WO2023097582A1 - 一种分布式光纤测温装置、光伏板温度测量系统及方法 - Google Patents

一种分布式光纤测温装置、光伏板温度测量系统及方法 Download PDF

Info

Publication number
WO2023097582A1
WO2023097582A1 PCT/CN2021/134876 CN2021134876W WO2023097582A1 WO 2023097582 A1 WO2023097582 A1 WO 2023097582A1 CN 2021134876 W CN2021134876 W CN 2021134876W WO 2023097582 A1 WO2023097582 A1 WO 2023097582A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
temperature
temperature measurement
photovoltaic panel
sensing
Prior art date
Application number
PCT/CN2021/134876
Other languages
English (en)
French (fr)
Inventor
刘统玉
姜涛
宁雅农
石智栋
金光贤
刘振亚
Original Assignee
山东微感光电子有限公司
广东感芯激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东微感光电子有限公司, 广东感芯激光科技有限公司 filed Critical 山东微感光电子有限公司
Priority to PCT/CN2021/134876 priority Critical patent/WO2023097582A1/zh
Priority to US17/559,010 priority patent/US20230168135A1/en
Publication of WO2023097582A1 publication Critical patent/WO2023097582A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of optical fiber distributed temperature measurement, in particular to a distributed optical fiber temperature measurement device, a photovoltaic panel temperature measurement system and a method.
  • Distributed optical fiber temperature measurement system is a technology for real-time measurement of temperature spatial distribution, which can be widely used in temperature detection and fire warning in coal mines, tunnels, large buildings, power transmission cables, cable trays, etc.
  • the distributed optical fiber temperature measurement system mainly uses the principle of spontaneous Raman scattering in the optical fiber to measure temperature, uses the principle of optical time domain reflection to locate, and realizes the temperature sensing system that measures the temperature field.
  • the present invention proposes a distributed optical fiber temperature measurement device, photovoltaic panel temperature measurement system and method, and the sensing optical fiber used for temperature measurement is installed in an independent optical fiber clip to form a single temperature measurement point.
  • the temperature sensing surface can measure the temperature of a single temperature measurement point, isolate the adjacent temperature measurement points through the isolation fiber and adjust the length of the sensing fiber, and the sensing fiber under a certain temperature measurement point can centrally measure the temperature of the point temperature, to ensure the accuracy of temperature measurement.
  • the present invention provides a distributed optical fiber temperature measurement device, including: a temperature measurement module and a temperature measurement optical fiber, the temperature measurement optical fiber includes a sensing optical fiber and an isolation optical fiber arranged at intersecting intervals;
  • the sensing optical fiber is arranged in the optical fiber clip to form the temperature sensing surface of the temperature measurement point;
  • the isolated optical fiber is arranged on the back of the optical fiber clip to form an optical fiber storage area, and the length of the sensing optical fiber is adjusted by releasing and storing the isolated optical fiber in the optical fiber storage area;
  • the temperature measurement module is connected with a sensing optical fiber to obtain the temperature of the temperature measurement point.
  • the sensing optical fiber is coated with a heat-conducting material, and after being fixed with a heat-conducting metal, it is arranged in the optical fiber clip according to a preset shape.
  • the isolated optical fiber is arranged on the back of the optical fiber clamp according to a preset shape, and is thermally isolated from the optical fiber clamp by using a heat insulating material.
  • the isolation optical fiber isolates adjacent temperature measurement points, and the temperature measurement module is connected to the isolation optical fiber to obtain the ambient temperature between adjacent temperature measurement points.
  • the optical fiber clip is fixed on the surface of the object to be measured through a matching frame or clip, so that the temperature measurement sensing surface is attached to the surface of the object to be measured for temperature measurement.
  • the present invention provides a photovoltaic panel temperature measurement system, including the optical fiber temperature measurement and sensing device and the processing module described in the first aspect;
  • the optical fiber of the optical fiber temperature sensing device is clamped on the photovoltaic panel, and the temperature measurement module obtains the temperature of the photovoltaic panel;
  • the processing module is configured to judge the abnormal temperature value according to the temperature of the photovoltaic panel, and locate the abnormal photovoltaic panel according to the position of the optical fiber clip where the abnormal temperature value is located.
  • the processing module presets a grading alarm threshold, performs grading alarming according to the comparison result of the temperature of the photovoltaic panel and the grading alarm threshold, and if the first-level alarm threshold is exceeded, the power generation of the corresponding photovoltaic panel is stopped.
  • the processing module presets a temperature alarm threshold, and if the temperature of the photovoltaic panel is greater than the constant temperature alarm threshold, an alarm program is started and the location of the abnormal photovoltaic panel is located.
  • the processing module presets a differential temperature alarm threshold, and if the temperature difference between the photovoltaic panel and other photovoltaic panels is greater than the differential temperature alarm threshold, an alarm program is started and the location of the abnormal photovoltaic panel is located.
  • the present invention provides a measurement method of the photovoltaic panel temperature measurement system described in the second aspect, comprising:
  • the temperature of the photovoltaic panel is collected through an optical fiber temperature sensing device
  • the sensing optical fiber used for temperature measurement is installed in an independent optical fiber clip to form a temperature sensing surface of a single temperature measurement point, which can measure the temperature of a single temperature measurement point,
  • the sensing fiber at a certain temperature measurement point can centrally measure the temperature at that point to ensure the accuracy of temperature measurement.
