WO2023097644A1 - 机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法 - Google Patents
机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法 Download PDFInfo
- Publication number
- WO2023097644A1 WO2023097644A1 PCT/CN2021/135298 CN2021135298W WO2023097644A1 WO 2023097644 A1 WO2023097644 A1 WO 2023097644A1 CN 2021135298 W CN2021135298 W CN 2021135298W WO 2023097644 A1 WO2023097644 A1 WO 2023097644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanocrystal
- model
- nanocrystals
- crystal
- thermodynamic
- Prior art date
Links
- 239000002159 nanocrystal Substances 0.000 title claims abstract description 92
- 238000001308 synthesis method Methods 0.000 title abstract description 3
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 238000010801 machine learning Methods 0.000 claims abstract description 17
- 238000002360 preparation method Methods 0.000 claims abstract description 16
- 238000012549 training Methods 0.000 claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 8
- 238000012216 screening Methods 0.000 claims abstract description 8
- 238000002474 experimental method Methods 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims description 54
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 30
- 229910052737 gold Inorganic materials 0.000 claims description 19
- 239000010931 gold Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000001179 sorption measurement Methods 0.000 claims description 10
- 239000002073 nanorod Substances 0.000 claims description 8
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 101710134784 Agnoprotein Proteins 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 4
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 19
- 238000011161 development Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012620 biological material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010219 correlation analysis Methods 0.000 description 2
- 239000012621 metal-organic framework Substances 0.000 description 2
- 229940126586 small molecule drug Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000013118 MOF-74-type framework Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- -1 silver ions Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C60/00—Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
Definitions
- the invention belongs to the field of digital intelligent manufacturing of nano crystal materials, and in particular relates to a digital controllable synthesis method of a robot-assisted nano crystal thermodynamic shape control mechanism.
- the present invention constructs a thermodynamic model of nanocrystals through digital manufacturing of nanocrystal materials and machine learning, and realizes the controllable synthesis of nanocrystals based on the obtained thermodynamic model .
- the purpose of the present invention is to provide a nanocrystal preparation thermodynamic model and its algorithm and programming language, which solves the key common scientific problems of rational design, preparation and characterization preparation of new materials in the prior art, and lacks the problem of digital programming language .
- thermodynamic model of nanocrystal digital manufacturing which includes the following steps:
- the experimental data of nanocrystals include the types and amounts of raw materials for preparation.
- Another aspect of the present invention provides a prediction method for digital manufacturing of nanocrystals, including: obtaining the LSPR value of the nanocrystals to be prepared, and obtaining corresponding reaction conditions through the thermodynamic model of the digital manufacturing of nanocrystals of the present invention.
- Another aspect of the present invention provides a quantitative relationship between the ratio of the crystal plane surface energy of a nanocrystal and the silver ion concentration of the reaction system, and then obtains the model of the thermodynamic relationship between the ratio of the silver ion concentration and the crystal plane surface energy or the crystal aspect ratio
- the construction method it comprises the following steps:
- Another aspect of the present invention provides a computer-readable storage medium, on which a computer program is stored, wherein, when the program is executed by a processor, the modeling of the thermodynamic model for modeling the nanocrystal digitally manufactured in the present invention is realized method steps.
- Still another aspect of the present invention provides a computer device, including a memory and a processor, where a computer program capable of running on the processor is stored in the memory, and when the processor executes the program, the modeling is realized Describe the steps of the modeling method of the thermodynamic model of nano crystal digital manufacturing.
- the present invention provides an example of the fourth paradigm data-driven scientific discovery and material science, especially involving the cross integration with the preparation of nanocrystal materials, and provides a new method for the development of new concept materials and material common science.
- the present invention deeply studies the thermodynamic model of nanocrystals, provides models, databases, algorithms and programmable languages, and realizes programmable nanocrystal digital manufacturing.
- Figure 1 Schematic diagram of the process of machine learning used to construct a thermodynamic model of gold nanorod growth.
- FIG. 4 TEM image and size distribution of gold nanorods.
- A–C Corresponding LSPR peaks of gold nanorods are 630 nm, 784 nm, and 812 nm, respectively.
- D-F Average diameter and length of gold nanorods.
