中的原子与中心的最大距离。需要说明的是,前面两个步骤不是必要步骤,如分子中心坐标和分子中原子坐标与分子中心坐标之间的最大距离可以是由用户输入的,在此不做限定。
具体地,可以计算一个分子中所有的原子坐标与该分子的分子中心坐标之间的距离,得到所有原子中与分子中心的最大距离。重复以上操作可以计算分子模拟体系中所有分子的原子与分子中心的最大距离。
接着,可以构建分子模型和原子模型,如分别为每个分子构建一个球形模型。例如,以指定坐标系中每个分子的分子中心坐标为球心,原子坐标与分子中心坐标之间的最大距离为球半径,构建球形模型。
然后,可以计算每个分子的相邻分子。
具体地,以下以分子A和分子B为球形模型为例进行示例性说明。在计算分子A和分子B之间是否相邻时,可以先判断与两个分子对应的球形模型之间的距离是否满足相邻分子的距离阈值。例如,可以判断两个分子的分子中心坐标之间的距离减去两个分子的球半径之和是否小于相邻分子的距离阈值。
如果两个球形模型之间的距离大于或者等于相邻分子的距离阈值,则可确定两个分子之间不相邻。因此,无需再计算分子A和分子B之间的所有原子两两之间的距离。本实施例中可以快速确定空间中位置相对较远且明显不相邻的分子,有效提升确定相邻分子的速度,并且提升计算资源利用率。
此外,如果与分子A和分子B对应的球形模型之间的距离小于相邻分子的距离阈值,则可以进一步判断分子A中的每个原子与分子B之间的距离是否满足相邻分子的距离阈值。例如,计算分子A的每个原子的原子坐标与分子B的外轮廓之间的距离是否小于相邻分子的距离阈值。其中,分子A的每个原子的原子坐标与分子B的外轮廓之间的距离可以通过如下方式确定:计算分子A的每个原子的原子坐标与分子B的分子中心坐标间的距离,并且减去分子B的球形模型的球半径。
如果分子A的每个原子的原子坐标与分子B的外轮廓之间的距离均大于或者等于相邻分子的距离阈值,则可以确定分子A和分子B之间不相邻。
如果分子A中存在至少一个原子与分子B的球形模型的外轮廓之间的距离小于相邻分子距离阈值,则可以计算该至少一个原子与分子B中的至少一个原子之间的距离是否存在小于相邻分子距离阈值,这样就可以准确的确定分子A和分子B之间是否相邻。
例如,如果分子B中存在至少一个原子与分子A中至少一个原子间的距离小于相邻分子距离阈值,则可以确定分子A与分子B之间相邻。
例如,分子A中有多个原子与分子B的球形模型之间的距离均小于相邻分子的距离阈值,则可以遍历分子A中的该多个原子各自与分子B的各原子之间的距离。具体地,可以先计算分子A中一个原子与分子B中各原子之间的多个距离。如果该多个距离均大于或者等于相邻分子距离阈值,则按照上述方法计算分子A中的该多个原子中下一原子与分子B中各原子之间的距离。如果分子A中该多个原子与分子B中所有原子之间的距离均大于或者等于距离阈值,则可以确定分子A与分子B之间不相邻。
在本实施例中,将分子模拟体系中的每个分子构建为一个球形模型,通过判断两个球形模型之间的距离,可快速确定空间中明显不是相邻分子的两个分子。此外,通过计算分子A的每个原子与分子B的外轮廓之间的距离,可快速确定分子A中相对分子B在空间中距离较远的原子,并且进行过滤。该过程可以避免直接计算分子A和分子B间所有原子两两之间的原子距离。上述方法将极大地降低分子模拟过程中相邻分子的计算量,有效减少计算资源,提高计算效率,降低计算成本。将上述方法应用于诸如药物设计和新材料开发中时,可以有效提升药物设计和新材料研发的速度。
通过上述方法确定两个分子之间是否相邻,避免了直接计算两个分子间所有原子两两之间的距离。通过该方法可以快速计算分子模拟体系中所有分子两两间是否为相邻分子,并且消耗更少的计算资源。
本发明的另一方面还提供了一种设计方法。
图10示意性示出了根据本发明实施例的一种设计方法的流程图。
如图10所示,上述设计方法包括操作S1010~操作S1020。
在操作S1010,确定相邻分子。
在操作S1020,基于相邻分子进行药物设计或者材料设计。
需要说明的是,确定相邻分子的过程可以参考如上所示的相关内容,在此不再详 述。
本发明的另一方面还提供了一种确定相邻分子的装置。
图11示意性示出了根据本发明实施例的一种确定相邻分子的装置的结构框图。
如图11所示,该确定相邻分子的装置1100可以包括:第一距离确定模块1110和第一相邻分子确定模块1120。
其中,第一距离确定模块1110用于确定M个分子的分子模型中两两分子模型之间的第一距离。
第一相邻分子确定模块1120用于如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从M个分子中的除N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。
在某些实施例中,上述装置1100还包括:分子中心坐标确定模块,用于在确定M个分子的分子模型中两两分子模型之间的第一距离之前,确定M个分子模型各自的分子中心坐标,以基于M个分子中心坐标确定M个分子的分子模型中两两分子模型之间的第一距离。其中,分子包括P个原子,几何中心坐标是P个原子中至少部分原子各自在指定坐标系中的原子坐标的加权平均几何坐标,P是大于零的整数。