  • the photovoltaic panel temperature measurement system and method based on the distributed optical fiber temperature measuring device provided by the present invention can judge the abnormal temperature value according to the temperature of the photovoltaic panel, and locate the abnormal photovoltaic panel according to the position of the optical fiber clip where the abnormal temperature value is located, so as to solve the problem that the existing technology cannot Pinpoint each PV panel problem.
  • the photovoltaic panel temperature measurement system and method based on the distributed optical fiber temperature measurement device provided by the present invention can be used for large-area and large-scale photovoltaic panel temperature measurement; realize real-time monitoring of the temperature of each photovoltaic panel, and timely monitor the temperature of numerous photovoltaic panels Find and locate high-temperature points or overheated photovoltaic panels in the array, and timely classify and alarm, shut down the power generation of overheated photovoltaic panels through threshold and classification linkage, eliminate accidental photovoltaic panels, and achieve the purpose of early warning of photovoltaic panel overheating and prevention of photovoltaic panel fires.
  • FIG. 1 is a schematic diagram of a distributed optical fiber temperature measuring device provided in Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart of a measurement method of the photovoltaic panel temperature measurement system provided by Embodiment 3 of the present invention.
  • This embodiment provides a distributed optical fiber temperature measurement device, as shown in Figure 1, including: a temperature measurement module and a temperature measurement optical fiber; the temperature measurement optical fiber is divided into a section of guiding optical fiber, and several sections of interlaced sensing optical fiber and isolation fibers;
  • the sensing optical fiber is arranged in the sensing optical fiber storage area of the sensing surface in the optical fiber clip to form the temperature sensing surface of the temperature measurement point; by adjusting the length of the sensing optical fiber in the optical fiber clip, the temperature measurement can be effectively adjusted. sensitivity;
  • the isolated optical fiber is arranged on the back of the optical fiber clip to form an isolated optical fiber storage area, and the relative distance between adjacent temperature measurement points is adjusted by releasing and storing the isolated optical fiber in the isolated optical fiber storage area;
  • the temperature measurement module is connected with a sensing optical fiber to obtain the temperature of the temperature measurement point.
  • the length of the guiding fiber is determined by actual engineering needs, avoiding the measurement dead zone of DTS, and providing a reference temperature point; the length of the sensing fiber is determined by the temperature measurement sensitivity, by adding the sensing fiber The length achieves high sensitivity; the length of the isolated optical fiber is determined by the length of the optical fiber capable of distinguishing the two temperature measurement points and the engineering construction requirements, and the distance between the two temperature measurement points is changed by releasing or storing the isolated optical fiber in the isolated storage area.
  • the sensing optical fiber is coiled into the shape required for temperature measurement, the coiled sensing optical fiber is installed in the optical fiber clip, the thermal conductive material is coated on the sensing optical fiber, and fixed on the sensing optical fiber Heat-conducting metal sheet forming the measuring or sensing surface of the temperature measuring point.
  • the shape required for temperature measurement includes a circle, a rectangle or other arbitrary shapes
  • the coiled sensing fiber can be a section of sensing fiber or a circle of sensing fiber or several circles of sensing fiber; a coiled sensing fiber is used as a temperature measurement point, and the coiled sensing fiber
  • the length of the optical fiber is greater than the preset length, which is set to 5m in this embodiment.
  • the radius of the sensing fiber bend is greater than the preset minimum radius; in this embodiment, the preset minimum radius is set to 5mm, and the smaller the radius of the sensing fiber bend, the better the temperature measurement effect.
  • the isolated optical fiber is coiled into a shape required for placing the optical fiber, the coiled isolated optical fiber is installed on the back of the optical fiber clamp, and a heat insulating material is used to thermally isolate the isolated optical fiber and the optical fiber clamp;
  • the shape required for placing the optical fiber includes a circle, a rectangle or other arbitrary shapes
  • the radius of the bend of the isolated optical fiber is greater than a preset minimum radius, and in this embodiment, the preset minimum radius is set to 5 mm.
  • the isolated optical fiber in the optical fiber storage area can be used to measure the ambient temperature of the temperature measurement point.
  • the surface of the sensing fiber in the fiber clip is closely attached to the surface of the measured object to measure the temperature of the measured object, and the distance between adjacent temperature measurement points is adjusted by isolating the optical fiber, so it can also be adjusted by The isolated optical fiber senses the ambient temperature between adjacent temperature measurement points. At the same time, adjacent temperature measurement points are connected by isolated optical fibers, so the isolated optical fibers can measure the temperature of the actual space between adjacent temperature measurement points.
  • the actual spatial distance between adjacent temperature measurement points is adjusted by releasing the isolated optical fiber in the isolated optical fiber storage area, or storing redundant isolated optical fibers in the optical fiber storage area. Therefore, the actual spatial distance between every two temperature measurement points It can be adjusted according to specific application needs, and can be any distance of a few millimeters, a few meters, tens of meters or more.
  • the optical fiber clamp at each temperature measurement point is provided with a supporting card frame/clamp, and the optical fiber clamp is fixed on the surface of the measured object through the card frame/clamp, such as the measured surface on the back of the photovoltaic panel; After the clip is fixed on the measured object through the lock of the card frame or the card pin of the card, the measuring surface or sensing surface of the optical fiber clip is closely attached to the surface of the measured object to achieve the purpose of measuring the surface temperature of the measured object.
  • the temperature measurement module may include a pulsed light source, a high-speed optical switch, an optical fiber beam splitter, a high-sensitivity photodetector, and a high-speed signal processing circuit.
  • a pulsed light source e.g., a laser beam, a laser beam, and a laser beam.
  • the distributed Raman technology disclosed in Chinese patent CN108414113B may be used.
  • Temperature measurement system In this embodiment, the temperature measurement module can be connected to several sensing optical fibers at the same time to form several temperature sensing channels for simultaneous measurement.
  • the temperature values of the sensing fibers at each temperature measuring point and the ambient temperature value of the isolated optical fiber in the isolated optical fiber storage area are respectively obtained; since the sensing optical fiber at each temperature measuring point is coiled In the same optical fiber clip, the sensing optical fiber of the entire temperature sensing surface is concentrated to sense the temperature of the same temperature measurement point, thus enhancing the sensitivity of the optical fiber to the temperature of the measured object;
  • the isolated optical fiber at each temperature measurement point measures the ambient temperature at that point;
  • each temperature measurement point is separated by the isolated optical fiber in the optical fiber storage area, the temperature value measured by each temperature measurement point and the relative position of the temperature measurement point in the entire measurement curve are also fixed, thus It is possible to locate photovoltaic panel locations that generate abnormal temperatures.
  • the distributed optical fiber temperature measuring device described in Embodiment 1 can be used in the fire early warning of solar photovoltaic power generation, and the accuracy of the early warning can be improved by sensing the temperature change of the photovoltaic panel;
  • the photovoltaic panel temperature measurement system of temperature device comprises: the optical fiber temperature measurement sensing device described in embodiment 1 and processing module; The optical fiber of described optical fiber temperature measurement sensing device is clamped on the back side of photovoltaic panel, The module obtains the temperature of the photovoltaic panel and the ambient temperature of the photovoltaic panel; the processing module is configured to judge the abnormal temperature value according to the temperature of the photovoltaic panel, and locate the position of the abnormal photovoltaic panel according to the position of the optical fiber clip where the abnormal temperature value is located.
  • an optical fiber temperature sensing device is arranged, and the light intensity values of Stokes light and anti-Stokes light at each point of the sensing fiber are collected, and the corresponding demodulated Temperature value, by processing the collected light intensity value and temperature value, accurately locate and measure the temperature of each photovoltaic panel.
  • the grading alarm threshold is preset in the processing module, and the working condition of the photovoltaic panel is judged according to the temperature of the photovoltaic panel, and a grading alarm is performed;
  • the photovoltaic panels stop power generation to cool down, and upload cooling data in real time to effectively prevent fires.
  • the temperature setting alarm threshold and differential temperature alarm threshold are preset in the processing module. If it is detected that the temperature of a certain photovoltaic panel is greater than the fixed temperature alarm threshold, the alarm program and sound and light alarm are started, and the alarm location and Temperature: If the temperature difference between a photovoltaic panel or a certain area and other photovoltaic panels is detected to be greater than the temperature difference alarm threshold, the alarm program and sound and light alarm will be activated, and the alarm location and temperature will be located.
  • the optical fiber clamp is fixed on the back of the photovoltaic panel
  • the temperature measured by the sensing fiber in the optical fiber clamp is the temperature of the photovoltaic panel
  • the temperature between adjacent temperature measurement points is the ambient temperature, which can be determined by isolating the optical fiber It was also measured that the isolated optical fiber between the two temperature measurement points facilitates the positioning of the photovoltaic panel position.
  • the photovoltaic panel temperature measurement system based on the distributed optical fiber temperature measurement device of this embodiment is suitable for large-area and large-scale photovoltaic panel temperature measurement, realizes real-time monitoring of the operating temperature of each solar photovoltaic panel, and timely monitors the temperature of many photovoltaic panels Find and locate high-temperature points or overheated photovoltaic panels in time, and grade and alarm in time. Through threshold setting and hierarchical linkage, power generation sub-systems containing overheated photovoltaic panels are shut down, and accidental photovoltaic panels are eliminated, so as to achieve early warning of photovoltaic panel overheating and prevent photovoltaic panel fires. Purpose.
  • this embodiment provides a measurement method for the photovoltaic panel temperature measurement system described in Embodiment 2, including:
  • the temperature of the photovoltaic panel is collected through an optical fiber temperature sensing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种分布式光纤测温装置、光伏板温度测量系统及方法,包括:测温模块和测温光纤,测温光纤包括交叉间隔设置的传感光纤和隔离光纤;传感光纤设置在光纤夹里,构成温度测量点的测温传感面;隔离光纤设置在光纤夹的背面,构成隔离光纤存放区,通过对隔离光纤存放区中隔离光纤的释放和收存调节相邻测温点间的空间距离;测温模块连接传感光纤,以利用传感光纤得到温度测量点的温度,构成单个温度测量点的测温传感面,并对单个温度测量点进行测温,通过隔离光纤测量该隔离光纤对应的光纤夹附件的环境温度,并将相邻测量点的传感光纤进行光学隔离。通过调节传感光纤的长度,可以调节该温度测量点测量灵敏度,保证温度测量的准确性。

Description

一种分布式光纤测温装置、光伏板温度测量系统及方法 技术领域
本发明涉及光纤分布式测温技术领域,特别是涉及一种分布式光纤测温装置、光伏板温度测量系统及方法。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
分布式光纤测温系统是用于实时测量温度空间分布的技术,可广泛应用于煤矿、隧道、大型建筑、输电线缆、电缆桥架等温度检测和火灾预警。分布式光纤测温系统主要运用光纤内的自发拉曼散射原理来测温,用光时域反射原理来定位,实现对温度场的实施测量的温度传感系统。
而在太阳能光伏发电领域,在某一发电区域内,太阳能光伏板的数量多、若干个光伏板构成的面积大,而现有测温技术在对大面积、大范围、数量众多的太阳能光伏板进行测温时,无法单独对每块光伏板进行测温以及不能精确定位温度异常升高的光伏板,因而无法及时发现并消除潜在发火的光伏板,达到防止光伏板起火的目的。
发明内容
为了解决上述问题,本发明提出了一种分布式光纤测温装置、光伏板温度测量系统及方法,将用于测温的传感光纤安装在独立的光纤夹中,构成单个温度测量点的测温传感面,可以对单个温度测量点进行测温,通过隔离光纤将相 邻温度测量点进行隔离及调节传感光纤的长度,某个温度测量点下的传感光纤可集中测量该点的温度,保证温度测量的准确性。
为了实现上述目的,本发明采用如下技术方案:
第一方面,本发明提供一种分布式光纤测温装置,包括:测温模块和测温光纤,所述测温光纤包括交叉间隔设置的传感光纤和隔离光纤;
所述传感光纤设置在光纤夹里,构成温度测量点的测温传感面;
所述隔离光纤设置在光纤夹的背面,构成光纤存放区,通过对光纤存放区中隔离光纤的释放和收存调节传感光纤的长度;
所述测温模块连接传感光纤,以得到温度测量点的温度。
作为可选择的实施方式,所述传感光纤涂覆导热材料,并固定导热金属后,根据预设形状设置在光纤夹里。
作为可选择的实施方式,所述隔离光纤根据预设形状设置在光纤夹的背面,并采用隔热材料与光纤夹进行热隔离。
作为可选择的实施方式,所述隔离光纤对相邻的温度测量点进行隔离,所述测温模块连接隔离光纤,以得到相邻温度测量点间的环境温度。
作为可选择的实施方式,所述光纤夹通过配套的卡框或卡件固定在被测物体表面,使得测温传感面与被测物体表面贴合后进行测温。
第二方面,本发明提供一种光伏板温度测量系统,包括第一方面所述的光纤测温传感装置和处理模块;
所述光纤测温传感装置的光纤夹设于光伏板上,所述温度测量模块获取光伏板的温度;
所述处理模块被配置为根据光伏板的温度判断异常温度值,并根据异常温 度值所在光纤夹的位置定位异常光伏板。
作为可选择的实施方式,所述处理模块中预设分级报警阈值,根据光伏板的温度与分级报警阈值的比较结果进行分级报警,且若超出一级报警阈值,则停止对应光伏板的发电。
作为可选择的实施方式,所述处理模块中预设定温报警阈值,若光伏板温度大于定温报警阈值时,启动报警程序,并定位异常光伏板位置。
作为可选择的实施方式,所述处理模块中预设差温报警阈值,若光伏板与其它光伏板的温度差大于差温报警阈值时,启动报警程序,并定位异常光伏板位置。
第三方面,本发明提供一种第二方面所述的光伏板温度测量系统的测量方法,包括:
通过光纤测温传感装置采集光伏板的温度;
预设分级报警阈值、定温报警阈值和差温报警阈值,并根据光伏板的温度判断异常温度值,
根据异常温度值所在光纤夹的位置定位异常光伏板,以及进行相应的分级报警、定温报警和差温报警。
与现有技术相比,本发明的有益效果为:
本发明提供的分布式光纤测温装置,将用于测温的传感光纤安装在独立的光纤夹中,构成单个温度测量点的测温传感面,可以对单个温度测量点进行测温,通过隔离光纤将相邻温度测量点进行隔离以及调节传感光纤的长度,那么某一个温度测量点下的传感光纤可集中测量该点的温度,保证温度测量的准确性。
本发明提供的基于分布式光纤测温装置的光伏板温度测量系统及方法,可以根据光伏板的温度判断异常温度值,根据异常温度值所在光纤夹的位置定位异常光伏板,解决现有技术不能精确定位每块光伏板问题。
本发明提供的基于分布式光纤测温装置的光伏板温度测量系统及方法,可用于大面积、大数量的光伏板测温;实现实时监测每块光伏板的温度,及时在众多的光伏板列阵中发现且定位高温点或过热光伏板,及时分级报警,通过阈值和分级联动关闭过热光伏板的发电,排除事故光伏板,达到提前预警光伏板过热,防止光伏板火灾发生的目的。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1提供的分布式光纤测温装置示意图;
图2为本发明实施例3提供的光伏板温度测量系统的测量方法流程图。
具体实施方式
下面结合附图与实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确 指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1
本实施例提供一种分布式光纤测温装置,如图1所示,包括:测温模块和测温光纤;所述测温光纤被划分为一段引导光纤,以及若干段相互交错的传感光纤和隔离光纤;
所述传感光纤设置在光纤夹里传感面的传感光纤存放区,构成温度测量点的测温传感面;通过调整在光纤夹中的传感光纤长度,可以有效地调整测量温度的灵敏度;
所述隔离光纤设置在光纤夹的背面,构成隔离光纤存放区,通过对隔离光纤存放区中隔离光纤的释放和收存调节相邻测温点的相对距离;
所述测温模块连接传感光纤,以得到温度测量点的温度。
作为可选择的实施方式,所述引导光纤的长度由实际工程需要确定,避免DTS的测量死区,同时提供参考温度点;所述传感光纤的长度由温度测量灵敏度确定,通过增加传感光纤长度实现高灵敏度;所述隔离光纤的长度由能够区分两个温度测量点的光纤长度以及工程施工要求来确定,通过释放或收存隔离存放区的隔离光纤改变两个温度测量点的距离。
在本实施例中,所述传感光纤被盘绕成测温所需的形状,盘绕后的传感光 纤安装在光纤夹里,在传感光纤上涂覆导热材料,并在传感光纤上固定导热的金属薄片,构成温度测量点的测量面或传感面。
作为可选择的实施方式,测温所需的形状包括圆形、长方形或其他任意形状;
作为可选择的实施方式,被盘绕的传感光纤可以是一段传感光纤或一圈传感光纤或若干圈传感光纤;盘绕成的一个传感光纤作为一个温度测量点,被盘绕的传感光纤的长度大于预设长度,本实施例设置为5m。
作为可选择的实施方式,传感光纤弯曲处的半径大于预设的最小半径;本实施例将预设的最小半径设置为5mm,传感光纤弯曲处的半径越小测温效果越好。
在本实施例中,所述隔离光纤被盘绕成放置光纤所需的形状,盘绕后的隔离光纤安装在光纤夹的背面,并采用隔热材料将隔离光纤和光纤夹进行热隔离;
作为可选择的实施方式,放置光纤所需的形状包括圆形、长方形或其他任意形状;
作为可选择的实施方式,隔离光纤弯曲处的半径大于预设的最小半径,本实施例将预设的最小半径设置为5mm。
作为可选择的实施方式,光纤存放区的隔离光纤可以用来温度测量点的环境温度。
作为可选择的实施方式,光纤夹中传感光纤面紧贴在设于被测物体的表面,以测量被测物体的温度,相邻温度测量点的距离通过隔离光纤进行调节,所以也可通过隔离光纤传感相邻温度测量点间的环境温度。同时,相邻温度测量点间由隔离光纤连接,所以隔离光纤可以测量相邻温度测量点间实际空间的温度。
在本实施例中,相邻温度测量点的实际空间距离通过释放隔离光纤存放区的隔离光纤,或将多余隔离光纤收存在光纤存放区进行调节,因此,每两个温度测量点的实际空间距离可以根据具体应用需要进行调整,可以是几毫米、几米、几十米或更远的任意距离。
在本实施例中,每个温度测量点的光纤夹设有配套的卡框/卡件,通过卡框/卡件将光纤夹固定在被测物体表面,如光伏板背面的被测表面;光纤夹通过卡框的卡锁或卡件的卡针固定在被测物体上后,使得光纤夹的测量面或传感面与被测物体表面紧密贴合,达到测量被测物体表面温度的目的。
在本实施例中,所述测温模块可以包括脉冲光源、高速光开关、光纤分束器、高灵敏度光电探测器和高速信号处理电路等,具体可采用中国专利CN108414113B中公开的分布式拉曼测温系统;本实施例中该测温模块可以同时连接若干个传感光纤,以构成若干个温度传感通道同时测量。
在本实施例中,进行温度测量时,分别得到各个温度测量点的传感光纤的温度值,以及隔离光纤存放区中隔离光纤的环境温度值;由于每个温度测量点的传感光纤是盘绕在同一个光纤夹中,使得整个测温传感面的传感光纤集中起来感应同一个温度测量点的温度,因此增强了光纤对被测物体温度的灵敏度;
同时,由于各个温度测量点的隔离光纤是盘绕在同一个光纤夹的背面,因此,各个温度测量点的隔离光纤测量该点的环境温度;
由于各个温度测量点之间是由光纤存放区的隔离光纤隔开,因此每个温度测量点所测量到的温度值,以及该温度测量点在整个测量曲线中的相对位置也是固定的,由此可以定位产生异常温度的光伏板位置。
实施例2
实施例1所述的分布式光纤测温装置可以用在太阳能光伏发电的火灾预警中,通过感知光伏板的温度变化,提高预警准确度;由此,本实施例提供一种基于分布式光纤测温装置的光伏板温度测量系统,包括:实施例1所述的光纤测温传感装置和处理模块;所述光纤测温传感装置的光纤夹设于光伏板的背面上,所述测温模块获取光伏板的温度和该光伏板所处的环境温度;所述处理模块被配置为根据光伏板的温度判断异常温度值,并根据异常温度值所在光纤夹的位置定位异常光伏板的位置。
在本实施例中,根据光伏板的布局,布设光纤测温传感装置,并采集传感光纤各点的斯托克斯光和反斯托克斯光的光强值,以及对应解调的温度值,通过对所采集的光强值和温度值进行处理,精确定位测量每块光伏板的温度。
在本实施例中,在所述处理模块中预设分级报警阈值,根据光伏板的温度判断光伏板的工作情况,进行分级报警;若超出一级报警温度,则联动光伏发电系统,对发热区域的光伏板停止发电以降温,并实时上传降温数据,有效预防火灾的发生。
在本实施例中,在所述处理模块中预设定温报警阈值和差温报警阈值,若检测到某块光伏板温度大于定温报警阈值时,启动报警程序和声光报警,并定位报警位置和温度;若检测到某块光伏板或某区域温度与其它光伏板温度的温差大于差温报警阈值时,启动报警程序和声光报警,并定位报警位置和温度。
作为可选择的实施方式,所述光纤夹固定在光伏板的背面,光纤夹内传感光纤测量的温度即为光伏板的温度,相邻温度测量点之间的温度为环境温度,可由隔离光纤测得,两个温度测量点之间的隔离光纤也便于定位光伏板位置。
本实施例的基于分布式光纤测温装置的光伏板温度测量系统适用于大面积、 大数量的光伏板测温,实现实时监测每块太阳能光伏板的工作温度,及时在众多的光伏板列阵中发现且定位高温点或过热光伏板,及时分级报警,通过阈值的设置和分级联动关闭含有过热光伏板的发电子系统,排除事故光伏板,达到提前预警光伏板过热,防止光伏板火灾发生的目的。
实施例3
如图2所示,本实施例提供一种实施例2所述的光伏板温度测量系统的测量方法,包括:
通过光纤测温传感装置采集光伏板的温度;
预设分级报警阈值、定温报警阈值和差温报警阈值,并根据光伏板的温度判断异常温度值,
根据异常温度值所在光纤夹的位置定位异常光伏板,以及进行相应的分级报警、定温报警和差温报警。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种分布式光纤测温装置,其特征在于,包括:测温模块和测温光纤,所述测温光纤包括交叉间隔设置的传感光纤和隔离光纤;
    所述传感光纤设置在光纤夹里,构成温度测量点的测温传感面;
    所述隔离光纤设置在光纤夹的背面,构成隔离光纤存放区,通过对隔离光纤存放区中隔离光纤的释放和收存,以调节相邻温度测量点间的距离;
    所述测温模块连接传感光纤,以得到温度测量点被测物体的温度和所处的环境温度。
  2. 如权利要求1所述的一种分布式光纤测温装置,其特征在于,所述传感光纤涂覆导热材料,并固定导热金属后,根据预设形状设置在光纤夹的传感面里。
  3. 如权利要求1所述的一种分布式光纤测温装置,其特征在于,所述隔离光纤根据预设形状设置在光纤夹的背面,并采用隔热材料与光纤夹进行热隔离;隔离光纤测量该光纤夹附件的环境温度。
  4. 如权利要求1所述的一种分布式光纤测温装置,其特征在于,所述隔离光纤将相邻的温度测量点的传感光纤进行隔离,所述测温模块由隔离光纤连接,且通过隔离光纤得到相邻温度测量点之间空间的环境温度。
  5. 如权利要求1所述的一种分布式光纤测温装置,其特征在于,所述光纤夹通过配套的卡框或卡件固定在被测物体表面,使得测温传感面与被测物体表面贴合后进行测温。
  6. 一种光伏板温度测量系统,其特征在于,包括权利要求1-5任一项所述的光纤测温传感装置和处理模块;
    所述光纤测温传感装置的光纤夹设于光伏板,所述测温模块获取该光伏板的温度;
    所述处理模块被配置为根据光伏板的温度判断异常温度值,并根据异常温度值所在光纤夹的位置定位异常光伏板的实际位置。
  7. 如权利要求6所述的一种光伏板温度测量系统,其特征在于,所述处理模块中预设分级报警阈值,根据光伏板的温度与分级报警阈值的比较结果进行分级报警,且若超出一级报警阈值,则停止对应光伏板的发电,并对温度异常光伏板进行维护检修。
  8. 如权利要求6所述的一种光伏板温度测量系统,其特征在于,所述处理模块中预设定温报警阈值,若光伏板温度大于定温报警阈值时,启动报警程序,并定位异常光伏板位置。
  9. 如权利要求6所述的一种光伏板温度测量系统,其特征在于,所述处理模块中预设差温报警阈值,若光伏板与其它光伏板的温度差大于差温报警阈值时,启动报警程序,并定位异常光伏板位置。
  10. 一种权利要求6-9任一项所述的光伏板温度测量系统的测量方法,其特征在于,包括:
    通过光纤测温传感装置采集光伏板的温度;
    预设分级报警阈值、定温报警阈值和差温报警阈值,并根据光伏板的温度判断异常温度值,
    根据异常温度值所在光纤夹的位置定位异常光伏板,以及进行相应的分级报警、定温报警和差温报警。
PCT/CN2021/134876 2021-12-01 2021-12-01 一种分布式光纤测温装置、光伏板温度测量系统及方法 WO2023097582A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/134876 WO2023097582A1 (zh) 2021-12-01 2021-12-01 一种分布式光纤测温装置、光伏板温度测量系统及方法
US17/559,010 US20230168135A1 (en) 2021-12-01 2021-12-22 Distributed fiber temperature measurement device, and photovoltaic power station temperature measurement system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134876 WO2023097582A1 (zh) 2021-12-01 2021-12-01 一种分布式光纤测温装置、光伏板温度测量系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/559,010 Continuation US20230168135A1 (en) 2021-12-01 2021-12-22 Distributed fiber temperature measurement device, and photovoltaic power station temperature measurement system and method

Publications (1)

Publication Number Publication Date
WO2023097582A1 true WO2023097582A1 (zh) 2023-06-08

Family

ID=86499853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134876 WO2023097582A1 (zh) 2021-12-01 2021-12-01 一种分布式光纤测温装置、光伏板温度测量系统及方法

Country Status (2)

Country Link
US (1) US20230168135A1 (zh)
WO (1) WO2023097582A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116817175B (zh) * 2023-08-31 2023-11-14 四川雅韵能源开发有限责任公司 一种基于光纤传感的液化天然气储罐监测预警方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206146556U (zh) * 2016-06-29 2017-05-03 中国计量学院 一种精密测量光伏组件温度的监控系统
CN106707434A (zh) * 2012-08-07 2017-05-24 爱德奇电讯国际贸易(上海)有限公司 光纤接续组件
CN206960005U (zh) * 2017-08-10 2018-02-02 合肥融讯电子科技有限公司 一种感温光缆固定装置
CN207571361U (zh) * 2017-09-26 2018-07-03 天津伽利联科技有限公司 一种托辊外侧测温光纤夹具
CN110261005A (zh) * 2019-07-29 2019-09-20 南昌航空大学 一种光纤网络新能源电池温度监测系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668093A (en) * 1983-06-13 1987-05-26 Mcdonnell Douglas Corporation Optical grating demodulator and sensor system
US20040181549A1 (en) * 2003-03-13 2004-09-16 Pate James D. Direct maintenance system for unscheduled, predictive, and preventive maintenance of critical process equipment
GB2408571B (en) * 2003-11-26 2006-07-19 Sensor Highway Ltd Apparatus and methods for distributed temperature sensing
JP4775173B2 (ja) * 2006-08-24 2011-09-21 住友電気工業株式会社 光ファイバ温度センサ
DE202006019104U1 (de) * 2006-12-19 2008-04-30 Euromicron Werkzeuge Gmbh Vorrichtung zum Umgang mit einem mehrfasrigen Lichtwellenleiterkabel
US7912334B2 (en) * 2007-09-19 2011-03-22 General Electric Company Harsh environment temperature sensing system and method
KR100971676B1 (ko) * 2008-10-09 2010-07-22 한국과학기술원 수동형 광 가입자 망에서 장애 검출 방법 및 검출 장치, 및그 검출 장치를 구비한 수동형 광 가입자 망
CN102414946B (zh) * 2009-04-27 2014-08-27 富士通株式会社 线材的敷设状态解析方法以及敷设状态解析装置
US20110052115A1 (en) * 2009-08-27 2011-03-03 General Electric Company System and method for temperature control and compensation for fiber optic current sensing systems
EP2746741B1 (en) * 2011-08-15 2016-11-16 Fujitsu Limited Temperature distribution measurement device and method
WO2013030969A1 (ja) * 2011-08-31 2013-03-07 富士通株式会社 温度分布測定システム、温度分布測定装置及び温度分布測定方法
JP2013092388A (ja) * 2011-10-24 2013-05-16 Yokogawa Electric Corp ファイバ温度分布測定装置
CN103959044A (zh) * 2011-12-01 2014-07-30 株式会社藤仓 超导线材的常导过渡的检测方法
CN102494801B (zh) * 2011-12-07 2013-05-29 电子科技大学 一种分布式光延迟光纤温度传感器
JP5826645B2 (ja) * 2012-01-23 2015-12-02 株式会社豊田自動織機 温度センサ用光ファイバおよび電力装置監視システム
WO2014064770A1 (ja) * 2012-10-23 2014-05-01 富士通株式会社 異常検知システム及び異常検知方法
EP2913646B1 (en) * 2012-10-26 2018-04-11 Fujitsu Limited Temperature measuring system and abnormality detecting method
US9605880B2 (en) * 2013-07-18 2017-03-28 George A. Van Straten Heated solar panel system
CN103487163A (zh) * 2013-09-10 2014-01-01 中国石油集团渤海钻探工程有限公司 高灵敏度光纤温度及侧向压力传感器的制备方法
WO2017065999A2 (en) * 2015-10-12 2017-04-20 3M Innovative Properties Company Ferrules, alignment frames and connectors
CN209083723U (zh) * 2018-08-21 2019-07-09 苏州光格设备有限公司 用以固定光纤测温传感器的卡箍及高压开关柜
CN110455437A (zh) * 2019-08-07 2019-11-15 中国电子科技集团公司第四十一研究所 基于光纤温度分布测试仪的太阳能电池板温度监测系统及布设监测方法
CN214099636U (zh) * 2021-01-26 2021-08-31 深圳市上古光电有限公司 一种轻量化光伏组件
KR20230108926A (ko) * 2022-01-12 2023-07-19 한국수자원공사 대상체의 표면에 센서 케이블을 고정하기 위한 클램프
CN220039663U (zh) * 2023-06-05 2023-11-17 合肥零度光电科技有限公司 一种光纤光栅温度传感器的固定结构件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707434A (zh) * 2012-08-07 2017-05-24 爱德奇电讯国际贸易(上海)有限公司 光纤接续组件
CN206146556U (zh) * 2016-06-29 2017-05-03 中国计量学院 一种精密测量光伏组件温度的监控系统
CN206960005U (zh) * 2017-08-10 2018-02-02 合肥融讯电子科技有限公司 一种感温光缆固定装置
CN207571361U (zh) * 2017-09-26 2018-07-03 天津伽利联科技有限公司 一种托辊外侧测温光纤夹具
CN110261005A (zh) * 2019-07-29 2019-09-20 南昌航空大学 一种光纤网络新能源电池温度监测系统

Also Published As

Publication number Publication date
US20230168135A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2023097582A1 (zh) 一种分布式光纤测温装置、光伏板温度测量系统及方法
CN201867463U (zh) 智能电缆沟、井在线监测系统
KR101462445B1 (ko) 광 온도센서 측정 시스템 및 그 방법
CN103134833B (zh) 一种基于荧光法的物质导热分析装置
CN104613321A (zh) 基于分布式光纤测温的核电厂管道泄漏探测装置及方法
CN206192541U (zh) 基于光纤分布式测温的高压开关柜多点监测系统
CN109389797A (zh) 一种用于光伏电站的火灾预警系统与方法
CN109000822A (zh) 分布式光纤测温装置
CN104122039A (zh) 烯烃气体泄漏的监控系统及方法
CN103926052A (zh) 激光器寿命试验系统
WO2023060636A1 (zh) 一种光纤分布式电池多点测温系统及应用
CN114184302B (zh) 一种分布式光纤测温装置、光伏板温度测量系统及方法
CN108181025A (zh) 一种光纤复合架空地线热故障在线监测方法
CN117232680A (zh) 一种分布式光纤氨气管道防结晶温度实时监测方法
CN2844873Y (zh) 一种基于分布式光纤的对电缆温度检测装置
CN110609235A (zh) 基于光纤探测技术的锂电池热安全监控系统
CN104864978A (zh) 数据中心机房的光纤测温系统
CN204573600U (zh) 基于分布式光纤测温的核电厂管道泄漏探测装置
CN219776926U (zh) 一种分布式光纤氨气管道防结晶温度实时监测装置
CN203537498U (zh) 烯烃气体泄漏的监控系统
CN208921310U (zh) 一种能够自动散热的煤堆热点探测器
CN109990917A (zh) 一种数据中心温度检测系统及其检测方法
CN114046899A (zh) 一种港口集装箱危险货物温度智能监测系统
CN211123183U (zh) 基于光纤探测技术的锂电池热安全监控系统
CN110455435B (zh) 一种基于无缝钢管复合光纤在煤气化炉外壁的测温方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966016

Country of ref document: EP

Kind code of ref document: A1