- Figure 5 Classical model fitting curves for nanocrystal synthesis.
- thermodynamic model of nanocrystal digitization manufacturing provides a kind of modeling method of the thermodynamic model of nanocrystal digitization manufacturing, and it comprises the following steps:
- the experimental data of nanocrystals include the types and amounts of raw materials for preparation.
- S12 comprises:
- Steps S121) and S122) are repeated to obtain the degree of fitting between different variables and the classical model of nanocrystals, and the variable with the highest degree of fitting is selected for generating a training database.
- step S122 the classical model of the nanocrystal is a parameter equation obtained by fitting based on Gibbs adsorption isotherm and Langmuir adsorption isotherm.
- the nanocrystals are selected from gold nanocrystals.
- the nanocrystals are gold nanocrystals.
- the method for preparing gold nano crystals is to react with HAuCl 4 , CTAB, AgNO 3 , ascorbic acid, hydrochloric acid and sodium borohydride to obtain rod-shaped gold nano crystals.
- As the gold salt for example, a chloroauric acid solution is selected.
- Surfactant selection such as CTAB.
- Another specific embodiment of the present invention provides a method for constructing a model of the thermodynamic relationship between the surface area of a nanocrystal surface and the surface energy of a crystal surface, comprising the following steps:
- the target crystal is gold nanocrystal
- the crystallographic database constructed by Wulff is selected from the cubic system database.
- the surface energy ratio in step S23) is, for example, selected from the ratio of the surface energies ⁇ (110) and ⁇ (001) of the (110) crystal plane and the (001) crystal plane.
- the reaction conditions for example, use the concentration of silver ions as the reaction conditions in the preparation process of gold nanocrystals.
- step S23 the artificial neural network model between the crystal surface area and the crystal surface energy and the crystal surface energy ratio is passed through the artificial neural network with the crystal surface energy ratio as a descriptor and the surface energy ratio as an output item.
- the method of machine learning to obtain the model is passed through the artificial neural network with the crystal surface energy ratio as a descriptor and the surface energy ratio as an output item.
- the present invention adopts following method to realize:
- Embodiment 1 The establishment of the thermodynamic relationship model of gold nano surface morphology and surface energy
- FIG. 2 Through the Wulff structure, various crystal equilibrium morphologies of the obtained gold nanocrystals are shown in FIG. 2 .
- the simulated morphology was quantitatively analyzed using typical geometric features such as specific surface area and aspect ratio. According to the symmetry of the cubic crystal system, five equivalent crystal planes were identified, and the correlation analysis is shown in Figure 3.
- Fig. 3E it is found that the surface area of the (001) crystal plane gradually decreases with the increase of the aspect ratio of the nanorods. From the results of a transmission electron microscope (TEM), the length, diameter and surface area information of the gold nanorods was obtained using image-reading codes.
- TEM transmission electron microscope
- the greatest challenge for experimental studies is to clarify the multiple surface regions, corresponding to different potential morphologies.
- the present invention adopts the surface area of (110) or (001) crystal plane and the surface energy ⁇ (001)/ ⁇ (110) ratio of the crystal plane as the descriptor, and the surface energy ratio with the above-mentioned crystal plane as the output target value, using The Artificial Neural Network (ANN) model accelerates the calculation of surface energy ratios.
- the invention applies the inverse Wulff structure to the colloidal gold nanometer system, and determines the quantitative relationship between surface energy, morphology control and Ag + concentration.
- the inverse Wulff structure was applied to the surface energy derived from the experimentally observed equilibrium morphology of gold nanorods to determine the growth conditions for a given gold nanorod crystal morphology.
- the surface energy is related to the Ag + concentration, an important solution parameter, and the effect of different Ag + concentrations on the morphology of gold nanorods is considered. Extrapolation of existing experimental results to unknown experimental conditions enables the prediction of the morphology of gold nanorods under certain experimental conditions.
- the invention utilizes machine learning to build a gold nanorod growth model, which has a high degree of agreement and a wide prediction range compared with the inverse Wulff structure calculation model. Can be consistent with the actual growth conditions.
