WO2023095871A1 - Alumina powder and alumina slurry including same - Google Patents

Alumina powder and alumina slurry including same Download PDF

Info

Publication number
WO2023095871A1
WO2023095871A1 PCT/JP2022/043523 JP2022043523W WO2023095871A1 WO 2023095871 A1 WO2023095871 A1 WO 2023095871A1 JP 2022043523 W JP2022043523 W JP 2022043523W WO 2023095871 A1 WO2023095871 A1 WO 2023095871A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
alumina powder
slurry
surface area
rsp
Prior art date
Application number
PCT/JP2022/043523
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 梶野
寛 岸田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280054014.4A priority Critical patent/CN117794862A/en
Publication of WO2023095871A1 publication Critical patent/WO2023095871A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present disclosure relates to alumina powder and alumina slurry containing the same, and more particularly to alumina powder suitable for polishing alumina slurry and polishing alumina slurry containing the same.
  • multilayer wiring is formed by repeating the photolithography process and the CMP (Chemical Mechanical Polishing) process.
  • CMP Chemical Mechanical Polishing
  • the CMP process is a technique for flattening the Si wafer surface after the photolithography process.
  • a CMP slurry obtained by dispersing an abrasive (for example, ceramic powder) in a dispersion medium is commercially available. This CMP slurry is diluted with the dispersion medium and used in the CMP process.
  • copper wiring is the mainstream of wiring in semiconductor components. Therefore, CMP slurry containing silica powder as an abrasive is mainly used.
  • Patent Document 1 In addition to silica powder, alumina powder is also known as a ceramic powder for polishing (for example, Patent Document 1).
  • Patent Document 1 describes an alumina powder having an average particle size of about 5 ⁇ m or less, substantially free of coarse particles of 10 ⁇ m or more, and free of coarse agglomerated particles.
  • the line width of the wiring becomes narrower (for example, the line width is 7 ⁇ m or less)
  • the electrical resistance of the Cu wiring increases, so the use of ruthenium wiring or cobalt wiring is being studied instead of copper wiring.
  • Ruthenium and cobalt are harder than copper and are difficult to polish with silica powder. Therefore, it is conceivable to use a CMP slurry containing alumina powder, which is harder than silica powder, as an abrasive.
  • Patent Document 1 does not consider the dispersibility of the alumina powder in the alumina slurry.
  • An object of the present invention is to provide an alumina powder having excellent dispersibility in an alumina slurry, and an alumina slurry containing the alumina powder.
  • Aspect 1 of the present invention is It is an alumina powder that satisfies the following formula (1).
  • Rsp and the total surface area of the alumina powder in formula (1) are obtained from the following formulas (2) and (3), respectively.
  • Rsp (Rav ⁇ Rb)/Rb (2)
  • Rav is the reciprocal of the transverse relaxation time when pulse NMR measurement is performed on an alumina slurry of volume X (ml) in which alumina powder is dispersed in a dispersion medium
  • Rb is the reciprocal of the transverse relaxation time when the dispersion medium of volume X (ml) is subjected to pulse NMR measurement.
  • Total surface area of alumina powder (m 2 ) (mass (g) of alumina powder in volume X (ml)) x BET specific surface area of alumina (m 2 /g) (3)
  • Aspect 2 of the present invention is Furthermore, it is an alumina powder according to aspect 1, which satisfies the following formula (4). 3.0 ⁇ Rsp / total surface area of alumina powder (4)
  • Aspect 3 of the present invention is 3.
  • Aspect 4 of the present invention is An alumina slurry comprising the alumina powder according to any one of aspects 1 to 3, a dispersant, and a dispersion medium.
  • alumina powder with excellent dispersibility in alumina slurry, and alumina slurry containing the alumina powder.
  • the present inventors standardize the Rsp obtained by measuring the alumina slurry by pulse NMR with the total surface area of alumina, "Rsp / total surface area of alumina powder", as an indicator of the state of dispersion of alumina in the alumina slurry. I decided to Then, as a result of intensive study of the relationship between the index and the dispersion state of alumina, when "Rsp / total surface area of alumina powder" is 12.0 or less, the dispersion state of alumina in the alumina slurry is stable. It was found that agglomeration of alumina can be suppressed. Based on this knowledge, the present inventors completed an alumina powder excellent in dispersion stability in an alumina slurry and an alumina slurry using the same.
  • alumina powder An alumina powder according to an embodiment of the present invention satisfies the following formula (1). Rsp/total surface area of alumina powder ⁇ 12.0 (1) "Rsp” and “total surface area of alumina powder” in the formula are described in detail below.
  • Rsp is an index relating to the mobility of the molecules of the dispersion medium (water molecules) adsorbed on the surface of the alumina powder.
  • the alumina powder dispersed in the alumina slurry is dispersed in the alumina slurry with the molecules of the dispersion medium bound on its surface.
  • T2 transverse relaxation time
  • the dispersed state in the dispersion medium is stabilized, thereby improving the dispersibility of the alumina powder. For these reasons, the dispersibility of the alumina powder tends to improve as the value of Rsp increases.
  • the pulse NMR measurement of the alumina slurry can be performed, for example, by a pulse NMR system particle interface characterization device "Magno Meter XRS" manufactured by Mageleka, Inc., USA. Measurement conditions are, for example, measurement frequency: 12 MHz, measurement nuclei: 1 H NMR, measurement method: T2 (transverse relaxation time), sample amount: 0.3 ml, temperature 25°C.
  • Total surface area of alumina powder (The total surface area of the alumina powder (sometimes simply referred to as “total surface area” in the specification) is the total alumina powder contained in the amount X (ml) of the alumina slurry (for example, 0.3 ml) at the time of pulse NMR measurement. It is the total surface area and can be obtained by the following formula (3).
  • Total surface area of alumina powder (m 2 ) (mass (g) of alumina powder in alumina slurry X (ml)) x BET specific surface area of alumina powder (m 2 /g) (3)
  • the BET specific surface area is determined by the one-point nitrogen adsorption method according to the method specified in JIS-Z-8830:2013 "Method for measuring specific surface area of powder (solid) by gas adsorption".
  • a specific surface area measuring device for example, "Macsorb” manufactured by Mountec Co., Ltd. can be used.
  • the present inventors examined the dispersibility of alumina powder in alumina slurry based on this index. They have also found that an alumina powder having excellent dispersibility can be obtained when "Rsp/total surface area of alumina powder" is 12.0 or less. That is, the alumina powder according to the embodiment exhibits excellent dispersibility in alumina slurry by satisfying the following formula (1). Rsp/total surface area of alumina powder ⁇ 12.0 (1) "Rsp/total surface area of alumina powder” is preferably 11.5 or less, more preferably 11.0 or less, and still more preferably 10.5 or less.
  • Rsp/total surface area of alumina powder is preferably 3.0 or more. That is, it is preferable to satisfy the following formula (4). 3.0 ⁇ Rsp / total surface area of alumina powder (4) "Rsp/total surface area of alumina powder” is more preferably 4.0 or more, still more preferably 5.0 or more, and particularly preferably 6.0 or less. “Rsp/total surface area of alumina powder” may be 7.0 or more, or may be 8.0 or more.
  • Rsp/total surface area of alumina powder can be set within the desired range by controlling the manufacturing conditions.
  • use of seed crystals and high-speed rotary shearing stirring of seed crystal slurry and aluminum alkoxide can be mentioned.
  • a chelated aluminum alkoxide may be used as the aluminum alkoxide.
  • the alumina powder preferably has a lattice strain of 0.002 or less.
  • the lattice strain is 0.002 or less, the particle surface is stable, and even fine alumina powder can be prevented from agglomerating in the dispersion medium. This can further improve the dispersibility of the alumina powder in the alumina slurry.
  • the lattice strain is more preferably 0.001 or less, still more preferably 0.0005 or less, and particularly preferably 0.0003 or less.
  • the lattice strain can be set within the desired range by controlling the manufacturing conditions. For example, when producing alumina powder, use a method (aluminum alkoxide method, etc.) that can obtain high-purity alumina, and do not over-pulverize the alumina powder in the step of pulverizing it. When alumina powder is produced using the Bayer method, the purity of alumina is lowered, and lattice strain tends to increase.
  • the lattice strain of alumina powder can be obtained by the following procedure by Rietveld analysis.
  • the alumina powder is subjected to X-ray diffraction measurement by the 2 ⁇ / ⁇ method to obtain actual measurement data of the X-ray diffraction profile.
  • Rietveld analysis is performed on the obtained data using a Rietveld analysis program (RIETAN-FP) with the crystal structure of alumina being ⁇ -alumina.
  • RIETAN-FP Rietveld analysis program
  • ⁇ -alumina has a hexagonal crystal structure and a corundum structure of space group R-3c.
  • the 2 ⁇ value and integral width of each peak are obtained, and the crystallite size and lattice strain are evaluated by the Halder-Wagner method.
  • the 2 ⁇ value and the integral width of each peak are substituted into the following formula (5) (Halder-Wagner formula), the vertical axis is ( ⁇ / tan ⁇ ) 2 , and the horizontal axis is ⁇ Plot as /(tan ⁇ sin ⁇ ).
  • the obtained plot is fitted with a straight line to determine the slope and intercept, and the crystallite size and lattice strain are determined from the slope and intercept values.
  • Halder-Wagner formula: ( ⁇ /tan ⁇ ) 2 (K ⁇ /D) ⁇ /(tan ⁇ sin ⁇ )+16 ⁇ 2 (5)
  • is the integral width
  • is the diffraction angle when X-ray diffraction is measured by the 2 ⁇ / ⁇ method
  • K is the Scherrer constant
  • is the X-ray wavelength
  • D is the crystal.
  • is the lattice strain.
  • the Scherrer constant K is 4/3
  • the X-ray wavelength ⁇ is 1.50406 ⁇ . If the lattice strain ⁇ is smaller than 1 ⁇ 10 ⁇ 4 , ⁇ 2 may become negative in fitting due to the effects of measurement and analysis errors. If ⁇ 2 becomes negative, the lattice strain ⁇ is defined as “less than 1 ⁇ 10 ⁇ 4 ”.
  • the alumina powder preferably has an alumina purity of 99.9% or more, preferably 99.99% or more. Further, the alumina is preferably ⁇ -phase alumina ( ⁇ -alumina), but may contain other alumina (for example, intermediate alumina such as ⁇ -alumina and ⁇ -alumina). For example, when the alumina in the alumina powder is 100% by mass, 85% by mass or more is preferably ⁇ -alumina.
  • the alumina powder preferably has an average particle size of 40 nm to 200 nm.
  • a method for producing an alumina powder includes: preparing a seed crystal slurry in which seed crystals are dispersed; mixing the seed crystal slurry and aluminum alkoxide to obtain an aluminum hydroxide slurry; a step of drying and calcining the aluminum hydroxide slurry to obtain an alumina powder; A step of pulverizing the obtained alumina powder is included. A step of chelating the aluminum alkoxide may be included prior to the step of obtaining the aluminum hydroxide slurry.
  • Step of preparing seed crystal slurry After dispersing alumina particles (raw material of seed crystals) in water, wet pulverization is performed with a ball mill. After that, centrifugation is performed with a refrigerated centrifuge (for example, CR7N manufactured by Himac) to remove precipitates. Thus, a seed crystal slurry in which seed crystals are dispersed is obtained.
  • a refrigerated centrifuge for example, CR7N manufactured by Himac
  • the seed crystal is preferably alpha alumina.
  • the particle size of seed crystals is preferably small, and usually 0.01 ⁇ m to 0.2 ⁇ m is used.
  • the BET specific surface area of the seed crystal contributes to the crystallite size of the finally obtained alumina powder.
  • the BET specific surface area of the seed crystal is preferably 20 m 2 /g or more and 150 m 2 /g or less, more preferably 35 m 2 /g or more and 120 m 2 /g or less.
  • the BET specific surface area is determined by the one-point nitrogen adsorption method according to the method specified in JIS-Z-8830:2013 "Method for measuring specific surface area of powder (solid) by gas adsorption".
  • the content of seed crystals in the seed crystal slurry is not particularly limited as long as the obtained seed crystal slurry has appropriate fluidity.
  • the seed crystal content in the seed crystal slurry is 10% by mass to 40% by mass.
  • a step of chelating the alumina alkoxide may be included.
  • the aluminum alkoxide is chelated with a chelating agent. Due to chelation, bulky ligands are coordinated and become steric hindrance, so the condensation reaction of aluminum alkoxide that occurs during hydrolysis, which will be described later, is more effective than aluminum alkoxide that is not chelated. can be suppressed. By suppressing the condensation reaction, it becomes easier to obtain fine aluminum hydroxide particles.
  • aluminum alkoxide for example, aluminum ethoxide, aluminum n-propoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum sec-butoxide, aluminum t-butoxide and the like can be used.
  • chelating agents for example, ethyl acetoacetate, triethanolamine (TEA), and ethylenediamine (EDA) can be used.
  • TEA triethanolamine
  • EDA ethylenediamine
  • Step of mixing the seed crystal slurry and the (optionally chelated) aluminum alkoxide to obtain an aluminum hydroxide slurry The seed crystal slurry and (optionally chelated) aluminum alkoxide are continuously fed to an agitator for mixing. By subjecting this mixture to high-speed rotational shearing stirring with a stirrer, the water in the seed crystal slurry and the aluminum alkoxide undergo a hydrolysis reaction, resulting in a slurry containing aluminum hydroxide particles as a hydrolyzate (aluminum hydroxide slurry). is obtained.
  • the supply amounts of the seed crystal slurry and (optionally chelated) aluminum alkoxide are preferably controlled so that the seed crystal content in the mixture is appropriate.
  • the preferred content of the seed crystals is the amount of the aluminum component in the seed crystals per 100 parts by mass of the total amount of the aluminum components in the mixture in terms of oxides of the metal components (aluminum alkoxide and the aluminum component contained in the seed crystals) in the mixture. is 1 part by mass or more, preferably 2 parts by mass or more, particularly preferably 4 parts by mass or more, and is 50 parts by mass or less, preferably 40 parts by mass or less, particularly preferably 30 parts by mass or less.