在某些实施例中,上述装置1100还包括:尺寸确定模块,用于在确定M个分子的分子模型中两两分子模型之间的第一距离之前,确定M个分子模型各自的尺寸,以基于M个分子中心坐标和M个尺寸确定M个分子的分子模型中两两分子模型之间的第一距离。其中,尺寸包括P个原子中的指定原子的原子坐标与分子中心坐标之间的距离,其中,指定原子包括在预设角度范围内的距离分子中心坐标最远的指定个数原子、距离分子中心坐标最远的原子中至少一种。
在某些实施例中,第一距离确定模块1110包括:第一分子距离确定单元、第二分子距离确定单元或者第三分子距离确定单元中任意一个单元。其中,第一分子距离确定单元用于对于M个分子中任意两个分子,确定与任意两个分子对应的分子模型的外轮廓之间的距离。第二分子距离确定单元用于对于M个分子中任意两个分子,确定与任意两个分子对应的分子模型的分子中心坐标之间的距离。第三分子距离确定单元用于对于M个分子中任意两个分子,确定与任意两个分子中一个分子对应的分子模型的外轮廓,和与另一个分子对应的分子模型的分子中心坐标之间的距离。
在某些实施例中,分子模型包括球形模型、具有直边的立体几何模型中任意一种。与任意两个分子对应的分子模型的外轮廓之间的距离包括:对于球形模型,与任意两 个分子对应的分子模型的几何中心坐标之间的距离减去与任意两个分子对应的分子模型各自的半径,其中,球形模型以分子中心坐标为球心坐标,以尺寸为半径。
在某些实施例中,第一相邻分子确定模块1120包括:第二距离确定单元、第二相邻分子确定单元和遍历单元。
其中,第二距离确定单元用于确定当前目标分子中的至少部分原子的原子坐标与非当前目标分子的分子模型的外轮廓之间的第二距离。其中,非当前目标分子是Q个目标分子中除当前目标分子之外的分子。
第二相邻分子确定单元用于如果第二距离小于第二距离阈值,则确定非当前目标分子是当前目标分子的候选相邻分子。
遍历单元用于重复执行第二距离确定单元和候选相邻分子确定单元直至遍历完所有非当前目标分子。
在某些实施例中,上述装置1100还包括:第二非相邻分子确定模块。其中,第二非相邻分子确定模块用于如果确定针对当前目标分子的所有的第二距离都大于或者等于第二距离阈值,则确定当前目标分子和所有非当前目标分子之间非相邻。
在某些实施例中,上述装置1100还包括:第三距离确定模块和第三相邻分子确定模块。其中,第三距离确定模块用于对于针对当前目标分子的每个候选相邻分子,确定当前目标分子中至少部分原子各自的原子坐标与候选相邻分子中至少部分原子各自的原子坐标之间的第三距离。
第三相邻分子确定模块用于如果第三距离小于第三距离阈值,则确定候选相邻分子和当前目标分子之间相邻。
在某些实施例中,当前目标分子中至少部分原子是当前目标分子中与非当前目标分子的分子模型的外轮廓之间的第二距离小于第二距离阈值的原子。
在某些实施例中,上述装置1100还包括:第三非相邻分子确定模块。其中,第三非相邻分子确定模块用于如果第三距离大于或者等于第三距离阈值,则确定当前目标分子与候选相邻分子之间非相邻。
在某些实施例中,第一相邻分子确定模块1120还包括:第四距离确定单元和第四相邻分子确定单元。
其中,第四距离确定单元用于对于Q个目标分子中的每一个,确定当前目标分子中至少部分原子各自的原子坐标与非当前目标分子中至少部分原子各自的原子坐标之间的第四距离,其中,非当前目标分子是Q个目标分子中除当前目标分子之外的分 子。
第四相邻分子确定单元用于如果第四距离小于第四距离阈值,则确定当前目标分子和非当前目标分子之间相邻。
本发明的另一方面还提供了一种设计装置。
图12示意性示出了根据本发明实施例的一种设计装置的结构框图。
如图12所示,该设计装置1200可以包括:相邻分子确定模块1210和设计模块1220。
其中,相邻分子确定模块1210用于利用如上的确定相邻分子的装置1100确定相邻分子。
设计模块1220用于基于相邻分子进行药物设计或者材料设计。
关于上述实施例中的确定相邻分子的装置1100、设计装置1200,其中各个模块、单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不再做详细阐述说明。
本发明的另一方面还提供了一种电子设备。
图13示意性示出了实现本发明实施例的一种确定相邻分子的方法的电子设备的方框图。
参见图13,电子设备1300包括存储器1310和处理器1320。
处理器1320可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器1310可以包括各种类型的存储单元,例如系统内存、只读存储器(ROM)和永久存储装置。其中,ROM可以存储处理器1320或者计算机的其他模块需要的静态数据或者指令。永久存储装置可以是可读写的存储装置。永久存储装置可以是即使计算机断电后也不会失去存储的指令和数据的非易失性存储设备。在一些实施方式中,永久性存储装置采用大容量存储装置(例如磁或光盘、闪存)作为永久存储装置。另外一些实施方式中,永久性存储装置可以是可移除的存储设备(例如软盘、光驱)。系统内存可以是可读写存储设备或者易失性可读写存储设备,例如动态随机访问内存。 系统内存可以存储一些或者所有处理器在运行时需要的指令和数据。此外,存储器1310可以包括任意计算机可读存储媒介的组合,包括各种类型的半导体存储芯片(例如DRAM,SRAM,SDRAM,闪存,可编程只读存储器),磁盘和/或光盘也可以采用。在一些实施方式中,存储器1310可以包括可读和/或写的可移除的存储设备,例如激光唱片(CD)、只读数字多功能光盘(例如DVD-ROM,双层DVD-ROM)、只读蓝光光盘、超密度光盘、闪存卡(例如SD卡、min SD卡、Micro-SD卡等)、磁性软盘等。计算机可读存储媒介不包含载波和通过无线或有线传输的瞬间电子信号。
存储器1310上存储有可执行代码,当可执行代码被处理器1320处理时,可以使处理器1320执行上文述及的方法中的部分或全部。
此外,根据本发明的方法还可以实现为一种计算机程序或计算机程序产品,该计算机程序或计算机程序产品包括用于执行本发明的上述方法中部分或全部步骤的计算机程序代码指令。
或者,本发明还可以实施为一种计算机可读存储介质(或非暂时性机器可读存储介质或机器可读存储介质),其上存储有可执行代码(或计算机程序或计算机指令代码),当可执行代码(或计算机程序或计算机指令代码)被电子设备(或服务器等)的处理器执行时,使处理器执行根据本发明的上述方法的各个步骤的部分或全部。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文披露的各实施例。
Claims (27)
- 一种确定相邻分子的方法,其特征在于,所述方法包括:确定M个分子的分子模型中两两分子模型之间的第一距离;如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从所述M个分子中的除所述N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。
- 根据权利要求1所述的方法,其特征在于,还包括:在所述确定M个分子的分子模型中两两分子模型之间的第一距离之前,确定所述M个分子模型各自的分子中心坐标,以基于M个分子中心坐标确定所述M个分子的分子模型中两两分子模型之间的第一距离,其中,所述分子包括P个原子,所述分子中心坐标是所述P个原子中至少部分原子各自在指定坐标系中的原子坐标的加权平均几何坐标,P是大于零的整数。
- 根据权利要求2所述的方法,其特征在于,还包括:在所述确定M个分子的分子模型中两两分子模型之间的第一距离之前,确定所述M个分子模型各自的尺寸,以基于M个分子中心坐标和M个尺寸确定所述M个分子的分子模型中两两分子模型之间的第一距离,其中,所述尺寸包括所述P个原子中的指定原子的原子坐标与所述分子中心坐标之间的距离,其中,所述指定原子包括在预设角度范围内的距离所述分子中心坐标最远的指定个数原子、距离所述分子中心坐标最远的原子中至少一种。
- 根据权利要求3所述的方法,其特征在于,所述确定M个分子的分子模型中两两分子模型之间的第一距离包括:对于所述M个分子中任意两个分子,确定与所述任意两个分子对应的分子模型的外轮廓之间的距离;或者确定与所述任意两个分子对应的分子模型的分子中心坐标之间的距离;或者确定与所述任意两个分子中一个分子对应的分子模型的外轮廓,和与另一个分子对应的分子模型的分子中心坐标之间的距离。
- 根据权利要求4所述的方法,其特征在于,所述分子模型包括球形模型、具有直边的立体几何模型中任意一种;所述与所述任意两个分子对应的分子模型的外轮廓之间的距离包括:对于球形模型,与所述任意两个分子对应的分子模型的几何中心坐标之间的距离减去与所述任意 两个分子对应的分子模型各自的半径,其中,所述球形模型以所述分子中心坐标为球心坐标,以所述尺寸为半径。
- 根据权利要求1至5任一项所述的方法,其特征在于,所述从所述M个分子中的除所述N个分子之外的Q个目标分子中确定相邻分子包括:对于所述Q个目标分子中的每个当前目标分子,重复以下操作直至遍历完所有非当前目标分子,其中,所述非当前目标分子是所述Q个目标分子中除所述当前目标分子之外的分子:确定所述当前目标分子中的至少部分原子的原子坐标与所述非当前目标分子的分子模型的外轮廓之间的第二距离;如果所述第二距离小于第二距离阈值,则确定所述非当前目标分子是所述当前目标分子的候选相邻分子。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:如果确定针对所述当前目标分子的所有的第二距离都大于或者等于所述第二距离阈值,则确定所述当前目标分子和所有非当前目标分子之间非相邻。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:对于针对所述当前目标分子的每个候选相邻分子,确定所述当前目标分子中至少部分原子各自的原子坐标与所述候选相邻分子中至少部分原子各自的原子坐标之间的第三距离;如果所述第三距离小于第三距离阈值,则确定所述候选相邻分子和所述当前目标分子之间相邻。
- 根据权利要求8所述的方法,其特征在于,所述当前目标分子中至少部分原子是所述当前目标分子中与所述非当前目标分子的分子模型的外轮廓之间的第二距离小于所述第二距离阈值的原子。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括:如果所述第三距离大于或者等于所述第三距离阈值,则确定所述当前目标分子与所述候选相邻分子之间非相邻。
- 根据权利要求1至5任一项所述的方法,其特征在于,所述从所述M个分子中的除所述N个分子之外的Q个目标分子中确定相邻分子包括:对于所述Q个目标分子中的每一个,确定当前目标分子中至少部分原子各自的原子坐标与非当前目标分子中至少部 分原子各自的原子坐标之间的第四距离,其中,所述非当前目标分子是所述Q个目标分子中除所述当前目标分子之外的分子;如果所述第四距离小于第四距离阈值,则确定所述当前目标分子和所述非当前目标分子之间相邻。
- 一种设计方法,其特征在于,所述方法包括:根据权利要求1至11中任一项所述的方法,确定相邻分子;基于所述相邻分子进行药物设计或者材料设计。
- 一种确定相邻分子的装置,其特征在于,包括:第一距离确定模块,用于确定M个分子的分子模型中两两分子模型之间的第一距离;第一相邻分子确定模块,用于如果确定N个分子的分子模型中两两分子模型之间的第一距离大于第一距离阈值,则从所述M个分子中的除所述N个分子之外的Q个目标分子中确定相邻分子,其中,M、N和Q是大于零的整数,并且M大于或者等于N。
- 根据权利要求13所述的装置,其特征在于,还包括:分子中心坐标确定模块,用于确定所述M个分子模型各自的分子中心坐标,以基于M个分子中心坐标确定所述M个分子的分子模型中两两分子模型之间的第一距离,其中,分子包括P个原子,所述分子中心坐标是P个原子中至少部分原子各自在指定坐标系中的原子坐标的加权平均几何坐标,P是大于零的整数。
- 根据权利要求14所述的装置,其特征在于,还包括:尺寸确定模块,用于确定所述M个分子模型各自的尺寸,以基于M个分子中心坐标和M个尺寸确定所述M个分子的分子模型中两两分子模型之间的第一距离,其中,所述尺寸包括P个原子中的指定原子的原子坐标与分子中心坐标之间的距离,所述指定原子包括在预设角度范围内的距离所述分子中心坐标最远的指定个数原子、距离所述分子中心坐标最远的原子中至少一种。
- 根据权利要求15所述的装置,其特征在于,所述第一距离确定模块包括:第一分子距离确定单元,用于对于M个分子中任意两个分子,确定与任意两个分子对应的分子模型的外轮廓之间的距离;或者第二分子距离确定单元,用于对于M个分子中任意两个分子,确定与任意两个分子对应的分子模型的分子中心坐标之间的距离;或者第三分子距离确定单元,用于对于M个分子中任意两个分子,确定与任意两个分 子中一个分子对应的分子模型的外轮廓,和与另一个分子对应的分子模型的分子中心坐标之间的距离。
- 根据权利要求16所述的装置,其特征在于,所述分子模型包括球形模型、具有直边的立体几何模型中任意一种;与任意两个分子对应的分子模型的外轮廓之间的距离包括:对于球形模型,与任意两个分子对应的分子模型的几何中心坐标之间的距离减去与任意两个分子对应的分子模型各自的半径,其中,所述球形模型以所述分子中心坐标为球心坐标,以所述尺寸为半径。
- 根据权利要求13至17任一项所述的装置,其特征在于,所述第一相邻分子确定模块包括:第二距离确定单元,用于确定当前目标分子中的至少部分原子的原子坐标与非当前目标分子的分子模型的外轮廓之间的第二距离,其中,所述非当前目标分子是Q个目标分子中除所述当前目标分子之外的分子;第二相邻分子确定单元,用于如果所述第二距离小于第二距离阈值,则确定所述非当前目标分子是所述当前目标分子的候选相邻分子;遍历单元,用于重复执行所述第二距离确定单元和所述候选相邻分子确定单元直至遍历完所有非当前目标分子。
- 根据权利要求18所述的装置,其特征在于,还包括:第二非相邻分子确定模块,用于如果确定针对所述当前目标分子的所有的第二距离都大于或者等于所述第二距离阈值,则确定所述当前目标分子和所有非当前目标分子之间非相邻。
- 根据权利要求18所述的装置,其特征在于,还包括:第三距离确定模块,用于对于针对所述当前目标分子的每个候选相邻分子,确定所述当前目标分子中至少部分原子各自的原子坐标与所述候选相邻分子中至少部分原子各自的原子坐标之间的第三距离;第三相邻分子确定模块,用于如果所述第三距离小于第三距离阈值,则确定所述候选相邻分子和所述当前目标分子之间相邻。
