WO2024085409A2 - Plasma-resistant glass, chamber interior part for semiconductor manufacturing process, and methods for manufacturing glass and part - Google Patents

Plasma-resistant glass, chamber interior part for semiconductor manufacturing process, and methods for manufacturing glass and part Download PDF

Info

Publication number
WO2024085409A2
WO2024085409A2 PCT/KR2023/012475 KR2023012475W WO2024085409A2 WO 2024085409 A2 WO2024085409 A2 WO 2024085409A2 KR 2023012475 W KR2023012475 W KR 2023012475W WO 2024085409 A2 WO2024085409 A2 WO 2024085409A2
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
resistant glass
weight
less
based oxide
Prior art date
Application number
PCT/KR2023/012475
Other languages
French (fr)
Korean (ko)
Inventor
나혜인
이경민
석혜원
김대근
Original Assignee
한솔아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230076784A external-priority patent/KR20240055626A/en
Application filed by 한솔아이원스 주식회사 filed Critical 한솔아이원스 주식회사
Publication of WO2024085409A2 publication Critical patent/WO2024085409A2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention benefits from the filing date of Korean Patent Application No. 10-2022-0135711 filed with the Korea Intellectual Property Office on October 20, 2022, and Korean Patent Application No. 10-2023-0076784 filed with the Korea Intellectual Property Office on June 15, 2023. All benefits as of the filing date are claimed, and the entire contents thereof are included in the present invention.
  • the present invention relates to plasma-resistant glass, parts for the interior of a chamber for a semiconductor manufacturing process, and their manufacturing method. Specifically, the content of the plasma-resistant glass components is controlled to achieve a low melting temperature, and the thermal expansion coefficient is reduced to achieve a high temperature. Plasma-resistant glass that prevents damage from thermal shock during use, improves light transmittance and durability, reduces dielectric constant, and improves formability by controlling the viscosity of the melt; parts for the interior of the chamber for the semiconductor manufacturing process; It's about their manufacturing method.
  • Plasma etching processes are applied when manufacturing semiconductors and/or displays. Recently, with the application of nano-processing, the difficulty of etching has increased, and the internal parts of the process chamber exposed to the high-density plasma environment are made of oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
  • oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
  • oxide-based ceramic materials have a problem of low workability due to their high melting temperature.
  • the technical problem to be achieved by the present invention is to provide excellent resistance due to the plasma inside the chamber used in the semiconductor manufacturing process, and excellent heat resistance under high temperature conditions to prevent damage to components used inside the chamber and to achieve a low melting temperature.
  • the aim is to provide plasma-resistant glass that has a dielectric constant in an appropriate range and can be easily molded into a desired shape by controlling the viscosity, parts for the interior of a chamber for a semiconductor manufacturing process, and methods for manufacturing them.
  • One embodiment of the present invention provides a plasma-resistant glass containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide.
  • the content of the Si-based oxide is 20% by weight or more and 70% by weight or less
  • the content of the Al-based oxide is 5% by weight or more and 30% by weight or less
  • the content of the Mg-based oxide is It may be 5% by weight or more and 50% by weight or less
  • the content of the Mg-based halide may be 0.01% by weight or more and 10% by weight or less
  • the content of the Ge-based oxide may be 0.01% by weight or more and 25% by weight or less.
  • the light transmittance may be 80% or more and 100% or less.
  • the Vickers hardness may be 550 HV or more and 1,000 HV or less.
  • the glass transition temperature may be 600°C or more and 850°C or less.
  • the thermal expansion coefficient may be 4.0 ⁇ 10 -6 m/(m°C) or more and 6.0 ⁇ 10 -6 m/(m°C) or less.
  • the etching rate by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 100 nm/min.
  • the melting point may be 1,400°C or more and 1,700°C or less.
  • One embodiment of the present invention provides parts for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
  • the internal components include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window.
  • electrode view port
  • inner shutter electro static chuck
  • heater chamber liner
  • shower head CVD Boat
  • wall liner shield
  • cold pad cold pad
  • source head outer liner
  • deposition shield for (Chemical Vapor Deposition)
  • it may be any one of an upper liner, an exhaust plate, and a mask frame.
  • One embodiment of the present invention is 20% by weight to 70% by weight of Si-based oxide, 5% to 30% by weight of Al-based oxide, 5% to 50% by weight of Mg-based oxide, and 0.01% by weight or more. Melting a composition containing 10 wt% or less of Mg-based halide and 0.01 wt% to 50 wt% of Ge-based oxide; and cooling the molten composition. It provides a method for producing plasma-resistant glass, including a step of cooling the molten composition.
  • the melting temperature in the step of melting the composition may be 1,400°C or more and 1,700°C or less.
  • One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the temperature of the annealing step may be 400°C or more and 900°C or less.
  • the plasma-resistant glass according to an embodiment of the present invention can have a dielectric constant in a specific range, improves processability by implementing a low melting temperature, and can easily manufacture chamber interior parts for the semiconductor manufacturing process. .
  • the plasma-resistant glass according to an exemplary embodiment of the present invention can improve plasma resistance and increase formability by reducing viscosity due to the addition of F.
  • the plasma-resistant glass according to an exemplary embodiment of the present invention exhibits a low thermal expansion coefficient and can prevent damage due to thermal shock in a high-temperature atmosphere.
  • the plasma-resistant glass according to an exemplary embodiment of the present invention has improved light transmittance and improved mechanical properties by improving hardness, thereby improving durability in a plasma etching environment.
  • Components used inside a chamber for a semiconductor manufacturing process can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere.
  • the method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
  • the method for producing plasma-resistant glass according to an embodiment of the present invention can improve moldability by controlling the viscosity of the composition.
  • FIG. 1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention.
  • Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention.
  • Figure 3 is a photograph taken of the plasma-resistant glass of Example 1 according to an exemplary embodiment of the present invention.
  • Figure 4 is a photograph taken of the plasma-resistant glass of Example 2 according to an exemplary embodiment of the present invention.
  • Figure 5 is a photograph taken of the plasma-resistant glass of Example 3 according to an exemplary embodiment of the present invention.
  • Figure 6 is a photograph taken of the plasma-resistant glass of Example 4 according to an exemplary embodiment of the present invention.
  • Figure 7 is a photograph taken of the plasma-resistant glass of Example 5 according to an exemplary embodiment of the present invention.
  • Figure 8 is a photograph taken of the plasma-resistant glass of Comparative Example 1.
  • Figure 9 is a photograph taken of the plasma-resistant glass of Comparative Example 2.
  • a and/or B means “A and B, or A or B.”
  • One embodiment of the present invention provides a plasma-resistant glass containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide.
  • the plasma-resistant glass according to an embodiment of the present invention may have a low dielectric constant, improve processability by implementing a low melting temperature, easily manufacture parts for the interior of the chamber for the semiconductor manufacturing process, and have a low melting temperature. Since it exhibits thermal expansion coefficient properties, it can prevent damage due to thermal shock in a high temperature atmosphere, improve light transmittance, and improve mechanical properties by improving hardness, thereby improving durability in a plasma etching environment. Furthermore, moldability can be improved by controlling the viscosity of the melt of the composition.
  • the plasma-resistant glass may be formed by melting a plasma-resistant glass composition containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide. there is.
  • the content of the Si-based oxide in the plasma-resistant glass is 20% by weight or more and 70% by weight or less, and the content of the Al-based oxide is 5% by weight or more and 30% by weight or less, and The content of the Mg-based oxide is 5% by weight or more and 50% by weight or less, the content of the Mg-based halide is 0.01% by weight or more and 10% by weight or less, and the content of the Ge-based oxide is 0.01% by weight or more and 25% by weight or less.
  • the plasma-resistant glass is 20% by weight to 70% by weight of Si-based oxide, 5% to 30% by weight of Al-based oxide, 5% to 50% by weight of Mg-based oxide, and 0.01% by weight.
  • the plasma-resistant glass may contain more than 10% by weight or less of Mg-based halide, more than 0.01% by weight and less than 50% by weight of Ge-based oxide, and unavoidable impurities.
  • the plasma-resistant glass is 20% by weight to 70% by weight of Si-based oxide, 5% to 30% by weight of Al-based oxide, 5% to 50% by weight of Mg-based oxide, and 0.01% by weight. It may be formed by melting a composition containing more than 10% by weight or less of Mg-based halide, 0.01% by weight or more and 25% by weight of Ge-based oxide, and unavoidable impurities, and the plasma-resistant glass is uniform in the respective component ratios. It may be included.
  • the plasma-resistant glass may include 20% by weight or more and 70% by weight or less of Si-based oxide.
  • the content of the Si-based oxide is 25% by weight to 69% by weight, 30% to 68% by weight, 35% to 67% by weight, 40% by weight to 66% by weight, 45% by weight to 65%. It may be % by weight or less, 50% by weight or more and 65% by weight or less, or 55% by weight or more and 65% by weight or less.
  • the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the By facilitating plasma processing, the production cost of parts can be reduced.
  • the plasma-resistant glass may include 5% by weight or more and 30% by weight or less of Al-based oxide.
  • the content of the Al-based oxide is 6% by weight or more and 29% by weight or less, 7% by weight or more and 28% by weight or less, 8% by weight or more and 27% by weight or less, 9% by weight or more and 26% by weight or less, or 10% by weight or more and 25% by weight. It may be less than % by weight.
  • the Al-based oxide and controlling the content of the Al-based oxide within the above-mentioned range outgassing can be prevented and the generation of particles can be suppressed, and the semiconductor The wear resistance of parts used inside the chamber for the manufacturing process can be improved.
  • the plasma-resistant glass includes 5% by weight or more and 50% by weight or less of Mg-based oxide.
  • the content of the Mg-based oxide may be 6 wt% to 40 wt%, 6 wt% to 30 wt%, 6 wt% to 20 wt%, or 6 wt% to 15 wt%.
  • the thermal expansion coefficient and glass transition temperature of the glass are realized low, thermal shock at high temperatures is minimized, and the semiconductor manufacturing process is achieved.
  • the durability of the internal parts of the chamber can be improved, and the dielectric constant can be implemented in an appropriate range.
  • the plasma-resistant glass contains 0.01% by weight or more and 10% by weight or less of Mg-based halide.
  • the Mg-based halide may be 1% by weight or more and 9% by weight or less, 2% by weight or more and 7% by weight or less, or 2% by weight or more and 5% by weight or less.
  • it contains the Mg-based halide, and by adjusting the amount of the Mg-based halide in the above-mentioned range, the viscosity of the melt of the plasma-resistant glass is reduced to improve the moldability of the plasma-resistant glass. You can.
  • the plasma-resistant glass includes 0.01% by weight or more and 25% by weight or less of Ge-based oxide.
  • the Ge-based oxide is 1 wt% to 24 wt%, 2 wt% to 23 wt%, 3 wt% to 22 wt%, 4 wt% to 21 wt%, or 5 wt% to 20 wt%. It may be below.
  • the plasma-resistant glass contains the Ge-based oxide, it has the same outermost electrons as the Si atoms, so that the glass cooled after melting has characteristics similar to Si, and has a low melting point of Ge. Although the silver melting process is not easy, the dielectric constant can be realized low by including the Ge-based oxide.
  • the melting temperature of the plasma-resistant glass can be lowered to enable melting, and the dielectric constant can be realized low.
  • the fluorine (F 2 ) gas used in the etching process reacts with the Ge-based oxide to produce GeF 2 (Boiling point: 130 °C, Melting point: 120 °C).
  • it generates GeF 4 (Boiling point: -15 °C, Melting point: -36.5 °C), and since these fluorine compounds have low BP and MP, they fly away during the gas etching process, so particles may not be formed.
  • the Si-based oxide may contain an O atom with a Si atom as a central atom.
  • the Si-based oxide is SiO 2 desirable.
  • the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the plasma-resistant glass can be improved.
  • the production cost of parts can be reduced.
  • the Al-based oxide may contain an O atom with an Al atom as a central atom.
  • the Al-based oxide is Al 2 O 3 desirable.
  • outgassing can be prevented and particle generation can be suppressed, and the semiconductor manufacturing process The wear resistance of internal parts of the chamber can be improved.
  • the Mg-based oxide may contain an O atom with an Mg atom as a central atom.
  • the Mg-based oxide is MgO. desirable.
  • the Mg-based oxide is selected to contain an O atom with an Mg atom as the central atom, thereby realizing a low thermal expansion coefficient and glass transition temperature of glass, minimizing thermal shock at high temperatures, and improving the semiconductor manufacturing process.
  • the durability of the components used inside the chamber can be improved, and the dielectric constant can be implemented in an appropriate range.
  • the Mg-based halide may contain a halogen atom with an Mg atom as a central atom.
  • the Mg-based halide is preferably MgF 2 .
  • the Mg-based halide is selected to contain a halogen atom with an Mg atom as the central atom, thereby reducing the viscosity of the melt of the composition and improving the formability of plasma-resistant glass using the composition. .