  • the supply amount of the seed crystal slurry and (optionally chelated) aluminum alkoxide is such that the compounding ratio of (water contained in the seed crystal slurry) / ((optionally chelated) aluminum alkoxide) is It is preferably controlled to be in the range of about 1.5 to about 6.0.
  • high-speed rotary shear stirring means that the clearance between the turbine (rotor) and the stator (screen) is small (e.g., 2 mm or less) and the turbine (rotor) rotates at high speed (e.g., peripheral speed of about 1 m/ seconds to about 40 m/s), the stirring is performed by mechanical energy such as shear force, pressure fluctuation, cavitation, collision force, and potential core generated between the turbine (rotor) and stator (screen).
  • Models such as K Homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), Clearmix (manufactured by M Technic Co., Ltd.), Polytron Homogenizer, Megatron Homogenizer (KINEMATICA), and Supraton (manufactured by Tsukishima Kikai Co., Ltd.) can be mentioned.
  • the rotation speed of the turbine (rotor) is 3000 rpm to 21500 rpm, preferably 8000 rpm to 15000 rpm, for example 10000 rpm.
  • the two liquids of the water in the seed crystal slurry and the (optionally chelated) aluminum alkoxide can be sufficiently mixed, and the aluminum hydroxide in the produced aluminum hydroxide slurry can be aggregated. can be suppressed.
  • an aluminum hydroxide slurry containing fine aluminum hydroxide particles is obtained.
  • the seed crystals can be uniformly dispersed in the aluminum hydroxide slurry.
  • the hydrolysis of aluminum alkoxide can be performed using a continuous reactor.
  • a continuous tank type, a continuous pipeline type, or the like can be applied as the continuous reactor.
  • the seed crystal slurry and (optionally chelated) aluminum alkoxide are continuously fed into a tank equipped with a high-speed rotational shear stirrer, and the same amount of liquid as the fed liquid is continuously fed.
  • aluminum alkoxide is hydrolyzed (and aluminum hydroxide particles are produced) while discharging it effectively.
  • a seed crystal slurry and (optionally chelated) aluminum alkoxide are continuously fed to a high-speed rotational shear mixer incorporated in the line.
  • the productivity is extremely high and the conditions for producing aluminum hydroxide particles are uniformed, so water with a uniform particle size distribution and no coarse agglomerated particles can be obtained.
  • An aluminum hydroxide slurry containing aluminum oxide is obtained.
  • An alumina powder is obtained by drying the aluminum hydroxide slurry by a known method and firing the obtained aluminum hydroxide in a firing furnace. Firing is generally carried out at 800° C. or higher, preferably 900° C. or higher, and generally 1000° C. or lower, preferably 980° C. or lower, more preferably 960° C. or lower. If it exceeds 1000° C., it is difficult to obtain fine alumina powder. If the temperature is less than 800° C., the ⁇ -phase content in the alumina powder tends to be low.
  • Firing may be performed in the atmosphere or in an inert gas such as nitrogen gas or argon gas, and it is effective to perform firing while maintaining a high water vapor partial pressure in the atmosphere.
  • the ⁇ -phase can be obtained at a low firing temperature by firing in an atmosphere with a high water vapor partial pressure (that is, an atmosphere with a high dew point).
  • the ⁇ -phase can be obtained in an atmosphere with a low water vapor partial pressure (that is, an atmosphere with a low dew point) and a low firing temperature.
  • Firing can be performed in a conventional tubular electric furnace, box electric furnace, tunnel furnace, far infrared furnace, microwave heating furnace, shaft furnace, reverberatory furnace, rotary furnace, roller hearth furnace, gas (LNG, LPG) furnace, etc. It can be carried out using a firing furnace. Firing may be performed batchwise or continuously. In addition, it may be carried out in a stationary manner or in a fluidized manner.
  • a method for controlling the dew point during firing for example, when an electric furnace using electric energy as a heat source or a tubular furnace is used as the firing furnace, a method of spraying water into the dry air introduced into the furnace, or A method of introducing steam into the furnace is effective.
  • a gas combustion furnace is used as the firing furnace, it is effective to introduce moisture generated by burning fuel such as gas or petroleum into the furnace, and it is more effective to additionally introduce steam. .
  • the dew point is obtained from a conversion table using the amount of water vapor, or from a formula using the water vapor pressure.
  • the water vapor pressure and the water vapor amount can be obtained from the saturated water vapor pressure or the saturated water vapor amount and the relative humidity, respectively.
  • the saturated water vapor pressure can be calculated from the Tetens formula.
  • the dew point in the furnace is preferably controlled to 30 ° C. or higher, more preferably 40 ° C. or higher, and the dew point is 50 ° C. or higher. It is particularly preferable to control the temperature to be 0° C. or higher.
  • the alumina powder obtained is pulverized.
  • a medium pulverizer such as a vibration mill, a ball mill, and a jet mill can be used for pulverizing the alumina powder. Further, the alumina powder after pulverization may be classified.
  • An alumina slurry according to an embodiment of the present invention includes the alumina powder according to Embodiment 1, a dispersant, and a dispersion medium.
  • Dispersants include pH adjusters such as acids or alkalis, condensed phosphoric acid or condensed phosphates, polystyrene sulfonates, polycarboxylic acid-type polymer compounds, polyacrylic acid-type polymer compounds, polyoxyethylene sorbitan fatty acid esters, polyoxy Ethylene sorbitol fatty acid ester and the like can be mentioned.
  • pH adjusters such as acids or alkalis, condensed phosphoric acid or condensed phosphates, polystyrene sulfonates, polycarboxylic acid-type polymer compounds, polyacrylic acid-type polymer compounds, polyoxyethylene sorbitan fatty acid esters, polyoxy Ethylene sorbitol fatty acid ester and the like can be mentioned.
  • Surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • anionic surfactants include ammonium polycarboxylate.
  • Viscosity modifiers include water-soluble cellulose ethers, polysaccharides, polyhydric alcohols and their derivatives, water-soluble polymer compounds, water-soluble oxides and their salts with thickening action, and biopolymers.
  • the dispersion medium is not particularly limited, for example, organic solvents such as water, ethanol, acetone, and NMP can be used.
  • the mixing ratio of the alumina powder, the dispersant and the dispersion medium can contain other components as necessary as long as the object of the present invention is not impaired.
  • Other components include, for example, dispersants, surfactants, viscosity modifiers, and the like. When these other components are used, their content is usually in the range of 0.01 to 10% by weight with respect to the total weight of the abrasive grains.
  • Alumina powder can be included at 0.5 to 70% by weight of the slurry.
  • Alumina slurries are prepared by mixing abrasive grains (and optional ingredients) in a dispersion medium to uniformly disperse them.
  • the mixing method is not particularly limited, and examples thereof include a stirring mixing method using an ultrasonic disperser, a homogenizer, etc., and a pulverizing mixing method using a wet mill or the like.
  • the mixing method can be performed by a conventionally known mixing method, and the mixing order is arbitrary. Alternatively, three or more components may be premixed and then the remaining components mixed, or all may be mixed at once.
  • the alumina powder in the alumina slurry has good dispersibility and is less prone to agglomeration.
  • the alumina powder according to Embodiment 1 and the alumina slurry according to Embodiment 2 are used, for example, in a silicon wafer CMP process, a substrate planarization CMP process on which a fine pattern is formed, an insulating film CMP process, a metal film CMP process, and It is used in the CMP process of difficult-to-work substrates (sapphire, SiC, GaN, Ga 2 O 3 , diamond).
  • the moisture in the seed crystal slurry is evaporated to obtain seed crystals, and the nitrogen adsorption method is performed according to the method specified in JIS-Z-8830:2013 “Method for measuring specific surface area of powder (solid) by gas adsorption”.
  • the BET specific surface area was obtained by the method.
  • Table 1 shows the measurement results of the BET specific surface area of the seed crystal.
  • the chelated aluminum isopropoxide and the seed crystal slurry were hydrolyzed by mixing with a precision emulsifying disperser Clearmix CLM-2.2S (manufactured by M Technic Co., Ltd.) at a rotation speed of 10000 rpm. An aluminum hydroxide slurry was thus obtained.
  • the compounding ratio of the chelated aluminum isopropoxide and the seed crystal slurry is such that the ratio of (water contained in the seed crystal slurry)/(chelated aluminum isopropoxide) is 2.7/1 (molar ratio).
  • the aluminum hydroxide slurry contains, in terms of metal component oxide, 100 parts by mass of the total amount of chelated aluminum isopropoxide and the aluminum component contained in the seed crystal. 10 parts by mass of the aluminum component contained in the The content (parts by mass) of each aluminum component was obtained by calculation on the assumption that all of the aluminum isopropoxide used was converted to alumina.
  • the obtained aluminum hydroxide slurry was dried at 150° C. to obtain aluminum hydroxide particles, which were placed in an alumina crucible and fired in a box type electric furnace.
  • the sintering conditions were such that the temperature was raised to the sintering temperature (975° C.) shown in Table 1 at a rate of temperature increase of 200° C./hour, and the sintering temperature was maintained for 4 hours.
  • a sintering temperature 975° C.
  • Table 1 the sintering temperature
  • This ⁇ -alumina powder was further pulverized with a ball mill to obtain fine-grained ⁇ -alumina powder.
  • Sample no. Preparation of alumina powder of No. 2 Sample No. The method was the same as the method for preparing alumina powder in No. 1, but the following points were changed. ⁇ In the aluminum hydroxide slurry, 5.6 parts by mass of the aluminum component contained in the seed crystal per 100 parts by mass of the total amount of the chelated aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. The compounding amount of the seed crystal was changed so that
  • Sample no. Preparation of alumina powder of No. 5 Sample No. The method was the same as the method for preparing alumina powder in No. 1, but the following points were changed. ⁇ No seed crystals were used. ⁇ The firing temperature was 1120°C.
  • sample no. Preparation of alumina powder of sample no. 6 was the same as the method for preparing alumina powder, but the following points were changed. ⁇ In the aluminum hydroxide slurry, the aluminum component contained in the seed crystal is 10 parts by mass per 100 parts by mass of the total amount of aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. , the compounding amount of seed crystals was changed.
  • Sample no. Preparation of alumina powder of sample No. 9. 6 was the same as the method for preparing alumina powder, but the following points were changed.
  • the aluminum component contained in the seed crystal is 20 parts by mass per 100 parts by mass of the total amount of aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. , the compounding amount of seed crystals was changed.
  • Measurement conditions were measurement frequency: 12 MHz, measurement nucleus: 1H NMR, measurement method: T2, sample amount: 0.3 ml, and temperature of 25°C.
  • the transverse relaxation time (T2) of the blank solution was also measured under the same measurement conditions using pure water.
  • the reciprocal of the horizontal relaxation time (T2) of the alumina slurry was Rav, and the reciprocal of the horizontal relaxation time (T2) of the blank liquid was Rb.
  • Rsp (Rav ⁇ Rb)/Rb (2)
  • BET specific surface area The BET specific surface area of fine-grained ⁇ -alumina powder was measured. As a specific surface area measuring device, using "Macsorb” manufactured by Mountec Co., Ltd., according to the method specified in JIS-Z-8830: 2013 "Method for measuring specific surface area of powder (solid) by gas adsorption", Nitrogen adsorption method. The BET specific surface area was determined by the one-point method.
  • the total surface area (m 2 ) of the alumina powder was calculated by multiplying the mass (g) of the alumina powder contained in 0.3 ml of the alumina slurry having a concentration of 10% by mass by the BET specific surface area (m 2 /g) of the alumina powder. (See equation (3)' below).
  • Total surface area of alumina powder (m 2 ) (mass (g) of alumina powder in 0.3 (ml) of alumina slurry) x BET specific surface area of alumina (m 2 /g) (3)'
  • the lattice strain of the alumina powder was obtained by the method described above.
  • X-ray diffraction measurement was performed on the fine-grained ⁇ -alumina powder by the 2 ⁇ / ⁇ method to obtain actual measurement data of the X-ray diffraction profile.
  • D8 ADVANCE manufactured by Bruker was used, CuK ⁇ rays were used as the X-ray source, and the voltage was 40 kV and the current was 40 mA during the measurement.
  • Scanning was performed by a continuous measurement method in the range of 2 ⁇ from 5 to 80°, the scanning speed was 5 s, and the step width was 0.020°.
  • the lattice strain ⁇ is smaller than 1 ⁇ 10 ⁇ 4 , ⁇ 2 may become negative in fitting due to the effects of measurement and analysis errors.
  • the lattice strain ⁇ was defined as “less than 1 ⁇ 10 ⁇ 4 ”.
  • alumina slurry was added to a 0.2% by weight aqueous solution of sodium hexametaphosphate, and ultrasonic waves were applied to disperse the fine ⁇ -alumina powder in the aqueous solution. Also, the refractive index of the alumina particles was set to 1.76.
  • Tables 2 and 3 show the measurement results and calculation results for each sample.
  • the underlined numerical values indicate that they are out of the scope of the embodiment of the present invention.
  • sample No. 3 The alumina powder of No. 3 had a low rotational speed during production and no seed crystal slurry was added. Therefore, the obtained alumina powder had poor crystallinity, and easily aggregated when made into an alumina slurry. As a result, "Rsp/total surface area of alumina powder" was outside the scope of the embodiments of the present invention.
  • Sample No. 4 The alumina powder of No. 4 was obtained by pulverizing alumina produced by the Bayer method, and the purity of alumina was low. Therefore, the obtained alumina powder had poor crystallinity, and easily aggregated when made into an alumina slurry. As a result, "Rsp/total surface area of alumina powder" was outside the scope of the embodiments of the present invention.
  • Sample No. 5 was an alumina powder prepared without adding seed crystals. Therefore, D95 is sample no. Although smaller than samples No. 3 and 4, sample no. Larger than 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

An alumina powder satisfying the following relationship (1). Relationship (1): Rsp/(total surface area of alumina powder)≤12.0 Rsp and the total surface area of alumina powder in relationship (1) are obtained respectively using the following equations (2) and (3). Equation (2): Rsp=(Rav-Rb)/Rb Rav is the inverse of a transverse relaxation time measured by examining, by pulse NMR spectroscopy, a volume X (ml) of an alumina slurry obtained by dispersing the alumina powder in a dispersion medium, and Rb is the inverse of a transverse relaxation time measured by examining, by pulse NMR spectroscopy, a volume X (ml) of the dispersion medium. Equation (3): Total surface area (m2) of alumina powder = (mass (g) of alumina powder in the volume X (ml))×(BET specific surface area (m2/g) of alumina)

Description

アルミナ粉末およびそれを含むアルミナスラリーAlumina powder and alumina slurry containing the same
 本開示はアルミナ粉末およびそれを含むアルミナスラリーに関し、特に、研磨用アルミナスラリーに適したアルミナ粉末と、それを含む研磨用アルミナスラリーに関する。 The present disclosure relates to alumina powder and alumina slurry containing the same, and more particularly to alumina powder suitable for polishing alumina slurry and polishing alumina slurry containing the same.
 ICチップなどの半導体部品の製造工程において、フォトリソグラフィ工程とCMP(Chemical Mechanical Polishing:化学機械研磨)工程とを繰り返すことで、多層配線を形成する。 In the manufacturing process of semiconductor parts such as IC chips, multilayer wiring is formed by repeating the photolithography process and the CMP (Chemical Mechanical Polishing) process.
 CMP工程は、フォトリソグラフィ工程後に、Siウエハ表面を平坦化する技術である。研磨材(例えばセラミックス粉末)を分散媒中に分散したCMPスラリーが市販されており、このCMPスラリーを分散媒で希釈してCMP工程に使用する。
 現在、半導体部品内の配線は銅配線が主流である。そのため、シリカ粉末を研磨材として含むCMPスラリーが主に用いられている。
The CMP process is a technique for flattening the Si wafer surface after the photolithography process. A CMP slurry obtained by dispersing an abrasive (for example, ceramic powder) in a dispersion medium is commercially available. This CMP slurry is diluted with the dispersion medium and used in the CMP process.
At present, copper wiring is the mainstream of wiring in semiconductor components. Therefore, CMP slurry containing silica powder as an abrasive is mainly used.
 また、研磨用途のセラミックス粉末としては、シリカ粉末の他に、アルミナ粉末が知られている(例えば特許文献1)。特許文献1には、平均粒子径が約5μm以下で、10μm以上の粗粒子を実質的に含有せず、粗大凝集粒子のないアルミナ粉末について記載されている。 In addition to silica powder, alumina powder is also known as a ceramic powder for polishing (for example, Patent Document 1). Patent Document 1 describes an alumina powder having an average particle size of about 5 μm or less, substantially free of coarse particles of 10 μm or more, and free of coarse agglomerated particles.
特開平8-12323号公報JP-A-8-12323
 配線の線幅が狭くなると(例えば、線幅が7μm以下)、Cu配線では電気抵抗が高くなるため、銅配線の代わりに、ルテニウム配線またはコバルト配線の使用が検討されている。ルテニウムおよびコバルトは銅より硬いため、シリカ粉末では研磨が困難である。そこで、シリカ粉末よりも硬質なアルミナ粉末を研磨材として含むCMPスラリーを使用することが考えられる。 As the line width of the wiring becomes narrower (for example, the line width is 7 μm or less), the electrical resistance of the Cu wiring increases, so the use of ruthenium wiring or cobalt wiring is being studied instead of copper wiring. Ruthenium and cobalt are harder than copper and are difficult to polish with silica powder. Therefore, it is conceivable to use a CMP slurry containing alumina powder, which is harder than silica powder, as an abrasive.
 しかしながら、従来のアルミナ粉末を含むCMPスラリー(アルミナスラリー)は、アルミナ粉末が凝集・沈降を生じやすいという問題がある。そこで、アルミナスラリー中で凝集・沈降しにくいアルミナ粉末(つまり、アルミナスラリー中での分散性に優れたアルミナ粉末)が求められている。
 特許文献1には、アルミナスラリー中におけるアルミナ粉末の分散性について考慮されていない。
However, conventional CMP slurries containing alumina powder (alumina slurries) have the problem that the alumina powder tends to aggregate and settle. Therefore, there is a demand for an alumina powder that does not easily aggregate and settle in an alumina slurry (that is, an alumina powder that has excellent dispersibility in an alumina slurry).
Patent Document 1 does not consider the dispersibility of the alumina powder in the alumina slurry.
 本発明の実施形態は、アルミナスラリー中での分散性に優れたアルミナ粉末、およびそのアルミナ粉末を含むアルミナスラリーを提供することを目的とするものである。 An object of the present invention is to provide an alumina powder having excellent dispersibility in an alumina slurry, and an alumina slurry containing the alumina powder.
 本発明の態様1は、
 以下の式(1)を満たすアルミナ粉末である。

Rsp/アルミナ粉末の総表面積≦12.0   (1)

式(1)中のRspおよびアルミナ粉末の総表面積は、それぞれ下記の式(2)および式(3)から求める。
Rsp=(Rav-Rb)/Rb   (2)
 Ravは、分散媒にアルミナ粉末を分散させた体積X(ml)のアルミナスラリーをパルスNMR測定したときの横緩和時間の逆数であり、
 Rbは、体積X(ml)の前記分散媒をパルスNMR測定したときの横緩和時間の逆数である。
アルミナ粉末の総表面積(m)=(前記体積X(ml)中のアルミナ粉末の質量(g))×アルミナのBET比表面積(m/g)   (3)
Aspect 1 of the present invention is
It is an alumina powder that satisfies the following formula (1).

Rsp/total surface area of alumina powder ≤ 12.0 (1)

Rsp and the total surface area of the alumina powder in formula (1) are obtained from the following formulas (2) and (3), respectively.
Rsp=(Rav−Rb)/Rb (2)
Rav is the reciprocal of the transverse relaxation time when pulse NMR measurement is performed on an alumina slurry of volume X (ml) in which alumina powder is dispersed in a dispersion medium,
Rb is the reciprocal of the transverse relaxation time when the dispersion medium of volume X (ml) is subjected to pulse NMR measurement.
Total surface area of alumina powder (m 2 ) = (mass (g) of alumina powder in volume X (ml)) x BET specific surface area of alumina (m 2 /g) (3)
 本発明の態様2は、
 さらに、以下の式(4)を満たす、態様1に記載のアルミナ粉末である。

3.0≦Rsp/アルミナ粉末の総表面積   (4)
Aspect 2 of the present invention is
Furthermore, it is an alumina powder according to aspect 1, which satisfies the following formula (4).

3.0 ≤ Rsp / total surface area of alumina powder (4)
 本発明の態様3は、
 格子ひずみが0.002以下である、態様1または2に記載のアルミナ粉末である。
Aspect 3 of the present invention is
3. The alumina powder according to aspect 1 or 2, having a lattice strain of 0.002 or less.
 本発明の態様4は、
 態様1~3のいずれか1つに記載のアルミナ粉末と、分散剤と、分散媒とを含むアルミナスラリーである。
Aspect 4 of the present invention is
An alumina slurry comprising the alumina powder according to any one of aspects 1 to 3, a dispersant, and a dispersion medium.
 本発明の実施形態によれば、アルミナスラリー中での分散性に優れたアルミナ粉末、およびそのアルミナ粉末を含むアルミナスラリーを提供することができる。 According to the embodiments of the present invention, it is possible to provide alumina powder with excellent dispersibility in alumina slurry, and alumina slurry containing the alumina powder.
 本発明者らは、アルミナスラリーをパルスNMRで測定して求めるRspを、アルミナの総表面積で規格化した「Rsp/アルミナ粉末の総表面積」を、アルミナスラリー中におけるアルミナの分散状態の指標として用いることとした。そして、当該指標と、アルミナの分散状態との関係を鋭意検討した結果、「Rsp/アルミナ粉末の総表面積」が12.0以下であると、アルミナスラリー中でのアルミナの分散状態が安定し、アルミナの凝集が抑制できることを見いだした。この知見に基づいて、本発明者らは、アルミナスラリー中での分散安定性に優れたアルミナ粉末及びそれを用いたアルミナスラリーを完成させた。 The present inventors standardize the Rsp obtained by measuring the alumina slurry by pulse NMR with the total surface area of alumina, "Rsp / total surface area of alumina powder", as an indicator of the state of dispersion of alumina in the alumina slurry. I decided to Then, as a result of intensive study of the relationship between the index and the dispersion state of alumina, when "Rsp / total surface area of alumina powder" is 12.0 or less, the dispersion state of alumina in the alumina slurry is stable. It was found that agglomeration of alumina can be suppressed. Based on this knowledge, the present inventors completed an alumina powder excellent in dispersion stability in an alumina slurry and an alumina slurry using the same.
 アルミナ粉末と、アルミナスラリーについて説明する。 Alumina powder and alumina slurry will be explained.
[実施形態1:アルミナ粉末]
 本発明の実施形態に係るアルミナ粉末は、以下の式(1)を満たす。

Rsp/アルミナ粉末の総表面積≦12.0   (1)

 式中の「Rsp」および「アルミナ粉末の総表面積」について、以下に詳述する。
[Embodiment 1: Alumina powder]
An alumina powder according to an embodiment of the present invention satisfies the following formula (1).

Rsp/total surface area of alumina powder ≤ 12.0 (1)

"Rsp" and "total surface area of alumina powder" in the formula are described in detail below.
(Rsp)
 Rspを求めるためには、まず、アルミナ粉末を分散媒に分散させたアルミナスラリーと、分散媒のみ(ブランク液)について、それぞれパルスNMRでH核の緩和時間(パルス励起された磁化が元の熱平衡に戻るまでの時間)を測定する。得られた測定結果を用いて、以下の式(2)によりRspを算出する。

Rsp=(Rav-Rb)/Rb   (2)

 ここでRavは、分散媒(例えば純水)にアルミナ粉末を分散させたアルミナスラリー(例えば体積X(ml))をパルスNMR測定したときの横緩和時間の逆数である。また、Rbは、上記アルミナスラリーの分散媒(例えば純水)のみ(例えば体積X(ml))を、パルスNMR測定したときの横緩和時間の逆数である。なお、分散媒のみからなる液体を「ブランク液」と称することがある。ブランク液は分散媒のみからなり、通常は、パルスNMR測定時のアルミナスラリーの体積と同一にする。
(Rsp)
In order to obtain Rsp, first, an alumina slurry in which alumina powder is dispersed in a dispersion medium and a dispersion medium only (blank liquid) are each measured by pulse NMR to determine the relaxation time of 1 H nuclei (pulse-excited magnetization is restored to the original value). Time to return to thermal equilibrium) is measured. Using the obtained measurement results, Rsp is calculated by the following equation (2).