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法,具体公开了机器人辅助纳米晶热力学形貌控制的建模方法,包括以下步骤:S1)采用高通量实验方法获得制备纳米晶体的实验条件以及制备获得纳米晶体的纵向等离子共振吸收峰,,形成数据库;S2)筛选训练数据库中的实验数据,确定一项实验条件作为变量,形成变量与对应LSPR的训练数据库;S3)采用机器学习算法获得纳米晶体数字化制造的热力学模型;S4)根据获得拟合曲线以及目标纳米晶体的LSPR,确定制备目标纳米晶体的实验条件。本发明通过机器人辅助,基于热力学形貌控制机制模型,实现了纳米晶体的数字化可控合成。
Description
本发明属于纳米晶体材料数字化智能制造领域,具体涉及机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法。
随着材料基因组、人工智能技术的发展,数据驱动科学发现(Data Driven Scientific Discovery)继“实验范式”、“理论范式”和“仿真范式”正成为“第四研究范式”。统筹运用数字化技术、数字化思维、数字化认知,探索第四范式与材料学科的交叉融合,将为发展新型材料制备技术与数字制造提供全新的方法论。最近,Nature和Science等国际顶级期刊连续刊文,认为可编程材料制备[1]研究是通过交叉研究产出的重大科学突破。
然而,材料数字化智能化自动制备技术目前仅被应用于活体生物材料[2],有机化学材料[1,3,4],小分子药物[5],聚合物[6,7]等材料的开发,机器人辅助可编程用于纳米晶制备的相关工作尚未有报道。
阻碍材料数字化的另外一个关键因素是缺乏通用的可编程语言。在生物材料方面,
等人[8]开发了首个适用于合成生物学的分子编程语言CRN++,利用计算机(Computer)工作原理,将细胞作为硬件(Hardware),基因作为软件(Software),来组装成全新人工生物材料,继而Lu、Ellis等人[2]报道了从工程微生物共培养物中生长出具有可编程的活体生物材料(Programmable Living Materials);在有机化学材料方面,Cronin等人陆续报道了编程语言驱动的有机材料合成机器人系统(命名为Chemputer)[1],能够自主学习文献并自动执行有机化学合成的标准操作系统(Standard Operating System)[3],可以执行不同有机合成的通用可编程化学合成机器(Programmable Chemical Synthesis Machine)[4];Segler、Waller等人报道了采用编码人工智能来实现有机小分子药物逆向合成(Retrosynthesis)[5];Zhu、Xu、Tan等人报道了能够做生物逻辑运算的可编程聚合物库及其逻辑门(Logic Gate)[6];谢涛团队发现了动态共价聚合物网络的光触发拓扑可编程性(Light-triggered Topological Programmability)[7]。对于金属有机框架材料(MOF),Yaghi、Li等人揭示了通过调节MOF-74中钴、镉、铅和锰等金属的序列(Sequencing of Metals)实现可编程化学合成[9]。另外,俞书宏团队发展了基于三聚氰胺-海绵-模板的水热合成过程(Melamine-Sponge-Templated Hydrothermal Process)的石墨烯基复合气凝胶材料的可编程制备[10]。
然而,机器人辅助数字化可控合成纳米晶体形貌的方法以及通过高通量大数据研究纳米晶生长过程的热力学机制的模型鲜少报道。
参考文献
1.Steiner,S.,et al.,Organic synthesis in a modular robotic system driven by a chemical programming language.Science,2019.363(6423):p.eaav2211.
2.Gilbert,C.,et al.,Living materials with programmable functionalities grown from engineered microbial co-cultures.Nature Materials,2021.
3.Mehr,S.H.M.,et al.,A universal system for digitization and automatic execution of the chemical synthesis literature.Science,2020.370(6512):p.101-108.
4.Angelone,D.,et al.,Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine.Nature Chemistry,2021.13(1):p.63-69.
5.Segler,M.H.S.,M.Preuss,and M.P.Waller,Planning chemical syntheses with deep neural networks and symbolic AI.Nature,2018.555(7698):p.604-610.
6.Zhang,P.,et al.,A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates.Nature Chemistry,2020.12(4):p.381-390.
7.Zou,W.,et al.,Light-triggered topological programmability in a dynamic covalent polymer network.Science Advances,2020.6(13):p.eaaz2362.