  • the Ge-based oxide may be one selected from the group consisting of GeO, GeO 2 , Ge 2 O 3 and combinations thereof.
  • the Ge-based oxide may be GeO 2 .
  • the plasma-resistant glass may be formed by melting a composition containing SiO 2 , Al 2 O 3 , MgO, MgF 2 and GeO 2 . More specifically, the plasma-resistant glass may be formed by melting a composition containing SiO 2 , Al 2 O 3 , MgO, MgF 2 and GeO 2 . As described above, the plasma-resistant glass is formed by melting the composition, so that each component can be uniformly distributed in the plasma-resistant glass, and the etching rate can be uniformly implemented over the entire area of the plasma-resistant glass. there is.
  • the plasma-resistant glass has a dielectric constant of 6.00 or more and 7.40 or less.
  • the plasma-resistant glass has a dielectric constant of 6.70 to 8.05, 6.75 to 8.00, 6.80 to 7.95, 6.85 to 7.90, 6.90 to 7.85, 6.95 to 7.80, 7.00 to 7.75, 7.05 to 7.70. , 7.10 or more and 7.65 or less, 7.15 or more and 7.60 or less, 7.20 or more and 7.55 or less, 7.25 or more and 7.50 or less, 7.30 or more and 7.45 or less, or 7.35 or more and 7.40 or less.
  • the plasma resistant glass has a dielectric constant of 6.79 to 6.99, 6.79 to 7.19, 6.79 to 7.39, 6.79 to 7.59, 6.99 to 7.19, 6.99 to 7.39, 6.99 to 7.59, 7.19 to 7.39.
  • Dielectric constant measurement methods include the capacitance method using an LCR meter, the reflection coefficient method using a network analyzer, and the resonant frequency method.
  • the capacitance method using an LCR meter is mainly used to measure low frequency characteristics (kHZ, MHz), and the dielectric constant can be determined from the physical size and electrostatic capacity of the capacitor.
  • the dielectric constant was measured in the frequency range of 20Hz to 100Hz using the Keysight E4990A Impedence Analyzer.
  • the plasma-resistant glass may be composed only of Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, Ge-based oxide and inevitable impurities.
  • the plasma-resistant glass may be composed only of SiO 2 , Al 2 O 3 , MgO, MgF 2 , GeO 2 oxide and unavoidable impurities.
  • the plasma-resistant glass may not contain other components except SiO 2 , Al 2 O 3 , MgO, MgF 2 , GeO 2 oxide and inevitable impurities.
  • the light transmittance of the plasma-resistant glass may be 80% or more and 100% or less. Specifically, the light transmittance of the plasma-resistant glass may be 82% or more and 98% or less, 85% or more and 95% or less, or 87% or more and 92% or less.
  • “light transmittance” may refer to a value measured using a haze meter (JCH-300S, Oceanoptics).
  • the Vickers hardness of the plasma-resistant glass may be 550 HV or more and 1,000 HV or less.
  • the Vickers hardness of the above plasma glass is 560 HV or more and 980 HV or less, 570 HV or more and 950 HV or less, 580 HV or more and 930 HV or less, 600 HV or more and 900 HV or less, 620 HV or more and 880 HV or less, 650 HV or more and 850 HV or less, It can be 680 HV or higher and 820 HV or lower, 690 HV or higher and 810 HV or lower, 700 HV or higher and 800 HV or lower, 710 HV or higher and 790 HV or lower, 720 HV and lower than 780 HV, 730 HV and lower than 770 HV, or 740 HV and lower than 760 HV.
  • Vickers hardness may refer to a value measured using a Vickers hardness meter (Helmut Fischer, FISCHERSCOPE HM-2000). By implementing the Vickers hardness of the plasma-resistant glass in the above-described range, mechanical properties can be increased and durability in a plasma etching environment can be improved.
  • the glass transition temperature of the plasma-resistant glass is 600 ° C. Above 850°C It may be below. Specifically, the glass transition temperature of the plasma-resistant glass may be 620 °C or higher and 830 °C or lower, 650 °C or higher and 800 °C or lower, 670 °C or higher and 780 °C or lower, or 700 °C or higher and 750 °C or lower.
  • the thermal expansion coefficient of the plasma-resistant glass may be 4.0 ⁇ 10 -6 m/(m°C) or more and 6.0 ⁇ 10 -6 m/(m°C) or less.
  • the thermal expansion coefficient of the plasma-resistant glass is 4.1 ⁇ 10 -6 m/(m°C) or more, 5.9 ⁇ 10 -6 m/(m°C) or less, and 4.2 ⁇ 10 -6 m/(m°C) or more.
  • ⁇ 10 -6 m/(m°C) or less 4.3 ⁇ 10 -6 m/(m°C) or more 5.7 ⁇ 10 -6 m/(m°C) or less, 4.4 ⁇ 10 -6 m/(m°C) or more 5.6 ⁇ 10 -6 m/(m°C) or less, 4.5 ⁇ 10 -6 m/(m°C) or more 5.5 ⁇ 10 -6 m/(m°C) or less, 4.6 ⁇ 10 -6 m/(m°C) or more 5.4 ⁇ 10 -6 m/(m°C) or less, 4.7 ⁇ 10 -6 m/(m°C) or more 5.3 ⁇ 10 -6 m/(m°C) or less, 4.8 ⁇ 10 -6 m/(m°C) or more 5.2 It may be less than ⁇ 10 -6 m/(m°C) or more than 4.9 ⁇ 10 -6 m/(m°C) and less than or equal to 5.1 ⁇ 10 -6 m/(m°C
  • the etching rate of the plasma-resistant glass by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 100 nm/min. Specifically, the etching rate of the plasma-resistant glass by mixed plasma of fluorine and argon (Ar) is greater than 0 nm/min and less than 95 nm/min, more than 10 nm/min and less than 90 nm/min, and 20 nm/min. min or more and 85 nm/min or less, 30 nm/min or more and 80 nm/min or less, or 35 nm/min or more and 65 nm/min or less.
  • the parts used inside the chamber for the semiconductor manufacturing process realize a low etching rate for plasma, thereby reducing the usage time in the semiconductor manufacturing process. It can be improved.
  • the melting point of the plasma-resistant glass is 1,400 ° C. It may be above 1,700°C or below.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,410 °C or higher and 1,690 °C or lower, 1,420 °C or higher and 1,680 °C or lower, 1,430 °C or higher and 1,670 °C or lower, 1,440 °C or higher and 1,660 °C or lower, 1,450 °C or higher and 1,650 °C or lower, 1,460 °C or higher 0°C Below, 1,470 °C and below 1,630 °C, 1,480 °C and below 1,620 °C, 1,490 °C and below 1,610 °C, 1,500 °C and below 1,600 °C, 1,510 °C and below 1,590 °C, 1,520 °C and below 1,580 °C, 1,530 °C or higher and 1,570 °C or lower Or it may be
  • the viscosity of the molten composition may be 1 poise or more and 10 9 poise or less at 1,400 °C or higher and 1,700 °C or lower or 1,500 °C or higher and 1,750 °C or lower.
  • the viscosity of the molten composition is 10 poise or more and 10 8 poise or less, 10 2 poise or more and 10 7 poise or less, 10 3 poise or more and 10 6 poise or less, or 10 4 poise or more and 10 5 poise or less at 1,550 °C or more and 1,750 °C or less. You can.
  • the viscosity of the molten composition within the above-mentioned range, the moldability of the plasma-resistant glass can be improved.
  • the plasma-resistant glass may be amorphous. As described above, by implementing the structure of the plasma-resistant glass as amorphous, the durability of parts using the plasma-resistant glass can be improved while simultaneously reducing the etching rate by plasma.
  • One embodiment of the present invention provides parts for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
  • Components used inside a chamber for a semiconductor manufacturing process can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
  • the internal components include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. (window), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD Boat, wall liner, shield, cold pad, source head, outer liner, deposition shield for (Chemical Vapor Deposition) ), it may be any one of an upper liner, an exhaust plate, and a mask frame. From the above, by using the internal components, the resistance to plasma in the semiconductor manufacturing process is improved and the usage time is extended, thereby minimizing the cost required for semiconductor manufacturing.
  • An exemplary embodiment of the present invention includes melting a composition containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide (S11); And a step of cooling the molten composition (S13). It provides a method for producing plasma-resistant glass, including a.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere, and can produce glass with higher hardness than existing glass, thereby producing mechanical glass. By increasing the characteristics, durability in a plasma etching environment can be improved.
  • FIG. 1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention. With reference to FIG. 1, a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention will be described in detail.
  • the present invention includes a step (S11) of melting a composition including a Si-based oxide, an Al-based oxide, a Mg-based oxide, an Mg-based halogenide, and a Ge-based oxide.
  • a step (S11) of melting a composition including a Si-based oxide, an Al-based oxide, a Mg-based oxide, an Mg-based halogenide, and a Ge-based oxide From the above, the components of the plasma-resistant glass are adjusted, and by adjusting the content of the components, the dielectric constant of the plasma-resistant glass is appropriately implemented, and the plasma-resistant glass is prevented from being damaged by thermal shock in a high temperature atmosphere. It is possible to achieve low melting temperature, improve light transmittance and durability, and easily manufacture products with complex shapes by controlling the viscosity of the melt.
  • the melting step may be melting the platinum crucible.
  • the components eluted from the crucible can be minimized and the physical properties of the plasma-resistant glass can be realized.
  • a step (S13) of cooling the molten glass composition is included.
  • the step of cooling the molten glass composition as described above the crystals of the plasma-resistant glass can be controlled and damage due to rapid thermal change can be prevented.
  • the temperature of the cooling step may be room temperature.
  • crystals of the plasma-resistant glass can be controlled, and melting can be easily performed in the process of manufacturing components for the interior of the chamber for the semiconductor manufacturing process.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the melting temperature in the step of melting the composition may be a melting point of 1,400°C or more and 1,700°C or less.
  • the melting point may mean melting temperature.
  • the plasma-resistant glass has a melting point of 1,410 °C or higher and 1,690 °C or lower, 1,420 °C or higher and 1,680 °C or lower, 1,430 °C or higher and 1,670 °C or lower, or 1,440 °C or higher and 1,660 °C.
  • One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold (S21); and a step of annealing the injected plasma-resistant glass (S23).
  • the method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
  • Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention. With reference to FIG. 2, a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention will be described in detail.
  • the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes melting the plasma-resistant glass (S21).
  • the workability of the process of manufacturing parts for the interior of the chamber for the semiconductor manufacturing process is improved, and at the same time, the molten metal in which the plasma-resistant glass is melted is injected into the mold. By doing so, it can be molded into various shapes.
  • the method of manufacturing components for the interior of a chamber for the semiconductor manufacturing process includes the step of injecting the molten plasma-resistant glass into a mold (S23). As described above, parts of various shapes can be manufactured by injecting the molten plasma-resistant glass into a mold.
  • the mold includes a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. ), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD (Chemical Vapor Deposition boat, wall liner, shield, cold pad, source head, outer liner, deposition shield, It may have one of the following shapes: an upper liner, an exhaust plate, and a mask frame. As described above, by implementing various shapes of the mold, it is possible to easily implement the shape of the part and reduce manufacturing time.
  • CVD Chemical Vapor Deposition boat, wall liner, shield, cold pad, source head, outer liner, deposition shield
  • the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes the step of annealing the injected plasma-resistant glass (S25).
  • the step of annealing the injected plasma-resistant glass as described above, the stress caused by heat generated in the part manufactured by injecting into the mold can be minimized to improve the durability of the part and minimize thermal shock at high temperatures. there is.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400°C or more and 1,700°C or less.
  • the melting point may mean melting temperature.
  • the plasma-resistant glass has a melting point of 1,410 °C or higher and 1,690 °C or lower, 1,420 °C or higher and 1,680 °C or lower, 1,430 °C or higher and 1,670 °C or lower, or 1,440 °C or higher and 1,660 °C.
  • the temperature of the annealing step may be 400°C or more and 900°C or less.
  • the temperature of the annealing step is 430 °C or more and 890 °C or less, 450 °C or more and 880 °C or less, 470 °C or more and 870 °C or less, 500 °C or more and 860 °C or less, 550 °C or more and 850 °C or less, 560 °C or more and 840 °C Below, 570 °C and below 830 °C, 580 °C and below 820 °C, 590 °C and below 810 °C, 600 °C and below 800 °C, 610 °C and below 790 °C, 620 °C and below 780 °C, 630 °C and below 770 °C , 640 °C or more and 760 °C or less, 650 °C or more
  • it may include a step (S27) of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass.
  • S27 a step of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass.
  • sophisticated components can be manufactured by processing precursors for components used inside the chamber for the semiconductor manufacturing process.
  • a composition was prepared by mixing the ingredients and amounts shown in Table 1 below. Afterwards, the composition was melted by heating at 1,650°C for 4 hours and then cooled at room temperature to prepare plasma-resistant glass.