- 根据权利要求20所述的装置,其特征在于,所述当前目标分子中至少部分原子是所述当前目标分子中与所述非当前目标分子的分子模型的外轮廓之间的第二距离小于第二距离阈值的原子。
- 根据权利要求20所述的装置,其特征在于,还包括:第三非相邻分子确定模块,用于如果所述第三距离大于或者等于第三距离阈值,则确定所述当前目标分子与所述候选相邻分子之间非相邻。
- 根据权利要求13至17任一项所述的装置,其特征在于,所述第一相邻分子确定模块还包括:第四距离确定单元,用于对于Q个目标分子中的每一个,确定当前目标分子中至少部分原子各自的原子坐标与非当前目标分子中至少部分原子各自的原子坐标之间的第四距离,其中,所述非当前目标分子是Q个目标分子中除所述当前目标分子之外的分子;第四相邻分子确定单元,用于如果所述第四距离小于第四距离阈值,则确定当前目标分子和非当前目标分子之间相邻。
- 一种设计装置,其特征在于,包括:相邻分子确定模块,用于根据权利要求13所述的确定相邻分子的装置确定相邻分子;设计模块,用于基于所述相邻分子进行药物设计或者材料设计。
- 一种电子设备,其特征在于,包括:处理器;以及存储器,其上存储有可执行代码,当所述可执行代码被所述处理器执行时,使所述处理器执行如权利要求1-12中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,其上存储有可执行代码,当所述可执行代码被电子设备的处理器执行时,使所述处理器执行如权利要求1-12中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括可执行代码,所述可执行代码被处理器执行时实现根据权利要求1-12中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/135459 WO2023097680A1 (zh) | 2021-12-03 | 2021-12-03 | 确定相邻分子的方法、装置、设计方法和电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/135459 WO2023097680A1 (zh) | 2021-12-03 | 2021-12-03 | 确定相邻分子的方法、装置、设计方法和电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023097680A1 true WO2023097680A1 (zh) | 2023-06-08 |
Family
ID=86611391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/135459 WO2023097680A1 (zh) | 2021-12-03 | 2021-12-03 | 确定相邻分子的方法、装置、设计方法和电子设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023097680A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030023391A1 (en) * | 2001-04-26 | 2003-01-30 | Takayuki Kotani | Method and program for evaluating molecular similarity |
CN111724867A (zh) * | 2020-06-24 | 2020-09-29 | 中国科学技术大学 | 分子属性测定方法、装置、电子设备及存储介质 |
CN112837764A (zh) * | 2021-01-21 | 2021-05-25 | 北京晶派科技有限公司 | 分子杂交方法及平台 |
JP2021082066A (ja) * | 2019-11-20 | 2021-05-27 | 住友ゴム工業株式会社 | 分子の化学反応の解析方法 |
CN113241126A (zh) * | 2021-05-18 | 2021-08-10 | 百度时代网络技术(北京)有限公司 | 用于训练确定分子结合力的预测模型的方法和装置 |
-
2021
- 2021-12-03 WO PCT/CN2021/135459 patent/WO2023097680A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030023391A1 (en) * | 2001-04-26 | 2003-01-30 | Takayuki Kotani | Method and program for evaluating molecular similarity |
JP2021082066A (ja) * | 2019-11-20 | 2021-05-27 | 住友ゴム工業株式会社 | 分子の化学反応の解析方法 |