Rsp=(Rav−Rb)/Rb (2)

Here, Rav is the reciprocal of the transverse relaxation time when an alumina slurry (for example, volume X (ml)) in which alumina powder is dispersed in a dispersion medium (for example, pure water) is subjected to pulse NMR measurement. Rb is the reciprocal of the transverse relaxation time when only the dispersion medium (eg, pure water) of the alumina slurry (eg, volume X (ml)) is subjected to pulse NMR measurement. In addition, the liquid which consists only of a dispersion medium may be called a "blank liquid." The blank liquid consists only of a dispersion medium, and usually has the same volume as the alumina slurry used in the pulse NMR measurement.
 Rspは、アルミナ粉末の表面に吸着された分散媒の分子(水分子)の運動性に関する指標である。アルミナスラリー中に分散されたアルミナ粉末は、その表面に分散媒の分子を拘束した状態で、アルミナスラリー中に分散している。
 ここで、アルミナ粉末の表面に拘束されている分散媒の分子の数が増加すると、横緩和時間(T2)が短くなるため、Rspの値が大きくなる。また、アルミナ粉末の表面に拘束されている分散媒の分子の数が増加すると、分散媒中に分散した状態が安定するため、アルミナ粉末の分散性が向上する。
 これらのことから、Rspの値が大きくなると、アルミナ粉末の分散性が向上する傾向がある。
Rsp is an index relating to the mobility of the molecules of the dispersion medium (water molecules) adsorbed on the surface of the alumina powder. The alumina powder dispersed in the alumina slurry is dispersed in the alumina slurry with the molecules of the dispersion medium bound on its surface.
Here, when the number of molecules of the dispersion medium bound to the surface of the alumina powder increases, the transverse relaxation time (T2) shortens, resulting in an increase in the value of Rsp. Further, when the number of molecules of the dispersion medium bound to the surface of the alumina powder increases, the dispersed state in the dispersion medium is stabilized, thereby improving the dispersibility of the alumina powder.
For these reasons, the dispersibility of the alumina powder tends to improve as the value of Rsp increases.
 なお、アルミナスラリー中のアルミナ粉末の濃度が高いと、分散性が低くても、Rspの値は高くなる場合がある。本発明者らは、アルミナ粉末の分散性を正しく評価するために、アルミナ粉末の総表面積によってRspの値を規格化した指標を導入した。これについては後述する。 It should be noted that when the concentration of alumina powder in the alumina slurry is high, the value of Rsp may become high even if the dispersibility is low. In order to correctly evaluate the dispersibility of alumina powder, the present inventors introduced an index in which the value of Rsp is normalized by the total surface area of alumina powder. This will be discussed later.
 アルミナスラリーのパルスNMR測定は、例えば、米国MAGELEKA,Inc製のパルスNMR方式粒子界面特性評価装置「Magno Meter XRS」で測定できる。測定条件は、例えば、測定周波数:12MHz、測定核:H NMR、測定方法:T2(横緩和時間)、サンプル量:0.3ml、温度25℃とする。 The pulse NMR measurement of the alumina slurry can be performed, for example, by a pulse NMR system particle interface characterization device "Magno Meter XRS" manufactured by Mageleka, Inc., USA. Measurement conditions are, for example, measurement frequency: 12 MHz, measurement nuclei: 1 H NMR, measurement method: T2 (transverse relaxation time), sample amount: 0.3 ml, temperature 25°C.
(アルミナ粉末の総表面積)
 アルミナ粉末の総表面積(明細書中において単に「総表面積」と称することがある)は、パルスNMRの測定時のアルミナスラリーの量X(ml)(例えば0.3ml)に含まれる全アルミナ粉末の表面積の総和であり、以下の式(3)で求めることができる。

 アルミナ粉末の総表面積(m)=(上記アルミナスラリーX(ml)中のアルミナ粉末の質量(g))×アルミナ粉末のBET比表面積(m/g)   (3)
(Total surface area of alumina powder)
The total surface area of the alumina powder (sometimes simply referred to as "total surface area" in the specification) is the total alumina powder contained in the amount X (ml) of the alumina slurry (for example, 0.3 ml) at the time of pulse NMR measurement. It is the total surface area and can be obtained by the following formula (3).

Total surface area of alumina powder (m 2 ) = (mass (g) of alumina powder in alumina slurry X (ml)) x BET specific surface area of alumina powder (m 2 /g) (3)
 BET比表面積は、JIS-Z-8830:2013「ガス吸着による粉体(固体)の比表面積測定法」に規定された方法に従って、窒素吸着法一点法により求める。比表面積測定装置としては、例えば株式会社マウンテック製の「Macsorb」を使用できる。 The BET specific surface area is determined by the one-point nitrogen adsorption method according to the method specified in JIS-Z-8830:2013 "Method for measuring specific surface area of powder (solid) by gas adsorption". As a specific surface area measuring device, for example, "Macsorb" manufactured by Mountec Co., Ltd. can be used.
 本発明者らは、この指標に基づいて、アルミナスラリー中のアルミナ粉末の分散性について検討を行った。そして、「Rsp/アルミナ粉末の総表面積」が12.0以下であると、分散性に優れたアルミナ粉末が得られることを見いだした。つまり、実施形態に係るアルミナ粉末は、下記の式(1)を満たすことにより、アルミナスラリー中において優れた分散性を示す。

Rsp/アルミナ粉末の総表面積≦12.0   (1)

 「Rsp/アルミナ粉末の総表面積」は、好ましくは11.5以下であり、より好ましくは11.0以下であり、さらに好ましくは10.5以下である。
The present inventors examined the dispersibility of alumina powder in alumina slurry based on this index. They have also found that an alumina powder having excellent dispersibility can be obtained when "Rsp/total surface area of alumina powder" is 12.0 or less. That is, the alumina powder according to the embodiment exhibits excellent dispersibility in alumina slurry by satisfying the following formula (1).

Rsp/total surface area of alumina powder ≤ 12.0 (1)

"Rsp/total surface area of alumina powder" is preferably 11.5 or less, more preferably 11.0 or less, and still more preferably 10.5 or less.
 さらに、「Rsp/アルミナ粉末の総表面積」は、3.0以上であることが好ましい。すなわち、以下の式(4)を満たすことが好ましい。

3.0≦Rsp/アルミナ粉末の総表面積   (4)

 「Rsp/アルミナ粉末の総表面積」は、より好ましくは4.0以上であり、さらに好ましくは5.0以上であり、特に好ましくは6.0以下である。「Rsp/アルミナ粉末の総表面積」は、7.0以上であってもよいし、8.0以上であってもよい。
Furthermore, "Rsp/total surface area of alumina powder" is preferably 3.0 or more. That is, it is preferable to satisfy the following formula (4).

3.0 ≤ Rsp / total surface area of alumina powder (4)

"Rsp/total surface area of alumina powder" is more preferably 4.0 or more, still more preferably 5.0 or more, and particularly preferably 6.0 or less. "Rsp/total surface area of alumina powder" may be 7.0 or more, or may be 8.0 or more.
 「Rsp/アルミナ粉末の総表面積」の値は、製造条件を制御することにより、所望の範囲にすることができる。例えば、アルミナ粉末を製造する際に、種晶を用いること、および種晶スラリーとアルミニウムアルコキシドとを高速回転せん断撹拌することが挙げられる。アルミニウムアルコキシドとして、キレート化アルミニウムアルコキシドを用いてもよい。 The value of "Rsp/total surface area of alumina powder" can be set within the desired range by controlling the manufacturing conditions. For example, when producing alumina powder, use of seed crystals and high-speed rotary shearing stirring of seed crystal slurry and aluminum alkoxide can be mentioned. A chelated aluminum alkoxide may be used as the aluminum alkoxide.
(格子ひずみ)
 アルミナ粉末は、格子ひずみが0.002以下であることが好ましい。格子ひずみが0.002以下であると粒子表面が安定して、微粒のアルミナ粉末であっても分散媒中で凝集することを抑制できる。これにより、アルミナスラリー中でのアルミナ粉末の分散性をさらに向上することができる。格子ひずみは、より好ましくは0.001以下であり、さらに好ましくは0.0005以下、特に好ましくは0.0003以下である。
(lattice strain)
The alumina powder preferably has a lattice strain of 0.002 or less. When the lattice strain is 0.002 or less, the particle surface is stable, and even fine alumina powder can be prevented from agglomerating in the dispersion medium. This can further improve the dispersibility of the alumina powder in the alumina slurry. The lattice strain is more preferably 0.001 or less, still more preferably 0.0005 or less, and particularly preferably 0.0003 or less.
 格子ひずみは、製造条件を制御することにより、所望の範囲にすることができる。例えば、アルミナ粉末を製造する際に、高純度アルミナが得られる方法(アルミニウムアルコキシド法など)を用いること、およびアルミナ粉末を粉砕する工程で、粉砕しすぎないことが挙げられる。なお、バイヤー法を用いてアルミナ粉末を製造すると、アルミナの純度が低くなるため、格子ひずみが大きくなりやすい。 The lattice strain can be set within the desired range by controlling the manufacturing conditions. For example, when producing alumina powder, use a method (aluminum alkoxide method, etc.) that can obtain high-purity alumina, and do not over-pulverize the alumina powder in the step of pulverizing it. When alumina powder is produced using the Bayer method, the purity of alumina is lowered, and lattice strain tends to increase.
 アルミナ粉末の格子ひずみは、リートベルト解析により以下の手順で求めることができる。  The lattice strain of alumina powder can be obtained by the following procedure by Rietveld analysis.
 まず、アルミナの粉末に対して2θ/θ法によるX線回折測定を実施し、X線回折プロファイルの実測データを得る。得られたデータについて、リートベルト解析プログラム(RIETAN-FP)を用いて、アルミナの結晶構造をαアルミナとして、リートベルト解析を実施する。αアルミナは、六方晶系の結晶構造で、空間群R-3cのコランダム構造を有する。 First, the alumina powder is subjected to X-ray diffraction measurement by the 2θ/θ method to obtain actual measurement data of the X-ray diffraction profile. Rietveld analysis is performed on the obtained data using a Rietveld analysis program (RIETAN-FP) with the crystal structure of alumina being α-alumina. α-alumina has a hexagonal crystal structure and a corundum structure of space group R-3c.
 リートベルト解析の結果から、2θの値が40°から80°までのKα1由来のピークについて、各ピークの2θの値と積分幅を求め、Halder-Wagner法によって結晶子サイズ及び格子ひずみを評価する。Halder-Wagner法による評価では、以下の式(5)(Halder-Wagnerの式)に各ピークの2θの値と積分幅を代入し、縦軸を(β/tanθ)とし、横軸をβ/(tanθsinθ)としてプロットを行う。次に、得られたプロットを直線でフィッティングすることで、傾き及び切片を求め、前記傾き及び前記切片の値から結晶子サイズ及び格子ひずみを求める。 From the results of Rietveld analysis, for peaks derived from Kα with 2θ values of 40° to 80°, the 2θ value and integral width of each peak are obtained, and the crystallite size and lattice strain are evaluated by the Halder-Wagner method. . In the evaluation by the Halder-Wagner method, the 2θ value and the integral width of each peak are substituted into the following formula (5) (Halder-Wagner formula), the vertical axis is (β / tan θ) 2 , and the horizontal axis is β Plot as /(tan θ sin θ). Next, the obtained plot is fitted with a straight line to determine the slope and intercept, and the crystallite size and lattice strain are determined from the slope and intercept values.
 Halder-Wagnerの式:
 (β/tanθ)=(Kλ/D)×β/(tanθsinθ)+16ε  (5)

式(5)において、βは積分幅であり、θは2θ/θ法によるX線回折測定時の回折角であり、Kはシェラー定数であり、λはX線の波長であり、Dは結晶子サイズであり、εは格子ひずみである。
 シェラー定数Kは4/3とし、X線の波長λは1.50406Åとする。
 格子ひずみεが1×10-4よりも小さいと、測定誤差や解析誤差の影響によって、フィッティング上εが負になることがある。εが負になった場合は、格子ひずみεは「1×10-4未満」とする。
Halder-Wagner formula:
(β/tan θ) 2 = (Kλ/D)×β/(tan θ sin θ)+16ε 2 (5)

In formula (5), β is the integral width, θ is the diffraction angle when X-ray diffraction is measured by the 2θ/θ method, K is the Scherrer constant, λ is the X-ray wavelength, and D is the crystal. is the child size and ε is the lattice strain.
The Scherrer constant K is 4/3, and the X-ray wavelength λ is 1.50406 Å.
If the lattice strain ε is smaller than 1×10 −4 , ε 2 may become negative in fitting due to the effects of measurement and analysis errors. If ε 2 becomes negative, the lattice strain ε is defined as “less than 1×10 −4 ”.
 アルミナ粉末は、アルミナの純度が99.9%以上であることが好ましく、99.99%以上であることが好ましい。また、アルミナはα相のアルミナ(αアルミナ)であることが好ましいが、他のアルミナ(例えばβアルミナ、γアルミナ等の中間アルミナ等)を含んでいてもよい。例えば、アルミナ粉末中のアルミナを100質量%としたとき、85質量%以上がαアルミナであることが好ましい。
 アルミナ粉末は、平均粒子径が40nm~200nmであることが好ましい。
The alumina powder preferably has an alumina purity of 99.9% or more, preferably 99.99% or more. Further, the alumina is preferably α-phase alumina (α-alumina), but may contain other alumina (for example, intermediate alumina such as β-alumina and γ-alumina). For example, when the alumina in the alumina powder is 100% by mass, 85% by mass or more is preferably α-alumina.
The alumina powder preferably has an average particle size of 40 nm to 200 nm.
 本実施形態のアルミナ粉末を製造することができる製造方法の一例を示す。 An example of a manufacturing method capable of manufacturing the alumina powder of the present embodiment is shown.
 実施形態に係るアルミナ粉末の製造方法は、
 種晶が分散した種晶スラリーを調製する工程と、
 前記種晶スラリーとアルミニウムアルコキシドとを混合して水酸化アルミニウムスラリーを得る工程と、
 前記水酸化アルミニウムスラリーを乾燥および焼成してアルミナ粉末を得る工程と、
 得られたアルミナ粉末を粉砕する工程を含む。
 水酸化アルミニウムスラリーを得る工程より前に、アルミニウムアルコキシドをキレート化する工程を含んでもよい。
A method for producing an alumina powder according to an embodiment includes:
preparing a seed crystal slurry in which seed crystals are dispersed;
mixing the seed crystal slurry and aluminum alkoxide to obtain an aluminum hydroxide slurry;
a step of drying and calcining the aluminum hydroxide slurry to obtain an alumina powder;
A step of pulverizing the obtained alumina powder is included.
A step of chelating the aluminum alkoxide may be included prior to the step of obtaining the aluminum hydroxide slurry.
 各工程について詳述する。 I will explain each process in detail.
〔1.種晶スラリーを調製する工程〕
 アルミナ粒子(種晶の原料)を水に分散させた後、ボールミルで湿式粉砕を行う。その後、冷却遠心分離機(例えば、himac製:CR7N)で遠心処理を行い、沈殿物を除去する。これにより、種晶が分散された種晶スラリーを得る。
[1. Step of preparing seed crystal slurry]
After dispersing alumina particles (raw material of seed crystals) in water, wet pulverization is performed with a ball mill. After that, centrifugation is performed with a refrigerated centrifuge (for example, CR7N manufactured by Himac) to remove precipitates. Thus, a seed crystal slurry in which seed crystals are dispersed is obtained.
 種晶は、αアルミナであることが好ましい。αアルミナの種晶を用いることにより、後述する焼成工程において、低温焼成でアルミナのα化を進行させることができる。
 種晶の粒子径は小さいことが好ましく、通常は0.01μm~0.2μmのものが用いられる。
The seed crystal is preferably alpha alumina. By using seed crystals of α-alumina, the α-formation of alumina can be advanced by low-temperature firing in the later-described firing step.
The particle size of seed crystals is preferably small, and usually 0.01 μm to 0.2 μm is used.
 種晶のBET比表面積は、最終的に得られるアルミナ粉末の結晶子サイズに寄与する。種晶のBET比表面積は、好ましくは20m2/g以上150m2/g以下、より好ましくは35m2/g以上120m2/g以下である。
 BET比表面積は、JIS-Z-8830:2013「ガス吸着による粉体(固体)の比表面積測定法」に規定された方法に従って、窒素吸着法一点法により求める。
The BET specific surface area of the seed crystal contributes to the crystallite size of the finally obtained alumina powder. The BET specific surface area of the seed crystal is preferably 20 m 2 /g or more and 150 m 2 /g or less, more preferably 35 m 2 /g or more and 120 m 2 /g or less.
The BET specific surface area is determined by the one-point nitrogen adsorption method according to the method specified in JIS-Z-8830:2013 "Method for measuring specific surface area of powder (solid) by gas adsorption".
 種晶スラリー中における種晶の含有量は、得られる種晶スラリーが適切な流動性を有していれば特に限定されない。例えば、種晶スラリー中における種晶の含有量は、10質量%~40質量%である。 The content of seed crystals in the seed crystal slurry is not particularly limited as long as the obtained seed crystal slurry has appropriate fluidity. For example, the seed crystal content in the seed crystal slurry is 10% by mass to 40% by mass.
〔2.アルミニウムアルコキシドをキレート化する工程〕
 任意で、アルミナアルコキシドをキレート化する工程を含んでもよい。この工程では、アルミニウムアルコキシドを、キレート剤によりキレート化する。キレート化により、嵩高い配位子が配位して立体障害となるため、キレート化をしていないアルミニウムアルコキシドと比べて、後述する加水分解の際に起こるアルミニウムアルコキシドの縮合反応をより効果的に抑制することができる。縮合反応を抑制することにより、微粒の水酸化アルミニウムを得やすくなる。
[2. Step of Chelating Aluminum Alkoxide]
Optionally, a step of chelating the alumina alkoxide may be included. In this step, the aluminum alkoxide is chelated with a chelating agent. Due to chelation, bulky ligands are coordinated and become steric hindrance, so the condensation reaction of aluminum alkoxide that occurs during hydrolysis, which will be described later, is more effective than aluminum alkoxide that is not chelated. can be suppressed. By suppressing the condensation reaction, it becomes easier to obtain fine aluminum hydroxide particles.
 アルミニウムアルコキシドとしては、例えば、アルミニウムエトキサイド、アルミニウムn-プロポキサイド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムsec-ブトキシド、アルミニウムt-ブトキシド等が使用できる。 As the aluminum alkoxide, for example, aluminum ethoxide, aluminum n-propoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum sec-butoxide, aluminum t-butoxide and the like can be used.
 キレート剤としては、例えば、アセト酢酸エチル、トリエタノールアミン(TEA)、エチレンジアミン(EDA)が使用できる。 As chelating agents, for example, ethyl acetoacetate, triethanolamine (TEA), and ethylenediamine (EDA) can be used.
〔3.前記種晶スラリーと(任意でキレート化した)前記アルミニウムアルコキシドとを混合して水酸化アルミニウムスラリーを得る工程〕
 種晶スラリーと、(任意でキレート化した)アルミニウムアルコキシドとを攪拌機に連続的に供給して混合する。この混合物を攪拌機で高速回転剪断攪拌することにより、種晶スラリー中の水と、アルミニウムアルコキシドとが加水分解反応して、加水分解物である水酸化アルミニウム粒子を含有するスラリー(水酸化アルミニウムスラリー)が得られる。
[3. Step of mixing the seed crystal slurry and the (optionally chelated) aluminum alkoxide to obtain an aluminum hydroxide slurry]
The seed crystal slurry and (optionally chelated) aluminum alkoxide are continuously fed to an agitator for mixing. By subjecting this mixture to high-speed rotational shearing stirring with a stirrer, the water in the seed crystal slurry and the aluminum alkoxide undergo a hydrolysis reaction, resulting in a slurry containing aluminum hydroxide particles as a hydrolyzate (aluminum hydroxide slurry). is obtained.
 種晶スラリーおよび(任意でキレート化した)アルミニウムアルコキシドの供給量は、混合物中における種晶の含有量が適切になるように制御することが好ましい。種晶の好ましい含有量は、混合物中の金属成分(アルミニウムアルコキシドおよび種晶に含まれるアルミニウム成分)の酸化物換算で、混合物中のアルミニウム成分の合計量100質量部あたり、種晶中のアルミニウム成分が1質量部以上、好ましくは2質量部以上、特に好ましくは4質量部以上であり、50質量部以下、好ましくは40質量部以下、特に好ましくは30質量部以下である。 The supply amounts of the seed crystal slurry and (optionally chelated) aluminum alkoxide are preferably controlled so that the seed crystal content in the mixture is appropriate. The preferred content of the seed crystals is the amount of the aluminum component in the seed crystals per 100 parts by mass of the total amount of the aluminum components in the mixture in terms of oxides of the metal components (aluminum alkoxide and the aluminum component contained in the seed crystals) in the mixture. is 1 part by mass or more, preferably 2 parts by mass or more, particularly preferably 4 parts by mass or more, and is 50 parts by mass or less, preferably 40 parts by mass or less, particularly preferably 30 parts by mass or less.
 また、種晶スラリーおよび(任意でキレート化した)アルミニウムアルコキシドの供給量は、(種晶スラリーに含まれる水)/((任意でキレート化した)アルミニウムアルコキシド)の配合比が、モル比で、約1.5~約6.0の範囲となるように制御することが好ましい。 In addition, the supply amount of the seed crystal slurry and (optionally chelated) aluminum alkoxide is such that the compounding ratio of (water contained in the seed crystal slurry) / ((optionally chelated) aluminum alkoxide) is It is preferably controlled to be in the range of about 1.5 to about 6.0.
 この工程では、混合物を高速回転剪断攪拌することを1つの特徴としている。本明細書において「高速回転剪断攪拌」とは、タービン(ローター)とステーター(スクリーン)との間のクリアランスが小さく(例えば2mm以下)、かつタービン(ローター)が高速回転(例えば周速約1m/秒~約40m/秒)するときに、タービン(ローター)とステーター(スクリーン)との間で生じる剪断力、圧力変動、キャビテーション、衝突力、ポテンシャルコア等の機械的エネルギーによって行う攪拌である。 One of the features of this process is high-speed rotary shear stirring of the mixture. As used herein, "high-speed rotary shear stirring" means that the clearance between the turbine (rotor) and the stator (screen) is small (e.g., 2 mm or less) and the turbine (rotor) rotates at high speed (e.g., peripheral speed of about 1 m/ seconds to about 40 m/s), the stirring is performed by mechanical energy such as shear force, pressure fluctuation, cavitation, collision force, and potential core generated between the turbine (rotor) and stator (screen).
 このような高速回転剪断攪拌を行い得る攪拌機としては、T.Kホモミキサー(特殊機化工業株式会社製)、クレアミックス(エム・テクニック株式会社製)、ポリトロンホモジナイザー、メガトロンホモジナイザー(KINEMATICA)、スープラトン(月島機械株式会社製)等の機種が挙げられる。  T. Models such as K Homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), Clearmix (manufactured by M Technic Co., Ltd.), Polytron Homogenizer, Megatron Homogenizer (KINEMATICA), and Supraton (manufactured by Tsukishima Kikai Co., Ltd.) can be mentioned.
 高速回転剪断攪拌では、タービン(ローター)の回転数は3000rpm~21500rpm、好ましくは、8000rpm~15000rpm、例えば10000rpmとする。回転数が上記範囲にあると、種晶スラリー中の水と、(任意でキレート化した)アルミニウムアルコキシドとの二液を十分に混合できると共に、生成した水酸化アルミニウムスラリー中の水酸化アルミニウムの凝集が抑制できる。これにより、微粒の水酸化アルミニウムを含む水酸化アルミニウムスラリーが得られる。また、水酸化アルミニウムスラリー中に種晶を均一に分散することができる。 In high-speed rotary shear stirring, the rotation speed of the turbine (rotor) is 3000 rpm to 21500 rpm, preferably 8000 rpm to 15000 rpm, for example 10000 rpm. When the rotational speed is within the above range, the two liquids of the water in the seed crystal slurry and the (optionally chelated) aluminum alkoxide can be sufficiently mixed, and the aluminum hydroxide in the produced aluminum hydroxide slurry can be aggregated. can be suppressed. As a result, an aluminum hydroxide slurry containing fine aluminum hydroxide particles is obtained. Also, the seed crystals can be uniformly dispersed in the aluminum hydroxide slurry.
 なお、アルミニウムアルコキシドの加水分解は、連続式反応装置を用いて行うことができる。連続式反応装置としてはタンク連続型、パイプライン連続型等が適用可能である。タンク連続型とは、種晶スラリーと(任意でキレート化した)アルミニウムアルコキシドを、高速回転剪断可能な攪拌機を備えたタンクの中に連続的に供給し、供給した液量と同量液を連続的に排出しながらアルミニウムアルコキシドの加水分解(および水酸化アルミニウム粒子の生成)を行う方法である。パイプライン連続型では、ラインに組み込んだ高速回転剪断可能な攪拌機に種晶スラリーと(任意でキレート化した)アルミニウムアルコキシドを、連続的に供給する方法である。これら連続式反応装置によれば、バッチ式反応装置に比べ、極めて生産性高く且つ、水酸化アルミニウム粒子の生成条件の均一化が図られるために、粒径分布が均一で粗大凝集粒子のない水酸化アルミニウムを含む、水酸化アルミニウムスラリーが得られる。 The hydrolysis of aluminum alkoxide can be performed using a continuous reactor. A continuous tank type, a continuous pipeline type, or the like can be applied as the continuous reactor. In the tank continuous type, the seed crystal slurry and (optionally chelated) aluminum alkoxide are continuously fed into a tank equipped with a high-speed rotational shear stirrer, and the same amount of liquid as the fed liquid is continuously fed. In this method, aluminum alkoxide is hydrolyzed (and aluminum hydroxide particles are produced) while discharging it effectively. In the pipeline continuous type, a seed crystal slurry and (optionally chelated) aluminum alkoxide are continuously fed to a high-speed rotational shear mixer incorporated in the line. According to these continuous reactors, compared to batch reactors, the productivity is extremely high and the conditions for producing aluminum hydroxide particles are uniformed, so water with a uniform particle size distribution and no coarse agglomerated particles can be obtained. An aluminum hydroxide slurry containing aluminum oxide is obtained.
〔4.前記水酸化アルミニウムスラリーを乾燥および焼成してアルミナ粉末を得る工程〕
 水酸化アルミニウムスラリーを公知の方法で乾燥し、得られた水酸化アルミニウムを焼成炉で焼成することにより、アルミナ粉末を得る。
 焼成は、通常800℃以上、好ましくは900℃以上、通常は1000℃以下、好ましくは980℃以下、更に好ましくは960℃以下で行なわれる。1000℃を超えると、微粒のアルミナ粉末を得にくい。また800℃未満では、アルミナ粉末中のα相の含有量が低くなる傾向にある。
[4. Step of drying and calcining the aluminum hydroxide slurry to obtain an alumina powder]
An alumina powder is obtained by drying the aluminum hydroxide slurry by a known method and firing the obtained aluminum hydroxide in a firing furnace.
Firing is generally carried out at 800° C. or higher, preferably 900° C. or higher, and generally 1000° C. or lower, preferably 980° C. or lower, more preferably 960° C. or lower. If it exceeds 1000° C., it is difficult to obtain fine alumina powder. If the temperature is less than 800° C., the α-phase content in the alumina powder tends to be low.
 焼成は、大気中で行われてもよいし、窒素ガス、アルゴンガスなどの不活性ガス中で行われてもよく、雰囲気中の水蒸気分圧を高く維持しながら焼成することが効果的である。特に、アルミニウムアルコキシドをキレート化する工程を含まない場合は、水蒸気分圧が高い雰囲気(つまり、高露点の雰囲気)で焼成すると、低い焼成温度でα相を得ることができる。なお、アルミニウムアルコキシドをキレート化する工程を含む場合は、水蒸気分圧の低い雰囲気(つまり低露点の雰囲気)および低い焼成温度で、α相を得ることができる。 Firing may be performed in the atmosphere or in an inert gas such as nitrogen gas or argon gas, and it is effective to perform firing while maintaining a high water vapor partial pressure in the atmosphere. . In particular, when the step of chelating aluminum alkoxide is not included, the α-phase can be obtained at a low firing temperature by firing in an atmosphere with a high water vapor partial pressure (that is, an atmosphere with a high dew point). When the step of chelating aluminum alkoxide is included, the α-phase can be obtained in an atmosphere with a low water vapor partial pressure (that is, an atmosphere with a low dew point) and a low firing temperature.
 焼成は、例えば管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉、ガス(LNG、LPG)炉、などの通常の焼成炉を用いて行なうことができる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また静置式で行なってもよいし、流動式で行ってもよい。 Firing can be performed in a conventional tubular electric furnace, box electric furnace, tunnel furnace, far infrared furnace, microwave heating furnace, shaft furnace, reverberatory furnace, rotary furnace, roller hearth furnace, gas (LNG, LPG) furnace, etc. It can be carried out using a firing furnace. Firing may be performed batchwise or continuously. In addition, it may be carried out in a stationary manner or in a fluidized manner.
 焼成時の露点を制御する方法としては、焼成炉として、例えば、電気エネルギーを熱源とする電気炉、または管状炉を用いる場合は、炉内に導入するドライエアー中に水を噴霧する方法、または炉内にスチームを導入する方法が効果的である。焼成炉としてガス燃焼炉を用いる場合は、ガス、石油などの燃料を燃焼して発生する水分を炉内に導入する方法が効果的であり、さらに、スチームを追加で導入するとより効果的である。 As a method for controlling the dew point during firing, for example, when an electric furnace using electric energy as a heat source or a tubular furnace is used as the firing furnace, a method of spraying water into the dry air introduced into the furnace, or A method of introducing steam into the furnace is effective. When a gas combustion furnace is used as the firing furnace, it is effective to introduce moisture generated by burning fuel such as gas or petroleum into the furnace, and it is more effective to additionally introduce steam. .
 露点は、水蒸気量を使用して換算表から求めるか、水蒸気圧を使用して計算式から求める。水蒸気圧および水蒸気量(絶対湿度)は、それぞれ、飽和水蒸気圧または飽和水蒸気量と相対湿度とから求めることができる。なお、飽和水蒸気圧は、Tetensの式から計算できる。 The dew point is obtained from a conversion table using the amount of water vapor, or from a formula using the water vapor pressure. The water vapor pressure and the water vapor amount (absolute humidity) can be obtained from the saturated water vapor pressure or the saturated water vapor amount and the relative humidity, respectively. The saturated water vapor pressure can be calculated from the Tetens formula.
 アルミニウムアルコキシドをキレート化する工程を含まない場合は、炉内の露点が30℃以上となるように制御することが好ましく、露点が40℃以上となるように制御することがさらに好ましく、露点が50℃以上となるように制御することが特に好ましい。 When the step of chelating the aluminum alkoxide is not included, the dew point in the furnace is preferably controlled to 30 ° C. or higher, more preferably 40 ° C. or higher, and the dew point is 50 ° C. or higher. It is particularly preferable to control the temperature to be 0° C. or higher.
〔5.得られたアルミナ粉末を粉砕する工程〕
 得られたアルミナ粉末を粉砕する。アルミナ粉末の粉砕には、例えば振動ミル、ボールミル、ジェットミルなどの媒体粉砕機を用いることができる。また、粉砕後のアルミナ粉末を分級してもよい。
[5. Step of pulverizing the obtained alumina powder]
The alumina powder obtained is pulverized. A medium pulverizer such as a vibration mill, a ball mill, and a jet mill can be used for pulverizing the alumina powder. Further, the alumina powder after pulverization may be classified.
[実施形態2:アルミナスラリー]
 本発明の実施形態に係るアルミナスラリーは、実施形態1に係るアルミナ粉末と、分散剤と、分散媒とを含む。
[Embodiment 2: Alumina slurry]
An alumina slurry according to an embodiment of the present invention includes the alumina powder according to Embodiment 1, a dispersant, and a dispersion medium.
 分散剤は、酸またはアルカリ等のpH調整剤、縮合燐酸または縮合燐酸塩、ポリスチレンスルホン酸塩、ポリカルボン酸型高分子化合物、ポリアクリル酸型高分子化合物、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル等が挙げられる。 Dispersants include pH adjusters such as acids or alkalis, condensed phosphoric acid or condensed phosphates, polystyrene sulfonates, polycarboxylic acid-type polymer compounds, polyacrylic acid-type polymer compounds, polyoxyethylene sorbitan fatty acid esters, polyoxy Ethylene sorbitol fatty acid ester and the like can be mentioned.
 界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、および両性界面活性剤が挙げられる。陰イオン性界面活性剤としては、例えばポリカルボン酸アンモニウムなどが挙げられる。 Surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. Examples of anionic surfactants include ammonium polycarboxylate.
 粘度調節剤としては、水溶性セルロースエーテル、多糖類、多価アルコールおよびその誘導体、水溶性高分子化合物、増粘作用を持つ水溶性酸化物およびその塩類、生体高分子等が挙げられる。 Viscosity modifiers include water-soluble cellulose ethers, polysaccharides, polyhydric alcohols and their derivatives, water-soluble polymer compounds, water-soluble oxides and their salts with thickening action, and biopolymers.
 分散媒は特に限定されないが、例えば、水、エタノール、アセトン、NMP等の有機溶媒が使用できる。 Although the dispersion medium is not particularly limited, for example, organic solvents such as water, ethanol, acetone, and NMP can be used.
 アルミナ粉末と分散剤と分散媒の配合比は、本発明の目的を損なわない限り、他の成分を必要に応じて適宜含有させることができる。他の成分として、例えば、分散剤、界面活性剤、粘度調節剤等が挙げられる。これらの他の成分を使用する場合、含有割合は、研磨砥粒の全質量に対して、通常、0.01~10質量%の範囲程度である。アルミナ粉末はスラリーの0.5~70質量%で含むことができる。 The mixing ratio of the alumina powder, the dispersant and the dispersion medium can contain other components as necessary as long as the object of the present invention is not impaired. Other components include, for example, dispersants, surfactants, viscosity modifiers, and the like. When these other components are used, their content is usually in the range of 0.01 to 10% by weight with respect to the total weight of the abrasive grains. Alumina powder can be included at 0.5 to 70% by weight of the slurry.
 アルミナスラリーは、研磨砥粒(および任意の成分)を分散媒に均一に分散するように混合することによって調製される。混合方法は特に制限はなく、例えば、超音波分散機、ホモジナイザー等による撹拌混合方法、湿式ミル等による粉砕混合法を挙げることができる。
 混合方法は、従来公知の混合方法で行うことができ、混合順序も任意であり、研磨スラリーの構成成分(研磨砥粒、分散剤、分散媒、および任意の成分)のうち、何れか2成分または3成分以上を予め混合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。
Alumina slurries are prepared by mixing abrasive grains (and optional ingredients) in a dispersion medium to uniformly disperse them. The mixing method is not particularly limited, and examples thereof include a stirring mixing method using an ultrasonic disperser, a homogenizer, etc., and a pulverizing mixing method using a wet mill or the like.
The mixing method can be performed by a conventionally known mixing method, and the mixing order is arbitrary. Alternatively, three or more components may be premixed and then the remaining components mixed, or all may be mixed at once.
 実施形態2のアルミナスラリーは、実施形態1のアルミナ粉末を使用するため、アルミナスラリー中のアルミナ粉末の分散性が良好で、凝集が起こりにくい。 Since the alumina slurry of Embodiment 2 uses the alumina powder of Embodiment 1, the alumina powder in the alumina slurry has good dispersibility and is less prone to agglomeration.
 実施形態1に係るアルミナ粉末および実施形態2に係るアルミナスラリーは、例えば、シリコンウエハのCMP工程、微細パターンを形成した基板の平坦化CMP工程、絶縁膜のCMP工程、メタル膜のCMP工程、および難加工性基板(サファイア、SiC、GaN、Ga、ダイヤモンド)のCMP工程において利用される。 The alumina powder according to Embodiment 1 and the alumina slurry according to Embodiment 2 are used, for example, in a silicon wafer CMP process, a substrate planarization CMP process on which a fine pattern is formed, an insulating film CMP process, a metal film CMP process, and It is used in the CMP process of difficult-to-work substrates (sapphire, SiC, GaN, Ga 2 O 3 , diamond).
 実施例では、アルミナ粉末の試料を9種類(No.1~9)準備した。
 まず試料No.1のアルミナ粉末の調製方法を説明し、次に、試料No.2~9のアルミナ粉末の調製方法を説明する。
In the examples, nine types (No. 1 to 9) of alumina powder samples were prepared.
First, sample no. A method for preparing alumina powder No. 1 will be described, and then sample No. 1 will be described. 2 to 9, the preparation method of the alumina powder is explained.
1.試料No.1のアルミナ粉末の調製
〔種晶(αアルミナ)スラリーの調製〕
 アルミナ粒子(種晶の原料)を水に分散させた後、ボールミルで湿式粉砕を行った。その後、冷却遠心分離機(himac製:CR7N)で回転数4000rpmにて30分間遠心処理を行い、沈殿物を除去した。これにより、種晶が分散された種晶スラリーを得た。
 また、得られた種晶スラリー中の種晶のBET比表面積を測定した。まず、種晶スラリー中の水分を蒸発させて種晶を得、JIS-Z-8830:2013「ガス吸着による粉体(固体)の比表面積測定法」に規定された方法に従って、窒素吸着法一点法によりBET比表面積を求めた。種晶のBET比表面積の測定結果を表1に示す。
1. Sample no. Preparation of alumina powder in 1 [Preparation of seed crystal (α-alumina) slurry]
After dispersing alumina particles (raw material of seed crystals) in water, wet pulverization was performed with a ball mill. After that, centrifugation was performed for 30 minutes at 4000 rpm in a cooling centrifuge (manufactured by Himac: CR7N) to remove precipitates. As a result, a seed crystal slurry in which seed crystals were dispersed was obtained.
Also, the BET specific surface area of the seed crystals in the obtained seed crystal slurry was measured. First, the moisture in the seed crystal slurry is evaporated to obtain seed crystals, and the nitrogen adsorption method is performed according to the method specified in JIS-Z-8830:2013 “Method for measuring specific surface area of powder (solid) by gas adsorption”. The BET specific surface area was obtained by the method. Table 1 shows the measurement results of the BET specific surface area of the seed crystal.
〔キレート化アルミニウムイソプロポキシドの調整〕
 アルミニウムイソプロポキシドをキレート化して、キレート化アルミニウムイソプロポキシドの調整した(表1の「キレート化の有無」で「あり」と表記)。
 アルミニウムイソプロポキシドとアセト酢酸エチル(キレート剤)とを、モル比で100:3となるように混合すことで、3mol%キレート化したアルミニウムイソプロポキシドを得た。
[Preparation of chelated aluminum isopropoxide]
Aluminum isopropoxide was chelated to prepare chelated aluminum isopropoxide (indicated as "Yes" in "Presence or absence of chelation" in Table 1).
By mixing aluminum isopropoxide and ethyl acetoacetate (chelating agent) at a molar ratio of 100:3, 3 mol % chelated aluminum isopropoxide was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔微粒αアルミナ粉末の製造〕
 キレート化したアルミニウムイソプロポキシドと、種晶スラリーとを、精密乳化分散機クレアミックスCLM-2.2S(エム・テクニック社製)を用いて、回転数10000rpmで混合して加水分解した。これにより、水酸化アルミニウムスラリーを得た。
 キレート化アルミニウムイソプロポキシドと種晶スラリーとの配合比は、(種晶スラリー中に含まれる水)/(キレート化アルミニウムイソプロポキシド)の比率が2.7/1(モル比)となるように決定した。このような配合比で配合すると、水酸化アルミニウムスラリーには、金属成分の酸化物換算で、キレート化アルミニウムイソプロポキシドおよび種晶に含まれるアルミニウム成分の合計量100質量部あたり、種晶に含まれるアルミニウム成分が10質量部含まれることとなる。なお、各々のアルミニウム成分の含有量(質量部)は、使用したアルミニウムイソプロポキシドが全てアルミナになると仮定して計算で求めた。
[Production of fine α-alumina powder]
The chelated aluminum isopropoxide and the seed crystal slurry were hydrolyzed by mixing with a precision emulsifying disperser Clearmix CLM-2.2S (manufactured by M Technic Co., Ltd.) at a rotation speed of 10000 rpm. An aluminum hydroxide slurry was thus obtained.
The compounding ratio of the chelated aluminum isopropoxide and the seed crystal slurry is such that the ratio of (water contained in the seed crystal slurry)/(chelated aluminum isopropoxide) is 2.7/1 (molar ratio). decided to When blended at such a compounding ratio, the aluminum hydroxide slurry contains, in terms of metal component oxide, 100 parts by mass of the total amount of chelated aluminum isopropoxide and the aluminum component contained in the seed crystal. 10 parts by mass of the aluminum component contained in the The content (parts by mass) of each aluminum component was obtained by calculation on the assumption that all of the aluminum isopropoxide used was converted to alumina.
 得られた水酸化アルミニウムスラリーを150℃で乾燥して水酸化アルミニウム粒子を得、それをアルミナ製坩堝に入れて箱型電気炉で焼成した。焼成条件は、200℃/時間の昇温速度で、表1に記載の焼成温度(975℃)に昇温し、その焼成温度で4時間保持した。焼成により、αアルミナ粉末を得た。
 このαアルミナ粉末を、さらにボールミルで粉砕して、微粒αアルミナ粉末を得た。
The obtained aluminum hydroxide slurry was dried at 150° C. to obtain aluminum hydroxide particles, which were placed in an alumina crucible and fired in a box type electric furnace. The sintering conditions were such that the temperature was raised to the sintering temperature (975° C.) shown in Table 1 at a rate of temperature increase of 200° C./hour, and the sintering temperature was maintained for 4 hours. By firing, an α-alumina powder was obtained.
This α-alumina powder was further pulverized with a ball mill to obtain fine-grained α-alumina powder.
2.試料No.2のアルミナ粉末の調製
 試料No.1のアルミナ粉末の調製方法と同様であるが、以下の点を変更した。
・水酸化アルミニウムスラリーにおいて、金属成分の酸化物換算で、キレート化アルミニウムイソプロポキシドおよび種晶に含まれるアルミニウム成分の合計量100質量部あたり、種晶に含まれるアルミニウム成分が5.6質量部となるように、種晶の配合量を変更した。
2. Sample no. Preparation of alumina powder of No. 2 Sample No. The method was the same as the method for preparing alumina powder in No. 1, but the following points were changed.
・In the aluminum hydroxide slurry, 5.6 parts by mass of the aluminum component contained in the seed crystal per 100 parts by mass of the total amount of the chelated aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. The compounding amount of the seed crystal was changed so that
3.試料No.3のアルミナ粉末の調製
 アルコキシド法で作製した高純度水酸化アルミニウムに、皿型造粒機でSi源を加え、箱型電気炉で焼成した。焼成条件は、200℃/時間の昇温速度で、表1に記載の焼成温度(1200℃)に昇温し、その焼成温度で4時間保持して高純度アルミナを得た。この高純度アルミナを振動ミルで粉砕し、微粒の高純度アルミナ粉末を得た。
 表1に示すように、種晶を使用しなかった。
3. Sample no. Preparation of 3 Alumina Powder To high-purity aluminum hydroxide produced by the alkoxide method, a Si source was added using a dish-type granulator, and the mixture was fired in a box-type electric furnace. As for the firing conditions, the temperature was raised to the firing temperature (1200° C.) shown in Table 1 at a heating rate of 200° C./hour, and the firing temperature was maintained for 4 hours to obtain high-purity alumina. This high-purity alumina was pulverized with a vibration mill to obtain fine-grained high-purity alumina powder.
As shown in Table 1, no seed crystals were used.
4.試料No.4のアルミナ粉末の調製
 バイヤー法で作成した水酸化アルミニウムを焼成し、BET比表面積が約4m/gのアルミナ粉末を作製した。得られたアルミナ粉末をボールミルで4時間粉砕し、BET比表面積が約5m/gの微粒アルミナ粉末を得た。
 表1に示すように、種晶を使用しなかった。
4. Sample no. 4 Preparation of Alumina Powder Aluminum hydroxide prepared by the Bayer method was calcined to prepare an alumina powder having a BET specific surface area of about 4 m 2 /g. The obtained alumina powder was pulverized with a ball mill for 4 hours to obtain fine alumina powder having a BET specific surface area of about 5 m 2 /g.
As shown in Table 1, no seed crystals were used.
3.試料No.5のアルミナ粉末の調製
 試料No.1のアルミナ粉末の調製方法と同様であるが、以下の点を変更した。
・種晶を使用しなかった。
・焼成温度は1120℃とした。
3. Sample no. Preparation of alumina powder of No. 5 Sample No. The method was the same as the method for preparing alumina powder in No. 1, but the following points were changed.
・No seed crystals were used.
・The firing temperature was 1120°C.
6.試料No.6のアルミナ粉末の調製
 試料No.2のアルミナ粉末の調製方法と同様であるが、以下の点を変更した。
・アルミニウムイソプロポキシドは、キレート化せずに使用した(表1の「キレート化の有無」で「なし」と表記)。
・焼成炉にガス炉を使用した。焼成温度は965℃とした。
6. Sample no. Preparation of alumina powder of sample No. 6. 2, except that the following points were changed.
- Aluminum isopropoxide was used without being chelated (indicated as "none" in "presence or absence of chelation" in Table 1).
・A gas furnace was used for the firing furnace. The firing temperature was 965°C.
7.試料No.7のアルミナ粉末の調製
 試料No.6のアルミナ粉末の調製方法と同様であるが、以下の点を変更した。
・水酸化アルミニウムスラリーにおいて、金属成分の酸化物換算で、アルミニウムイソプロポキシドおよび種晶に含まれるアルミニウム成分の合計量100質量部あたり、種晶に含まれるアルミニウム成分が10質量部となるように、種晶の配合量を変更した。
7. Sample no. Preparation of alumina powder of sample no. 6 was the same as the method for preparing alumina powder, but the following points were changed.
・In the aluminum hydroxide slurry, the aluminum component contained in the seed crystal is 10 parts by mass per 100 parts by mass of the total amount of aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. , the compounding amount of seed crystals was changed.
8.試料No.8のアルミナ粉末の調製
 試料No.6のアルミナ粉末の調製方法と同様であるが、以下の点を変更した。
・水酸化アルミニウムスラリーにおいて、金属成分の酸化物換算で、アルミニウムイソプロポキシドおよび種晶に含まれるアルミニウム成分の合計量100質量部あたり、種晶に含まれるアルミニウム成分が15質量部となるように、種晶の配合量を変更した。
8. Sample no. Preparation of alumina powder of sample No. 8. 6, but with the following changes.
・In the aluminum hydroxide slurry, the aluminum component contained in the seed crystal is 15 parts by mass per 100 parts by mass of the total amount of aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. , the compounding amount of seed crystals was changed.
9.試料No.9のアルミナ粉末の調製
 試料No.6のアルミナ粉末の調製方法と同様であるが、以下の点を変更した。
・水酸化アルミニウムスラリーにおいて、金属成分の酸化物換算で、アルミニウムイソプロポキシドおよび種晶に含まれるアルミニウム成分の合計量100質量部あたり、種晶に含まれるアルミニウム成分が20質量部となるように、種晶の配合量を変更した。
9. Sample no. Preparation of alumina powder of sample No. 9. 6 was the same as the method for preparing alumina powder, but the following points were changed.
In the aluminum hydroxide slurry, the aluminum component contained in the seed crystal is 20 parts by mass per 100 parts by mass of the total amount of aluminum isopropoxide and the aluminum component contained in the seed crystal, in terms of the oxide of the metal component. , the compounding amount of seed crystals was changed.
〔パルスNMR測定〕
 得られた微粒αアルミナ粉末を分散媒(純水)と混合して、10質量%の混合液を準備した。日本エマソン株式会社性の超音波ホモジナイザー「Advanced SONIFIER」を用いて、混合液に超音波を7分間付与して分散媒中にアルミナ粉末を分散させて、アルミナスラリーを得た。このアルミナスラリーの横緩和時間(T2)を、米国MAGELEKA,Inc製のパルスNMR方式粒子界面特性評価装置「Magno Meter XRS」で測定した。測定条件は、測定周波数:12MHz、測定核:1H NMR、測定方法:T2、サンプル量:0.3ml、温度25℃であった。また、純水を用いてブランク液の横緩和時間(T2)も同様の測定条件で測定した。アルミナスラリーの横緩和時間(T2)の逆数をRav、ブランク液の横緩和時間(T2)の逆数をRbとし、以下の式(2)からRspを求めた。

Rsp=(Rav-Rb)/Rb   (2)
[Pulse NMR measurement]
The resulting fine α-alumina powder was mixed with a dispersion medium (pure water) to prepare a 10% by mass mixed liquid. Using an ultrasonic homogenizer "Advanced SONIFIER" manufactured by Emerson Japan Co., Ltd., ultrasonic waves were applied to the mixture for 7 minutes to disperse the alumina powder in the dispersion medium to obtain an alumina slurry. The transverse relaxation time (T2) of this alumina slurry was measured with a pulse NMR system particle interface characterization device "Magno Meter XRS" manufactured by Mageleka, Inc., USA. Measurement conditions were measurement frequency: 12 MHz, measurement nucleus: 1H NMR, measurement method: T2, sample amount: 0.3 ml, and temperature of 25°C. The transverse relaxation time (T2) of the blank solution was also measured under the same measurement conditions using pure water. The reciprocal of the horizontal relaxation time (T2) of the alumina slurry was Rav, and the reciprocal of the horizontal relaxation time (T2) of the blank liquid was Rb.

Rsp=(Rav−Rb)/Rb (2)
〔BET比表面積〕
 微粒αアルミナ粉末のBET比表面積を測定した。比表面積測定装置として、株式会社マウンテック製の「Macsorb」を使用し、JIS-Z-8830:2013「ガス吸着による粉体(固体)の比表面積測定法」に規定された方法に従って、窒素吸着法一点法によりBET比表面積を求めた。
[BET specific surface area]
The BET specific surface area of fine-grained α-alumina powder was measured. As a specific surface area measuring device, using "Macsorb" manufactured by Mountec Co., Ltd., according to the method specified in JIS-Z-8830: 2013 "Method for measuring specific surface area of powder (solid) by gas adsorption", Nitrogen adsorption method. The BET specific surface area was determined by the one-point method.
 アルミナ粉末の総表面積(m)は、濃度10質量%のアルミナスラリー0.3mlに含まれるアルミナ粉末の質量(g)に、アルミナ粉末のBET比表面積(m/g)をかけて算出した(以下の式(3)’参照)。

 アルミナ粉末の総表面積(m)=(上記アルミナスラリー0.3(ml)中のアルミナ粉末の質量(g))×アルミナのBET比表面積(m/g)   (3)’
The total surface area (m 2 ) of the alumina powder was calculated by multiplying the mass (g) of the alumina powder contained in 0.3 ml of the alumina slurry having a concentration of 10% by mass by the BET specific surface area (m 2 /g) of the alumina powder. (See equation (3)' below).

Total surface area of alumina powder (m 2 ) = (mass (g) of alumina powder in 0.3 (ml) of alumina slurry) x BET specific surface area of alumina (m 2 /g) (3)'
 得られたRspおよびアルミナ粉末の総表面積から、以下の式(1)の左辺の値を求めた。

Rsp/アルミナ粉末の総表面積≦12.0   (1)
From the obtained Rsp and the total surface area of the alumina powder, the value of the left side of the following formula (1) was obtained.

Rsp/total surface area of alumina powder ≤ 12.0 (1)
〔格子ひずみ〕
 アルミナ粉末の格子ひずみを上述した手法で求めた。
 微粒αアルミナ粉末に対して2θ/θ法によるX線回折測定を実施し、X線回折プロファイルの実測データを得た。X線回折測定には、ブルカー製D8 ADVANCEを用い、X線源としてCuKα線を用い、測定時の電圧は40kV、電流は40mAとした。スキャンは連続測定法で、2θが5~80°の範囲で行い、スキャンスピードは5sとし、ステップ幅を0.020°とした。前記XRD回折プロファイルを、RIETAN-FP v2.63を用いたリートベルト法により解析した結果から、2θの値が40°から80°までのピークについて、各ピークの2θの値と積分幅を求め、上述したHalder-Wagner法によって結晶子サイズと格子ひずみを評価した。
[Lattice strain]
The lattice strain of the alumina powder was obtained by the method described above.
X-ray diffraction measurement was performed on the fine-grained α-alumina powder by the 2θ/θ method to obtain actual measurement data of the X-ray diffraction profile. For the X-ray diffraction measurement, D8 ADVANCE manufactured by Bruker was used, CuKα rays were used as the X-ray source, and the voltage was 40 kV and the current was 40 mA during the measurement. Scanning was performed by a continuous measurement method in the range of 2θ from 5 to 80°, the scanning speed was 5 s, and the step width was 0.020°. From the results of analyzing the XRD diffraction profile by the Rietveld method using RIETAN-FP v2.63, for peaks with 2θ values from 40° to 80°, the 2θ value and the integral width of each peak are obtained, Crystallite size and lattice strain were evaluated by the Halder-Wagner method described above.
 格子ひずみεが1×10-4よりも小さいと、測定誤差や解析誤差の影響によって、フィッティング上εが負になることがある。εが負になった場合は、格子ひずみεは「1×10-4未満」とした。 If the lattice strain ε is smaller than 1×10 −4 , ε 2 may become negative in fitting due to the effects of measurement and analysis errors. When ε 2 became negative, the lattice strain ε was defined as “less than 1×10 −4 ”.
〔分散性評価〕
 パルスNMR測定に使用したアルミナスラリー(10質量%)を用いて、アルミナスラリー中における微粒αアルミナ粉末の分散性(凝集の有無)を確認した。
 アルミナスラリー中の微粒αアルミナ粉末の粒度分布は、レーザー粒度分布測定装置〔日機装(株)製「マイクロトラック」〕を用いてレーザー回折法により測定し、質量基準で累積百分率95%相当粒子径のD95を求めた。測定に際しては、0.2重量%のヘキサメタ燐酸ソーダ水溶液に微量のアルミナスラリーを入れて、超音波を付与して、水溶液中に微粒αアルミナ粉末を分散した。また、アルミナ粒子の屈折率は1.76とした。
[Dispersibility evaluation]
Using the alumina slurry (10% by mass) used for the pulse NMR measurement, the dispersibility (presence or absence of agglomeration) of the fine α-alumina powder in the alumina slurry was confirmed.
The particle size distribution of the fine α-alumina powder in the alumina slurry was measured by laser diffraction using a laser particle size distribution measuring device [Nikkiso Co., Ltd. “Microtrac”], and the cumulative percentage of the particle diameter equivalent to 95% on a mass basis. D95 was determined. For the measurement, a small amount of alumina slurry was added to a 0.2% by weight aqueous solution of sodium hexametaphosphate, and ultrasonic waves were applied to disperse the fine α-alumina powder in the aqueous solution. Also, the refractive index of the alumina particles was set to 1.76.
 各試料の測定結果および計算結果を表2、3に示す。なお、表2において、下線を付した数値は、本発明の実施形態の範囲から外れていることを示している。 Tables 2 and 3 show the measurement results and calculation results for each sample. In addition, in Table 2, the underlined numerical values indicate that they are out of the scope of the embodiment of the present invention.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試料No.1~2および6~9のアルミナ粉末は、実施形態に記載の製造条件で調製されたため、「Rsp/アルミナ粉末の総表面積」が、本発明の実施形態で規定する範囲内であった。そのアルミナ粉末を用いたアルミナスラリーでは、超音波で分散させた後のアルミナ粉末のD95が十分に小さかった。このことから、アルミナ粉末の分散性が良好であることが確認できた。  Sample No. Since the alumina powders of 1 to 2 and 6 to 9 were prepared under the production conditions described in the embodiment, "Rsp/total surface area of alumina powder" was within the range defined in the embodiment of the present invention. In the alumina slurry using the alumina powder, the D95 of the alumina powder after ultrasonic dispersion was sufficiently small. From this, it was confirmed that the dispersibility of the alumina powder was good.
 一方、試料No.3のアルミナ粉末は、製造時の回転数が低く、また、種晶スラリーを加えなかった。そのため、得られたアルミナ粉末は結晶性が悪く、アルミナスラリーにしたときに凝集しやすかった。その結果、「Rsp/アルミナ粉末の総表面積」が本発明の実施形態の範囲から外れていた。 On the other hand, sample No. The alumina powder of No. 3 had a low rotational speed during production and no seed crystal slurry was added. Therefore, the obtained alumina powder had poor crystallinity, and easily aggregated when made into an alumina slurry. As a result, "Rsp/total surface area of alumina powder" was outside the scope of the embodiments of the present invention.
 試料No.4のアルミナ粉末は、バイヤー法で作製されたアルミナを粉砕したものであり、アルミナの純度が低かった。そのため、得られたアルミナ粉末は結晶性が悪く、アルミナスラリーにしたときに凝集しやすかった。その結果、「Rsp/アルミナ粉末の総表面積」が本発明の実施形態の範囲から外れていた。  Sample No. The alumina powder of No. 4 was obtained by pulverizing alumina produced by the Bayer method, and the purity of alumina was low. Therefore, the obtained alumina powder had poor crystallinity, and easily aggregated when made into an alumina slurry. As a result, "Rsp/total surface area of alumina powder" was outside the scope of the embodiments of the present invention.
 試料No.3、4のアルミナ粉末を用いたアルミナスラリーでは、超音波で分散させた後のアルミナ粉末のD95が大きかった。このことから、アルミナ粉末の分散性が悪く、アルミナスラリー中において、アルミナ粉末の少なくとも一部が凝集していたことが確認された。  Sample No. In the alumina slurries using the alumina powders of Nos. 3 and 4, the D95 of the alumina powder after ultrasonic dispersion was large. From this, it was confirmed that the dispersibility of the alumina powder was poor and at least part of the alumina powder was agglomerated in the alumina slurry.
 試料No.5は、種晶を添加せずに作製したアルミナ粉末であった。そのため、D95は、試料No.3、4に比べると小さいものの、試料No.1、2と比べると大きくなった。  Sample No. 5 was an alumina powder prepared without adding seed crystals. Therefore, D95 is sample no. Although smaller than samples No. 3 and 4, sample no. Larger than 1 and 2.
 本出願は、出願日が2021年11月26日である日本国特許出願、特願2021-192365を基礎出願とする優先権主張を伴う。特願2021-192365は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on a Japanese patent application, Japanese Patent Application No. 2021-192365, which has a filing date of November 26, 2021. Japanese Patent Application No. 2021-192365 is incorporated herein by reference.

Claims (4)

  1.  以下の式(1)を満たすアルミナ粉末。

    Rsp/アルミナ粉末の総表面積≦12.0   (1)

    式(1)中のRspおよびアルミナ粉末の総表面積は、それぞれ下記の式(2)および式(3)から求める。

    Rsp=(Rav-Rb)/Rb   (2)

     Ravは、分散媒にアルミナ粉末を分散させた体積X(ml)のアルミナスラリーをパルスNMR測定したときの横緩和時間の逆数であり、
     Rbは、体積X(ml)の前記分散媒をパルスNMR測定したときの横緩和時間の逆数である。

    アルミナ粉末の総表面積(m)=(前記体積X(ml)中のアルミナ粉末の質量(g))×アルミナのBET比表面積(m/g)   (3)
    Alumina powder satisfying the following formula (1).

    Rsp/total surface area of alumina powder ≤ 12.0 (1)

    Rsp and the total surface area of the alumina powder in formula (1) are obtained from the following formulas (2) and (3), respectively.

    Rsp=(Rav−Rb)/Rb (2)

    Rav is the reciprocal of the transverse relaxation time when pulse NMR measurement is performed on an alumina slurry of volume X (ml) in which alumina powder is dispersed in a dispersion medium,
    Rb is the reciprocal of the transverse relaxation time when the dispersion medium of volume X (ml) is subjected to pulse NMR measurement.

    Total surface area of alumina powder (m 2 ) = (mass (g) of alumina powder in volume X (ml)) x BET specific surface area of alumina (m 2 /g) (3)
  2.  さらに、以下の式(4)を満たす、請求項1に記載のアルミナ粉末。

    3.0≦Rsp/アルミナ粉末の総表面積   (4)
    2. The alumina powder according to claim 1, further satisfying the following formula (4).

    3.0 ≤ Rsp / total surface area of alumina powder (4)
  3.  格子ひずみが0.002以下である、請求項1に記載のアルミナ粉末。 The alumina powder according to claim 1, which has a lattice strain of 0.002 or less.
  4.  請求項1~3のいずれか1項に記載のアルミナ粉末と、分散剤と、分散媒とを含むアルミナスラリー。 An alumina slurry containing the alumina powder according to any one of claims 1 to 3, a dispersant, and a dispersion medium.
PCT/JP2022/043523 2021-11-26 2022-11-25 Alumina powder and alumina slurry including same WO2023095871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280054014.4A CN117794862A (en) 2021-11-26 2022-11-25 Alumina powder and alumina slurry containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-192365 2021-11-26
JP2021192365 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095871A1 true WO2023095871A1 (en) 2023-06-01

Family

ID=86539609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043523 WO2023095871A1 (en) 2021-11-26 2022-11-25 Alumina powder and alumina slurry including same

Country Status (3)

Country Link
CN (1) CN117794862A (en)
TW (1) TW202332655A (en)
WO (1) WO2023095871A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789717A (en) * 1993-09-24 1995-04-04 Catalysts & Chem Ind Co Ltd Alumina sol and its production
JPH0812325A (en) * 1994-06-24 1996-01-16 Sumitomo Chem Co Ltd Production of fine particle-shaped aluminum oxide
JPH1059713A (en) * 1996-05-16 1998-03-03 Sumitomo Chem Co Ltd Aluminum hydroxide, its production and rubber composition for tire tread using the same
JP2005001984A (en) * 2003-05-19 2005-01-06 Sumitomo Chemical Co Ltd METHOD OF FINE PARTICULATE alpha-ALUMINA
JP2010001198A (en) * 2008-06-23 2010-01-07 Sumitomo Chemical Co Ltd METHOD FOR PRODUCING SPHERICAL alpha-ALUMINA
JP2010254553A (en) * 2009-03-31 2010-11-11 Canon Inc Precursor sol of aluminum oxide and method for producing optical member
WO2014017662A1 (en) * 2012-07-27 2014-01-30 住友化学株式会社 Alumina slurry, method for producing same, and coating liquid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789717A (en) * 1993-09-24 1995-04-04 Catalysts & Chem Ind Co Ltd Alumina sol and its production
JPH0812325A (en) * 1994-06-24 1996-01-16 Sumitomo Chem Co Ltd Production of fine particle-shaped aluminum oxide
JPH1059713A (en) * 1996-05-16 1998-03-03 Sumitomo Chem Co Ltd Aluminum hydroxide, its production and rubber composition for tire tread using the same
JP2005001984A (en) * 2003-05-19 2005-01-06 Sumitomo Chemical Co Ltd METHOD OF FINE PARTICULATE alpha-ALUMINA
JP2010001198A (en) * 2008-06-23 2010-01-07 Sumitomo Chemical Co Ltd METHOD FOR PRODUCING SPHERICAL alpha-ALUMINA
JP2010254553A (en) * 2009-03-31 2010-11-11 Canon Inc Precursor sol of aluminum oxide and method for producing optical member
WO2014017662A1 (en) * 2012-07-27 2014-01-30 住友化学株式会社 Alumina slurry, method for producing same, and coating liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEDA, SHINICHI: "Ceramic powder considerations - surface properties and wetting", NEW CERAMICS LETTER, no. 47, 30 November 2012 (2012-11-30), pages 3 - 6, XP009546652, ISSN: 2436-7303 *

Also Published As

Publication number Publication date
CN117794862A (en) 2024-03-29
TW202332655A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
Bondioli et al. Microwave‐hydrothermal synthesis of nanocrystalline zirconia powders
JP5255059B2 (en) Method for producing flaky aluminum oxide using microwaves
KR100392591B1 (en) Polishing Agent, Method for Producing the Same and Method for Polishing
JP5356639B2 (en) Zirconia fine powder and method for producing the same
JP5356665B2 (en) Zirconia sintered body
JP2020019704A (en) Method for producing aluminum hydroxide-coated silicon carbide particle powder, and method for producing dispersion containing powder and dispersion medium
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
JP2003192452A (en) Zirconia powder and sintered compact thereof
CN105836794A (en) Preparation method of barium titanate powder
CN113292097A (en) Method for preparing high-tetragonality barium titanate powder
WO2023095871A1 (en) Alumina powder and alumina slurry including same
Deepapriya et al. Effect of lanthanum substitution on magnetic and structural properties of nickel ferrite
Matsui et al. Formation Mechanism of Hydrous Zirconia Particles Produced by Hydrolysis of ZrOCl2Solutions: IV, Effects of ZrOCl2Concentration and Reaction Temperature
KR101082620B1 (en) Slurry for polishing
JP2017178703A (en) Method for producing silica-based composite particle dispersion liquid
Qiao et al. Hydrothermal synthesis of barium zirconate spherical particles with controllable morphology and size
CN113480306A (en) BaTiO3Preparation method of microcrystalline powder
JP2023524381A (en) sintered zirconia balls
Chen et al. Ammonium citrate-assisted combustion synthesis and photoluminescence properties of Dy: YAG nanophosphors
KR102612361B1 (en) Polishing material comprising α-alumina particles and method thereof
TW201908241A (en) Silicate compound microparticles and method for producing same
KR102282872B1 (en) Fabrication method of cerium oxide particles, polishing particles and slurry composition comprising the same
JP7428456B1 (en) Surface-treated calcium carbonate and resin composition using the same
Panova et al. Investigation into the phase formation in the ZrO 2-CeO 2 system
JP6010843B2 (en) Method for producing particulate α-alumina

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280054014.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023563751

Country of ref document: JP