WO2023093874A1 - 建筑物坍塌风险评估方法、装置、计算机设备及存储介质 - Google Patents

建筑物坍塌风险评估方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2023093874A1
WO2023093874A1 PCT/CN2022/134580 CN2022134580W WO2023093874A1 WO 2023093874 A1 WO2023093874 A1 WO 2023093874A1 CN 2022134580 W CN2022134580 W CN 2022134580W WO 2023093874 A1 WO2023093874 A1 WO 2023093874A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
target building
building
collapse
component
Prior art date
Application number
PCT/CN2022/134580
Other languages
English (en)
French (fr)
Inventor
徐大用
岳清瑞
秦宇
沈赣苏
蒋会春
董方
习树峰
施钟淇
凌君
Original Assignee
深圳市城市公共安全技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市城市公共安全技术研究院有限公司 filed Critical 深圳市城市公共安全技术研究院有限公司
Priority to ZA2023/01683A priority Critical patent/ZA202301683B/en
Publication of WO2023093874A1 publication Critical patent/WO2023093874A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present application relates to the field of computer technology, in particular to a building collapse risk assessment method, device, computer equipment and storage medium.
  • the purpose of this application is to provide a building collapse risk assessment method, device, computer equipment and storage media, which are used to solve the current technical problem that the risk of building collapse cannot be quickly assessed.
  • An aspect of the embodiment of the present application provides a building collapse risk assessment method, including: obtaining the current settlement of the target building, inputting the current settlement into the mechanical analysis model, and determining the individual values of the target building according to the mechanical analysis model. Whether the component fails, the target building includes a certain number of components, and the mechanical analysis model is used to analyze whether the component fails; obtain the first failure number and the first failure volume of each component, and determine the failure rate of each component according to the first failure number The first failure number percentage, and determine the first failure volume percentage of each component according to the first failure volume; determine the current risk index value of the target building according to the first failure number percentage and the first failure volume percentage; in the current risk index value If it is greater than or equal to the critical index value, it is determined that the target building has a risk of collapse.
  • the components include a column component, a main beam component and an auxiliary beam component, and the current risk index value of the target building is determined according to the first failure number percentage and the first failure volume percentage, including: according to the risk index calculation formula, the first failure The number percentage and the first failure volume percentage determine the current risk index value of the target building, where the risk index calculation formula is:
  • f is the value of the risk index
  • n 1 , n 2 and n 3 are the failure percentages of column members, main beam members and sub-beam members respectively
  • v 1 , v 2 and v 3 are column members , failure volume percentage of main beam members and sub-beam members.
  • the method further includes: inputting different settlements of the target building into the mechanical analysis model, and determining the critical settlement of the target building when it critically collapses, the second failure quantity of each component, and the second Failure volume; determine the second failure number percentage of each component according to the second failure number, and determine the second failure volume percentage of each component according to the second failure volume; according to the risk index calculation formula, the second failure number percentage and the second The failure volume percentage is calculated to obtain the critical index value.
  • the target building includes historical measurement data
  • the historical measurement data includes settlement amounts at several different times
  • the method further includes: determining the first settlement time curve of the target building according to the historical measurement data; according to the first settlement time curve and The critical settlement determines the critical collapse time of the target building.
  • the method also includes: obtaining the initial settlement amount and the completion time of the target building when it is completed; determining the second settlement time curve of the target building according to the initial settlement amount, completion time, current settlement amount and current time; Second, the settlement time curve and the critical settlement amount determine the critical collapse time of the target building.
  • obtain the current settlement of the target building input the current settlement into the mechanical analysis model, and determine whether each component of the target building fails according to the mechanical analysis model, including: constructing a geometric model of the target building; Model builds a mechanical analysis model.
  • the target building is divided into N grid units, where N is a positive integer; the current settlement is input into the mechanical analysis model, and each grid unit is determined by the mechanical analysis model. Whether it is invalid; in the case of grid unit failure, determine the failure of the component corresponding to the grid unit.
  • obtaining the first failure volume of each component includes: obtaining the volume of the failed grid unit; counting the sum of the volumes of the failed grid units in each component according to the components corresponding to the failed grid unit, and dividing the volume The sum is taken as the first failure volume of each component.
  • An aspect of the embodiment of the present application provides a building collapse risk assessment device, including: an analysis module, used to obtain the current settlement of the target building, input the current settlement into the mechanical analysis model, according to the mechanical analysis model Determine whether each component of the target building is ineffective.
  • the target building includes a certain number of components.
  • the mechanical analysis model is used to analyze whether the components fail; the acquisition module is used to obtain the first failure quantity and the first failure volume of each component , determine the first failure number percentage of each component according to the first failure number, and determine the first failure volume percentage of each component according to the first failure volume; the determination module is used to determine the first failure number percentage and the first failure volume The percentage determines the current risk index value of the target building; the evaluation module is used to determine that the target building has a collapse risk when the current risk index value is greater than or equal to the critical index value.
  • the computer device includes a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, it is used to realize the above-mentioned building The steps of the collapse risk assessment method.
  • An aspect of the embodiments of the present application further provides a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program can be executed by at least one processor, so that at least one processor executes the above-mentioned construction The steps of the collapse risk assessment method.
  • the building collapse risk assessment method, device, computer equipment and storage medium provided in the embodiment of the present application include the following advantages:
  • the current settlement of the target building By obtaining the current settlement of the target building, input the current settlement into the mechanical analysis model, and determine whether each component of the target building fails according to the mechanical analysis model; obtain the failure quantity and failure volume of each component, and determine each component The failure number percentage and failure volume percentage of the component; then determine the current risk index value of the target building according to the failure number percentage and failure volume percentage of the component.
  • the current risk index value is greater than or equal to the critical index value, it is determined that the target building exists Collapse risk. Because the failure ratio of components can be determined according to the current settlement of the target building, and the current risk index value can be determined by the failure ratio, and then whether there is a risk of collapse can be determined by comparing the current risk index value with the critical index value, so the building can be quickly evaluated risk of collapse.
  • Fig. 1 schematically shows the flowchart of the building collapse risk assessment method of the first embodiment of the present application
  • Fig. 2 is the flowchart of newly added steps in Fig. 1;
  • FIG. 3 is another flowchart of the newly added steps in Fig. 1;
  • Fig. 4 is another flowchart of the newly added steps in Fig. 1;
  • Fig. 5 is the flowchart of step S110 sub-step among Fig. 1;
  • Fig. 6 is the flowchart of step S120 sub-step among Fig. 1;
  • FIG. 7 schematically shows a block diagram of a building collapse risk assessment device according to Embodiment 2 of the present application.
  • FIG. 8 schematically shows a hardware architecture diagram of a computer device according to Embodiment 3 of the present application.
  • the execution body of the building collapse risk assessment method can be a client or a server, wherein the client can be, but not limited to, various personal computers, laptops, smart phones, tablet For computers and portable wearable devices, the server can be implemented by an independent server or a server cluster composed of multiple servers.
  • the building collapse risk assessment scheme will be introduced through several embodiments below. For ease of understanding, the following will take the client as the execution subject to give an exemplary description.
  • Fig. 1 schematically shows the flow chart of the building collapse risk assessment method in Embodiment 1 of the present application, including steps S110 to S140, specifically described as follows:
  • Step S110 obtain the current settlement of the target building, input the current settlement into the mechanical analysis model, and determine whether each component of the target building is invalid according to the mechanical analysis model.
  • the target building includes a certain number of components, and the mechanical analysis The model is used to analyze whether the component fails.
  • the current settlement of the target building can be manually measured and input to the client, so that the client can obtain the current settlement of the target building.
  • the components of the target building are, for example, column components, beam components, and floor components, and each component is mainly composed of concrete and steel bars.
  • the mechanical analysis model can be pre-built in the client. After obtaining the current settlement of the target building, the client can input the current settlement into the mechanical analysis model, that is, the mechanical analysis model can be used to perform mechanical analysis on the target building , and then determine whether each component of the target building fails according to certain judgment conditions.
  • the mechanical analysis model may contain a series of formulas for mechanical analysis of the target building, so as to realize the mechanical analysis of the target building.
  • the geometric modeling of the target building can be carried out by using the software first, and then the corresponding mechanical analysis model can be constructed on the basis of the geometric model of the target building.
  • the initial load of the target building can be input into the mechanical analysis model to obtain the initial stress state of the target building; then input the current settlement of the target building, the mechanical analysis model can be used to analyze the target building Under the condition of the current settlement, the mechanical analysis is carried out to analyze the stress and strain state of the concrete and steel bars of each component in the target building, and then determine whether the corresponding components fail by calculating the failure indicators of the concrete and steel bars.
  • the specific construction of the mechanical analysis model can be carried out according to actual needs, and there is no specific limitation here, as long as it can analyze whether the components of the target building fail.
  • Step S120 obtaining the first failure number and first failure volume of each component, determining the first failure number percentage of each component according to the first failure number, and determining the first failure volume percentage of each component according to the first failure volume .
  • the mechanical analysis model can analyze whether a component fails, when the mechanical analysis model determines the failure of a certain component, it can directly add 1 to the number of failures of the corresponding component, and finally the first failure number of each component can be obtained.
  • the first failure volume of each component can be obtained in the following way: the mechanical analysis model divides the target building into multiple grid units, analyzes each grid unit separately, and determines whether each grid unit fails, Finally, the first failure volume of each component is determined according to the failed grid unit volume.
  • the first failure volume of each component can also be obtained in other ways, which is not specifically limited here.
  • the first failure volume percentage of each component can be obtained by dividing the first failure volume of each component by the total volume of each component.
  • Step S130 determining the current risk index value of the target building according to the first failure quantity percentage and the first failure volume percentage.
  • the components of the target building include a column component, a main beam component and an auxiliary beam component, and step S130 may include:
  • f is the value of the risk index
  • n 1 , n 2 and n 3 are the failure percentages of column members, main beam members and sub-beam members respectively
  • v 1 , v 2 and v 3 are column members , failure volume percentage of main beam members and sub-beam members. That is: Substitute the first failure number percentage and first failure volume percentage of column members, main beam members and auxiliary beam members of the target building into the risk index calculation formula, and the current risk index value of the target building can be obtained through calculation.
  • the main beam member refers to the beam member along the depth direction of the target building
  • the secondary beam member refers to the beam member along the width direction of the target building.
  • ni and v j can be regarded as the respective vector components in the two vector spaces, and the base vector is e i , and the construction vector is:
  • n n i e i #(1);
  • ni and v j of the vector n and v can be expressed as the influence of the failure percentage of the component on the overall building structure, that is, ni and v j represent the weight coefficients of the failure quantity percentage and failure volume percentage respectively .
  • e i can be considered as an orthogonal basis.
  • the vectors n and v form a parallelogram.
  • the vector g representing the overall damage degree of the building structure should fall inside the quadrilateral. At the critical point of collapse, there should be:
  • g is the diagonal of the parallelogram.
  • the collapse risk of a building can be assessed according to the failure number percentage or failure volume percentage of components, but the accuracy is low. For example, if a column of the target building fails, it may be concluded that the risk is high if it is simply calculated by the failure volume percentage, but in fact the failure of a column is likely not to cause the collapse of the building, so if the failure volume percentage is simply used If the risk of collapse is calculated by the volume percentage, it may be disturbed by the large-scale failure of a single component; for another example, the number of failures in the target building is small, but the failure volume of the components is large.
  • the failure number is used to calculate, It may be concluded that the risk is low, but in reality the risk of collapse of the building may be relatively high after these small numbers of components fail extensively. It can be seen that the evaluation of the collapse risk of a building based on the failure number percentage or failure volume percentage of components is less accurate, and the above risk index calculation formula combines the failure number percentage of components and The failure volume percentage can comprehensively evaluate the collapse risk of the target building from the two dimensions of the failure number percentage and the failure volume percentage, so the accuracy of the evaluation result is high; from another perspective, because the failure number and failure volume of components are actually It is obtained through simulation modeling, and the simulation modeling does not necessarily match the actual situation. Therefore, a more accurate evaluation result can be obtained by evaluating the collapse risk of the target building by integrating the failure number percentage and failure volume percentage of components.
  • Step S140 in the case that the value of the current risk index is greater than or equal to the value of the critical index, it is determined that the target building has a risk of collapse.
  • the value of the critical index can be set according to the actual situation, for example, according to historical experience data, and there is no specific limitation here.
  • the client compares the current risk index value with the critical index value. If the current risk index value is greater than or equal to the critical index value, it is determined that the target building is unsafe and there is a risk of collapse. Exemplarily, if the value of the current risk index is less than the value of the critical index, it is determined that the target building is safe and there is no risk of collapse.
  • the collapse risk can also be determined according to the ratio of the current risk index value to the critical index value, that is, the smaller the ratio, the lower the risk; the larger the ratio, the greater the risk.
  • the building collapse risk assessment method of the embodiment of the present application obtains the current settlement amount of the target building, inputs the current settlement amount into the mechanical analysis model, and determines whether each component of the target building is invalid according to the mechanical analysis model; obtains each The failure quantity and failure volume of the components, determine the failure quantity percentage and failure volume percentage of each component; then determine the current risk index value of the target building according to the failure number percentage and failure volume percentage of the component, when the current risk index value is greater than or equal to In the case of the critical index value, it is determined that the target building has a risk of collapse.
  • the failure ratio of components can be determined according to the current settlement of the target building, and the current risk index value can be determined by the failure ratio, and then whether there is a risk of collapse can be determined by comparing the current risk index value with the critical index value, so the building can be quickly evaluated risk of collapse.
  • the building collapse risk assessment method further includes steps S210 to S230, specifically as follows:
  • Step S210 input different settlements of the target building into the mechanical analysis model, and determine the critical settlement of the target building when critically collapsed, the second failure quantity and the second failure volume of each component according to the mechanical analysis model.
  • the client applies different settlements of the target building to the mechanical analysis model until a critical collapse occurs in the simulation model corresponding to the target building. For example, gradually increase the settlement amount from small to large until the simulation model of the target building collapses.
  • the currently input settlement amount is determined as the critical settlement amount, and the second failure quantity and the second failure volume of each component are obtained according to the failure conditions of each component.
  • Step S220 determining a second failure quantity percentage of each component according to the second failure quantity, and determining a second failure volume percentage of each component according to the second failure volume.
  • the client divides the second failure quantity of each component by the total quantity of each component to obtain the percentage of the second failure quantity of each component; divides the second failure volume of each component by the total volume of each component, A second percent failure volume can be obtained for each component.
  • Step S230 calculating the critical index value according to the risk index calculation formula, the second failure quantity percentage and the second failure volume percentage.
  • the client substitutes the second failure quantity percentage and the second failure volume percentage of each component into the risk index calculation formula, and the obtained risk index value is the critical index value.
  • the critical index value is obtained when the simulation model corresponding to the target building undergoes a critical collapse, and for the sake of safety, some space can be reserved, and the value obtained by subtracting a certain value from the calculated result can be used as Critical index values, so that the risk of collapse of the target building can be determined in advance.
  • the failure quantity and failure volume of each component when the target building critically collapses are determined according to the mechanical analysis model, and then according to the failure quantity and failure volume of each component
  • the critical index value is obtained by calculating the failure volume. Since the critical index value is obtained by applying different settlements to the target building and using the mechanical analysis model and the risk index calculation formula, the critical index value is suitable for the target building. Therefore The value of the critical index can be used to judge whether the target building has a risk of collapse, thereby improving the accuracy of risk assessment.
  • the target building includes historical measurement data
  • the historical measurement data includes several settlements at different times.
  • the building collapse risk assessment method may also include steps S310 to S320, specifically as follows:
  • Step S310 determining the first settlement time curve of the target building according to the historical measurement data.
  • the settlement time curve refers to the curve of the target building time and the corresponding settlement amount, which reflects the process of the target building's settlement increasing over time.
  • the first settlement time curve of the target building When determining the first settlement time curve of the target building according to the historical measurement data, it can be obtained by performing curve fitting on the historical measurement data.
  • the specific method used is, for example, an exponential function or a polynomial, etc., which is not specifically limited here.
  • Step S320 determining the critical collapse time of the target building according to the first settlement time curve and the critical settlement amount.
  • the critical settling amount and the first settling time curve can be combined Get the critical collapse time of the target building. For example, if according to the first settlement time curve, the time corresponding to the critical settlement amount is t A , then t A can be determined as the critical collapse time of the target building.
  • the target building when evaluating the collapse risk of the target building, only the current collapse risk of the target building can be evaluated. If the result of the assessment is that there is a risk, the corresponding emergency treatment can be carried out directly, such as evacuating the people in the target building, transferring property, etc.; but if the result of the assessment is that there is no risk for the time being, the emergency treatment cannot be carried out immediately ; Since the target building has settled, there will be a risk of collapse in the future, so determining the critical collapse time of the target building through the first settlement curve can effectively guide the measures that should be taken, so as to better Avoid the loss of personnel and property caused by the collapse of the target building. For example, the target building can be reassessed in advance before the critical collapse time to determine the risk of collapse of the target building; or, the transfer of personnel and property of the target building can be carried out in a planned way before the critical collapse time.
  • the first settlement time curve of the target building is determined according to the historical measurement data
  • the critical collapse time of the target building is determined according to the first settlement time curve and the critical settlement amount, and reasonable measures can be taken according to the critical collapse time, thereby Better avoid the loss of personnel and property caused by the collapse of the target building.
  • the building collapse risk assessment method may further include steps S410 to S430, specifically as follows:
  • Step S410 acquiring the initial settlement amount and the completion time of the target building when it is completed.
  • the initial settlement of the target building when it is built can be obtained by measurement.
  • the target building since the target building generally has no settlement when it is built, it can be considered that the initial settlement of the target building is zero.
  • Step S420 determining a second settlement time curve of the target building according to the initial settlement amount, the completion time, the current settlement amount and the current time.
  • the second settlement time curve of the target building may also be derived according to the settlement time curves of other buildings.
  • the slope k of the second settlement time curve can be obtained according to the current settlement amount and the current time, thereby obtaining the second settlement time curve.
  • the second settlement time curve can be obtained by the above-mentioned curve fitting method.
  • Step S430 determining the critical collapse time of the target building according to the second settlement time curve and the critical settlement amount.
  • the corresponding time can be obtained as the critical collapse time.
  • the second settlement time curve of the target building is determined according to the initial settlement, completion time, current settlement and current time by obtaining the initial settlement and completion time of the target building, and then according to the second settlement
  • the time curve and critical settlement amount determine the critical collapse time of the target building. Since less data is required, it is more convenient to obtain the settlement time curve of the target building, and then reasonable measures can be taken according to the critical collapse time to avoid the collapse of the target building caused losses.
  • step S110 may specifically include steps S111 to S114, specifically as follows:
  • Step S111 constructing a geometric model of the target building.
  • the frame structure of the target building the number of floors, the number of columns per floor, and the geometric parameters (such as length, width, height, diameter, etc.) Build a geometric model of the target building.
  • step S112 a mechanical analysis model is constructed according to the geometric model.
  • the target building is divided into N grid units, where N is a positive integer.
  • the initial load of the target building can be determined according to the data such as the material properties of the target building, and the initial stress state in the target building can be obtained.
  • the data such as the material properties of the target building
  • the initial stress state in the target building can be obtained.
  • a certain degree of initial damage can be set according to the actual situation.
  • the construction process of the mechanical analysis model can be as follows:
  • Xi is the body force component
  • is the density
  • ü represents the second derivative of displacement with respect to time, that is, acceleration.
  • the boundary conditions of the non-subsidence zone are:
  • the boundary conditions of the subsidence zone are:
  • the first step is numerical discretization, which includes grid division, cell format selection, etc.
  • buildings are usually composed of beams, columns, and floor members
  • the beams and columns are the main load-bearing members of the frame structure, which are subjected to axial and bending loads, and are reinforced-concrete composite structures.
  • the steel-concrete structure is under compression, it is mainly carried by concrete, and when it is under tension, it is mainly carried by steel bars.
  • the inner concrete is under compression, and the outer steel bars are under tension.
  • Discretization is usually composed of beams, columns, and floor members
  • the beams and columns are the main load-bearing members of the frame structure, which are subjected to axial and bending loads, and are reinforced-concrete composite structures.
  • the steel-concrete structure When the steel-concrete structure is under compression, it is mainly carried by concrete, and when it is under tension, it is mainly carried by steel bars.
  • the inner concrete is under compression, and the outer steel bars are
  • Beams and columns can be discreted by solid elements, and the coordinates of any point in the solid elements can be expressed as:
  • the floor members are not the main load-bearing members, but are mainly subjected to in-plane tension and out-of-plane shear.
  • the dimensions in the length and width directions are much larger than the dimensions in the thickness direction. Therefore, shell elements can be used to discretize the floor members.
  • the velocity at any point in the shell element can be expressed as:
  • v m is the thickness of the mid-surface of the shell
  • is the angular velocity
  • the velocity strain is calculated by the following formula:
  • the resultant force and moment on the element can be expressed as the integral in the thickness direction:
  • Reinforcement-concrete coupling is an important factor affecting the mechanical properties of beams and columns.
  • Separate modeling methods can be used to finely analyze the reinforcement-concrete composite structure.
  • the separate modeling method refers to using beam elements and solid elements to establish steel and concrete models, and then describes the force between the two through coupling algorithms.
  • the traditional coupling algorithm usually uses the common node method, that is, the solid element and the beam element share a common node. This method has problems such as difficult mesh division and low element quality in actual analysis.
  • the reinforcement-concrete coupling algorithm based on the penalty function method is adopted, and the reinforcement can be "immersed" in the concrete according to the actual reinforcement method, without considering the sharing problem between nodes.
  • the discretized system has the following form:
  • Concrete is a composite multiphase material with a very complex internal structure. From a macroscopic point of view, concrete can be regarded as a heterogeneous material in which aggregates are dispersed in the cement slurry base material. When the structural size is greater than 4 times the aggregate size, it can be regarded as a uniform isotropic material.
  • the stress-strain relationship between cement binder and aggregate is basically linear, but concrete shows obvious nonlinear behavior. This shows that the interface between aggregate and cement paste has an important influence on the mechanical properties of concrete. The interface is usually associated with internal cracks, and its development stages can be roughly divided into four stages:
  • the macroscopic performance of internal cracks in concrete is the stiffness degradation and fracture of components.
  • Appropriate stress-strain parameters can be selected to characterize this characteristic to achieve the purpose of theoretical analysis and numerical calculation.
  • the cap material model is a commonly used constitutive form.
  • the smooth continuous cap model (CSCM) model can be used to simulate the damage and failure of concrete.
  • the model can pass the stress invariant Establish the constitutive damage-destruction relationship of concrete:
  • the plastic yield surface can be expressed as:
  • F f is the shear failure surface
  • F c is the hardened compaction surface
  • J 1 is the first stress invariant
  • J' 2 is the second deviatoric stress invariant
  • J' 3 is the third deviatoric stress invariant.
  • the shear failure surface can be represented by the first stress invariant:
