WO2023095299A1 - Reception device, reception synchronization method, control circuit, and storage medium - Google Patents

Reception device, reception synchronization method, control circuit, and storage medium Download PDF

Info

Publication number
WO2023095299A1
WO2023095299A1 PCT/JP2021/043442 JP2021043442W WO2023095299A1 WO 2023095299 A1 WO2023095299 A1 WO 2023095299A1 JP 2021043442 W JP2021043442 W JP 2021043442W WO 2023095299 A1 WO2023095299 A1 WO 2023095299A1
Authority
WO
WIPO (PCT)
Prior art keywords
power value
correlation
sequence
timing
spreading code
Prior art date
Application number
PCT/JP2021/043442
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/043442 priority Critical patent/WO2023095299A1/en
Priority to JP2023545841A priority patent/JP7378687B2/en
Publication of WO2023095299A1 publication Critical patent/WO2023095299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects

Definitions

  • the present disclosure relates to a receiver, a reception synchronization method, a control circuit, and a storage medium that achieve wide-area communication and long-distance communication with low power consumption.
  • LPWA Low Power Wide Area
  • DS-SS Direct Sequence Spread Spectrum
  • LoRa has a low communication speed, but can realize long-distance communication.
  • Chirp signals are commonly used in radar, sonar, and the like.
  • the chirp signal can reduce the PAPR (Peak-to-Average Power Ratio) of the transmitted signal and has excellent autocorrelation characteristics, so it is also suitable for timing detection of the received signal and is used for DS-SS communication. is also valid.
  • PAPR Peak-to-Average Power Ratio
  • Non-Patent Document 1 discloses that a transmission device uses a modified LoRa chirp signal as a preamble, a PCS (Positive-Chirp Signal) in which the frequency linearly increases from a certain start frequency, and a PCS.
  • SCS Symmetry Chirp Signal
  • NCS Negative-Chirp Signal
  • a receiving device estimates the spread code timing of each of the PCS and NCS, and then estimates the frequency offset and the spread code timing using FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • Non-Patent Document 1 in order to process a wideband signal before despreading with a synchronization method using FFT, there was a problem that the circuit scale increased and the processing delay also increased.
  • An object of the present invention is to obtain a receiving device capable of performing estimation with high accuracy.
  • the receiving device of the present disclosure provides a timing multiplied by a spreading code in a transmitting device based on a received signal having a preamble spectrum-spread by a chirp signal of a chirp sequence. and a frequency offset estimating unit for estimating the amount of frequency offset from the transmitting device based on the spreading code timing.
  • the timing synchronization unit has overall correlation, which is the cross-correlation between the chirp sequence for the length of the sequence and the received signal, and second-half sequence correlation, which is the cross-correlation between the received signal and the second half of the sequence, which is a continuous sequence including the second half of the chirp sequence.
  • the timing synchronization unit includes an overall correlation power memory that stores the overall power value of each sample timing for one block period of the spreading code, and a determination unit that estimates the spreading code timing based on the overall power value for one block period.
  • the frequency offset estimator includes a second half power value calculator that calculates a second half power value that is a power value corresponding to the sequence second half correlation, and a second half correlation power that stores the second half power value of each sampling timing for one block period of the spreading code. a memory;
  • the frequency offset estimator includes a first half power value calculator that calculates a first half power value that is a power value corresponding to sequence first half correlation, and a first half power value calculator that stores the first half power value of each sampling timing for one block period of the spreading code. Estimation for estimating frequency offset amount based on correlation power memory, spreading code timing, total power value for one block period, second half power value for one block period, and first half power value for one block period and
  • the receiving device suppresses processing delay while suppressing an increase in circuit scale, and performs highly accurate spread code timing estimation and frequency offset estimation even in an environment where a large frequency offset exists. It has the effect of being able to
  • FIG. 1 shows a configuration example of a transmission device included in a communication system according to an embodiment
  • FIG. 4 is a diagram showing an example of a signal framed by the transmitting device according to the embodiment
  • FIG. 1 shows a configuration example of a receiving device included in a communication system according to an embodiment
  • FIG. 4 shows a configuration example of a timing synchronization section and a frequency offset estimation section included in a receiving apparatus according to an embodiment
  • FIG. 4 is a diagram showing an image of threshold setting in the threshold determination unit of the receiving device according to the embodiment; Flowchart showing the operation of the frequency offset estimator included in the receiver according to the embodiment A diagram showing the relationship between time and frequency in the global correlation A diagram showing the relationship between time and frequency in the partial correlation of the second half of the sequence Diagram showing the relationship between time and frequency in the partial correlation of the first half of the sequence
  • FIG. 4 is a diagram showing a configuration example of a processing circuit provided in a receiving apparatus according to an embodiment when the processing circuit is implemented by a processor and a memory;
  • FIG. 10 is a diagram showing an example of a processing circuit provided in a receiving apparatus according to an embodiment when the processing circuit is composed of dedicated hardware;
  • FIG. 1 is a diagram illustrating a configuration example of a transmission device included in a communication system according to an embodiment.
  • the communication system is a system that performs LPWA communication, which is low power consumption long distance communication.
  • the communication system includes a transmitting device 1 and a receiving device 2 which will be described later.
  • the transmitter 1 includes a modulator 11, a chirp spreader 12, a preamble generator 13, a frame generator 14, a transmission filter 15, and a transmission antenna 16, as shown in FIG.
  • FIG. 2 is a flow chart showing the operation of the transmission device according to the embodiment.
  • the modulation unit 11 modulates information bits consisting of 0 and 1 (step S101).
  • the modulation unit 11 can use, for example, PSK (Phase Shift Keying), FSK (Frequency Shift Keying), etc. as a modulation method.
  • Modulation section 11 outputs the modulated signal to chirp spreading section 12 .
  • the chirp spreader 12 spreads the spectrum of the modulated signal obtained from the modulator 11 using a chirp signal (step S102).
  • the chirp spreading section 12 can use, for example, a Zadoff-Chu sequence as a sequence used for spectrum spreading.
  • the sequence length N c is an even number
  • the t-th element C(t) of the Zadoff-Chu sequence C is represented by Equation (1) below.
  • M is a series parameter and is coprime to N c .
  • M is the number of increases from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc .
  • the chirp spreading section 12 outputs data generated by spectrum-spreading the modulated signal to the frame generating section 14 .
  • the data generated by the chirp spreading section 12 may be called a data block.
  • the preamble generation unit 13 spectrum-spreads the known signal using a chirp signal. That is, the preamble generator 13 performs spectrum spreading on the known signal to generate a preamble (step S103).
  • the preamble generation unit 13 outputs the preamble generated by spreading the spectrum to the frame generation unit 14 .
  • the preamble generated by the preamble generator 13 may be referred to as a preamble block.
  • the frame generation unit 14 frames the data block generated by spectrum spreading by the chirp spreading unit 12 and the preamble block generated by spectrum spreading by the preamble generation unit 13 (step S104).
  • FIG. 3 is a diagram showing an example of a signal framed by the transmission device according to the embodiment.
  • the signal framed by the frame generator 14 has a preamble block in the front stage and a data block in the rear stage.
  • the frame generator 14 outputs the framed signal to the transmission filter 15 .
  • the transmission filter 15 band-limits the signal framed by the frame generator 14 (step S105).
  • the transmission filter 15 outputs the band-limited spread signal to the transmission antenna 16 .
  • the transmission antenna 16 transmits the band-limited signal obtained from the transmission filter 15 (step S106).
  • FIG. 4 is a diagram illustrating a configuration example of a receiving device included in the communication system according to the embodiment.
  • the receiving device 2 is a device that performs highly accurate spread code timing estimation and frequency offset estimation with a simple configuration using a single matched filter.
  • the receiving device 2 includes a receiving antenna 21, a frequency offset correction unit 22, a reception filter unit 23, a timing synchronization unit 24, a frequency offset estimation unit 25, a spreading code generation unit 26, a despreading unit 27, and a demodulation unit. a portion 28;
  • FIG. 5 is a flow chart showing the operation of the receiving device according to the embodiment.
  • the receiving antenna 21 receives the signal transmitted from the transmitting device 1 (step S201).
  • a signal received by the receiving antenna 21, that is, a received signal is a signal transmitted from the transmitting apparatus 1 and having a preamble spread by a chirp signal.
  • the receiving antenna 21 outputs the received signal to the frequency offset correction section 22 .
  • the frequency offset correction unit 22 corrects the frequency offset of the received signal according to the frequency offset estimation value calculated by the frequency offset estimation unit 25 (step S202). That is, the frequency offset correction unit 22 corrects the frequency offset of the reception signal acquired from the reception antenna 21 with the frequency offset estimation value.
  • the frequency offset correction unit 22 corrects the frequency offset by feedback after the frequency offset is estimated, so the frequency offset is not corrected when the preamble first passes through.
  • the frequency offset correction unit 22 outputs the received signal after correcting the frequency offset to the reception filter unit 23 .
  • the reception filter unit 23 performs filter processing using a band-limiting filter on the reception signal acquired from the frequency offset correction unit 22 (step S203).
  • Reception filter section 23 outputs the filtered signal to timing synchronization section 24 and despreading section 27 .
  • the signal after receive filter processing may be referred to as a receive filter passing signal.
  • the timing synchronization unit 24 performs timing synchronization based on the reception filter passing signal acquired from the reception filter unit 23 (step S204). Specifically, the timing synchronization unit 24 synchronizes the timing multiplied by the spreading code in the transmission device 1 in the timing synchronization. That is, the timing synchronization unit 24 estimates the spreading code timing, which is the timing multiplied by the spreading code. The process of estimating the spreading code timing by the timing synchronization unit 24 is timing synchronization. In this way, the timing synchronization unit 24 estimates the spreading code timing, which is the timing multiplied by the spreading code in the transmitting apparatus 1, based on the received signal having the preamble spectrum-spread by the chirp signal of the chirp sequence.
  • the timing synchronization unit 24 outputs the estimated spread code timing to the frequency offset estimation unit 25 and the spread code generation unit 26 as spread code estimation timing. In addition, the timing synchronization unit 24 outputs calculation information during synchronization processing of timing synchronization to the frequency offset estimation unit 25 as intermediate calculation information. The detailed configuration and operation of the timing synchronizer 24 will be described later.
  • the frequency offset estimation unit 25 estimates the frequency offset amount (frequency offset estimation value) with the transmission device 1 based on the spreading code timing and the intermediate calculation information acquired from the timing synchronization unit 24 (step S205).
  • the frequency offset estimation unit 25 feeds back a frequency offset estimation value indicating the estimated frequency offset amount to the frequency offset correction unit 22 .
  • a detailed configuration and operation of the frequency offset estimator 25 will be described later.
  • the spreading code generation unit 26 generates a spreading code for despreading based on the spreading code timing acquired from the timing synchronization unit 24 .
  • the spreading code generation unit 26 outputs the generated spreading code to the despreading unit 27 .
  • the spreading code generation unit 26 generates a spreading code for despreading based on the spreading code estimation timing acquired from the timing synchronization unit 24 (step S206).
  • the spreading code generation unit 26 outputs the generated spreading code to the despreading unit 27 .
  • the despreading section 27 acquires the reception filter passing signal from the reception filter section 23 and acquires the spreading code from the spreading code generation section 26 .
  • the despreading unit 27 despreads the reception filter-passed signal by multiplying the reception filter-passed signal by the complex conjugate of the spreading code (step S207).
  • the despreading section 27 outputs the despread signal to the demodulating section 28 .
  • the demodulator 28 demodulates the signal acquired from the despreader 27, that is, the signal whose frequency offset has been corrected (step S208).
  • FIG. 6 is a diagram showing a configuration example of a timing synchronization section and a frequency offset estimation section included in the receiving apparatus according to the embodiment.
  • the timing synchronization unit 24 has a correlation value calculation unit 241 , a power value calculation unit 242 , an averaging processing unit 243 , a correlation power memory unit 244 and a threshold determination unit 245 .
  • the averaging processor 243 is the overall averaging processor.
  • FIG. 7 is a flow chart showing the operation of the timing synchronization section of the receiving device according to the embodiment.
  • Correlation value calculator 241 acquires the reception filter passing signal from reception filter 23 .
  • Correlation value calculator 241 also stores a chirp signal of a chirp sequence that preamble generator 13 uses for spectrum spreading.
  • Correlation value calculator 241 multiplies the received filter-passed signal by the complex conjugate of the chirp signal using a matched filter, and calculates the cross-correlation function between the received filter-passed signal and the chirp sequence. That is, the correlation value calculator 241 uses a single matched filter to calculate the cross-correlation function between the received filter passing signal and the chirp sequence used for spectrum spreading by the preamble generator 13 (step S301). At this time, the correlation value calculation unit 241 outputs the calculation result of the total correlation for the sequence length Nc of the chirp sequence to the power value calculation unit 242 in the subsequent stage.
  • the correlation value calculator 241 sets an arbitrary value L to the frequency offset estimator 25 when the sequence number is 0 to Nc - 1 for the sequence length Nc of the chirp sequence. , the cross-correlation for the sequence numbers L to N c -1 and the cross-correlation for the sequence numbers 0 to N c -L.
  • the correlation value calculator 241 uses a matched filter to calculate the overall correlation, which is the cross-correlation between the chirp sequence of sequence length Nc and the received signal (received filter-passed signal).
  • Correlation value calculation section 241 also uses a matched filter to calculate the late-sequence correlation, which is the cross-correlation between the received signal and the second half of the sequence, which is a continuous sequence including the second half of the chirp sequence.
  • Correlation value calculation section 241 also uses a matched filter to calculate the first half sequence correlation, which is the cross-correlation between the first half of the sequence, which is a continuous sequence including the first half of the chirp sequence, and the received signal.
  • the power value calculation unit 242 calculates the total power value, which is the power value corresponding to the total correlation. Specifically, the power value calculator 242 squares the absolute value of the cross-correlation function obtained from the correlation value calculator 241 to calculate the power value (step S302). The power value calculator 242 is the total power value calculator. The power value calculator 242 outputs the calculated power value to the averaging processor 243 .
  • the averaging processor 243 causes the correlation power memory 244 to store the power values averaged at each sample timing.
  • the correlation power memory unit 244 is configured to store the total power value of each sample timing for one block period of the spreading code, that is, the power value of the number corresponding to the spreading code length N c ⁇ oversampling number N ovs . there is The correlation power memory unit 244 stores the power sample average value, which is the power value after averaging acquired from the averaging processing unit 243, over the spreading code length N c ⁇ oversampling number N ovs (one block period) (step S304). The power sample average value for one block period is the total power value for one block period, and the correlation power memory unit 244 is the total correlation power memory.
  • the processing up to the averaging processing unit 243 was performed in units of sample time, but the processing after the correlation power memory unit 244 is changed to operation in units of block time.
  • the correlation power memory unit 244 outputs the power sample average value for one block period to the subsequent threshold determination unit 245 and the frequency offset estimation unit 25 .
  • the threshold determination unit 245 estimates the spreading code timing based on the total power value for one block period. Specifically, the threshold determination unit 245 detects the maximum power sample average value among the power sample average values for one block period acquired from the correlation power memory unit 244, and uses the detected maximum power sample average value. A certain maximum power value is compared with a threshold value (step S305). When the maximum power value exceeds the threshold value, the threshold determination section 245 outputs the spread code estimation timing corresponding to the maximum power value to the frequency offset estimation section 25 and the spread code generation section 26 .
  • the threshold determination unit 245 uses the following method as a threshold determination method.
  • the threshold determination unit 245 calculates the average value of the power sample average values for one block period (hereinafter referred to as the power block average value) acquired from the correlation power memory unit 244, and calculates the constant ⁇ ( 1 ⁇ ) times is set as the threshold value.
  • the power block average value is a value obtained by further averaging the power sample average values at each sample timing for one block period.
  • FIG. 8 is a diagram showing an image of threshold setting in the threshold determining unit of the receiving device according to the embodiment.
  • the horizontal axis indicates the sample timing
  • the vertical axis indicates the power sample average value.
  • the threshold determination unit 245 can reduce false alarms that establish an erroneous synchronization point as the value of the constant ⁇ is set larger, but it takes time to detect the timing.
  • the threshold determination unit 245 can shorten the timing detection time, but false alarms increase.
  • the frequency offset estimation unit 25 includes power value calculation units 251A and 251B, averaging processing units 252A and 252B, correlation power memory units 253A and 253B, and an estimation unit 254, as shown in FIG.
  • the averaging processing unit 252A is the second half averaging processing unit
  • the averaging processing unit 252B is the first half averaging processing unit.
  • FIG. 9 is a flowchart showing the operation of the frequency offset estimator included in the receiving device according to the embodiment.
  • Power value calculators 251A and 251B acquire partial correlations from correlation value calculator 241 . That is, power value calculation section 251A acquires the partial correlation of the second half of the sequence (second half sequence correlation) from correlation value calculation section 241, and power value calculation section 251B obtains the partial correlation of the first half of the sequence (first half of sequence correlation).
  • the partial correlation of the second half of the series and the partial correlation of the first half of the series are intermediate calculation information.
  • Receiving apparatus 2 obtains the value of the partial correlation of the second half of the sequence and the value of the partial correlation of the first half of the sequence as the intermediate computation information, thereby eliminating the need to provide a separate correlator, thereby reducing the amount of computation.
  • the power value calculator 251A calculates the power value of the partial correlation in the second half of the sequence (step S401a), and the power value calculator 251B calculates the power value of the partial correlation in the first half of the sequence (step S401b). That is, power value calculation section 251A calculates a second half power value corresponding to the second half sequence correlation, and power value calculation section 251B calculates a first half power value corresponding to the first half sequence correlation.
  • the power value calculator 251A is the latter half power value calculator, and the power value calculator 251B is the first half power value calculator.
  • the calculations performed by the power value calculation units 251A and 251B to obtain the power values are the same as the calculations performed by the power value calculation unit 242 to obtain the power values.
  • the power value calculator 251A outputs the calculated power value to the averaging processor 252A, and the power value calculator 251B outputs the calculated power value to the averaging processor 252B.
  • the averaging processing unit 252A averages the power values sent from the power value calculating unit 251A (step S402a), and the averaging processing unit 252B averages the power values sent from the power value calculating unit 251B. conversion is performed (step S402b).
  • the calculations when the averaging processing units 252A and 252B execute the averaging processing are the same as the calculations when the averaging processing unit 243 executes the averaging processing.
  • Averaging processing section 252A outputs the averaged power value to correlation power memory section 253A, and averaging processing section 252B outputs the averaged power value to correlation power memory section 253B.
  • the correlation power memory units 253A and 253B are memories that store power average values sent from the averaging processing units 252A and 252B.
  • the correlation power memory unit 253A stores the power average value sent from the averaging processing unit 252A over one block period (step S403a).
  • the correlation power memory unit 253B stores the power average value sent from the averaging processing unit 252B over one block period (step S403b).
  • the correlation power memory unit 253A stores the power value in the second half of each sampling timing for one block period of the spreading code
  • the correlation power memory unit 253B stores the power value in the first half of each sampling timing for one block period of the spreading code. Store the power value.
  • Correlation power memory section 253A is the latter half power value calculation section
  • correlation power memory section 253B is the first half power value calculation section.
  • Correlation power memory units 253A and 253B output average power values to estimation unit 254 .
  • the estimation unit 254 acquires the spread code estimation timing from the threshold determination unit 245 and acquires the power sample average value for one block period from the correlation power memory unit 244 .
  • Estimating section 254 also acquires the power average value of the partial correlation of the second half of the sequence from correlation power memory section 253A, and acquires the power average value of the partial correlation of the first half of the sequence from correlation power memory section 253B.
  • the estimating unit 254 obtains the power average value (power sample average value) of the overall correlation for the sequence (chirp sequence) obtained from the correlation power memory units 244, 253A, and 253B, and the two types of cross-correlations.
  • a frequency offset estimate is estimated based on the power average value, that is, the three types of power average values (step S404).
  • the estimator 254 calculates the frequency offset based on the spreading code estimation timing, the total power value for one block period, the power value for the latter half of one block period, and the power value for the first half of one block period. Estimate an estimate. That is, the estimator 254 estimates the frequency offset amount from the power ratio between the total correlation and the partial correlation of the matched filter.
  • the estimating unit 254 estimates the frequency offset using the following equation (2) as the positive frequency offset. Estimate a value.
  • estimating section 254 uses the following equation (3) as the frequency offset in the negative direction to determine the frequency Estimate the offset estimate.
  • the estimating unit 254 uses either formula (2) or formula (3) described above. may be used to estimate the frequency offset estimate.
  • FIG. 10 is a diagram showing the relationship between time and frequency in the overall correlation.
  • FIG. 11 is a diagram showing the relationship between time and frequency in the partial correlation of the latter half of the sequence
  • FIG. 12 is a diagram showing the relationship between time and frequency in the partial correlation of the first half of the sequence.
  • the horizontal axis of the graphs shown in FIGS. 10 to 12 is time, and the vertical axis is frequency.
  • the global correlation varies in frequency from -N c /2 to N c /2-1 while time varies from 0 to N c -1. That is, in the total correlation, the frequency is -N c /2 when the time is 0, the frequency increases in proportion to the passage of time, and the frequency is N c /2-1 when the time is N c -1. Become.
  • the frequency changes from -N c /2+L to N c /2-1 while the time changes from L to N c -1 . That is, in the partial correlation (second half), the frequency is ⁇ N c /2+L when the time is L, the frequency increases in proportion to the passage of time, and the frequency is N c /2 when the time is N c ⁇ 1. -1.
  • the frequency changes from -N c /2 to N c /2-L while the time changes from 0 to N c -L. That is, in the partial correlation (first half), the frequency is ⁇ N c /2 when the time is 0, the frequency increases in proportion to the passage of time, and the frequency is N c /2 when the time is N c ⁇ L. -L.
  • the frequency offset is a positive value A (1 ⁇ A ⁇ L)
  • the waveform shifts in the positive frequency direction as a whole, so the preamble of the received signal is ⁇ N c /2+A to N It changes by c /2-1.
  • Values greater than N c /2 ⁇ 1 are cut off by the bandlimiting filter and are therefore not present during synchronization.
  • the power value obtained by the overall correlation in FIG . 10 corresponds to the range that overlaps with the frequency components after passing through the filter described above, so the overall correlation in FIG . , that is, a power value corresponding to the length N c ⁇ A is obtained.
  • the preamble generator 13 of the transmission device 1 performs chirp spreading with the preamble. Then, the timing synchronization unit 24 of the receiving device 2 calculates the total correlation and the partial correlation by the matched filter of the chirp spreading code. Furthermore, the estimator 254 estimates the frequency offset estimated value using the overall correlation and the partial correlation at the timing estimated from the overall correlation by the timing synchronization unit 24 .
  • transmitting apparatus 1 may shift the center frequency, and may use other chirp sequences such as CAZAC sequences as spreading codes.
  • the transmitting apparatus 1 can estimate the frequency offset by using a sequence in which the frequency linearly increases and decreases.
  • the timing synchronization unit 24 of the receiving device 2 performs averaging using the power values of the same sample timing of the previous block, but the averaging process is not limited to this.
  • the timing synchronization unit 24 may perform averaging at the same sample timing for all preamble blocks subjected to the same chirp spreading.
  • the receiving device 2 calculates the cross-correlation function between the reception filter-passed signal and the chirp sequence used for spectrum spreading. Further, the receiving device 2 calculates the cross-correlation power value, and averages the power value at the same sample timing for each block. The receiving device 2 compares each result after averaging with a threshold, and detects the timing at which the maximum power value of the chirp signal is obtained as the timing for estimating the spreading code.
  • the receiving device 2 uses a matched filter to find the overall correlation for correlating the length of the chirp sequence and the partial correlation for correlating a part of the sequence.
  • the receiver 2 estimates the frequency offset amount from the power ratio of the total correlation and the partial correlation of the matched filter, and corrects the frequency offset for the received signal before passing through the reception filter. As a result, the receiver 2 re-estimates the spreading code timing for the frequency offset-corrected signal, and demodulates the data other than the preamble signal.
  • the receiving device 2 can estimate the spread code timing and the frequency offset amount with high accuracy with a simple configuration using a matched filter.
  • the receiving antenna 21 is realized by an antenna device.
  • the reception filter unit 23 is realized by a filter circuit.
  • the frequency offset corrector 22, the timing synchronizer 24, the frequency offset estimator 25, the spreading code generator 26, the despreader 27, and the demodulator 28 are each implemented by a processing circuit. These processing circuits may be processors and memories that execute programs stored in the memory, or may be dedicated hardware. Processing circuitry is also called control circuitry.
  • FIG. 13 is a diagram showing a configuration example of a processing circuit when the processing circuit included in the receiving device according to the embodiment is realized by a processor and memory.
  • a processing circuit 90 shown in FIG. 13 is a control circuit and includes a processor 91 and a memory 92 .
  • each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 92 .
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92.
  • This program can also be said to be a program for causing the receiving device 2 to execute each function realized by the processing circuit 90 .
  • This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) corresponds to this.
  • FIG. 14 is a diagram showing an example of a processing circuit when the processing circuit included in the receiving device according to the embodiment is configured with dedicated hardware.
  • the processing circuit 93 shown in FIG. 14 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies.
  • the processing circuit may be partly implemented by dedicated hardware and partly implemented by software or firmware.
  • the processing circuitry may implement each of the functions described above through dedicated hardware, software, firmware, or a combination thereof.
  • the frequency offset correction unit 22, the timing synchronization unit 24, the frequency offset estimation unit 25, the spreading code generation unit 26, the despreading unit 27, and the demodulation unit 28 may each be configured by separate processing circuits. Also, although the hardware configuration of the receiving device 2 has been described here, the hardware configuration of the transmitting device 1 is the same as that of the receiving device 2 .
  • the receiving apparatus 2 uses the spread code timing, the total power value for one block period, the second half power value for one block period, and the first half power value for one block period. Based on, the frequency offset amount is estimated. Therefore, the receiving device 2 can suppress processing delay while suppressing an increase in circuit size, and can perform highly accurate estimation of the spreading code timing and the frequency offset even in an environment where a large frequency offset exists. can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

This reception device includes: a correlation value calculation unit (241) that uses a matched filter to calculate a total correlation, which is a cross-correlation between a chirp sequence of a sequence length and a reception signal, a sequence latter-half correlation, which is a cross-correlation between the latter half of the chirp sequence and the reception signal, and a sequence first-half correlation, which is a cross-correlation between the first half of the chirp sequence and the reception signal; a power value calculation unit (242) that calculates the total power value corresponding to the total correlation; a threshold value determination unit (245) that estimates a spread code timing on the basis of the total power value for a one block cycle of a spread code; a power value calculation unit (251A) that calculates a latter-half power value corresponding to the sequence latter-half correlation; a power value calculation unit (251B) that calculates a first-half power value corresponding to the sequence first-half correlation; and an estimation unit (254) that estimates a frequency offset amount on the basis of the spread code timing, the total power value for a one block cycle, the latter-half power value for a one block cycle, and the first-half power value for a one block cycle.

Description

受信装置、受信同期方法、制御回路、および記憶媒体Receiver, Reception Synchronization Method, Control Circuit, and Storage Medium
 本開示は、低消費電力で広域通信および長距離通信を実現する受信装置、受信同期方法、制御回路、および記憶媒体に関する。 The present disclosure relates to a receiver, a reception synchronization method, a control circuit, and a storage medium that achieve wide-area communication and long-distance communication with low power consumption.
 IoT(Internet of Things)、M2M(Machine to Machine)などの普及を背景に、低消費電力で広域通信および長距離通信を実現する通信方式として、LPWA(Low Power Wide Area)が注目されている。LPWAは、同一周波数で異なるシステムが運用されることから、同一チャネル干渉が問題となる。そのため、LPWAでは、耐干渉性、耐妨害性、通信の秘匿性などを高められる直接スペクトル拡散(以下、DS-SS(Direct Sequence Spread Spectrum)と称する。)通信を適用することが有効である。LPWAの通信方式の1つであるLoRa(Long Range)は、振幅一定の位相回転系列であるチャープ信号を用いてチャープスペクトル拡散(Chirp Spread Spectrum)が利用される通信方式である。LoRaは、通信速度が低速であるが、長距離通信の実現が可能である。チャープ信号は、一般的に、レーダー、ソナーなどに利用されている。チャープ信号は、送信信号のPAPR(Peak-to-Average Power Ratio)を小さくすることが可能であり、自己相関特性が優れているため、受信信号のタイミング検出にも適しており、DS-SS通信にも有効とされている。 With the spread of IoT (Internet of Things) and M2M (Machine to Machine), LPWA (Low Power Wide Area) is attracting attention as a communication method that achieves wide-area and long-distance communication with low power consumption. LPWA has a problem of co-channel interference because different systems operate on the same frequency. Therefore, in LPWA, it is effective to apply direct sequence spread spectrum (hereinafter referred to as DS-SS (Direct Sequence Spread Spectrum)) communication that can improve interference resistance, jamming resistance, and confidentiality of communication. LoRa (Long Range), which is one of the LPWA communication methods, is a communication method that utilizes chirp spread spectrum using a chirp signal that is a phase rotation sequence with a constant amplitude. LoRa has a low communication speed, but can realize long-distance communication. Chirp signals are commonly used in radar, sonar, and the like. The chirp signal can reduce the PAPR (Peak-to-Average Power Ratio) of the transmitted signal and has excellent autocorrelation characteristics, so it is also suitable for timing detection of the received signal and is used for DS-SS communication. is also valid.
 DS-SS通信において、受信装置は、逆拡散を行うため、送信装置で拡散符号が乗算されたタイミングに同期する必要がある。受信装置は、逆拡散前の広い周波数帯域に拡散された信号に対して逆拡散の処理を行うため、低SNR(Signal-to-Noise Ratio)で高精度にタイミング同期を行うことが重要となる。送受信装置間の局部発信器の周波数ずれ、ドップラー効果などによって発生する周波数オフセットが存在する場合、チャープ信号を用いたDS-SS通信では、タイミングがシフトされたように観測される。大きな周波数オフセットが存在する環境では、受信装置による、同期処理の性能、および同期処理の後段の復調処理の性能が大きく劣化するので、周波数を同期させる技術が重要となる。 In DS-SS communication, since the receiving device performs despreading, it is necessary to synchronize with the timing at which the spreading code was multiplied by the transmitting device. Since the receiving device performs despreading processing on the signal spread over a wide frequency band before despreading, it is important to perform timing synchronization with high precision at a low SNR (Signal-to-Noise Ratio). . When there is a frequency offset caused by the frequency deviation of local oscillators between transmitting and receiving apparatuses, the Doppler effect, etc., it is observed that the timing is shifted in DS-SS communication using a chirp signal. In an environment where a large frequency offset exists, the performance of synchronization processing and the performance of demodulation processing in the post-synchronization processing by the receiving device are significantly degraded, so frequency synchronization technology is important.
 このような問題に対して、非特許文献1には、送信装置が、プリアンブルとして、LoRaのチャープ信号を改訂した、ある開始周波数から周波数が線形増加するPCS(Positive-Chirp Signal)、およびPCSと同じ開始周波数から周波数が線形減少するNCS(Negative-Chirp Signal)の2つの対称的なチャープ信号であるSCS(Symmetry Chirp Signal)を送信する技術が開示されている。非特許文献1では、受信装置が、PCSおよびNCSのそれぞれの拡散符号タイミングを推定した後、FFT(Fast Fourier Transform)を用いて周波数オフセットおよび拡散符号タイミングを推定する。非特許文献1では、低データレートの低軌道衛星IoTを想定しており、ドップラー効果によって大きな周波数オフセットが存在する場合でも、高精度な同期を可能としている。 In response to such a problem, Non-Patent Document 1 discloses that a transmission device uses a modified LoRa chirp signal as a preamble, a PCS (Positive-Chirp Signal) in which the frequency linearly increases from a certain start frequency, and a PCS. A technique for transmitting SCS (Symmetry Chirp Signal), which is two symmetric chirp signals of NCS (Negative-Chirp Signal) whose frequency linearly decreases from the same starting frequency, is disclosed. In Non-Patent Document 1, a receiving device estimates the spread code timing of each of the PCS and NCS, and then estimates the frequency offset and the spread code timing using FFT (Fast Fourier Transform). Non-Patent Document 1 assumes a low-data-rate low-orbit satellite IoT, and enables highly accurate synchronization even when there is a large frequency offset due to the Doppler effect.
 しかしながら、非特許文献1のように、FFTを用いた同期方式で逆拡散前の広帯域な信号を処理するためには、回路規模が大きくなるとともに、処理遅延も大きくなる、という問題があった。 However, as in Non-Patent Document 1, in order to process a wideband signal before despreading with a synchronization method using FFT, there was a problem that the circuit scale increased and the processing delay also increased.
 本開示は、上記に鑑みてなされたものであって、回路規模の増大を抑制しつつ、処理遅延を抑制して、大きい周波数オフセットが存在する環境においても、拡散符号タイミングの推定および周波数オフセットの推定を高精度に行うことができる受信装置を得ることを目的とする。 The present disclosure has been made in view of the above. An object of the present invention is to obtain a receiving device capable of performing estimation with high accuracy.
 上述した課題を解決し、目的を達成するために、本開示の受信装置は、チャープ系列のチャープ信号によってスペクトル拡散されたプリアンブルを有する受信信号に基づいて、送信装置で拡散符号が乗算されたタイミングである拡散符号タイミングを推定するタイミング同期部と、拡散符号タイミングに基づいて、送信装置との間の周波数オフセット量を推定する周波数オフセット推定部と、を備える。タイミング同期部は、系列長分のチャープ系列と受信信号との相互相関である全体相関と、チャープ系列の後半部分を含む連続した系列である系列後半と受信信号との相互相関である系列後半相関と、チャープ系列の前半部分を含む連続した系列である系列前半と受信信号との相互相関である系列前半相関と、をマッチドフィルタを用いて計算する相関値計算部と、全体相関に対応する電力値である全体電力値を計算する全体電力値計算部と、を有する。また、タイミング同期部は、拡散符号の1ブロック周期分の各サンプルタイミングの全体電力値を記憶する全体相関電力メモリと、1ブロック周期分の全体電力値に基づいて拡散符号タイミングを推定する判定部と、を有する。周波数オフセット推定部は、系列後半相関に対応する電力値である後半電力値を計算する後半電力値計算部と、拡散符号の1ブロック周期分の各サンプルタイミングの後半電力値を記憶する後半相関電力メモリと、を有する。また、周波数オフセット推定部は、系列前半相関に対応する電力値である前半電力値を計算する前半電力値計算部と、拡散符号の1ブロック周期分の各サンプルタイミングの前半電力値を記憶する前半相関電力メモリと、拡散符号タイミングと、1ブロック周期分の全体電力値と、1ブロック周期分の後半電力値と、1ブロック周期分の前半電力値とに基づいて、周波数オフセット量を推定する推定部と、を有する。 In order to solve the above-described problems and achieve the object, the receiving device of the present disclosure provides a timing multiplied by a spreading code in a transmitting device based on a received signal having a preamble spectrum-spread by a chirp signal of a chirp sequence. and a frequency offset estimating unit for estimating the amount of frequency offset from the transmitting device based on the spreading code timing. The timing synchronization unit has overall correlation, which is the cross-correlation between the chirp sequence for the length of the sequence and the received signal, and second-half sequence correlation, which is the cross-correlation between the received signal and the second half of the sequence, which is a continuous sequence including the second half of the chirp sequence. and the first half of the sequence, which is a continuous sequence including the first half of the chirp sequence, and the first half of the sequence correlation, which is the cross-correlation between the received signal and the first half of the sequence, using a matched filter, and the power corresponding to the overall correlation. and a total power value calculation unit for calculating a total power value that is a value. Also, the timing synchronization unit includes an overall correlation power memory that stores the overall power value of each sample timing for one block period of the spreading code, and a determination unit that estimates the spreading code timing based on the overall power value for one block period. and have The frequency offset estimator includes a second half power value calculator that calculates a second half power value that is a power value corresponding to the sequence second half correlation, and a second half correlation power that stores the second half power value of each sampling timing for one block period of the spreading code. a memory; The frequency offset estimator includes a first half power value calculator that calculates a first half power value that is a power value corresponding to sequence first half correlation, and a first half power value calculator that stores the first half power value of each sampling timing for one block period of the spreading code. Estimation for estimating frequency offset amount based on correlation power memory, spreading code timing, total power value for one block period, second half power value for one block period, and first half power value for one block period and
 本開示に係る受信装置は、回路規模の増大を抑制しつつ、処理遅延を抑制して、大きい周波数オフセットが存在する環境においても、拡散符号タイミングの推定および周波数オフセットの推定を高精度に行うことができるという効果を奏する。 The receiving device according to the present disclosure suppresses processing delay while suppressing an increase in circuit scale, and performs highly accurate spread code timing estimation and frequency offset estimation even in an environment where a large frequency offset exists. It has the effect of being able to
実施の形態に係る通信システムが備える送信装置の構成例を示す図FIG. 1 shows a configuration example of a transmission device included in a communication system according to an embodiment; 実施の形態に係る送信装置の動作を示すフローチャートFlowchart showing the operation of the transmission device according to the embodiment 実施の形態に係る送信装置がフレーミングした信号の例を示す図FIG. 4 is a diagram showing an example of a signal framed by the transmitting device according to the embodiment; 実施の形態に係る通信システムが備える受信装置の構成例を示す図FIG. 1 shows a configuration example of a receiving device included in a communication system according to an embodiment; 実施の形態に係る受信装置の動作を示すフローチャートFlowchart showing the operation of the receiving device according to the embodiment 実施の形態に係る受信装置が備えるタイミング同期部および周波数オフセット推定部の構成例を示す図FIG. 4 shows a configuration example of a timing synchronization section and a frequency offset estimation section included in a receiving apparatus according to an embodiment; 実施の形態に係る受信装置が有するタイミング同期部の動作を示すフローチャートFlowchart showing the operation of the timing synchronizer included in the receiver according to the embodiment 実施の形態に係る受信装置の閾値判定部における閾値設定のイメージを示す図FIG. 4 is a diagram showing an image of threshold setting in the threshold determination unit of the receiving device according to the embodiment; 実施の形態に係る受信装置が有する周波数オフセット推定部の動作を示すフローチャートFlowchart showing the operation of the frequency offset estimator included in the receiver according to the embodiment 全体相関における時間と周波数との関係を示す図A diagram showing the relationship between time and frequency in the global correlation 系列後半の部分相関における時間と周波数との関係を示す図A diagram showing the relationship between time and frequency in the partial correlation of the second half of the sequence 系列前半の部分相関における時間と周波数との関係を示す図Diagram showing the relationship between time and frequency in the partial correlation of the first half of the sequence 実施の形態に係る受信装置が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図FIG. 4 is a diagram showing a configuration example of a processing circuit provided in a receiving apparatus according to an embodiment when the processing circuit is implemented by a processor and a memory; 実施の形態に係る受信装置が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図FIG. 10 is a diagram showing an example of a processing circuit provided in a receiving apparatus according to an embodiment when the processing circuit is composed of dedicated hardware;
 以下に、本開示の実施の形態に係る受信装置、受信同期方法、制御回路、および記憶媒体を図面に基づいて詳細に説明する。 The receiving device, reception synchronization method, control circuit, and storage medium according to the embodiments of the present disclosure will be described below in detail with reference to the drawings.
実施の形態.
 図1は、実施の形態に係る通信システムが備える送信装置の構成例を示す図である。通信システムは、低消費電力長距離通信であるLPWAの通信を実行するシステムである。通信システムは、送信装置1と、後述する受信装置2とを備える。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of a transmission device included in a communication system according to an embodiment. The communication system is a system that performs LPWA communication, which is low power consumption long distance communication. The communication system includes a transmitting device 1 and a receiving device 2 which will be described later.
 まず、送信装置1の構成および動作について説明する。送信装置1は、図1に示すように、変調部11と、チャープ拡散部12と、プリアンブル生成部13と、フレーム生成部14と、送信フィルタ15と、送信アンテナ16と、を備える。図2は、実施の形態に係る送信装置の動作を示すフローチャートである。 First, the configuration and operation of the transmission device 1 will be described. The transmitter 1 includes a modulator 11, a chirp spreader 12, a preamble generator 13, a frame generator 14, a transmission filter 15, and a transmission antenna 16, as shown in FIG. FIG. 2 is a flow chart showing the operation of the transmission device according to the embodiment.
 変調部11は、0,1から成り立つ情報ビットを変調する(ステップS101)。変調部11は、変調方式として、例えば、PSK(Phase Shift Keying)、FSK(Frequency Shift Keying)などを用いることができる。変調部11は、変調信号をチャープ拡散部12へ出力する。 The modulation unit 11 modulates information bits consisting of 0 and 1 (step S101). The modulation unit 11 can use, for example, PSK (Phase Shift Keying), FSK (Frequency Shift Keying), etc. as a modulation method. Modulation section 11 outputs the modulated signal to chirp spreading section 12 .
 チャープ拡散部12は、変調部11から取得した変調信号をチャープ信号によりスペクトル拡散する(ステップS102)。チャープ拡散部12は、スペクトル拡散に用いる系列として、例えば、Zadoff-Chu系列を用いることができる。系列長Ncが偶数である場合、Zadoff-Chu系列Cのt番目の要素C(t)は、以下の式(1)のように表される。 The chirp spreader 12 spreads the spectrum of the modulated signal obtained from the modulator 11 using a chirp signal (step S102). The chirp spreading section 12 can use, for example, a Zadoff-Chu sequence as a sequence used for spectrum spreading. When the sequence length N c is an even number, the t-th element C(t) of the Zadoff-Chu sequence C is represented by Equation (1) below.
 C(t)=exp{jπ(Mt2-Nct/2)/Nc}・・・(1) C(t)=exp{jπ(Mt 2 -N c t/2)/N c } (1)
 式(1)において、Mは系列パラメータであり、Ncと互いに素な関係にある。また、Mは系列長Ncでの最小周波数fminから最大周波数fmaxまでの増加回数である。M=1の場合、系列長Ncにおいて、最小周波数fminから最大周波数fmaxまで周波数が1回増加する。M=2の場合、系列長Ncの前半Nc/2において、最小周波数fminから最大周波数fmaxまで周波数が増加した後、さらに系列長Ncの後半Nc/2において、最小周波数fminから最大周波数fmaxまで周波数が増加する。すなわち、M=2の場合、系列長Ncにおいて、最小周波数fminから最大周波数fmaxまで周波数が2回増加する。以降では、M=1としたときの例で説明を行うが、Mの値については限定しない。 In Equation (1), M is a series parameter and is coprime to N c . Also, M is the number of increases from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc . When M=1, the frequency increases once from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc . When M=2, after the frequency increases from the minimum frequency fmin to the maximum frequency fmax in the first half N c /2 of the sequence length N c , the frequency increases from the minimum frequency fmin to the maximum frequency in the second half N c /2 of the sequence length N c . The frequency increases up to frequency fmax. That is, when M=2, the frequency increases twice from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc . Hereinafter, an example when M=1 will be described, but the value of M is not limited.
 チャープ拡散部12は、変調信号をスペクトル拡散して生成したデータをフレーム生成部14へ出力する。以降の説明において、チャープ拡散部12で生成されたデータを、データブロックと称することがある。 The chirp spreading section 12 outputs data generated by spectrum-spreading the modulated signal to the frame generating section 14 . In the following description, the data generated by the chirp spreading section 12 may be called a data block.
 プリアンブル生成部13は、既知信号を、チャープ信号によってスペクトル拡散を行う。すなわち、プリアンブル生成部13は、既知信号に対してスペクトル拡散を行ってプリアンブルを生成する(ステップS103)。 The preamble generation unit 13 spectrum-spreads the known signal using a chirp signal. That is, the preamble generator 13 performs spectrum spreading on the known signal to generate a preamble (step S103).
 プリアンブル生成部13は、スペクトル拡散して生成したプリアンブルをフレーム生成部14へ出力する。以降の説明において、プリアンブル生成部13で生成されたプリアンブルを、プリアンブルブロックと称することがある。 The preamble generation unit 13 outputs the preamble generated by spreading the spectrum to the frame generation unit 14 . In the following description, the preamble generated by the preamble generator 13 may be referred to as a preamble block.
 フレーム生成部14は、チャープ拡散部12でスペクトル拡散を行って生成されたデータブロックと、プリアンブル生成部13でスペクトル拡散を行って生成されたプリアンブルブロックと、をフレーミングする(ステップS104)。 The frame generation unit 14 frames the data block generated by spectrum spreading by the chirp spreading unit 12 and the preamble block generated by spectrum spreading by the preamble generation unit 13 (step S104).
 図3は、実施の形態に係る送信装置がフレーミングした信号の例を示す図である。フレーム生成部14がフレーミングした信号は、前段がプリアンブルブロックとなっており、後段がデータブロックとなっている。フレーム生成部14は、フレーミングした信号を送信フィルタ15へ出力する。 FIG. 3 is a diagram showing an example of a signal framed by the transmission device according to the embodiment. The signal framed by the frame generator 14 has a preamble block in the front stage and a data block in the rear stage. The frame generator 14 outputs the framed signal to the transmission filter 15 .
 送信フィルタ15は、フレーム生成部14でフレーミングされた信号に対して、帯域制限を行う(ステップS105)。送信フィルタ15は、帯域制限後の拡散信号を送信アンテナ16へ出力する。 The transmission filter 15 band-limits the signal framed by the frame generator 14 (step S105). The transmission filter 15 outputs the band-limited spread signal to the transmission antenna 16 .
 送信アンテナ16は、送信フィルタ15から取得した帯域制限後の信号を送信する(ステップS106)。 The transmission antenna 16 transmits the band-limited signal obtained from the transmission filter 15 (step S106).
 つぎに、受信装置2の構成および動作について説明する。図4は、実施の形態に係る通信システムが備える受信装置の構成例を示す図である。受信装置2は、単一のマッチドフィルタを用いた簡易な構成で高精度な拡散符号タイミングの推定と周波数オフセットの推定とを行う装置である。受信装置2は、受信アンテナ21と、周波数オフセット補正部22と、受信フィルタ部23と、タイミング同期部24と、周波数オフセット推定部25と、拡散符号生成部26と、逆拡散部27と、復調部28とを備える。図5は、実施の形態に係る受信装置の動作を示すフローチャートである。 Next, the configuration and operation of the receiving device 2 will be described. FIG. 4 is a diagram illustrating a configuration example of a receiving device included in the communication system according to the embodiment. The receiving device 2 is a device that performs highly accurate spread code timing estimation and frequency offset estimation with a simple configuration using a single matched filter. The receiving device 2 includes a receiving antenna 21, a frequency offset correction unit 22, a reception filter unit 23, a timing synchronization unit 24, a frequency offset estimation unit 25, a spreading code generation unit 26, a despreading unit 27, and a demodulation unit. a portion 28; FIG. 5 is a flow chart showing the operation of the receiving device according to the embodiment.
 受信アンテナ21は送信装置1から送信された信号を受信する(ステップS201)。受信アンテナ21で受信される信号、すなわち受信信号は、送信装置1から送信された信号であって、チャープ信号によって拡散されたプリアンブルを有する信号である。受信アンテナ21は、受信信号を周波数オフセット補正部22へ出力する。 The receiving antenna 21 receives the signal transmitted from the transmitting device 1 (step S201). A signal received by the receiving antenna 21, that is, a received signal is a signal transmitted from the transmitting apparatus 1 and having a preamble spread by a chirp signal. The receiving antenna 21 outputs the received signal to the frequency offset correction section 22 .
 周波数オフセット補正部22は、後段の周波数オフセット推定部25が算出した周波数オフセット推定値に従って、受信信号の周波数オフセットを補正する(ステップS202)。すなわち、周波数オフセット補正部22は、受信アンテナ21から取得した受信信号の周波数オフセットを、周波数オフセット推定値で補正する。 The frequency offset correction unit 22 corrects the frequency offset of the received signal according to the frequency offset estimation value calculated by the frequency offset estimation unit 25 (step S202). That is, the frequency offset correction unit 22 corrects the frequency offset of the reception signal acquired from the reception antenna 21 with the frequency offset estimation value.
 なお、周波数オフセット補正部22は、周波数オフセットが推定された後のフィードバックによって周波数オフセットの補正を行うので、最初にプリアンブルが通過する際には周波数オフセットを補正しない。周波数オフセット補正部22は、周波数オフセットを補正した後の受信信号を受信フィルタ部23へ出力する。 Note that the frequency offset correction unit 22 corrects the frequency offset by feedback after the frequency offset is estimated, so the frequency offset is not corrected when the preamble first passes through. The frequency offset correction unit 22 outputs the received signal after correcting the frequency offset to the reception filter unit 23 .
 受信フィルタ部23は、周波数オフセット補正部22から取得した受信信号に対して、帯域制限フィルタによるフィルタ処理を行う(ステップS203)。受信フィルタ部23は、フィルタ処理後の信号をタイミング同期部24および逆拡散部27へ出力する。以降の説明において、受信フィルタ処理後の信号を、受信フィルタ通過信号と称することがある。 The reception filter unit 23 performs filter processing using a band-limiting filter on the reception signal acquired from the frequency offset correction unit 22 (step S203). Reception filter section 23 outputs the filtered signal to timing synchronization section 24 and despreading section 27 . In the following description, the signal after receive filter processing may be referred to as a receive filter passing signal.
 タイミング同期部24は、受信フィルタ部23から取得した受信フィルタ通過信号に基づいて、タイミング同期を行う(ステップS204)。具体的には、タイミング同期部24は、タイミング同期において、送信装置1において拡散符号が乗算されたタイミングの同期を行う。すなわち、タイミング同期部24は、拡散符号が乗算されたタイミングである拡散符号タイミングを推定する。タイミング同期部24による拡散符号タイミングを推定する処理が、タイミング同期である。このように、タイミング同期部24は、チャープ系列のチャープ信号によってスペクトル拡散されたプリアンブルを有する受信信号に基づいて、送信装置1で拡散符号が乗算されたタイミングである拡散符号タイミングを推定する。 The timing synchronization unit 24 performs timing synchronization based on the reception filter passing signal acquired from the reception filter unit 23 (step S204). Specifically, the timing synchronization unit 24 synchronizes the timing multiplied by the spreading code in the transmission device 1 in the timing synchronization. That is, the timing synchronization unit 24 estimates the spreading code timing, which is the timing multiplied by the spreading code. The process of estimating the spreading code timing by the timing synchronization unit 24 is timing synchronization. In this way, the timing synchronization unit 24 estimates the spreading code timing, which is the timing multiplied by the spreading code in the transmitting apparatus 1, based on the received signal having the preamble spectrum-spread by the chirp signal of the chirp sequence.
 タイミング同期部24は、推定した拡散符号タイミングを、拡散符号推定タイミングとして、周波数オフセット推定部25および拡散符号生成部26に出力する。また、タイミング同期部24は、周波数オフセット推定部25に、タイミング同期の同期処理途中における演算情報を途中演算情報として出力する。タイミング同期部24の詳細な構成および動作については後述する。 The timing synchronization unit 24 outputs the estimated spread code timing to the frequency offset estimation unit 25 and the spread code generation unit 26 as spread code estimation timing. In addition, the timing synchronization unit 24 outputs calculation information during synchronization processing of timing synchronization to the frequency offset estimation unit 25 as intermediate calculation information. The detailed configuration and operation of the timing synchronizer 24 will be described later.
 周波数オフセット推定部25は、タイミング同期部24から取得した拡散符号タイミングおよび途中演算情報に基づいて、送信装置1との間の周波数オフセット量(周波数オフセット推定値)を推定する(ステップS205)。 The frequency offset estimation unit 25 estimates the frequency offset amount (frequency offset estimation value) with the transmission device 1 based on the spreading code timing and the intermediate calculation information acquired from the timing synchronization unit 24 (step S205).
 周波数オフセット推定部25は、推定した周波数オフセット量を示す周波数オフセット推定値を、周波数オフセット補正部22にフィードバックする。周波数オフセット推定部25の詳細な構成および動作については後述する。 The frequency offset estimation unit 25 feeds back a frequency offset estimation value indicating the estimated frequency offset amount to the frequency offset correction unit 22 . A detailed configuration and operation of the frequency offset estimator 25 will be described later.
 拡散符号生成部26は、タイミング同期部24から取得した拡散符号タイミングに基づいて、逆拡散を行うための拡散符号を生成する。拡散符号生成部26は、生成した拡散符号を逆拡散部27へ出力する。 The spreading code generation unit 26 generates a spreading code for despreading based on the spreading code timing acquired from the timing synchronization unit 24 . The spreading code generation unit 26 outputs the generated spreading code to the despreading unit 27 .
 拡散符号生成部26は、タイミング同期部24から取得した拡散符号推定タイミングに基づいて、逆拡散を行うための拡散符号を生成する(ステップS206)。拡散符号生成部26は、生成した拡散符号を逆拡散部27へ出力する。 The spreading code generation unit 26 generates a spreading code for despreading based on the spreading code estimation timing acquired from the timing synchronization unit 24 (step S206). The spreading code generation unit 26 outputs the generated spreading code to the despreading unit 27 .
 逆拡散部27は、受信フィルタ部23から受信フィルタ通過信号を取得し、拡散符号生成部26から拡散符号を取得する。逆拡散部27は、受信フィルタ通過信号に、拡散符号の複素共役を乗算することで、受信フィルタ通過信号を逆拡散する(ステップS207)。逆拡散部27は、逆拡散後の信号を復調部28へ出力する。 The despreading section 27 acquires the reception filter passing signal from the reception filter section 23 and acquires the spreading code from the spreading code generation section 26 . The despreading unit 27 despreads the reception filter-passed signal by multiplying the reception filter-passed signal by the complex conjugate of the spreading code (step S207). The despreading section 27 outputs the despread signal to the demodulating section 28 .
 復調部28は、逆拡散部27から取得した信号、すなわち周波数オフセットが補正された信号に対して復調を行う(ステップS208)。 The demodulator 28 demodulates the signal acquired from the despreader 27, that is, the signal whose frequency offset has been corrected (step S208).
 つぎに、受信装置2が備える、タイミング同期部24および周波数オフセット推定部25の構成および動作について詳細に説明する。図6は、実施の形態に係る受信装置が備えるタイミング同期部および周波数オフセット推定部の構成例を示す図である。タイミング同期部24は、相関値計算部241と、電力値計算部242と、平均化処理部243と、相関電力メモリ部244と、閾値判定部245と、を有する。平均化処理部243が、全体平均化処理部である。 Next, the configurations and operations of the timing synchronization section 24 and the frequency offset estimation section 25 included in the receiving device 2 will be described in detail. FIG. 6 is a diagram showing a configuration example of a timing synchronization section and a frequency offset estimation section included in the receiving apparatus according to the embodiment. The timing synchronization unit 24 has a correlation value calculation unit 241 , a power value calculation unit 242 , an averaging processing unit 243 , a correlation power memory unit 244 and a threshold determination unit 245 . The averaging processor 243 is the overall averaging processor.
 図7は、実施の形態に係る受信装置が有するタイミング同期部の動作を示すフローチャートである。相関値計算部241は、受信フィルタ部23から受信フィルタ通過信号を取得する。また、相関値計算部241は、プリアンブル生成部13がスペクトル拡散に用いるチャープ系列のチャープ信号を記憶しておく。 FIG. 7 is a flow chart showing the operation of the timing synchronization section of the receiving device according to the embodiment. Correlation value calculator 241 acquires the reception filter passing signal from reception filter 23 . Correlation value calculator 241 also stores a chirp signal of a chirp sequence that preamble generator 13 uses for spectrum spreading.
 相関値計算部241は、マッチドフィルタによってチャープ信号の複素共役を受信フィルタ通過信号に乗算し、受信フィルタ通過信号と、チャープ系列との相互相関関数を計算する。すなわち、相関値計算部241は、単一のマッチドフィルタを用いて、受信フィルタ通過信号と、プリアンブル生成部13がスペクトル拡散に用いたチャープ系列と、の相互相関関数を計算する(ステップS301)。このとき、相関値計算部241は、後段の電力値計算部242にはチャープ系列の系列長Nc分の全体相関の計算結果を出力する。また、相関値計算部241は、周波数オフセット推定部25には、チャープ系列の系列長Ncに対して、系列番号を0~Nc-1としたときに、任意の値Lを設定して、系列番号L~Nc-1に対する相互相関、系列番号0~Nc-Lに対する相互相関の、系列後半および系列前半に相当する部分相関の計算結果を出力する。 Correlation value calculator 241 multiplies the received filter-passed signal by the complex conjugate of the chirp signal using a matched filter, and calculates the cross-correlation function between the received filter-passed signal and the chirp sequence. That is, the correlation value calculator 241 uses a single matched filter to calculate the cross-correlation function between the received filter passing signal and the chirp sequence used for spectrum spreading by the preamble generator 13 (step S301). At this time, the correlation value calculation unit 241 outputs the calculation result of the total correlation for the sequence length Nc of the chirp sequence to the power value calculation unit 242 in the subsequent stage. Further, the correlation value calculator 241 sets an arbitrary value L to the frequency offset estimator 25 when the sequence number is 0 to Nc - 1 for the sequence length Nc of the chirp sequence. , the cross-correlation for the sequence numbers L to N c -1 and the cross-correlation for the sequence numbers 0 to N c -L.
 このように、相関値計算部241は、系列長Nc分のチャープ系列と受信信号(受信フィルタ通過信号)との相互相関である全体相関を、マッチドフィルタを用いて計算する。また、相関値計算部241は、チャープ系列の後半部分を含む連続した系列である系列後半と受信信号との相互相関である系列後半相関を、マッチドフィルタを用いて計算する。また、相関値計算部241は、チャープ系列の前半部分を含む連続した系列である系列前半と受信信号との相互相関である系列前半相関を、マッチドフィルタを用いて計算する。 In this way, the correlation value calculator 241 uses a matched filter to calculate the overall correlation, which is the cross-correlation between the chirp sequence of sequence length Nc and the received signal (received filter-passed signal). Correlation value calculation section 241 also uses a matched filter to calculate the late-sequence correlation, which is the cross-correlation between the received signal and the second half of the sequence, which is a continuous sequence including the second half of the chirp sequence. Correlation value calculation section 241 also uses a matched filter to calculate the first half sequence correlation, which is the cross-correlation between the first half of the sequence, which is a continuous sequence including the first half of the chirp sequence, and the received signal.
 電力値計算部242は、全体相関に対応する電力値である全体電力値を計算する。具体的には、電力値計算部242は、相関値計算部241から取得した相互相関関数の絶対値を2乗して電力値を計算する(ステップS302)。電力値計算部242が、全体電力値計算部である。電力値計算部242は、計算によって求めた電力値を平均化処理部243へ出力する。 The power value calculation unit 242 calculates the total power value, which is the power value corresponding to the total correlation. Specifically, the power value calculator 242 squares the absolute value of the cross-correlation function obtained from the correlation value calculator 241 to calculate the power value (step S302). The power value calculator 242 is the total power value calculator. The power value calculator 242 outputs the calculated power value to the averaging processor 243 .
 平均化処理部243は、各サンプルタイミングにおいて、電力値計算部242から取得した電力値を平均化する。具体的には、平均化処理部243は、電力値計算部242から取得した電力値、および電力値計算部242から取得済みで前ブロックの同じサンプルタイミングの電力値を用いて平均化を行う(ステップS303)。本実施の形態では、1ブロックは拡散符号長Nc×オーバーサンプル数Novsで構成され、サンプルタイミングはk=1~Nc×Novsの1要素とする。平均化処理部243は、各サンプルタイミングにおいて平均化した電力値を相関電力メモリ部244に記憶させる。 The averaging processor 243 averages the power values acquired from the power value calculator 242 at each sample timing. Specifically, the averaging processing unit 243 performs averaging using the power value acquired from the power value calculation unit 242 and the power value acquired from the power value calculation unit 242 at the same sample timing of the previous block ( step S303). In this embodiment, one block is composed of the spreading code length N c ×over-sampling number N ovs , and the sample timing is one element of k=1 to N c ×N ovs . The averaging processor 243 causes the correlation power memory 244 to store the power values averaged at each sample timing.
 相関電力メモリ部244は、拡散符号の1ブロック周期分の各サンプルタイミングの全体電力値、すなわち拡散符号長Nc×オーバーサンプル数Novsに相当する数の電力値を記憶できるように構成されている。相関電力メモリ部244は、平均化処理部243から取得した平均化後の電力値である電力サンプル平均値を拡散符号長Nc×オーバーサンプル数Novs(1ブロック周期)分にわたって記憶する(ステップS304)。1ブロック周期分の電力サンプル平均値が、1ブロック周期分の全体電力値であり、相関電力メモリ部244が、全体相関電力メモリである。 The correlation power memory unit 244 is configured to store the total power value of each sample timing for one block period of the spreading code, that is, the power value of the number corresponding to the spreading code length N c ×oversampling number N ovs . there is The correlation power memory unit 244 stores the power sample average value, which is the power value after averaging acquired from the averaging processing unit 243, over the spreading code length N c ×oversampling number N ovs (one block period) (step S304). The power sample average value for one block period is the total power value for one block period, and the correlation power memory unit 244 is the total correlation power memory.
 平均化処理部243までの処理は、サンプル時間単位の動作であったが、相関電力メモリ部244以降の処理は、ブロック時間単位での動作に変わることになる。相関電力メモリ部244は、後段の閾値判定部245と、周波数オフセット推定部25とに1ブロック周期分の電力サンプル平均値を出力する。 The processing up to the averaging processing unit 243 was performed in units of sample time, but the processing after the correlation power memory unit 244 is changed to operation in units of block time. The correlation power memory unit 244 outputs the power sample average value for one block period to the subsequent threshold determination unit 245 and the frequency offset estimation unit 25 .
 閾値判定部245は、1ブロック周期分の全体電力値に基づいて拡散符号タイミングを推定する。具体的には、閾値判定部245は、相関電力メモリ部244から取得した1ブロック周期の電力サンプル平均値のうち、最大となる電力サンプル平均値を検出し、検出した最大の電力サンプル平均値である最大電力値と閾値とを比較する(ステップS305)。閾値判定部245は、最大電力値が閾値を超えている場合、最大電力値に対応した拡散符号推定タイミングを、周波数オフセット推定部25および拡散符号生成部26に出力する。 The threshold determination unit 245 estimates the spreading code timing based on the total power value for one block period. Specifically, the threshold determination unit 245 detects the maximum power sample average value among the power sample average values for one block period acquired from the correlation power memory unit 244, and uses the detected maximum power sample average value. A certain maximum power value is compared with a threshold value (step S305). When the maximum power value exceeds the threshold value, the threshold determination section 245 outputs the spread code estimation timing corresponding to the maximum power value to the frequency offset estimation section 25 and the spread code generation section 26 .
 閾値判定部245は、閾値判定の方法として、以下のような方法を用いる。閾値判定部245は、相関電力メモリ部244から取得した、1ブロック周期分の電力サンプル平均値の平均値(以下、電力ブロック平均値という)を計算し、計算した電力ブロック平均値の定数α(1≦α)倍を閾値に設定する。電力ブロック平均値は、1ブロック周期分の各サンプルタイミングの電力サンプル平均値を、さらに平均化した値である。 The threshold determination unit 245 uses the following method as a threshold determination method. The threshold determination unit 245 calculates the average value of the power sample average values for one block period (hereinafter referred to as the power block average value) acquired from the correlation power memory unit 244, and calculates the constant α ( 1≦α) times is set as the threshold value. The power block average value is a value obtained by further averaging the power sample average values at each sample timing for one block period.
 図8は、実施の形態に係る受信装置の閾値判定部における閾値設定のイメージを示す図である。図8において、横軸はサンプルタイミングを示し、縦軸は電力サンプル平均値を示す。図8に示すように、閾値判定部245は、定数αの値を大きく設定する程、誤った同期点を確立する誤警報を低減できるが、タイミング検出に時間がかかる。一方、閾値判定部245は、定数αの値を小さく設定する程、タイミング検出の時間を短縮できるが、誤警報が増加する。 FIG. 8 is a diagram showing an image of threshold setting in the threshold determining unit of the receiving device according to the embodiment. In FIG. 8, the horizontal axis indicates the sample timing, and the vertical axis indicates the power sample average value. As shown in FIG. 8, the threshold determination unit 245 can reduce false alarms that establish an erroneous synchronization point as the value of the constant α is set larger, but it takes time to detect the timing. On the other hand, as the value of the constant α is set smaller, the threshold determination unit 245 can shorten the timing detection time, but false alarms increase.
 つぎに、周波数オフセット推定部25の構成および動作について詳細に説明する。周波数オフセット推定部25は、図6に示すように、電力値計算部251A,251Bと、平均化処理部252A,252Bと、相関電力メモリ部253A,253Bと、推定部254と、を有する。平均化処理部252Aが、後半平均化処理部であり、平均化処理部252Bが、前半平均化処理部である。 Next, the configuration and operation of the frequency offset estimation unit 25 will be described in detail. The frequency offset estimation unit 25 includes power value calculation units 251A and 251B, averaging processing units 252A and 252B, correlation power memory units 253A and 253B, and an estimation unit 254, as shown in FIG. The averaging processing unit 252A is the second half averaging processing unit, and the averaging processing unit 252B is the first half averaging processing unit.
 図9は、実施の形態に係る受信装置が有する周波数オフセット推定部の動作を示すフローチャートである。電力値計算部251A,251Bは、相関値計算部241から部分相関を取得する。すなわち、電力値計算部251Aは、相関値計算部241から系列後半の部分相関(系列後半相関)を取得し、電力値計算部251Bは、相関値計算部241から系列前半の部分相関(系列前半相関)を取得する。系列後半の部分相関および系列前半の部分相関が、途中演算情報である。受信装置2は、途中演算情報として系列後半の部分相関および系列前半の部分相関の値を得ることで、別途相関器を設ける必要が無くなるので、演算量を減らすことができる。 FIG. 9 is a flowchart showing the operation of the frequency offset estimator included in the receiving device according to the embodiment. Power value calculators 251A and 251B acquire partial correlations from correlation value calculator 241 . That is, power value calculation section 251A acquires the partial correlation of the second half of the sequence (second half sequence correlation) from correlation value calculation section 241, and power value calculation section 251B obtains the partial correlation of the first half of the sequence (first half of sequence correlation). The partial correlation of the second half of the series and the partial correlation of the first half of the series are intermediate calculation information. Receiving apparatus 2 obtains the value of the partial correlation of the second half of the sequence and the value of the partial correlation of the first half of the sequence as the intermediate computation information, thereby eliminating the need to provide a separate correlator, thereby reducing the amount of computation.
 電力値計算部251Aは、系列後半の部分相関の電力値を計算し(ステップS401a)、電力値計算部251Bは、系列前半の部分相関の電力値を計算する(ステップS401b)。すなわち、電力値計算部251Aは、系列後半相関に対応する電力値である後半電力値を計算し、電力値計算部251Bは、系列前半相関に対応する電力値である前半電力値を計算する。電力値計算部251Aが、後半電力値計算部であり、電力値計算部251Bが、前半電力値計算部である。 The power value calculator 251A calculates the power value of the partial correlation in the second half of the sequence (step S401a), and the power value calculator 251B calculates the power value of the partial correlation in the first half of the sequence (step S401b). That is, power value calculation section 251A calculates a second half power value corresponding to the second half sequence correlation, and power value calculation section 251B calculates a first half power value corresponding to the first half sequence correlation. The power value calculator 251A is the latter half power value calculator, and the power value calculator 251B is the first half power value calculator.
 電力値計算部251A,251Bが電力値を求める際の演算は、電力値計算部242が電力値を求める際の演算と同じである。電力値計算部251Aは、計算した電力値を平均化処理部252Aに出力し、電力値計算部251Bは、計算した電力値を平均化処理部252Bに出力する。 The calculations performed by the power value calculation units 251A and 251B to obtain the power values are the same as the calculations performed by the power value calculation unit 242 to obtain the power values. The power value calculator 251A outputs the calculated power value to the averaging processor 252A, and the power value calculator 251B outputs the calculated power value to the averaging processor 252B.
 平均化処理部252Aは、電力値計算部251Aから送られてきた電力値の平均化を行い(ステップS402a)、平均化処理部252Bは、電力値計算部251Bから送られてきた電力値の平均化を行う(ステップS402b)。平均化処理部252A,252Bが平均化処理を実行する際の演算は、平均化処理部243が平均化処理を実行する際の演算と同じである。平均化処理部252Aは、平均化した電力値を相関電力メモリ部253Aに出力し、平均化処理部252Bは、平均化した電力値を相関電力メモリ部253Bに出力する。 The averaging processing unit 252A averages the power values sent from the power value calculating unit 251A (step S402a), and the averaging processing unit 252B averages the power values sent from the power value calculating unit 251B. conversion is performed (step S402b). The calculations when the averaging processing units 252A and 252B execute the averaging processing are the same as the calculations when the averaging processing unit 243 executes the averaging processing. Averaging processing section 252A outputs the averaged power value to correlation power memory section 253A, and averaging processing section 252B outputs the averaged power value to correlation power memory section 253B.
 相関電力メモリ部253A,253Bは、平均化処理部252A,252Bから送られてくる電力平均値を記憶するメモリである。相関電力メモリ部253Aは、平均化処理部252Aから送られてくる電力平均値を1ブロック周期に渡って記憶する(ステップS403a)。相関電力メモリ部253Bは、平均化処理部252Bから送られてくる電力平均値を1ブロック周期に渡って記憶する(ステップS403b)。 The correlation power memory units 253A and 253B are memories that store power average values sent from the averaging processing units 252A and 252B. The correlation power memory unit 253A stores the power average value sent from the averaging processing unit 252A over one block period (step S403a). The correlation power memory unit 253B stores the power average value sent from the averaging processing unit 252B over one block period (step S403b).
 このように、相関電力メモリ部253Aは、拡散符号の1ブロック周期分の各サンプルタイミングの後半電力値を記憶し、相関電力メモリ部253Bは、拡散符号の1ブロック周期分の各サンプルタイミングの前半電力値を記憶する。相関電力メモリ部253Aが、後半電力値計算部であり、相関電力メモリ部253Bが、前半電力値計算部である。 In this way, the correlation power memory unit 253A stores the power value in the second half of each sampling timing for one block period of the spreading code, and the correlation power memory unit 253B stores the power value in the first half of each sampling timing for one block period of the spreading code. Store the power value. Correlation power memory section 253A is the latter half power value calculation section, and correlation power memory section 253B is the first half power value calculation section.
 相関電力メモリ部253A,253Bが電力平均値を記憶する際の処理は、相関電力メモリ部244が電力サンプル平均値を記憶する際の処理と同じである。相関電力メモリ部253A,253Bは、推定部254に電力平均値を出力する。 The processing when the correlation power memory units 253A and 253B store the power average values is the same as the processing when the correlation power memory unit 244 stores the power sample average values. Correlation power memory units 253A and 253B output average power values to estimation unit 254 .
 推定部254は、閾値判定部245から拡散符号推定タイミングを取得し、相関電力メモリ部244から1ブロック周期分の電力サンプル平均値を取得する。また、推定部254は、相関電力メモリ部253Aから系列後半の部分相関の電力平均値を取得し、相関電力メモリ部253Bから系列前半の部分相関の電力平均値を取得する。 The estimation unit 254 acquires the spread code estimation timing from the threshold determination unit 245 and acquires the power sample average value for one block period from the correlation power memory unit 244 . Estimating section 254 also acquires the power average value of the partial correlation of the second half of the sequence from correlation power memory section 253A, and acquires the power average value of the partial correlation of the first half of the sequence from correlation power memory section 253B.
 推定部254は、拡散符号推定タイミングにおいて、相関電力メモリ部244,253A,253Bから取得した、系列(チャープ系列)に対する全体相関の電力平均値(電力サンプル平均値)、および2種類の相互相関の電力平均値、すなわち3種類の電力平均値に基づいて周波数オフセット推定値を推定する(ステップS404)。 At the timing of estimating the spreading code, the estimating unit 254 obtains the power average value (power sample average value) of the overall correlation for the sequence (chirp sequence) obtained from the correlation power memory units 244, 253A, and 253B, and the two types of cross-correlations. A frequency offset estimate is estimated based on the power average value, that is, the three types of power average values (step S404).
 このように、推定部254は、拡散符号推定タイミングと、1ブロック周期分の全体電力値と、1ブロック周期分の後半電力値と、1ブロック周期分の前半電力値とに基づいて、周波数オフセット推定値を推定する。すなわち、推定部254は、マッチドフィルタの全体相関と部分相関との電力比から周波数オフセット量を推定する。 In this way, the estimator 254 calculates the frequency offset based on the spreading code estimation timing, the total power value for one block period, the power value for the latter half of one block period, and the power value for the first half of one block period. Estimate an estimate. That is, the estimator 254 estimates the frequency offset amount from the power ratio between the total correlation and the partial correlation of the matched filter.
 推定部254は、チャープ系列の系列後半に相当する部分相関がチャープ系列の系列前半に相当する部分相関よりも大きい場合は、正方向の周波数オフセットとして以下の式(2)を用いて周波数オフセット推定値を推定する。 If the partial correlation corresponding to the second half of the chirp sequence is greater than the partial correlation corresponding to the first half of the chirp sequence, the estimating unit 254 estimates the frequency offset using the following equation (2) as the positive frequency offset. Estimate a value.
 (周波数オフセット推定値)=Nc-(Nc-L)×(全体相関の電力サンプル平均値の平方根)/(系列後半の部分相関の電力平均値の平方根)・・・(2) (Frequency offset estimate)=N c −(N c −L)×(square root of average power sample value of overall correlation)/(square root of average power value of partial correlation in latter half of sequence) (2)
 また、推定部254は、チャープ系列の系列前半に相当する部分相関がチャープ系列の系列後半に相当する部分相関よりも大きい場合は、負方向の周波数オフセットとして以下の式(3)を用いて周波数オフセット推定値を推定する。 In addition, when the partial correlation corresponding to the first half of the chirp sequence is greater than the partial correlation corresponding to the second half of the chirp sequence, estimating section 254 uses the following equation (3) as the frequency offset in the negative direction to determine the frequency Estimate the offset estimate.
 (周波数オフセット推定値)=(-1)×{Nc-(Nc-L+1)×(全体相関の電力サンプル平均値の平方根)/(系列前半の部分相関の電力平均値の平方根)}・・・(3) (Frequency offset estimate)=(−1)×{N c −(N c −L+1)×(square root of power sample mean value of total correlation)/(square root of power mean value of partial correlation in first half of sequence)}・(3)
 なお、チャープ系列の系列前半に相当する部分相関とチャープ系列の系列後半に相当する部分相関とが同じ大きさである場合、推定部254は、上述した式(2)および式(3)の何れを用いて周波数オフセット推定値を推定してもよい。 Note that when the partial correlation corresponding to the first half of the chirp sequence and the partial correlation corresponding to the second half of the chirp sequence have the same magnitude, the estimating unit 254 uses either formula (2) or formula (3) described above. may be used to estimate the frequency offset estimate.
 推定部254が、上述した式(2)および式(3)を用いることによって周波数オフセット推定値を正確に推定できる理由について図10~図12を用いて説明する。 The reason why the estimating unit 254 can accurately estimate the frequency offset estimated value by using the above equations (2) and (3) will be described with reference to FIGS. 10 to 12. FIG.
 図10は、全体相関における時間と周波数との関係を示す図である。図11は、系列後半の部分相関における時間と周波数との関係を示す図であり、図12は、系列前半の部分相関における時間と周波数との関係を示す図である。図10~図12に示すグラフの横軸は時間であり、縦軸は周波数である。 FIG. 10 is a diagram showing the relationship between time and frequency in the overall correlation. FIG. 11 is a diagram showing the relationship between time and frequency in the partial correlation of the latter half of the sequence, and FIG. 12 is a diagram showing the relationship between time and frequency in the partial correlation of the first half of the sequence. The horizontal axis of the graphs shown in FIGS. 10 to 12 is time, and the vertical axis is frequency.
 図10に示すように、全体相関では、時間が0~Nc-1に変化する間に、周波数が-Nc/2~Nc/2-1に変化する。すなわち、全体相関では、時間が0の時に周波数が-Nc/2であり、時間の経過に比例して周波数が上昇し、時間がNc-1の時に周波数がNc/2-1となる。 As shown in FIG. 10, the global correlation varies in frequency from -N c /2 to N c /2-1 while time varies from 0 to N c -1. That is, in the total correlation, the frequency is -N c /2 when the time is 0, the frequency increases in proportion to the passage of time, and the frequency is N c /2-1 when the time is N c -1. Become.
 図11に示すように、系列後半の部分相関では、時間がL~Nc-1に変化する間に、周波数が-Nc/2+L~Nc/2-1に変化する。すなわち、部分相関(後半)では、時間がLの時に周波数が-Nc/2+Lであり、時間の経過に比例して周波数が上昇し、時間がNc-1の時に周波数がNc/2-1となる。 As shown in FIG. 11, in the partial correlation of the second half of the sequence, the frequency changes from -N c /2+L to N c /2-1 while the time changes from L to N c -1 . That is, in the partial correlation (second half), the frequency is −N c /2+L when the time is L, the frequency increases in proportion to the passage of time, and the frequency is N c /2 when the time is N c −1. -1.
 図12に示すように、系列前半の部分相関では、時間が0~Nc-Lに変化する間に、周波数が-Nc/2~Nc/2-Lに変化する。すなわち、部分相関(前半)では、時間が0の時に周波数が-Nc/2であり、時間の経過に比例して周波数が上昇し、時間がNc-Lの時に周波数がNc/2-Lとなる。 As shown in FIG. 12, in the partial correlation of the first half of the sequence, the frequency changes from -N c /2 to N c /2-L while the time changes from 0 to N c -L. That is, in the partial correlation (first half), the frequency is −N c /2 when the time is 0, the frequency increases in proportion to the passage of time, and the frequency is N c /2 when the time is N c −L. -L.
 ここで、周波数オフセットが正の値A(1<A<Lとする)であるとすると、波形が全体的に周波数の正方向にシフトするので、受信信号のプリアンブルは-Nc/2+A~Nc/2-1で変化する。Nc/2-1より大きい値は、帯域制限フィルタによって遮断されるので、同期時には存在しない。この場合、図10の全体相関で得られる電力値は、前述のフィルタ通過後の周波数成分と重なる範囲に相当するので、図10の全体相関では、-Nc/2+A~Nc/2-1、つまり、長さNc-Aに相当する電力値が得られる。 Here, if the frequency offset is a positive value A (1<A<L), the waveform shifts in the positive frequency direction as a whole, so the preamble of the received signal is −N c /2+A to N It changes by c /2-1. Values greater than N c /2−1 are cut off by the bandlimiting filter and are therefore not present during synchronization. In this case, the power value obtained by the overall correlation in FIG . 10 corresponds to the range that overlaps with the frequency components after passing through the filter described above, so the overall correlation in FIG . , that is, a power value corresponding to the length N c −A is obtained.
 図11の部分相関(後半)では、A<Lの場合は、周波数オフセットによる影響を受けずに長さNc-Lに相当する電力値が得られる。図12の部分相関(前半)では、周波数オフセットA分の電力減衰によって長さNc-L+1-Aに相当する電力値が得られる。したがって、部分相関(後半)の電力値が部分相関(前半)の電力値より大きくなるので、正の周波数オフセットがあることが分かり、推定部254は、式(2)から全体相関と部分相関(後半)の各電力値から周波数オフセット推定値を求めることができる。 In the partial correlation (second half) of FIG. 11, when A<L, a power value corresponding to the length N c −L is obtained without being affected by the frequency offset. In the partial correlation (first half) of FIG. 12, the power attenuation corresponding to the frequency offset A gives a power value corresponding to the length N c -L+1-A. Therefore, since the power value of the partial correlation (second half) is larger than the power value of the partial correlation (first half), it is found that there is a positive frequency offset. The frequency offset estimation value can be obtained from each power value in the second half).
 以上のように、本実施の形態では、送信装置1のプリアンブル生成部13が、プリアンブルでチャープ拡散を行っている。そして、受信装置2のタイミング同期部24が、チャープ拡散符号のマッチドフィルタによる全体相関と部分相関とをそれぞれ算出している。さらに、推定部254は、タイミング同期部24が全体相関から推定したタイミングで、全体相関と部分相関とを用いて周波数オフセット推定値を推定している。 As described above, in the present embodiment, the preamble generator 13 of the transmission device 1 performs chirp spreading with the preamble. Then, the timing synchronization unit 24 of the receiving device 2 calculates the total correlation and the partial correlation by the matched filter of the chirp spreading code. Furthermore, the estimator 254 estimates the frequency offset estimated value using the overall correlation and the partial correlation at the timing estimated from the overall correlation by the timing synchronization unit 24 .
 なお、本実施の形態で用いられる系列は、送信装置1のチャープ拡散部12およびプリアンブル生成部13が用いた式(1)に従ったM=1のZadoff-Chu系列に限定されない。また、送信装置1は、中心周波数をずらしてもよく、CAZAC系列など、他のチャープ系列を拡散符号に用いてもよい。この場合も、送信装置1は、線形的に周波数が増減するような系列を用いれば周波数オフセットの推定が可能である。 The sequence used in this embodiment is not limited to the M=1 Zadoff-Chu sequence according to equation (1) used by chirp spreading section 12 and preamble generating section 13 of transmitting apparatus 1 . Also, transmitting apparatus 1 may shift the center frequency, and may use other chirp sequences such as CAZAC sequences as spreading codes. In this case as well, the transmitting apparatus 1 can estimate the frequency offset by using a sequence in which the frequency linearly increases and decreases.
 また、本実施の形態では、受信装置2のタイミング同期部24が、前ブロックの同じサンプルタイミングの電力値を用いて平均化を行ったが、平均化の処理は、これに限定されない。タイミング同期部24は、同じチャープ拡散を行った全プリアンブルブロックの同じサンプルタイミングで平均化を行ってもよい。 Also, in the present embodiment, the timing synchronization unit 24 of the receiving device 2 performs averaging using the power values of the same sample timing of the previous block, but the averaging process is not limited to this. The timing synchronization unit 24 may perform averaging at the same sample timing for all preamble blocks subjected to the same chirp spreading.
 以上のように、受信装置2は、受信フィルタ通過信号と、スペクトル拡散に用いられたチャープ系列との相互相関関数を計算する。また、受信装置2は、相互相関の電力値を計算し、ブロック毎に同じサンプルタイミングで電力値の平均化を行う。受信装置2は、平均化後の各結果と閾値とを比較し、チャープ信号の最大電力値が得られるタイミングを拡散符号推定タイミングとして検出する。 As described above, the receiving device 2 calculates the cross-correlation function between the reception filter-passed signal and the chirp sequence used for spectrum spreading. Further, the receiving device 2 calculates the cross-correlation power value, and averages the power value at the same sample timing for each block. The receiving device 2 compares each result after averaging with a threshold, and detects the timing at which the maximum power value of the chirp signal is obtained as the timing for estimating the spreading code.
 また、受信装置2は、マッチドフィルタによって、チャープ系列長に対して相関を行う全体相関と、系列の一部で相関を行う部分相関とを求める。受信装置2は、拡散符号推定タイミングにおいて、マッチドフィルタの全体相関と部分相関との電力比から周波数オフセット量を推定し、受信フィルタ通過前の受信信号に対して周波数オフセット補正を行う。これにより、受信装置2は、周波数オフセット補正を行った信号に対して再度拡散符号タイミングを推定し、プリアンブル信号以外のデータを復調する。 Also, the receiving device 2 uses a matched filter to find the overall correlation for correlating the length of the chirp sequence and the partial correlation for correlating a part of the sequence. At the timing of estimating the spreading code, the receiver 2 estimates the frequency offset amount from the power ratio of the total correlation and the partial correlation of the matched filter, and corrects the frequency offset for the received signal before passing through the reception filter. As a result, the receiver 2 re-estimates the spreading code timing for the frequency offset-corrected signal, and demodulates the data other than the preamble signal.
 これにより、受信装置2は、マッチドフィルタを用いた簡易な構成で高精度な拡散符号タイミングの推定と、周波数オフセット量の推定を行うことができる。 As a result, the receiving device 2 can estimate the spread code timing and the frequency offset amount with high accuracy with a simple configuration using a matched filter.
 つづいて、受信装置2のハードウェア構成について説明する。受信装置2において、受信アンテナ21はアンテナ装置で実現される。受信フィルタ部23はフィルタ回路で実現される。周波数オフセット補正部22、タイミング同期部24、周波数オフセット推定部25、拡散符号生成部26、逆拡散部27、および復調部28は、それぞれ処理回路により実現される。これらの処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。処理回路は制御回路とも呼ばれる。 Next, the hardware configuration of the receiving device 2 will be explained. In the receiving device 2, the receiving antenna 21 is realized by an antenna device. The reception filter unit 23 is realized by a filter circuit. The frequency offset corrector 22, the timing synchronizer 24, the frequency offset estimator 25, the spreading code generator 26, the despreader 27, and the demodulator 28 are each implemented by a processing circuit. These processing circuits may be processors and memories that execute programs stored in the memory, or may be dedicated hardware. Processing circuitry is also called control circuitry.
 図13は、実施の形態に係る受信装置が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図である。図13に示す処理回路90は制御回路であり、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、受信装置2の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能を受信装置2に実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。 FIG. 13 is a diagram showing a configuration example of a processing circuit when the processing circuit included in the receiving device according to the embodiment is realized by a processor and memory. A processing circuit 90 shown in FIG. 13 is a control circuit and includes a processor 91 and a memory 92 . When the processing circuit 90 is composed of the processor 91 and the memory 92, each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 92 . In the processing circuit 90, each function is realized by the processor 91 reading and executing the program stored in the memory 92. FIG. That is, the processing circuitry 90 includes a memory 92 for storing programs that result in the processing of the receiving device 2 being executed. This program can also be said to be a program for causing the receiving device 2 to execute each function realized by the processing circuit 90 . This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium.
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). In addition, the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc. A semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) corresponds to this.
 図14は、実施の形態に係る受信装置が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図である。図14に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 FIG. 14 is a diagram showing an example of a processing circuit when the processing circuit included in the receiving device according to the embodiment is configured with dedicated hardware. The processing circuit 93 shown in FIG. 14 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies. The processing circuit may be partly implemented by dedicated hardware and partly implemented by software or firmware. Thus, the processing circuitry may implement each of the functions described above through dedicated hardware, software, firmware, or a combination thereof.
 なお、周波数オフセット補正部22、タイミング同期部24、周波数オフセット推定部25、拡散符号生成部26、逆拡散部27、および復調部28は、それぞれ別々の処理回路で構成されてもよい。また、ここでは、受信装置2のハードウェア構成について説明したが、送信装置1のハードウェア構成についても受信装置2のハードウェア構成と同様である。 Note that the frequency offset correction unit 22, the timing synchronization unit 24, the frequency offset estimation unit 25, the spreading code generation unit 26, the despreading unit 27, and the demodulation unit 28 may each be configured by separate processing circuits. Also, although the hardware configuration of the receiving device 2 has been described here, the hardware configuration of the transmitting device 1 is the same as that of the receiving device 2 .
 このように、実施の形態によれば、受信装置2が、拡散符号タイミングと、1ブロック周期分の全体電力値と、1ブロック周期分の後半電力値と、1ブロック周期分の前半電力値とに基づいて、周波数オフセット量を推定する。したがって、受信装置2は、回路規模の増大を抑制しつつ、処理遅延を抑制して、大きい周波数オフセットが存在する環境においても、拡散符号タイミングの推定および周波数オフセットの推定を高精度に行うことができる。 As described above, according to the embodiment, the receiving apparatus 2 uses the spread code timing, the total power value for one block period, the second half power value for one block period, and the first half power value for one block period. Based on, the frequency offset amount is estimated. Therefore, the receiving device 2 can suppress processing delay while suppressing an increase in circuit size, and can perform highly accurate estimation of the spreading code timing and the frequency offset even in an environment where a large frequency offset exists. can.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 送信装置、2 受信装置、11 変調部、12 チャープ拡散部、13 プリアンブル生成部、14 フレーム生成部、15 送信フィルタ、16 送信アンテナ、21 受信アンテナ、22 周波数オフセット補正部、23 受信フィルタ部、24 タイミング同期部、25 周波数オフセット推定部、26 拡散符号生成部、27 逆拡散部、28 復調部、90,93 処理回路、91 プロセッサ、92 メモリ、241 相関値計算部、242,251A,251B 電力値計算部、243,252A,252B 平均化処理部、244,253A,253B 相関電力メモリ部、245 閾値判定部、254 推定部。 1 transmission device, 2 reception device, 11 modulation unit, 12 chirp spreading unit, 13 preamble generation unit, 14 frame generation unit, 15 transmission filter, 16 transmission antenna, 21 reception antenna, 22 frequency offset correction unit, 23 reception filter unit, 24 timing synchronization unit, 25 frequency offset estimation unit, 26 spreading code generation unit, 27 despreading unit, 28 demodulation unit, 90, 93 processing circuit, 91 processor, 92 memory, 241 correlation value calculation unit, 242, 251A, 251B power Value calculation unit, 243, 252A, 252B Average processing unit, 244, 253A, 253B Correlation power memory unit, 245 Threshold determination unit, 254 Estimation unit.

Claims (7)

  1.  チャープ系列のチャープ信号によってスペクトル拡散されたプリアンブルを有する受信信号に基づいて、送信装置で拡散符号が乗算されたタイミングである拡散符号タイミングを推定するタイミング同期部と、
     前記拡散符号タイミングに基づいて、前記送信装置との間の周波数オフセット量を推定する周波数オフセット推定部と、
     を備え、
     前記タイミング同期部は、
     系列長分の前記チャープ系列と前記受信信号との相互相関である全体相関と、前記チャープ系列の後半部分を含む連続した系列である系列後半と前記受信信号との相互相関である系列後半相関と、前記チャープ系列の前半部分を含む連続した系列である系列前半と前記受信信号との相互相関である系列前半相関と、をマッチドフィルタを用いて計算する相関値計算部と、
     前記全体相関に対応する電力値である全体電力値を計算する全体電力値計算部と、
     前記拡散符号の1ブロック周期分の各サンプルタイミングの前記全体電力値を記憶する全体相関電力メモリと、
     前記1ブロック周期分の前記全体電力値に基づいて前記拡散符号タイミングを推定する判定部と、
     を有し、
     前記周波数オフセット推定部は、
     前記系列後半相関に対応する電力値である後半電力値を計算する後半電力値計算部と、
     前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記後半電力値を記憶する後半相関電力メモリと、
     前記系列前半相関に対応する電力値である前半電力値を計算する前半電力値計算部と、
     前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記前半電力値を記憶する前半相関電力メモリと、
     前記拡散符号タイミングと、前記1ブロック周期分の前記全体電力値と、前記1ブロック周期分の前記後半電力値と、前記1ブロック周期分の前記前半電力値とに基づいて、前記周波数オフセット量を推定する推定部と、
     を有する、
     ことを特徴とする受信装置。
    a timing synchronization unit for estimating a spreading code timing, which is a timing at which a spreading code is multiplied by a transmitting device, based on a received signal having a preamble spectrum-spread by a chirp signal of a chirp sequence;
    a frequency offset estimating unit that estimates a frequency offset amount with respect to the transmitting device based on the spreading code timing;
    with
    The timing synchronization unit
    total correlation, which is the cross-correlation between the chirp sequence for the length of the sequence and the received signal; and late-sequence correlation, which is the cross-correlation between the received signal and the latter half of the sequence, which is a continuous sequence including the latter part of the chirp sequence. a correlation value calculator that calculates, using a matched filter, a sequence first half correlation that is a cross-correlation between the sequence first half, which is a continuous sequence including the first half of the chirp sequence, and the received signal;
    an overall power value calculator that calculates an overall power value that is a power value corresponding to the overall correlation;
    an overall correlation power memory for storing the overall power value at each sample timing for one block period of the spreading code;
    a determination unit that estimates the spreading code timing based on the total power value for the one block period;
    has
    The frequency offset estimator,
    a second half power value calculation unit that calculates a second half power value that is a power value corresponding to the sequence second half correlation;
    a second half correlation power memory that stores the second half power value of each sample timing for the one block period of the spreading code;
    a first-half power value calculator that calculates a first-half power value that is a power value corresponding to the series first-half correlation;
    a first half correlation power memory that stores the first half power value of each sample timing for the one block period of the spreading code;
    The frequency offset amount is calculated based on the spreading code timing, the total power value for one block period, the second half power value for one block period, and the first half power value for one block period. an estimating unit for estimating;
    has a
    A receiving device characterized by:
  2.  前記タイミング同期部は、
     前記1ブロック周期分の各サンプルタイミングの前記全体電力値を平均化し、平均化した前記全体電力値を前記全体相関電力メモリに記憶させる全体平均化処理部をさらに有し、
     前記判定部は、平均化された前記全体電力値に基づいて前記拡散符号タイミングを推定する、
     ことを特徴とする請求項1に記載の受信装置。
    The timing synchronization unit
    further comprising an overall averaging processing unit that averages the overall power values at each sample timing for the one block period and stores the averaged overall power values in the overall correlation power memory;
    The determination unit estimates the spreading code timing based on the averaged overall power value.
    2. The receiving apparatus according to claim 1, characterized by:
  3.  前記周波数オフセット推定部は、
     前記1ブロック周期分の各サンプルタイミングの前記後半電力値を平均化し、平均化した前記後半電力値を前記後半相関電力メモリに記憶させる後半平均化処理部と、
     前記1ブロック周期分の各サンプルタイミングの前記前半電力値を平均化し、平均化した前記前半電力値を前記前半相関電力メモリに記憶させる前半平均化処理部と、
     をさらに有し、
     前記推定部は、
     平均化された前記全体電力値と、平均化された前記後半電力値と、平均化された前記前半電力値とに基づいて、前記周波数オフセット量を推定する、
     ことを特徴とする請求項2に記載の受信装置。
    The frequency offset estimator,
    a second-half averaging processor that averages the second-half power values at each sample timing for the one block period and stores the averaged second-half power values in the second-half correlation power memory;
    a first-half averaging processing unit that averages the first-half power values at each sample timing for the one block period and stores the averaged first-half power values in the first-half correlation power memory;
    further having
    The estimation unit
    estimating the frequency offset amount based on the averaged overall power value, the averaged second half power value, and the averaged first half power value;
    3. The receiving apparatus according to claim 2, characterized by:
  4.  前記判定部は、
     前記平均化された前記全体電力値の最大値を検出し、前記平均化された前記全体電力値から閾値を生成し、前記全体電力値の最大値と前記閾値との比較に基づいて、前記拡散符号タイミングを推定する、
     ことを特徴とする請求項2に記載の受信装置。
    The determination unit is
    detecting a maximum of the averaged total power values; generating a threshold from the averaged total power values; and based on comparing the maximum of the total power values to the threshold, the diffusion estimating code timing,
    3. The receiving apparatus according to claim 2, characterized by:
  5.  受信装置の受信同期方法であって、
     タイミング同期部が、チャープ系列のチャープ信号によってスペクトル拡散されたプリアンブルを有する受信信号に基づいて、送信装置で拡散符号が乗算されたタイミングである拡散符号タイミングを推定する第1のステップと、
     周波数オフセット推定部が、前記拡散符号タイミングに基づいて、前記送信装置との間の周波数オフセット量を推定する第2のステップと、
     を含み、
     前記第1のステップは、
     前記タイミング同期部が、系列長分の前記チャープ系列と前記受信信号との相互相関である全体相関と、前記チャープ系列の後半部分を含む連続した系列である系列後半と前記受信信号との相互相関である系列後半相関と、前記チャープ系列の前半部分を含む連続した系列である系列前半と前記受信信号との相互相関である系列前半相関と、をマッチドフィルタを用いて計算する相関値計算ステップと、
     前記タイミング同期部が、前記全体相関に対応する電力値である全体電力値を計算する全体電力値計算ステップと、
     前記タイミング同期部が、前記拡散符号の1ブロック周期分の各サンプルタイミングの前記全体電力値を記憶する全体相関電力記憶ステップと、
     前記タイミング同期部が、前記1ブロック周期分の前記全体電力値に基づいて前記拡散符号タイミングを推定する判定ステップと、
     を有し、
     前記第2のステップは、
     前記周波数オフセット推定部が、前記系列後半相関に対応する電力値である後半電力値を計算する後半電力値計算ステップと、
     前記周波数オフセット推定部が、前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記後半電力値を記憶する後半相関電力記憶ステップと、
     前記周波数オフセット推定部が、前記系列前半相関に対応する電力値である前半電力値を計算する前半電力値計算ステップと、
     前記周波数オフセット推定部が、前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記前半電力値を記憶する前半相関電力記憶ステップと、
     前記周波数オフセット推定部が、前記拡散符号タイミングと、前記1ブロック周期分の前記全体電力値と、前記1ブロック周期分の前記後半電力値と、前記1ブロック周期分の前記前半電力値とに基づいて、前記周波数オフセット量を推定する推定ステップと、
     を有する、
     ことを特徴とする受信同期方法。
    A receiving synchronization method for a receiving device, comprising:
    a first step in which a timing synchronization unit estimates a spreading code timing, which is a timing multiplied by a spreading code in a transmitting device, based on a received signal having a preamble spectrum-spread by a chirp signal of a chirp sequence;
    a second step in which a frequency offset estimator estimates a frequency offset amount with respect to the transmitting device based on the spreading code timing;
    including
    The first step includes
    The timing synchronization unit performs overall correlation, which is a cross-correlation between the chirp sequence for a sequence length and the received signal, and cross-correlation between the received signal and the last half of a sequence, which is a continuous sequence including the second half of the chirp sequence. and a first half sequence correlation that is cross-correlation between the received signal and the first half sequence, which is a continuous sequence including the first half of the chirp sequence, using a matched filter. ,
    an overall power value calculation step in which the timing synchronization unit calculates an overall power value that is a power value corresponding to the overall correlation;
    an overall correlation power storage step in which the timing synchronization unit stores the overall power value of each sample timing for one block period of the spreading code;
    a determination step in which the timing synchronization unit estimates the spreading code timing based on the total power value for the one block period;
    has
    The second step includes
    a second half power value calculation step in which the frequency offset estimator calculates a second half power value that is a power value corresponding to the series second half correlation;
    a second half correlation power storage step in which the frequency offset estimation unit stores the second half power value of each sample timing for the one block period of the spreading code;
    a first half power value calculation step in which the frequency offset estimator calculates a first half power value that is a power value corresponding to the series first half correlation;
    a first half correlation power storage step in which the frequency offset estimation unit stores the first half power value of each sample timing for the one block period of the spreading code;
    the frequency offset estimating unit based on the spreading code timing, the total power value for one block period, the second half power value for one block period, and the first half power value for one block period; an estimation step of estimating the frequency offset amount;
    having
    A reception synchronization method characterized by:
  6.  受信装置を制御する制御回路であって、
     チャープ系列のチャープ信号によってスペクトル拡散されたプリアンブルを有する受信信号に基づいて、送信装置で拡散符号が乗算されたタイミングである拡散符号タイミングを推定する第1の処理と、
     前記拡散符号タイミングに基づいて、前記送信装置との間の周波数オフセット量を推定する第2の処理と、
     を前記受信装置に実施させ、
     前記第1の処理では、
     系列長分の前記チャープ系列と前記受信信号との相互相関である全体相関と、前記チャープ系列の後半部分を含む連続した系列である系列後半と前記受信信号との相互相関である系列後半相関と、前記チャープ系列の前半部分を含む連続した系列である系列前半と前記受信信号との相互相関である系列前半相関と、をマッチドフィルタを用いて計算する相関値計算処理と、
     前記全体相関に対応する電力値である全体電力値を計算する全体電力値計算処理と、
     前記拡散符号の1ブロック周期分の各サンプルタイミングの前記全体電力値を記憶する全体相関記憶処理と、
     前記1ブロック周期分の前記全体電力値に基づいて前記拡散符号タイミングを推定する判定処理と、
     を前記受信装置に実施させ、
     前記第2の処理では、
     前記系列後半相関に対応する電力値である後半電力値を計算する後半電力値計算処理と、
     前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記後半電力値を記憶する後半相関電力記憶処理と、
     前記系列前半相関に対応する電力値である前半電力値を計算する前半電力値計算処理と、
     前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記前半電力値を記憶する前半相関電力記憶処理と、
     前記拡散符号タイミングと、前記1ブロック周期分の前記全体電力値と、前記1ブロック周期分の前記後半電力値と、前記1ブロック周期分の前記前半電力値とに基づいて、前記周波数オフセット量を推定する推定処理と、
     を前記受信装置に実施させる、
     ことを特徴とする制御回路。
    A control circuit for controlling a receiving device,
    a first process of estimating a spreading code timing, which is a timing at which a spreading code is multiplied by a transmitting device, based on a received signal having a preamble spectrum-spread by a chirp signal of a chirp sequence;
    a second process of estimating a frequency offset amount with respect to the transmitting apparatus based on the spreading code timing;
    causing the receiving device to perform
    In the first process,
    total correlation, which is the cross-correlation between the chirp sequence for the length of the sequence and the received signal; and late-sequence correlation, which is the cross-correlation between the received signal and the latter half of the sequence, which is a continuous sequence including the latter part of the chirp sequence. , a correlation value calculation process of calculating, using a matched filter, a sequence first half correlation, which is a cross-correlation between the sequence first half, which is a continuous sequence including the first half of the chirp sequence, and the received signal;
    an overall power value calculation process for calculating an overall power value that is a power value corresponding to the overall correlation;
    an overall correlation storage process of storing the overall power value at each sample timing for one block period of the spreading code;
    a determination process of estimating the spreading code timing based on the total power value for the one block period;
    causing the receiving device to perform
    In the second processing,
    a second half power value calculation process for calculating a second half power value that is a power value corresponding to the series second half correlation;
    a second half correlation power storage process of storing the second half power value of each sample timing for the one block period of the spreading code;
    a first half power value calculation process for calculating a first half power value that is a power value corresponding to the series first half correlation;
    a first half correlation power storage process of storing the first half power value of each sample timing for the one block period of the spreading code;
    The frequency offset amount is calculated based on the spreading code timing, the total power value for one block period, the second half power value for one block period, and the first half power value for one block period. an estimation process to estimate;
    causing the receiving device to perform
    A control circuit characterized by:
  7.  受信装置を制御する制御回路を制御するプログラムを記憶した記憶媒体であって、
     前記プログラムは、
     受信装置を制御する制御回路であって、
     チャープ系列のチャープ信号によってスペクトル拡散されたプリアンブルを有する受信信号に基づいて、送信装置で拡散符号が乗算されたタイミングである拡散符号タイミングを推定する第1の処理と、
     前記拡散符号タイミングに基づいて、前記送信装置との間の周波数オフセット量を推定する第2の処理と、
     を前記受信装置に実施させ、
     前記第1の処理では、
     系列長分の前記チャープ系列と前記受信信号との相互相関である全体相関と、前記チャープ系列の後半部分を含む連続した系列である系列後半と前記受信信号との相互相関である系列後半相関と、前記チャープ系列の前半部分を含む連続した系列である系列前半と前記受信信号との相互相関である系列前半相関と、をマッチドフィルタを用いて計算する相関値計算処理と、
     前記全体相関に対応する電力値である全体電力値を計算する全体電力値計算処理と、
     前記拡散符号の1ブロック周期分の各サンプルタイミングの前記全体電力値を記憶する全体相関記憶処理と、
     前記1ブロック周期分の前記全体電力値に基づいて前記拡散符号タイミングを推定する判定処理と、
     を前記受信装置に実施させ、
     前記第2の処理では、
     前記系列後半相関に対応する電力値である後半電力値を計算する後半電力値計算処理と、
     前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記後半電力値を記憶する後半相関電力記憶処理と、
     前記系列前半相関に対応する電力値である前半電力値を計算する前半電力値計算処理と、
     前記拡散符号の前記1ブロック周期分の各サンプルタイミングの前記前半電力値を記憶する前半相関電力記憶処理と、
     前記拡散符号タイミングと、前記1ブロック周期分の前記全体電力値と、前記1ブロック周期分の前記後半電力値と、前記1ブロック周期分の前記前半電力値とに基づいて、前記周波数オフセット量を推定する推定処理と、
     を前記受信装置に実施させる、
     ことを特徴とする記憶媒体。
    A storage medium storing a program for controlling a control circuit for controlling a receiving device,
    Said program
    A control circuit for controlling a receiving device,
    a first process of estimating a spreading code timing, which is a timing at which a spreading code is multiplied by a transmitting device, based on a received signal having a preamble spectrum-spread by a chirp signal of a chirp sequence;
    a second process of estimating a frequency offset amount with respect to the transmitting apparatus based on the spreading code timing;
    causing the receiving device to perform
    In the first process,
    total correlation, which is the cross-correlation between the chirp sequence for the length of the sequence and the received signal; and late-sequence correlation, which is the cross-correlation between the received signal and the latter half of the sequence, which is a continuous sequence including the latter part of the chirp sequence. , a correlation value calculation process of calculating, using a matched filter, a sequence first half correlation, which is a cross-correlation between the sequence first half, which is a continuous sequence including the first half of the chirp sequence, and the received signal;
    an overall power value calculation process for calculating an overall power value that is a power value corresponding to the overall correlation;
    an overall correlation storage process of storing the overall power value at each sample timing for one block period of the spreading code;
    a determination process of estimating the spreading code timing based on the total power value for the one block period;
    causing the receiving device to perform
    In the second processing,
    a second half power value calculation process for calculating a second half power value that is a power value corresponding to the series second half correlation;
    a second half correlation power storage process of storing the second half power value of each sample timing for the one block period of the spreading code;
    a first half power value calculation process for calculating a first half power value that is a power value corresponding to the sequence first half correlation;
    a first half correlation power storage process of storing the first half power value of each sample timing for the one block period of the spreading code;
    The frequency offset amount is calculated based on the spreading code timing, the total power value for one block period, the second half power value for one block period, and the first half power value for one block period. an estimation process to estimate;
    causing the receiving device to perform
    A storage medium characterized by:
PCT/JP2021/043442 2021-11-26 2021-11-26 Reception device, reception synchronization method, control circuit, and storage medium WO2023095299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/043442 WO2023095299A1 (en) 2021-11-26 2021-11-26 Reception device, reception synchronization method, control circuit, and storage medium
JP2023545841A JP7378687B2 (en) 2021-11-26 2021-11-26 Receiving device, reception synchronization method, control circuit, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043442 WO2023095299A1 (en) 2021-11-26 2021-11-26 Reception device, reception synchronization method, control circuit, and storage medium

Publications (1)

Publication Number Publication Date
WO2023095299A1 true WO2023095299A1 (en) 2023-06-01

Family

ID=86539192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043442 WO2023095299A1 (en) 2021-11-26 2021-11-26 Reception device, reception synchronization method, control circuit, and storage medium

Country Status (2)

Country Link
JP (1) JP7378687B2 (en)
WO (1) WO2023095299A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102960A (en) * 1999-09-29 2001-04-13 Denso Corp Spread spectrum receiver
JP2012156926A (en) * 2011-01-28 2012-08-16 Fujitsu Semiconductor Ltd Transmitting device, transmitting method, receiving device and receiving method
WO2018225190A1 (en) * 2017-06-07 2018-12-13 株式会社Nttドコモ User equipment and cell search method
WO2021117118A1 (en) * 2019-12-10 2021-06-17 三菱電機株式会社 Reception device, control circuit, storage medium, and communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102960A (en) * 1999-09-29 2001-04-13 Denso Corp Spread spectrum receiver
JP2012156926A (en) * 2011-01-28 2012-08-16 Fujitsu Semiconductor Ltd Transmitting device, transmitting method, receiving device and receiving method
WO2018225190A1 (en) * 2017-06-07 2018-12-13 株式会社Nttドコモ User equipment and cell search method
WO2021117118A1 (en) * 2019-12-10 2021-06-17 三菱電機株式会社 Reception device, control circuit, storage medium, and communication system

Also Published As

Publication number Publication date
JP7378687B2 (en) 2023-11-13
JPWO2023095299A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US9971018B2 (en) Interference mitigation for positioning systems
CN113238261A (en) Signal capturing and tracking system of low-orbit satellite spread spectrum communication system
JP4259843B2 (en) Ultra-wideband communication system and method using delayed hopping continuous noise transmission reference scheme
US11942981B2 (en) Receiver, communication system, control circuit, and storage medium
WO2010098468A1 (en) Gnss reception apparatus
CN109412644B (en) Doppler frequency estimation method for direct sequence spread spectrum MSK signal
WO2015070820A1 (en) Spread spectrum signal generating method, generating apparatus, receiving method and receiving apparatus
US6104747A (en) Method for determining optimum number of complex samples for coherent averaging in a communication system
US9516616B2 (en) Method and apparatus for estimating frequency errors
JP6023707B2 (en) Method for reducing glare in a receiver receiving a signal from a transmitter
JP7004876B2 (en) Receiver, control circuit, storage medium and communication system
US20100172448A1 (en) Method and receiver apparatus for determining a correlation value considering frequency correction
JP2006261985A (en) Receiver for spread spectrum communications
US20160285659A1 (en) Apparatus and method for burst signal detection
WO2023095299A1 (en) Reception device, reception synchronization method, control circuit, and storage medium
JP3852533B2 (en) Initial acquisition circuit
US20230318657A1 (en) Transmission device, reception device, communication system, control circuit, storage medium, transmission method, and reception method
WO2003052952A1 (en) Interference suppression in a cdma radio receiver
KR20040022971A (en) Apparatus And Method For Tracking Phase Of Pseudo Random Sequence Based On Pilot Signal In Mobile Device
KR20010094752A (en) Method and apparatus for code phase correlation
JP2007228424A (en) Synchronous timing detecting device, and receiver
EP2814197B1 (en) Method for carrier-to-noise ratio estimation in GNSS receivers
US20070076786A1 (en) Methods and apparatuses for processing spread spectrum signals
WO2023170754A1 (en) Receiver device, communication system, control circuit, storage medium, and communication method
JP5152508B2 (en) GNSS receiver and positioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545841

Country of ref document: JP