8.
M.,Soloveichik,D.&Khurshid,S.,CRN++:Molecular programming language.Natural Computing,2020.19:p.391–407.
9.Ji,Z.,T.Li,and O.M.Yaghi,Sequencing of metals in multivariate metal-organic frameworks.Science,2020.369(6504):p.674-680.
10.Ge,J.,et al.,A General and Programmable Synthesis of Graphene-Based Composite Aerogels by a Melamine-Sponge-Templated Hydrothermal Process.CCS Chemistry,2020.2(2):p.1-12.
发明内容
为了克服现有技术的问题,本发明在高通量试验的基础上,通过纳米晶材料的数字化制造和机器学习构建了纳米晶的热力学模型以及基于获得的热力学模型实现了纳米晶的可控合成。
因此,为更深入的研究Wulff、逆Wulff热力学模型及其可编程语言,尤其是胶体纳米金棒的理性制备,提供了模型、数据库和算法等软件技术支持,是实现可编程纳米晶数字制造的关键。
本发明的目的是提供一种纳米晶制备热力学模型及其算法和可编程语言,解决了现有技术中存在的新型材料理性设计、制备和表征制备等关键共性科学问题,缺乏数字化编程语言的问题。
本发明一个方面提供了一种纳米晶体数字化制造的热力学模型的建模方法,其包括以下 步骤:
S11)采用高通量实验方法获得制备纳米晶体的实验条件以及制备获得纳米晶体的LSPR,形成数据库;
S12)筛选训练数据库中的实验数据,确定一项实验条件作为变量,并固定其他实验条件,形成变量与对应LSPR的训练数据库;
S13)采用机器学习算法SISSO拟合步骤S12)筛选确定的纳米晶体的实验条件与纳米晶体的LSPR之间的拟合曲线,获得纳米晶体数字化制造的热力学模型;
S14)根据获得拟合曲线以及目标纳米晶体的LSPR,确定制备目标纳米晶体的实验条件;
其中,纳米晶体的实验数据包括制备原料的种类和用量。
本发明另一个方面提供了一种纳米晶体数字化制造的预测方法,包括:获得待制备的纳米晶体的LSPR值,并通过本发明的纳米晶体数字化制造的热力学模型获得对应的反应条件。
本发明另一个方面提供一种纳米晶体的晶面表面能之比与反应体系银离子浓度的定量关系,进而获得银离子浓度与晶面表面能之比或晶体长径比之间热力学关系的模型的构建方法,其包括以下步骤:
S21)在Wulff构造的晶体学数据库中筛选目标晶体的晶体形貌和晶面数据;
S22)分析不同晶面的表面积与纳米棒长径比之间是否存在趋势;
S23)选择与纳米棒长径比之间存在趋势的表面能之比(如(110)晶面与(001)晶面的表面能γ(110)和γ(001)之比),构建该晶面表面能比值与反应体系银离子浓度之间的经典模型和机器学习模型(以LSPR反映晶体形貌的长径比数值)。
本发明又一个方面提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现本发明所述建模所述纳米晶体数字化制造的热力学模型的建模方法的步骤。
本发明再一个方面提供了一种计算机设备,包括存储器和处理器,在所述存储器上存储有能够在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述建模所述纳米晶体数字化制造的热力学模型的建模方法的步骤。
1)本发明首次提供了第四范式数据驱动科学发现与材料学科的实例,尤其涉及与纳米晶体材料制备的交叉融合,为发展新概念材料与材料共性科学提供全新的方法。
2)本发明深入研究了纳米晶体的热力学模型,提供了模型、数据库、算法以及可编程语言,实现可编程的纳米晶数字制造。
图1.机器学习用于构建金纳米棒生长的热力学模型过程示意图。
图2.金纳米晶体的各种晶体平衡形貌。
图3.金纳米晶(A)(100)面的五个等效面表面积与长径比的相关性分析。(A)(100)晶面,A
100=A
(100)+A
(I00)+A
(010)+A
(0I0),(B)(110)晶面,A
110=A
(110)+A
(I10)+A
(110)+A
(1I0)(C)(111)晶面,A
111=A
(111)+A
(I11)+A
(1I1)+A
(11I)+A
(II1)+A
(1II)+A
(I1I)+A
(III),(D)(011)晶面,A
011=A
(011)+A
(101)+A
(0I0)+A
(01I)+A
(I01)+A
(10I)+A
(I0I)+A
(0II),(E)(001)晶面,A
001=A
(001)+A
(00I)。
图4.金纳米棒的透射电镜图像和尺寸分布。(A-C)对应的金纳米棒的LSPR峰值分别为630nm、784nm和812nm。(D-F)金纳米棒的平均直径和长度。LSPR和长径比(AR)的换算公式为:AR=(LSPR-418)/96