  • Example 1 Example 2
  • Example 3 Example 4
  • Comparative Example 1 Comparative example 2 SiO 2 (Unit: weight%) 65 65 60 55 55 65 55 Al 2 O 3 (Unit: weight%) 10 15 15 25 10 15 5 MgO (Unit: weight%) 15 10 12 6 13 15 5 MgF 2 (Unit: weight%) 5 5 5 2 2 5 5 GeO 2 (Unit: weight%) 5 5 8 12 20 - 30
  • the dielectric constants were measured in a frequency range of 20 Hz to 100 Hz by the capacitance method using an LCR meter (Keysight E4990A Impedence Analyzer), and are summarized in Table 2 below.
  • Etching was performed with a mixed plasma of fluorine and argon (Ar) on some of the examples, comparative examples, and reference examples, and the etching step, which is the step between the etched portion and the non-etched portion, was created.
  • the etching rate was calculated by measuring with a confocal laser microscope (Olympus OLS 5100 equipment, x 400 magnification) and dividing by the measured time, and is summarized in Table 2 below.
  • Example 2 Example 3
  • Example 4 Example 5 Comparative Example 1 Comparative Example 2 dielectric constant (Unit: /1MHz) 4.37 7.31 7.13 6.52 6.38 6.2 7.49 - etch rate (Unit: nm/m) 251 49 44 55 35 60 36 -
  • Figure 3 is a photograph taken of the plasma-resistant glass of Example 1 according to an exemplary embodiment of the present invention.
  • Figure 4 is a photograph taken of the plasma-resistant glass of Example 2 according to an exemplary embodiment of the present invention.
  • Figure 5 is a photograph taken of the plasma-resistant glass of Example 3 according to an exemplary embodiment of the present invention.
  • Figure 6 is a photograph taken of the plasma-resistant glass of Example 4 according to an exemplary embodiment of the present invention.
  • Figure 7 is a photograph taken of the plasma-resistant glass of Example 5 according to an exemplary embodiment of the present invention.
  • Examples 1 to 5 are all vitrified by including Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide in a specific range, It was confirmed that it was possible to implement a dielectric constant of 6.0 or more and 7.4 or less and an etch rate of 100 nm/m or less.
  • Figure 8 is a photograph taken of the plasma-resistant glass of Comparative Example 1.
  • Figure 9 is a photograph taken of the plasma-resistant glass of Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention relates to a plasma-resistant glass, a chamber interior part for a semiconductor manufacturing process, and methods for manufacturing the glass and part, and specifically to a plasma-resistant glass, a chamber interior part for a semiconductor manufacturing process, and methods for manufacturing the glass and part, wherein the contents of plasma-resistant glass components in the glass are adjusted to achieve a low melting temperature, the thermal expansion coefficient of the glass can be reduced to prevent damage from thermal shock when the glass is used at a high temperature, the glass has improved light transmittance and durability and an appropriate dielectric constant, and the formability of the glass is improved by controlling the viscosity of a melt.

Description

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법Plasma-resistant glass, chamber interior components for semiconductor manufacturing processes, and their manufacturing methods
본 발명은 2022년 10월 20일에 한국특허청에 제출된 한국 특허출원 제10-2022-0135711호 출원일의 이익 및 2023년 06월 15일에 한국특허청에 제출된 한국 특허출원 제10-2023-0076784호 출원일의 이익 각각을 모두 주장하며, 그 내용 전부는 본 발명에 포함된다.The present invention benefits from the filing date of Korean Patent Application No. 10-2022-0135711 filed with the Korea Intellectual Property Office on October 20, 2022, and Korean Patent Application No. 10-2023-0076784 filed with the Korea Intellectual Property Office on June 15, 2023. All benefits as of the filing date are claimed, and the entire contents thereof are included in the present invention.
본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시키고, 유전 상수를 감소시키며, 용융물의 점도를 조절하여 성형성을 향상시킨 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다.The present invention relates to plasma-resistant glass, parts for the interior of a chamber for a semiconductor manufacturing process, and their manufacturing method. Specifically, the content of the plasma-resistant glass components is controlled to achieve a low melting temperature, and the thermal expansion coefficient is reduced to achieve a high temperature. Plasma-resistant glass that prevents damage from thermal shock during use, improves light transmittance and durability, reduces dielectric constant, and improves formability by controlling the viscosity of the melt; parts for the interior of the chamber for the semiconductor manufacturing process; It's about their manufacturing method.
반도체 및/또는 디스플레이 제조 시 플라즈마 식각 공정이 적용되고 있다. 최근 나노 공정이 적용되면서, 식각의 난이도가 증가되고 고밀도 플라즈마 환경에 노출되는 공정 챔버의 내부 부품은 내식성을 갖는 알루미나(Al2O3), 이트리아(Y2O3)와 같은 산화물계 세라믹이 주로 사용되고 있다.Plasma etching processes are applied when manufacturing semiconductors and/or displays. Recently, with the application of nano-processing, the difficulty of etching has increased, and the internal parts of the process chamber exposed to the high-density plasma environment are made of oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
다결정 소재가 불소계 가스를 사용하는 고밀도 플라즈마 식각 환경에 장기간 노출될 경우, 국부적인 침식으로 인해 입자가 탈락되고, 이에 따른 오염 입자의 발생 확률이 높아진다. 이는 반도체/디스플레이의 결함을 유발하며 생산 수율에 악영향을 미친다. 또한, 산화물계 세라믹 소재는 용융 온도가 높아 작업성이 낮은 문제점이 있었다.When a polycrystalline material is exposed to a high-density plasma etching environment using fluorine-based gas for a long period of time, particles are eliminated due to local erosion, thereby increasing the probability of generating contaminating particles. This causes defects in semiconductors/displays and adversely affects production yield. In addition, oxide-based ceramic materials have a problem of low workability due to their high melting temperature.
따라서, 용융 온도가 낮으면서도 기존의 내플라즈마성 유리의 열충격 손상을 방지할 수 있으며, 유전 상수를 감소시키고, 점도를 조절하여 원하는 형상으로 용이하게 성형할 수 있는 기술개발이 필요하다.Therefore, there is a need to develop technology that can prevent thermal shock damage to existing plasma-resistant glass while having a low melting temperature, reduce the dielectric constant, and adjust the viscosity to easily mold it into a desired shape.
본 발명이 이루고자 하는 기술적 과제는 반도체 제조 공정에서 사용되는 챔버 내부의 플라즈마에 의하여 저항성이 우수하며, 고온조건에서 내열성이 우수하여 챔버 내부에 사용되는 부품의 손상을 방지하고, 용융 온도를 낮게 구현할 수 있으며, 적절한 범위의 유전 상수를 갖고 점도를 조절하여 원하는 형상으로 용이하게 성형할 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide excellent resistance due to the plasma inside the chamber used in the semiconductor manufacturing process, and excellent heat resistance under high temperature conditions to prevent damage to components used inside the chamber and to achieve a low melting temperature. The aim is to provide plasma-resistant glass that has a dielectric constant in an appropriate range and can be easily molded into a desired shape by controlling the viscosity, parts for the interior of a chamber for a semiconductor manufacturing process, and methods for manufacturing them.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시상태는 Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 포함하는 내플라즈마성 유리를 제공한다.One embodiment of the present invention provides a plasma-resistant glass containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide.
본 발명의 일 실시상태에 따르면, 상기 Si계 산화물의 함량은 20 중량% 이상 70 중량% 이하이며, 상기 Al계 산화물의 함량은 5 중량% 이상 30 중량% 이하이고, 상기 Mg계 산화물의 함량은 5 중량% 이상 50 중량% 이하이며, 상기 Mg계 할로겐화물의 함량은 0.01 중량% 이상 10 중량% 이하이고, 상기 Ge계 산화물의 함량은 0.01 중량% 이상 25 중량% 이하인 것일 수 있다.According to one embodiment of the present invention, the content of the Si-based oxide is 20% by weight or more and 70% by weight or less, the content of the Al-based oxide is 5% by weight or more and 30% by weight or less, and the content of the Mg-based oxide is It may be 5% by weight or more and 50% by weight or less, the content of the Mg-based halide may be 0.01% by weight or more and 10% by weight or less, and the content of the Ge-based oxide may be 0.01% by weight or more and 25% by weight or less.
본 발명의 일 실시상태에 따르면, 광투과율이 80% 이상 100% 이하인 것일 수 있다.According to one embodiment of the present invention, the light transmittance may be 80% or more and 100% or less.
본 발명의 일 실시상태에 따르면, 비커스 경도가 550 HV 이상 1,000 HV 이하일 수 있다.According to one embodiment of the present invention, the Vickers hardness may be 550 HV or more and 1,000 HV or less.
본 발명의 일 실시상태에 따르면, 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다.According to an exemplary embodiment of the present invention, the glass transition temperature may be 600°C or more and 850°C or less.
본 발명의 일 실시상태에 따르면, 열팽창계수는 4.0×10-6 m/(m℃) 이상 6.0×10-6 m/(m℃) 이하인 것일 수 있다.According to one embodiment of the present invention, the thermal expansion coefficient may be 4.0×10 -6 m/(m℃) or more and 6.0×10 -6 m/(m℃) or less.
본 발명의 일 실시상태에 따르면, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 100 nm/min 이하인 것일 수 있다.According to an exemplary embodiment of the present invention, the etching rate by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 100 nm/min.
본 발명의 일 실시상태에 따르면, 용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.According to an exemplary embodiment of the present invention, the melting point may be 1,400°C or more and 1,700°C or less.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.One embodiment of the present invention provides parts for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다.According to one embodiment of the present invention, the internal components include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. (window), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD Boat, wall liner, shield, cold pad, source head, outer liner, deposition shield for (Chemical Vapor Deposition) ), it may be any one of an upper liner, an exhaust plate, and a mask frame.
본 발명의 일 실시상태는 20 중량% 이상 70 중량% 이하의 Si계 산화물, 5 중량% 이상 30 중량% 이하의 Al계 산화물, 5 중량% 이상 50 중량% 이하의 Mg계 산화물, 0.01 중량% 이상 10 중량% 이하의 Mg계 할로겐화물 및 0.01 중량% 이상 50 중량% 이하의 Ge계 산화물을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법을 제공한다.One embodiment of the present invention is 20% by weight to 70% by weight of Si-based oxide, 5% to 30% by weight of Al-based oxide, 5% to 50% by weight of Mg-based oxide, and 0.01% by weight or more. Melting a composition containing 10 wt% or less of Mg-based halide and 0.01 wt% to 50 wt% of Ge-based oxide; and cooling the molten composition. It provides a method for producing plasma-resistant glass, including a step of cooling the molten composition.
본 발명의 일 실시상태에 따르면, 상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.According to one embodiment of the present invention, the melting temperature in the step of melting the composition may be 1,400°C or more and 1,700°C or less.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.According to one embodiment of the present invention, the melting temperature in the step of melting the plasma-resistant glass may be 1,400 ℃ or more and 1,700 ℃ or less.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다. According to an exemplary embodiment of the present invention, the temperature of the annealing step may be 400°C or more and 900°C or less.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 특정한 범위의 유전 상수를 가질 수 있고, 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있다.The plasma-resistant glass according to an embodiment of the present invention can have a dielectric constant in a specific range, improves processability by implementing a low melting temperature, and can easily manufacture chamber interior parts for the semiconductor manufacturing process. .
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 내플라즈마성을 향상시키고, F 첨가에 따른 점도가 감소하여 성형성을 증가시킬 수 있다.The plasma-resistant glass according to an exemplary embodiment of the present invention can improve plasma resistance and increase formability by reducing viscosity due to the addition of F.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.The plasma-resistant glass according to an exemplary embodiment of the present invention exhibits a low thermal expansion coefficient and can prevent damage due to thermal shock in a high-temperature atmosphere.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다.The plasma-resistant glass according to an exemplary embodiment of the present invention has improved light transmittance and improved mechanical properties by improving hardness, thereby improving durability in a plasma etching environment.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.Components used inside a chamber for a semiconductor manufacturing process according to an embodiment of the present invention can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.The method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.The method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an embodiment of the present invention can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 조성물의 점도를 조절하여 성형성을 향상시킬 수 있다.The method for producing plasma-resistant glass according to an embodiment of the present invention can improve moldability by controlling the viscosity of the composition.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.The effect of the present invention is not limited to the above-mentioned effect, and effects not mentioned will be clearly understood by those skilled in the art from the present specification and the attached drawings.
도 1은 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법의 순서도이다.1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention.
도 2는 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법의 순서도이다.Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시상태에 따른 실시예 1의 내플라즈마성 유리를 촬영한 사진이다.Figure 3 is a photograph taken of the plasma-resistant glass of Example 1 according to an exemplary embodiment of the present invention.
도 4는 본 발명의 일 실시상태에 따른 실시예 2의 내플라즈마성 유리를 촬영한 사진이다.Figure 4 is a photograph taken of the plasma-resistant glass of Example 2 according to an exemplary embodiment of the present invention.
도 5는 본 발명의 일 실시상태에 따른 실시예 3의 내플라즈마성 유리를 촬영한 사진이다.Figure 5 is a photograph taken of the plasma-resistant glass of Example 3 according to an exemplary embodiment of the present invention.
도 6은 본 발명의 일 실시상태에 따른 실시예 4의 내플라즈마성 유리를 촬영한 사진이다.Figure 6 is a photograph taken of the plasma-resistant glass of Example 4 according to an exemplary embodiment of the present invention.
도 7은 본 발명의 일 실시상태에 따른 실시예 5의 내플라즈마성 유리를 촬영한 사진이다.Figure 7 is a photograph taken of the plasma-resistant glass of Example 5 according to an exemplary embodiment of the present invention.
도 8은 비교예 1의 내플라즈마성 유리를 촬영한 사진이다.Figure 8 is a photograph taken of the plasma-resistant glass of Comparative Example 1.
도 9는 비교예 2의 내플라즈마성 유리를 촬영한 사진이다.Figure 9 is a photograph taken of the plasma-resistant glass of Comparative Example 2.
[부호의 설명][Explanation of symbols]
S 11: 조성물 용융 단계S 11: Composition melting step
S 13: 냉각 단계S 13: Cooling stage
S 21: 내플라즈마성 유리 용융 단계S 21: Plasma-resistant glass melting step
S 23: 금형 주입 단계S 23: Mold injection step
S 25: 어닐링 단계S 25: Annealing step
S 27: 가공 단계S 27: Processing steps
본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Throughout this specification, when a part “includes” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본 명세서 전체에서, "A 및/또는 B"는 "A 및 B, 또는 A 또는 B"를 의미한다.Throughout this specification, “A and/or B” means “A and B, or A or B.”
이하, 본 발명에 대하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 실시상태는 Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 포함하는 내플라즈마성 유리를 제공한다.One embodiment of the present invention provides a plasma-resistant glass containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 낮은 유전 상수를 가질 수 있고, 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있으며, 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있고, 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다. 나아가, 상기 조성물의 용융물의 점도를 조절하여 성형성을 향상시킬 수 있다.The plasma-resistant glass according to an embodiment of the present invention may have a low dielectric constant, improve processability by implementing a low melting temperature, easily manufacture parts for the interior of the chamber for the semiconductor manufacturing process, and have a low melting temperature. Since it exhibits thermal expansion coefficient properties, it can prevent damage due to thermal shock in a high temperature atmosphere, improve light transmittance, and improve mechanical properties by improving hardness, thereby improving durability in a plasma etching environment. Furthermore, moldability can be improved by controlling the viscosity of the melt of the composition.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 포함하는 내플라즈마성 유리 조성물이 용융되어 형성된 것 일 수 있다.According to one embodiment of the present invention, the plasma-resistant glass may be formed by melting a plasma-resistant glass composition containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide. there is.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리에서 상기 Si계 산화물의 함량은 20 중량% 이상 70 중량% 이하이며, 상기 Al계 산화물의 함량은 5 중량% 이상 30 중량% 이하이고, 상기 Mg계 산화물의 함량은 5 중량% 이상 50 중량% 이하이며, 상기 Mg계 할로겐화물의 함량은 0.01 중량% 이상 10 중량% 이하이고, 상기 Ge계 산화물의 함량은 0.01 중량% 이상 25 중량% 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 20 중량% 이상 70 중량% 이하의 Si계 산화물, 5 중량% 이상 30 중량% 이하의 Al계 산화물, 5 중량% 이상 50 중량% 이하의 Mg계 산화물, 0.01 중량% 이상 10 중량% 이하의 Mg계 할로겐화물, 0.01 중량% 이상 50 중량% 이하의 Ge계 산화물 및 불가피한 불순물을 포함하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 20 중량% 이상 70 중량% 이하의 Si계 산화물, 5 중량% 이상 30 중량% 이하의 Al계 산화물, 5 중량% 이상 50 중량% 이하의 Mg계 산화물, 0.01 중량% 이상 10 중량% 이하의 Mg계 할로겐화물, 0.01 중량% 이상 25 중량% 이하의 Ge계 산화물 및 불가피한 불순물을 포함하는 조성물이 용융되어 형성된 것일 수 있으며, 상기 내플라즈마성 유리는 상기 각각의 성분비로 균일하게 포함된 것일 수 있다.According to one embodiment of the present invention, the content of the Si-based oxide in the plasma-resistant glass is 20% by weight or more and 70% by weight or less, and the content of the Al-based oxide is 5% by weight or more and 30% by weight or less, and The content of the Mg-based oxide is 5% by weight or more and 50% by weight or less, the content of the Mg-based halide is 0.01% by weight or more and 10% by weight or less, and the content of the Ge-based oxide is 0.01% by weight or more and 25% by weight or less. You can. Specifically, the plasma-resistant glass is 20% by weight to 70% by weight of Si-based oxide, 5% to 30% by weight of Al-based oxide, 5% to 50% by weight of Mg-based oxide, and 0.01% by weight. It may contain more than 10% by weight or less of Mg-based halide, more than 0.01% by weight and less than 50% by weight of Ge-based oxide, and unavoidable impurities. Specifically, the plasma-resistant glass is 20% by weight to 70% by weight of Si-based oxide, 5% to 30% by weight of Al-based oxide, 5% to 50% by weight of Mg-based oxide, and 0.01% by weight. It may be formed by melting a composition containing more than 10% by weight or less of Mg-based halide, 0.01% by weight or more and 25% by weight of Ge-based oxide, and unavoidable impurities, and the plasma-resistant glass is uniform in the respective component ratios. It may be included.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 20 중량% 이상 70 중량% 이하의 Si계 산화물을 포함할 수 있다. 구체적으로 상기 Si계 산화물의 함량은 25 중량% 이상 69 중량% 이하, 30 중량% 이상 68 중량% 이하, 35 중량% 이상 67 중량% 이하, 40 중량% 이상 66 중량% 이하, 45 중량% 이상 65 중량% 이하, 50 중량% 이상 65 중량% 이하 또는 55 중량% 이상 65 중량% 이하인 것일 수 있다. 상술한 것과 같이, 상기 Si계 산화물을 포함하며, 상술한 범위에서 상기 Si계 산화물의 함량을 조절함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.According to one embodiment of the present invention, the plasma-resistant glass may include 20% by weight or more and 70% by weight or less of Si-based oxide. Specifically, the content of the Si-based oxide is 25% by weight to 69% by weight, 30% to 68% by weight, 35% to 67% by weight, 40% by weight to 66% by weight, 45% by weight to 65%. It may be % by weight or less, 50% by weight or more and 65% by weight or less, or 55% by weight or more and 65% by weight or less. As described above, by including the Si-based oxide and controlling the content of the Si-based oxide within the above-described range, the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the By facilitating plasma processing, the production cost of parts can be reduced.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 5 중량% 이상 30 중량% 이하의 Al계 산화물을 포함할 수 있다. 구체적으로 상기 Al계 산화물의 함량은 6 중량% 이상 29 중량% 이하, 7 중량% 이상 28 중량% 이하, 8 중량% 이상 27 중량% 이하, 9 중량% 이상 26 중량% 이하 또는 10 중량% 이상 25 중량% 이하인 것일 수 있다. 상술한 것과 같이, 상기 Al계 산화물을 포함하며, 상술한 범위에서 상기 Al계 산화물의 함량을 조절함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있다.According to one embodiment of the present invention, the plasma-resistant glass may include 5% by weight or more and 30% by weight or less of Al-based oxide. Specifically, the content of the Al-based oxide is 6% by weight or more and 29% by weight or less, 7% by weight or more and 28% by weight or less, 8% by weight or more and 27% by weight or less, 9% by weight or more and 26% by weight or less, or 10% by weight or more and 25% by weight. It may be less than % by weight. As described above, by including the Al-based oxide and controlling the content of the Al-based oxide within the above-mentioned range, outgassing can be prevented and the generation of particles can be suppressed, and the semiconductor The wear resistance of parts used inside the chamber for the manufacturing process can be improved.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 5 중량% 이상 50 중량% 이하의 Mg계 산화물을 포함한다. 구체적으로 상기 Mg계 산화물의 함량은 6 중량% 이상 40 중량% 이하, 6 중량% 이상 30 중량% 이하, 6 중량% 이상 20 중량% 이하 또는 6 중량% 이상 15 중량% 이하인 것일 수 있다. 상술한 것과 같이, 상기 Mg계 산화물을 포함하며, 상술한 범위에서 상기 Mg계 산화물의 함량을 조절함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현하고, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 유전 상수를 적절한 범위로 구현할 수 있다.According to one embodiment of the present invention, the plasma-resistant glass includes 5% by weight or more and 50% by weight or less of Mg-based oxide. Specifically, the content of the Mg-based oxide may be 6 wt% to 40 wt%, 6 wt% to 30 wt%, 6 wt% to 20 wt%, or 6 wt% to 15 wt%. As described above, by including the Mg-based oxide and controlling the content of the Mg-based oxide within the above-mentioned range, the thermal expansion coefficient and glass transition temperature of the glass are realized low, thermal shock at high temperatures is minimized, and the semiconductor manufacturing process is achieved. The durability of the internal parts of the chamber can be improved, and the dielectric constant can be implemented in an appropriate range.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 0.01 중량% 이상 10 중량% 이하의 Mg계 할로겐화물을 포함한다. 구체적으로 상기 Mg계 할로겐화물은 1 중량% 이상 9 중량% 이하, 2 중량% 이상 7 중량% 이하 또는 2 중량% 이상 5 중량% 이하인 것일 수 있다. 상술한 것과 같이 상기 Mg계 할로겐화물을 포함하며, 상술한 범위에서 상기 Mg계 할로겐화물의 햠량을 조절함으로써, 상기 내플라즈마성 유리의 용융물의 점도를 감소시켜 상기 내플라즈마 유리의 성형성을 향상시킬 수 있다.According to one embodiment of the present invention, the plasma-resistant glass contains 0.01% by weight or more and 10% by weight or less of Mg-based halide. Specifically, the Mg-based halide may be 1% by weight or more and 9% by weight or less, 2% by weight or more and 7% by weight or less, or 2% by weight or more and 5% by weight or less. As described above, it contains the Mg-based halide, and by adjusting the amount of the Mg-based halide in the above-mentioned range, the viscosity of the melt of the plasma-resistant glass is reduced to improve the moldability of the plasma-resistant glass. You can.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 0.01 중량% 이상 25 중량% 이하의 Ge계 산화물을 포함한다. 구체적으로 상기 Ge계 산화물은 1 중량% 이상 24 중량% 이하, 2 중량% 이상 23 중량% 이하, 3 중량% 이상 22 중량% 이하, 4 중량% 이상 21 중량% 이하 또는 5 중량% 이상 20 중량% 이하인 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리가 상기 Ge계 산화물을 포함하는 경우 상기 Si 원자와 동일한 최외각 전자를 가져 용융이 후 냉각된 유리에서 상기 Si와 유사한 특성을 갖게 되며, 상기 Ge의 낮은 녹는점은 용융 과정이 용이하지 않게 하지만 상기 Ge계 산화물을 포함하여 유전 상수를 낮게 구현할 수 있다. 또한 상술한 범위에서 상기 Ge계 산화물의 함량을 조절함으로써, 상기 내플라즈마성 유리의 용융온도를 낮게 구현하여 용융이 가능하게 하며, 유전 상수를 낮게 구현할 수 있다. 나아가, 상술한 것과 같이 상기 조성물이 상기 Ge계 산화물을 포함하는 경우 식각과정에서 사용하는 불소(F2) 가스와 Ge계 산화물이 반응하여 GeF2(Boiling point: 130 ℃, Melting point: 120 ℃) 또는 GeF4(Boiling point: -15 ℃, Melting point: -36.5 ℃)를 발생시키며, 이러한 불소화합물은 B.P. 및 M.P.가 모두 낮기 때문에 가스로 식각과정에서 날아가므로 파티클이 형성되지 않을 수 있다.According to one embodiment of the present invention, the plasma-resistant glass includes 0.01% by weight or more and 25% by weight or less of Ge-based oxide. Specifically, the Ge-based oxide is 1 wt% to 24 wt%, 2 wt% to 23 wt%, 3 wt% to 22 wt%, 4 wt% to 21 wt%, or 5 wt% to 20 wt%. It may be below. As described above, when the plasma-resistant glass contains the Ge-based oxide, it has the same outermost electrons as the Si atoms, so that the glass cooled after melting has characteristics similar to Si, and has a low melting point of Ge. Although the silver melting process is not easy, the dielectric constant can be realized low by including the Ge-based oxide. In addition, by adjusting the content of the Ge-based oxide within the above-mentioned range, the melting temperature of the plasma-resistant glass can be lowered to enable melting, and the dielectric constant can be realized low. Furthermore, as described above, when the composition contains the Ge-based oxide, the fluorine (F 2 ) gas used in the etching process reacts with the Ge-based oxide to produce GeF 2 (Boiling point: 130 ℃, Melting point: 120 ℃). Alternatively, it generates GeF 4 (Boiling point: -15 ℃, Melting point: -36.5 ℃), and since these fluorine compounds have low BP and MP, they fly away during the gas etching process, so particles may not be formed.
본 발명의 일 실시상태에 따르면, 상기 Si계 산화물은 Si 원자를 중심원자로 하여 O 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Si계 산화물은 SiO2인 것이 바람직하다. 상술한 것과 같이 상기 Si계 산화물이 Si 원자를 중심원자로 하여 O 원자를 포함하고 있는 것을 선택함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.According to an exemplary embodiment of the present invention, the Si-based oxide may contain an O atom with a Si atom as a central atom. Specifically, the Si-based oxide is SiO 2 desirable. As described above, by selecting the Si-based oxide containing an O atom with a Si atom as the central atom, the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the plasma-resistant glass can be improved. By making processing easier, the production cost of parts can be reduced.
본 발명의 일 실시상태에 따르면, 상기 Al계 산화물은 Al 원자를 중심원자로 하여 O 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Al계 산화물은 Al2O3인 것이 바람직하다. 상술한 것과 같이 상기 Al계 산화물은 Al 원자를 중심원자로 하여 O 원자를 포함하고 있는 것을 선택함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있다.According to an exemplary embodiment of the present invention, the Al-based oxide may contain an O atom with an Al atom as a central atom. Specifically, the Al-based oxide is Al 2 O 3 desirable. As described above, by selecting the Al-based oxide containing O atoms with an Al atom as the central atom, outgassing can be prevented and particle generation can be suppressed, and the semiconductor manufacturing process The wear resistance of internal parts of the chamber can be improved.
본 발명의 일 실시상태에 따르면, 상기 Mg계 산화물은 Mg 원자를 중심원자로 하여 O 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Mg계 산화물은 MgO인 것이 바람직하다. 상술한 것과 같이 상기 Mg계 산화물은 Mg 원자를 중심원자로 하여 O 원자를 포함하고 있는 것을 선택함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현하고, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 유전 상수를 적절한 범위로 구현할 수 있다.According to an exemplary embodiment of the present invention, the Mg-based oxide may contain an O atom with an Mg atom as a central atom. Specifically, the Mg-based oxide is MgO. desirable. As described above, the Mg-based oxide is selected to contain an O atom with an Mg atom as the central atom, thereby realizing a low thermal expansion coefficient and glass transition temperature of glass, minimizing thermal shock at high temperatures, and improving the semiconductor manufacturing process. The durability of the components used inside the chamber can be improved, and the dielectric constant can be implemented in an appropriate range.
본 발명의 일 실시상태에 따르면, 상기 Mg계 할로겐화물은 Mg 원자를 중심원자로 하여 할로겐 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Mg계 할로겐화물은 MgF2인 것이 바람직하다. 상술한 것과 같이 상기 Mg계 할로겐화물은 Mg 원자를 중심원자로 하여 할로겐 원자를 포함하고 있는 것으로 선택함으로써, 상기 조성물의 용융물의 점도를 감소시켜 상기 조성물을 이용한 내플라즈마 유리의 성형성을 향상시킬 수 있다.According to one embodiment of the present invention, the Mg-based halide may contain a halogen atom with an Mg atom as a central atom. Specifically, the Mg-based halide is preferably MgF 2 . As described above, the Mg-based halide is selected to contain a halogen atom with an Mg atom as the central atom, thereby reducing the viscosity of the melt of the composition and improving the formability of plasma-resistant glass using the composition. .
본 발명의 일 실시상태에 따르면, 상기 Ge계 산화물은 GeO, GeO2, Ge2O3 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다. 바람직하게 상기 Ge계 산화물은 GeO2인 것일 수 있다. 상술한 것으로부터 상기 Ge계 산화물을 선택함으로써, 상기 내플라즈마성 유리의 용융온도를 낮게 구현하여 용융이 가능하게 하며, 유전 상수를 낮게 구현할 수 있다.According to an exemplary embodiment of the present invention, the Ge-based oxide may be one selected from the group consisting of GeO, GeO 2 , Ge 2 O 3 and combinations thereof. Preferably, the Ge-based oxide may be GeO 2 . By selecting the Ge-based oxide from the above, the melting temperature of the plasma-resistant glass can be realized low, enabling melting, and the dielectric constant can be realized low.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 SiO2, Al2O3, MgO, MgF2 및 GeO2를 포함하는 조성물이 용융되어 형성된 것일 수 있다. 보다 구체적으로 상기 내플라즈마성 유리는 SiO2, Al2O3, MgO, MgF2 및 GeO2를 포함하는 조성물이 용융되어 형성된 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리가 상기 조성물을 용융하여 형성함으로써, 상기 내플라즈마 유리에 각각의 성분이 균일하게 분포될 수 있도록 하며, 상기 내플라즈마 유리 전 영역에 대하여 식각률이 균일하게 구현될 수 있다.According to one embodiment of the present invention, the plasma-resistant glass may be formed by melting a composition containing SiO 2 , Al 2 O 3 , MgO, MgF 2 and GeO 2 . More specifically, the plasma-resistant glass may be formed by melting a composition containing SiO 2 , Al 2 O 3 , MgO, MgF 2 and GeO 2 . As described above, the plasma-resistant glass is formed by melting the composition, so that each component can be uniformly distributed in the plasma-resistant glass, and the etching rate can be uniformly implemented over the entire area of the plasma-resistant glass. there is.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 유전 상수가 유전 상수가 6.00 이상 7.40 이하인 것이다. 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.70 이상 8.05 이하, 6.75 이상 8.00 이하, 6.80 이상 7.95 이하, 6.85 이상 7.90 이하, 6.90 이상 7.85 이하, 6.95 이상 7.80 이하, 7.00 이상 7.75 이하, 7.05 이상 7.70 이하, 7.10 이상 7.65 이하, 7.15 이상 7.60 이하, 7.20 이상 7.55 이하, 7.25 이상 7.50 이하, 7.30 이상 7.45 이하 또는 7.35 이상 7.40 이하일 수 있다. 보다 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.79 이상 6.99 이하, 6.79 이상 7.19 이하, 6.79 이상 7.39 이하, 6.79 이상 7.59 이하, 6.99 이상 7.19 이하, 6.99 이상 7.39 이하, 6.99 이상 7.59 이하, 7.19 이상 7.39 이하, 7.19 이상 7.59 이하, 7.39 이상 7.59 이하인 것일 수 있다. 유전 상수 측정 방법에는 LCR 계측기를 이용한 정전 용량법(capacitance method), 회로망 분석기(network analyzer)를 이용한 반사도법(refletion coefficient method), 공전 주파수법(resonant frequency method)등이 있다. 유전 상수 측정 방법의 일 예로서 LCR 계측기를 이용한 정전용량법은 저주파 특성(kHZ, MHz)를 재는데 주로 사용되며, 커패시터의 물리적 크기, 정전 용량으로부터 유전 상수를 결정할 수 있다. 보다 구체적으로 Keysight E4990A Impedence Analyzer를 이용하여 주파수 20Hz 내지 100Hz 범위에서 유전 상수를 측정한 것을 의미할 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유전상수를 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 광투과성과 내구성을 향상시킬 수 있다.According to one embodiment of the present invention, the plasma-resistant glass has a dielectric constant of 6.00 or more and 7.40 or less. Specifically, the plasma-resistant glass has a dielectric constant of 6.70 to 8.05, 6.75 to 8.00, 6.80 to 7.95, 6.85 to 7.90, 6.90 to 7.85, 6.95 to 7.80, 7.00 to 7.75, 7.05 to 7.70. , 7.10 or more and 7.65 or less, 7.15 or more and 7.60 or less, 7.20 or more and 7.55 or less, 7.25 or more and 7.50 or less, 7.30 or more and 7.45 or less, or 7.35 or more and 7.40 or less. More specifically, the plasma resistant glass has a dielectric constant of 6.79 to 6.99, 6.79 to 7.19, 6.79 to 7.39, 6.79 to 7.59, 6.99 to 7.19, 6.99 to 7.39, 6.99 to 7.59, 7.19 to 7.39. Hereinafter, it may be 7.19 or more and 7.59 or less, or 7.39 or more and 7.59 or less. Dielectric constant measurement methods include the capacitance method using an LCR meter, the reflection coefficient method using a network analyzer, and the resonant frequency method. As an example of a dielectric constant measurement method, the capacitance method using an LCR meter is mainly used to measure low frequency characteristics (kHZ, MHz), and the dielectric constant can be determined from the physical size and electrostatic capacity of the capacitor. More specifically, it may mean that the dielectric constant was measured in the frequency range of 20Hz to 100Hz using the Keysight E4990A Impedence Analyzer. By implementing the dielectric constant of the plasma-resistant glass in the above-described range, thermal shock at high temperatures can be minimized, durability of components used inside the chamber for the semiconductor manufacturing process can be improved, and light transmittance and durability can be improved.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물, Ge계 산화물 및 불가피한 불순물만으로 구성된 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 SiO2, Al2O3, MgO, MgF2, GeO2 산화물 및 불가피한 불순물만으로 구성된 것일 수 있다. 구체적으로 본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 SiO2, Al2O3, MgO, MgF2, GeO2 산화물 및 불가피한 불순물을 제외한 다른 성분을 포함하지 않는 것일 수 있다. 상술한 성분으로 상기 내플라즈마성 유리가 제조됨으로써, 용융물이 적절한 점도를 가져 복잡한 형상을 갖는 제품을 용이하게 형성할 수 있다.According to one embodiment of the present invention, the plasma-resistant glass may be composed only of Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, Ge-based oxide and inevitable impurities. Specifically, the plasma-resistant glass may be composed only of SiO 2 , Al 2 O 3 , MgO, MgF 2 , GeO 2 oxide and unavoidable impurities. Specifically, according to one embodiment of the present invention, the plasma-resistant glass may not contain other components except SiO 2 , Al 2 O 3 , MgO, MgF 2 , GeO 2 oxide and inevitable impurities. By producing the plasma-resistant glass with the above-mentioned ingredients, the melt has an appropriate viscosity, so that products with complex shapes can be easily formed.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 광투과율이 80% 이상 100% 이하인 것일 수 있다. 구체적으로 상기 내플라즈마 유리의 광투과율이 82% 이상 98% 이하, 85% 이상 95% 이하 또는 87% 이상 92% 이하일 수 있다. 본 명세서에서 “광투과율”은 헤이즈 미터(JCH-300S, Oceanoptics社)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 광투과율을 구현함으로써, 상기 내플라즈마 유리의 용융도를 향상시키는 동시에 유리화를 높게 구현할 수 있다.According to one embodiment of the present invention, the light transmittance of the plasma-resistant glass may be 80% or more and 100% or less. Specifically, the light transmittance of the plasma-resistant glass may be 82% or more and 98% or less, 85% or more and 95% or less, or 87% or more and 92% or less. In this specification, “light transmittance” may refer to a value measured using a haze meter (JCH-300S, Oceanoptics). By implementing the light transmittance of the plasma-resistant glass in the above-described range, it is possible to improve the meltability of the plasma-resistant glass and at the same time achieve high vitrification.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 비커스 경도가 550 HV 이상 1,000 HV 이하일 수 있다. 상기 내플라즈마 유리의 비커스 경도가 560 HV 이상 980 HV 이하, 570 HV 이상 950 HV 이하, 580 HV 이상 930 HV 이하, 600 HV 이상 900 HV 이하, 620 HV 이상 880 HV 이하, 650 HV 이상 850 HV 이하, 680 HV 이상 820 HV 이하, 690 HV 이상 810 HV 이하, 700 HV 이상 800 HV 이하, 710 HV 이상 790 HV 이하, 720 HV 이상 780 HV 이하, 730 HV 이상 770 HV 이하 또는 740 HV 이상 760 HV 이하일 수 있다. 본 명세서에서 “비커스 경도”는 비커스 경도계 (Helmut Fischer사, FISCHERSCOPE HM-2000)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 비커스 경도를 구현함으로써, 기계적 특성이 증가하고, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.According to one embodiment of the present invention, the Vickers hardness of the plasma-resistant glass may be 550 HV or more and 1,000 HV or less. The Vickers hardness of the above plasma glass is 560 HV or more and 980 HV or less, 570 HV or more and 950 HV or less, 580 HV or more and 930 HV or less, 600 HV or more and 900 HV or less, 620 HV or more and 880 HV or less, 650 HV or more and 850 HV or less, It can be 680 HV or higher and 820 HV or lower, 690 HV or higher and 810 HV or lower, 700 HV or higher and 800 HV or lower, 710 HV or higher and 790 HV or lower, 720 HV and lower than 780 HV, 730 HV and lower than 770 HV, or 740 HV and lower than 760 HV. . As used herein, “Vickers hardness” may refer to a value measured using a Vickers hardness meter (Helmut Fischer, FISCHERSCOPE HM-2000). By implementing the Vickers hardness of the plasma-resistant glass in the above-described range, mechanical properties can be increased and durability in a plasma etching environment can be improved.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마 유리의 유리전이온도는 620 ℃ 이상 830 ℃ 이하, 650 ℃ 이상 800 ℃ 이하, 670 ℃ 이상 780 ℃ 이하 또는 700 ℃ 이상 750 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유리전이온도를 조절함으로써, 반도체 제조 공정을 위한 챔버 내부용 부품의 고온에서의 열 충격을 최소화하며, 내구성을 향상시킬 수 있다.According to one embodiment of the present invention, the glass transition temperature of the plasma-resistant glass is 600 ° C. Above 850℃ It may be below. Specifically, the glass transition temperature of the plasma-resistant glass may be 620 ℃ or higher and 830 ℃ or lower, 650 ℃ or higher and 800 ℃ or lower, 670 ℃ or higher and 780 ℃ or lower, or 700 ℃ or higher and 750 ℃ or lower. By adjusting the glass transition temperature of the plasma-resistant glass within the above-mentioned range, thermal shock at high temperatures of components used inside the chamber for the semiconductor manufacturing process can be minimized and durability can be improved.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 열팽창계수는 4.0Х10-6m/(m℃) 이상 6.0Х10-6m/(m℃) 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마성 유리의 열팽창계수는 4.1×10-6m/(m℃) 이상 5.9×10-6m/(m℃) 이하, 4.2×10-6m/(m℃) 이상 5.8×10-6m/(m℃) 이하, 4.3×10-6m/(m℃) 이상 5.7×10-6m/(m℃) 이하, 4.4×10-6m/(m℃) 이상 5.6×10-6m/(m℃) 이하, 4.5×10-6m/(m℃) 이상 5.5×10-6m/(m℃) 이하, 4.6×10-6m/(m℃) 이상 5.4×10-6m/(m℃) 이하, 4.7×10-6m/(m℃) 이상 5.3×10-6m/(m℃) 이하, 4.8×10-6m/(m℃) 이상 5.2×10-6m/(m℃) 이하 또는 4.9×10-6m/(m℃) 이상 5.1×10-6m/(m℃) 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 열팽창계수를 조절함으로써, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.According to one embodiment of the present invention, the thermal expansion coefficient of the plasma-resistant glass may be 4.0Х10 -6 m/(m℃) or more and 6.0Х10 -6 m/(m℃) or less. Specifically, the thermal expansion coefficient of the plasma-resistant glass is 4.1 × 10 -6 m/(m℃) or more, 5.9 × 10 -6 m/(m℃) or less, and 4.2 × 10 -6 m/(m℃) or more. ×10 -6 m/(m℃) or less, 4.3×10 -6 m/(m℃) or more 5.7×10 -6 m/(m℃) or less, 4.4×10 -6 m/(m℃) or more 5.6 ×10 -6 m/(m℃) or less, 4.5×10 -6 m/(m℃) or more 5.5×10 -6 m/(m℃) or less, 4.6×10 -6 m/(m℃) or more 5.4 ×10 -6 m/(m℃) or less, 4.7×10 -6 m/(m℃) or more 5.3×10 -6 m/(m℃) or less, 4.8×10 -6 m/(m℃) or more 5.2 It may be less than ×10 -6 m/(m℃) or more than 4.9×10 -6 m/(m℃) and less than or equal to 5.1×10 -6 m/(m℃). By adjusting the thermal expansion coefficient of the plasma-resistant glass within the above-mentioned range, durability can be improved by preventing damage to components due to thermal shock.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 100 nm/min 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마성 유리의 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 95 nm/min 이하, 10 nm/min 이상 90 nm/min 이하, 20 nm/min 이상 85 nm/min 이하, 30 nm/min 이상 80 nm/min 이하 또는 35 nm/min 이상 65 nm/min 이하일 수 있다. 상술한 범위에서 상기 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률을 구현함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있다.According to one embodiment of the present invention, the etching rate of the plasma-resistant glass by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 100 nm/min. Specifically, the etching rate of the plasma-resistant glass by mixed plasma of fluorine and argon (Ar) is greater than 0 nm/min and less than 95 nm/min, more than 10 nm/min and less than 90 nm/min, and 20 nm/min. min or more and 85 nm/min or less, 30 nm/min or more and 80 nm/min or less, or 35 nm/min or more and 65 nm/min or less. By implementing an etching rate by the mixed plasma of fluorine and argon (Ar) in the above-mentioned range, the parts used inside the chamber for the semiconductor manufacturing process realize a low etching rate for plasma, thereby reducing the usage time in the semiconductor manufacturing process. It can be improved.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,410 ℃ 이상 1,690 ℃ 이하, 1,420 ℃ 이상 1,680 ℃ 이하, 1,430 ℃ 이상 1,670 ℃ 이하, 1,440 ℃ 이상 1,660 ℃ 이하, 1,450 ℃ 이상 1,650 ℃ 이하, 1,460 ℃ 이상 1,640 ℃ 이하, 1,470 ℃ 이상 1,630 ℃ 이하, 1,480 ℃ 이상 1,620 ℃ 이하, 1,490 ℃ 이상 1,610 ℃ 이하, 1,500 ℃ 이상 1,600 ℃ 이하, 1,510 ℃ 이상 1,590 ℃ 이하, 1,520 ℃ 이상 1,580 ℃ 이하, 1,530 ℃ 이상 1,570 ℃ 이하 또는 1,540 ℃ 이상 1,560 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 용융점을 조절함으로써, 상기 내플라즈마성 유리의 용융물의 점도를 조절하며, 상기 내플라즈마성 유리를 이용한 공정의 작업성을 향상시킬 수 있다.According to one embodiment of the present invention, the melting point of the plasma-resistant glass is 1,400 ° C. It may be above 1,700°C or below. In this specification, the melting point may mean melting temperature. Specifically, the melting point of the plasma-resistant glass is 1,410 ℃ or higher and 1,690 ℃ or lower, 1,420 ℃ or higher and 1,680 ℃ or lower, 1,430 ℃ or higher and 1,670 ℃ or lower, 1,440 ℃ or higher and 1,660 ℃ or lower, 1,450 ℃ or higher and 1,650 ℃ or lower, 1,460 ℃ or higher 0℃ Below, 1,470 ℃ and below 1,630 ℃, 1,480 ℃ and below 1,620 ℃, 1,490 ℃ and below 1,610 ℃, 1,500 ℃ and below 1,600 ℃, 1,510 ℃ and below 1,590 ℃, 1,520 ℃ and below 1,580 ℃, 1,530 ℃ or higher and 1,570 ℃ or lower Or it may be 1,540°C or higher and 1,560°C or lower. By adjusting the melting point of the plasma-resistant glass in the above-mentioned range, the viscosity of the melt of the plasma-resistant glass can be adjusted and the workability of the process using the plasma-resistant glass can be improved.
본 발명의 일 실시상태에 따르면, 상기 용융된 조성물의 점도는 1,400 ℃ 이상 1,700 ℃ 이하 또는 1500 ℃ 이상 1750 ℃ 이하에서 1 poise 이상 109 poise 이하인 것일 수 있다. 구체적으로 상기 용융된 조성물의 점도는 1,550 ℃ 이상 1,750 ℃ 이하에서 10 poise 이상 108 poise 이하, 102 poise 이상 107 poise 이하, 103 poise 이상 106 poise 이하 또는 104 poise 이상 105 poise 이하일 수 있다. 상술한 범위에서 상기 용융된 조성물의 점도를 조절함으로써, 상기 내플라즈마 유리의 성형성을 향상시킬 수 있다.According to one embodiment of the present invention, the viscosity of the molten composition may be 1 poise or more and 10 9 poise or less at 1,400 ℃ or higher and 1,700 ℃ or lower or 1,500 ℃ or higher and 1,750 ℃ or lower. Specifically, the viscosity of the molten composition is 10 poise or more and 10 8 poise or less, 10 2 poise or more and 10 7 poise or less, 10 3 poise or more and 10 6 poise or less, or 10 4 poise or more and 10 5 poise or less at 1,550 ℃ or more and 1,750 ℃ or less. You can. By adjusting the viscosity of the molten composition within the above-mentioned range, the moldability of the plasma-resistant glass can be improved.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 비정질인 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리의 조직을 비정질로 구현함으로써, 상기 내플라즈마성 유리를 이용한 부품의 내구성을 향상시키는 동시에 플라즈마에 의한 식각속도를 감소시킬 수 있다.According to one embodiment of the present invention, the plasma-resistant glass may be amorphous. As described above, by implementing the structure of the plasma-resistant glass as amorphous, the durability of parts using the plasma-resistant glass can be improved while simultaneously reducing the etching rate by plasma.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.One embodiment of the present invention provides parts for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.Components used inside a chamber for a semiconductor manufacturing process according to an embodiment of the present invention can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다. 상술한 것으로부터 상기 내부용 부품을 이용함으로써, 상기 반도체 제조 공정에서의 플라즈마에 대한 저항성을 향상시켜 사용시간을 연장함으로써, 반도체 제조에 소요되는 비용을 최소화할 수 있다.According to one embodiment of the present invention, the internal components include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. (window), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD Boat, wall liner, shield, cold pad, source head, outer liner, deposition shield for (Chemical Vapor Deposition) ), it may be any one of an upper liner, an exhaust plate, and a mask frame. From the above, by using the internal components, the resistance to plasma in the semiconductor manufacturing process is improved and the usage time is extended, thereby minimizing the cost required for semiconductor manufacturing.
본 발명의 일 실시상태는 Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 포함하는 조성물을 용융시키는 단계(S11); 및 상기 용융된 조성물을 냉각하는 단계(S13);를 포함하는, 내플라즈마성 유리의 제조방법을 제공한다.An exemplary embodiment of the present invention includes melting a composition containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide (S11); And a step of cooling the molten composition (S13). It provides a method for producing plasma-resistant glass, including a.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있으며, 기존의 유리보다 고경도의 유리를 제조함으로 기계적 특성이 증가하여, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.The method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere, and can produce glass with higher hardness than existing glass, thereby producing mechanical glass. By increasing the characteristics, durability in a plasma etching environment can be improved.
도 1은 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법의 순서도이다. 상기 도 1을 참고하여 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법을 구체적으로 설명한다.1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention. With reference to FIG. 1, a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention will be described in detail.
본 발명의 일 실시상태인 내플라즈마성 유리의 제조방법에서 상기 내플라즈마성 유리와 중복되는 내용은 설명을 생략한다.In the method for manufacturing plasma-resistant glass, which is an exemplary embodiment of the present invention, description of content that overlaps with the plasma-resistant glass is omitted.
본 발명의 일 실시상태에 따르면, Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 포함하는 조성물을 포함하는 조성물을 용융시키는 단계(S11)를 포함한다. 상술한 것으로부터 내플라즈마성 유리의 성분을 조절하며, 상기 성분의 함량을 조절함으로써, 상기 내플라즈마성 유리의 유전 상수를 적절하게 구현하며, 상기 내플라즈마성 유리의 고온 분위기에서 열충격에 의한 손상을 방지하며 용융 온도를 낮게 구현할 수 있고, 광투과성과 내구성을 향상시킬 수 있으며, 용융물의 점도를 조절하여 복잡한 형상을 갖는 제품을 용이하게 제조할 수 있다.According to an exemplary embodiment of the present invention, it includes a step (S11) of melting a composition including a Si-based oxide, an Al-based oxide, a Mg-based oxide, an Mg-based halogenide, and a Ge-based oxide. From the above, the components of the plasma-resistant glass are adjusted, and by adjusting the content of the components, the dielectric constant of the plasma-resistant glass is appropriately implemented, and the plasma-resistant glass is prevented from being damaged by thermal shock in a high temperature atmosphere. It is possible to achieve low melting temperature, improve light transmittance and durability, and easily manufacture products with complex shapes by controlling the viscosity of the melt.
본 발명의 일 실시상태에 따르면, 상기 용융시키는 단계는 백금 도가니에 넣어 용융시키는 것일 수 있다. 상술한 것과 같이 상기 조성물을 백금 도가니에 용융시킴으로써, 도가니에서 용출되는 성분을 최소화하고 상기 내플라즈마성 유리의 물성을 구현할 수 있다.According to one embodiment of the present invention, the melting step may be melting the platinum crucible. As described above, by melting the composition in a platinum crucible, the components eluted from the crucible can be minimized and the physical properties of the plasma-resistant glass can be realized.
본 발명의 일 실시상태에 따르면, 상기 용융된 유리 조성물을 냉각하는 단계(S13)를 포함한다. 상술한 것과 같이 상기 용융된 유리 조성물을 냉각하는 단계를 포함함으로써, 상기 내플라즈마성 유리의 결정을 조절하며, 급격한 열변화에 의하여 파손되는 것을 방지할 수 있다. According to an exemplary embodiment of the present invention, a step (S13) of cooling the molten glass composition is included. By including the step of cooling the molten glass composition as described above, the crystals of the plasma-resistant glass can be controlled and damage due to rapid thermal change can be prevented.
본 발명의 일 실시상태에 따르면, 상기 냉각단계의 온도는 상온 것일 수 있다. 상술한 범위에서 상기 냉각단계의 온도를 조절함으로써, 상기 내플라즈마 유리의 결정을 조절할 수 있으며, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정에서의 용융을 용이하게 수행할 수 있다.According to one embodiment of the present invention, the temperature of the cooling step may be room temperature. By adjusting the temperature of the cooling step within the above-described range, crystals of the plasma-resistant glass can be controlled, and melting can be easily performed in the process of manufacturing components for the interior of the chamber for the semiconductor manufacturing process.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 구체적으로 상기 조성물을 용융시키는 단계의 용융 온도는 용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,410 ℃ 이상 1,690 ℃ 이하, 1,420 ℃ 이상 1,680 ℃ 이하, 1,430 ℃ 이상 1,670 ℃ 이하, 1,440 ℃ 이상 1,660 ℃ 이하, 1,450 ℃ 이상 1,650 ℃ 이하, 1,460 ℃ 이상 1,640 ℃ 이하, 1,470 ℃ 이상 1,630 ℃ 이하, 1,480 ℃ 이상 1,620 ℃ 이하, 1,490 ℃ 이상 1,610 ℃ 이하, 1,500 ℃ 이상 1,600 ℃ 이하, 1,510 ℃ 이상 1,590 ℃ 이하, 1,520 ℃ 이상 1,580 ℃ 이하, 1,530 ℃ 이상 1,570 ℃ 이하 또는 1,540 ℃ 이상 1,560 ℃ 이하일 수 있다. 상술한 범위에서 상기 조성물을 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 조성물의 점도를 조절하여 상기 내플라즈마 유리를 제조하는 과정의 작업성을 향상시킬 수 있다.According to one embodiment of the present invention, the melting temperature in the step of melting the plasma-resistant glass may be 1,400 ℃ or more and 1,700 ℃ or less. Specifically, the melting temperature in the step of melting the composition may be a melting point of 1,400°C or more and 1,700°C or less. In this specification, the melting point may mean melting temperature. Specifically, the plasma-resistant glass has a melting point of 1,410 ℃ or higher and 1,690 ℃ or lower, 1,420 ℃ or higher and 1,680 ℃ or lower, 1,430 ℃ or higher and 1,670 ℃ or lower, or 1,440 ℃ or higher and 1,660 ℃. Below, 1,450 ℃ and below 1,650 ℃, 1,460 ℃ and below 1,640 ℃, 1,470 ℃ and below 1,630 ℃, 1,480 ℃ and below 1,620 ℃, 1,490 ℃ and below 1,610 ℃, 1,500 ℃ and below 1,600 ℃, 1,510 ℃ or higher and 1,590 ℃ or lower , 1,520 ℃ or more 1,580 ℃ Hereinafter, it may be 1,530 ℃ or higher and 1,570 ℃ or lower or 1,540 ℃ or higher and 1,560 ℃ or lower. By controlling the melting temperature in the step of melting the composition within the above-mentioned range, the workability of the process of manufacturing the plasma-resistant glass can be improved by controlling the viscosity of the molten composition.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계(S21); 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계(S23)를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold (S21); and a step of annealing the injected plasma-resistant glass (S23).
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.The method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an embodiment of the present invention can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
도 2는 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법의 순서도이다. 상기 도 2를 참고하여 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 구체적으로 설명한다.Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention. With reference to FIG. 2, a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention will be described in detail.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 내플라즈마성 유리를 용융시키는 단계를 포함한다(S21). 상술한 것과 같이 상기 내플라즈마성 유리를 용융시키는 단계를 포함함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정의 작업성을 향상시키는 동시에 금형에 상기 내플라즈마 유리를 용융시킨 용탕을 주입함으로써, 다양한 형태로 성형할 수 있다.According to one embodiment of the present invention, the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes melting the plasma-resistant glass (S21). By including the step of melting the plasma-resistant glass as described above, the workability of the process of manufacturing parts for the interior of the chamber for the semiconductor manufacturing process is improved, and at the same time, the molten metal in which the plasma-resistant glass is melted is injected into the mold. By doing so, it can be molded into various shapes.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계(S23)를 포함한다. 상술한 것과 같이 상기 용융된 내플라즈마성 유리를 금형에 주입함으로써, 다양한 형태의 부품을 제조할 수 있다.According to one embodiment of the present invention, the method of manufacturing components for the interior of a chamber for the semiconductor manufacturing process includes the step of injecting the molten plasma-resistant glass into a mold (S23). As described above, parts of various shapes can be manufactured by injecting the molten plasma-resistant glass into a mold.
본 발명의 일 실시상태에 따르면, 상기 금형은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나의 형태를 가질 수 있다. 상술한 것과 같이 상기 금형의 형상을 다양하게 구현함으로써, 용이하게 부품의 형상을 구현하여 제조시간을 절감시킬 수 있다.According to one embodiment of the present invention, the mold includes a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. ), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD (Chemical Vapor Deposition boat, wall liner, shield, cold pad, source head, outer liner, deposition shield, It may have one of the following shapes: an upper liner, an exhaust plate, and a mask frame. As described above, by implementing various shapes of the mold, it is possible to easily implement the shape of the part and reduce manufacturing time.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 주입된 내플라즈마성 유리를 어닐링하는 단계(S25)를 포함한다. 상술한 것과 같이 상기 주입된 내플라즈마 유리를 어닐링하는 단계를 포함함으로써, 상기 금형에 주입되어 제조된 부품에서 발생한 열에 의한 응력을 최소화하여 부품의 내구성을 향상시키며, 고온에서의 열 충격을 최소화할 수 있다.According to one embodiment of the present invention, the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes the step of annealing the injected plasma-resistant glass (S25). By including the step of annealing the injected plasma-resistant glass as described above, the stress caused by heat generated in the part manufactured by injecting into the mold can be minimized to improve the durability of the part and minimize thermal shock at high temperatures. there is.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,410 ℃ 이상 1,690 ℃ 이하, 1,420 ℃ 이상 1,680 ℃ 이하, 1,430 ℃ 이상 1,670 ℃ 이하, 1,440 ℃ 이상 1,660 ℃ 이하, 1,450 ℃ 이상 1,650 ℃ 이하, 1,460 ℃ 이상 1,640 ℃ 이하, 1,470 ℃ 이상 1,630 ℃ 이하, 1,480 ℃ 이상 1,620 ℃ 이하, 1,490 ℃ 이상 1,610 ℃ 이하, 1,500 ℃ 이상 1,600 ℃ 이하, 1,510 ℃ 이상 1,590 ℃ 이하, 1,520 ℃ 이상 1,580 ℃ 이하, 1,530 ℃ 이상 1,570 ℃ 이하 또는 1,540 ℃ 이상 1,560 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리를 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 내플라즈마성 유리의 점도를 조절하여 작업성을 향상시킬 수 있다.According to one embodiment of the present invention, the melting temperature in the step of melting the plasma-resistant glass may be 1,400 ℃ or more and 1,700 ℃ or less. Specifically, the melting temperature in the step of melting the plasma-resistant glass may be 1,400°C or more and 1,700°C or less. In this specification, the melting point may mean melting temperature. Specifically, the plasma-resistant glass has a melting point of 1,410 ℃ or higher and 1,690 ℃ or lower, 1,420 ℃ or higher and 1,680 ℃ or lower, 1,430 ℃ or higher and 1,670 ℃ or lower, or 1,440 ℃ or higher and 1,660 ℃. Below, 1,450 ℃ and below 1,650 ℃, 1,460 ℃ and below 1,640 ℃, 1,470 ℃ and below 1,630 ℃, 1,480 ℃ and below 1,620 ℃, 1,490 ℃ and below 1,610 ℃, 1,500 ℃ and below 1,600 ℃, 1,510 ℃ or higher and 1,590 ℃ or lower , 1,520 ℃ or more 1,580 ℃ Hereinafter, it may be 1,530 ℃ or higher and 1,570 ℃ or lower or 1,540 ℃ or higher and 1,560 ℃ or lower. By controlling the melting temperature in the step of melting the plasma-resistant glass within the above-described range, workability can be improved by controlling the viscosity of the molten plasma-resistant glass.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다. 구체적으로, 상기 어닐링하는 단계의 온도는 430 ℃ 이상 890 ℃ 이하, 450 ℃ 이상 880 ℃ 이하, 470 ℃ 이상 870 ℃ 이하, 500 ℃ 이상 860 ℃ 이하, 550 ℃ 이상 850 ℃ 이하, 560 ℃ 이상 840 ℃ 이하, 570 ℃ 이상 830 ℃ 이하, 580 ℃ 이상 820 ℃ 이하, 590 ℃ 이상 810 ℃ 이하, 600 ℃ 이상 800 ℃ 이하, 610 ℃ 이상 790 ℃ 이하, 620 ℃ 이상 780 ℃ 이하, 630 ℃ 이상 770 ℃ 이하, 640 ℃ 이상 760 ℃ 이하, 650 ℃ 이상 750 ℃ 이하, 660 ℃ 이상 740 ℃ 이하, 670 ℃ 이상 730 ℃ 이하, 680 ℃ 이상 720 ℃ 이하 또는 690 ℃ 이상 710 ℃ 이하일 수 있다. 상술한 범위에서 상기 어닐링하는 단계의 온도를 조절함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품 내에 형성된 열에 의한 응력을 감소시키며, 고온에서 열충격을 최소화하여 부품의 내구성을 향상시킬 수 있다.According to an exemplary embodiment of the present invention, the temperature of the annealing step may be 400°C or more and 900°C or less. Specifically, the temperature of the annealing step is 430 ℃ or more and 890 ℃ or less, 450 ℃ or more and 880 ℃ or less, 470 ℃ or more and 870 ℃ or less, 500 ℃ or more and 860 ℃ or less, 550 ℃ or more and 850 ℃ or less, 560 ℃ or more and 840 ℃ Below, 570 ℃ and below 830 ℃, 580 ℃ and below 820 ℃, 590 ℃ and below 810 ℃, 600 ℃ and below 800 ℃, 610 ℃ and below 790 ℃, 620 ℃ and below 780 ℃, 630 ℃ and below 770 ℃ , 640 ℃ or more and 760 ℃ or less, 650 ℃ or more and 750 ℃ or less, 660 ℃ or more and 740 ℃ or less, 670 ℃ or more and 730 ℃ or less, 680 ℃ or more and 720 ℃ or less, or 690 ℃ or more and 710 ℃ or less. By controlling the temperature of the annealing step within the above-mentioned range, stress caused by heat formed within the components used inside the chamber for the semiconductor manufacturing process can be reduced, and thermal shock at high temperatures can be minimized to improve the durability of the components.
본 발명의 일 실시상태에 따르면, 상기 어닐링된 내플라즈마성 유리에 의하여 제조된 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공하는 단계(S27)를 포함할 수 있다. 상술한 것과 같이 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공함으로써, 정교한 부품을 제조할 수 있다.According to one embodiment of the present invention, it may include a step (S27) of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass. As described above, sophisticated components can be manufactured by processing precursors for components used inside the chamber for the semiconductor manufacturing process.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention may be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of this specification are provided to more completely explain the present invention to those skilled in the art.
<실시예 및 비교예><Examples and Comparative Examples>
하기의 표 1에 있는 성분 및 함량으로 혼합하여 조성물을 제조하였다. 이후 상기 조성물을 1,650 ℃로 4 시간 동안 가열하여 용융시킨 후 상온에서 냉각하여 내플라즈마 유리를 제조하였다.A composition was prepared by mixing the ingredients and amounts shown in Table 1 below. Afterwards, the composition was melted by heating at 1,650°C for 4 hours and then cooled at room temperature to prepare plasma-resistant glass.
<참조예><Reference example>
쿼츠를 준비하였다.Quartz was prepared.
성분ingredient 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 비교예 1Comparative Example 1 비교예2Comparative example 2
SiO2
(단위: 중량%)
SiO 2
(Unit: weight%)
6565 6565 6060 5555 5555 6565 5555
Al2O3
(단위: 중량%)
Al 2 O 3
(Unit: weight%)
1010 1515 1515 2525 1010 1515 55
MgO
(단위: 중량%)
MgO
(Unit: weight%)
1515 1010 1212 66 1313 1515 55
MgF2
(단위: 중량%)
MgF 2
(Unit: weight%)
55 55 55 22 22 55 55
GeO2
(단위: 중량%)
GeO 2
(Unit: weight%)
55 55 88 1212 2020 -- 3030
<실험예 1: 유전 상수 측정><Experimental Example 1: Dielectric constant measurement>
상기 실시예, 상기 비교예 및 상기 참조예에 대하여 LCR 계측기(Keysight E4990A Impedence Analyzer)를 이용하여 정전용량법으로 주파수 20Hz 내지 100Hz 범위에서 유전 상수를 측정하여 하기 표 2에 정리하였다.For the above Examples, the Comparative Examples, and the Reference Examples, the dielectric constants were measured in a frequency range of 20 Hz to 100 Hz by the capacitance method using an LCR meter (Keysight E4990A Impedence Analyzer), and are summarized in Table 2 below.
<실험예 2: 식각률 측정><Experimental Example 2: Etching rate measurement>
상기 실시예, 상기 비교예 및 상기 참조예의 일부분에 대하여 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마로 식각을 수행하였으며, 식각이 이루어진 부분과 식각이 이루어지지 않은 부분의 단차인 식각단차를 공초점 레이저 현미경 분석기(confocal laser microscope, 올림푸스 社 OLS 5100 장비, x 400배율)로 측정하고 측정한 시간으로 나누어 식각률을 산출하여 하기 표 2에 정리하였다.Etching was performed with a mixed plasma of fluorine and argon (Ar) on some of the examples, comparative examples, and reference examples, and the etching step, which is the step between the etched portion and the non-etched portion, was created. The etching rate was calculated by measuring with a confocal laser microscope (Olympus OLS 5100 equipment, x 400 magnification) and dividing by the measured time, and is summarized in Table 2 below.
종류type 참조예Reference example 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 비교예 1Comparative Example 1 비교예 2Comparative Example 2
유전 상수
(단위: /1MHz)
dielectric constant
(Unit: /1MHz)
4.374.37 7.317.31 7.137.13 6.526.52 6.386.38 6.26.2 7.497.49 --
식각률
(단위: nm/m)
etch rate
(Unit: nm/m)
251251 4949 4444 5555 3535 6060 3636 --
도 3은 본 발명의 일 실시상태에 따른 실시예 1의 내플라즈마성 유리를 촬영한 사진이다. 도 4는 본 발명의 일 실시상태에 따른 실시예 2의 내플라즈마성 유리를 촬영한 사진이다. 도 5는 본 발명의 일 실시상태에 따른 실시예 3의 내플라즈마성 유리를 촬영한 사진이다. 도 6은 본 발명의 일 실시상태에 따른 실시예 4의 내플라즈마성 유리를 촬영한 사진이다. 도 7은 본 발명의 일 실시상태에 따른 실시예 5의 내플라즈마성 유리를 촬영한 사진이다.Figure 3 is a photograph taken of the plasma-resistant glass of Example 1 according to an exemplary embodiment of the present invention. Figure 4 is a photograph taken of the plasma-resistant glass of Example 2 according to an exemplary embodiment of the present invention. Figure 5 is a photograph taken of the plasma-resistant glass of Example 3 according to an exemplary embodiment of the present invention. Figure 6 is a photograph taken of the plasma-resistant glass of Example 4 according to an exemplary embodiment of the present invention. Figure 7 is a photograph taken of the plasma-resistant glass of Example 5 according to an exemplary embodiment of the present invention.
상기 표 2 및 도 3 내지 7을 참고하면, 상기 실시예 1 내지 5는 Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 특정한 범위로 포함함으로써, 모두 유리화되고, 유전 상수를 6.0 이상 7.4 이하로 구현하는 동시에 식각률을 100 nm/m 이하로 구현할 수 있는 것을 확인하였다.Referring to Table 2 and Figures 3 to 7, Examples 1 to 5 are all vitrified by including Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide in a specific range, It was confirmed that it was possible to implement a dielectric constant of 6.0 or more and 7.4 or less and an etch rate of 100 nm/m or less.
도 8은 비교예 1의 내플라즈마성 유리를 촬영한 사진이다. 도 9는 비교예 2의 내플라즈마성 유리를 촬영한 사진이다.Figure 8 is a photograph taken of the plasma-resistant glass of Comparative Example 1. Figure 9 is a photograph taken of the plasma-resistant glass of Comparative Example 2.
상기 표 2와 도 8 및 9를 참고하면, 참조예인 쿼츠는 유전 상수가 낮으며, 식각률이 높은 것을 확인하였다. 또한, 비교에 1은 식각률이 낮게 구현되지만, 유전 상수가 높게 구현되는 것을 확인하였다. 나아가, 비교예 2는 유리화되지 않아 식각률 및 유전 상수가 측정되지 않았다.Referring to Table 2 and Figures 8 and 9, it was confirmed that the reference example, quartz, had a low dielectric constant and a high etch rate. In addition, in comparison, it was confirmed that 1 is implemented with a low etch rate, but with a high dielectric constant. Furthermore, Comparative Example 2 was not vitrified, so the etch rate and dielectric constant were not measured.
이상에서 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described in terms of limited embodiments in the above, the present invention is not limited thereto, and the technical idea of the present invention and the patent claims described below can be understood by those skilled in the art in the technical field to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equality.

Claims (15)

  1. Si계 산화물, Al계 산화물, Mg계 산화물, Mg계 할로겐화물 및 Ge계 산화물을 포함하는 내플라즈마성 유리.Plasma-resistant glass containing Si-based oxide, Al-based oxide, Mg-based oxide, Mg-based halogenide, and Ge-based oxide.
  2. 청구항 1에 있어서, In claim 1,
    상기 Si계 산화물의 함량은 20 중량% 이상 70 중량% 이하이며, The content of the Si-based oxide is 20% by weight or more and 70% by weight or less,
    상기 Al계 산화물의 함량은 5 중량% 이상 30 중량% 이하이고,The content of the Al-based oxide is 5% by weight or more and 30% by weight or less,
    상기 Mg계 산화물의 함량은 5 중량% 이상 50 중량% 이하이며,The content of the Mg-based oxide is 5% by weight or more and 50% by weight or less,
    상기 Mg계 할로겐화물의 함량은 0.01 중량% 이상 10 중량% 이하이고,The content of the Mg-based halide is 0.01% by weight or more and 10% by weight or less,
    상기 Ge계 산화물의 함량은 0.01 중량% 이상 25 중량% 이하인 것인 내플라즈마성 유리.Plasma-resistant glass wherein the content of the Ge-based oxide is 0.01% by weight or more and 25% by weight or less.
  3. 청구항 1에 있어서, In claim 1,
    광투과율이 80% 이상 100% 이하인 내플라즈마성 유리.Plasma-resistant glass with a light transmittance of 80% or more and 100% or less.
  4. 청구항 1에 있어서, In claim 1,
    비커스 경도가 550 HV 이상 1,000 HV 이하인 내플라즈마성 유리.Plasma-resistant glass with a Vickers hardness of 550 HV or more and 1,000 HV or less.
  5. 청구항 1에 있어서, In claim 1,
    유리전이온도는 600 ℃ 이상 850 ℃ 이하인 내플라즈마성 유리.Plasma-resistant glass with a glass transition temperature of 600 ℃ or higher and 850 ℃ or lower.
  6. 청구항 1에 있어서, In claim 1,
    열팽창계수는 4.0×10-6m/(m℃) 이상 6.0×10-6m/(m℃) 이하인 내플라즈마성 유리.Plasma-resistant glass with a thermal expansion coefficient of 4.0×10 -6 m/(m℃) or more and 6.0×10 -6 m/(m℃) or less.
  7. 청구항 1에 있어서, In claim 1,
    불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 100 nm/m 이하인 내플라즈마성 유리. Plasma-resistant glass with an etching rate of more than 0 nm/min and less than 100 nm/m by mixed plasma of fluorine and argon (Ar).
  8. 청구항 1에 있어서, In claim 1,
    용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 내플라즈마성 유리.Plasma-resistant glass with a melting point of 1,400 ℃ or higher and 1,700 ℃ or lower.
  9. 청구항 1 내지 8 중 어느 한 항의 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품.A component for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass of any one of claims 1 to 8.
  10. 청구항 9에 있어서, In claim 9,
    상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 반도체 제조 공정을 위한 챔버 내부용 부품.The internal parts include a focus ring, edge ring, cover ring, ring shower, insulator, EPD window, electrode, View port, inner shutter, electro static chuck, heater, chamber liner, shower head, boat for CVD (Chemical Vapor Deposition) ), wall liner, shield, cold pad, source head, outer liner, deposition shield, upper liner, A part for the interior of a chamber for a semiconductor manufacturing process, which is either an exhaust plate or a mask frame.
  11. 20 중량% 이상 70 중량% 이하의 Si계 산화물, 5 중량% 이상 30 중량% 이하의 Al계 산화물, 5 중량% 이상 50 중량% 이하의 Mg계 산화물, 0.01 중량% 이상 10 중량% 이하의 Mg계 할로겐화물 및 0.01 중량% 이상 50 중량% 이하의 Ge계 산화물을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법.20 to 70% by weight of Si-based oxide, 5 to 30% by weight of Al-based oxide, 5 to 50% by weight of Mg-based oxide, 0.01 to 10% by weight of Mg-based oxide Melting a composition containing a halide and 0.01% by weight to 50% by weight of Ge-based oxide; and cooling the molten composition.
  12. 청구항 11에 있어서, In claim 11,
    상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 내플라즈마성 유리의 제조방법.The melting temperature in the step of melting the composition is 1,400 ℃ or more and 1,700 ℃ or less.
  13. 청구항 1 내지 9 중 어느 한 항의 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.Melting the plasma-resistant glass of any one of claims 1 to 9; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
  14. 청구항 13에 있어서, In claim 13,
    상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.A method of manufacturing chamber internal parts for a semiconductor manufacturing process wherein the melting temperature in the step of melting the plasma-resistant glass is 1,400 ℃ or more and 1,700 ℃ or less.
  15. 청구항 13에 있어서, In claim 13,
    상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법. A method of manufacturing chamber internal parts for a semiconductor manufacturing process wherein the temperature of the annealing step is 400 ℃ or more and 900 ℃ or less.
PCT/KR2023/012475 2022-10-20 2023-08-23 Plasma-resistant glass, chamber interior part for semiconductor manufacturing process, and methods for manufacturing glass and part WO2024085409A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220135711 2022-10-20
KR10-2022-0135711 2022-10-20
KR10-2023-0076784 2023-06-15
KR1020230076784A KR20240055626A (en) 2022-10-20 2023-06-15 Plasma resistant glass, parts at chamber inside for semiconductor manufacturing process and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2024085409A2 true WO2024085409A2 (en) 2024-04-25

Family

ID=90737763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012475 WO2024085409A2 (en) 2022-10-20 2023-08-23 Plasma-resistant glass, chamber interior part for semiconductor manufacturing process, and methods for manufacturing glass and part

Country Status (1)

Country Link
WO (1) WO2024085409A2 (en)

Similar Documents

Publication Publication Date Title
US7087541B2 (en) Glass composition for display panels
WO2019098488A1 (en) Method for manufacturing plasma-resistant coating film and plasma-resistant member formed thereby
WO2023167387A1 (en) Method for synthesizing silicon carbide powder
WO2024085409A2 (en) Plasma-resistant glass, chamber interior part for semiconductor manufacturing process, and methods for manufacturing glass and part
KR20220047136A (en) Plasma resistant glass and manufacturing method the same
WO2024071636A1 (en) Plasma-resistant glass, chamber inner part for semiconductor manufacturing process, and manufacturing methods therefor
WO2024080532A2 (en) Plasma-resistant glass, inner chamber component for semiconductor manufacturing process, and manufacturing methods therefor
WO2020226292A1 (en) Laminated structure, flexible copper foil laminated film, and method for manufacturing laminated structure
WO2024080530A1 (en) Plasma-resistant glass, inner chamber component for semiconductor manufacturing process, and methods for manufacturing glass and component
WO2024080531A1 (en) Plasma-resistant glass, inner chamber component for semiconductor manufacturing process, and methods for manufacturing glass and component
WO2012083562A1 (en) Electrically conductive film, perparation method and application therefor
WO2023063654A1 (en) Plasma-resistant glass, inner chamber-component for semiconductor manufacturing process, and manufacturing methods therefor
WO2019054617A1 (en) Plasma etching apparatus member having improved plasma-resistant properties and manufacturing method therefor
WO2022035111A1 (en) Plasma-resistant glass, and method for manufacturing same
WO2022255686A1 (en) Plasma-resistant glass, chamber interior parts for semiconductor manufacturing process, and methods for manufacturing same
WO2022075687A1 (en) Plasma-resistant glass and manufacturing method therefor
KR20240055626A (en) Plasma resistant glass, parts at chamber inside for semiconductor manufacturing process and manufacturing method thereof
KR20240045989A (en) Plasma resistant glass, parts at chamber inside for semiconductor manufacturing process and manufacturing method thereof
KR20240051815A (en) Plasma resistant glass, parts at chamber inside for semiconductor manufacturing process and manufacturing method thereof
WO2019093781A1 (en) High thermal conductive magnesia composition and magnesia ceramics
WO2021060583A1 (en) Crystallized glass having plasma corrosion resistance and parts for dry etching process comprising same
CN101962265A (en) Glass composition, and preparation method and application thereof
WO2018043803A1 (en) Miserite crystallized glass for artificial tooth and method for coloring same
WO2022164186A1 (en) Enamel composition, method for manufacturing same, and kitchenware using same
WO2021095917A1 (en) Composite glass for communication and method for producing same