  • ⁇ , ⁇ , ⁇ , ⁇ are parameters to be fitted, which can usually be obtained from triaxial compression tests.
  • the hardened compaction (cap) surface represents the compaction stage of the internal pores of the concrete under load, which can be expressed as:
  • R represents the ratio of the major axis to the minor axis of the cap surface ellipse.
  • the movement of the cap surface represents the change of the plastic volume
  • the enlargement of the cap surface represents the compression of the plastic volume
  • the shrinkage of the cap surface represents the increase of the plastic volume, that is, expansion.
  • the movement of the cap surface can be expressed by the hardening criterion:
  • the damage of concrete can be expressed by the normalized criterion d:
  • the ductile damage begins to accumulate when ⁇ c > ⁇ 0c , and ⁇ 0c is the initial ductile damage.
  • the degree of brittle failure can be expressed by the following formula:
  • Brittle damage begins to accumulate when ⁇ t > ⁇ 0t , and ⁇ 0t is the initial brittle damage.
  • M is the mass diagonal matrix
  • P is the external load and physical force vector
  • F is the stress divergence vector
  • H is the hourglass resistance vector.
  • a n M -1 (P n -F n +H n )#(35);
  • the single-point integration element algorithm can be selected in the solid element and shell element, that is, a Gaussian integration point is used to estimate the physical quantity of the entire element; and
  • hourglass control can be adopted; for another example, the collapse process of a building is a transient process involving the dynamic response of the structure, and the deformation of the component is accompanied by the propagation of the stress wave in the material.
  • Step S113 input the current settlement amount into the mechanical analysis model, and use the mechanical analysis model to determine whether each grid unit is invalid.
  • the probability of uneven settlement is relatively high.
  • the settlement value of the column bottom of the foundation cap in the settlement area of the target building can be measured as the current settlement amount, and then input as the forced displacement of the column bottom support.
  • the stress and strain state of the grid unit are mainly calculated through the formulas included in the mechanical analysis model, and then the grid unit is determined by the failure criterion of the corresponding material Is it invalid.
  • Step S114 in the case of grid unit failure, determine that the component corresponding to the grid unit is failure.
  • the grid unit A fails, and the grid unit A corresponds to the main beam member, it is determined that the main beam member where the grid unit A is located fails.
  • a mechanical analysis model is constructed according to the geometric model, and the target building is divided into N grid units, and the current settlement is input into the mechanical analysis model, and the mechanical analysis model is used to Determine whether each grid unit is invalid.
  • the mechanical analysis model is used to Determine whether each grid unit is invalid.
  • the target building can be divided into grid units for analysis, and then on the basis of grid unit analysis Determine whether the corresponding component fails, so as to effectively analyze whether the component fails.
  • obtaining the first failure volume of each component may include steps S121 to S122, specifically as follows:
  • Step S121 acquiring the volume of the failed grid unit.
  • the volume of the grid unit can be determined according to the geometric parameters of the grid unit, so as to obtain the volume of the failed grid unit.
  • Step S122 count the sum of the volumes of the failed grid units in each component according to the components corresponding to the failed grid units, and use the volume sum as the first failure volume of each component.
  • the volume of the failed grid unit A is used as the failure volume of the column component.
  • all the column components can be obtained.
  • the failure volume of the column member can be summed to obtain the first failure volume of the column member, and the first failure volume of other members can be deduced by analogy.
  • the failure volume of components is difficult to estimate accurately during actual measurement, and even non-destructive testing methods cannot measure the exact situation inside components.
  • the component corresponding to the grid unit counts the sum of the volumes of the failed grid units in each component, and the sum of the volumes is used as the first failure volume of each component, which can effectively obtain the first failure volume of each component, and then conveniently Conduct a collapse risk assessment of the target building.
  • FIG. 7 schematically shows a block diagram of a building collapse risk assessment device 500 according to Embodiment 2 of the present application.
  • the building collapse risk assessment device 500 can be divided into one or more program modules, and one or more program modules are divided into It is stored in a storage medium and executed by one or more processors to complete the embodiments of the present application.
  • the program module referred to in the embodiment of the present application refers to a series of computer program instruction segments capable of performing specific functions. The following description will specifically introduce the functions of each program module in this embodiment.
  • the building collapse risk assessment device 500 may include an analysis module 510 , an acquisition module 520 , a determination module 530 and an assessment module 540 .
  • the analysis module 510 is used to obtain the current settlement of the target building, input the current settlement into the mechanical analysis model, and determine whether each component of the target building is invalid according to the mechanical analysis model.
  • the target building includes a certain number of components , the mechanical analysis model is used to analyze whether the component fails;
  • the obtaining module 520 is used to obtain the first failure quantity and the first failure volume of each component, determine the first failure quantity percentage of each component according to the first failure quantity, and determine the first failure quantity percentage of each component according to the first failure volume. failure volume percentage;
  • a determination module 530 configured to determine the current risk index value of the target building according to the first failure quantity percentage and the first failure volume percentage;
  • An evaluation module 540 configured to determine that the target building has a collapse risk when the current risk index value is greater than or equal to the critical index value.
  • the components include a column component, a main beam component and an auxiliary beam component
  • the determining module 530 is further configured to: determine the target building according to the risk index calculation formula, the first failure number percentage and the first failure volume percentage The value of the current risk indicator, where the formula for calculating the risk indicator is:
  • f is the value of the risk index
  • n 1 , n 2 and n 3 are the failure percentages of column members, main beam members and sub-beam members respectively
  • v 1 , v 2 and v 3 are column members , failure volume percentage of main beam members and sub-beam members.
  • the building collapse risk assessment device 500 also includes a calculation module (not shown in the figure), wherein the calculation module is used to: input different settlements of the target building into the mechanical analysis model, according to the mechanical The analysis model determines the critical settlement, the second failure number and the second failure volume of each component when the target building is critically collapsed; determines the second failure number percentage of each component according to the second failure number, and determines the second failure number percentage of each component according to the second failure volume Determine the second failure volume percentage of each component; calculate the critical index value according to the risk index calculation formula, the second failure number percentage and the second failure volume percentage.
  • the calculation module is used to: input different settlements of the target building into the mechanical analysis model, according to the mechanical The analysis model determines the critical settlement, the second failure number and the second failure volume of each component when the target building is critically collapsed; determines the second failure number percentage of each component according to the second failure number, and determines the second failure number percentage of each component according to the second failure volume Determine the second failure volume percentage of each component; calculate the critical index value according to
  • the target building includes historical measurement data
  • the historical measurement data includes settlements at several different times
  • the building collapse risk assessment device 500 also includes a first time determination module (not shown in the figure), wherein, the first time determination module is used to: determine the first settlement time curve of the target building according to the historical measurement data; determine the critical collapse time of the target building according to the first settlement time curve and the critical settlement amount.
  • the building collapse risk assessment device 500 also includes a second time determination module (not shown in the figure), wherein the second time determination module is used to: obtain the initial settlement amount of the target building when it is completed and the completion time; determine the second settlement time curve of the target building according to the initial settlement amount, the completion time, the current settlement amount and the current time; determine the critical collapse time of the target building according to the second settlement time curve and the critical settlement amount.
  • the second time determination module is used to: obtain the initial settlement amount of the target building when it is completed and the completion time; determine the second settlement time curve of the target building according to the initial settlement amount, the completion time, the current settlement amount and the current time; determine the critical collapse time of the target building according to the second settlement time curve and the critical settlement amount.
  • the analysis module 510 is also used to: construct a geometric model of the target building; construct a mechanical analysis model according to the geometric model, in the mechanical analysis model, the target building is divided into N grid units, N is a positive integer; input the current settlement into the mechanical analysis model, and use the mechanical analysis model to determine whether each grid unit fails; in the case of grid unit failure, determine the failure of the corresponding component of the grid unit.
  • the obtaining module 520 is also used to: obtain the volume of the failed grid unit; calculate the sum of the volumes of the failed grid units in each component according to the component corresponding to the failed grid unit, and calculate the sum of the volumes as the first failure volume of each component.
  • FIG. 8 schematically shows a hardware architecture diagram of a computer device 600 suitable for a building collapse risk assessment method according to Embodiment 3 of the present application.
  • the computer device 600 may be a device capable of automatically performing numerical calculation and/or data processing according to preset or stored instructions.
  • it may be a rack server, a blade server, a tower server or a cabinet server (including an independent server, or a server cluster composed of multiple servers), a gateway, and the like.
  • the computer device 600 at least includes but is not limited to: a memory 610 , a processor 620 , and a network interface 630 that can communicate with each other through a system bus. in:
  • the memory 610 includes at least one type of computer-readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disk, optical disk, etc.
  • the storage 610 may be an internal storage module of the computer device 600 , such as a hard disk or memory of the computer device 600 .
  • the memory 610 can also be an external storage device of the computer device 600, such as a plug-in hard disk equipped on the computer device 600, a smart memory card (Smart Media Card, referred to as SMC), a secure digital (Secure Digital (referred to as SD) card, flash memory card (Flash Card) and so on.
  • the storage 610 may also include both an internal storage module of the computer device 600 and an external storage device thereof.
  • the memory 610 is generally used to store the operating system and various application software installed in the computer device 600, such as the program code of the building collapse risk assessment method and the like.
  • the memory 610 can also be used to temporarily store various types of data that have been output or will be output.
  • the processor 620 may be a central processing unit (Central Processing Unit, CPU for short), a controller, a microcontroller, a microprocessor, or other data processing chips in some embodiments.
  • the processor 620 is generally used to control the overall operation of the computer device 600 , such as performing control and processing related to data interaction or communication with the computer device 600 .
  • the processor 620 is configured to run program codes stored in the memory 610 or process data.
  • Network interface 630 may include a wireless network interface or a wired network interface, and is typically used to establish communication links between computer device 600 and other computer devices.
  • the network interface 630 is used to connect the computer device 600 with an external terminal through a network, and establish a data transmission channel and a communication link between the computer device 600 and an external terminal.
  • the network can be Intranet, Internet, Global System of Mobile Communication (GSM for short), Wideband Code Division Multiple Access (WCDMA for short), 4G network , 5G network, Bluetooth (Bluetooth), Wi-Fi and other wireless or wired networks.
  • FIG. 8 only shows a computer device having components 610-630, but it should be understood that implementing all of the illustrated components is not a requirement and that more or fewer components may alternatively be implemented.
  • the building collapse risk assessment method stored in the memory 610 can also be divided into one or more program modules, and executed by one or more processors (processor 620 in this embodiment), To complete the embodiment of this application.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the steps of the building collapse risk assessment method in the embodiment are implemented.
  • the computer-readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), Magnetic Memory, Magnetic Disk, Optical Disk, etc.
  • the computer-readable storage medium may be an internal storage unit of a computer device, such as a hard disk or a memory of the computer device.
  • the computer-readable storage medium may also be an external storage device of the computer device, such as a plug-in hard disk equipped on the computer device, a smart memory card (Smart Media Card, referred to as SMC), a secure digital ( Secure Digital (referred to as SD) card, flash memory card (Flash Card), etc.
  • the computer-readable storage medium may also include both the internal storage unit of the computer device and its external storage device.
  • the computer-readable storage medium is usually used to store the operating system and various application software installed on the computer equipment, such as the program code of the building collapse risk assessment method in the embodiment.
  • the computer-readable storage medium can also be used to temporarily store various types of data that have been output or will be output.
  • modules or steps of the above-mentioned embodiments of the present application can be implemented by general-purpose computing devices, and they can be concentrated on a single computing device, or distributed among multiple computing devices.
  • they may be implemented in program code executable by a computing device, thereby, they may be stored in a storage device to be executed by a computing device, and in some cases, may be implemented in a code different from that described herein
  • the steps shown or described are executed in sequence, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation.
  • embodiments of the present application are not limited to any specific combination of hardware and software.

Abstract

本申请实施例提供一种建筑物坍塌风险评估方法,方法包括:获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效;获取每种构件的第一失效数量和第一失效体积,根据第一失效数量确定每种构件的第一失效数量百分比,并根据第一失效体积确定每种构件的第一失效体积百分比;根据第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值;在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。本申请实施例提供的建筑物坍塌风险评估方法,可以快速地评估建筑物发生坍塌的风险。

Description

建筑物坍塌风险评估方法、装置、计算机设备及存储介质
交叉引用
本申请要求在2022年07月27日提交中国专利局、申请号为202210889585.1、发明名称为“建筑物坍塌风险评估方法、装置、计算机设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,特别涉及一种建筑物坍塌风险评估方法、装置、计算机设备及存储介质。
背景技术
近年来,城市土地越来越多地被开发利用(如地铁、地下隧道、地下商业街等),这些土地的开发利用,可能会引起地表下沉、拉伸、压缩和倾斜变形,造成附近建筑物发生沉降,导致建筑物的基础变形、地基反力重新分布和原有平衡力系的破坏,存在建筑物发生坍塌的风险。
为了防范建筑物坍塌造成人员伤害和财产损失等事故的发生,需要对可能发生坍塌风险的建筑物进行评估,从而及时做好应急处理决策以及相关安排。
然而,目前并没有一种方法,可以快速评估建筑物发生坍塌的风险。
发明内容
本申请的目的在于提供一种建筑物坍塌风险评估方法、装置、计算机设备及存储介质,用于解决目前无法快速评估建筑物发生坍塌风险的技术问题。
本申请实施例的一个方面提供了一种建筑物坍塌风险评估方法,包括:获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效,目标建筑物包括若干种一定数量的构件,力学分析模型用于分析构件是否失效;获取每种构件的第一失效数量和第一失效体积,根据第一失效数量确定每种构件的第一失效数量百分比,并根据第一失效体积确定每种构件的第一失效体积百分比;根据第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值;在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。
可选地,构件包括柱构件、主梁构件和副梁构件,根据第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值,包括:根据风险指标计算公式、第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值,其中,风险指标计算公式为:
Figure PCTCN2022134580-appb-000001
在风险指标计算公式中,f为风险指标数值,n 1、n 2和n 3分别为柱构件、主梁构件和副梁构件的失效数量百分比,v 1、v 2和v 3分别为柱构件、主梁构件和副梁构件的失效体积百分比。
可选地,该方法还包括:将目标建筑物不同的沉降量输入至力学分析模型,根据力学分析模型确定目标建筑物临界坍塌时的临界沉降量、每种构件的第二失效数量和第二失效体积;根据第二失效数量确定每种构件的第二失效数量百分比,并根据第二失效体积确定每种构件的第二失效体积百分比;根据风险指标计算公式、第二失效数量百分比和第二失效体积百分比计算得到临界指标数值。
可选地,目标建筑物包括历史测量数据,历史测量数据包括若干个不同时间的沉降量,方法还包括:根据历史测量数据确定目标建筑物的第一沉降时间曲线;根据第一沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间。
可选地,该方法还包括:获取目标建筑物建成时的初始沉降量和建成时间;根据初始沉降量、建成时间、当前沉降量和当前时间确定目标建筑物的第二沉降时间曲线;根据第二沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间。
可选地,获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建 筑物的各个构件是否失效,包括:构建目标建筑物的几何模型;根据几何模型构建力学分析模型,在力学分析模型中,目标建筑物被划分为N个网格单元,N为正整数;将当前沉降量输入至力学分析模型中,利用力学分析模型确定每一网格单元是否失效;在网格单元失效的情况下,确定网格单元对应的构件失效。
可选地,获取每种构件的第一失效体积,包括:获取失效的网格单元的体积;根据失效的网格单元对应的构件统计每一构件中失效的网格单元的体积总和,将体积总和作为每种构件的第一失效体积。
本申请实施例的一个方面又提供了一种建筑物坍塌风险评估装置,包括:分析模块,用于获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效,目标建筑物包括若干种一定数量的构件,力学分析模型用于分析构件是否失效;获取模块,用于获取每种构件的第一失效数量和第一失效体积,根据第一失效数量确定每种构件的第一失效数量百分比,并根据第一失效体积确定每种构件的第一失效体积百分比;确定模块,用于根据第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值;评估模块,用于在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。
本申请实施例的一个方面又提供了一种计算机设备,计算机设备包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时用于实现上述的建筑物坍塌风险评估方法的步骤。
本申请实施例的一个方面又提供了一种计算机可读存储介质,计算机可读存储介质内存储有计算机程序,计算机程序可被至少一个处理器所执行,以使至少一个处理器执行上述的建筑物坍塌风险评估方法的步骤。
本申请实施例提供的建筑物坍塌风险评估方法、装置、计算机设备及存储介质,包括以下优点:
通过获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效;获取每种构件的失效数量和失效体积,确定每种构件的失效数量百分比和失效体积百分比;再根据构件的失效数量百分比和失效体积百分比确定目标建筑物的当前风险指标数值,在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。由于可以根据目标建筑物的当前沉降量确定构件的失效比例,并由失效比例确定当前风险指标数值,进而通过当前风险指标数值与临界指标数值的比较确定是否存在坍塌风险,因此可以快速地评估建筑物发生坍塌的风险。
附图说明
图1示意性示出了本申请实施例一的建筑物坍塌风险评估方法的流程图;
图2为图1新增步骤的流程图;
图3为图1新增步骤的另一流程图;
图4为图1新增步骤的又一流程图;
图5为图1中的步骤S110子步骤的流程图;
图6为图1中的步骤S120子步骤的流程图;
图7示意性示出了本申请实施例二的建筑物坍塌风险评估装置的框图;
图8示意性示出了本申请实施例三的计算机设备的硬件架构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本申请实施例中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
在本申请的描述中,需要理解的是,步骤前的数字标号并不标识执行步骤的前后顺序,仅用于方便描述本申请及区别每一步 骤,因此不能理解为对本申请的限制。
应当说明的是,本申请实施例提供的建筑物坍塌风险评估方法的执行主体可以为客户端或服务端,其中,客户端具体可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,服务端具体可以用独立的服务器或者多个服务器组成的服务器集群实现。
以下将通过若干个实施例介绍建筑物坍塌风险评估方案,为便于理解,下面将以客户端为执行主体进行示例性描述。
实施例一
图1示意性示出了本申请实施例一的建筑物坍塌风险评估方法的流程图,包括步骤S110~步骤S140,具体说明如下:
步骤S110,获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效,目标建筑物包括若干种一定数量的构件,力学分析模型用于分析构件是否失效。
目标建筑物的当前沉降量可以由人工测量后输入客户端,从而使客户端获得目标建筑物的当前沉降量。目标建筑物的构件例如是柱构件、梁构件和楼板构件等,在各个构件中,主要组成为混凝土和钢筋。
力学分析模型可以预先构建在客户端中,在获得目标建筑物的当前沉降量后,客户端将当前沉降量输入至力学分析模型中,即可以利用力学分析模型对目标建筑物进行力学上的分析,再根据一定的判定条件确定目标建筑物的各个构件是否失效。力学分析模型可以包含一系列用于对目标建筑物进力学分析的公式,从而实现对目标建筑物进行力学分析。为了精确地对目标建筑物进行力学分析,可以先利用软件对目标建筑物进行几何建模,再在目标建筑物的几何模型的基础上构建相应的力学分析模型。在几何建模之后,可以将目标建筑物的初始荷载输入至力学分析模型中,从而得到目标建筑物的初始应力状态;然后输入目标建筑物的当前沉降量,就可以利用力学分析模型对目标建筑物在当前沉降量的情况下进行力学分析,分析目标建筑物中各构件的混凝土、钢筋的受力情况和应变状态,进而通过计算混凝土、钢筋的失效指标来确定对应的构件是否失效。力学分析模型的具体构建可以根据实际需要进行,此处不做具体限制,只需能够分析出目标建筑物的构件是否失效即可。
步骤S120,获取每种构件的第一失效数量和第一失效体积,根据第一失效数量确定每种构件的第一失效数量百分比,并根据第一失效体积确定每种构件的第一失效体积百分比。
由于力学分析模型可以分析构件是否失效,因此力学分析模型在确定某一构件失效时,可以直接将对应构件的失效数量加1,最后可以得出每种构件的第一失效数量。而每种构件的第一失效体积可以通过以下方式获得:力学分析模型通过将目标建筑物划分为多个网格单元,分别对每个网格单元进行分析,确定每个网格单元是否失效,最后根据失效的网格单元体积确定每个构件的第一失效体积。当然,每种构件的第一失效体积还可以通过其它方式来获取,此处不做具体限制。
在获得每种构件的第一失效数量后,将每种构件的第一失效量除以每种构件的总数量即可得到每种构件的第一失效数量百分比;在获得每种构件的第一失效体积后,将每种构件的第一失效体积除以每种构件的总体积即可得到每种构件的第一失效体积百分比。
步骤S130,根据第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值。
楼板是主要的承力构件,但在坍塌中不起主要作用,对建筑坍塌影响不大,因此在评估目标建筑物的坍塌风险时,可以忽略楼板构件的影响作用。在示例性的实施例中,目标建筑物的构件包括柱构件、主梁构件和副梁构件,步骤S130可以包括:
根据风险指标计算公式、第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值,其中,风险指标计算公式为:
Figure PCTCN2022134580-appb-000002
在风险指标计算公式中,f为风险指标数值,n 1、n 2和n 3分别为柱构件、主梁构件和副梁构件的失效数量百分比,v 1、v 2和v 3分别为柱构件、主梁构件和副梁构件的失效体积百分比。即:将目标建筑物的柱构件、主梁构件和副梁构件的第一失效数量百分比和第一失效体积百分比代入风险指标计算公式中,通过计算可以得到目标建筑物的当前 风险指标数值。其中,主梁构件是指沿目标建筑物深度方向的梁构件;而副梁构件是指沿目标建筑物宽度方向的梁构件。
以下给出上述风险指标计算公式的推导过程:
若将构件的失效数量百分比记为n i(其中i=1,2,3,分别代表柱构件、主梁构件、副梁构件),构件的失效体积百分比记为v j(其中j=1,2,3,分别代表柱构件、主梁构件、副梁构件),此时可将n i、v j视为两个向量空间中分别的矢量分量,记基矢量为e i,构造向量:
n=n ie i#(1);
v=v je j#(2);
此处i,j为爱因斯坦求和记号。
可以看到,向量n、v的分量n i、v j可表示为构件的失效百分比对建筑物结构整体的影响,即可认为n i、v j分别表示失效数量百分比与失效体积百分比的权系数。进一步地,假设一种构件的失效破坏仅由外载荷引起,与其它种构件无直接关系,则可认为e i为正交基。
在向量空间中,向量n、v围成一个平行四边形,在3种构件的影响下,表征建筑物结构整体损伤程度的向量g,应落在该四边形内部,在坍塌临界点时,应有:
g=n+v#(3);
此时g为平行四边形的对角线。
考虑到建筑结构本身和环境载荷的复杂性动态性,以及实际工程应用的难度,向量g难以直接求得。考虑安全裕度,可以引入平行四边形的面积来表征结构坍塌风险指标,记为f,则有:
f=n×v#(4);
f=|f|#(5);
根据公式(4)和公式(5),可得到风险指标计算公式,即:
Figure PCTCN2022134580-appb-000003
应当说明的是,理论上可以根据构件的失效数量百分比或失效体积百分比来评估建筑物的坍塌风险,但准确率较低。例如,目标建筑物的一个柱子失效了,如果单纯用失效体积百分比来计算,可能得出风险高的结论,但实际上一个柱子的失效很可能不会引起建筑物的坍塌,因此如果单纯用失效体积百分比来计算坍塌的风险,则可能会受到单一构件的大面积失效干扰;又例如,目标建筑物的构件的失效数量较少,但构件的失效体积较大,如果单纯用失效数量来计算,可能得到风险低的结论,但实际上在这些数量较少的构件大面积失效之后,建筑物的坍塌风险可能会比较高。由此可见,根据构件的失效数量百分比或失效体积百分比来评估建筑物的坍塌风险,得到的评估结果的准确性是较低的,而上述风险指标计算公式中,融合了构件的失效数量百分比和失效体积百分比,可以从失效数量百分比和失效体积百分比两个维度综合评估目标建筑物的坍塌风险,因此评估结果的准确性较高;从另外一个角度说,由于构件的失效数量和失效体积实际上是通过仿真建模来获得的,而仿真建模与实际情况不一定相符,因此综合构件的失效数量百分比和失效体积百分比来评估目标建筑物的坍塌风险,可以得到一个较为准确的评估结果。
步骤S140,在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。
临界指标数值可以根据实际情况进行设置,例如根据历史经验数据进行设置,此处不做具体限制。
客户端将当前风险指标数值与临界指标数值进行比较,若当前风险指标数值大于或等于临界指标数值,则确定目标建筑物不安全,存在坍塌风险。示例性地,若当前风险指标数值小于临界指标数值,则确定目标建筑物安全,不存在坍塌风险。可选地,还可以根据当前风险指标数值与临界指标数值的比值来确定坍塌风险的高低,即比值越小,风险越小;比值越大,风险越大。
本申请实施例的建筑物坍塌风险评估方法,通过获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效;获取每种构件的失效数量和失效体积,确定每种构件 的失效数量百分比和失效体积百分比;再根据构件的失效数量百分比和失效体积百分比确定目标建筑物的当前风险指标数值,在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。由于可以根据目标建筑物的当前沉降量确定构件的失效比例,并由失效比例确定当前风险指标数值,进而通过当前风险指标数值与临界指标数值的比较确定是否存在坍塌风险,因此可以快速地评估建筑物发生坍塌的风险。
在示例性的实施例中,如图2所示,建筑物坍塌风险评估方法还包括步骤S210~步骤S230,具体如下:
步骤S210,将目标建筑物不同的沉降量输入至力学分析模型,根据力学分析模型确定目标建筑物临界坍塌时的临界沉降量、每种构件的第二失效数量和第二失效体积。
即客户端将目标建筑物不同的沉降量施加到力学分析模型中,直到目标建筑物对应的仿真模型发生临界坍塌。例如按从小到大的顺序逐渐加大沉降量,直到目标建筑物的仿真模型发生坍塌。在目标建筑物临界坍塌时,将当前输入的沉降量确定为临界沉降量,根据各个构件的失效情况得到每种构件的第二失效数量和第二失效体积。
步骤S220,根据第二失效数量确定每种构件的第二失效数量百分比,并根据第二失效体积确定每种构件的第二失效体积百分比。
客户端将每种构件的第二失效数量除以每种构件的总数量,可得到每种构件的第二失效数量百分比;将每种构件的第二失效体积除以每种构件的总体积,可得到每种构件的第二失效体积百分比。
步骤S230,根据风险指标计算公式、第二失效数量百分比和第二失效体积百分比计算得到临界指标数值。
即客户端将每种构件的第二失效数量百分比和第二失效体积百分比代入风险指标计算公式中,得到的风险指标数值为临界指标数值。
可选地,由于上述临界指标数值是在目标建筑物对应的仿真模型发生临界坍塌时得到的,而为了安全起见,可以预留一些空间,将计算得到的结果再减去一定数值后的数值作为临界指标数值,从而可以提前确定目标建筑物存在坍塌的风险。
本实施例中,通过将目标建筑物不同的沉降量输入至力学分析模型,根据力学分析模型确定目标建筑物临界坍塌时每种构件的失效数量和失效体积,再根据每种构件的失效数量和失效体积计算得到临界指标数值,由于临界指标数值是通过对目标建筑物施加不同的沉降量,利用力学分析模型和风险指标计算公式得到的,因此临界指标数值是与目标建筑物相适应的,因此可以将临界指标数值用于判断目标建筑物是否存在坍塌的风险,从而提高风险评估的准确性。
在示例性的实施例中,目标建筑物包括历史测量数据,历史测量数据包括若干个不同时间的沉降量,如图3所示,建筑物坍塌风险评估方法还可以包括步骤S310~步骤S320,具体如下:
步骤S310,根据历史测量数据确定目标建筑物的第一沉降时间曲线。
沉降时间曲线是指目标建筑物时间与对应的沉降量的曲线,反映目标建筑物随时间推移,而沉降量不断增大的过程。
在根据历史测量数据确定目标建筑物的第一沉降时间曲线时,可以对历史测量数据进行曲线拟合来得到,具体使用的方式例如是指数函数或多项式等,此处不做具体限制。
步骤S320,根据第一沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间。
在得到第一沉降时间曲线后,由于第一沉降时间曲线为时间与沉降量对应的关系,因此,在前述实施例得到的临界沉降量的基础上,可以结合临界沉降量和第一沉降时间曲线得到目标建筑物的临界坍塌时间。例如,若根据第一沉降时间曲线,临界沉降量对应的时间为t A,则可以确定t A为目标建筑物的临界坍塌时间。
可以理解的是,对目标建筑物的坍塌风险进行评估时,只能对目标建筑物当前的坍塌风险进行评估。若评估的结果为存在风险,则直接进行相应的应急处理即可,例如疏散目标建筑物的人员、转移财产等;但若评估的在结果为暂时不存在风险,则并不能立即做出应急处理;由于目标建筑物已发生沉降,在将来的时间也会发生坍塌的风险,因此通过第一沉降曲线确定目标建筑物的临界坍塌时间,可以有效地对应当采取的措施进行指导,从而更好地避免目标建筑物坍塌带来的人员及财产等损失。例如,可以在临界坍塌时间之前提前对目标建筑物进行再次评估,确定目标建筑物发生坍塌的风险;或者,在临界坍塌时间之前有计划地进行目标建筑物的人员及财产的转移等。
本实施例中,根据历史测量数据确定目标建筑物的第一沉降时间曲线,根据第一沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间,可以根据临界坍塌时间采取合理的措施,从而更好地避免目标建筑物坍塌带来的人员及财等损失。
在示例性的实施例中,如图4所示,建筑物坍塌风险评估方法还可以包括步骤S410~步骤S430,具体如下:
步骤S410,获取目标建筑物建成时的初始沉降量和建成时间。
目标建筑物建成时的初始沉降量可以通过测量得到。可选地,由于目标建筑物在建成时一般还未发生沉降,因此可以认为目标建筑物建成的初始沉降量为零。
步骤S420,根据初始沉降量、建成时间、当前沉降量和当前时间确定目标建筑物的第二沉降时间曲线。
由于根据初始沉降量、建成时间、当前沉降量和当前时间可以确定坐标空间上的两个点,因此可以作线性假设,认为沉降量与时间成线性关系,从而得到目标建筑物的第二沉降时间曲线。
可选地,若有其它建筑物的沉降时间曲线,则也可以根据其它建筑物的沉降时间曲线推导得到目标建筑物的第二沉降时间曲线。例如,若其它建筑物的沉降时间曲线对应的函数为y=kx,则根据当前沉降量和当前时间可得到第二沉降时间曲线的斜率k,从而得到第二沉降时间曲线。
可选地,若还有目标建筑物的其它时间测量的沉降量数据,即可以上述的曲线拟合方式得到第二沉降时间曲线。
步骤S430,根据第二沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间。
在得到第二沉降时间曲线之后,将临界沉降量代入第二沉降时间曲线中,即可得到对应的时间为临界坍塌时间。
本实施例中,通过获取目标建筑物建成时的初始沉降量和建成时间,根据初始沉降量、建成时间、当前沉降量和当前时间确定目标建筑物的第二沉降时间曲线,再根据第二沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间,由于需要的数据较少,因此较为方便得到目标建筑物的沉降时间曲线,进而可以根据临界坍塌时间采取合理的措施来避免目标建筑物坍塌带来的损失。
在示例性的实施例中,如图5所示,步骤S110具体可以包括步骤S111~步骤S114,具体如下:
步骤S111,构建目标建筑物的几何模型。
具体地,可以先获取目标建筑物的框架结构、层数、每层的柱子数以及柱子、梁和楼板等的几何参数(如长、宽、高、直径等),再根据这些数据用仿真软件建立目标建筑物的几何模型。
步骤S112,根据几何模型构建力学分析模型,在力学分析模型中,目标建筑物被划分为N个网格单元,N为正整数。
在构建好目标建筑物的几何模型后,可以根据目标建筑物的材料的属性等数据确定目标建筑物的初始荷载,得到目标建筑物中的初始应力状态。对于老旧建筑物,由于建筑物的构件存在劣化,因此可以根据实际情况设置一定程度的初始损伤。
力学分析模型的构建过程可以如下:
针对一般形式的建筑结构进行力学建模,建立控制方程,考虑大应变的几何方程:
Figure PCTCN2022134580-appb-000004
为了运算方便,可使用如下形式:
Figure PCTCN2022134580-appb-000005
结构整体的平衡微分方程可以表示为:
Figure PCTCN2022134580-appb-000006
其中X i为体积力分量,ρ是密度,ü表示位移对时间的二阶导数,即加速度。
非沉降区边界条件为:
u f=0#(9);
沉降区边界条件为:
Figure PCTCN2022134580-appb-000007
由于偏微分方程组难以直接求得解析解,因此可以借助数值计算方法将偏微分方程组转化为数值积分形式,再进行求解。1、数值离散:
对已经建立的力学控制方程组进行数值计算分析,第一步是数值离散,该步骤包含网格划分、选择单元格式等。考虑到建筑物通常由梁、柱、楼板构件组成框架,其中梁、柱构件是框架结构的主要承力构件,受轴向和弯曲载荷,是钢筋-混凝土组合结构。钢混结构受压时主要由混凝土承载,受拉时主要由钢筋承载,受弯时内侧混凝土受压,外侧钢筋受拉,梁、柱构件的混凝土部分可用实体单元离散化,内部钢筋可用梁单元离散化。
梁、柱构件可用实体单元离散,实体单元内任一点坐标可表示为:
Figure PCTCN2022134580-appb-000008
其中形函数φ j为:
Figure PCTCN2022134580-appb-000009
在底部沉降作用下,楼板构件不是主要的承力构件,其主要受面内拉伸和面外剪切作用。几何特征方面,其长度与宽度方向的尺寸要远远大于厚度方向的尺寸。因此,可使用壳单元对楼板构件进行离散。
根据Mindlin壳理论,在壳单元任一点的速度可表示为:
Figure PCTCN2022134580-appb-000010
其中v m是壳中面的厚度,θ是角速度,
Figure PCTCN2022134580-appb-000011
是单元内任一点到单元中面的法向距离。
速度应变由下式计算:
Figure PCTCN2022134580-appb-000012
单元所受合力与合力矩可表示为厚度方向的积分:
Figure PCTCN2022134580-appb-000013
Figure PCTCN2022134580-appb-000014
2、计算钢筋-混凝土的耦合作用;
钢筋-混凝土的耦合作用是影响梁、柱构件力学性能的重要因素,可使用分离式建模方法精细分析钢筋-混凝土组合结构。分离式建模方法指分别使用梁单元和实体单元建立钢筋与混凝土模型,再通过耦合算法描述两者间的作用力。传统耦合算法通常使用共节点方法,即实体单元与梁单元共用公共节点,该方法在实际分析中存在网格划分困难和单元质量低等问题。此处采用基于罚函数方法的钢筋-混凝土耦合算法,可按实际配筋方式将钢筋“没入”混凝土中,无需考虑节点间的共用问题。
对于具有耦合行为的作用域,对离散化后的系统有如下形式:
Figure PCTCN2022134580-appb-000015
其中α是数量级很大的常数。对上式取变分,令δΠ **=0,则有:
Figure PCTCN2022134580-appb-000016
Figure PCTCN2022134580-appb-000017
其中K是刚度矩阵,U代表节点位移,R为外载荷,
Figure PCTCN2022134580-appb-000018
为实际位移。
可以看出,罚函数的实质是在耦合节点处加载一个很大的力,使得该节点产生与实际位移相近的位移。
3、构建混凝土的本构模型;
目前大多数建筑结构均使用混凝土作为主要承载材料。混凝土是一种复合的多相材料,内部结构非常复杂。从宏观角度来说,混凝土可以看作骨料分散在水泥浆基材中的多相材料,当结构尺寸大于4倍骨料尺寸以上时,可以看作均匀的各向同性材料。水泥胶结料与骨料的应力-应变关系基本为线性关系,但混凝土却表现出明显的非线性行为。这说明骨料与水泥浆 的交界面对混凝土的力学特性有重要影响。交界面通常与内部裂缝联系在一起,其发展阶段大致可分为四个阶段:
(1)原始微裂缝阶段:在承载以前,由于水泥浆硬化干缩,水分蒸发留下裂缝等原因,在混凝土内部形成初始微裂缝,这些微裂缝集中分布在骨料与水泥浆交界面上,少部分出现在砂浆内部;
(2)裂缝的起裂阶段:载荷水平较小时,如单轴载荷不超过极限压应力的30%-40%时,构件的某些位置由于泊松比效应会出现“拉应力”集中,这时初始微裂缝有一部分开始延伸和扩展,当这些微裂缝延伸扩展到一定程度后(通常较小),应力集中得到缓解,重新进入平衡状态。这一阶段应力-应变关系基本接近弹性关系,或可称为准弹性关系;
(3)稳定裂缝的扩展阶段:如果载荷水平继续上升,但不超过临界应力(单轴受压为例,应力水平在70%-90%抗压强度以内),已有的裂缝进一步扩展,有的深入砂浆内部,有些短裂缝会彼此相接形成长裂缝,同时可能产生新裂缝,这一阶段应力-应变关系呈明显的非线性;
(4)不稳定裂缝的扩展阶段:当载荷超过临界压力后,裂缝逐渐连接并贯通,砂浆内部的裂缝急剧增加,即使载荷水平不变,裂缝也会自行扩展。
从工程应用来说,混凝土内部裂缝的宏观表现是构件的刚度退化与断裂,可以选取适当的应力应变参数对这一特性进行表征,达到理论分析与数值计算的目的。
考虑到混凝土拉压强度不等的力学特性,帽型材料模型是较为常用的一种本构形式,可以选用光滑连续帽盖型(CSCM)模型模拟混凝土的损伤破坏,该模型可以通过应力不变量建立混凝土的本构损伤破坏关系:
塑性屈服面可表示为:
Figure PCTCN2022134580-appb-000019
其中,F f是剪切破坏面,F c是硬化压实面,J 1是第一应力不变量,J' 2是第二偏应力不变量,J' 3是第三偏应力不变量。
剪切破坏面可用第一应力不变量表示:
F f(J 1)=α-λexp(-βJ 1)+θJ 1#(21);
式中α,β,θ,λ为待拟合参数,通常可由三轴压缩试验得到。
考虑到混凝土的抗拉和抗扭能力很低,使用Rubin缩放函数
Figure PCTCN2022134580-appb-000020
得到材料的抗拉强度Q 1F f与扭转强度Q 2F f
Q 1=α 11exp(-β 1J 1)+θ 1J 1#(22);
Q 2=α 22exp(-β 2J 1)+θ 2J 1#(23);
硬化压实(cap)面表示混凝土内部孔隙在载荷作用下的密实阶段,可表示为:
Figure PCTCN2022134580-appb-000021
Figure PCTCN2022134580-appb-000022
剪切破坏面与cap面的交线为J 1=κ,其中κ 0为初始状态的交线。cap面与J 1轴相交于J 1=X(κ);
X(κ)=L(κ)+RF f[L(κ)]#(26);
其中,R表示cap面椭圆的长轴与短轴之比。
cap面的移动代表塑性体积的变化,cap面变大表示塑性体积压缩,cap面缩小表示塑性体积增大,即膨胀。cap面的移动可用硬化准则表示:
Figure PCTCN2022134580-appb-000023
式中
Figure PCTCN2022134580-appb-000024
代表塑性体积应变,W代表最大体积应变,X 0为初始cap面位置。D 1,D 2是压力-体积应变曲线的形状参数。
混凝土的破坏可用归一化判据d表示:
Figure PCTCN2022134580-appb-000025
Figure PCTCN2022134580-appb-000026
表示带有破坏的应力张量,
Figure PCTCN2022134580-appb-000027
表示粘塑性应力张量。
当混凝土受压破坏时,可认为是韧性破坏,混凝土受拉破坏时,可认为是脆性破坏,韧性损伤程度可用下式表示:
Figure PCTCN2022134580-appb-000028
韧性损伤当τ c0c时开始累积,τ 0c为初始韧性损伤。
脆性破坏程度可用下式表示:
Figure PCTCN2022134580-appb-000029
脆性损伤当τ t0t时开始累积,τ 0t为初始脆性损伤。
归一化判据可由上述两式表示:
Figure PCTCN2022134580-appb-000030
Figure PCTCN2022134580-appb-000031
Figure PCTCN2022134580-appb-000032
通过上述公式,可建立能够考虑多轴应力状态、拉压强度不等的混凝土损伤破坏模型。
4、使用显示动力学算法求解;
考虑到建筑倒塌过程的瞬态大变形特性,采用基于中心差分的显式动力学算法进行求解。对于数值离散后的建筑结构,在t=n时刻,有:
Ma n=P n-F n+H n#(34);
其中M为质量对角阵,P为外载荷与体力向量,F为应力散度向量,H是沙漏抵抗力向量。
如想求解t=n+1时刻的系统状态,可将t=n时刻的加速度a n表示为:
a n=M -1(P n-F n+H n)#(35);
Figure PCTCN2022134580-appb-000033
时刻的速度
Figure PCTCN2022134580-appb-000034
为:
Figure PCTCN2022134580-appb-000035
进一步地,t=n+1时刻的位移u n+1可表示为:
Figure PCTCN2022134580-appb-000036
注意到,
Figure PCTCN2022134580-appb-000037
Figure PCTCN2022134580-appb-000038
系统动力响应引起的t=n+1时刻的坐标变化x n+1可表示为:
x n+1=x 0+u n+1#(40);
应当说明的是,以上给出的是对建筑物构建力学分析模型的一般过程,实际上还可以包括其它的过程,具体可以根据实际需要设置,此处不做具体限制。例如,在进行数值离散时,为了保证计算效率和坍塌大变形时的收敛性,可以在实体单元与壳单元中选取了单点积分单元算法,即取一个高斯积分点估计整个单元的物理量;而为了克服单点积分单元算法中的零能模式,可以采取沙漏控制;又例如,建筑物坍塌过程是一个瞬态过程,涉及结构的动态响应,构件变形伴随着应力波在材料中的传播,为了保证建筑倒塌过程计算的稳定性,处理潜在的冲击波间断,可在动量与能量方程中引入人工体积粘度。另外,在将目标建筑物划分为N个网格单元时,具体可以是采用有限单元法进行划分。
步骤S113,将当前沉降量输入至力学分析模型中,利用力学分析模型确定每一网格单元是否失效。
由于土壤土质与工程施工的随机性,不均匀沉降发生的概率较大。在将当前沉降量输入至力学分析模型中时,可以测量目标建筑物沉降区基础承台的柱底沉降值作为当前沉降量,再作为柱底支座的强制位移输入。
在利用力学分析模型确定每一网格单元是否失效时,主要是通过力学分析模型包括的公式来计算网格单元的受力情况和应变状态,再通过对应材料的失效判据来确定网格单元是否失效。
步骤S114,在网格单元失效的情况下,确定网格单元对应的构件失效。
例如,若A网格单元失效,而A网格单元对应为主梁构件,则确定A网格单元所在的主梁构件失效。
本实施例中,通过构建目标建筑物的几何模型,根据几何模型构建力学分析模型,并将目标建筑物划分为N个网格单元,将当前沉降量输入至力学分析模型中,利用力学分析模型确定每一网格单元是否失效,在网格单元失效的情况下,确定网格单元对应的构件失效,可以通过将目标建筑物划分为网格单元进行分析,再在网格单元分析的基础上确定对应的构件是否失效,从而有效地实现对构件是否失效进行分析。
在示例性的实施例中,如图6所示,步骤S120中,获取每种构件的第一失效体积,可以包括步骤S121~步骤S122,具体如下:
步骤S121,获取失效的网格单元的体积。
在一个网格单元判定为失效时,可以根据网格单元的几何参数可以确定网格单元的体积,从而获取到失效的网格单元的体积。
步骤S122,根据失效的网格单元对应的构件统计每一构件中失效的网格单元的体积总和,将体积总和作为每种构件的第一失效体积。
例如,若失效的网格单元A对应的构件为柱构件,则将失效的网格单元A的体积作为柱构件的失效体积,在所有的失效的网格单元统计完毕时,可以得到柱构件所有的失效体积,求和即可得到柱构件的第一失效体积,其它构件的第一失效体积以此类推。
相关技术中,构件的失效体积在实际测量时难以估计准确,即使是无损检测手段也无法测得构件内部的准确情况,而本实施例中,通过获取失效的网格单元的体积,根据失效的网格单元对应的构件统计每一构件中失效的网格单元的体积总和,将该体积总和作为每种构件的第一失效体积,可以有效地获取每种构件的第一失效体积,进而方便地进行目标建筑物的坍塌风险评估。
实施例二
图7示意性示出了根据本申请实施例二的建筑物坍塌风险评估装置500的框图,该建筑物坍塌风险评估装置500可以被分割成一个或多个程序模块,一个或者多个程序模块被存储于存储介质中,并由一个或多个处理器所执行,以完成本申请实施例。本申请实施例所称的程序模块是指能够完成特定功能的一系列计算机程序指令段,以下描述将具体介绍本实施例中各程序模块的功能。
如图7所示,该建筑物坍塌风险评估装置500可以包括分析模块510、获取模块520、确定模块530和评估模块540。
分析模块510,用于获取目标建筑物的当前沉降量,将当前沉降量输入至力学分析模型中,根据力学分析模型确定目标建筑物的各个构件是否失效,目标建筑物包括若干种一定数量的构件,力学分析模型用于分析构件是否失效;
获取模块520,用于获取每种构件的第一失效数量和第一失效体积,根据第一失效数量确定每种构件的第一失效数量百分比,并根据第一失效体积确定每种构件的第一失效体积百分比;
确定模块530,用于根据第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值;
评估模块540,用于在当前风险指标数值大于或等于临界指标数值的情况下,确定目标建筑物存在坍塌风险。
在示例性的实施例中,构件包括柱构件、主梁构件和副梁构件,确定模块530还用于:根据风险指标计算公式、第一失效数量百分比和第一失效体积百分比确定目标建筑物的当前风险指标数值,其中,风险指标计算公式为:
Figure PCTCN2022134580-appb-000039
在风险指标计算公式中,f为风险指标数值,n 1、n 2和n 3分别为柱构件、主梁构件和副梁构件的失效数量百分比,v 1、v 2和v 3分别为柱构件、主梁构件和副梁构件的失效体积百分比。
在示例性的实施例中,建筑物坍塌风险评估装置500还包括计算模块(图中未示出),其中,计算模块用于:将目标建筑物不同的沉降量输入至力学分析模型,根据力学分析模型确定目标建筑物临界坍塌时的临界沉降量、每种构件的第二失效数量和第二失效体积;根据第二失效数量确定每种构件的第二失效数量百分比,并根据第二失效体积确定每种构件的第二失效体积百分比;根据风险指标计算公式、第二失效数量百分比和第二失效体积百分比计算得到临界指标数值。
在示例性的实施例中,目标建筑物包括历史测量数据,历史测量数据包括若干个不同时间的沉降量,建筑物坍塌风险评估装置500还包括第一时间确定模块(图中未示出),其中,第一时间确定模块用于:根据历史测量数据确定目标建筑物的第一沉降时间曲线;根据第一沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间。
在示例性的实施例中,建筑物坍塌风险评估装置500还包括第二时间确定模块(图中未示出),其中,第二时间确定模块用于:获取目标建筑物建成时的初始沉降量和建成时间;根据初始沉降量、建成时间、当前沉降量和当前时间确定目标建筑物的第二沉降时间曲线;根据第二沉降时间曲线和临界沉降量确定目标建筑物的临界坍塌时间。
在示例性的实施例中,分析模块510还用于:构建目标建筑物的几何模型;根据几何模型构建力学分析模型,在力学分析模型中,目标建筑物被划分为N个网格单元,N为正整数;将当前沉降量输入至力学分析模型中,利用力学分析模型确定每一网格单元是否失效;在网格单元失效的情况下,确定网格单元对应的构件失效。
在示例性的实施例中,获取模块520还用于:获取失效的网格单元的体积;根据失效的网格单元对应的构件统计每一构件中失效的网格单元的体积总和,将体积总和作为每种构件的第一失效体积。
实施例三
图8示意性示出了根据本申请实施例三的适于建筑物坍塌风险评估方法的计算机设备600的硬件架构图。计算机设备600可以是一种能够按照事先设定或者存储的指令,自动进行数值计算和/或数据处理的设备。例如,可以是机架式服务器、刀片式服务器、塔式服务器或机柜式服务器(包括独立的服务器,或者多个服务器所组成的服务器集群)、网关等。如图8所示,计算机设备600至少包括但不限于:可通过系统总线相互通信链接存储器610、处理器620、网络接口630。其中:
存储器610至少包括一种类型的计算机可读存储介质,可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,存储器610可以是计算机设备600的内部存储模块,例如该计算机设备600的硬盘或内存。在另一些实施例中,存储器610也可以是计算机设备600的外部存储设备,例如该计算机设备600上配备的插接式硬盘,智能存储卡(Smart Media Card,简称为SMC),安全数字(Secure Digital,简称为SD)卡,闪存卡(Flash Card)等。当然,存储器610还可以既包括计算机设备600的内部存储模块也包括其外部存储设备。本实施例中,存储器610通常用于存储安装于计算机设备600的操作系统和各类应用软件,例如建筑物坍塌风险评估方法的程序代码等。此外,存储器610还可以用于暂时地存储已经输出或者将要输出的各类数据。
处理器620在一些实施例中可以是中央处理器(Central Processing Unit,简称为CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器620通常用于控制计算机设备600的总体操作,例如执行与计算机设备600进行数据交互或者通信相关的控制和处理等。本实施例中,处理器620用于运行存储器610中存储的程序代码或者处理数据。
网络接口630可包括无线网络接口或有线网络接口,该网络接口630通常用于在计算机设备600与其他计算机设备之间建立通信链接。例如,网络接口630用于通过网络将计算机设备600与外部终端相连,在计算机设备600与外部终端之间的建立数据传输通道和通信链接等。网络可以是企业内部网(Intranet)、互联网(Internet)、全球移动通信系统(Global System of Mobile communication,简称为GSM)、宽带码分多址(Wideband Code Division  Multiple Access,简称为WCDMA)、4G网络、5G网络、蓝牙(Bluetooth)、Wi-Fi等无线或有线网络。
需要指出的是,图8仅示出了具有部件610-630的计算机设备,但是应理解的是,并不要求实施所有示出的部件,可以替代的实施更多或者更少的部件。
在本实施例中,存储于存储器610中的建筑物坍塌风险评估方法还可以被分割为一个或者多个程序模块,并由一个或多个处理器(本实施例为处理器620)所执行,以完成本申请实施例。
实施例四
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质其上存储有计算机程序,计算机程序被处理器执行时实现实施例中的建筑物坍塌风险评估方法的步骤。
本实施例中,计算机可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,计算机可读存储介质可以是计算机设备的内部存储单元,例如该计算机设备的硬盘或内存。在另一些实施例中,计算机可读存储介质也可以是计算机设备的外部存储设备,例如该计算机设备上配备的插接式硬盘,智能存储卡(Smart Media Card,简称为SMC),安全数字(Secure Digital,简称为SD)卡,闪存卡(Flash Card)等。当然,计算机可读存储介质还可以既包括计算机设备的内部存储单元也包括其外部存储设备。本实施例中,计算机可读存储介质通常用于存储安装于计算机设备的操作系统和各类应用软件,例如实施例中建筑物坍塌风险评估方法的程序代码等。此外,计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的各类数据。
显然,本领域的技术人员应该明白,上述的本申请实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请实施例不限制于任何特定的硬件和软件结合。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (9)

  1. 一种建筑物坍塌风险评估方法,其特征在于,包括:
    获取目标建筑物的当前沉降量,将所述当前沉降量输入至力学分析模型中,根据所述力学分析模型确定所述目标建筑物的各个构件是否失效,所述目标建筑物包括若干种一定数量的所述构件,所述力学分析模型用于分析所述构件是否失效;
    获取每种所述构件的第一失效数量和第一失效体积,根据所述第一失效数量确定每种所述构件的第一失效数量百分比,并根据所述第一失效体积确定每种所述构件的第一失效体积百分比;
    根据所述第一失效数量百分比和所述第一失效体积百分比确定所述目标建筑物的当前风险指标数值;
    在所述当前风险指标数值大于或等于临界指标数值的情况下,确定所述目标建筑物存在坍塌风险;
    所述构件包括柱构件、主梁构件和副梁构件,所述根据所述第一失效数量百分比和所述第一失效体积百分比确定所述目标建筑物的当前风险指标数值,包括:
    根据风险指标计算公式、所述第一失效数量百分比和所述第一失效体积百分比确定所述目标建筑物的当前风险指标数值,其中,所述风险指标计算公式为:
    Figure PCTCN2022134580-appb-100001
    在所述风险指标计算公式中,所述f为所述风险指标数值,所述n 1、所述n 2和所述n 3分别为所述柱构件、所述主梁构件和所述副梁构件的失效数量百分比,所述v 1、所述v 2和所述v 3分别为所述柱构件、所述主梁构件和所述副梁构件的失效体积百分比。
  2. 根据权利要求1所述的建筑物坍塌风险评估方法,其特征在于,还包括:
    将所述目标建筑物不同的沉降量输入至所述力学分析模型,根据所述力学分析模型确定所述目标建筑物临界坍塌时的临界沉降量、每种所述构件的第二失效数量和第二失效体积;
    根据所述第二失效数量确定每种所述构件的第二失效数量百分比,并根据所述第二失效体积确定每种所述构件的第二失效体积百分比;
    根据所述风险指标计算公式、所述第二失效数量百分比和所述第二失效体积百分比计算得到所述临界指标数值。
  3. 根据权利要求2所述的建筑物坍塌风险评估方法,其特征在于,
    所述目标建筑物包括历史测量数据,所述历史测量数据包括若干个不同时间的沉降量,所述方法还包括:
    根据所述历史测量数据确定所述目标建筑物的第一沉降时间曲线;
    根据所述第一沉降时间曲线和所述临界沉降量确定所述目标建筑物的临界坍塌时间。
  4. 根据权利要求2所述的建筑物坍塌风险评估方法,其特征在于,还包括:
    获取所述目标建筑物建成时的初始沉降量和建成时间;
    根据所述初始沉降量、所述建成时间、所述当前沉降量和当前时间确定所述目标建筑物的第二沉降时间曲线;
    根据所述第二沉降时间曲线和所述临界沉降量确定所述目标建筑物的临界坍塌时间。
  5. 根据权利要求1-4任一项所述的建筑物坍塌风险评估方法,其特征在于,所述获取目标建筑物的当前沉降量,将所述当前沉降量输入至力学分析模型中,根据所述力学分析模型确定所述目标建筑物的各个构件是否失效,
    包括:构建所述目标建筑物的几何模型;根据所述几何模型构建所述力学分析模型,在所述力学分析模型中,所述目标建筑物被划分为N个网格单元,所述N为正整数;
    将所述当前沉降量输入至所述力学分析模型中,利用所述力学分析模型确定每一所述网格单元是否失效;
    在所述网格单元失效的情况下,确定所述网格单元对应的构件失效。
  6. 根据权利要求5所述的建筑物坍塌风险评估方法,其特征在于,所述获取每种所述构件的第一失效体积,包括:
    获取失效的网格单元的体积;
    根据所述失效的网格单元对应的构件统计每一所述构件中失效的网格单元的体积总和,将所述体积总和作为每种所述构件的第一失效体积。
  7. 一种建筑物坍塌风险评估装置,其特征在于,包括:
    分析模块,用于获取目标建筑物的当前沉降量,将所述当前沉降量输入至力学分析模型中,根据所述力学分析模型确定所述目标建筑物的各个构件是否失效,所述目标建筑物包括若干种一定数量的所述构件,所述力学分析模型用于分析所述构件是否失效;
    获取模块,用于获取每种所述构件的第一失效数量和第一失效体积,根据所述第一失效数量确定每种所述构件的第一失效数量百分比,并根据所述第一失效体积确定每种所述构件的第一失效体积百分比;
    确定模块,用于根据所述第一失效数量百分比和所述第一失效体积百分比确定所述目标建筑物的当前风险指标数值;
    评估模块,用于在所述当前风险指标数值大于或等于临界指标数值的情况下,确定所述目标建筑物存在坍塌风险。
  8. 一种计算机设备,所述计算机设备包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时用于实现权利要求1至6中任一项所述的建筑物坍塌风险评估方法的步骤。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序可被至少一个处理器所执行,以使所述至少一个处理器执行权利要求1至6中任一项所述的建筑物坍塌风险评估方法的步骤。
PCT/CN2022/134580 2022-07-27 2022-11-28 建筑物坍塌风险评估方法、装置、计算机设备及存储介质 WO2023093874A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/01683A ZA202301683B (en) 2022-07-27 2023-02-10 Methods, devices, computer equipment and storage media for building collapse risk assessment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210889585.1A CN114969952B (zh) 2022-07-27 2022-07-27 建筑物坍塌风险评估方法、装置、计算机设备及存储介质
CN202210889585.1 2022-07-27

Publications (1)

Publication Number Publication Date
WO2023093874A1 true WO2023093874A1 (zh) 2023-06-01

Family

ID=82968890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134580 WO2023093874A1 (zh) 2022-07-27 2022-11-28 建筑物坍塌风险评估方法、装置、计算机设备及存储介质

Country Status (3)

Country Link
CN (1) CN114969952B (zh)
WO (1) WO2023093874A1 (zh)
ZA (1) ZA202301683B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117495209A (zh) * 2024-01-02 2024-02-02 广东华宸建设工程质量检测有限公司 基于大数据的建筑工程监理质量评估方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114969952B (zh) * 2022-07-27 2022-10-04 深圳市城市公共安全技术研究院有限公司 建筑物坍塌风险评估方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103530443A (zh) * 2013-09-23 2014-01-22 天津大学 基于子结构的钢框架结构抗连续倒塌性能快速判定方法
CN104112054A (zh) * 2014-08-04 2014-10-22 中船第九设计研究院工程有限公司 一种既有构建筑物抗倒塌能力的数值评估方法
CN110309622A (zh) * 2019-07-11 2019-10-08 广东电网有限责任公司 一种输电塔结构倒塌分析方法
CN113849898A (zh) * 2021-11-08 2021-12-28 温州大学 一种索穹顶结构连续倒塌风险判断方法及系统
US20220114290A1 (en) * 2020-10-09 2022-04-14 Consulting Engineers, Corp. Analysis and design software for mat-foundation
CN114969952A (zh) * 2022-07-27 2022-08-30 深圳市城市公共安全技术研究院有限公司 建筑物坍塌风险评估方法、装置、计算机设备及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477657A (zh) * 2009-02-03 2009-07-08 中国科学技术大学 建筑火灾人员伤亡概率的预测方法
US20110161119A1 (en) * 2009-12-24 2011-06-30 The Travelers Companies, Inc. Risk assessment and control, insurance premium determinations, and other applications using busyness
CA2891435A1 (en) * 2014-06-11 2015-12-11 Kevin Lee Friesth Quintuple-effect generation multi-cycle hybrid renewable energy system with integrated energy provisioning, storage facilities and amalgamated control system
CN104050391B (zh) * 2014-07-02 2017-02-01 中国电建集团成都勘测设计研究院有限公司 高堆石坝中期度汛挡水风险率检测方法
CN104213635B (zh) * 2014-08-27 2015-12-09 广东省建筑设计研究院 建筑体系张弦结构中预应力索失效下的防连续倒塌设计方法
RU2667119C2 (ru) * 2016-03-09 2018-09-14 Константин Николаевич Маловик Способ проверки остаточной дефектности изделий
CN106407545A (zh) * 2016-09-12 2017-02-15 辽宁工程技术大学 一种基于模糊综合评判法的软土基坑安全评价方法
CN106595576A (zh) * 2016-12-28 2017-04-26 青岛理工大学 一种地面沉陷的监测与评价方法
EP3662331A4 (en) * 2017-08-02 2021-04-28 Strong Force Iot Portfolio 2016, LLC METHODS AND SYSTEMS FOR DETECTION IN AN INDUSTRIAL INTERNET OF THINGS DATA COLLECTION ENVIRONMENT WITH LARGE AMOUNTS OF DATA
CN113818709B (zh) * 2020-06-18 2023-10-27 中国石油化工股份有限公司 用于建筑物的抗爆升级改造方法及系统
CN113821765A (zh) * 2020-06-18 2021-12-21 中国石油化工股份有限公司 基于风险的建筑物的抗爆设防值评估方法及系统
CN112163756A (zh) * 2020-11-10 2021-01-01 内蒙古工业大学 海上平台设施坍塌风险评估方法和装置
CN112633552B (zh) * 2020-11-27 2022-05-13 合肥泽众城市智能科技有限公司 一种燃气管线与周边管线耦合隐患识别与风险评估方法与系统
CN113048543B (zh) * 2021-04-27 2022-06-14 山东省节能技术研究院 相变蓄热围护结构隔热的碳纤维/电热膜智慧供暖系统
CN113901667A (zh) * 2021-10-21 2022-01-07 应急管理部四川消防研究所 一种评估火灾时建筑物倒塌风险的方法
CN114676612A (zh) * 2022-03-25 2022-06-28 哈尔滨工业大学(深圳) 跨海大桥的风险评估方法及相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103530443A (zh) * 2013-09-23 2014-01-22 天津大学 基于子结构的钢框架结构抗连续倒塌性能快速判定方法
CN104112054A (zh) * 2014-08-04 2014-10-22 中船第九设计研究院工程有限公司 一种既有构建筑物抗倒塌能力的数值评估方法
CN110309622A (zh) * 2019-07-11 2019-10-08 广东电网有限责任公司 一种输电塔结构倒塌分析方法
US20220114290A1 (en) * 2020-10-09 2022-04-14 Consulting Engineers, Corp. Analysis and design software for mat-foundation
CN113849898A (zh) * 2021-11-08 2021-12-28 温州大学 一种索穹顶结构连续倒塌风险判断方法及系统
CN114969952A (zh) * 2022-07-27 2022-08-30 深圳市城市公共安全技术研究院有限公司 建筑物坍塌风险评估方法、装置、计算机设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117495209A (zh) * 2024-01-02 2024-02-02 广东华宸建设工程质量检测有限公司 基于大数据的建筑工程监理质量评估方法
CN117495209B (zh) * 2024-01-02 2024-03-15 广东华宸建设工程质量检测有限公司 基于大数据的建筑工程监理质量评估方法

Also Published As

Publication number Publication date
ZA202301683B (en) 2023-09-27
CN114969952B (zh) 2022-10-04
CN114969952A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023093874A1 (zh) 建筑物坍塌风险评估方法、装置、计算机设备及存储介质
Bagheri et al. Seismic reliability analysis of RC frames rehabilitated by glass fiber-reinforced polymers
Steele et al. Dynamic and equivalent static procedures for capacity design of controlled rocking steel braced frames
Mutalib et al. Development of PI diagrams for FRP strengthened RC columns
Jia et al. Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization
Varma et al. Steel modules of composite plate shear walls: Behavior, stability, and design
Santos et al. New finite element to model bond–slip with steel strain effect for the analysis of reinforced concrete structures
Malekinejad et al. An analytical approach to free vibration analysis of multi‐outrigger–belt truss‐reinforced tall buildings
Su et al. Structure analysis for concrete‐faced rockfill dams based on information entropy theory and finite element method
Xiang et al. An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches
Stockdale et al. Diagram based assessment strategy for first-order analysis of masonry arches
Mohsenian et al. An investigation into the effect of soil-foundation interaction on the seismic performance of tunnel-form buildings
Zhang et al. Virtual displacement based discontinuity layout optimization
Xiang et al. An analytic approach to predict the shape and internal forces of barrel vault elastic gridshells during lifting construction
Isufi et al. Post-earthquake performance of a slab-column connection with punching shear reinforcement
Danesh Evaluation of Seismic Performance of PBD Optimized Steel Moment Frames by Means of Neural Network.
CN116186829B (zh) 复合式衬砌计算模型构建方法、装置及终端设备
Wen et al. Ultimate bearing behavior of H-beam welded hollow spheres under eccentric compression
Xiao et al. Seismic fragility analysis of concrete encased frame‐reinforced concrete core tube hybrid structure based on quasi‐static cyclic test
Wei et al. Lateral vibration analysis of continuous bridges utilizing equal displacement rule
Miano et al. Seismic fragility of circular piers in simply supported RC bridges: A proposal for capacity assessment
CN106709199A (zh) 基于层间位移的抗震鲁棒性方法
Qu et al. An improved multidimensional modal pushover analysis procedure for seismic evaluation of latticed arch‐type structures under lateral and vertical earthquakes
Xie et al. A study on the dynamic instability of CFST arches with spatial curvature differences
Costa et al. Numerical modelling approaches for existing masonry and RC structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897955

Country of ref document: EP

Kind code of ref document: A1