图5.纳米晶体合成的经典模型拟合曲线。
图6.纳米晶体合成的机器学习拟合曲线。
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明,但不能理解为对本发明的可实施范围的限定。
本发明具体实施方式提供了一种纳米晶体数字化制造的热力学模型的建模方法,其包括以下步骤:
S11)采用高通量实验方法获得制备纳米晶体的实验条件以及制备获得纳米晶体的LSPR,形成训练数据库;
S12)筛选训练数据库中的实验数据,确定一项实验条件作为变量,并固定其他实验条件;
S13)采用机器学习算法SISSO拟合步骤S12)筛选确定的纳米晶体的实验条件与纳米晶体的LSPR之间的拟合曲线,获得纳米晶体数字化制造的热力学模型;
S14)根据获得拟合曲线以及目标纳米晶体的LSPR,确定制备目标纳米晶体的实验条件;
其中,纳米晶体的实验数据包括制备原料的种类和用量。
在本发明的具体实施方案中,S12)包括:
S121)对数据库中的实验数据进行筛选,选择其中一项实验条件作为变量,且其他实验条件均为固定值;
S122)基于S121)筛选的变量以及对应的纳米晶体的LSPR值与纳米晶体经典模型进行拟合;
S123)重复步骤S121)和S122),获得不同变量与纳米晶体经典模型的拟合程度,选择拟合程度最高的变量用于生成训练数据库。
步骤S122)中,纳米晶体经典模型为基于吉布斯吸附等温式(Gibbs adsorption isotherm)和朗缪尔吸附等温式(Langmuir adsorption isotherm)拟合得到的参数方程。其中吉普斯吸附等温式为
朗缪尔吸附等温式为
拟合得到的参数方程γ=e
0In(1+ce
1)+e
2。
在上述具体实施方案中,纳米晶体选自金纳米晶体。
在本发明的一个具体的实施方案中,所述纳米晶体为金纳米晶体。制备金纳米晶体的方法为采用HAuCl
4、CTAB、AgNO
3、抗坏血酸、盐酸和硼氢化钠进行反应,获得棒状金纳米晶体。金盐例如选择氯金酸溶液。表面活性剂选择例如CTAB。通过对不同反应原料进行筛选以及与经典模型的拟合,共进行了6种原料的筛选,AgNO
3溶液的浓度,作为反应原料时的实验结果与经典模型拟合程度最高,选择AgNO
3溶液的浓度作为训练集中的变量;
热力学模型曲线表达式为LSPR=(3.625×ln(C(Ag
+))^
2-3.43×(C(Ag
+))+0.58×(C(Ag
+))×ln(C(Ag
+))+6.31)×96+418,其中与晶面表面能之比对应的参数长径比AR=3.625×ln(C(Ag
+))^
2-3.43×(C(Ag
+))+0.58×(C(Ag
+))×ln(C(Ag
+))+6.31;C(Ag
+)代表银离子浓度。
本发明另一个具体实施方案提供一种纳米晶体晶面表面积与晶面表面能之间热力学关系的模型的构建方法,其包括以下步骤:
S21)在Wulff构造的晶体学数据库中筛选目标晶体的晶体形貌和晶体面数据;
S22)分析不同晶面的表面积与纳米棒长径比之间是否存在趋势;
S23)选择与纳米棒长径比之间存在趋势的表面能比值,构建该晶面表面能比值与反应体系和反应条件的经典模型和机器学习模型。
具体地,目标晶体为金纳米晶体,Wulff构造的晶体学数据库选自立方晶系数据库。
具体地,步骤S23)中表面能比值例如选择(110)晶面与(001)晶面的表面能γ(110)和γ(001)之比。
具体地,反应条件例如在金纳米晶体制备过程以银离子浓度作为反应条件。
具体地,晶体长径比以LSPR数值形式表达,LSPR和长径比(AR)的换算公式为:AR=(LSPR-418)/96。
在步骤S23)中,晶面表面积与该晶面表面能、晶面表面能比值之间的人工神经网络模型通过以晶面表面能比值作为描述符,以表面能比值作为输出项通过人工神经网络机器学习的方法获得模型。
本发明采用以下方法实现:
实施例1金纳米表面形貌与表面能的热力学关系模型的建立
以金纳米颗粒为例,首先是调用了晶体结构学中的7个晶系数据库,分别为立方、六边形、三角、四方、正交、单斜、三斜。该数据库是基于Wulff构造建立的,包含2000多种可能的晶体形貌和9万种不同的晶体面数据。在立方晶系数据中,筛选了多种可能的金纳米晶形态。根据Wulff定理,(hkl)表面的表面能与晶体中心到相应表面的距离成正比:
d
hkl~γ
hkl
通过Wulff构造,得到的金纳米晶体的各种晶体平衡形貌如图2所示。为了合理设计目标纳米晶体,采用典型的比表面积、长径比等几何特征对模拟形貌进行了定量分析。根据立方晶体体系的对称性,识别出5个等效晶面,相关分析如图3所示。在图3E中,发现(001)晶面的表面积随着纳米棒长径比的增大而逐渐减小。从透射电子显微镜(TEM)的结果,使用图像读取代码,获取了金纳米棒的长度、直径和表面积信息。图2和图4显示了金u纳米棒(AR=2.2,LSPR=630nm)的TEM形貌。然而,由于某些不可预测的形态条件,表面积很容易发生变化。实验研究面临的最大挑战是澄清多个表面区域,对应不同的潜在形态。