CN111724867A (zh) * | 2020-06-24 | 2020-09-29 | 中国科学技术大学 | 分子属性测定方法、装置、电子设备及存储介质 |
CN112837764A (zh) * | 2021-01-21 | 2021-05-25 | 北京晶派科技有限公司 | 分子杂交方法及平台 |
CN113241126A (zh) * | 2021-05-18 | 2021-08-10 | 百度时代网络技术(北京)有限公司 | 用于训练确定分子结合力的预测模型的方法和装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wojtak et al. | Voids in cosmological simulations over cosmic time | |
CN104240299B (zh) | 基于最大化泊松圆盘采样的重新网格化方法 | |
Li et al. | Efficient 3D reflection symmetry detection: A view-based approach | |
Correa et al. | Towards robust topology of sparsely sampled data | |
CN114359042A (zh) | 点云拼接方法和装置、三维扫描仪及电子设备 | |
CN109840312A (zh) | 一种锅炉负荷率-能效曲线的异常值检测方法和装置 | |
CN113609599B (zh) | 一种飞行器湍流绕流模拟的壁面距有效单元计算方法 | |
US20220028161A1 (en) | Systems and methods for traversing implied subdivision hierarchical level of detail content | |
Lebrun-Grandié et al. | ArborX: A performance portable geometric search library | |
CN114722745A (zh) | 湍流壁面距离计算方法、装置、计算机设备和存储介质 | |
CN112356019A (zh) | 一种用于灵巧手抓取的目标物体形体分析方法及装置 | |
US20170161944A1 (en) | System and method of constructing bounding volume hierarchy tree | |
CN104240290A (zh) | 一种基于包围球模型的三维电缆相交检测方法 | |
Shen et al. | Combining convex hull and directed graph for fast and accurate ellipse detection | |
WO2023097680A1 (zh) | 确定相邻分子的方法、装置、设计方法和电子设备 | |
CN114117874A (zh) | 宏观热导率计算方法及其计算装置、存储介质和设备 | |
Teng et al. | IDEAL: a vector-raster hybrid model for efficient spatial queries over complex polygons | |
CN113987666A (zh) | Bim模型审查方法、装置、设备及存储介质 | |
Baumgärtner et al. | A robust algorithm for implicit description of immersed geometries within a background mesh | |
Byholm et al. | Effective packing of 3-dimensional voxel-based arbitrarily shaped particles | |
Jiang et al. | Efficient Booleans algorithms for triangulated meshes of geometric modeling | |
WO2019024723A1 (zh) | 特征点匹配结果处理方法和装置 | |
CN114155915A (zh) | 确定相邻分子的方法、装置、设计方法和电子设备 | |
Lee et al. | Primitive trees for precomputed distance queries | |
Hu et al. | Voronoi cells of non-general position spheres using the GPU |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21966106 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |