WO2023093660A1 - Dispositif et procédé d'évaluation de degré de déformation d'enroulement de transformateur basé sur une détection sans interruption de courant - Google Patents

Dispositif et procédé d'évaluation de degré de déformation d'enroulement de transformateur basé sur une détection sans interruption de courant Download PDF

Info

Publication number
WO2023093660A1
WO2023093660A1 PCT/CN2022/133136 CN2022133136W WO2023093660A1 WO 2023093660 A1 WO2023093660 A1 WO 2023093660A1 CN 2022133136 W CN2022133136 W CN 2022133136W WO 2023093660 A1 WO2023093660 A1 WO 2023093660A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
detection coil
winding
transformer
signal
Prior art date
Application number
PCT/CN2022/133136
Other languages
English (en)
Chinese (zh)
Inventor
俞华
李劲松
董理科
陈青松
刘宏
李国栋
李帅
杨虹
刘杨
毕建刚
常文治
胡帆
王强
赵金
刘建华
邢秀峰
梁基重
芦竹茂
原辉
王帅
程胤璋
Original Assignee
国网山西省电力公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网山西省电力公司电力科学研究院 filed Critical 国网山西省电力公司电力科学研究院
Priority to JP2023516799A priority Critical patent/JP7461568B2/ja
Publication of WO2023093660A1 publication Critical patent/WO2023093660A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the invention belongs to the technical field of power equipment quality detection, and in particular relates to a transformer winding deformation evaluation device and method based on non-stop detection.
  • Winding deformation is a common problem in transformer operation. Under normal circumstances, a transformer with deformed windings will continue to operate for a period of time, but if it cannot be properly repaired, the cumulative effect caused by the deformation of the windings will further develop, eventually leading to damage to the transformer and affecting the reliability of power supply.
  • the traditional transformer winding deformation detection mainly relies on frequency response detection of power failure, short-circuit impedance and other methods. The biggest problems of these methods are: first, the power failure of the transformer is required, which affects the reliability of power supply; second, these detection methods have their own shortcomings.
  • the frequency response detection is too sensitive, and the detection results of short-circuit impedance detection are subject to large interference factors under small current detection, which is prone to large deviations, which seriously affects the evaluation and diagnosis of transformer winding deformation. Once the degree of transformer winding deformation cannot be misjudged, it may aggravate the damage of the transformer and even cause a large-scale power outage.
  • the patent technology CN202011528297.0 in the prior art discloses a method and device for on-line monitoring of power transformer winding deformation. , real-time feedback of winding deformation.
  • the patent has a single monitoring signal, which cannot overcome the detection error caused by the disturbance of the external and internal components of the transformer winding, and the accuracy is not high.
  • the present invention overcomes the deficiencies in the prior art, and provides a transformer winding deformation evaluation device and method based on non-stop detection.
  • the degree of deformation provides a decision-making basis for transformer maintenance and avoids the expansion of transformer faults.
  • the invention is of great significance for preventing transformer damage and improving operational reliability.
  • a transformer winding deformation evaluation device based on non-stop detection including: a vibration sensor, a capacitive current sampling box, a signal processing unit, an upper detection coil and a lower detection coil, and the six capacitive current sampling boxes are respectively arranged on the medium voltage sleeve of the transformer
  • the vibration sensor is set at the center of the transformer oil tank, and there are multiple transformers inside the transformer.
  • Transformer windings are A-phase transformer windings, B-phase transformer windings, and C-phase transformer windings.
  • the transformer windings include: core main column, upper iron yoke, lower iron yoke, low-voltage winding, medium-voltage winding and high-voltage winding.
  • the low-voltage winding, medium-voltage winding and high-voltage winding are sequentially sleeved on the main column of the iron core from the inside to the outside.
  • the upper detection coil is set on the The lower end of the upper iron yoke, and the upper detection coil is located directly above between the medium voltage winding and the low voltage winding, the lower detection coil is arranged at the upper end of the lower iron yoke, and the lower detection coil is located at the
  • the capacitive current sampling box, the vibration sensor, the upper detection coil, and the lower detection coil are all connected to the signal processing unit directly below the low-voltage winding and the main column of the iron core.
  • both the upper detection coil and the lower detection coil have a circular structure
  • the value of the diameter of the upper detection coil is the difference between the radius of the medium-voltage winding and the radius of the low-voltage winding
  • the value of the diameter of the lower detection coil is The difference between the radius of the low-voltage winding and the radius of the main column of the iron core.
  • both the upper detection coil and the lower detection coil are connected to the signal processing unit through the detection coil signal line, and the outside of the detection coil signal line is provided with insulating cardboard and a ferromagnetic shielding sheet, that is, the detection coil There are insulating cardboard and ferromagnetic shielding sheets between the signal line and the transformer shell, the upper iron yoke or the lower iron yoke, which play a shielding effect on the detection coil signal line and overcome the complex leakage magnetic field of the transformer. Signal line interference.
  • the detection coil signal line includes: a detection coil signal line A and a detection coil signal line B, the detection coil signal line A and the detection coil signal line B cooperate to realize the signal transmission of a detection coil, and the ferromagnetic shielding sheet A magnetic circuit dividing line is provided, and the ferromagnetic shielding sheet is divided into a ferromagnetic shielding sheet A and a ferromagnetic shielding sheet B by the magnetic circuit dividing line, and one end of the ferromagnetic shielding sheet A and the ferromagnetic shielding sheet B is connected, so
  • the ferromagnetic shielding sheet A corresponds to the position of the detection coil signal line A
  • the ferromagnetic shielding sheet B corresponds to the position of the detection coil signal line B
  • the magnetic circuit dividing line is set on the ferromagnetic shielding sheet
  • the method for evaluating the degree of transformer winding deformation based on non-stop detection using the above-mentioned device includes the following steps:
  • Winding deformation signal monitoring by extracting the monitoring signal of the vibration sensor for analysis and identification, the effective value of each harmonic component and the peak value of the characteristic frequency of the voltage signal are extracted; through six capacitive current sampling boxes, the medium voltage bushing phase A, The capacitive current of phase B and phase C and the capacitive current of phase A, phase B and phase C of the low-voltage bushing; through the upper detection coil and the lower detection coil, respectively monitor the change of the magnetic flux leakage signal caused by the deformation of the winding;
  • Relative capacitance ratio monitoring real-time extraction of the data in the sampling box of the capacitance current of phase A, phase B, and phase C of the medium voltage bushing, and obtaining the corresponding capacitance currents I 12A , I 12B of phase A, phase B, and phase C of the medium voltage bushing respectively , I 12C , whose initial currents are I 02A , I 02B , and I 02C ; real-time extraction of the data in the sampling box of the capacitance current of phase A, phase B, and phase C of the low-voltage bushing to obtain phase A, phase B, and phase C of the low-voltage bushing
  • the corresponding capacitive currents I 11A , I 11B , and I 11C respectively, and their initial currents are I 01A , I 01B , and I 01C ;
  • Flux leakage signal monitoring U b1A , U b1B , and U b1C are obtained from the upper detection coils respectively arranged at the A-phase transformer winding, B-phase transformer winding, and C-phase transformer winding, respectively representing the upper parts of A-phase, B-phase, and C-phase
  • the strength of the leakage magnetic field signal is obtained from the lower detection coils at the A-phase transformer winding, B-phase transformer winding, and C-phase transformer winding respectively to obtain U b2A , U b2B , and U b2C , which represent the phase A, phase B, and phase C respectively.
  • the intensity of the leakage magnetic field signal at the lower part
  • the transformer winding has general deformation
  • the present invention has the following beneficial effects.
  • the invention solves the problems of inaccurate transformer winding deformation monitoring and low reliability caused by traditional monitoring technology, and evaluates the degree of transformer winding deformation in real time through non-stop detection, which is conducive to timely discovery of latent deformation of transformer windings and timely formulation of transformer maintenance.
  • the strategy ensures the safe and reliable operation of the transformer, which is of great significance to ensure the reliability of the grid power supply.
  • Fig. 1 is a structural schematic diagram of the present invention.
  • Fig. 2 is a schematic diagram of the detection coil of the present invention.
  • Fig. 3 is a schematic diagram of the ferromagnetic shielding sheet of the present invention.
  • 1 is the fuel tank
  • 2 is the vibration sensor
  • 3 is the capacitive current sampling box
  • 4 is the signal processing unit
  • 5 is the upper detection coil
  • 6 is the lower detection coil
  • 7 is the medium voltage bushing
  • 8 is the low voltage bushing
  • 9 is the main column of the iron core
  • 10 is the upper iron yoke
  • 11 is the lower iron yoke
  • 12 is the low-voltage winding
  • 13 is the medium-voltage winding
  • 14 is the high-voltage winding
  • 15 is the detection coil signal line
  • 16 is insulating cardboard
  • 17 is the detection coil Signal line A
  • 18 is the detection coil signal line B
  • 19 is the magnetic circuit dividing line
  • 20 is the ferromagnetic shielding sheet A
  • 21 is the ferromagnetic shielding sheet B.
  • the transformer winding deformation evaluation device based on non-stop detection includes: vibration sensor 2, capacitive current sampling box 3, signal processing unit 4, upper detection coil 5 and lower detection coil 6, the six described
  • the capacitive current sampling boxes 3 are respectively arranged at the end screens of the A phase, B phase, and C phase of the medium voltage bushing 7 and the A phase, B phase, and C phase end screens of the low voltage bushing 8 of the transformer.
  • the sensor 2 is set at the center of the oil tank 1 of the transformer.
  • Figure 1 is an oil-immersed transformer, and its oil tank is the shell of the transformer.
  • each of the transformer windings includes: core main column 9, upper iron yoke 10, lower iron yoke 11, low voltage winding 12, medium voltage winding 13 and high voltage winding 14, the low voltage winding 12 , the medium-voltage winding 13 and the high-voltage winding 14 are sequentially sleeved on the main column 9 of the iron core from the inside to the outside, the upper detection coil 5 is arranged at the lower end of the upper iron yoke 10, and the upper detection coil 5 is located at Directly above between the medium voltage winding 13 and the low voltage winding 12, the lower detection coil 6 is arranged on the upper end of the lower iron yoke 11, and the lower detection coil 6 is located between the low voltage winding 12 and the iron core Right below the main columns 9 , the capacitive current sampling box 3 , the vibration sensor 2 , the upper detection coil 5 , and
  • Both the upper detection coil 5 and the lower detection coil 6 have a circular structure, the value of the diameter of the upper detection coil 5 is the difference between the radius of the medium voltage winding 13 and the radius of the low voltage winding 12, and the diameter of the lower detection coil 6 is The value of is the difference between the radius of the low-voltage winding 12 and the radius of the main post 9 of the iron core.
  • Both the upper detection coil 5 and the lower detection coil 6 are connected to the signal processing unit 4 through the detection coil signal line 15, and the outside of the detection coil signal line 15 is provided with an insulating cardboard 16 and a ferromagnetic shielding sheet, that is, the There are insulating cardboards and ferromagnetic shielding sheets between the signal wires of the detection coil and the transformer shell, the upper iron yoke or the lower iron yoke.
  • the detection coil signal line 15 includes: a detection coil signal line A17 and a detection coil signal line B18, and the detection coil signal line A17 and the detection coil signal line B18 cooperate to realize signal transmission of a detection coil, and the ferromagnetic
  • the shielding sheet is provided with a magnetic circuit dividing line 19, and the ferromagnetic shielding sheet is divided into a ferromagnetic shielding sheet A20 and a ferromagnetic shielding sheet B21 by the magnetic circuit dividing line 19, and the ferromagnetic shielding sheet A20 and the ferromagnetic shielding sheet B21 One end is connected, the ferromagnetic shielding sheet A20 corresponds to the position of the detection coil signal line A17, and the ferromagnetic shielding sheet B21 corresponds to the position of the detection coil signal line B18.
  • the evaluation method of transformer winding deformation degree based on non-stop detection includes the following steps:
  • Winding deformation signal monitoring by extracting the monitoring signal of the vibration sensor for analysis and identification, the effective value of each harmonic component and the peak value of the characteristic frequency of the voltage signal are extracted; through six capacitive current sampling boxes, the medium voltage bushing phase A, The capacitive current of phase B and phase C and the capacitive current of phase A, phase B and phase C of the low-voltage bushing; through the upper detection coil and the lower detection coil, respectively monitor the change of the magnetic flux leakage signal caused by the deformation of the winding;
  • Relative capacitance ratio monitoring real-time extraction of the data in the sampling box of the capacitance current of phase A, phase B, and phase C of the medium voltage bushing, and obtaining the corresponding capacitance currents I 12A , I 12B of phase A, phase B, and phase C of the medium voltage bushing respectively , I 12C , whose initial currents are I 02A , I 02B , and I 02C ; real-time extraction of the data in the sampling box of the capacitance current of phase A, phase B, and phase C of the low-voltage bushing to obtain phase A, phase B, and phase C of the low-voltage bushing
  • the corresponding capacitive currents I 11A , I 11B , and I 11C respectively, and their initial currents are I 01A , I 01B , and I 01C ;
  • Flux leakage signal monitoring U b1A , U b1B , and U b1C are obtained from the upper detection coils respectively arranged at the A-phase transformer winding, B-phase transformer winding, and C-phase transformer winding, respectively representing the upper parts of A-phase, B-phase, and C-phase
  • the strength of the leakage magnetic field signal is obtained from the lower detection coils at the A-phase transformer winding, B-phase transformer winding, and C-phase transformer winding respectively to obtain U b2A , U b2B , and U b2C , which represent the phase A, phase B, and phase C respectively.
  • the intensity of the leakage magnetic field signal at the lower part
  • the transformer winding has general deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

L'invention concerne un dispositif et un procédé d'évaluation de degré de déformation d'enroulement de transformateur sur la base d'une détection sans interruption de courant. Le dispositif d'évaluation comprend : un capteur de vibrations (2), des boîtiers d'échantillonnage de courant capacitif (3), une unité de traitement de signal (4), des bobines de détection supérieures (5) et des bobines de détection inférieures (6). Le capteur de vibrations (2) est disposé au centre d'un réservoir d'huile de transformateur (1), plusieurs enroulements de transformateur sont disposés sur un transformateur, les bobines de détection supérieures (5) sont disposées à l'extrémité inférieure d'une culasse en fer supérieure (10), et les bobines de détection inférieures (6) sont disposées à l'extrémité supérieure d'une culasse en fer inférieure (11). Les boîtiers d'échantillonnage de courant capacitif (3), le capteur de vibrations (2), les bobines de détection supérieures (5) et les bobines de détection inférieures (6) sont tous connectés à l'unité de traitement de signal (4). La méthode d'évaluation comprend les étapes suivantes : la surveillance du signal de déformation de l'enroulement, l'analyse de l'extraction du signal de déformation de l'enroulement et l'évaluation du degré de déformation de l'enroulement.
PCT/CN2022/133136 2021-11-23 2022-11-21 Dispositif et procédé d'évaluation de degré de déformation d'enroulement de transformateur basé sur une détection sans interruption de courant WO2023093660A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516799A JP7461568B2 (ja) 2021-11-23 2022-11-21 無停電検出に基づく変圧器の巻線変形程度評価装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111392730.7 2021-11-23
CN202111392730.7A CN114200349B (zh) 2021-11-23 2021-11-23 基于不停电检测的变压器绕组变形程度评估方法

Publications (1)

Publication Number Publication Date
WO2023093660A1 true WO2023093660A1 (fr) 2023-06-01

Family

ID=80648507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133136 WO2023093660A1 (fr) 2021-11-23 2022-11-21 Dispositif et procédé d'évaluation de degré de déformation d'enroulement de transformateur basé sur une détection sans interruption de courant

Country Status (3)

Country Link
JP (1) JP7461568B2 (fr)
CN (1) CN114200349B (fr)
WO (1) WO2023093660A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200349B (zh) * 2021-11-23 2023-10-13 国网山西省电力公司电力科学研究院 基于不停电检测的变压器绕组变形程度评估方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285782A (ja) * 2006-04-14 2007-11-01 Uchihashi Estec Co Ltd 柱上トランスの診断方法
CN202582602U (zh) * 2012-04-26 2012-12-05 江苏骏龙电力科技股份有限公司 变压器运行状态综合监测系统
US20130282312A1 (en) * 2010-12-17 2013-10-24 Nilanga Abeywickrama Method And Apparatus For Transformer Diagnosis
CN105182099A (zh) * 2015-06-17 2015-12-23 国家电网公司 基于频率响应分析法诊断变压器绕组变形程度和故障方法
CN106526436A (zh) * 2016-10-18 2017-03-22 西安交通大学 一种基于振动法的变压器绝缘老化状态评估方法
CN107202966A (zh) * 2017-05-25 2017-09-26 云南电网有限责任公司电力科学研究院 一种变压器绕组相间漏磁场的测量方法和系统
CN109856501A (zh) * 2019-01-13 2019-06-07 广西电网有限责任公司南宁供电局 一种变压器有载分接开关及绕组变形故障检测方法
US20200200813A1 (en) * 2018-12-21 2020-06-25 Zhejiang University Online diagnosis method for deformation position on trasnformation winding
CN113126007A (zh) * 2021-04-21 2021-07-16 华北电力大学 一种油浸式变压器漏磁场在线测量装置及方法
CN114200349A (zh) * 2021-11-23 2022-03-18 国网山西省电力公司电力科学研究院 基于不停电检测的变压器绕组变形程度评估装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976881B (zh) 2010-08-27 2012-12-12 西安交通大学 一种变压器保护与绕组变形在线监测一体化装置及其应用方法
CN102998545B (zh) * 2011-09-16 2015-04-08 国网河南省电力公司电力科学研究院 一种变压器绕组工作状态的在线监测方法
CN202404166U (zh) * 2011-12-04 2012-08-29 江西省电力科学研究院 一种变压器振动特性在线监测系统
CN104237705B (zh) * 2014-09-30 2017-01-25 沈阳工业大学 多信息融合的电力变压器绕组在线监测装置的诊断方法
CN205300880U (zh) * 2015-10-20 2016-06-08 云南电网有限责任公司电力科学研究院 一种变压器绕组振动法测试系统
JP6869499B2 (ja) * 2016-12-08 2021-05-12 ユカインダストリーズ株式会社 変圧器内部異常および劣化の診断方法と診断装置
CN106970297A (zh) * 2017-05-25 2017-07-21 河海大学 一种基于振动的变压器绕组变形的在线检测方法
CN110361088B (zh) * 2019-08-14 2023-08-22 杭州柯林电气股份有限公司 变压器机械稳定故障监测诊断系统
CN110926591A (zh) * 2019-12-13 2020-03-27 福开尔(西安)电气有限公司 一种电力变压器状态监测系统
CN212007767U (zh) * 2020-05-06 2020-11-24 国网上海市电力公司 一种电力变压器机械状态检测系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285782A (ja) * 2006-04-14 2007-11-01 Uchihashi Estec Co Ltd 柱上トランスの診断方法
US20130282312A1 (en) * 2010-12-17 2013-10-24 Nilanga Abeywickrama Method And Apparatus For Transformer Diagnosis
CN202582602U (zh) * 2012-04-26 2012-12-05 江苏骏龙电力科技股份有限公司 变压器运行状态综合监测系统
CN105182099A (zh) * 2015-06-17 2015-12-23 国家电网公司 基于频率响应分析法诊断变压器绕组变形程度和故障方法
CN106526436A (zh) * 2016-10-18 2017-03-22 西安交通大学 一种基于振动法的变压器绝缘老化状态评估方法
CN107202966A (zh) * 2017-05-25 2017-09-26 云南电网有限责任公司电力科学研究院 一种变压器绕组相间漏磁场的测量方法和系统
US20200200813A1 (en) * 2018-12-21 2020-06-25 Zhejiang University Online diagnosis method for deformation position on trasnformation winding
CN109856501A (zh) * 2019-01-13 2019-06-07 广西电网有限责任公司南宁供电局 一种变压器有载分接开关及绕组变形故障检测方法
CN113126007A (zh) * 2021-04-21 2021-07-16 华北电力大学 一种油浸式变压器漏磁场在线测量装置及方法
CN114200349A (zh) * 2021-11-23 2022-03-18 国网山西省电力公司电力科学研究院 基于不停电检测的变压器绕组变形程度评估装置及方法

Also Published As

Publication number Publication date
CN114200349A (zh) 2022-03-18
JP2024503561A (ja) 2024-01-26
CN114200349B (zh) 2023-10-13
JP7461568B2 (ja) 2024-04-03

Similar Documents

Publication Publication Date Title
CN101271129B (zh) 传感器式高压电能计量方法
WO2023093660A1 (fr) Dispositif et procédé d'évaluation de degré de déformation d'enroulement de transformateur basé sur une détection sans interruption de courant
Ouyang et al. Analysis on the magnetic flux leakage distribution in the transformer under different winding deformation and typical working condition
WO2023179153A1 (fr) Système de test de perte de noyau de fer de générateur et procédé de réduction de courant d'impulsion de test
WO2015180002A1 (fr) Appareil pour juger une défaillance d'un noyau de fer et d'une partie de serrage d'un réacteur électrique à ultra-haute tension, et traitement et élimination de celle-ci en ligne
CN203178369U (zh) 适用于智能变电站的套管监测系统
CN201877277U (zh) 一种防局部偏磁电流互感器二次绕组结构
CN203673001U (zh) 一种漏磁场测量型干式电抗器在线监测装置
CN207232291U (zh) 一种电力变压器损耗的带电检测系统
CN203324432U (zh) 一种新型的高压容性电气设备绝缘在线监测系统
Wang et al. Analysis of influencing factors on site fault diagnosis of inter-turn short circuit fault of dry-type air-core shunt reactor
CN202383224U (zh) 电压互感器的匝间短路在线监测装置
Xian et al. Identification method of interturn short circuit fault for distribution transformer based on power loss variation
Li Research on technologies of intelligent equipment in smart substation
CN203659568U (zh) 一种电磁式电流互感器消磁装置
CN107589330A (zh) 一种电力变压器损耗的带电检测系统及方法
Ji et al. A New Type of Current Mining Device for Testing the Insulation of High-Voltage Cables by Ground Current Method
CN208026824U (zh) 干式空心电抗器匝间短路带电检测装置
CN113419196A (zh) 一种基于负荷变化的单相变压器绕组参数在线监测方法
Zhu et al. Research and application of on-line monitoring device for dry-type air-core reactor
CN201016997Y (zh) 传感器式高压电能计量表
CN203368041U (zh) 一种在线检测自励式mcr中励磁控制晶闸管状态的装置
Tong Research on intelligent online monitoring and evaluation of power transformer
Lu et al. Study on Characteristics and Test Judgment of Electrical Fault of High-Voltage Equipment.
CN217931884U (zh) 一种发电机出口pt匝间绝缘故障在线诊断系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023516799

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897743

Country of ref document: EP

Kind code of ref document: A1