本发明采用(110)或(001)晶面的表面积和晶面的表面能γ(001)/γ(110)比值作为描述符,并将与上述晶面的表面能比值作为输出目标值,采用人工神经网络(ANN)模型加速计算表面能比值。实验结果显示机器学习的预测表面能比值与Wulff构造的计算值吻合良好。R
2=0.99。由此,本发明采用机器学习的方法验证了金纳米棒合成体系的银离子浓度与表面能之间热力学关系模型:γ=e
0In(1+ce
1)e
2。
实施例2热力学数据驱动的可控合成的热力学模型
采用经典的数学模型,首先对计算得到的制备金纳米晶体表面能与初步实验结果的相关 性进行研究。利用经典的吉布斯吸附等温式
和朗缪尔吸附等温式
建立了参数方程γ=e
0In(1+ce
1)+e
2(经典模型),如图5所示,在经典模型中拟合曲线的表面能检测范围对应的LSPR值范围为666-878nm,拟合曲线与实际实验的表面能方差为0.98。进一步的,利用本发明实验的计算机辅助的高通量实验设备的优势,获得了包含LSPR信息以及实验方法的大数据集,采用数据集中反应原料中的形貌调控剂银离子,即AgNO
3的浓度作为变量,通过采用机器学习算法SISSO拟合获得AgNO
3的浓度与LSPR之间的拟合曲线,见图6。通过机器学习的模型,不仅实现了AgNO
3因子的扩展应用范围,LSPR值范围扩展到600-925nm;而且与实验值拟合后的方差,相较于经典模型准确度更高。
本发明将逆Wulff构造应用到胶体纳米金体系,确定了表面能与形貌调控及Ag
+浓度的定量关系。为了验证该方法的适用性,将逆Wulff构造应用于通过实验观察到的金纳米棒平衡形貌倒推得到了表面能,用以确定给定金纳米棒晶体形貌的生长条件。在本发明中,将表面能与重要的溶液参数Ag
+浓度联系起来,考虑了不同的Ag
+浓度对金纳米棒形貌的影响。将已有的实验结果外推至未知的实验条件,这使得在一定实验条件下能够预测金纳米棒的形貌。本发明利用机器学习构建金纳米棒生长模型,与逆Wulff构造计算模型相比吻合度高且预测范围广,通过最小化算法从实验观察到的粒子形貌中获得的表面能,且得到的表面能与实际生长条件相一致。
Claims (10)
- 一种纳米晶体数字化制造的热力学模型的建模方法,其特征在于,其包括以下步骤:S11)采用高通量实验方法获得制备纳米晶体的实验条件以及制备获得纳米晶体的LSPR,形成数据库;S12)筛选训练数据库中的实验数据,确定一项实验条件作为变量,并固定其他实验条件,形成变量与对应LSPR的训练数据库;S13)采用机器学习算法SISSO拟合步骤S12)筛选确定的纳米晶体的实验条件与纳米晶体的LSPR之间的拟合曲线,获得纳米晶体数字化制造的热力学模型;S14)根据获得拟合曲线以及目标纳米晶体的LSPR,确定制备目标纳米晶体的实验条件;其中,纳米晶体的实验数据包括制备原料的种类和用量。
- 根据权利要求1所述的建模方法,其特征在于,步骤S12)包括:S121)对数据库中的实验数据进行筛选,选择其中一项实验条件作为变量,且其他实验条件均为固定值;S122)基于S121)筛选的变量以及对应的纳米晶体的LSPR值与纳米晶体经典模型进行拟合;S123)重复步骤S121)和S122),获得不同变量与纳米晶体经典模型的拟合程度,选择拟合程度最高的变量用于生成训练数据库。
- 根据权利要求1-3任一项所述的建模方法,其特征在于,纳米晶体选自金纳米晶体。
- 根据权利要求1-3任一项所述的建模方法,其特征在于,所述纳米晶体为金纳米晶体。制备金纳米晶体的方法为采用HAuCl 4、CTAB、AgNO 3、抗坏血酸、盐酸和硼氢化钠进 行反应,获得棒状金纳米晶体;金盐选择氯金酸溶液;表面活性剂选择CTAB;选择AgNO 3溶液的浓度作为训练集中的变量。
- 根据权利要求5所述的建模方法,其特征在于,其热力学模型曲线表达式为LSPR=(3.625×ln(C(Ag +))^ 2-3.43×(C(Ag +))+0.58×(C(Ag +))×ln(C(Ag +))+6.31)×96+418,其中与晶面表面能之比对应的参数长径比AR=3.625×ln(C(Ag +))^ 2-3.43×(C(Ag +))+0.58×(C(Ag +))×ln(C(Ag +))+6.31;C(Ag +)代表银离子浓度。
- 一种纳米晶体数字化制造的预测方法,包括:获得待制备的纳米晶体的LSPR值,并通过权利要求1-6任一项所述的纳米晶体数字化制造的热力学模型获得对应的反应条件。
- 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现权利要求1-6任一项所述建模所述纳米晶体数字化制造的热力学模型的建模方法的步骤。
- 一种计算机设备,包括存储器和处理器,在所述存储器上存储有能够在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1-6任一项所述建模所述纳米晶体数字化制造的热力学模型的建模方法的步骤。
- 一种纳米晶体晶面表面积与晶面表面能之间热力学关系的模型的构建方法,其包括以下步骤:S21)在Wulff构造的晶体学数据库中筛选目标晶体的晶体形貌和晶体面数据;S22)分析不同晶面的表面积与纳米棒长径比之间是否存在趋势;S23)选择与纳米棒长径比之间存在趋势的表面能比值,构建该晶面表面能比值与反应体系和反应条件的经典模型和机器学习模型;在步骤S23)中,晶面表面积与该晶面表面能、晶面表面能比值之间的人工神经网络模型通过以晶面表面能比值作为描述符,以表面能比值作为输出项通过人工神经网络机器学习的方法获得模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/135298 WO2023097644A1 (zh) | 2021-12-03 | 2021-12-03 | 机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/135298 WO2023097644A1 (zh) | 2021-12-03 | 2021-12-03 | 机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023097644A1 true WO2023097644A1 (zh) | 2023-06-08 |
Family
ID=86611335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/135298 WO2023097644A1 (zh) | 2021-12-03 | 2021-12-03 | 机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023097644A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016176313A1 (en) * | 2015-04-27 | 2016-11-03 | Texas Tech University System | Apparatus and computerized method for predicting asphaltene precipitation based on aggregation thermodynamics |
CN111128311A (zh) * | 2019-12-25 | 2020-05-08 | 北京化工大学 | 基于高通量实验与计算的催化材料筛选方法和系统 |
CN112634999A (zh) * | 2020-11-30 | 2021-04-09 | 厦门大学 | 一种机器学习辅助优化梯度二氧化钛纳米管微图案的方法 |
CN112744822A (zh) * | 2021-01-08 | 2021-05-04 | 大连环球矿产股份有限公司 | 一种纳米矿物纤维的制备方法 |
-
2021
- 2021-12-03 WO PCT/CN2021/135298 patent/WO2023097644A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016176313A1 (en) * | 2015-04-27 | 2016-11-03 | Texas Tech University System | Apparatus and computerized method for predicting asphaltene precipitation based on aggregation thermodynamics |
CN111128311A (zh) * | 2019-12-25 | 2020-05-08 | 北京化工大学 | 基于高通量实验与计算的催化材料筛选方法和系统 |
CN112634999A (zh) * | 2020-11-30 | 2021-04-09 | 厦门大学 | 一种机器学习辅助优化梯度二氧化钛纳米管微图案的方法 |
CN112744822A (zh) * | 2021-01-08 | 2021-05-04 | 大连环球矿产股份有限公司 | 一种纳米矿物纤维的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tao et al. | Nanoparticle synthesis assisted by machine learning | |
Cervellino et al. | DEBUSSY 2.0: the new release of a Debye user system for nanocrystalline and/or disordered materials | |
Yuangyai et al. | Design of experiments: a key to innovation in nanotechnology | |
Sasikumar et al. | Evolutionary optimization of a charge transfer ionic potential model for Ta/Ta-Oxide heterointerfaces | |
CN114357857A (zh) | 机器人辅助数字化可控合成纳米晶体形貌的方法 | |
Yan et al. | Renucleation and sequential growth of ZnO complex nano/microstructure: from nano/microrod to ball-shaped cluster | |
Spurgeon et al. | Fundamentals of Au (111) surface dynamics: Coarsening of two-dimensional Au islands | |
WO2023097644A1 (zh) | 机器人辅助纳米晶热力学形貌控制机制的数字化可控合成方法 | |
Yakimchuk et al. | Morphology and microstructure evolution of gold nanostructures in the limited volume porous matrices | |
Kuznetsova et al. | Expanding the horizons of machine learning in nanomaterials to chiral nanostructures | |
Li et al. | Synchrotron Radiation Data-Driven Artificial Intelligence Approaches in Materials Discovery | |
Wu et al. | Early stage growth of rutile titania mesocrystals | |
Dhindsa et al. | Facet tunability of aluminum nanocrystals | |
Guren et al. | Dissolution rate variability at carbonate surfaces: 4D X-ray micro-tomography and stochastic modeling investigations | |
WO2023097664A1 (zh) | 机器人辅助纳米晶自动表征加速材料的智能化逆向设计 | |
Fletcher | Inclusive/universal design: People at the center of the design process | |
CN114329906A (zh) | 纳米晶体材料数学模型、数据库和ai算法全流程的可编程理性设计方法 | |
Krayzman et al. | Local structural distortions and failure of the surface-stress “core–shell” model in brookite titania nanorods | |
Moses et al. | Machine learning and robot-assisted synthesis of diverse gold nanorods via seedless approach | |
Alamdari et al. | Synthesis of silver chromate nanoparticles: Parameter optimization using Taguchi design | |
Pratiush et al. | Implementing dynamic high-performance computing supported workflows on Scanning Transmission Electron Microscope | |
Mikhov et al. | Influence of the temperature on simulated annealing method for metal nanoparticle structures optimization | |
Zhao et al. | Cyber-Physical System Enabled Digital Manufacturing of Nanocrystals: A Crystputer | |
WO2023097643A1 (zh) | 可编程理性设计纳米晶体材料的方法 | |
Xu et al. | Coordination complex transformation-assisted fabrication for hollow chestnut-like hierarchical ZnS with enhanced photocatalytic hydrogen evolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21966071 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |