WO2023096022A1 - Vanadium oxide thin film and method for manufacturing same - Google Patents

Vanadium oxide thin film and method for manufacturing same Download PDF

Info

Publication number
WO2023096022A1
WO2023096022A1 PCT/KR2021/095113 KR2021095113W WO2023096022A1 WO 2023096022 A1 WO2023096022 A1 WO 2023096022A1 KR 2021095113 W KR2021095113 W KR 2021095113W WO 2023096022 A1 WO2023096022 A1 WO 2023096022A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium oxide
thin film
oxide thin
heat treatment
temperature
Prior art date
Application number
PCT/KR2021/095113
Other languages
French (fr)
Korean (ko)
Inventor
양우석
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2023096022A1 publication Critical patent/WO2023096022A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3423Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings comprising a suboxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to a vanadium oxide thin film and a manufacturing method thereof.
  • thermochromic glass that controls energy input through infrared transmittance by coating the glass with a thermochromic material that has characteristics of greatly changing light transmittance and reflectance based on the phase change temperature has been studied.
  • a thermochromic glass is a situation in which interest is focused in relation to the development of a so-called 'smart window' capable of freely adjusting the transmittance or reflectance of light.
  • a representative example of the thermochromic material is vanadium oxide (VO 2 , vanadium dioxide).
  • Vanadium oxide has a metal-insulator transition (MIT) characteristic between metals and insulators around 340K (68° C.). That is, vanadium dioxide exists in a metal form at a phase transition temperature of 68° C. or higher to shield infrared rays, and exists in an insulator form at a temperature below 68° C. to transmit infrared rays.
  • MIT metal-insulator transition
  • vanadium oxide having a specific composition ratio (VO 2 ) must be thinly manufactured in the form of a thin film and subjected to phase change through heat treatment.
  • Conventional vanadium oxide thin film manufacturing conditions and heat treatment As a condition, as shown in FIG. 1, it is difficult to control and fully utilize the phase transition characteristics of vanadium oxide, which is very sensitive to the composition ratio.
  • a rapid thermal process (RTP) method has been introduced to improve the above-mentioned heat treatment conditions of vanadium oxide and control the phase transition characteristics, but it is possible to rapidly heat or cool the temperature to obtain a desired composition ratio of vanadium oxide.
  • RTP rapid thermal process
  • thermochromic Research on vanadium oxide thin film as a (thermochromic) material and a manufacturing method thereof is urgently needed.
  • the problem to be solved by the present invention is to use rapid heat treatment technology to fully utilize the characteristics of vanadium oxide having phase transition characteristics, but to control the composition ratio of vanadium oxide and implement a large area through high uniformity.
  • a uniform rapid heat treatment system At the same time as designing, it is to provide a vanadium oxide thin film as a thermochromic material having high transmittance without impurities and a manufacturing method thereof.
  • the present invention manufactures a vanadium oxide thin film comprising preparing a vanadium oxide deposited film and heat-treating the vanadium oxide deposited film at a holding temperature of 460 ° C to 520 ° C for 60 seconds to 1,000 seconds provides a way
  • the vanadium oxide thin film may be heat treated uniformly at 470 °C to 490 °C for 90 seconds to 900 seconds.
  • the heat treatment temperature of the edge side of the vanadium oxide thin film may be compared with the center side heat treatment temperature and compensated through the susceptor to make the heat treatment temperature uniform.
  • it may be characterized in that it further comprises a cooling step of cooling at 2 to 4 °C / sec after the heat treatment.
  • it may be characterized in that it further comprises the step of rapidly heating at 8 to 12 °C / sec to the maintenance temperature.
  • the temperature uniformity of the entire vanadium oxide thin film may be 92% or more by uniformly heat-treating the vanadium oxide thin film through the susceptor.
  • the present invention provides a vanadium oxide thin film having a transmittance (UV-vis %) of 55% or more at 2500 nm.
  • the area of the vanadium oxide thin film may be 150 mm x 150 mm or more.
  • transmittance (UV-vis %) at 2500 nm may be characterized as being 60% or more.
  • the present invention provides a smart window including a laminate in which at least one vanadium oxide thin film described above is stacked.
  • the present invention uses rapid heat treatment technology to fully utilize the characteristics of vanadium oxide having phase transition characteristics, but designs a uniform rapid heat treatment system to control the composition ratio of vanadium oxide and realize large area through high uniformity. , it is possible to implement a vanadium oxide thin film as a thermochromic material that does not contain impurities and has high transmittance.
  • 1 is a graph showing phase transition characteristics of vanadium oxide.
  • FIG. 2 is a photograph showing a vanadium oxide thin film manufactured by the prior art.
  • Example 3 is a diagram showing the results of Example 1 according to the present invention.
  • 3c is a view showing a susceptor according to the present invention.
  • Example 4 is a diagram showing the results of Example 2 according to the present invention.
  • Example 5 is a diagram showing the results of Example 3 according to the present invention.
  • Example 6 is a diagram showing the results of Example 4 according to the present invention.
  • Example 7 is a diagram showing the results of Example 5 according to the present invention.
  • Example 8 is a diagram showing the results of Example 6 according to the present invention.
  • Example 9 is a diagram showing the results of Example 7 according to the present invention.
  • Example 10 is a diagram showing the results of Example 8 according to the present invention.
  • Example 11 is a diagram showing the results of Example 9 according to the present invention.
  • the prior art for using the phase transition characteristics of vanadium oxide at a specific temperature does not improve the heat treatment conditions of vanadium oxide, which is very sensitive to the composition ratio, or it is difficult to realize high uniformity and large area through uniform heat treatment
  • the characteristics of vanadium oxide as a thermochromic material cannot be fully utilized due to a decrease in transmittance or the like.
  • the present invention provides a method for manufacturing a vanadium oxide thin film comprising preparing a vanadium oxide deposited film and heat-treating the vanadium oxide deposited film at a holding temperature of 460 ° C to 520 ° C for 60 seconds to 1,000 seconds to solve the above problems A solution was sought.
  • the method of manufacturing a vanadium oxide thin film according to the present invention includes preparing a vanadium oxide deposited film.
  • the vanadium oxide may be synthesized or prepared through conventional vanadium oxide that meets the purpose of the present invention, and is not particularly limited, and the method of depositing such vanadium oxide is spin coating or dip coating , various methods such as spray coating may be used.
  • the film on which the vanadium oxide is deposited may be a glass plate containing a metal material that does not affect the physical properties of the vanadium oxide according to the present invention.
  • a glass substrate on which aluminum oxide and the vanadium oxide are deposited may be used.
  • the manufacturing method of the vanadium oxide thin film according to the present invention uses a rapid thermal process (RTP) system having at least one susceptor.
  • RTP rapid thermal process
  • the vanadium oxide has a metal-insulator transition (MIT) characteristic from an insulator to a metal at around 341K (68° C.). That is, the vanadium oxide corresponds to a material that exists in a metal form at a phase transition temperature of 68° C. or higher to shield infrared rays, and exists in an insulator form at a temperature below 68° C. to transmit infrared rays.
  • MIT metal-insulator transition
  • Vanadium oxide thin film exhibiting a specific composition ratio (VO 2 ) should be manufactured.
  • Vanadium oxide may have various phases as shown in the vanadium oxide phase transition graph shown in FIG. It is very difficult to design process conditions for manufacturing a vanadium oxide thin film having only a specific composition ratio (VO 2 ).
  • a vanadium oxide (VO2) thin film having a specific composition ratio exhibiting phase transition characteristics can be manufactured using a rapid thermal process (RTP). That is, a vanadium oxide thin film having only a specific composition ratio (VO 2 ) can be easily manufactured by replacing the conventional complicated heat treatment process of the vanadium oxide thin film, which is sensitive to heat and exhibits various compositions, with the rapid heat treatment system.
  • RTP rapid thermal process
  • the rapid heat treatment according to the present invention may further include a rapid heating step of rapidly heating at 8 to 12 °C/sec.
  • the rapid heating step may be characterized in that rapid heating is performed using a plurality of halogen lamps, but is not limited thereto, and a rapid heating unit of a conventional rapid heat processor suitable for the purpose of the present invention may be used. .
  • the rapid heating temperature is less than 8 °C per second, it may be difficult to obtain vanadium oxide having the desired VO 2 phase or there may be a problem in which several phases are mixed, and if the rapid heating temperature exceeds 12 °C per second There may be a problem in that it is difficult to obtain vanadium oxide having a desired phase due to a too fast heating rate or the transmittance is lowered due to the inclusion of impurities.
  • the rapid heat treatment according to the present invention may further include a cooling step of cooling at 2 to 4 ° C / sec, but is not limited thereto and may be cooled using a method such as natural cooling.
  • a cooling step of cooling at 2 to 4 ° C / sec, but is not limited thereto and may be cooled using a method such as natural cooling.
  • too rapid cooling may cause cracking of the heated vanadium oxide thin film, it should be cooled at a constant and uniform rate.
  • the cooling rate is less than 2 ° C per second, the vanadium oxide thin film is cooled too slowly and there may be a problem of mixing several phases, and if the cooling rate exceeds 4 ° C per second, the above-mentioned due to too rapid cooling
  • There may be problems such as deterioration of mechanical properties such as cracks in the vanadium oxide thin film.
  • the rapid thermal chemical vapor deposition can produce a vanadium oxide thin film having a desired VO 2 phase, and can rapidly heat or cool the temperature, thereby reducing the cost of heat consumption, for example, the time required to raise the temperature to the processing temperature or the high temperature. It has the advantage of greatly reducing the time taken to lower the processing temperature to room temperature, but it is difficult to maintain a constant and uniform heating temperature of the entire thin film, so it is difficult to manufacture a vanadium oxide thin film having a uniform composition of VO 2 throughout the thin film. there is.
  • the non-uniformity of the composition of the vanadium oxide thin film acts as a limiting factor even in the large area of the vanadium oxide thin film.
  • the present invention uses the rapid heat treatment system, but at least one or more susceptors are provided in the rapid heat processor according to the present invention to enable uniform heating.
  • the susceptor compensates for the heat treatment temperature of the edge portion of the vanadium oxide thin film to make the heat treatment temperature uniform, and at least one or more, preferably two or more, are provided in the rapid heat processor according to the present invention to form an upper or lower surface of the corner portion of the vanadium oxide thin film.
  • the heat treatment temperature of the corner portion can be compensated for.
  • the susceptor according to the present invention is attached to a module of a rapid heat treatment machine and can compensate for the heat treatment temperature of the corner portion on the upper or lower surface of the corner portion of the vanadium oxide thin film. That is, referring to FIG. 12 , when a vanadium oxide thin film is manufactured using a rapid heat treatment machine not provided with the susceptor, stains may occur on the surface of the vanadium oxide thin film, thereby reducing transmittance and hindering the development of uniform characteristics. In contrast, when a vanadium oxide thin film is manufactured using a rapid heat treatment machine having the susceptor according to the present invention, no stain is observed as shown in FIG. It can be seen that by maintaining the entire heating temperature constant and uniform, it is possible to manufacture a vanadium oxide (VO 2 ) thin film having a specific composition without containing impurities or stains.
  • VO 2 vanadium oxide
  • a vanadium oxide thin film having a specific composition (VO 2 ) it is possible to manufacture a vanadium oxide thin film having a specific composition (VO 2 ) through rapid heating of vanadium oxide, and at the same time, through the rapid heating, in the entire area of the vanadium oxide thin film
  • VO 2 vanadium oxide
  • the temperature uniformity of the entire vanadium oxide thin film may be 92% or more, more preferably 95% or more, during the rapid heating or cooling time. . At this time, if the temperature uniformity of the vanadium oxide thin film is less than 92%, the aforementioned impurities or stains may be formed, resulting in non-uniform characteristics.
  • thermochromic glass is being researched to control energy input through infrared transmittance by coating the glass with a thermochromic material. Research is being conducted in relation to the development of so-called 'smart windows'.
  • thermochromic material is vanadium oxide (VO 2 ), and it is very difficult to control energy input through infrared transmittance using vanadium oxide. That is, since the above and the vanadium oxide are very sensitive to composition, various phases may be mixed and formed according to heat treatment conditions, and even if only the desired phase is formed, impurities or stains are formed depending on specific process conditions such as temperature or heating time. There is a problem of significantly lowering the transmittance. This decrease in transmittance greatly hinders the use of vanadium oxide as a smart window as a thermochromic material that has recently been in the spotlight.
  • the present invention is capable of producing a vanadium oxide thin film having a specific composition (VO 2 ), enabling uniform temperature increase over the entire area of the vanadium oxide thin film through rapid heating, and at the same time, a vanadium oxide film in which the transmittance is not lowered.
  • An oxide thin film is provided.
  • the present invention is 460 °C to 520 °C for 60 seconds to 1,000 seconds, more preferably 470 °C to 490 °C for 90 seconds to 900 seconds, most preferably 475 °C to 485 °C for 200 seconds to 400 seconds
  • a vanadium oxide thin film having no decrease in transmittance can be manufactured by uniformly heat-treating the vanadium oxide thin film.
  • the heat treatment temperature is less than 460 ° C.
  • a vanadium oxide thin film having a desired composition ratio (VO 2 ) cannot be manufactured, or even if manufactured, several phases are mixed and formed on the surface in the form of impurities, causing a decrease in transmittance This can be.
  • the heat treatment temperature exceeds 520 ° C.
  • stains are formed on the surface or various phases are mixed to form impurities, which can cause a decrease in transmittance.
  • the vanadium oxide thin film according to the present invention manufactured through the above-described manufacturing method can realize a large area of 150 mm x 150 mm or more, and at the same time has a transmittance (UV-vis %) of 55% or more at 2500 nm even in the large area. , More preferably, it may have a transmittance of 60% or more at 2500 nm. At this time, if the 2500nm transmittance is less than 55%, there may be a problem in using the smart window as a smart window due to low infrared transmittance.
  • the vanadium oxide thin film according to the present invention manufactured through the above-described manufacturing method can realize a nano-sized thickness, and the thickness is not particularly limited as long as it is nano-sized.
  • a uniform rapid heat treatment system is designed to control the composition ratio of vanadium oxide and implement a large area through high uniformity while using rapid heat treatment, and at the same time, impurities are included Since it is possible to implement a vanadium oxide thin film as a thermochromic material having high transmittance without being applied, the utilization in various industries such as smart windows can be greatly improved.
  • a smart window including a laminate is provided.
  • the aluminum oxide (Al 2 O 3 ) thin film was formed to a thickness of 50 nm to prevent the diffusion of Na ions present in the soda-lime glass substrate to the VO 2 thin film during heat treatment.
  • a 75 nm thick vanadium oxide (VOx) thin film was deposited on the 150 mm x 150 mm soda-lime glass substrate using rapid thermal process (RTP) with a susceptor.
  • RTP rapid thermal process
  • the phase change of the vanadium oxide (VOx) thin film was controlled through rapid heat treatment of the product, and finally, a vanadium oxide (VO 2 )/aluminum oxide (Al 2 O 3 )/soda-lime glass product was formed.
  • the heating rate was 10 ° C
  • the heat treatment temperature was 480 ° C
  • the heat treatment time was 300 seconds.
  • a vanadium oxide thin film was prepared in the same manner as in Example 1, but differently as shown in Table 1 below.
  • a vanadium oxide thin film was prepared in the same manner as in Example 1, but using a rapid heat treatment system excluding the susceptor.
  • a vanadium oxide thin film was prepared in the same manner as in Example 1, but with a different heat treatment temperature as shown in Table 1 below.
  • Example 1 o 10 480 300 Example 2 o 10 480 100 Example 3 o 10 480 200 Example 4 o 10 480 600 Example 5 o 10 480 900 Example 6 o 10 460 300 Example 7 o 10 500 600 Example 8 o 10 520 600 Example 9 o 4 480 300 Comparative Example 1 X 10 480 300 Comparative Example 2 o 10 450 500 Comparative Example 3 o 10 550 500
  • the thin film properties were analyzed above and below the phase transition temperature using a UV-Visible-IR Spectrometer capable of controlling the substrate temperature, and the transmittance was calculated and the results were plotted. 3 to 10 and Table 2.
  • Example 1 O X 96 61.59
  • Example 2 O X 94 60.07
  • Example 3 O X 94 59.78
  • Example 4 O X 93 55.09
  • Example 5 O X 93 59.38
  • Example 6 O X 92 55.58
  • Example 7 O X 92 52.67
  • Example 8 O X 93 46.70
  • Example 9 X X 89 40 or less Comparative Example 1 X X 84 40 or less Comparative Example 2 X O 82 40 or less Comparative Example 3 O O 84 40 or less Comparative Example 4 O O 81 40 or less
  • FIGS. 12 to 14 show the results of Comparative Examples 1 to 3, respectively.
  • a vanadium oxide thin film having a desired composition (VO 2 ) can be obtained. It can be seen that most of the transmittances are significantly higher than those of the comparative examples.
  • Example 1 prepared during the holding temperature and time according to the preferred range of the present invention, it can be seen that the transmittance and temperature uniformity are the most excellent compared to other examples.
  • Example 9 in which the temperature increase rate was only 4 degrees / sec, it can be seen that the present invention did not exhibit the desired transmittance and temperature uniformity,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides a vanadium oxide thin film as a thermochromic material that does not contain impurities and has high transmittance, wherein the vanadium oxide thin film is formed by using a rapid thermal process (RTP) technology to fully utilize the characteristics of vanadium oxide having phase transition characteristics, and wherein a uniform RTP system is designed so as to control the composition ratio of vanadium oxide and realize a large area through high uniformity.

Description

바나듐 산화물 박막 및 이의 제조방법Vanadium oxide thin film and manufacturing method thereof
본 발명은 바나듐 산화물 박막 및 이의 제조방법에 관한 것이다.The present invention relates to a vanadium oxide thin film and a manufacturing method thereof.
건축물에 있어서 에너지 손실이 창호를 통해 제일 많이 일어난다는 사실은 널리 알려져 왔으며, 이러한 에너지 손실을 막기 위하여 다양한 방법들이 시도되어 왔다.It has been widely known that most energy loss in buildings occurs through windows, and various methods have been tried to prevent such energy loss.
특히, 최근에는 상변이 온도를 기준으로 하여 광투과도 및 반사도가 크게 변화하는 특성을 가진 써모크로믹(thermochromic) 재료를 유리에 코팅하여 적외선 투과율을 통한 에너지 유입을 조절하는 써모크로믹 유리가 연구되고 있다. 이와 같은 써모크로믹 유리는 빛의 투과도나 반사율을 마음대로 조절할 수 있는 소위 '스마트 윈도우' 개발과 관련하여 관심이 집중되고 있는 실정이다. 상기 써모크로믹 재료의 대표적인 예로는 바나듐 산화물(VO2, Vanadium Dioxide)이 있다. 바나듐 산화물은 340K(68℃) 부근에서 금속-절연체 간의 상전이(MIT, metal-insulator transition) 특성을 가진다. 즉, 바나듐 디 산화물은 상전이 온도인 68℃이상에서는 금속 형태로 존재하여 적외선을 차폐시키고, 68℃미만에서는 절연체 형태로 존재하여 적외선을 투과시킨다.In particular, in recent years, thermochromic glass that controls energy input through infrared transmittance by coating the glass with a thermochromic material that has characteristics of greatly changing light transmittance and reflectance based on the phase change temperature has been studied. there is. Such a thermochromic glass is a situation in which interest is focused in relation to the development of a so-called 'smart window' capable of freely adjusting the transmittance or reflectance of light. A representative example of the thermochromic material is vanadium oxide (VO 2 , vanadium dioxide). Vanadium oxide has a metal-insulator transition (MIT) characteristic between metals and insulators around 340K (68° C.). That is, vanadium dioxide exists in a metal form at a phase transition temperature of 68° C. or higher to shield infrared rays, and exists in an insulator form at a temperature below 68° C. to transmit infrared rays.
따라서, 상기 바나듐 산화물을 스마트 윈도우 개발에 응용하기 위한 다양한 시도가 이루어지고 있으나 하기와 같은 문제로 인해 실제 상용화에 어려움이 있다. Therefore, various attempts have been made to apply the vanadium oxide to smart window development, but it is difficult to commercialize it due to the following problems.
첫번째, 바나듐 산화물의 특정 온도에서 상전이 특성을 이용하기 위해서는 특정 조성비(VO2)를 가지는 바나듐 산화물을 박막 형태로 얇게 제조하고 열처리를 통하여 상변화를 진행하여야 하는데, 종래 바나듐 산화물의 박막 제조 조건 및 열처리 조건으로는 도 1에 도시된 것과 같이 조성비에 매우 민감한 성질을 가지는 바나듐 산화물의 상전이 특성을 제어하고 이를 온전히 이용하기에 어려움이 있다.First, in order to use the phase transition characteristics of vanadium oxide at a specific temperature, vanadium oxide having a specific composition ratio (VO 2 ) must be thinly manufactured in the form of a thin film and subjected to phase change through heat treatment. Conventional vanadium oxide thin film manufacturing conditions and heat treatment As a condition, as shown in FIG. 1, it is difficult to control and fully utilize the phase transition characteristics of vanadium oxide, which is very sensitive to the composition ratio.
두번째, 상술한 종래 바나듐 산화물의 열처리 조건을 개선하고 상전이 특성을 제어하기 위하여 급속 열처리(Rapid Thermal Process, RTP) 방법이 소개되었으나, 온도를 빠르게 가열 또는 냉각할 수 있어서 바나듐 산화물의 목적하는 조성비를 얻을 수 있음은 별론으로, 온도를 균일하게 제어할 수 없어서 제조된 바나듐 산화물 박막의 특성이 불균일하고, 대면적화 될수록 그 불균일도는 더욱 커질 수 밖에 없어서 다양한 산업으로의 활용에 문제가 있다.Second, a rapid thermal process (RTP) method has been introduced to improve the above-mentioned heat treatment conditions of vanadium oxide and control the phase transition characteristics, but it is possible to rapidly heat or cool the temperature to obtain a desired composition ratio of vanadium oxide. Apart from the fact that the temperature cannot be uniformly controlled, the properties of the manufactured vanadium oxide thin film are non-uniform, and the non-uniformity inevitably increases as the area becomes larger, so there is a problem in application to various industries.
세번째, 바나듐 산화물의 민감한 조성비에 따른 열처리 조건을 충분히 제어하지 못하여, 도 2에 도시된 바와 같이 최종 제조된 바나듐 산화물 박막에 상전이 등에 따른 불순물이 포함되는 문제가 발생하여, 투과율이 큰폭으로 저하되어 스마트 윈도우로의 활용에 큰 제한이 되고 있다.Third, since the heat treatment conditions according to the sensitive composition ratio of vanadium oxide cannot be sufficiently controlled, as shown in FIG. It is a big limitation in the use of Windows.
이에 따라, 상술한 급속 열처리를 이용하되 바나듐 산화물의 조성비를 제어하고 높은 균일도를 통한 대면적화를 구현할 수 있는 균일한 급속 열처리 시스템을 설계함과 동시에, 불순물이 포함되지 않고 높은 투과율을 가지는 써모크로믹(thermochromic) 재료로서의 바나듐 산화물 박막 및 이에 대한 제조방법에 대한 연구가 대한 개발이 시급한 실정이다.Accordingly, while using the above-described rapid heat treatment, a uniform rapid heat treatment system capable of controlling the composition ratio of vanadium oxide and realizing a large area through high uniformity was designed, and at the same time, a thermochromic Research on vanadium oxide thin film as a (thermochromic) material and a manufacturing method thereof is urgently needed.
본 발명이 해결하고자 하는 과제는 상전이 특성을 가지는 바나듐 산화물의 특성을 온전히 이용하기 위하여 급속 열처리 기술을 이용하되, 바나듐 산화물의 조성비를 제어하고 높은 균일도를 통한 대면적화를 구현할 수 있도록 균일한 급속 열처리 시스템을 설계함과 동시에, 불순물이 포함되지 않고 높은 투과율을 가지는 써모크로믹(thermochromic) 재료로서의 바나듐 산화물 박막 및 이의 제조방법을 제공하는 것이다.The problem to be solved by the present invention is to use rapid heat treatment technology to fully utilize the characteristics of vanadium oxide having phase transition characteristics, but to control the composition ratio of vanadium oxide and implement a large area through high uniformity. A uniform rapid heat treatment system At the same time as designing, it is to provide a vanadium oxide thin film as a thermochromic material having high transmittance without impurities and a manufacturing method thereof.
본 발명은 상술한 과제를 해결하기 위해, 바나듐 산화물 증착막을 준비하는 단계 및 상기 바나듐 산화물 증착막을 460 ℃ 내지 520 ℃의 유지온도로 60초 내지 1,000초 동안 열처리하는 단계를 포함하는 바나듐 산화물 박막의 제조방법을 제공한다.In order to solve the above problems, the present invention manufactures a vanadium oxide thin film comprising preparing a vanadium oxide deposited film and heat-treating the vanadium oxide deposited film at a holding temperature of 460 ° C to 520 ° C for 60 seconds to 1,000 seconds provides a way
또한, 본 발명의 일 실시예에 의하면, 470 ℃ 내지 490 ℃에서 90초 내지 900초 동안 바나듐 산화물 박막을 균일하게 열처리하는 것일 수 있다.In addition, according to an embodiment of the present invention, the vanadium oxide thin film may be heat treated uniformly at 470 °C to 490 °C for 90 seconds to 900 seconds.
또한, 서셉터를 통하여 바나듐 산화물 박막의 테두리 쪽 열처리 온도를 중앙 쪽 열처리 온도와 대비해 보상하여 열처리 온도를 균일하게 하는 것을 특징으로 할 수 있다.In addition, the heat treatment temperature of the edge side of the vanadium oxide thin film may be compared with the center side heat treatment temperature and compensated through the susceptor to make the heat treatment temperature uniform.
또한, 상기 열처리 후 2 내지 4 ℃/초로 냉각시키는 냉각 단계를 더 포함하는 것을 특징으로 할 수 있다.In addition, it may be characterized in that it further comprises a cooling step of cooling at 2 to 4 ℃ / sec after the heat treatment.
또한, 상기 유지온도까지8 내지 12 ℃/초로 급속 가열시키는 단계를 더 포함하는 것을 특징으로 할 수 있다.In addition, it may be characterized in that it further comprises the step of rapidly heating at 8 to 12 ℃ / sec to the maintenance temperature.
또한, 상기 서셉터를 통해 바나듐 산화물 박막을 균일하게 열처리하여 상기 바나듐 산화물 박막 전체의 온도 균일도는 92% 이상인 것을 특징으로 할 수 있다.In addition, the temperature uniformity of the entire vanadium oxide thin film may be 92% or more by uniformly heat-treating the vanadium oxide thin film through the susceptor.
또한 본 발명은 2500nm에서 투과율(UV-vis %)이 55% 이상인 바나듐 산화물 박막을 제공한다.In addition, the present invention provides a vanadium oxide thin film having a transmittance (UV-vis %) of 55% or more at 2500 nm.
또한, 본 발명의 일 실시예에 의하면 상기 바나듐 산화물 박막은 면적이 150 mm x 150 mm 이상인 것을 특징으로 할 수 있다.In addition, according to an embodiment of the present invention, the area of the vanadium oxide thin film may be 150 mm x 150 mm or more.
또한, 2500nm에서 투과율(UV-vis %)이 60% 이상인 것을 특징으로 할 수 있다.In addition, transmittance (UV-vis %) at 2500 nm may be characterized as being 60% or more.
또한 본 발명은 상술한 바나듐 산화물 박막이 적어도 한 장 이상 적층된 적층체를 포함하는 스마트 윈도우를 제공한다.In addition, the present invention provides a smart window including a laminate in which at least one vanadium oxide thin film described above is stacked.
본 발명은 상전이 특성을 가지는 바나듐 산화물의 특성을 온전히 이용하기 위하여 급속 열처리 기술을 이용하되, 바나듐 산화물의 조성비를 제어하고 높은 균일도를 통한 대면적화를 구현할 수 있도록 균일한 급속 열처리 시스템을 설계함과 동시에, 불순물이 포함되지 않고 높은 투과율을 가지는 써모크로믹(thermochromic) 재료로서의 바나듐 산화물 박막를 구현할 수 있다.The present invention uses rapid heat treatment technology to fully utilize the characteristics of vanadium oxide having phase transition characteristics, but designs a uniform rapid heat treatment system to control the composition ratio of vanadium oxide and realize large area through high uniformity. , it is possible to implement a vanadium oxide thin film as a thermochromic material that does not contain impurities and has high transmittance.
도 1은 바나듐 산화물의 상전이 특성을 나타내는 그래프이다.1 is a graph showing phase transition characteristics of vanadium oxide.
도 2는 종래 기술로 제조한 바나듐 산화물 박막을 나타내는 사진이다.2 is a photograph showing a vanadium oxide thin film manufactured by the prior art.
도 3은 본 발명에 따른 실시예 1의 결과를 나타내는 도면이다.3 is a diagram showing the results of Example 1 according to the present invention.
도 3c는 본 발명에 따른 서셉터를 나타내는 도면이다.3c is a view showing a susceptor according to the present invention.
도 4은 본 발명에 따른 실시예 2의 결과를 나타내는 도면이다.4 is a diagram showing the results of Example 2 according to the present invention.
도 5는 본 발명에 따른 실시예 3의 결과를 나타내는 도면이다.5 is a diagram showing the results of Example 3 according to the present invention.
도 6은 본 발명에 따른 실시예 4의 결과를 나타내는 도면이다.6 is a diagram showing the results of Example 4 according to the present invention.
도 7은 본 발명에 따른 실시예 5의 결과를 나타내는 도면이다.7 is a diagram showing the results of Example 5 according to the present invention.
도 8은 본 발명에 따른 실시예 6의 결과를 나타내는 도면이다.8 is a diagram showing the results of Example 6 according to the present invention.
도 9은 본 발명에 따른 실시예 7의 결과를 나타내는 도면이다.9 is a diagram showing the results of Example 7 according to the present invention.
도 10은 본 발명에 따른 실시예 8의 결과를 나타내는 도면이다.10 is a diagram showing the results of Example 8 according to the present invention.
도 11은 본 발명에 따른 실시예 9의 결과를 나타내는 도면이다.11 is a diagram showing the results of Example 9 according to the present invention.
도 12은 비교예 1의 결과를 나타내는 도면이다.12 is a diagram showing the results of Comparative Example 1.
도 13은 비교예 2의 결과를 나타내는 도면이다.13 is a diagram showing the results of Comparative Example 2.
도 14은 비교예 3의 결과를 나타내는 도면이다.14 is a diagram showing the results of Comparative Example 3.
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. This invention may be embodied in many different forms and is not limited to the embodiments set forth herein.
전술한 바와 같이 바나듐 산화물의 특정 온도에서 상전이 특성을 이용하기 위한 종래 기술은 조성비에 매우 민감한 성질을 가지는 바나듐 산화물의 열처리 조건을 개선하지 못하거나, 균일한 열처리를 통한 높은 균일도 및 대면적화 구현에 어려움이 있거나, 투과율 저하의 이유 등으로 써모크로믹(thermochromic) 재료로서의 바나듐 산화물의 특성을 온전히 활용하지 못하는 문제가 있었다.As described above, the prior art for using the phase transition characteristics of vanadium oxide at a specific temperature does not improve the heat treatment conditions of vanadium oxide, which is very sensitive to the composition ratio, or it is difficult to realize high uniformity and large area through uniform heat treatment There is a problem in that the characteristics of vanadium oxide as a thermochromic material cannot be fully utilized due to a decrease in transmittance or the like.
이에 본 발명은 바나듐 산화물 증착막을 준비하는 단계 및 상기 바나듐 산화물 증착막을 460 ℃ 내지 520 ℃의 유지온도로 60초 내지 1,000초 동안 열처리하는 단계를 포함하는 바나듐 산화물 박막의 제조방법을 제공하여 상술한 문제의 해결을 모색하였다.Accordingly, the present invention provides a method for manufacturing a vanadium oxide thin film comprising preparing a vanadium oxide deposited film and heat-treating the vanadium oxide deposited film at a holding temperature of 460 ° C to 520 ° C for 60 seconds to 1,000 seconds to solve the above problems A solution was sought.
이에 따라, 상전이 특성을 가지는 바나듐 산화물의 특성을 온전히 이용하기 위하여 급속 열처리 기술을 이용하되, 바나듐 산화물의 조성비를 제어하고 높은 균일도를 통한 대면적화를 구현할 수 있도록 균일한 급속 열처리 시스템을 설계함과 동시에, 불순물이 포함되지 않고 높은 투과율을 가지는 써모크로믹재료로서의 바나듐 산화물 박막을 구현할 수 있다.Accordingly, in order to fully utilize the characteristics of vanadium oxide having phase transition characteristics, rapid heat treatment technology is used, while a uniform rapid heat treatment system is designed to control the composition ratio of vanadium oxide and realize a large area through high uniformity. , it is possible to implement a vanadium oxide thin film as a thermochromic material that does not contain impurities and has high transmittance.
이하 도 3 내지 14를 참조하여 본 발명에 따른 바나듐 산화물 박막의 제조방법을 설명한다.Hereinafter, a method of manufacturing a vanadium oxide thin film according to the present invention will be described with reference to FIGS. 3 to 14 .
본 발명에 따른 바나듐 산화물 박막의 제조방법은 바나듐 산화물 증착막을 준비하는 단계를 포함한다.The method of manufacturing a vanadium oxide thin film according to the present invention includes preparing a vanadium oxide deposited film.
상기 바나듐 산화물은 본 발명의 목적에 부합하는 통상적인 바나듐 산화물을 통해 합성 또는 제조된 것일 수 있으며 특별히 제한하지 않으며, 이러한 바나듐 산화물을 증착시키는 방법은 스핀 코팅(spin coating), 딥 코팅(dip coating), 스프레이 코팅(spray coating) 등의 다양한 방식을 이용할 수 있다. 한편 상기 바나듐 산화물이 증착되는 막은 본 발명에 따른 바나듐 산화물에 물성에 영향을 주지 않는 금속 물질을 포함하는 유리 판일 수 있으며, 이에 대한 비제한적인 예로 알루미늄 산화물 및 상기 바나듐 산화물이 증착된 유리기판을 사용할 수 있다.The vanadium oxide may be synthesized or prepared through conventional vanadium oxide that meets the purpose of the present invention, and is not particularly limited, and the method of depositing such vanadium oxide is spin coating or dip coating , various methods such as spray coating may be used. Meanwhile, the film on which the vanadium oxide is deposited may be a glass plate containing a metal material that does not affect the physical properties of the vanadium oxide according to the present invention. As a non-limiting example thereof, a glass substrate on which aluminum oxide and the vanadium oxide are deposited may be used. can
다음, 본 발명에 따른 바나듐 산화물 박막의 제조방법은 적어도 하나 이상의 서셉터(Susceptor) 구비하는 급속열처리(Rapid Thermal Process, RTP) 시스템을 이용한다.Next, the manufacturing method of the vanadium oxide thin film according to the present invention uses a rapid thermal process (RTP) system having at least one susceptor.
상기 바나듐 산화물은 341K(68℃) 부근에서 절연체로부터 금속으로의 상전이(Metal-Insulator Transition: MIT) 특성을 가진다. 즉, 상기 바나듐 산화물은 상전이온도인 68℃이상에서는 금속 형태로 존재하여 적외선을 차폐하고, 68℃미만에서는 절연체 형태로 존재함으로써 적외선을 투과시키는 물질에 해당한다.The vanadium oxide has a metal-insulator transition (MIT) characteristic from an insulator to a metal at around 341K (68° C.). That is, the vanadium oxide corresponds to a material that exists in a metal form at a phase transition temperature of 68° C. or higher to shield infrared rays, and exists in an insulator form at a temperature below 68° C. to transmit infrared rays.
이때 상술한 바나듐 산화물 상전이 특성을 이용하기 위하여 특정 조성비(VO2)를 나타내는 바나듐 산화물 박막을 제조해야 하는데, 바나듐 산화물은 하기 도 1에 나타난 바나듐 산화물 상전이 그래프와 같이 다양한 상(Phase)이 존재할 수 있어서 특정 조성비(VO2)만을 가지는 바나듐 산화물 박막을 제조하는 공정 조건을 설계하는 것이 매우 어려운 문제가 있다.At this time, in order to use the above-described vanadium oxide phase transition characteristics, a vanadium oxide thin film exhibiting a specific composition ratio (VO 2 ) should be manufactured. Vanadium oxide may have various phases as shown in the vanadium oxide phase transition graph shown in FIG. It is very difficult to design process conditions for manufacturing a vanadium oxide thin film having only a specific composition ratio (VO 2 ).
이에 본 발명은 급속열처리 (Rapid Thermal Process, RTP)을 이용하여 상전이 특성을 나타내는 특정 조성비의 바나듐 산화물(VO2) 박막을 제조할 수 있다. 즉 열에 민감하여 다양한 조성을 나타내는 상기 바나듐 산화물 박막의 종래의 복잡한 열처리 공정을 상기 급속열처리 시스템으로 대체함으로써, 특정 조성비(VO2)만을 가지는 바나듐 산화물 박막을 용이하게 제조할 수 있다.Therefore, according to the present invention, a vanadium oxide (VO2) thin film having a specific composition ratio exhibiting phase transition characteristics can be manufactured using a rapid thermal process (RTP). That is, a vanadium oxide thin film having only a specific composition ratio (VO 2 ) can be easily manufactured by replacing the conventional complicated heat treatment process of the vanadium oxide thin film, which is sensitive to heat and exhibits various compositions, with the rapid heat treatment system.
이를 위해, 본 발명에 따른 상기 급속열처리는 8 내지 12 ℃/초로 급속 가열시키는 급속 가열 단계를 더 포함할 수 있다. 상기 급속 가열 단계는 다수개의 할로겐 램프(halogen lamps)를 사용하여 급속 가열하는 것을 특징으로 할 수 있으나, 이에 한정되지는 않으며 본 발명의 목적에 부합하는 통상적인 급속열처리기의 급속 가열부를 이용할 수 있다. 이때 만일 상기 급속 가열 온도가 초당 8 ℃ 미만일 경우 목적하는 VO2 상을 가지는 바나듐 산화물을 수득하기 어렵거나 여러 상이 혼재되는 문제가 있을 수 있고, 또한 만일 상기 급속 가열 온도가 초당 12 ℃를 초과하는 경우 너무 빠른 가열 속도로 인해 목적하는 상을 가지는 바나듐 산화물을 수득하기 어렵거나 불순물이 포함되어 투과율이 저하되는 문제가 있을 수 있다.To this end, the rapid heat treatment according to the present invention may further include a rapid heating step of rapidly heating at 8 to 12 °C/sec. The rapid heating step may be characterized in that rapid heating is performed using a plurality of halogen lamps, but is not limited thereto, and a rapid heating unit of a conventional rapid heat processor suitable for the purpose of the present invention may be used. . At this time, if the rapid heating temperature is less than 8 ℃ per second, it may be difficult to obtain vanadium oxide having the desired VO 2 phase or there may be a problem in which several phases are mixed, and if the rapid heating temperature exceeds 12 ℃ per second There may be a problem in that it is difficult to obtain vanadium oxide having a desired phase due to a too fast heating rate or the transmittance is lowered due to the inclusion of impurities.
또한, 본 발명에 따른 상기 급속열처리는 2 내지 4 ℃/초로 냉각시키는 냉각 단계를 더 포함할 수 있으나, 이에 제한되지 않고 자연 냉각 등의 방법을 사용하여 냉각시킬 수 있다. 다만 너무 급속한 냉각은 가열된 바나듐 산화물 박막의 균열 등을 야기할 수 있으므로, 일정하게 균일한 속도로 냉각시켜야 한다. 이때 만일 상기 냉각 속도가 초당 2 ℃ 미만일 경우 상기 바나듐 산화물 박막이 지나치게 천천히 냉각되어 여러 상이 혼재되는 문제가 있을 수 있고, 또한 만일 상기 냉각 속도가 초당 4 ℃를 초과하는 경우 너무 급속한 냉각으로 인해 상술한 바나듐 산화물 박막의 균열 등 기계적 특성이 저하되는 문제가 있을 수 있다.In addition, the rapid heat treatment according to the present invention may further include a cooling step of cooling at 2 to 4 ° C / sec, but is not limited thereto and may be cooled using a method such as natural cooling. However, since too rapid cooling may cause cracking of the heated vanadium oxide thin film, it should be cooled at a constant and uniform rate. At this time, if the cooling rate is less than 2 ° C per second, the vanadium oxide thin film is cooled too slowly and there may be a problem of mixing several phases, and if the cooling rate exceeds 4 ° C per second, the above-mentioned due to too rapid cooling There may be problems such as deterioration of mechanical properties such as cracks in the vanadium oxide thin film.
한편 상기 급속열화학기상증착은 목적하는 VO2 상을 가지는 바나듐 산화물 박막을 제조할 수 있고, 온도를 빠르게 가열 또는 냉각할 수 있어 열 소모 비용, 예를 들어 온도를 가공 온도까지 상승시키는데 걸리는 시간 또는 고온의 가공 온도 상온으로 하강시키는데 걸리는 시간을 크게 줄일 수 있는 장점이 있으나, 박막 전체의 가열 온도를 일정하고 균일하게 유지는데 어려움이 있어 박막 전체적으로 VO2의 균일한 조성을 가지는 바나듐 산화물 박막을 제조하는데 어려움이 있다. 또한, 이러한 바나듐 산화물 박막 조성의 불균일성은 바나듐 산화물 박막의 대면적화에도 하나의 제한요소로 작용하고 있다.On the other hand, the rapid thermal chemical vapor deposition can produce a vanadium oxide thin film having a desired VO 2 phase, and can rapidly heat or cool the temperature, thereby reducing the cost of heat consumption, for example, the time required to raise the temperature to the processing temperature or the high temperature. It has the advantage of greatly reducing the time taken to lower the processing temperature to room temperature, but it is difficult to maintain a constant and uniform heating temperature of the entire thin film, so it is difficult to manufacture a vanadium oxide thin film having a uniform composition of VO 2 throughout the thin film. there is. In addition, the non-uniformity of the composition of the vanadium oxide thin film acts as a limiting factor even in the large area of the vanadium oxide thin film.
이에 본 발명은 상기 급속열처리 시스템을 이용하되, 적어도 하나 이상의 서셉터를 본 발명에 따른 급속열처리기에 구비시켜 균일한 가열이 가능하도록 할 수 있다.Therefore, the present invention uses the rapid heat treatment system, but at least one or more susceptors are provided in the rapid heat processor according to the present invention to enable uniform heating.
상기 서셉터는 바나듐 산화물 박막의 테두리부의 열처리 온도를 보상하여 열처리 온도를 균일하게 하는 것으로 적어도 하나 이상, 바람직하게는 2개 이상 본 발명에 따른 급속열처리기에 구비되어 바나듐 산화물 박막의 모서리부 상면 또는 하면에서 모서리부의 열처리 온도를 보상할 수 있다.The susceptor compensates for the heat treatment temperature of the edge portion of the vanadium oxide thin film to make the heat treatment temperature uniform, and at least one or more, preferably two or more, are provided in the rapid heat processor according to the present invention to form an upper or lower surface of the corner portion of the vanadium oxide thin film. The heat treatment temperature of the corner portion can be compensated for.
보다 구체적으로, 도 3c를 참조하면 본 발명에 따른 상기 서셉터는 급속열처리기의 모듈에 부착되어 바나듐 산화물 박막의 모서리부 상면 또는 하면에서 모서리부의 열처리 온도를 보상할 수 있다. 즉 도 12를 참조하면, 상기 서셉터를 구비하지 않은 급속열처리기를 이용하여 바나듐 산화물 박막을 제조한 경우 바나듐 산화물 박막 표면에 얼룩이 생겨 투과율을 저하시키고 균일한 특성 발현의 방해가 될 수 있다. 이에 반하여 본 발명에 따른 상기 서셉터를 구비한 급속열처리기를 이용하여 바나듐 산화물 박막을 제조한 경우 도 5에 나타난 바와 같이 얼룩이 전혀 관찰되지 않는데, 이를 통해 상기 서셉터는 급속열처리기에 구비되어 바나듐 산화물 박막 전체의 가열 온도를 일정하고 균일하게 유지시켜 불순물 또는 얼룩이 포함되지 않으면서 특정 조성을 가지는 바나듐 산화물(VO2) 박막의 제조를 가능케 하는 것을 알 수 있다.More specifically, referring to FIG. 3C , the susceptor according to the present invention is attached to a module of a rapid heat treatment machine and can compensate for the heat treatment temperature of the corner portion on the upper or lower surface of the corner portion of the vanadium oxide thin film. That is, referring to FIG. 12 , when a vanadium oxide thin film is manufactured using a rapid heat treatment machine not provided with the susceptor, stains may occur on the surface of the vanadium oxide thin film, thereby reducing transmittance and hindering the development of uniform characteristics. In contrast, when a vanadium oxide thin film is manufactured using a rapid heat treatment machine having the susceptor according to the present invention, no stain is observed as shown in FIG. It can be seen that by maintaining the entire heating temperature constant and uniform, it is possible to manufacture a vanadium oxide (VO 2 ) thin film having a specific composition without containing impurities or stains.
이와 같이 본 발명에 따른 바나듐 산화물 박막의 제조방법은 바나듐 산화물의 급속 가열을 통해 특정 조성(VO2)을 가지는 바나듐 산화물박막의 제조가 가능하면서 이와 동시에, 상기 급속 가열을 통해 바나듐 산화물 박막 전체 면적에서 균일한 승온이될 수 있도록 함으로써 바나듐 산화물의 여러 상의 혼재되어 있지 않고 얼룩이 관찰되지 않은 바나듐 산화물(VO2) 박막을 제조할 수 있다. As described above, in the method for manufacturing a vanadium oxide thin film according to the present invention, it is possible to manufacture a vanadium oxide thin film having a specific composition (VO 2 ) through rapid heating of vanadium oxide, and at the same time, through the rapid heating, in the entire area of the vanadium oxide thin film A vanadium oxide (VO 2 ) thin film in which various phases of vanadium oxide are not mixed and stains are not observed can be manufactured by allowing the temperature to be uniformly raised.
즉 상기 서셉터를 통해 바나듐 산화물 박막을 균일하게 열처리하여 급속 가열 시간 동안 또는 냉각 시간 동안 상기 바나듐 산화물 박막 전체의 온도 균일도는 92% 이상일 수 있으며, 보다 바람직하게는 95% 이상의 온도 균일도를 가질 수 있다. 이때 만일 상기 바나듐 산화물 박막의 온도 균일도가 92% 미만일 경우, 상술한 불순물 또는 얼룩이 형성되어 불균일한 특성을 나타내는 문제가 발생할 수 있다.That is, by uniformly heat-treating the vanadium oxide thin film through the susceptor, the temperature uniformity of the entire vanadium oxide thin film may be 92% or more, more preferably 95% or more, during the rapid heating or cooling time. . At this time, if the temperature uniformity of the vanadium oxide thin film is less than 92%, the aforementioned impurities or stains may be formed, resulting in non-uniform characteristics.
한편, 최근 써모크로믹(thermochromic) 재료를 유리에 코팅하여 적외선 투과율을 통한 에너지 유입을 조절하는 써모크로믹 유리가 연구되고 있는데, 이와 같은 써모크로믹 유리는 특히 빛의 투과도나 반사율을 마음대로 조절할 수 있는 소위 '스마트 윈도우' 개발과 관련하여 연구가 수행되고 있다.On the other hand, recently, thermochromic glass is being researched to control energy input through infrared transmittance by coating the glass with a thermochromic material. Research is being conducted in relation to the development of so-called 'smart windows'.
이때 상기 써모크로믹 물질 중 대표적인 것이 바나듐 산화물(VO2)인데, 바나듐 산화물을 사용하여 적외선 투과율을 통한 에너지 유입을 조절하는 것은 매우 어렵다. 즉, 상술한 것과 상기 바나듐 산화물은 조성에 매우 민감하기 때문에 열처리 조건에 따라 다양한 상이 혼재되어 형성될 수 있으며, 목적하는 상만을 형성하였다 하더라도 온도 또는 가열시간 등 구체적인 공정 조건에 따라 불순물이나 얼룩이 형성되어 투과율을 크게 저하시키는 문제가 있다. 이러한 투과율 저하는 바나듐 산화물을 최근 각광받는 써모크로믹 물질로서 스마트 윈도우로의 활용을 크게 저해하고 있다.At this time, a typical example of the thermochromic material is vanadium oxide (VO 2 ), and it is very difficult to control energy input through infrared transmittance using vanadium oxide. That is, since the above and the vanadium oxide are very sensitive to composition, various phases may be mixed and formed according to heat treatment conditions, and even if only the desired phase is formed, impurities or stains are formed depending on specific process conditions such as temperature or heating time. There is a problem of significantly lowering the transmittance. This decrease in transmittance greatly hinders the use of vanadium oxide as a smart window as a thermochromic material that has recently been in the spotlight.
이에 본 발명은, 특정 조성(VO2)을 가지는 바나듐 산화물 박막의 제조가 가능하고, 급속 가열을 통해 바나듐 산화물 박막 전체 면적에서 균일한 승온이 수행될 수 있도록 하면서도, 이와 동시에 투과율이 저하되지 않는 바나듐 산화물 박막을 제공한다.Accordingly, the present invention is capable of producing a vanadium oxide thin film having a specific composition (VO 2 ), enabling uniform temperature increase over the entire area of the vanadium oxide thin film through rapid heating, and at the same time, a vanadium oxide film in which the transmittance is not lowered. An oxide thin film is provided.
보다 구체적으로 도 13및 도 14를 참조하면, 상기 바나듐 산화물 박막에 불순물 포함되거나 열처리 조건에 따른 얼룩 및 상변화로 인해 투과율 저하가 유발됨을 알 수 있다. 즉 본 발명은 460 ℃ 내지 520 ℃에서 60초 내지 1,000초 동안, 보다 바람직하게는 470 ℃ 내지 490 ℃에서 90초 내지 900초 동안, 가장 바람직하게는 475 ℃ 내지 485 ℃에서 200초 내지 400초 동안 바나듐 산화물 박막을 균일하게 열처리하여 투과율이 저하되지 않는 바나듐 산화물 박막을 제조할 수 있다.More specifically, referring to FIGS. 13 and 14 , it can be seen that a decrease in transmittance is caused due to impurities contained in the vanadium oxide thin film or stains and phase changes according to heat treatment conditions. That is, the present invention is 460 ℃ to 520 ℃ for 60 seconds to 1,000 seconds, more preferably 470 ℃ to 490 ℃ for 90 seconds to 900 seconds, most preferably 475 ℃ to 485 ℃ for 200 seconds to 400 seconds A vanadium oxide thin film having no decrease in transmittance can be manufactured by uniformly heat-treating the vanadium oxide thin film.
이때 만일 상기 열처리 온도가 460 ℃ 미만일 경우 목적하는 조성비(VO2)를 가지는 바나듐 산화물 박막을 제조할 수 없는 문제가 있거나, 제조하더라도 여러 상이 혼재되어 불순물의 형태로 표면에 형성되어 투과율을 저하시키는 원인이 될 수 있다. 또한 만일 상기 열처리 온도가 520 ℃를 초과하는 경우 마찬가지로 바나듐 산화물 박막을 제조할 수 없는 문제가 있거나, 제조하더라도 표면에 얼룩이 생기거나 여러 상이 혼재되어 불순물의 형태로 형성되어 투과율을 저하시키는 원인이 될 수 있다At this time, if the heat treatment temperature is less than 460 ° C., there is a problem that a vanadium oxide thin film having a desired composition ratio (VO 2 ) cannot be manufactured, or even if manufactured, several phases are mixed and formed on the surface in the form of impurities, causing a decrease in transmittance This can be. In addition, if the heat treatment temperature exceeds 520 ° C., there is a problem in that a vanadium oxide thin film cannot be manufactured, or even if it is manufactured, stains are formed on the surface or various phases are mixed to form impurities, which can cause a decrease in transmittance. there is
한편, 상술한 제조방법을 통해 제조된 본 발명에 따른 바나듐 산화물 박막은 150 mm x 150 mm 이상의 대면적을 구현할 수 있음과 동시에 상기 대면적에서도2500nm에서 55% 이상의 투과율(UV-vis %)이 가지며, 보다 바람직하게는 2500nm에서 60% 이상의 투과율을 가질 수 있다. 이때 만일 2500nm 투과율이 55% 미만일 경우 적외선 투과율이 낮아 스마트 윈도우로서 활용에 문제가 있을 수 있다.On the other hand, the vanadium oxide thin film according to the present invention manufactured through the above-described manufacturing method can realize a large area of 150 mm x 150 mm or more, and at the same time has a transmittance (UV-vis %) of 55% or more at 2500 nm even in the large area. , More preferably, it may have a transmittance of 60% or more at 2500 nm. At this time, if the 2500nm transmittance is less than 55%, there may be a problem in using the smart window as a smart window due to low infrared transmittance.
또한 상술한 제조방법을 통해 제조된 본 발명에 따른 바나듐 산화물 박막은 나노 사이즈의 두께를 구현할 수 있으며 그 두께는 나노 사이즈라면 특별히 제한하지 않는다.In addition, the vanadium oxide thin film according to the present invention manufactured through the above-described manufacturing method can realize a nano-sized thickness, and the thickness is not particularly limited as long as it is nano-sized.
이와 같이 본 발명에 따른 바나듐 산화물 박막의 제조방법에 의하면 급속열처리를 이용하면서 바나듐 산화물의 조성비를 제어하고 높은 균일도를 통한 대면적화를 구현할 수 있도록 균일한 급속 열처리 시스템을 설계함과 동시에, 불순물이 포함되지 않고 높은 투과율을 가지는 써모크로믹(thermochromic) 재료로서의 바나듐 산화물 박막를 구현할 수 있어서 스마트 윈도우 등 다양한 산업에 활용도를 크게 제고할 수 있는바, 나아가 본 발명은 상기 바나듐 산화물 박막이 적어도 한 장 이상 적층된 적층체를 포함하는 스마트 윈도우를 제공한다.As described above, according to the method for manufacturing a vanadium oxide thin film according to the present invention, a uniform rapid heat treatment system is designed to control the composition ratio of vanadium oxide and implement a large area through high uniformity while using rapid heat treatment, and at the same time, impurities are included Since it is possible to implement a vanadium oxide thin film as a thermochromic material having high transmittance without being applied, the utilization in various industries such as smart windows can be greatly improved. A smart window including a laminate is provided.
이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail through examples, but the following examples are not intended to limit the scope of the present invention, which should be interpreted to aid understanding of the present invention.
실시예 1Example 1
진공증착장비(스퍼터)를 통하여150 mm x 150 mm 크기의 soda-lime 유리 기판 위에 알루미늄 산화물(Al2O3) 및 바나듐 산화물(VOx)이 증착된 VOx/Al2O3/Soda-lime Glass 유리를 제조하였다. 바나듐 산화물을 증착 할 수 있는 타겟은 바나듐 메탈을 사용하였다. 또한, 알루미늄 산화물(Al2O3) 박막은 soda-lime 유리 기판 내에 존재하는 Na ion이 열처리 시 VO2 박막으로 확산하는 것을 방지하기 위하여 50 nm 두께로 형성하였다. Manufacture of VOx/Al2O3/Soda-lime Glass glass on which aluminum oxide (Al 2 O 3 ) and vanadium oxide (VO x ) are deposited on a 150 mm x 150 mm soda-lime glass substrate through vacuum deposition equipment (sputter) did Vanadium metal was used as a target capable of depositing vanadium oxide. In addition, the aluminum oxide (Al 2 O 3 ) thin film was formed to a thickness of 50 nm to prevent the diffusion of Na ions present in the soda-lime glass substrate to the VO 2 thin film during heat treatment.
이후 도 3c와 같이 서셉터를 구비한 급속열처리 (Rapid Thermal Process, RTP)을 이용하여 상기 150 mm x 150 mm 크기의 soda-lime 유리 기판 상에 75 nm 두께의 바나듐 산화물(VOx) 박막이 증착된 제품을 급속 열처리를 통해 바나듐 산화물(VOx) 박막의 상변화를 제어하고, 최종적으로 바나듐 산화물(VO2)/알루미늄 산화물(Al2O3)/soda-lime 유리 제품을 형성하였다. 이때 승온 속도는 10℃이고 열처리 온도는 480 ℃ 이며 열처리 시간은300초로 하였다.Subsequently, as shown in FIG. 3c, a 75 nm thick vanadium oxide (VOx) thin film was deposited on the 150 mm x 150 mm soda-lime glass substrate using rapid thermal process (RTP) with a susceptor. The phase change of the vanadium oxide (VOx) thin film was controlled through rapid heat treatment of the product, and finally, a vanadium oxide (VO 2 )/aluminum oxide (Al 2 O 3 )/soda-lime glass product was formed. At this time, the heating rate was 10 ° C, the heat treatment temperature was 480 ° C, and the heat treatment time was 300 seconds.
실시예 2 내지 9Examples 2 to 9
상기 실시예 1에과 동일하게 제조하되, 하기 표 1과 같이 달리하여 바나듐 산화물 박막을 제조하였다A vanadium oxide thin film was prepared in the same manner as in Example 1, but differently as shown in Table 1 below.
비교예 1Comparative Example 1
상기 실시예 1에과 동일하게 제조하되, 서셉터를 제외시킨 급속열처리 시스템를 이용하여 바나듐 산화물 박막을 제조하였다A vanadium oxide thin film was prepared in the same manner as in Example 1, but using a rapid heat treatment system excluding the susceptor.
비교예 2 내지 3Comparative Examples 2 to 3
상기 실시예 1에과 동일하게 제조하되, 열처리 온도를 하기 표 1과 같이 달리하여 바나듐 산화물 박막을 제조하였다A vanadium oxide thin film was prepared in the same manner as in Example 1, but with a different heat treatment temperature as shown in Table 1 below.
  서셉터 구비여부Availability of susceptor 승온 속도(℃)Heating rate (℃) 열처리 온도(℃)Heat treatment temperature (℃) 열처리 시간(초)Heat treatment time (seconds)
실시예 1Example 1 o o 1010 480480 300300
실시예 2Example 2 o o 1010 480480 100100
실시예 3Example 3 o o 1010 480480 200200
실시예 4Example 4 o o 1010 480480 600600
실시예 5Example 5 o o 1010 480480 900900
실시예 6Example 6 o o 1010 460460 300300
실시예 7Example 7 o o 1010 500500 600600
실시예 8Example 8 o o 1010 520520 600600
실시예9Example 9 oo 44 480480 300300
비교예 1Comparative Example 1 XX 1010 480480 300300
비교예 2Comparative Example 2 o o 1010 450450 500500
비교예 3Comparative Example 3 o o 1010 550550 500500
실험예 1 - 얼룩 판단 및 불순물 포함 여부 판단Experimental Example 1 - Determination of stain and determination of whether impurities are included
상기 실시예 및 비교예에서 제조한 박막의 얼룩 및 불순물이 표면에 나타나는지 육안으로 관찰하고 이를 표 2에 나타내었다.It was visually observed whether stains and impurities of the thin films prepared in Examples and Comparative Examples appeared on the surface, and these are shown in Table 2.
실험예 2 - 온도 균일도 측정Experimental Example 2 - Measurement of temperature uniformity
상기 실시예 및 비교예에서 제조한 박막을 같은 크기의 9개의 사각형으로 분할한 후, 각 사각형의 중심온도를 측정하고 온도 균일도를 계산하여 표 2에 나타내었다.After dividing the thin film prepared in the above Examples and Comparative Examples into 9 squares of the same size, the center temperature of each square was measured, and the temperature uniformity was calculated and shown in Table 2.
실험예 3 - 2500nm에서 투과율(%) 측정Experimental Example 3 - Measurement of transmittance (%) at 2500 nm
상기 실시예 및 비교예에서 제조한 박막의 특성을 평가하기 위하여 기 판 온도 조절이 가능한 UV-Visible-IR Spectrometer를 이용하여 상전이 온도 이상과 이하에서 박막 특성을 분석하였으며 투과율을 계산하고 그 결과를 도 3 내지 도 10 및 표 2에 나타내었다. In order to evaluate the properties of the thin films prepared in the above Examples and Comparative Examples, the thin film properties were analyzed above and below the phase transition temperature using a UV-Visible-IR Spectrometer capable of controlling the substrate temperature, and the transmittance was calculated and the results were plotted. 3 to 10 and Table 2.
  VO2 형성여부Formation of VO 2 표면 얼룩 및 불순물 관찰 여부Observation of surface stains and impurities 온도 균일도(%)Temperature uniformity (%) 2500nm에서 투과율(%)Transmittance (%) at 2500 nm
실시예 1Example 1 OO XX 9696 61.5961.59
실시예 2Example 2 OO XX 9494 60.0760.07
실시예 3Example 3 OO XX 9494 59.7859.78
실시예 4Example 4 OO XX 9393 55.0955.09
실시예 5Example 5 OO XX 9393 59.3859.38
실시예 6Example 6 OO XX 9292 55.5855.58
실시예 7Example 7 OO XX 9292 52.6752.67
실시예 8Example 8 OO XX 9393 46.7046.70
실시예 9Example 9 XX XX 8989  40 이하40 or less
비교예 1Comparative Example 1 XX XX 8484  40 이하40 or less
비교예 2Comparative Example 2 X X OO 8282  40 이하40 or less
비교예 3Comparative Example 3 OO O O 8484  40 이하40 or less
비교예 4Comparative Example 4 OO O O 8181  40 이하40 or less
도 3 내지 11은 각각 실시예 1 내지 9의 상기 실험예 결과를 나타내고 있으며, 도 12 내지 14는 각각 비교예 1 내지 3의 결과를 나타내고 있다.3 to 11 show the experimental example results of Examples 1 to 9, respectively, and FIGS. 12 to 14 show the results of Comparative Examples 1 to 3, respectively.
상기 표 2 및 도 3 내지 14를 참조하면,Referring to Table 2 and FIGS. 3 to 14,
본 발명에 따른 바나듐 산화물 박막의 제조방법과 460 ℃ 내지 520 ℃의 유지온도로 60초 내지 1,000초 동안 열처리하는 단계를 수행하는 실시예들의 경우 목적하는 조성(VO2)의 바나듐 산화물 박막을 얻을 수 있고, 비교예들 대비 투과율이 대부분 현격히 높은 것을 알 수 있다.In the case of the embodiments in which the method of manufacturing a vanadium oxide thin film according to the present invention and the heat treatment step for 60 seconds to 1,000 seconds at a holding temperature of 460 ° C to 520 ° C are performed, a vanadium oxide thin film having a desired composition (VO 2 ) can be obtained. It can be seen that most of the transmittances are significantly higher than those of the comparative examples.
보다 구체적으로 본 발명의 바람직한 범위에 따른 유지온도와 시간동안 제조한 실시예 1의 경우 다른 실시예 대비 투과율과 온도 균일도가 가장 우수함을 알 수 있다. 또한, 승온속도가 4도/초에 불과한 실시예 9의 경우 본 발명이 목적하는 투과율과 온도 균일도를 나타내지 못함을 알 수 있으며,More specifically, in the case of Example 1 prepared during the holding temperature and time according to the preferred range of the present invention, it can be seen that the transmittance and temperature uniformity are the most excellent compared to other examples. In addition, in the case of Example 9 in which the temperature increase rate was only 4 degrees / sec, it can be seen that the present invention did not exhibit the desired transmittance and temperature uniformity,
또한, 본 발명에 따른 제조방법을 사용하지 않거나, 본 발명의 열처리 유지온도 및 시간의 범위를 벗어나는 비교예들의 경우 목적하는 조성(VO2)의 바나듐 산화물 박막을 수득할 수 없거나, 표면에 얼룩이나 불순물이 관찰되거나, 투과율과 온도 균일도가 현격히 저하됨을 알 수 있다.In addition, in the case of Comparative Examples that do not use the manufacturing method according to the present invention or are out of the range of the heat treatment holding temperature and time of the present invention, a vanadium oxide thin film of the desired composition (VO 2 ) cannot be obtained, or stains or stains on the surface It can be seen that impurities are observed or the transmittance and temperature uniformity are remarkably lowered.

Claims (10)

  1. 바나듐 산화물 증착막을 준비하는 단계 및preparing a vanadium oxide deposited film; and
    상기 바나듐 산화물 증착막을 460 ℃ 내지 520 ℃의 유지온도로 60초 내지 1,000초 동안 열처리하는 단계를 포함하는 바나듐 산화물 박막의 제조방법.A method of manufacturing a vanadium oxide thin film comprising the step of heat-treating the vanadium oxide deposited film at a holding temperature of 460 ° C to 520 ° C for 60 seconds to 1,000 seconds.
  2. 제1항에 있어서,According to claim 1,
    470 ℃ 내지 490 ℃에서 90초 내지 900초 동안 바나듐 산화물 박막을 균일하게 열처리하는 것을 특징으로 하는 바나듐 산화물 박막의 제조방법.A method for producing a vanadium oxide thin film, characterized by uniformly heat-treating the vanadium oxide thin film at 470 ° C to 490 ° C for 90 seconds to 900 seconds.
  3. 제1항에 있어서According to claim 1
    서셉터를 통하여 바나듐 산화물 박막의 테두리 쪽 열처리 온도를 중앙 쪽 열처리 온도와 대비해 보상하여 열처리 온도를 균일하게 하는 것을 특징으로 하는 바나듐 산화물 박막의 제조방법.A method of manufacturing a vanadium oxide thin film, characterized in that the heat treatment temperature of the vanadium oxide thin film is made uniform by comparing and compensating the heat treatment temperature on the edge side of the vanadium oxide thin film with the heat treatment temperature on the center side through the susceptor.
  4. 제1항에 있어서According to claim 1
    상기 열처리 후 2 내지 4 ℃/초로 냉각시키는 냉각 단계를 더 포함하는 것을 특징으로 하는 바나듐 산화물 박막의 제조방법.Method for producing a vanadium oxide thin film, characterized in that it further comprises a cooling step of cooling at 2 to 4 ℃ / sec after the heat treatment.
  5. 제1항에 있어서,According to claim 1,
    상기 유지온도까지8 내지 12 ℃/초로 급속 가열시키는 단계를 더 포함하는 것을 특징으로 하는 바나듐 산화물 박막의 제조방법.Method for producing a vanadium oxide thin film, characterized in that it further comprises the step of rapidly heating at 8 to 12 ℃ / sec to the holding temperature.
  6. 제3항에 있어서,According to claim 3,
    상기 서셉터를 통해 바나듐 산화물 박막을 균일하게 열처리하여 상기 바나듐 산화물 박막 전체의 온도 균일도는 92% 이상인 것을 특징으로 하는 바나듐 산화물 박막의 제조방법.The method of manufacturing a vanadium oxide thin film, characterized in that the temperature uniformity of the entire vanadium oxide thin film is 92% or more by uniformly heat-treating the vanadium oxide thin film through the susceptor.
  7. 2500nm에서 투과율(UV-vis %)이 55% 이상인 바나듐 산화물 박막.Vanadium oxide thin film with a transmittance (UV-vis %) of 55% or more at 2500 nm.
  8. 제7항에 있어서,According to claim 7,
    상기 바나듐 산화물 박막은 면적이 150 mm x 150 mm 이상인 것을 특징으로 하는 바나듐 산화물 박막.The vanadium oxide thin film, characterized in that the area of the vanadium oxide thin film is 150 mm x 150 mm or more.
  9. 제7항에 있어서,According to claim 7,
    2500nm에서 투과율(UV-vis %)이 60% 이상인 것을 특징으로 하는 바나듐 산화물 박막.A vanadium oxide thin film characterized by a transmittance (UV-vis %) of 60% or more at 2500 nm.
  10. 제7항에 따른 바나듐 산화물 박막이 적어도 한 장 이상 적층된 적층체를 포함하는 스마트 윈도우.A smart window comprising a laminate in which at least one vanadium oxide thin film according to claim 7 is stacked.
PCT/KR2021/095113 2021-11-26 2021-11-29 Vanadium oxide thin film and method for manufacturing same WO2023096022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210165507A KR20230078090A (en) 2021-11-26 2021-11-26 Vanadium Oxide Thin Film and method for manufacturing the same
KR10-2021-0165507 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023096022A1 true WO2023096022A1 (en) 2023-06-01

Family

ID=86539846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/095113 WO2023096022A1 (en) 2021-11-26 2021-11-29 Vanadium oxide thin film and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20230078090A (en)
WO (1) WO2023096022A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001863A (en) * 2002-06-29 2004-01-07 주식회사 하이닉스반도체 Rapid thermal processing equipment
KR20130018012A (en) * 2011-08-12 2013-02-20 (주)엘지하우시스 Manufacturing method of thermochromic glass using metal deposition and the thermochromic glass using thereof
KR20140133985A (en) * 2013-05-13 2014-11-21 코닝정밀소재 주식회사 Manufacturing method of vo_2 coated substrate
KR20160127867A (en) * 2015-04-27 2016-11-07 에이피시스템 주식회사 RTP device with susceptor unit
KR20210055879A (en) * 2019-11-08 2021-05-18 중앙대학교 산학협력단 Vo2 film manufacturing method for smart window

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406371B1 (en) 2012-11-29 2014-06-16 연세대학교 산학협력단 Metal or Metal oxide/Graphene self-assembly Nanocomposite of Three-dimensional structure and Method of preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001863A (en) * 2002-06-29 2004-01-07 주식회사 하이닉스반도체 Rapid thermal processing equipment
KR20130018012A (en) * 2011-08-12 2013-02-20 (주)엘지하우시스 Manufacturing method of thermochromic glass using metal deposition and the thermochromic glass using thereof
KR20140133985A (en) * 2013-05-13 2014-11-21 코닝정밀소재 주식회사 Manufacturing method of vo_2 coated substrate
KR20160127867A (en) * 2015-04-27 2016-11-07 에이피시스템 주식회사 RTP device with susceptor unit
KR20210055879A (en) * 2019-11-08 2021-05-18 중앙대학교 산학협력단 Vo2 film manufacturing method for smart window

Also Published As

Publication number Publication date
KR20230078090A (en) 2023-06-02

Similar Documents

Publication Publication Date Title
US6221495B1 (en) Thin transparent conducting films of cadmium stannate
WO2013157715A1 (en) Method for producing an oxide film using a low temperature process, an oxide film and an electronic device thereof
JP2002505531A5 (en)
WO2011010824A2 (en) Low emissivity glass and method for manufacturing same
WO2013025000A2 (en) Production method for thermochromatic glass in which use is made of a low-temperature metal-vapour-deposition process, and thermochromatic glass obtained thereby
WO2023167387A1 (en) Method for synthesizing silicon carbide powder
WO2016017999A1 (en) Low-emissivity coating and functional construction material for window/door comprising low-emissivity coating
WO2023096022A1 (en) Vanadium oxide thin film and method for manufacturing same
WO2018151364A1 (en) Method and system for heat treating low-e glass
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2019117559A1 (en) Transition metal-dichalcogenide thin film and manufacturing method therefor
WO2022035111A1 (en) Plasma-resistant glass, and method for manufacturing same
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
WO2019004561A1 (en) High heat dissipating thin film and method for manufacturing same
WO2020213847A1 (en) Sic material and method for manufacturing same
WO2022025461A1 (en) Bolometer device and method for manufacturing same
WO2019093781A1 (en) High thermal conductive magnesia composition and magnesia ceramics
WO2024085409A2 (en) Plasma-resistant glass, chamber interior part for semiconductor manufacturing process, and methods for manufacturing glass and part
WO2024080530A1 (en) Plasma-resistant glass, inner chamber component for semiconductor manufacturing process, and methods for manufacturing glass and component
WO2024080532A2 (en) Plasma-resistant glass, inner chamber component for semiconductor manufacturing process, and manufacturing methods therefor
WO2024080531A1 (en) Plasma-resistant glass, inner chamber component for semiconductor manufacturing process, and methods for manufacturing glass and component
WO2022034987A1 (en) Method for manufacturing perovskite thin film solar cell
WO2017111374A1 (en) Inter-back type deposition system capable of reducing footprint
WO2023153738A1 (en) Bolometer device and manufacturing method therefor
WO2022075687A1 (en) Plasma-resistant glass and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965805

Country of ref document: EP

Kind code of ref document: A1