WO2023093600A1 - 种子无土生长诱导结构和植生卷 - Google Patents

种子无土生长诱导结构和植生卷 Download PDF

Info

Publication number
WO2023093600A1
WO2023093600A1 PCT/CN2022/132447 CN2022132447W WO2023093600A1 WO 2023093600 A1 WO2023093600 A1 WO 2023093600A1 CN 2022132447 W CN2022132447 W CN 2022132447W WO 2023093600 A1 WO2023093600 A1 WO 2023093600A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid supply
growth
layer
water
Prior art date
Application number
PCT/CN2022/132447
Other languages
English (en)
French (fr)
Inventor
李绍才
李付斌
李乐丽娜
Original Assignee
成都名富园艺有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122957796.8U external-priority patent/CN216600920U/zh
Priority claimed from CN202111429242.9A external-priority patent/CN114128593B/zh
Priority claimed from CN202111428895.5A external-priority patent/CN114128616B/zh
Priority claimed from CN202111431341.0A external-priority patent/CN114128565B/zh
Priority claimed from CN202122946917.9U external-priority patent/CN216601091U/zh
Priority claimed from CN202122957738.5U external-priority patent/CN216601149U/zh
Application filed by 成都名富园艺有限公司 filed Critical 成都名富园艺有限公司
Publication of WO2023093600A1 publication Critical patent/WO2023093600A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G20/00Cultivation of turf, lawn or the like; Apparatus or methods therefor
    • A01G20/10Pre-cultivated sod or turf; Apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the invention relates to the technical field of plant rolls, in particular to a seedless growth induction structure and a plant roll.
  • Greening refers to the planting of shelterbelts, roadside trees, crops, and various plants in residential areas and parks, including land greening.
  • turf a structure used to improve and beautify the environment, came into being.
  • the turf is the grass shoveled down with a thin layer of soil, which is used to pave lawns, beautify the environment, or spread on the surface of embankments to prevent Scouring, but also play a role in beautifying the environment.
  • Soilless cultivation refers to the use of water, peat or forest leaf humus, vermiculite and other media as the substrate of the plant root system.
  • the cultivation method of fixing the plants so that the plant roots can directly contact the nutrient solution.
  • the nutrient solution composition in soilless cultivation is easy to control and can be adjusted at any time. In places where the light and temperature are suitable but there is no soil, such as deserts, beaches, and deserted islands, as long as A certain amount of fresh water supply can be carried out. Soilless cultivation is divided into hydroponics, aeroponics and substrate cultivation according to different cultivation media.
  • hydroponics refers to the cultivation method in which the plant root system is directly in contact with the nutrient solution without substrate.
  • the plant seeds are usually placed in a soilless environment, and the plant seeds are provided with the required nutrients, so that the plant seeds can grow on their own, and it is impossible to provide the plants with a gradual adaptation process, so that the plants can be cultivated without soil. The effect is not ideal.
  • the greening coverage it is also realized by covering plant rolls.
  • plant seeds and fertilizer particles need to be arranged between layers at the same time, and the number of plant seeds when placed Compared with the small number of fertilizer particles, this leads to a small proportion of the area that plants can grow and cover in the entire plant roll, and finally leads to unsatisfactory aesthetics after the plant roll is spread out.
  • the water storage bag that will provide liquid nutrients for the plant is arranged next to the plant seeds, which causes the plant seeds to fail to absorb the nutrients they need in time, and eventually causes the plant seeds to grow unhealthily And the uneven growth of plants on the surface of the entire plant roll may also cause the water storage bag to be damaged by external forces, causing the liquid in the water storage bag to lose too fast or cause the plant seeds to be soaked and die.
  • the purpose of this application is to provide a seedless growth induction structure and a vegetation roll, which solves the problems that the structures in the prior art cannot effectively make the plant seeds gradually adapt to the environment and the structure for storing liquid is easily damaged.
  • one of the objects of the present invention is to provide a vegetation roll for seedless growth, through the step-by-step induction of seed growth and development by the seedless growth induction structure, to realize automatic control and regulation of seed growth and development,
  • the vegetation roll provided by the present application can adapt to various environments, and the liquid storage chamber is located between layers and under the plant seeds, so as to ensure that the structure for providing nutrient liquid for the seeds will not be damaged.
  • the seedless growth induction structure includes: a liquid supply layer, a liquid retention membrane and a multi-stage growth chamber, the liquid supply layer is located on one side of the liquid retention membrane, and the liquid supply layer and the liquid retention membrane are between
  • the interlayer area is the multi-stage growth chamber, and the multi-stage growth chamber includes a first adaptation area and a second adaptation area arranged in sequence from the liquid inlet end along the liquid flow direction, and the first adaptation area is used to place plants seed pellets.
  • the multi-stage growth chamber further includes a third adaptation zone, and the second adaptation zone is located between the third adaptation zone and the first adaptation zone.
  • widths of the second adaptation zone and the third adaptation zone decrease gradually along the liquid transfer direction.
  • liquid blocking film is located on the side of the liquid supply layer away from the liquid retention film
  • liquid supply cloth is stacked between the liquid supply layer and the liquid flow blocking film, and the liquid supply cloth corresponds to the first adaptation area.
  • the light transmittance of the liquid retaining film is less than 5%
  • the air-permeable porosity of the liquid supply cloth is above 40%
  • the air-permeable porosity of the liquid supply layer is 20%-40%.
  • growth openings are opened on the liquid retention membrane, and the growth openings correspond to the positions of the first adaptation zone.
  • the present application also provides a planting roll, including a body, the body includes a supporting bottom layer, at least one seedless growth induction structure is arranged on the supporting bottom layer, and the liquid blocking film is connected to the edge of the supporting bottom layer to form A hollow interlayer, the end of the hollow interlayer away from the second adaptation zone is open for injecting liquid.
  • the body also includes a liquid absorption layer, the liquid absorption layer is located between the support bottom layer and the liquid barrier film, one end of the liquid absorption layer is located in the hollow interlayer, and the other end is located in the hollow interlayer.
  • the body includes several seedless growth induction structures.
  • the liquid blocking film and the liquid supply layer in all the seedless growth induction structures are respectively connected to the adjacent next seedless growth
  • the induced structure of the liquid-adsorbed layer is connected.
  • the liquid inlets and outlets of different hollow interlayers have the same direction.
  • the drip irrigation pipe also includes a drip irrigation pipe, the water inlet end of the drip irrigation pipe is connected to an external water source, the drip irrigation pipe has a plurality of water outlet ends, and the plurality of water outlet ends are connected to each liquid storage bin one by one, and the drip irrigation pipe Made of flexible material.
  • all the liquid retaining membranes in the soilless growth induction structure of seeds are integrally formed to form a top membrane, and the edge of the top membrane is fixedly connected with the edge of the supporting bottom layer.
  • the body also includes a structural stabilizing net and a structural stabilizing strip, and the structural stabilizing net is arranged on the support bottom layer, the liquid adsorption layer, the liquid blocking film, the liquid supply cloth, the Between the liquid supply layer and at least any two layers of the top film; the structural stability strip is arranged along the peripheral side of the supporting bottom layer and is located between the supporting bottom layer and the liquid blocking film.
  • the water storage tank is also included, and the water storage tank is formed by folding the end of the body; the length of the folded part of the end of the body is 10-30 cm.
  • a mounting through hole is opened on the peripheral side of the body.
  • the installation assembly includes an anchor rod and a fastening member, and an installation hole is opened at one end of the anchor rod;
  • the fastening member includes a fastening nut, an L-shaped clip, a rubber washer and an installation clip, and one end of the anchor rod is connected with the fastening nut, the L-shaped clip, the rubber washer, the the mounting clips and the body.
  • the installation assembly also includes a longitudinal traction cable and a transverse traction cable.
  • transverse distance between two adjacent anchor rods is 0.5-1.5m, and the longitudinal distance between two adjacent anchor rods is 1-10m.
  • the water supply assembly includes a controller, a control valve group, a sensor assembly and a water delivery pipe; the controller is connected to one of the anchor rods, the control valve group is fixed on the water delivery pipe, and the The water delivery pipe is installed at the bottom of the water supply assembly and connected to the body, the sensor assembly is laid inside the body, and the sensor assembly communicates with the controller signal;
  • the control valve group includes The direction is equipped with a constant pressure valve, a pressure regulating valve, a filter and a solenoid valve on the water delivery pipe;
  • the sensing component includes a water volume sensing component, a temperature sensing component and an EC value sensing component connected in sequence.
  • the installation assembly also includes a main panel and side panels, the four side panels respectively surround four sides of one main panel to form an installation cavity, and the main panel is arranged on the body On the surface, the side panel is bonded to the periphery of the body; the main panel is provided with a number of special-shaped holes; the opening ratio of the main panel is more than 40%.
  • two fastening members are arranged at intervals, and the two fastening components are respectively located at the upper and lower ends of the main panel.
  • a multi-stage growth chamber is set in the soilless growth induction structure of the seeds.
  • the plant seeds can be gradually adapted to the soilless growth environment, preventing the plant seeds from directly growing in the soilless environment.
  • Soil environment or direct growth in water leads to a decrease in survival rate; achieve zero substrate, zero soil to plant any variety of plants, and get rid of the dependence of plants on soil
  • the air supply needed for the growth of plant seeds can be realized, so as to ensure the healthy growth of plant seedlings and help plants get rid of the dependence on soil and substrate.
  • the plant coverage rate can be increased, and the aesthetic effect can also be improved;
  • a large amount of water is collected and stored for plant growth by setting several liquid storage bins in the vegetation roll. At the same time, through the structure of the storage bin, the direct evaporation of water is avoided, the dissipation of water is reduced, and the effect of water saving is achieved. And the liquid storage bin is arranged under the seedless growth induction structure, which can effectively prevent the liquid storage bin from being damaged by man-made or external forces;
  • the vegetation roll provided by the present application can be installed in different environments, which improves the scope of application.
  • Fig. 1 is one of structural representation of the present invention
  • Fig. 2 is a sectional view of direction A in Fig. 1;
  • Fig. 3 is the sectional view of B direction in Fig. 1;
  • Fig. 4 is the structural representation of seed inducing assembly in the present invention.
  • Fig. 5 is a simplified structural diagram of the seed inducing assembly in the present invention.
  • Fig. 6 is the structural diagram of supporting bottom layer among the present invention.
  • Fig. 7 is a structural diagram of a liquid blocking membrane in the present invention.
  • Fig. 8 is a stacked schematic diagram of the liquid adsorption layer and the supporting bottom layer in the present invention.
  • Fig. 9 is a stacked schematic diagram of the liquid adsorption layer, the supporting bottom layer and the liquid blocking film in the present invention.
  • Fig. 10 is a stacked schematic diagram of the liquid adsorption layer, the supporting bottom layer, the liquid blocking film and the liquid supply cloth in the present invention
  • Fig. 11 is a stacked schematic diagram of the liquid adsorption layer, the supporting bottom layer, the liquid blocking film, the liquid supply cloth and the liquid supply layer in the present invention
  • Fig. 12 is a stacked schematic diagram of the liquid adsorption layer, the supporting bottom layer, the liquid blocking film, the liquid supply cloth, the liquid supply layer and the seed placement layer in the present invention
  • Figure 13 is a structural diagram of a liquid retention membrane in the present invention.
  • Fig. 14 is a stacked schematic diagram of a liquid retention membrane and a supporting bottom layer in the present invention.
  • Fig. 15 is the second structural diagram of the present invention.
  • Fig. 16 is the third structural diagram of the present invention.
  • Figure 17 is a schematic structural view of Embodiment 42 of the present invention.
  • Figure 18 is one of the structural schematic diagrams of Embodiment 43 of the present invention.
  • Fig. 19 is the second structural schematic diagram of Embodiment 43 of the present invention.
  • Figure 20 is one of the structural schematic diagrams of Embodiment 44 of the present invention.
  • Figure 21 is one of the structural schematic diagrams of Embodiment 45 of the present invention.
  • Fig. 22 is the second structural schematic diagram of Embodiment 45 of the present invention.
  • Figure 23 is an enlarged view at C in Figure 21;
  • Figure 24 is a schematic structural view of Embodiment 46 of the present invention.
  • Fig. 25 is the fourth structural diagram of the present invention.
  • Icons 1-body; 2-support bottom layer; 3-liquid absorption layer; 4-liquid blocking membrane; 5-liquid supply cloth; 6-liquid supply layer; 7-liquid retention membrane; 8-liquid storage bin; 9- Drip irrigation pipe; 10-structure stabilizing net; 11-structural stabilizing strip; 12-liquid anti-seepage layer; 13-breathing hole; 14-supply opening; 15-growth opening; 16-liquid inlet; 17-seedless growth induction Structure; 18-first adaptation area; 19-second adaptation area; 20-third adaptation area; 21-installation through hole 22-bolt; 23-sensing component; 24-controller; 25-control valve group; 26-constant pressure valve; 27-pressure regulating valve; 28-filter; 29-solenoid valve; 30-drainage ditch; 31-installation surface; 32-water pipe; 33-water storage tank; Longitudinal traction cable; 36-side panel; 37-main panel; 38-fastening nut; 39-rubber gasket; 40-installation clip; 41-L-shaped clip; 42-protective cover; - connecting
  • the present invention provides a seedless growth induction structure 17, comprising a liquid supply layer 6, a liquid retention film 7 and a multi-stage growth chamber, the liquid supply layer 6 is located on the liquid retention film 7
  • the interlayer region between the liquid supply layer 6 and the liquid retaining membrane 7 is the multi-stage growth chamber, and the multi-stage growth chamber includes the first layer arranged sequentially along the liquid flow direction from the liquid inlet end.
  • An adaptation zone 18 and a second adaptation zone 19, the first adaptation zone 18 is used for placing plant seed particles.
  • the soilless seed growth induction structure 17 is set to induce the growth of seeds and gradually adapt the seeds to the soilless environment. By gradually inducing the growth and development of seeds, automatic control of the growth and development of seeds is realized.
  • the seedless soil growth induction structure 17 includes a liquid supply layer 6 and a liquid retention film 7, the liquid supply layer 6 and the liquid retention film 7 are arranged in parallel and at intervals, and are arranged on one side of the liquid supply layer 6 and the liquid retention film 7 There are openings. In detail, three sides of the liquid supply layer 6 and the liquid retention membrane 7 are connected, and one side is not connected to form a structure with openings on one side.
  • the liquid supply layer 6 has a first side, a second side, a third side, The fourth side, the fourth side is parallel to the second side, the third side is parallel to the first side, an opening is formed between the fourth side and the liquid retention membrane 7, and the opening is outward, that is, the second side faces the fourth side
  • the first side, the second side, and the third side may all be connected to the lower surface of the liquid retention membrane 7, and on this basis, the fourth side is not connected to the liquid retention membrane 7 to form an opening.
  • the area formed by the gap between the liquid supply layer 6 and the liquid retention film 7 is a multi-level growth chamber, and the liquid supply layer 6 is used to provide liquid to the multi-level growth chamber.
  • the multi-level growth chamber includes a first adaptation zone 18 and The second adaptation area 19, wherein plant seeds can be placed in the first adaptation area 18, and the second adaptation area 19 is located at the side of the multi-stage growth chamber near the opening, that is, the order of arrangement is opening, the second adaptation area 19, the first In the adaptation zone 18, the air humidity from the first adaptation zone 18 to the opening direction in the multi-stage growth chamber is different, that is, the gradual change of the air humidity from the first adaptation zone 18 to the opening direction realizes the growth of plant seeds in a soilless environment Adaptation prevents the survival rate of seeds from being directly grown in a soilless environment or water to reduce the survival rate, and solves the problem that the structure of the prior art cannot effectively make plant seeds gradually adapt to the environment.
  • the multi-stage growth chamber further includes a third adaptation zone 20 , and the second adaptation zone 19 is located between the third adaptation zone 20 and the first adaptation zone 18 .
  • the multi-stage growth chamber also includes a third adaptation zone 20, the third adaptation zone 20 is located on the side of the second adaptation zone 19 close to the opening, that is, the third adaptation zone 20 is located between the opening and the second adaptation zone 19 , that is, the order of arrangement is opening, the third adaptation zone 20, the second adaptation zone 19, the first adaptation zone 18, and the third adaptation zone 20 is in contact with the seedless growth nutrient solution, then there can be a certain amount in the third adaptation zone 20.
  • the liquid is used for plant seed growth.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the widths of the second adaptation zone 19 and the third adaptation zone 20 decrease along the direction of liquid transmission.
  • the width referred to in this embodiment refers to the distance between the surfaces of the liquid supply layer 6 and the liquid retention membrane 7
  • the length refers to the difference between the two ends of the adaptation zone and the opening.
  • the widths of the first adaptation zone 18 , the second adaptation zone 19 and the third adaptation zone 20 gradually decrease along the outward direction of the opening.
  • the length of the first adaptation zone 18 is 50-300 mm
  • the width is 5-8 mm. 7 and other experiments were carried out under the same environment.
  • Table 1 is the comparison result of the survival rate of Amorpha fragrans, Fructus mulberry, and Saccharomyces chrysalis in the first adaptation zone 18 with different lengths:
  • the length of the first adaptation zone 18 is less than 50 mm, it will have a bad influence on the growth of the germination of the plant and the primary root. Root disease.
  • the survival rate of the plants reached the highest, and when the length of the first adaptation zone 18 was increased, the requirement for the water absorption performance of the liquid supply layer 6 would be even higher. High, so the maximum length of the first adaptation zone 18 is 300mm, which can also effectively reduce the cost.
  • the pelleted seed formula is: peat with particle size less than or equal to 0.1mm, 400 mesh bentonite, water retaining agent with 0.1mm particle size, and chlorothalonil fungicide according to the ratio of 10:1:0.01 : The ratio configuration of 0.0001 is wrapped on the surface of the seeds using pelletizing equipment.
  • Germination test In an artificial climate box, under the temperature condition of 23° C., the germination rate and germination time of the seeds were tested using a germination dish.
  • Emergence rate Under the condition of product structure, test the emergence rate of plants in a natural environment. The initial number of seed particles is 500, and the nutrients in the water are configured according to the Hoagland formula (standard hydroponic formula).
  • Test time from April to June, observe and count the number of plants emerging one month after installation. (4) Under the condition of product structure, test the survival rate of plants in the natural environment. The initial number of seed particles is 500, and the nutrients in the water are configured according to the Hoagland formula (standard hydroponic formula). Test time: From April to July, observe and count the ratio of the number of surviving plants 3 months after installation to the number of plants counted in the first month. The plant growth height was measured once a month, and the monthly growth height was calculated.
  • the present invention provides a seedless growth induction structure 17, specifically: the length of the second adaptation zone 19 is 30-100mm.
  • the experiment was carried out under the same environment of the experimental environment, the experimental time, the liquid supply layer 6 and the liquid retention film 7, etc., and Table 2 is the survival rate of Amorpha fruticosa, Fructus Chronophyllum, and Sophora japonica in different situations of the second adaptation zone 19 lengths. compare results:
  • the length of the second adaptation zone 19 is less than 30mm, the growth of the plant root system will be adversely affected, and the root system will directly enter the environment of the third adaptation zone 20 without being adapted to the second adaptation zone 19.
  • easy to cause root diseases when the length of the second adaptation zone 19 was 120mm, the survival rate of the plants reached the highest, so the length was designed to be at least 30mm, and after its length was increased to more than 100mm, the impact on plant growth was small , so set the highest length to 100mm.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the width of the second adaptation zone 19 is 1-5mm.
  • the width of the second adaptation zone 19 is 1-5mm.
  • Table 3 The comparison results of the survival rate of plants under different widths of the second adaptation zone 19. It should be noted that all the experiments were carried out under the same environment as the liquid supply layer 6 and the liquid retention film 7.
  • table 4 is the survival of Amorpha fruticosa, Fructus Chronophyllum, and Sophora japonica under different conditions of the width of the second adaptation zone 19 Rate comparison results:
  • the width of the second adaptation zone plant survival rate 0.5mm 51% 0.75mm 65% 1mm 86% 2mm 87% 3mm 90% 4mm 92% 5mm 90% 6mm 83% 7mm 80% 8mm 80%
  • the width of the second adaptation zone 19 is 1-5 mm, and the width mainly affects the air permeability and humidity in the adaptation zone. If the width is too small and the humidity is too high, it will easily cause lesions of the plant root system, and if the width is too high, the humidity will decrease. The purpose of domestication and adaptation cannot be achieved.
  • the width of the second adaptation zone 19 was 4mm, the survival rate of the plants reached the highest, and when the width was 1mm, the survival rate of the plants significantly improved, and when the width of the second adaptation zone 19 was greater than 5mm, the survival rate of the plants began to decline. Therefore, the width is 1 to 5 mm.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the length of the third adaptation zone 20 is 30-100mm, according to the above-mentioned embodiment, through actual production experiment comparison, as shown in the table 5
  • Table 6 is the survival rate of Amorpha fragrans, Fructus mulberry, and Sophora japonica in the case of different lengths of the third adaptation zone 20
  • Table 6 is the survival rate of Amorpha fragrans, Fructus mulberry, and Sophora ja
  • the third adaptation zone 20 is less than 30 mm, it will affect the growth of the root system.
  • the root system has not been adapted to the second adaptation zone 19, and it directly enters the water body environment, which is easy to cause root diseases.
  • the length of the third adaptation zone 20 was 120mm, the survival rate of the plant reached the highest, so the length was designed to be at least 30mm, and after the length of the third adaptation zone 20 was increased to more than 100mm, the impact on plant growth was relatively small. Small, so the highest length of the third adaptation zone 20 is set to 100mm.
  • the present invention provides a seedless growth induction structure 17, specifically: the width of the third adaptation area 20 is less than 0.5 mm, according to the above-mentioned embodiment, after comparison of actual production experiments, in seed varieties, The experiment was carried out under the same environment of the experimental environment, the experimental time, the liquid supply layer 6 and the liquid retention film 7, etc., and Table 7 is the survival rate of Amorpha fruticosa, Fructus Chronophyllum, and Sophora japonica in different situations of the third adaptation zone 20 widths. compare results:
  • the thickness is less than 0.5mm, and the thickness mainly affects the air permeability and humidity in the adaptation zone. If the thickness is too high and the humidity becomes low, the purpose of root system adaptation will not be achieved; through testing, it is found that when the third adaptation zone is 20 When the width is 0.3mm and 0.4mm, the survival rate of the plant reaches the highest. When the thickness is greater than 0.5mm, the survival rate of the plant begins to decline, so the thickness is less than 0.5mm.
  • the present invention provides a soilless seed growth induction structure 17, specifically: it also includes a liquid blocking film 4, and the liquid blocking film 4 is located in the liquid supply layer 6 away from the liquid retention film 7 sides.
  • the liquid blocking film 4 is provided to prevent liquid from passing through, so the liquid blocking film 4 is configured as a cloth or film structure that cannot allow liquid to pass through.
  • a liquid supply cloth 5 is stacked between the liquid supply layer 6 and the liquid blocking film 4 , and the liquid supply cloth 5 corresponds to the first adaptation area 18 .
  • the liquid supply layer 6 is used to provide liquid to the multi-stage growth chamber, and the liquid supply layer 6 is arranged on the top of the liquid supply cloth 5 and attached thereto.
  • liquid supply cloth 5 Form suspension between the liquid supply layer 6 and the liquid flow blocking film 4, avoid forming a water film between the liquid supply layer 6 and the liquid flow blocking film 4 due to the tension of water, improve the air permeability of the water supply cloth, and utilize the liquid supply cloth at the same time 5
  • the pores inside the material provide the needs of the plant root system with gas.
  • Both the liquid blocking membrane 4 and the liquid supply layer 15 are smaller in area than the liquid retention membrane 7 .
  • the liquid supply cloth 5 is made of a breathable material, and the control and change of the air permeability of the entire device can be changed by changing the material of the liquid supply cloth 5.
  • the liquid supply cloth 5 is set In the first adaptation zone 18, the lower part of the liquid supply layer and the structure between the liquid supply layer and the liquid adsorption layer 3 are suspended, thereby avoiding the tension of the liquid between the liquid supply layer and the liquid absorption layer 3, resulting in the formation of a water film situation occurs, further increasing the breathability of the liquid replenishment layer. Through the reflection of light and the blocking of heat by the liquid retention film 7, the absorption of heat is further reduced.
  • the liquid supply layer Adjusts the width, thickness and water supply rate of the liquid supply layer according to the actual use conditions to ensure the water and nutrients for plant seed rooting and root growth. Then, the liquid retention film 7 and the liquid adsorption layer 3 are covered to reduce the evaporation rate of the liquid.
  • the pelleted seed particles are selected for the plant seeds, so as to ensure the safe germination and rooting of the pelleted seed particles.
  • the water supply rate of the liquid supply layer is 1000-5000 g/(m 2 .day).
  • the plant forms an attachment environment for the growth of plant roots through the liquid supply layer, liquid supply cloth 5 and pelletized seed particles, and at the same time establishes the environment for the growth of plant roots to adapt to by controlling moisture, temperature, light, and ventilation.
  • the moisture and breathable environment combined with the growth substances brought by the pelleted seed particles themselves, enable the plants to germinate healthily and quickly, and quickly build the primary root system of the plant.
  • growth openings 15 are opened on the liquid retention membrane 7 , and the growth openings 15 correspond to the positions of the first adapting regions 18 . It should be noted that the growth opening 15 is set to germinate and protrude for the plant seeds, and at the same time, realize the connection between the plant seeds and the external environment through the gap between the plant seeds and the formation of the pore characteristics of the materials of the liquid supply cloth 5 and the liquid supply layer 6.
  • the connected ventilating channels provide the ventilating requirements for the growth of plant roots, and at the same time utilize the gaps between plant seeds and the openings of the liquid retention membrane 7 to provide a good oxygen environment for the growth of plant roots, avoiding the death of plant roots due to hypoxia and reducing diseases
  • it can reduce the accumulation of heat inside the device, so as to ensure that the seeds can always germinate and grow roots in a suitable temperature environment, and keep the temperature environment in the multi-level growth chamber always a suitable environment for plant growth, thereby promoting plant germination and root growth, specifically, when the temperature is high in summer, keep the temperature in the multi-stage growth chamber not exceeding 35°C.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the area of the growth opening 15 is 1 cm 2 -20 cm 2 , the sum of the areas of several growth openings 15 is 15 cm 2 -150 cm 2 , The distance between two adjacent growth openings 15 is 20cm-80cm.
  • Practical experiments show that after the area of the growth port 15 is less than 1 cm 2 , the rate of plant germination and emergence will significantly decrease, and when the area of the growth port 15 is 0.75 cm 2 compared with the area of the growth port 15 when it is 1 cm 2 , the rate of emergence is reduced by 30 % or more, after the area of the growth opening 15 reaches more than 1cm 2 , the difference in the emergence rate is small.
  • the stems can reach more than 15cm 2 , and the growth of the plants will be limited if the area of the growth opening 15 is too small, but when the area of the growth opening 15 is too large, the evaporation rate of water will be increased.
  • the area of the growth port 15 reaches 20 cm 2 , the evaporation of water increases by more than 20% compared to when the area of the growth port 15 is 1 cm 2 . In order to reduce evaporation, the area of the growth port 15 is at most 20 cm 2 .
  • the air permeability porosity of the material refers to the percentage of the pore volume in the bulk material to the total volume of the material in the natural state, and its calculation formula is: Among them, P is the porosity of the material, expressed in %; V 0 is the volume of the material in the natural state, or the apparent volume, expressed in cm 3 or m 3 ; ⁇ 0 is the bulk density of the material, expressed in g/cm 3 or kg / m3 ; V is the absolute compact volume of the material, expressed in cm3 or m3 ; ⁇ is the density of the material, expressed in g/ cm3 or kg/ m3 .
  • the light transmittance affects the growth of the plant root system, and when the light transmittance is too large, it will cause the death of the plant root system.
  • the air-permeable porosity of the liquid supply cloth 5 is greater than 40%, a good growth environment can be provided for the growth of primary roots of plants. It is found through research that when the air-permeable porosity of the liquid supply cloth 5 is respectively 70%, the survival rate of the plants is the highest and fastest growing.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the air-permeable porosity of the liquid supply layer 6 is 20% to 40%.
  • the air-permeable porosity of the liquid supply layer 6 is 20% to 40%.
  • the survival rate of plants will change according to the air porosity of the liquid supply layer 6.
  • the air porosity When the air porosity is low, the plant survival rate is low, and the growth rate must be slow.
  • the liquid supply layer 6 air porosity When the rate reaches 40%, the plant survival rate is the highest, and the growth rate is the fastest, which can reach 21cm/month.
  • the air-permeable porosity of the liquid supply layer 6 after saturated water absorption is controlled between 20% and 40%, which can provide an excellent water-air environment for the growth of secondary roots of plant roots. Further, as a plant root attachment, it provides a space for root growth and a root microenvironment for plants, and induces plant root growth. According to the analysis of the above table, it can be seen that when the air porosity of the liquid supply layer 6 is greater than 20%, a good growth environment can be provided for the growth of the primary roots of plants.
  • the present invention provides a seedless growth inducing structure 17, specifically: the liquid supply layer 6 sequentially includes left one, left two, middle one, middle two, Right one and right two parts, left one and left two parts all correspond to the first adaptation zone 18, middle one and middle two parts all correspond to the second adaptation zone 19, right one and right two parts all correspond to the first adaptation zone 19.
  • Three adaptation zones 20 correspond.
  • the present invention provides a seedless growth induction structure 17, specifically: the air humidity in the first adaptation zone 18 is 60% to 80%, and the water content in the left part is 40 to 60%. %, the water content of the second part on the left is 70-80%.
  • the air humidity in the first adaptation zone 18 is 60% to 80%
  • the water content in the left part is 40 to 60%. %
  • the water content of the second part on the left is 70-80%.
  • table 10 Carried out under the same environment, table 10 is the different situations of Amorpha fragrans, Fructus Chrysantha, and Sophora japonica in the first adaptation zone 18 air humidity, the water content of the first part of the left part of the liquid supply layer 6, and the water content of the second part of the left side of the liquid supply layer 6
  • survival rate comparison results :
  • the present invention provides a seedless growth induction structure 17, specifically: the air porosity of the left part is more than 20%, and the air porosity of the left two parts is more than 15%.
  • the air porosity of the left part is more than 20%
  • the air porosity of the left two parts is more than 15%.
  • the present invention provides a seedless growth induction structure 17, specifically: the air humidity in the second adaptation zone 19 is above 90%, the water content in the middle part is 70-80%, The water content of the second part is 80-90%.
  • the air humidity in the second adaptation zone 19 is above 90%
  • the water content in the middle part is 70-80%
  • the water content of the second part is 80-90%.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the air porosity of the middle part is 5-15%, and the air porosity of the second part is 5-10%.
  • the air porosity of the middle part is 5-15%
  • the air porosity of the second part is 5-10%.
  • the left part of the liquid supply layer 6 The air-permeable porosity of the air-permeable porosity and the air-permeable porosity of the left two parts of the liquid supply layer 6 are not the higher the numerical value, the higher the plant survival rate.
  • the present invention provides a seedless growth induction structure 17, specifically: the air humidity in the third adaptation zone 20 is more than 98%, and the water content of the right part is 80-90%. %, the water content of the second part on the right is 100%.
  • the air humidity in the third adaptation zone 20 is more than 98%, and the water content of the right part is 80-90%. %, the water content of the second part on the right is 100%.
  • the present invention provides a soilless seed growth induction structure 17, specifically: the air porosity of the right part is below 5%, and the air porosity of the left two parts of the liquid supply layer is 0.
  • the air porosity of the right part is below 5%
  • the air porosity of the left two parts of the liquid supply layer is 0.
  • the present application also provides a planting roll, including a body 1, the body 1 includes a supporting bottom layer 2, and at least one seedless growth induction structure 17 is arranged on the supporting bottom layer 2, and the supporting bottom layer 2 and the The liquid blocking film 4 is pasted; the end of the liquid blocking film 4 away from the first adaptation zone 18 is connected to the supporting bottom layer 2, and the liquid blocking film 4 is connected to the edge of the supporting bottom layer 2 A hollow interlayer 8 is formed, the hollow interlayer 8 is a liquid storage chamber, and the end of the hollow interlayer 8 away from the second adapting area 19 is open for injecting liquid. It should be noted that the structure of the entire body 1 is fixed by the supporting bottom layer 2, so that it can be maintained under a preset shape and can maintain an aesthetic state at all times.
  • One of the functions of the provided liquid retention film 7 is to block the liquid in the entire body 1 so that it remains in the body 1 to prevent the loss of liquid or nutrients in the body 1, and the liquid retention film 7 is set as A structure that cannot allow liquid or solid to pass through, and its second function is to fix the position of the seedless growth induction structure 17.
  • the application passes the liquid retention membrane 7
  • the seedless growth inducing structure 17 is interposed between the liquid retention film 7 and the water supply component, so as to ensure that the position of the seedless growth inducing structure 17 can always be maintained when the whole body 1 is rolled up or rolled out remain unchanged, and improve the compactness of the internal structure of the device.
  • One of the functions of the provided liquid blocking film 4 is to be fixedly connected with the supporting bottom layer 2 to form a hollow interlayer 8, and the opening directions of several hollow interlayers 8 are the same. It can realize the output of liquid to the seedless growth induction structure 17, so the hollow interlayer 8 is set as a structure with one side opening, and its second function is to prevent the passing of the liquid, so the liquid blocking film 4 is set so that it cannot be used. A structure of cloth or membrane through which liquid passes.
  • the present application arranges the hollow interlayer 8 under the seed inducing component, and realizes that the seed soilless growth inducing structure 17 can be arranged above the hollow interlayer 8.
  • other layered structures such as liquid supply cloth 5 can be set, which can reduce the space occupied by the hollow interlayer 8 to the greatest extent possible, and can also effectively improve the density of the seed induction components, and then improve the entire greening after the seeds germinate and grow.
  • the area occupies the proportion of the entire body 1.
  • the hollow interlayer 8 after the hollow interlayer 8 is arranged under the seeds, it can effectively protect the hollow interlayer 8 and effectively prevent the hollow interlayer 8 from being destroyed by external man-made or natural forces.
  • a hollow interlayer 8 is formed between the lower surface of the liquid blocking film 4 and the upper surface of the supporting bottom layer 2, the hollow interlayer 8 is set opposite to the first adaptation zone 18, and the length of the hollow interlayer 8 is slightly shorter than the length of the first adaptation zone 18, detailed , the liquid blocking film 4 has a first side, a second side, a third side, and a fourth side, wherein the first side, the second side, and the third side are all connected to the upper surface of the liquid retention film 7, and the fourth side is connected to the first side
  • the two sides are parallel to each other, the third side and the first side are parallel to each other, the fourth side and the liquid retention film 7 are not connected to form a liquid inlet and outlet, and the liquid inlet and outlet and the opening set in the seedless growth induction structure 17 arranged above it On the contrary, that is, the opening and the liquid inlet and outlet are respectively located at two ends of the first adaptation area 18 .
  • the upper surface of the supporting bottom layer 2 is connected to the lower surface of the liquid supply cloth 5, and a part of the liquid supply cloth 5 is soaked in the hollow interlayer 8, and the liquid supply cloth 5 absorbs water through the soaked part and provides it for the seeds.
  • the body 1 provided by the present application solves the problem that the liquid storage structure in the prior art is easily damaged, and also solves the problem that the structure in the prior art causes uneven development of plant seeds in the plant roll.
  • the present invention provides a planting roll, specifically: the support bottom layer 2 is fixedly connected to the edge of the liquid retention film 7, and the heat-welded composite part also includes the side of the support bottom layer 2 film and the liquid blocking film 4 Edge heat welding is to the edge of the body 1.
  • the edge of the support bottom layer 2 and the liquid retention membrane 7 is fixedly connected by heat welding.
  • the fixing method of heat welding can ensure a tighter connection between the supporting bottom layer 2 and the liquid retention membrane 7 .
  • the liquid supply cloth 5 can be a whole piece, or several pieces can be evenly arranged on the liquid blocking film 4 .
  • the liquid supply cloth 5 and the liquid blocking film 4 can be connected by using hot-melt adhesive or solvent-based adhesive or heat welding.
  • the hot-melt adhesive or solvent-based adhesive is a waterproof adhesive.
  • the body 1 of the present application can be packaged in rolls.
  • the sides of the liquid retaining film 7 and the liquid blocking film 4 are fixedly connected by heat welding, and the liquid supply cloth 5 cannot cover the support bottom layer 2 and the liquid blocking film 4 for heat welding and composite welding.
  • the sutured position also cannot cover the supply opening 14 offered on the liquid blocking membrane 4 .
  • the present invention provides a planting roll, specifically: the body 1 further includes a liquid absorption layer 3, and the liquid absorption layer 3 is located on the support bottom layer 2 and the liquid blocking film 4 Between, one end of the liquid adsorption layer 3 is located in the hollow interlayer 8, and the other end is located outside the hollow interlayer 8; the body 1 includes a number of seedless growth induction structures 17, and along the material conveying direction, all seeds The liquid blocking film 4 and the liquid supply layer 6 in the soilless growth inducing structure 17 are respectively connected with the liquid adsorption layer 3 of the adjacent next seedless growth inducing structure 17 .
  • the multi-level growth chamber is specifically the interposed space between the liquid supply layer and the liquid retention membrane 7, and the multi-level growth chamber includes a first adaptation zone 18, a second adaptation zone 19 and a third adaptation zone 20, wherein The plant seed is arranged in the first adaptation zone 18, and its root can enter in the second adaptation zone 19 after the seed takes root, and in the second adaptation zone 19, due to the water content of the liquid supply layer and the air in the second adaptation zone 19
  • the humidity is gradually increasing, and the air-permeable porosity of the liquid supply layer is gradually decreasing.
  • the porosity refers to the percentage of the pore volume in the bulk material to the total volume of the material in the natural state.
  • the liquid supply layer in this application is a breathable material Its air-permeable porosity is the percentage of air-permeable pores in the material in the entire material volume. Therefore, during the downward growth of plant roots, the adaptability of plant roots to high-moisture and low-oxygen environments can be realized. Gradually exercise, and then make the plant weaken the construction of the main root system, realize the induction and domestication of the plant to form more secondary roots, and make the plant more adaptable to the aquatic environment. After the plant has adapted to the environment of the second adaptation zone 19, its roots will continue to grow or accelerate growth and enter the third adaptation zone 20.
  • the air humidity in zone 20 is further increased, and the air permeability porosity of the liquid supply layer is further reduced, so that the environment in the third adaptation zone 20 is closer to the aquatic environment, and the plants are further adapted to the aquatic environment during the downward growth of plant roots , then when the plants pass through the third adaptation zone 20, they can directly grow in the liquid.
  • the provided hollow interlayer 8 insert the lower end of the liquid supply layer and the liquid retention film 7 into it, supply water to the seeds through the liquid supply layer, and supply the liquid to the seeds after the liquid supply layer absorbs the liquid and make it take root. It is the root of an aquatic plant growing in water.
  • the seed After the seed takes root, its root grows and is inserted into the liquid of the hollow interlayer 8 to form an aquatic root, and then absorbs nutrients from the liquid to supply the growth needs of the whole plant.
  • the adventitious roots that grow above the ground and are exposed to the air occur on the ground.
  • the aerial roots absorb the moisture and nutrients of the liquid supply layer and the liquid supply cloth 5 and the roots immersed in the hollow interlayer 8 liquid. Nutrients continue to grow.
  • the hollow interlayer 8 can be a separate container for storing liquid, or a liquid storage container formed by welding the liquid retention membrane 7 and the liquid adsorption layer 3 .
  • the liquid supply layer absorbs liquid in the hollow interlayer 8 through capillary action.
  • the water content of the liquid supply layer and the pelleted seeds will never reach saturation, and the water contained in it has a certain water potential pressure, which can induce the accelerated development of the plant root system, thereby increasing the number of root hairs in the root system.
  • the liquid adsorption layer 3 and the liquid supply cloth 5 can be separate structures, or can be an integrated structure. In actual production, it is preferred to manufacture and connect the liquid adsorption layer 3 and the liquid supply cloth 5 respectively. Can facilitate production and processing.
  • the liquid supply layer is made of burlap, vegetable fiber blanket and/or rock wool blanket.
  • the liquid supply layer can be a whole piece, or several pieces can be evenly arranged on the liquid supply cloth 5 .
  • the connection between the liquid supply layer and the liquid supply cloth 5 , between the liquid supply layer and the liquid absorption layer 3 , and between the liquid absorption layer 3 and the liquid blocking film 4 can be connected by hot melt adhesive or solvent type adhesive or heat welding.
  • the present invention provides a planting roll, specifically: a number of plant seed particles are placed in the first adaptation zone 18, the diameter of the plant seed particles is 5 mm to 8 mm, and the density of the seed particles is 100 to 600 g /m 2 .
  • the plant seeds are provided with pelletized coatings, and the thickness of the pelletized coatings is 2-5 mm.
  • the liquid supply cloth 5 is arranged below the pelleted seeds, and the first adapting area 18 is clamped by the liquid retention film 7 provided. If it is arranged between the liquid retention film 7 and the liquid supply layer, the first adaptive zone 18 can directly contact the liquid supply cloth 5, which improves the contact between the seed particles and the liquid supply cloth 5, and at the same time guarantees the greatest possible Each seed can absorb liquid and nutrients from the liquid supply cloth 5 .
  • the root system will grow downwards, and then the root system can directly contact the liquid supply film and absorb liquid and nutrients from the liquid supply film for its growth.
  • the seed particles contain growth substrates, fungicides, plant growth regulators, pest control agents and the like.
  • the first adaptation zone 18 between the liquid retention membrane 7 and the liquid supply layer can be arranged in multiple groups at intervals, or connected as a whole piece, which is selected according to actual usage conditions.
  • the diameter of commonly used greening seeds is about 2-4 mm.
  • the seed particles of this application are made by wrapping a layer of growth material on the surface of the seeds. Through actual experiments, the thickness of the wrapped material is 3-5 mm. When the germination rate, germination time, and final seedling rate were not much different. When the thickness of the wrapped material is less than 3mm, the rate of seedling growth decreases significantly, and the seedling rate of the wrapped 2mm is more than 30% lower than that of the wrapped 3mm. When the wrapping material is too thick, the germination rate of the seeds will be reduced and the germination time will be longer.
  • the germination rate of the 6mm-wrapped seed particles is 16% lower than that of the 5mm-wrapped seed particles, and the germination time is prolonged by 3 days.
  • the amount of seed particles is 100-600 g/m 2
  • the number of plant seedlings per square meter can be controlled at 200-500 plants, which can well satisfy the use of the body 1 . If there are too few seed particles, the number of plant seedlings will be small, which will affect the later plant coverage. If the amount of seed particles is too large, too many plants will cause competition among plants, and the growth of plants will be relatively thin, and the use of too much will increase the cost of use.
  • the research proves that the diameter of commonly used greening seeds is about 2-4mm, and the seed particles are made of a layer of growth material wrapped on the surface of the seed. It has been proved by research that the thickness of the seed-wrapping material is 2-5mm. , The germination rate, germination time, and final seedling rate of plants are not much different. When the thickness of the seed wrapping material is less than 2mm, the seedling rate of the seedlings decreases significantly, and the seedling rate of the seed particles wrapped with 1mm is lower than that of the seed particles wrapped with 2mm by more than 30%. When the seed wrapping material is too thick, the germination rate of the seeds will be reduced and the germination time will be longer.
  • the germination rate of the 6mm-wrapped seed particles is 16% lower than that of the 5mm-wrapped seed particles, and the germination time is prolonged by 3 days. Please refer to the data results shown in Table 16 and Table 17.
  • the experiment was carried out under the same environment of seed varieties, experimental environment, experimental time, liquid supply layer 6 and liquid retention film 7.
  • the comparison results of the germination rate and initial germination time of mulberry and Sophora japonica under different coating thicknesses, Table 17 is the comparison of the number of seedlings and initial germination time of Amorpha fruticosa, Sophora mulberry, and Sophora japonica under different coating thicknesses result:
  • the present invention provides a planting roll, specifically: several seedless growth induction structures 17 are arranged on the supporting bottom layer 2, and the liquid inlets and outlets of different hollow interlayers 8 have the same orientation.
  • the liquid blocking film 4 and the liquid supply layer 6 in each seedless growth inducing structure 17 are respectively adsorbed to the liquid that is arranged below the adjacent next seedless growth inducing structure 17.
  • Layer 3 is connected.
  • the hollow interlayer 8 is below the soilless seed growth induction structure 17, and the liquid adsorption layer 3 is located in the hollow interlayer 8, so the liquid adsorption layer 3 is located below the soilless seed growth induction structure 17.
  • One end of the liquid adsorption layer 3 is located in the space between the two seedless growth inducing structures 17, and the other end extends into the hollow interlayer 8 through the liquid inlet and outlet.
  • a hollow interlayer 8A, a hollow interlayer 8B, and a hollow interlayer 8C arranged in sequence the hollow interlayer 8A has a liquid blocking film 4A and a liquid supply layer 6A
  • the hollow interlayer 8B has a liquid adsorption layer 3B, a liquid blocking film 4B and a liquid adsorption layer 3B
  • the hollow interlayer 8C has a liquid adsorption layer 3C, that is, the liquid blocking film 4A and the liquid supply layer 6A are connected to one end of the liquid adsorption layer 3B, similarly, the liquid blocking film 4B and the liquid adsorption layer 3B are both adsorbed to the liquid Layer 3C is connected at one end.
  • the liquid in the hollow interlayer 8 is adsorbed by the liquid adsorption layer 3 provided, that is, the liquid adsorption layer 3 can maintain a liquid state at all times, and several liquid adsorption layers 3 are evenly spaced from the support bottom layer 2.
  • the liquid adsorption layer 3 provided can ensure that the seeds have moisture in the soilless growth induction structure 17 all the time, and ensure that the air humidity in the seed induction assembly is not high. It will be too low and ensure that the air humidity in the seed induction component is always maintained at the level that can provide the daily required nutrients for the seed induction component.
  • the liquid absorption layer 3 can be a whole piece, or several pieces can be evenly arranged on the supporting bottom layer 2 .
  • the liquid absorption layer 3 is made of linen, plant fiber blanket and/or rock wool blanket.
  • the present invention provides a planting roll, specifically: it also includes a drip irrigation pipe 9, the water inlet end of the drip irrigation pipe 9 is connected to an external water source, and the drip irrigation pipe 9 has a plurality of water outlets. The water outlet ends are connected to each hollow interlayer 8 correspondingly, and the drip irrigation pipe 9 is made of flexible material. It should be noted that the provided drip irrigation pipe 9 replenishes the liquid in the hollow interlayer 8.
  • the drip irrigation pipe 9 and the liquid supply layer, and the drip irrigation pipe 9 and the liquid supply layer can all use hot-melt glue or solvent-based glue or heat welding. to connect.
  • one end of the drip irrigation pipe 9 is the water outlet and is located in the vegetation roll, and the other end is the water inlet and extends out of the vegetation roll to communicate with the external water source.
  • one end of the hollow interlayer 8 is open, in order to prevent the liquid in the hollow interlayer 8 from contacting the first adaptation zone 18 in a one-time and large volume or soaking the first adaptation zone 18, preventing the first adaptation zone 18 Death by immersion in liquid.
  • all the liquid retaining membranes 7 in the seedless growth inducing structures 17 are integrally formed to form a top membrane, and the edges of the top membrane are fixedly connected with the edges of the supporting bottom layer 2 .
  • hot-melt adhesive or solvent-based adhesive or heat welding can be used for connection between the top film and the supporting bottom layer 2 .
  • the body 1 also includes a structural stabilizing net 10 and a structural stabilizing strip 11, and the structural stabilizing net 10 is arranged on the support bottom layer 2, the liquid adsorption layer 3, the liquid blocking film 4, the liquid supply cloth 5, and the liquid supply layer 6 and between at least any two layers of the top membrane; the structural stability bar 11 is arranged along the peripheral side of the supporting bottom layer 2 and is located between the supporting bottom layer 2 and the liquid blocking membrane 4 .
  • the structural stabilizing strip 11 is made of high-strength, anti-aging film, woven cloth and/or metal strip material, and the structural stabilizing strip 11 can be combined with the support bottom layer 2 membrane, the liquid flow blocking membrane 4 or the
  • the liquid retention film 7 is compounded, and can also be pasted with hot melt adhesive or solvent-based adhesive.
  • the structural stabilization net 10 can be fixed on the body 1 by gluing or sandwiching the liquid retention film 7 and the liquid blocking film 4 by thermal welding. Inside.
  • the diameter of the mesh holes is 0.5-3 cm.
  • the diameter of the mesh is less than 0.5cm, it will be difficult for plants to germinate and emerge.
  • the diameter of the mesh is greater than 3cm, the mesh will be easily deformed, which will lead to increased difficulty in the manufacturing process.
  • the distance between the installation through hole 21 and the side of the K-shaped body 1 is 2 cm-10 cm.
  • the present invention provides a planting roll, specifically: a mounting through hole 21 is opened on the peripheral side of the body 1, and the mounting through hole 21 is provided for mounting the body 1 with an external structure. It should be noted that the area of the installation through hole 21 is 0.25cm 2 -5cm 2 , and the distance between two adjacent installation through holes 21 is 20cm - 80cm.
  • the present invention provides a planting roll, specifically: the lower surface of the support base 2 is provided with a liquid anti-seepage layer 12, and the liquid anti-seepage layer 12 is a polymer resin waterproof coiled material.
  • the vegetation roll of the present application can be applied to environments such as building walls and roofs with waterproof requirements, which increases the scope of application of the product.
  • the support bottom layer 2, the liquid blocking film 4 and the liquid retaining film 7 are all made of water-tight, light-tight, anti-aging film cloth and/or braided materials.
  • the present invention provides a planting roll, specifically: supply openings 14 are formed between two adjacent seedless growth induction structures 17, and supply openings 14 are evenly spaced on the supporting bottom layer 2 Corresponding breathing hole 13. It is worth noting that the drip irrigation pipe 9 is arranged above the supply opening 14; when the vegetation roll of the present application is laid above the soil, the hollow interlayer 8 is arranged next to the pelletized seeds in the present application.
  • the breathing holes 13 provided on the hollow interlayer 8 can be directly contacted with the soil, then after the seed particles germinate and take root, their roots can enter the outer soil base through the breathing holes 13, so that they can directly absorb the soil base Nutrients in the hollow interlayer 8 can also be discharged into the soil at the same time, which can improve the utilization rate of the liquid to the greatest possible extent and realize the effective utilization of resources.
  • the liquid adsorption layer 3 can cover the breathing hole 13 .
  • the breathing holes 13 may not be provided on the supporting bottom layer 2 .
  • the liquid blocking film 4 can be arranged in multiple pieces and evenly spaced, or can be arranged on the support bottom layer 2 as a whole piece of structure. A setting method in which the barrier films 4 are evenly spaced.
  • the first adaptation area 18, liquid supply cloth 5, liquid supply layer, structural stabilization net 10 and structural stabilization bar 11 are arranged on the surface of the hollow interlayer 8, and the insulation of solar radiation heat can be realized by the above-mentioned structure, reducing the absorption of liquid in the hollow interlayer 8 Keep the temperature of the liquid, that is, under the strongest radiation intensity in summer, the liquid temperature does not exceed 35°C, to avoid damage to the root system due to the high temperature of the liquid after absorbing heat in an environment of high-intensity solar radiation.
  • the water in the hollow interlayer 8 is supplied to the liquid supply layer through the holes provided on the liquid supply layer.
  • deposits may be produced in the hollow interlayer 8, which will block the holes in the liquid supply layer and improve the water supply efficiency.
  • one end of the liquid supply layer can be directly arranged in the hollow interlayer 8, and one end of the liquid supply layer is directly placed in the liquid of the hollow interlayer 8, which can ensure the effectiveness of the liquid supply layer at all times.
  • the root system can directly grow into the hollow interlayer 8 along the liquid supply layer, and directly absorb nutrients from the hollow interlayer 8 .
  • the root system acts on the liquid adsorption layer 3, this structure limits the growth of the root system in the liquid adsorption layer 3, the plant root system is suppressed, and the plant growth rate is relatively slow.
  • the liquid adsorption layer 3 One end is directly exposed in the hollow interlayer 8, and the root system can grow freely into the hollow interlayer 8 without external constraints, which promotes the rapid growth of plant root biomass and the rapid establishment of plants.
  • a growth regulator is applied externally Control can be completed, and can be flexibly adjusted according to actual needs.
  • the present invention provides a planting roll, specifically: it also includes an installation assembly and a water supply assembly, the installation assembly is configured to install the body 1 and the external installation surface 31, and the water supply assembly is configured to The growth environment of the seeds in the body 1 is controlled; the installation assembly includes anchor rods 22 and fastening members, several anchor rods 22 are arranged on the peripheral side of the body 1 and one end is embedded under the installation surface 31, and the anchor rods 22 protrude from the installation surface One end of 31 is provided with a mounting hole; the fastening member includes a fastening nut 38, an L-shaped clip 41, a rubber gasket 39 and a mounting clip 40, and the end of the anchor rod 22 protruding from the mounting surface 31 faces the direction of the mounting surface 31 in turn A fastening nut 38 , an L-shaped clip 41 , a rubber gasket 39 , an installation clip 40 and the body 1 are connected.
  • the installation assembly in order to effectively tension the unfolded body 1 after installation and avoid folding or contraction during use, it is considered that the installation assembly also includes a longitudinal traction cable 35 and a transverse traction cable 34. Longitudinal traction cable 35 and lateral traction cable 34 respectively pass through installation hole and link to each other with anchor rod 22
  • the installation assembly is configured to install the body 1 and the external installation surface 31
  • the water supply assembly is configured to control and adjust the growing environment of the seeds in the body 1 .
  • the anchor rod 22 in this application is mainly used to fix the body 1 as a whole, and to reinforce the soil and intercept local collapse and rockfall through the surrounding settings.
  • the water supply components are arranged at intervals to ensure the uniform infusion of water to the greatest extent.
  • the anchor rod 22 is arranged on the peripheral side of the entire body 1.
  • the anchor rod 22 can also be arranged in the middle of the body 1 area. If it is arranged in the middle of the body 1, it needs to be inserted at the position of the supply opening 14, so as to avoid the inside of the body 1.
  • the set hollow interlayer 8 is destroyed.
  • the longitudinal traction cable 35 and the transverse traction cable 34 are configured to tighten the unfolded body 1, and the end of the anchor rod 22 protruding from the mounting surface 31 is provided with a mounting hole, and the longitudinal traction cable 35 and the transverse traction cable 34 are connected to the anchor rod 22 through the mounting hole respectively, and the four sides of the main body 1 are flattened by the longitudinal traction cable 35 and the transverse traction cable 34 to ensure its aesthetics.
  • the main body 1 is fixed by setting the anchor rod 22 and the fastening member.
  • the main body 1 is provided with an installation through hole 21.
  • the installation process is that the anchor rod 22 passes through the installation surface 31 at the installation position, Install the clip 40, the installation through hole 21 on the body 1, the rubber gasket 39, and finally fasten it with the fastening nut 38 to prevent the body 1 from slipping out of the anchor rod 22 during use.
  • the greening installation structure is complex and difficult to install, and the installation of greening products on both sides of the installation surface 31 is more complicated.
  • the main body 1 provided in this application has plant seeds inside, which can be placed according to different environments and seasons, so only the entire main body 1 needs to be installed during installation. That's it, the seeds will germinate by themselves, no specific time is required for installation.
  • the thickness and diameter of the rubber gasket 39 affect each other. The larger the diameter of the mounting clip 40, the poorer the flatness of the mounting clip 40 itself, and a thicker rubber gasket 39 is needed. Adapt to its deformation defects to achieve the best installation and fastening effect.
  • the utility model solves the problem of complex structure and difficult installation when greening products are arranged on both sides of the installation surface 31 in the prior art.
  • the L-shaped clip 41 is provided with a hole, and the longitudinal traction cable 35 and the transverse traction cable 34 pass through the hole and then clamped with a cylindrical structure such as a bearing pin to prevent it from slipping out.
  • the long-distance detection of the growth status of the main body 1 can be realized, and the growth time of the controller 24 does not require the staff to set specific plants at a specific time. Monitoring the growth of the plant, the controller 24 completes germination, rooting and green leaves within a specified time.
  • the preferred implementation of this embodiment is that the equidistant intervals are evenly distributed.
  • the specific value of the equidistance is set every 700m in the horizontal direction in every 2000-5000 square meters. The specific interval distance can be determined according to the actual situation.
  • a set of water supply components is set every 15m height difference and every 700m length.
  • the main body 1 is supplied with water through the drip irrigation pipe 9, and the pressure compensation range of the drip irrigation pipe 9 is 0.1-0.3MPa, that is, within the height difference range of 10-30m It is uniform, so the height difference is set to 15m.
  • the pressure difference of the drip irrigation pipe 9 inside the body 1 will exceed the pressure difference of the drip irrigation pipe 9 due to the loss of water pressure of the water delivery pipe 32.
  • the range of pressure compensation is 0.1 ⁇ 0.3MPa.
  • a set of water supply components is set every 15m height difference and every 700m length. The invention also solves the problem that the prior art cannot be installed firmly and replenish water in time under different environments.
  • the present invention provides a planting roll, specifically: the transverse distance between two adjacent anchor rods 22 is 0.5-1.5m, and the longitudinal distance between two adjacent anchor rods 22 is 1 ⁇ 10m.
  • the anchor rods 22 go deep into the installation surface 31, and the longitudinal spacing length of the anchor rods 22 in this embodiment is 1-10m, and the preferred ranges in this embodiment are 1-6m and 4-10m.
  • the longitudinal spacing of the anchor rods 22 is less than 4m, the number of required anchor rods 22 will be too much, and the production cost will be on the rise, and when the longitudinal spacing of the anchor rods 22 exceeds 10m, the probability of damage after one fixation is low will increase, and the stability of the installation will show a downward trend.
  • the longitudinal distance of the anchor rod 22 is 4-10m.
  • the distance between the anchor rod 22 When the horizontal installation distance is 0.5-1.5m the installation strength and installation aesthetics of the main body 1 are the best.
  • the installation distance of the anchor rods 22 that can meet the maximum strength of the main body 1 is 10m.
  • the present invention provides a planting roll, specifically: it also includes a water storage tank 33, the water storage tank 33 is formed by folding the end of the body 1, and the water storage tank 33 is configured to store water; the end of the body 1 is folded
  • the length of the site is 10-30 cm.
  • the anchor rod 22 which can reduce the length of the end without plant parts, and can also play the role of the hollow interlayer 8.
  • the folded length is shorter.
  • the water storage capacity is poor, and if the folding length is longer, it will not be able to reduce the length of the plant-free end of the main body 1.
  • the length of the hollow interlayer 8 is set to 10-30cm, the water storage capacity of the hollow interlayer 8 is 50-130% of the water storage capacity, and it has little influence on the water storage uniformity of the whole body 1 .
  • the present invention provides a planting roll, specifically: the water supply assembly includes a controller 24, a control valve group 25, a sensor assembly 23, and a water delivery pipe 32; the controller 24 is connected to an anchor rod 22,
  • the control valve group 25 is fixed on the water delivery pipe 32, the water delivery pipe 32 is installed at the bottom of the water supply assembly and connected to the body 1, the sensor assembly 23 is laid inside the body 1, and the signal communication between the sensor assembly 23 and the controller 24;
  • the control valve group 25 It includes a constant pressure valve 26, a pressure regulating valve 27, a filter 28 and a solenoid valve 29 installed on the water delivery pipe 32 along the water delivery direction;
  • the sensor component 23 includes a water volume sensor component 23 and a temperature sensor component 23 which are sequentially connected by signals And the EC value sensing component 23.
  • the present invention provides a planting roll, specifically: the installation assembly further includes a main panel 37 and a side panel 36, and the four side panels 36 are respectively connected to the four sides of the main panel 37.
  • the sides are enclosed to form an installation cavity, the main panel 37 is arranged on the upper surface of the body 1, and the side panel 36 is glued to the periphery of the body 1; the main panel 37 is provided with a number of special-shaped holes; the opening ratio of the main panel 37 is above 40%.
  • one of the functions of setting the main panel 37 and the side panel 36 is to fix the whole body 1, and the second function is to make the distribution of the planting, germination, rooting and growth of green leaves in the body 1 more uniform and beautiful.
  • the special-shaped hole is set opposite to the growth port 15 and the liquid inlet port 16 .
  • the material of the main panel 37 and the side panel 36 can be metal or plastic.
  • the size of the holes offered on the main panel 37 is 30-80 mm, and the opening ratio is not less than 40%.
  • the present invention provides a planting roll, specifically: the installation cavity is configured to install the body 1 and provide space for the hollow interlayer 8 in the body 1 when it is filled with liquid.
  • the installation cavity is configured to install the body 1 and provide space for the hollow interlayer 8 in the body 1 when it is filled with liquid.
  • one end of the anchor rod 22 protruding from the installation surface 31 is provided with two fastening components at intervals, and the two fastening components are respectively located at the upper and lower ends of the main panel 37 .
  • the main panel 37 and the four side panels 36 can be integrated or separated.
  • the size of the openings on the side panel 36 is 10-50mm, and the opening ratio is not lower than 40%.
  • the main panel 37 is fixed on the cable every 10-50 cm with clips, and the clips are made of elastic hooks or galvanized iron wires.
  • the main panel 37 is fixed every 10-50 cm.
  • the adhesive tape is a general waterproof tape with a width of 5-10 cm.
  • an embedded installation frame with a depth of 10-40 cm can also be provided to install the main body 1 .
  • the present invention provides a planting roll, specifically: the area of the breathing hole 13 is 0.25 cm 2 -10 cm 2 , and the sum of the areas of several breathing holes 13 is 2.5 cm 2 -200 cm 2 . It is worth noting that, through actual experiments, it is concluded that the main root system of the plant in the main body 1 will generally grow to a diameter of about 5-30mm within 10 years.
  • the breathing hole 13 Because the growth cycle and length of the root system of different plant varieties are different, such as the breathing hole 13 If the area is too small, the growth of the root system will be restricted, resulting in abnormal development of the root system, so the minimum setting is 0.25cm 2 , but if the breathing hole 13 is too large, the strength of the whole body 1 will be reduced, so the maximum setting of the breathing hole 13 is 10cm 2 .
  • the total number of roots of each unit through the breathing hole 13 is 2-100cm 2 , but because the situation of different plant varieties is different, the total area of the breathing hole 13 is set to be 2.5cm 2 to 200cm 2 .
  • the present invention provides a planting roll, specifically: the area of the supply opening 14 is 5cm 2 -50cm 2 , and the sum of the areas of several supply openings 14 is 20cm 2 -300cm 2 . It is worth noting that the main function of the supply opening 14 is to ensure the overlapping area of the overlapping intersection between the liquid adsorption layer 3 and the liquid supply layer, so as to ensure that the liquid can be smoothly transmitted to the liquid supply layer through the liquid adsorption layer 3.
  • the overlapping length of the liquid adsorption layer 3 conducting to the liquid supply layer must be greater than 1 cm so as not to affect the liquid conduction to the liquid supply layer, according to the width of the liquid absorption layer 3 and the liquid supply layer, and considering the errors in the production and manufacturing process, etc. Therefore, the area of the supply opening 14 is 5 cm 2 -50 cm 2 , and the sum of the areas of several supply openings 14 is 20 cm 2 -300 cm 2 .
  • the present invention provides a planting roll, specifically: the distance between two adjacent supply openings 14 and the distance between two adjacent breathing holes 13 are both 20cm-80cm. It is worth noting that when the distance between two adjacent supply openings 14 is less than 20 cm, the water storage capacity of the hollow interlayer 8 will be too small, which will be unfavorable for the use of the main body 1, resulting in frequent watering in the later stage. When the distance between two adjacent supply openings 14 is greater than 80 cm, the water storage capacity of the hollow interlayer 8 will be too large, which increases the requirements for material strength and causes too high a cost. On the other hand, between two adjacent supply openings 14 After the spacing between plants is greater than 80cm, the plant spacing becomes larger and the coverage decreases, which will seriously affect the aesthetic effect of the whole body 1.
  • the present invention provides a planting roll, specifically: the length of the liquid absorption layer 3 is 40% to 90% of the distance between two adjacent breathing holes 13 . It is worth noting that, after practical experiments, if the length of the liquid adsorption layer 3 is lower than 40% of the distance between two adjacent breathing holes 13, the water storage in the hollow interlayer 8 is lower than 60%, and the water cannot be contacted. , is not conducive to plant growth. Through actual experiments, it is found that in various regions of the country, when the length of the liquid adsorption layer 3 is 40% to 90% of the distance between two adjacent breathing holes 13, it can meet the needs of plants for liquid to the greatest extent possible in general.
  • Longer liquid adsorption layer 3 can be selected in drier areas, and shorter liquid adsorption layer 3 can be selected in rainy areas. If the length of liquid adsorption layer 3 is higher than 90% of the distance between two adjacent breathing holes 13, This will increase the accuracy of processing alignment and increase the cost, so the length of the liquid adsorption layer 3 is 40% to 90% of the distance between two adjacent breathing holes 13 .
  • the present invention provides a planting roll, specifically: the width of several liquid adsorption layers 3 and the width of the supporting bottom layer 2 are 10% to 60%.
  • the amount of water is generally 0.3 ⁇ 1kg/hm 2 .
  • the water transfer efficiency of the 1cm wide liquid adsorption layer 3 is 20g/h, so the total width of the liquid adsorption layer 3 per square meter needs to be at least 15-50cm, and the length of each unit is 20-80cm, so the width of the liquid adsorption layer 3 is supported.
  • 3% to 40% of the bottom layer 2 and taking into account uncertainties such as errors in the production and manufacturing process, the sum of the widths of several liquid adsorption layers 3 is 10% to 60% of the width of the supporting bottom layer 2 .
  • the present invention provides a planting roll, specifically: the length of several liquid supply cloths 5 is 40% to 90% of the distance between two adjacent supply openings 14, and the width of several liquid supply cloths 5 The sum is 30% to 90% of the width of the supporting bottom layer 2 .
  • the plant survival rate will be greatly reduced;
  • the length of several liquid supply cloths 5 is lower than 40% of the distance between two adjacent supply openings 14 compared with 30% of the distance between the supply openings 14, that is, when 30% is compared with 40%, the plant survival rate is reduced to more than 12%;
  • the length of several liquid supply cloths 5 is greater than 40% of the distance between two adjacent supply openings 14, the difference in plant growth state and survival rate is not significant.
  • liquid supply cloth 5 Since the liquid supply cloth 5 must provide space for the overlapping of the liquid adsorption layer 3 and the liquid supply layer, the longest length of some liquid supply cloths 5 cannot exceed 90% of the distance between two adjacent supply openings 14, too long will affect the The overlapping effect of the liquid absorption layer 3 and the liquid supply layer.
  • the present invention provides a planting roll, specifically: the length of several liquid supply layers is more than 50% of the distance between two adjacent supply openings 14 . It is worth noting that, after practical experiments, when the length of several liquid supply layers is lower than 50% of the distance between two adjacent supply openings 14, since the seed particles are placed on the liquid supply layer, only 50% of the entire unit The length can grow plants, and the plant coverage is relatively low, so the sum of the lengths of several liquid supply layers is more than 50% of the distance between two adjacent supply openings 14 .
  • the present invention provides a planting roll, specifically: the width of several liquid supply layers is 10% to 80% of the width of the supporting bottom layer 2 . It is obtained through actual experiments that the maximum water consumption of plants in the main body 1 is generally 0.3-1 kg/hm 2 .
  • the water delivery efficiency of the 1cm wide liquid adsorption layer 3 is 20g/h, so the total width of the liquid adsorption layer 3 per square meter needs to be at least 15-50cm, and the length of each unit is 20-80cm, so the sum of the widths of several liquid supply layers is 3% to 40% of the width of the supporting bottom layer 2, and considering uncertainties such as errors in the production and manufacturing process, the sum of the widths of several liquid supply layers is set to 10% to 80% of the width of the supporting bottom layer 2 to ensure plant growth security.
  • the present invention provides a planting roll, specifically: the area of the liquid inlet 16 is 1 cm 2 to 20 cm 2 , and the distance between two adjacent liquid inlets 16 is 20 cm to 80 cm.
  • Practical experiments show that after the area of the liquid inlet 16 is less than 1cm 2 , the rainfall infiltration rate significantly reduces, and the area of the liquid inlet 16 is 0.75cm 2 Compared with the area of the liquid inlet 16 that is 1cm 2 , the infiltration rate Reduce more than 20%.
  • the area of the liquid inlet 16 reaches more than 1cm 2 , the rainfall infiltration rate difference is small, but when the area of the liquid inlet 16 is too large, the evaporation rate of water will be increased.
  • the area of the liquid inlet 16 is at most 20cm 2 .
  • the present invention provides a planting roll, specifically: the sum of the areas of several liquid inlets 16 is 20 cm 2 -200 cm 2 .
  • Practical experiments show that when the area sum of the liquid inlet 16 reaches 20 cm or more, the total ratio of water infiltration can reach more than 90%, but when the area of the liquid inlet 16 is too large, the evaporation rate of water will be increased.
  • the total area of the inlets 16 reaches 200 cm 2 , the amount of water evaporation increases by more than 10% compared to when the total area of the liquid inlets 16 is 20 cm 2 .
  • the sum of the areas of several liquid inlets 16 is at most 200 cm 2 .
  • the present invention provides a planting roll, specifically: the shapes of the installation through hole 21, the supply opening 14, the liquid inlet 16, and the plant growth opening 15 can be circular, square, triangular, etc.
  • the shape of the growth opening 15 can be circular, square, triangular, etc. or X-shaped, Y-shaped, ⁇ -shaped, ⁇ -shaped, etc.
  • the present invention provides a planting roll, specifically: the installation surface 31 is the roof, the folded length of the end of the body 1 is 20 cm, and the length of the anchor rod 22 protruding from the roof surface is 50 ⁇ 5 mm.
  • the experimental comparison shows that the best folded length of the main body 1 is 20 cm, and the water storage capacity when the folded length is 20 cm is basically the same as that of the hollow interlayer 8, and at the same time, it can also reduce the 20 cm of no plants for the main body 1. length.
  • a water storage tank is provided at the bottom of the body 1, and the end of the body 1 is placed in the water storage tank to supply water to the bottom of the body 1.
  • the water storage tank is made of plastic pipes, metal pipes, plastic basins, film bags etc. are made, and are fixed on a row of anchor rods 22 at the bottom.
  • the installation process of this embodiment is:
  • Epoxy resin pouring Use a brush and an air-compressed air dust gun on the concrete slab roof to completely clean the powder and dust in the hole, and then pour epoxy resin into the hole, and keep the hole dry before epoxy resin pouring . Avoid the epoxy resin and the roof base layer from being bonded tightly, causing the roof to leak
  • Insertion and installation of anchor rod 22 Insert the anchor rod 22 into the epoxy resin on the concrete slab roof and adjust the height of the anchor rod 22 to scrape off the epoxy resin emerging from the surface.
  • Insertion and installation of anchor rod 22 ensure that the epoxy resin in the hole Fill without gaps, insert the anchor rod 22 into the purlin roof and adjust the height of the anchor rod 22, and the length of the anchor rod 22 protruding from the roof surface is 50 ⁇ 5mm;
  • Waterproof ointment smearing coat the surface of the anchor rod 22 mounting holes with ointment.
  • the main body 1 is installed and fixed on the anchor rod 22: Lay the main body 1, and drill holes on the main body 1 according to the actual position of the anchor rod 22.
  • the horizontal position error of the hole shall not exceed 5mm, and the longitudinal position error shall not exceed 20mm.
  • the main body 1 is installed and anchored The torque is not less than 20N.m;
  • the present invention provides a planting roll, specifically: the installation surface 31 is a slope surface, the anchor rods 22 are provided with installation holes, the installation holes are coated with ointment, the top of the slope surface and The bottom of the slope is provided with drainage ditches 30, the diameter of the anchor rod 22 arranged at the top of the slope is 10-20 mm, and the length is 30-150 cm, and the diameter of the anchor rod 22 arranged at the bottom of the slope and in the slope is 10-14 mm, and the length is 30-60 cm.
  • the body 1 extends to the outside of the slope top.
  • the anchor rod 22 at the top of the slope has a diameter of 10-20 mm and a length of 30-150 cm, and the length of the main body 1 outside the top of the slope is not less than 30 cm; the diameter of the anchor rod 22 at the foot of the slope is The length is 10-14mm and the length is 30-60cm.
  • the anchor rod 22 is a galvanized steel bar not lower than HPB300, and the inclination angle between it and the slope is 0-10°. It is worth noting that the inclination angle of the anchor rod 22 is the main factor affecting the force on the anchor rod 22. When the anchor rod 22 has no inclination angle, the anchor rod 22 is only subjected to shear force.
  • the anchor rod 22 When the anchor rod 22 has an inclination angle, the anchor rod 22 bears The pull-out resistance will increase, which will affect the force of the anchor rod 22, so the anchor rod 22 needs to be anchored more tightly.
  • the anchor rod 22 on the slope of the structure is a galvanized expansion bolt not lower than grade 8.8.
  • the diameter of the anchor rod 22 at the top of the slope is 10-20mm, and the length is 10-20cm.
  • the length is not less than 10cm; the diameter of the anchor rod 22 at the foot of the slope is 10-14mm, the length is 10-20cm, and the inclination angle between it and the slope is 0-10°. Cables can also be set to reduce anchor rods in the slope.
  • the cables are high-strength steel strands or high-strength fiber ropes with a yield strength of not less than 900MPa, and their diameters are 3-6mm.
  • the stay cables can also be perforated galvanized steel strips with a width of 10-50mm and a thickness of 0.2-1mm. The stay cables do not need to be installed when the slope height is lower than 6m. It is worth noting that the length of the anchor rod 22 exposed on the slope is 50 ⁇ 5mm.
  • the water quantity sensor, the temperature sensor and the EC value sensor are all placed in the hollow interlayer 8 not less than 3m away from the edge of the body 1 .
  • the installation process is:
  • Position measurement of anchor rods 22 the lateral spacing of anchor rods 22 should be properly adjusted according to the roughness and radian of the slope surface, and no positive deviation can occur.
  • the longitudinal spacing deviation should not be greater than 5cm;
  • Insertion and installation of the anchor rod 22 Insert the anchor rod 22 into the mortar for anchoring on the rock and soil slope, install hot-dip galvanized expansion bolt anchor rod 22 on the slope surface of the structure, and the length of the anchor rod 22 emerging from the slope surface is 50 ⁇ 5mm;
  • Body 1 cutting According to the measured actual length, cut the material along the cutting punctuation marked on the surface of the body 1, and the deviation of the cutting position cannot exceed 2cm;
  • the main body 1 is installed and fixed on the anchor rod 22: Lay the main body 1, and drill holes on the main body 1 according to the actual position of the anchor rod 22.
  • the horizontal position error of the hole shall not exceed 5mm, and the longitudinal position error shall not exceed 20mm.
  • the main body 1 is installed and anchored The torque is not less than 20N.m;
  • the present invention provides a planting roll, specifically: the installation surface 31 is a wall, and the longitudinal traction cable 35 and the transverse traction cable 34 are installed at a height of 5-15 cm from the upper surface of the body 1 .
  • the anchor rod 22 is not less than 8.8-grade galvanized expansion bolts, with a diameter of 10-20mm and a length of 5-20cm, and the installation angle of the anchor rod 22 is 0-10°; for the keel wall
  • the anchor rod 22 is a galvanized bolt not lower than grade 8.8, with a diameter of 10-20mm, and the length is designed according to the actual situation, and the inclination angle of the anchor rod 22 is 0-10°.
  • the installation suspension height of the cable is 5-15cm, and the prestress of 0.5-2KN should be applied when the cable is fixed.
  • the cable can choose a high-strength steel rope with a diameter of 1-3 mm and a yield strength of not less than 900 MPa, or a perforated galvanized steel strip with a width of 10-50 mm and a thickness of 0.2-1 mm.
  • the height is 5-15cm, and a prestress of 0.5-2KN should be applied when the cable is fixed.
  • it in order to ensure that the installed decorative panel will not fall under the main action of wind, snow and other external forces, it must meet a certain strength.
  • the diameter of the cable is When the diameter is 1mm, the strength must be greater than 0.5KN. On the other hand, if the diameter is too large, it is not easy to install and the cost is high.
  • the expansion height of the main body 1 under different slope conditions is about 5cm, so the suspended height cannot be lower than 5cm. It grows smoothly in the middle, so the installation suspension height of the cable is 5-15cm.
  • Position measurement of the anchor rod 22 the lateral spacing of the anchor rod 22 should be properly adjusted according to the roughness and radian of the wall surface, and no positive deviation can occur.
  • the longitudinal spacing deviation should not be greater than 5cm;
  • Insertion and installation of the anchor rod 22 after inserting the anchor rod 22, lock it with a nut and adjust the height of the anchor rod 22, and the length of the anchor rod 22 protruding from the wall surface is 50 ⁇ 5mm;
  • Body 1 cutting According to the measured actual length, cut the material along the cutting punctuation marked on the surface of the body 1, and the deviation of the cutting position cannot exceed 2cm;
  • the body 1 is installed and fixed on the anchor rod 22: Lay the body 1, and drill holes on the body 1 according to the actual position of the anchor rod 22.
  • the horizontal position error of the hole shall not exceed 5mm, and the longitudinal position error shall not exceed 20mm.
  • the installation anchor torque of body 1 is not less than 20N.m;
  • Decorative plate installation apply 1KN prestress tension to the dragline and fix it on the anchor rod 22, the decorative plate is fixed on the dragline, and the decorative plate should be installed smoothly without warping;
  • Pipeline installation use pipe clips to fix on the row of anchor rods 22 at the bottom, drill holes in the water supply pipe to install the dropper joint, the dropper joint is connected to the dropper inside the CNK roll, and install a protective cover 42 at the joint to fix it on the water supply pipe superior;
  • the present invention provides a planting roll, specifically: the installation surface 31 is a guardrail, and both sides of the guardrail are provided with the body 1 and the installation components.
  • the installation of the main body 1 on both sides of the installation surface 31 can be completed through one anchor rod 22 through the anchor rod 22 through the guardrail, and the installation process is simple and easy to realize.
  • the longitudinal distance between several anchor rods 22 is 1-6m, and the transverse distance is 0.5-1.5m.
  • the installation process is:
  • Position measurement of the anchor rod 22 the lateral spacing of the anchor rod 22 should be properly adjusted according to the roughness and radian of the base layer, and no positive deviation can occur.
  • the longitudinal spacing deviation should not be greater than 5cm;
  • Insertion and installation of the anchor rod 22 after inserting the anchor rod 22, lock and adjust the height of the anchor rod 22 with a nut, and the length of the anchor rod 22 protruding from the surface of the base layer is 50 ⁇ 5mm;
  • Body 1 cutting According to the measured actual length, cut the material along the cutting punctuation marked on the surface of the body 1, and the deviation of the cutting position cannot exceed 2cm;
  • the body 1 is installed and fixed on the anchor rod 22: Lay the body 1, and drill holes on the body 1 according to the actual position of the anchor rod 22.
  • the horizontal position error of the hole shall not exceed 5mm, and the longitudinal position error shall not exceed 20mm.
  • the installation anchor torque of body 1 is not less than 20N.m;
  • Decorative panel installation apply 1KN prestress tension to the dragline and fix it on the anchor rod 22, the decorative panel is fixed on the dragline, and the decorative panel should be installed smoothly without warping;
  • Pipe installation fix on the bottom row of anchor rods 22 with pipe clips.
  • the water supply pipe is drilled to install a dropper joint, which is connected to the dropper inside the CNK roll, and a protective cover 42 is installed at the joint to fix it on the water supply pipe;
  • the present invention provides a planting roll, specifically: the installation surface 31 is a slag field or desert, the installation surface 31 is provided with an installation ditch 45, the periphery of the body 1 is buried in the installation ditch 45, and the installation ditch 45 A water supply component is arranged inside, and the body 1 is connected with the water supply component.
  • the installation surface 31 is a slag yard or a desert
  • the decorative panel may not be used, and the periphery of the main body 1 is buried in the installation ditch 45.
  • the covering of the main body 1 reduces the weathering speed of rock and soil, and at the same time controls the infiltration amount and infiltration of water.
  • the installation ditch 45 can be obtained by digging or pressing.
  • the water replenishment assembly includes connecting pipes 44 and drip irrigation joints 43. Several connecting pipes 44 communicate with the water delivery pipe 32. 43 is provided with protective cover 42 outside. It should be noted that the water delivery pipe 32 is buried in the installation ditch 45, and several connecting pipes 44 communicate with the water delivery pipe 32. A water supply pipe is arranged between them, and the water delivery pipe 32 communicates with the dropper joint.
  • the outer circumference of the dripper connector and the drip irrigation pipe 9 is covered with a protective cover 42, the protective cover 42 is a polymer resin material, which is used to protect the drip irrigation pipe 9, etc., from aging damage caused by direct sunlight.
  • the hollow interlayer 8 is made of light-tight and water-tight material.
  • the hollow interlayer 8 has an opening, that is, the hollow interlayer 8 is in an open state, and the water in the hollow interlayer 8 enters the seed layer through the open end for seed nutrition and support.
  • a water supply pipe is provided between the bottom layer 2 and the hollow interlayer 8.
  • the installation groove 45 has a depth of 10-30 cm and a width of 10-30 cm.
  • the capacity of the water storage tank is set to 0.3-1m 3 /100m 2 of the area of the slag yard body 1 .
  • Sensing assembly 238 also includes a soil moisture sensor for detecting soil moisture content. The specific installation process of the main body 1 is as follows:
  • Site cleaning Clean up debris, obstacles, mortar, steel and other sharp objects on the surface of the site;
  • the body 1 is fixed by pressing the soil: fill the installation ditch 45 with soil, and the body 1 is fixed by pressing the soil, and the soil needs to be pressed firmly;
  • Water delivery pipe 32 is installed: water delivery pipe 32 is installed in the installation ditch 45, drills on water delivery pipe 32 in order to install connecting pipe 44, and the water replenishing head is installed on connecting pipe 44, and the dripper joint is connected with the water supply inside body 1.
  • Pipe connection install a protective cover 42 at the joint between the water supply head and the water supply pipe and fix it on the connecting pipe 44;
  • the water volume sensor, temperature sensor and EC value sensor are placed in the water storage bag not less than 3m from the edge of the body 1, and the soil moisture sensor is embedded 20cm away from the edge of the body 1 not less than 3m in deep soil;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

一种种子无土生长诱导结构,包括:液体补给层(6)、液体滞留膜(7)和多级生长室,液体补给层(6)位于液体滞留膜(7)的一侧,液体补给层(6)与液体滞留膜(7)之间的夹层区域为多级生长室,多级生长室包括从进液端开始沿液体流动方向依次设置的第一适应区(18)和第二适应区(19),第一适应区(18)用于放置植物种子颗粒。该结构有效的使植物种子能够逐渐适应无土的生长环境,防止植物种子由于直接生长在无土环境或者直接生长在水中而导致成活率低。还包括一种种子无土生长诱导结构的植生卷和一种植生卷的安装结构。

Description

种子无土生长诱导结构和植生卷 技术领域
本发明涉及植物卷材技术领域,尤其涉及种子无土生长诱导结构和植生卷。
背景技术
随着世界工业经济的发展、人口的剧增、人类对于生活环境的要求在不断地提高,世界气候面临越来越严重的问题,二氧化碳排放量的不断增加,地球臭氧层正遭受前所未有的危机,全球灾难性气候变化屡屡出现,已经严重危害到人类的生存环境和健康安全,这种情况的影响下低碳生活被不断的推崇。在低碳生活不断被推广的过程中,人们对于绿化的概念也越来越清晰,绿化指的是栽植防护林、路旁树木、农作物以及居民区和公园内的各种植物等,其包括国土绿化、城市绿化、四旁绿化和道路绿化等,它可改善环境卫生并在维持生态平衡方面起多种作用。在绿化概念之下,草皮这种用于改善与美化环境的结构应运而生,草皮是连带薄薄的一层泥土铲下来的草,用来铺成草坪,美化环境,或铺在堤岸表面防止冲刷,同时还起到美化环境的作用。
而草皮的设置其实主要是为了解决植被覆盖率低的问题,《公园绿化覆盖率对人群情感恢复的影响研究》这一文章中研究表明提升绿化覆盖率、植被丰富度,降低空间视野开阔度,有助于提升人群内向情感的恢复效果。《居住环境绿化水平对居民体质指数(BMI)和自评健康的影响研究》这一文章中表示植被覆盖率高能显著提升城市居民的自评健康水平。随着社会的不断发展,人们在满足经济上的需求之后,不断地注重精神上的需求与舒适,由此而产生的现象是,人们对生活中绿植覆盖率高的要求也越来越注重,对于生活环境的绿化要求也越来越苛刻。另一方面,由于气候的不断变化以及经济社会的不断发展,现在的山体生态环境越来越恶劣,大量边坡出现了裸露的现象,造成了各种环境问题,如泥石流、山体滑坡等等,因此人们对于生态修复也越来越关注。
同时,人们在解决植被覆盖率以及生态修复等问题的过程中,发现了无土栽培的诸多优点,无土栽培是指以水、草炭或森林腐叶土、蛭石等介质作为植株根系的基质固定植株,使植物根系能直接接触营养液的栽培方法,无土栽培中营养液成分易于控制,而且可以随时调节,在光照、温度适宜而没有土壤的地方,如沙漠、海滩、荒岛,只要有一定量的淡水供应,便可进行。无土栽培根据栽培介质的不同分为水培、雾培和基质栽培,其中水培是指植物根系直接与营养液接触,不用基质的栽培方法。现有技术中,通常是将植物种子放入到无土环境中,给植物种子提供需要的营养成分,就让植物种子自行生长,无法给植物提供一个逐步 适应的过程,使得植物无土培育的效果并不理想。
另一方面,关于绿化覆盖率,还通过铺覆植物卷材来实现,现有植物卷材中,需要将植物种子与肥料颗粒同时设置在层与层之间,且在放置时植物种子的数量相比于肥料颗粒的数量较少,这就导致植物能够生长以及覆盖的面积在整个植物卷材中得占比很小,最后导致把植物卷材铺展开后其美观效果并不理想,还有,现有技术的植物卷材中,将为植物提供液体养分的储水袋设置在植物种子的旁边,这就造成了植物种子无法及时地吸收到其所需要的养分,最终造成植物种子发育不健康以及整个植物卷材表面上的植物生长的参差不齐,还可能造成储水袋被外界作用力破坏,导致储水袋中的液体流失过快或导致植物种子被浸泡而死亡的情况发生。
发明内容
本申请的目的在于提供种子无土生长诱导结构和植生卷,其解决了现有技术的结构无法有效做到使植物种子逐渐适应环境以及储存液体的结构容易破损的问题。
为了解决以上问题,本发明的目的之一在于提供用于种子无土生长的植生卷,通过种子无土生长诱导结构对种子生长发育的逐级诱导,实现对种子生长发育的自动控制与调节,同时,本申请所提供的植生卷能够适应各种不同的环境,液体储存仓位于层与层之间且设置在植物种子的下方,保证用于为种子提供营养液体的结构不会被破坏。
本发明的技术方案:
种子无土生长诱导结构,包括:液体补给层、液体滞留膜和多级生长室,所述液体补给层位于所述液体滞留膜的一侧,所述液体补给层与所述液体滞留膜之间的夹层区域为所述多级生长室,所述多级生长室包括从进液端开始沿液体流动方向依次设置的第一适应区和第二适应区,所述第一适应区用于放置植物种子颗粒。
进一步的是,所述多级生长室还包括第三适应区,所述第二适应区位于所述第三适应区与所述第一适应区之间。
进一步的是,所述第二适应区和所述第三适应区的宽度各自沿液体传递方向递减。
进一步的是,还包括液体挡流膜,所述液体挡流膜位于所述液体补给层远离所述液体滞留膜的一面
进一步的是,所述液体补给层和所述液体挡流膜之间叠置有液体供给布,且所述液体供给布与所述第一适应区对应。
进一步的是,所述液体滞留膜的透光率小于5%,所述液体供给布的透气孔隙率为40% 以上,所述液体补给层的透气孔隙率为20%~40%。
进一步的是,所述液体滞留膜上开设有若干个生长口,所述生长口与所述第一适应区位置相对应。
本申请还提供一种植生卷,包括本体,所述本体包括支撑底层,所述支撑底层上设置至少一个所述种子无土生长诱导结构,所述液体挡流膜与所述支撑底层边缘连接形成中空夹层,所述中空夹层远离所述第二适应区的端部敞开用于注入液体。
进一步的是,所述本体还包括液体吸附层,所述液体吸附层位于所述支撑底层和所述液体挡流膜之间,所述液体吸附层的一端位于所述中空夹层内、另一端位于所述中空夹层外;所述本体包括若干种子无土生长诱导结构,沿物料输送方向,所有种子无土生长诱导结构中的液体挡流膜、液体补给层各自与相邻下一个种子无土生长诱导结构的液体吸附层相连。进一步的是,不同的所述中空夹层的液体出入口朝向相同。
进一步的是,还包括滴灌管,所述滴灌管的进水端连接外部水源,所述滴灌管具有多个出水端,多个所述出水端一一对应连接各个液体储存仓,所述滴灌管由柔性材料制成。
进一步的是,所有种子无土生长诱导结构中的液体滞留膜一体成型形成顶膜,所述顶膜的边缘与支撑底层的边缘固定连接。
进一步的是,所述本体还包括结构稳定网和结构稳定条,所述结构稳定网设置于所述支撑底层、所述液体吸附层、所述液体挡流膜、所述液体供给布、所述液体补给层和所述顶膜中的至少任意两层之间;所述结构稳定条沿所述支撑底层周侧设置并位于所述支撑底层和所述液体挡流膜之间。
进一步的是,还包括储水槽,所述储水槽由本体末端折叠后形成;本体末端折叠部位的长度为10~30cm。
进一步的是,所述本体的周侧开设有安装通孔。
进一步的是,还包括安装组件和供水组件,所述安装组件包括锚杆和紧固构件,所述锚杆一端开设有安装孔;
所述紧固构件包括紧固螺母、L型夹片、橡胶垫片和安装夹片,所述锚杆的一端依次连接有所述紧固螺母、L型夹片、所述橡胶垫片、所述安装夹片和所述本体。
进一步的是,所述安装组件还包括纵向牵引索和横向牵引索。
进一步的是,相邻两个所述锚杆之间的横向间距为0.5-1.5m,相邻两个所述锚杆之间的纵向间距为1~10m。
进一步的是,所述供水组件包括控制器、控制阀组、传感组件以及输水管;所述控制器与一个所述锚杆相连,所述输水管上固设所述控制阀组,所述输水管安装在所述供水组件底部并与所述本体相连,所述传感组件铺设在所述本体内部,所述传感组件与所述控制器信号联通;所述控制阀组包括沿输水方向安装有输水管上的恒压阀、调压阀、过滤器以及电磁阀;所述传感组件包括依次信号连接的水量传感组件、温度传感组件以及EC值传感组件。
进一步的是,所述安装组件还包括主面板和侧面板,四个所述侧面板分别与一个所述主面板的四个侧边围合形成安装腔,所述主面板设置在所述本体上表面,所述侧面板与所述本体周缘粘接;所述主面板上开设有若干异形孔;所述主面板的开孔率为40%以上。
进一步的是,所述锚杆伸出所述安装面的一端间隔设置有两个所述紧固构件,所述两个紧固组件分别位于所述主面板的上下两端。
本申请的技术方案至少具有如下优点和有益效果:
1.在种子无土生长诱导结构内设置多级生长室,通过多级生长室内空气湿度的逐级变化,有效的使植物种子能够逐渐适应无土的生长环境,防止植物种子由于直接生长在无土环境或者直接生长在水中而导致成活率降低;实现零基质、零土壤种植任意品种的植物,摆脱植物对土壤的依赖
2.通过对液体供水布和液体补给层透气孔隙率的改变,实现对植物种子生长所需要空气的供给,保证植物幼苗能够健康的生长,帮助植物摆脱对土壤、基质的依赖。
3.通过在一个植生卷中设置若干的种子无土生长诱导结构,增加植物覆盖率,同时还能够提高美观效果;
4.通过在植生卷中设置若干液体储存仓,收集、储存大量的水分供给植物生长。同时通过储存仓的结构,避免水分的直接蒸发,减少水分的耗散,起到节水的作用。且将液体储存仓设置在种子无土生长诱导结构的下方,能够有效避免液体储存仓被人为或者外界作用力所破坏;
5.通过设置的安装组件和供水组件,相对于现有技术结构安装环境受限制,本申请提供的植生卷能够安装在不同的环境中,提高了适用范围。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图 获得其他相关的附图。
图1为本发明的结构示意图之一;
图2为图1中A向的剖视图;
图3为图1中B向的剖视图;
图4为本发明中种子诱导组件的结构示意图;
图5为本发明中种子诱导组件的简化结构图;
图6为本发明中支撑底层的结构图;
图7为本发明中液体挡流膜的结构图;
图8为本发明中液体吸附层和支撑底层的叠放示意图;
图9为本发明中液体吸附层、支撑底层和液体挡流膜的叠放示意图;
图10为本发明中液体吸附层、支撑底层、液体挡流膜和液体供给布的叠放示意图;
图11为本发明中液体吸附层、支撑底层、液体挡流膜、液体供给布和液体补给层的叠放示意图;
图12为本发明中液体吸附层、支撑底层、液体挡流膜、液体供给布、液体补给层和种子放置层的叠放示意图;
图13为本发明中液体滞留膜的结构图;
图14为本发明中液体滞留膜和支撑底层的叠放示意图;
图15为本发明的结构示意图之二;
图16为本发明的结构示意图之三;
图17为本发明的实施例42的结构示意图;
图18为本发明的实施例43的结构示意图之一;
图19为本发明的实施例43的结构示意图之二;
图20为本发明的实施例44的结构示意图之一;
图21为本发明的实施例45的结构示意图之一;
图22为本发明的实施例45的结构示意图之二;
图23为图21中C处放大图;
图24为本发明的实施例46的结构示意图;
图25为本发明的结构示意图之四。
图标:1-本体;2-支撑底层;3-液体吸附层;4-液体挡流膜;5-液体供给布;6-液体补给层;7-液体滞留膜;8-液体储存仓;9-滴灌管;10-结构稳定网;11-结构稳定条;12-液体防渗层;13-呼吸孔;14-供给开口;15-生长口;16-液体进入口;17-种子无土生长诱导结构;18-第一适应区;19-第二适应区;20-第三适应区;21-安装通孔22-锚杆;23-传感组件;24-控制器;25-控制阀组;26-恒压阀;27-调压阀;28-过滤器;29-电磁阀;30-排水沟;31-安装面;32-输水管;33-储水槽;34-横向牵引索;35-纵向牵引索;36-侧面板;37-主面板;38-紧固螺母;39-橡胶垫片;40-安装夹片;41-L型夹片;42-保护罩;43-滴灌接头;44-连接管;45-安装沟。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
请参照图1-图25,本发明提供一种种子无土生长诱导结构17,包括液体补给层6、液体滞留膜7和多级生长室,所述液体补给层6位于所述液体滞留膜7的一侧,所述液体补给层6与所述液体滞留膜7之间的夹层区域为所述多级生长室,所述多级生长室包括从进液端开始沿液体流动方向依次设置的第一适应区18和第二适应区19,所述第一适应区18用于放置植物种子颗粒。
需要说明的是,种子无土生长诱导结构17被设置用于诱导种子生长并使种子逐渐适应无土环境,通过对种子生长发育进行逐级的诱导,实现对种子生长发育的自动控制。具体的,种子无土生长诱导结构17包括液体补给层6和液体滞留膜7,液体补给层6和液体滞留膜7平行且间隔设置,并且在液体补给层6和液体滞留膜7的一侧设置有开口,详细的,液体补给层6和液体滞留膜7的三个边连接、一个边不连接形成一侧具有开口的结构,液体补给层6具有第一边、第二边、第三边、第四边,第四边与第二边相互平行、第三边与第一边相互平行,第四边与液体滞留膜7之间形成开口,开口向外方向,即第二边朝向第四边的方向, 可选的,第一边、第二边、第三边可以均与液体滞留膜7下表面连接,在此基础上第四边与液体滞留膜7之间不连接形成开口。液体补给层6和液体滞留膜7之间间隔所形成的区域为多级生长室,且液体补给层6用于对多级生长室进行液体的提供,多级生长室包括第一适应区18和第二适应区19,其中第一适应区18内可以放置植物种子,且第二适应区19位于多级生长室靠近开口的一侧,即排布顺序为开口、第二适应区19、第一适应区18,多级生长室内从第一适应区18向开口方向的空气湿度不同,即通过第一适应区18至开口方向空气湿度的逐渐变化,则实现了对植物种子进行无土环境生长的适应,防止种子由于直接生长在无土环境或者水中而导致成活率降低,解决现有技术的结构无法有效做到使植物种子逐渐适应环境的问题。
在本实施例中,所述多级生长室还包括第三适应区20,所述第二适应区19位于所述第三适应区20和所述第一适应区18之间。需要说明的是,多级生长室还包括第三适应区20,第三适应区20位于第二适应区19靠近开口的一侧,即第三适应区20位于开口与第二适应区19之间,即排布顺序为开口、第三适应区20、第二适应区19、第一适应区18,第三适应区20与种子无土生长营养液接触,则第三适应区20内可以具有一定的液体供植物种子生长使用。
实施例2
在实施例1的基础上,本发明提供一种种子无土生长诱导结构17,具体为:所述第二适应区19和所述第三适应区20的宽度各自沿液体传递方向递减。需要说明的是,本实施例所指的宽度为液体补给层6和液体滞留膜7两层表面之间的间隔距离,而长度指的是适应区两端与开口之间距离的差值。详细的,第一适应区18、第二适应区19和第三适应区20的宽度沿开口向外方向递减。具体的,第一适应区18的长度为50~300mm、宽度为5~8mm,根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6和液体滞留膜7等相同的环境下进行实验,表1是紫穗槐、车桑子、黄花槐在第一适应区18长度不同情况下的成活率的对比结果:
Figure PCTCN2022132447-appb-000001
Figure PCTCN2022132447-appb-000002
表1
根据上表分析可知,第一适应区18的长度小于50mm后,对植物的发芽和初生根的生长会造成不良的影响,根系刚长出来就进入第二适应区19的高湿环境,容易引起根系的病害。通过上表研究数据得出,当第一适应区18的长度为200mm时,植物的成活率达到最高,当加大第一适应区18的长度后,对液体补给层6的吸水性能要求会更高,故第一适应区18最高的长度为300mm,还能够有效的降低成本。
需要说明的是,说明:(1)丸化种子配方为:粒径小于或等于0.1mm的粒径草炭、400目膨润土、0.1mm粒径保水剂、百菌清杀菌剂按照10:1:0.01:0.0001的比例配置,使用丸化设备包裹在种子表面。(2)发芽测试:在人工气候箱中,在23℃温度条件下,使用发芽皿测试种子发芽率和发芽时间。(3)出苗率:在产品结构条件下,在自然环境中测试植物出苗率,初始种子颗粒放置数量500颗,水中营养成分按Hoagland配方(标准水培配方)配置全营养元素成分。测试时间:4月~6月,观察统计安装后1个月的植物出苗数量。(4)在产品结构条件下,在自然环境中测试植物成活率,初始种子颗粒放置数量500颗,水中营养成分按Hoagland配方(标准水培配方)配置全营养元素成分。测试时间:4月~7月,观察统计安装后3个月的植物成活数量与第一个月统计的植物数量比。每月测量1次植物生长高度,计算每月生长高度。
实施例3
在实施例2的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第二适应区19的长度30~100mm,根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6和液体滞留膜7等均等相同的环境下进行实验,表2是紫穗槐、车桑子、黄花槐在第二适应区19长度不同情况下的成活率的对比结果:
Figure PCTCN2022132447-appb-000003
Figure PCTCN2022132447-appb-000004
表2
根据上表分析可知,第二适应区19的长度小于30mm后,对植物根系的生长会造成不良的影响,根系还没有经过第二适应区19的适应,就直接进入第三适应区20的环境,容易引起根系的病害,当第二适应区19的长度为120mm时,植物的成活率达到最高,故长度设计为最少30mm,将其长度加大至超过100mm后,对植物生长的影响较小,故设置最高的长度为100mm。
实施例4
在实施例3的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第二适应区19的宽度为1~5mm,根据上述实施例,经过实际生产实验对比,得到如表3第二适应区19的宽度不同下植物的成活率对比结果,需要说明的是,所有的实验均是在液体补给层6和液体滞留膜7等相同的环境下进行,详细的,在种子品种、实验环境、实验时间、液体补给层6和液体滞留膜7等均等相同的环境下进行实验,表4是紫穗槐、车桑子、黄花槐在第二适应区19的宽度不同情况下的成活率的对比结果:
第二适应区的宽度 植物的成活率
0.5mm 51%
0.75mm 65%
1mm 86%
2mm 87%
3mm 90%
4mm 92%
5mm 90%
6mm 83%
7mm 80%
8mm 80%
表3
Figure PCTCN2022132447-appb-000005
表4
根据上表分析可知,第二适应区19的宽度为1~5mm,宽度主要是影响适应区内的透气性能和湿度,宽度太小湿度太大容易引起植物根系的病变、宽度太高湿度变低起不到驯化适应的目的。当第二适应区19的宽度为4mm时,植物的成活率达到最高,当宽度为1mm时,植物成活率显著提升,当第二适应区19的宽度大于5mm后,植物成活率开始出现下降,故宽度为1~5mm。
实施例5
在实施例4的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第三适应区20的长度为30~100mm,根据上述实施例,经过实际生产实验对比,得到如表5第三适应区20的长度不同下植物的成活率对比结果,需要说明的是,所有的实验均是在液体补给层6和液体滞留膜7等相同的环境下进行,详细的,在种子品种、实验环境、实验时间、液体补给层6和液体滞留膜7等均等相同的环境下进行实验,表6是紫穗槐、车桑子、黄花槐在第三适应区20长度不同情况下的成活率的对比结果:
第三适应区的长度 植物的成活率
10mm 36%
20mm 57%
30mm 87%
40mm 86%
60mm 89%
80mm 91%
100mm 93%
120mm 94%
140mm 93%
表5
Figure PCTCN2022132447-appb-000006
表6
根据上表分析可知,第三适应区20的长度小于30mm后,对种根系的生长会出现影响,根系还没有经过第二适应区19的适应,就直接进入水体环境,容易引起根系的病害。通过研究发现,当第三适应区20的长度为120mm时,植物的成活率达到最高,故长度设计为最少30mm,而第三适应区20长度加大至超过100mm后,对植物生长的影响较小,故设置了第三适应区20最高的长度为100mm。
实施例6
在实施例5的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第三适应区20的宽度小于0.5mm,根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6和液体滞留膜7等均等相同的环境下进行实验,表7是紫穗槐、车桑子、黄花槐在第三适应区20宽度不同情况下的成活率的对比结果:
Figure PCTCN2022132447-appb-000007
Figure PCTCN2022132447-appb-000008
表7
根据上表分析可知,厚度为小于0.5mm,厚度主要是影响适应区内的透气性能和湿度,厚度太高湿度变低起不到根系适应的目的;通过测试发现,当第三适应区20的宽度为0.3mm和0.4mm时,植物的成活率达到最高,当厚度大于0.5mm后,植物成活率开始下降,故厚度为小于0.5mm。
实施例7
在实施例6的基础上,本发明提供一种种子无土生长诱导结构17,具体为:还包括液体挡流膜4,液体挡流膜4位于所述液体补给层6远离所述液体滞留膜7的一面。通过设置液体挡流膜4用于阻止液体的穿过,故将液体挡流膜4设置为无法使液体穿过的布或膜的结构。在本实施例中,所述液体补给层6和所述液体挡流膜4之间叠置有液体供给布5,且所述液体供给布5与所述第一适应区18对应。需要说明的是,液体补给层6用于对多级生长室进行液体的提供,且液体补给层6设置在液体供给布5的上方且与其相贴合,另一方面,通过设置液体供给布5使液体补给层6与液体挡流膜4之间形成悬空,避免液体补给层6与液体挡流膜4之间因水的张力原因形成水膜,提高供水布的透气性,同时利用液体供给布5材料内部的孔隙,为植物根系提供透气体的需求。液体挡流膜4、液体补给层15面积都比液体滞留膜7的面积小。
需要说明的是,液体供给布5通过能够透气的材料制作而成,可以通过改变液体供给布5的材料进而改变其对整个装置的透气性能的控制与改变,另一方面,液体供给布5设置在第一适应区18中液体补给层的下部且使液体补给层与液体吸附层3之间为悬空的结构,进而避免液体补给层与液体吸附层3之间液体的张力从而导致水膜形成的情况发生,进一步提高液体补给层的透气性。通过液体滞留膜7对光线的反射以及对热量的阻隔,进而减少热量的吸收。根据实际使用情况调节液体补给层的宽度、厚度以及供水速率,保障植物种子生根以及根系生长的用水以及养分。再通过液体滞留膜7和液体吸附层3的覆盖,降低液体的蒸发速度,优选的,植物种子选择丸化种子颗粒,从而保障丸化种子颗粒的安全萌发与生根。具体的,液体补给层的供水速率为1000~5000g/(m 2.天)。植物在第一适应区18中,通过液体补给层、液体供给布5和丸化种子颗粒形成植物根系生长的附着环境,同时通过控制水分、 温度、光照、透气环境,建立植物根系生长所适应的水分和透气的环境,结合丸化种子颗粒自身所带入的生长物质,使得植物可以健康快速的发芽、快速建成植物初生根系。
在本实施例中,液体滞留膜7上开设有若干个生长口15,生长口15与第一适应区18位置相对应。需要说明的是,生长口15被设置用于供植物种子发芽与伸出,同时,通过植物种子之间的缝隙以及液体供给布5、液体补给层6材料的孔隙特性形成实现植物种子与外部环境连通的透气通道、为植物根系提供生长的透气要求,同时利用植物种子之间的空隙与液体滞留膜7的开孔,为植物根系生长提供良好的氧气环境,避免植物根系缺氧死亡和减少病害的发生,另一方面能够降低装置内部热量的聚集,从而保障种子能够始终在适宜的温度环境内发芽和生长根系,保持多级生长室内的温度环境始终为植物合适生长的环境,进而促进植物发芽和根系生长,具体的,在夏季高温时,保持多级生长室内的温度不超过35℃。
实施例8
在实施例7的基础上,本发明提供一种种子无土生长诱导结构17,具体为:生长口15的面积为1cm 2~20cm 2,若干生长口15的面积和为15cm 2~150cm 2,相邻两个生长口15的间距为20cm~80cm。实际实验得出,生长口15的面积为小于1cm 2后,植物发芽出苗率会显著降低,生长口15的面积为0.75cm 2与生长口15的面积为1cm 2时相比,出苗率降低30%以上,在生长口15的面积达到1cm 2以上后,出苗率差别较小。部分植物生长后其茎会达到15cm 2以上,生长口15的面积过小会限制植物的生长,但生长口15的面积过大时,会加大水分的蒸发速度。当生长口15的面积达到20cm 2时,水分蒸发量相比生长口15的面积为1cm 2时增加了20%以上,为了减少蒸发,故生长口15的面积最大为20cm 2
实施例9
在实施例8的基础上,本发明提供一种种子无土生长诱导结构17,具体为:液体滞留膜7的透光率小于5%,液体供给布5的透气孔隙率为40%以上,需要说明的是,透光率的含义是透过透明或半透明体的光通量与其入射光通量的百分率,其计算公式为A=Ig(1/T)=lg(I 0/I t),其中。材料的透气孔隙率是指块状材料中孔隙体积与材料在自然状态下总体积的百分比,其计算公式为:
Figure PCTCN2022132447-appb-000009
其中P是材料孔隙率,用%表示;V 0是材料在自然状态下的体积,或称表观体积,用cm 3或m 3表示;ρ 0为材料体积密度,用g/cm 3或kg/m 3表示;V是材料的绝对密实体积,用cm 3或m 3表示;ρ为材料密度,用g/cm 3或kg/m 3表示。根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层 6、液体滞留膜7、液体供给布5等相同的环境下进行,表8是紫穗槐、车桑子、黄花槐在液体供给布5的透气孔隙率不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000010
表8
根据上表分析可知,透光率影响植物根系的生长,透光率过大时会造成植物根系的死亡。液体供给布5的透气孔隙率大于40%时,可以为植物初根的生长提供良好的生长环境,通过研究发现,液体供给布5的透气孔隙率分别为70%时,植物的成活率最高且生长速度最快。
实施例10
在实施例9的基础上,本发明提供一种种子无土生长诱导结构17,具体为:液体补给层6的透气孔隙率为20%~40%,根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行表9是紫穗槐、车桑子、黄花槐在液体补给层6的透气孔隙率不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000011
表9
根据上表分析可知,植物的成活率会根据液体补给层6的透气孔隙率进行变化,当透气孔隙率较低时,植物存活率较低,生长速度也必然缓慢,当液体补给层6透气孔隙率达到40%时,植物存活率最高,生长速度最快,可以达到21cm/月。
详细的,液体补给层6在饱和吸水后的透气孔隙率控制在20%~40%之间,可以为植物根系次生根的生长提供优良的水气环境。进一步的,作为植物根系附着物,为植物提供根系生长的空间和根系微环境,诱导植物根系生长。根据上表分析可知,液体补给层6的透气孔隙率为大于20%时,可以为植物初根的生长提供良好的生长环境,通过实验发现,液体补给层6的透气孔隙率为40%时,植物的成活率最高且生长速度最快,故液体补给层6的透气孔隙率优选值为大于20%。但是当液体补给层6的透气孔隙率大于40%后,其输水效率会有较大的降低,需要使用更厚的液体补给层6,增加使用成本。因而使用的是液体补给层6的透气孔隙率为20%~40%。
实施例11
在实施例10的基础上,本发明提供一种种子无土生长诱导结构17,具体为:液体补给层6从左到右依次包括左一部、左二部、中一部、中二部、右一部和右二部,左一部和左二部均与第一适应区18对应,中一部和中二部均与第二适应区19对应,右一部和右二部均与第三适应区20对应。
实施例12
在实施例11的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第一适应区18内的空气湿度为60%~80%,左一部的含水量为40~60%,左二部的含水量为70~80%,根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行,表10是紫穗槐、车桑子、黄花槐在第一适应区18空气湿度、液体补给层6左一部的含水量、液体补给层6左二部的含水量不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000012
Figure PCTCN2022132447-appb-000013
表10
根据上表数据分析可知,当实验均是在液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行时,在随着第一适应区18空气湿度升高过程中,植物的成活率也在进行相应的升高,其中当液体补给层6左一部的含水量,液体补给层6左二部的含水量为60%与80%时,植物成活率会最高,可以达到90%,同时,当第一适应区18空气湿度达到90%后,植物的存活率反而有明显的降低趋势,因此第一适应区18空气湿度也对植物存活率具有影响作用。
实施例13
在实施例12的基础上,本发明提供一种种子无土生长诱导结构17,具体为:左一部的透气孔隙率为20%以上,左二部的透气孔隙率为15%以上,根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行,表11是紫穗槐、车桑子、黄花槐在液体补给层6左一部的透气孔隙率、液体补给层6左二部的透气孔隙率不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000014
表11
根据上表分析,当液体补给层6左一部的透气孔隙率,以及液体补给层6左二部的透气孔隙率同步正比增长过程中,植物成活率也在持续增加,当液体补给层6左一部的透气孔隙率达到50%后,植物存活率最高,可以达到94%。
实施例14
在实施例13的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第二适应区19内的空气湿度为90%以上,中一部的含水量为70~80%,中二部的含水量为80~90%。经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、 液体供给布5等相同的环境下进行,表12是紫穗槐、车桑子、黄花槐在液体补给层6左一部的透气孔隙率、液体补给层6左二部的透气孔隙率不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000015
Figure PCTCN2022132447-appb-000016
表12
根据上表数据分析可知,当实验均是在液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行时,在随着第二适应区19内空气湿度升高过程中,植物的成活率也在进行相应的升高,其中当液体补给层6左一部的含水量,液体补给层6左二部的含水量为80%与90%时,植物成活率会最高,可以达到91%,同时,当第二适应区19内空气湿度达到90%后,植物的存活率整体趋势较高,因此第二适应区19内空气湿度也对植物存活率具有影响作用。
实施例15
在实施例14的基础上,本发明提供一种种子无土生长诱导结构17,具体为:中一部的透气孔隙率为5~15%,中二部的透气孔隙率为5~10%。根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行,表13是紫穗槐、车桑子、黄花槐液体补给层6左一部的透气孔隙率、液体补给层6左二部的透气孔隙率不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000017
表13
根据上表分析,当液体补给层6左一部的透气孔隙率与液体补给层6左二部的透气孔隙率均等比增时,植物成活率出现先升后降的趋势,其中当液体补给层6左一部的透气孔隙率,液体补给层6左二部的透气孔隙率分别为:10%和7.5%时,植物成活率为最高,达到93%,可以推断,液体补给层6左一部的透气孔隙率以及液体补给层6左二部的透气孔隙率不是数值越高,植物成活率就越高。
实施例16
在实施例15的基础上,本发明提供一种种子无土生长诱导结构17,具体为:第三适应区20适应区内的空气湿度为98%以上,右一部的含水量为80~90%,右二部的含水量为100%。根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行,表14是紫穗槐、车桑子、黄花槐在第三适应区20空气湿度、液体补给层6左一部的含水量、液体补给层6左二部的含水量不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000018
Figure PCTCN2022132447-appb-000019
Figure PCTCN2022132447-appb-000020
Figure PCTCN2022132447-appb-000021
表14
根据上表数据分析可知,当实验均是在液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行时,在随着第三适应区20内空气湿度升高过程中,植物的成活率也在进行相应的升高,其中当液体补给层6左一部的含水量,液体补给层6左二部的含水量为80%与100%时,植物成活率会最高,可以达到89%,同时,在第三适应区20内空气湿度改变范围内进行实验发现,植物存活率相较第一与第二适应区19较低,因此第三适应区20内空气湿度也对植物存活率具有影响作用。
实施例17
在实施例16的基础上,本发明提供一种种子无土生长诱导结构17,具体为:右一部的透气孔隙率为5%以下,液体补给层左二部透气孔隙率为0。根据上述实施例,经过实际生产实验对比,在种子品种、实验环境、实验时间、液体补给层6、液体滞留膜7、液体供给布5等相同的环境下进行表15是紫穗槐、车桑子、黄花槐在液体补给层左一部的透气孔隙率、液体补给层左二部的透气孔隙率不同情况下的成活率对比结果:
Figure PCTCN2022132447-appb-000022
表15
根据上表分析可得,当液体补给层左一部的透气孔隙率与液体补给层左二部的透气孔隙率,分别为2.5%与0%时,植物成活率最高,存活率高达93%,同时当液体补给层左一部的透气孔隙率逐渐增加时,植物存活率整体呈现下降趋势,且每组实验均可以明确得出,当液体补给层左二部的透气孔隙率为0%时,每组对应的植物存活率最高。
实施例18
本申请还提供了一种植生卷,包括本体1,所述本体1包括支撑底层2,所述支撑底层2上设置至少一个所述种子无土生长诱导结构17,且所述支撑底层2与所述液体挡流膜4贴合;所述液体挡流膜4远离所述第一适应区18的端部与所述支撑底层2相连,所述液体挡流膜4与所述支撑底层2边缘连接形成中空夹层8,该中空夹层8为液体储存仓,所述中空夹层8远离所述第二适应区19的端部敞开用于注入液体。需要说明的是,通过支撑底层2将整个本体1的结构进行固定,使其保持在预设的形状之下,并且能够时刻保持美观的状态。通过设置的液体滞留膜7,其作用之一是用于对整个本体1中的液体进行阻挡使其留存在本体1内,防止本体1内液体或者营养物质的流失,将液体滞留膜7设置为无法使液体或固体穿过的结构,其作用之二是将为种子无土生长诱导结构17的位置进行固定,相对于种子无土生长诱导结构17上方没有阻挡物,本申请通过液体滞留膜7能够实现将种子无土生长诱导结构17夹设在液体滞留膜7和水分供给组件之间,保证整个本体1在进行卷起或者铺开的过程中,种子无土生长诱导结构17的位置能够始终保持不变,提高本装置内部结构的紧凑性。通过设置的液体挡流膜4,其作用之一是与支撑底层2固定连接形成中空夹层8,若干中空夹层8的敞口方向相同,具体的,为保证中空夹层8能够进行液体储存的同时还能够实现对种子无土生长诱导结构17进行液体的输出,故将中空夹层8设置为一侧开口的结构,其作用之二是阻止液体的穿过,故将液体挡流膜4设置为无法使液体穿过的布或膜的结构。
需要说明的是,相对于将中空夹层8设置在种子诱导组件的旁边,本申请将中空夹层8设置在种子诱导组件的下方,则实现了中空夹层8上方能够设置种子无土生长诱导结构17的同时还能够设置液体供给布5等其他层状结构,则能够最大可能的减小中空夹层8所独自占用的空间,同时还能够有效的提高种子诱导组件的密度,进而提高种子发芽生长之后整个绿化面积所占用整个本体1的面积比例,另一方面,将中空夹层8设置在种子下方之后,能够对中空夹层8起到有效的保护作用,有效的防止中空夹层8被外部人为或自然作用力破坏。液体挡流膜4下表面与支撑底层2上表面之间形成中空夹层8,中空夹层8与第一适应区18相对设置,且中空夹层8的长度略小于第一适应区18的长度,详细的,液体挡流膜4具有第一边、第二边、第三边、第四边,其中第一边、第二边、第三边均与液体滞留膜7上表面连接,第四边与第二边相互平行,第三边与第一边相互平行,第四边与液体滞留膜7之间不连接形成液体出入口,液体出入口与其上方设置的种子无土生长诱导结构17中的开口设置的位置相反,即开口和液体出入口分别位于第一适应区18的两端。进一步的,支撑底层2上表面与液体供给布5的下表面连接,则液体供给布5一部分浸泡在中空夹层8,液体供给布5通 过浸泡的部分吸取水分并为种子提供。本申请提供的一种本体1,解决了现有技术中储存液体的结构容易破损的问题,同时还解决了现有技术的结构导致植物卷材中植物种子发育状态参差不齐的问题。
实施例18
在实施例17的基础上,本发明提供一种植生卷,具体为:支撑底层2与液体滞留膜7的边缘固定连接,热焊复合部位还包括支撑底层2膜和液体挡流膜4的侧边热焊处到本体1的边缘。支撑底层2与液体滞留膜7的边缘通过热焊的方式固定连接。相对于使用胶带或胶水,热焊的固定方式能够保证支撑底层2与液体滞留膜7之间的连接更加紧固。在本实施例中,液体供给布5可以为一整片的结构,也可为若干片且均匀设置在液体挡流膜4上。优选的,液体供给布5与液体挡流膜4之间可以使用热熔胶或溶剂型胶或热焊进行连接,可选的,热熔胶或溶剂型胶为防水型胶黏剂。优选的,本申请的本体1可以制成卷装包装。在本实施例中,液体滞留膜7的侧边与液体挡流膜4的侧边通过热焊固定连接,液体供给布5不能覆盖住支撑底层2和液体挡流膜4进行热焊复合的焊接缝合位置,也不能覆盖液体挡流膜4上开设的供给开口14。
实施例19
在实施例18的基础上,本发明提供一种植生卷,具体为:所述本体1还包括液体吸附层3,所述液体吸附层3位于所述支撑底层2和所述液体挡流膜4之间,所述液体吸附层3的一端位于所述中空夹层8内、另一端位于所述中空夹层8外;所述本体1包括若干种子无土生长诱导结构17,沿物料输送方向,所有种子无土生长诱导结构17中的液体挡流膜4、液体补给层6各自与相邻下一个种子无土生长诱导结构17的液体吸附层3相连。需要说明的是,多级生长室具体为液体补给层和液体滞留膜7之间的夹设空间,多级生长室包括第一适应区18、第二适应区19以及第三适应区20,其中植物种子设置在第一适应区18内,当种子生根之后其根部会进入到第二适应区19内,在第二适应区19中,由于液体补给层的含水量和第二适应区19内空气湿度在逐步提升、同时液体补给层的透气孔隙率在逐步降低,详细的,孔隙率是指块状材料中孔隙体积与材料在自然状态下总体积的百分比,本申请中液体补给层为透气材料制作而成,其透气孔隙率则为该材料中能够透气的孔隙在整个材料体积中所占据的百分比,故在植物根系向下生长的过程中,实现植物根系对高水分、低氧气环境适应性的逐步锻炼,进而使植物减弱主根根系的建成,实现对植物形成更多的次生根的诱导与驯化,进而使植物能够更加适应水生环境。在植物适应了第二适应区19的环境之后,其根部会继续生长或 加速生长并进入到第三适应区20内,在第三适应区20中,由于液体补给层的含水量和第三适应区20内空气湿度进一步提升、同时液体补给层透气孔隙率进一步降低,使得第三适应区20内的环境进一步接近水生环境,在植物根系向下生长的过程中,使得植物更进一步的适应水生环境,则当植物穿过第三适应区20后,就可直接在液体中生长。再通过设置的中空夹层8,并将液体补给层、液体滞留膜7的下端插入其中,通过液体补给层向种子供水,液体补给层吸附液体之后将其供应给种子并使其生根,水生根意为水生植物生长在水中的根,当种子生根之后其根部生长并插入至中空夹层8的液体内形成水生根,进而从液体中吸收营养物质供给整个植物的生长需求,气生根是指由植物茎上发生的,生长在地面以上的、暴露在空气中的不定根,当种子生产出气生根之后,气生根则吸收液体补给层和液体供给布5的水分和养分以及浸在中空夹层8液体内根部的养分继续生长。可选的,中空夹层8可以是单独的容器储存液体,也可是由液体滞留膜7和液体吸附层3焊接形成的液体储存容器。液体补给层通过毛细作用在中空夹层8中吸取液体。还有,液体补给层和丸化种子的含水量始终不会达到饱和程度,其含有的水具有一定的水势压力,可诱导植物根系的加速发育,进而提高根系根毛数量。
优选的,液体吸附层3和液体供给布5可以为分开的结构,也可以为一体式的同一个结构,实际生产时中,优先选择将液体吸附层3和液体供给布5分别制造与连接,能够便于进行生产与加工。液体补给层由麻布、植物纤维毯和/或岩棉毯材料制成。液体补给层可以为一整片的结构,也可为若干片且均匀设置在液体供给布5上。液体补给层与液体供给布5之间、液体补给层与液体吸附层3之间、液体吸附层3与液体挡流膜4之间均可以使用热熔胶或溶剂型胶或热焊进行连接。
实施例20
在实施例19的基础上,本发明提供一种植生卷,具体为:第一适应区18内放置有若干植物种子颗粒,植物种子颗粒的直径为5mm~8mm,种子颗粒的密度为100~600g/m 2。植物种子外设置有丸化包衣,丸化包衣的厚度为2~5mm。
需要说明的是,相对于将液体供给布5设置在丸化种子上方,本申请中将液体供给布5设置在丸化种子下方,在通过设置的液体滞留膜7实现将第一适应区18夹设在液体滞留膜7和液体补给层之间,则第一适应区18能够直接与液体供给布5进行接触,提高了种子颗粒与液体供给布5之间的接触性,同时最大可能的保证了每颗种子均能够从液体供给布5上吸取到液体与养分。另一方面,种子发芽与生根之后,其根系会向下生长,则根系能够直接接触 到液体供给膜并从液体供给膜上吸取液体与养分以供其生长。优选的,种子颗粒中具有生长基质、杀菌剂、植物生长调节剂、病虫害防治剂等。可选的,液体滞留膜7和液体补给层之间的第一适应区18,可以为多组且间隔设置,也可以为连接为一整片的设置方法,根据实际使用情况选用。
需要说明的是,一般常用绿化种子的直径在2~4mm左右,本申请的种子颗粒是在种子表面包裹了一层生长材料制成的,通过实际实验得出,包裹的材料厚度在3~5mm时,发芽率、发芽时间、最终的成苗率相差不大。包裹的材料厚度小于3mm时,种子成苗率下降比较明显,包裹2mm的比包裹3mm的种子颗粒成苗率降低30%以上。包裹材料太厚时,种子的发芽率会有降低且发芽时间变长,包裹6mm的比包裹5mm厚的种子颗粒在发芽率上降低了16%,发芽时间加长了3天。种子颗粒用量在100~600g/m 2时,每平方米的面积的植物成苗数量可控制在200~500株植物,可以很好的满足本体1的使用。种子颗粒过少,植物成苗数量较少,影响后期的植物盖度。种子颗粒用量过大,植物数量过多引起植物间的竞争植物生长比较瘦弱,且用量过大会增加使用成本。
值得说明的是,研究证明,一般常用绿化种子的直径为2~4mm左右,种子颗粒是在种子表面包裹了一层生长材料制成的,通过研究证明,种子包裹材料的厚度在2~5mm时,植物的发芽率、发芽时间、最终的成苗率相差不大。种子包裹材料厚度的小于2mm时,种子成苗率下降比较明显,包裹1mm的比包裹2mm的种子颗粒成苗率降低30%以上。种子包裹材料太厚时,种子的发芽率会有降低且发芽时间变长,包裹6mm的比包裹5mm厚的种子颗粒在发芽率上降低了16%,发芽时间加长了3天。请参考表16和表17所示的数据结果,实验在种子品种、实验环境、实验时间、液体补给层6和液体滞留膜7等均等相同的环境下进行的,表16是紫穗槐、车桑子、黄花槐在不同包衣厚度情况下的发芽率与初始发芽时间的对比结果,表17是紫穗槐、车桑子、黄花槐在不同包衣厚度情况下的出苗数量与初始发芽时间的对比结果:
Figure PCTCN2022132447-appb-000023
Figure PCTCN2022132447-appb-000024
表16
Figure PCTCN2022132447-appb-000025
表17
实施例21
在实施例20的基础上,本发明提供一种植生卷,具体为:支撑底层2上设置有若干个种子无土生长诱导结构17,且不同的中空夹层8的液体出入口朝向相同。在本实施例中,沿物料输送方向,每个种子无土生长诱导结构17中的液体挡流膜4、液体补给层6各自与相邻下一个种子无土生长诱导结构17下方设置的液体吸附层3相连。
需要说明的是,中空夹层8是在种子无土生长诱导结构17的下方,液体吸附层3是位于中空夹层8内,故液体吸附层3位于种子无土生长诱导结构17的下方。液体吸附层3的一端位于两个种子无土生长诱导结构17之间间隔的区域内,另一端通过液体出入口伸入中空夹层8内。举例如依次设置的中空夹层8A、中空夹层8B、中空夹层8C,中空夹层8A具有液体挡流膜4A和液体补给层6A,中空夹层8B具有液体吸附层3B、液体挡流膜4B和液体吸附层3B,中空夹层8C具有液体吸附层3C,即液体挡流膜4A和液体补给层6A均与液体吸附层3B的一端相连,同理的,液体挡流膜4B和液体吸附层3B均与液体吸附层3C的一端相连。
需要说明的是,通过设置的液体吸附层3对中空夹层8中的液体进行一个吸附,即液体 吸附层3能够时刻保持具有液体的状态,且若干液体吸附层3间隔均匀的与支撑底层2的上表面贴合,另一方面,当中空夹层8中的液体被不断输出,则设置的液体吸附层3能够保证种子无土生长诱导结构17中始终具有水分、保证种子诱导组件中的空气湿度不会过低以及保证种子诱导组件中的空气湿度始终保持在能够为种子诱导组件提供日常所需要的养分。可选的,液体吸附层3可以为一整片的结构,也可为若干片且均匀设置在支撑底层2上。液体吸附层3由麻布、植物纤维毯和/或岩棉毯材料制成。
实施例22
在实施例21的基础上,本发明提供一种植生卷,具体为:还包括滴灌管9,所述滴灌管9的进水端连接外部水源,所述滴灌管9具有多个出水端,多个所述出水端一一对应连接各个中空夹层8,所述滴灌管9由柔性材料制成。需要说明的是,通过设置的滴灌管9为中空夹层8内补充液体,优选的,滴灌管9与液体补给层、滴灌管9与液体补给层均可以使用热熔胶或溶剂型胶或热焊进行连接。详细的,滴灌管9的一端为出水端且位于植生卷内,另一端为进水端且延伸出植生卷与外界水源连通。在实际工作时,由于中空夹层8的一端开放,为避免中空夹层8中的液体一次性且大体积的与第一适应区18接触或者将第一适应区18进行浸泡,防止第一适应区18被液体浸泡导致死亡。本申请设置滴灌管9后,将滴灌管9与供水管道连接后,需要进行浇水时,只需打开水管阀门就开始自动进行浇灌,相对于现有技术中浇水时需要通过喷洒进行浇灌的过程,尤其是野外喷洒需要洒水车等设备且速度慢,本申请大大降低了浇水灌溉的时间和工器具的成本,另一方面现有技术的喷洒浇灌方式均匀性很差,使用滴灌管9后,滴灌管9的滴水头间距和每个滴水头流量可根据实际使用情况进行设置,提高了浇水的均匀性。
在本实施例中,所有种子无土生长诱导结构17中的液体滞留膜7一体成型形成顶膜,所述顶膜的边缘与支撑底层2的边缘固定连接。可选的,顶膜与支撑底层2之间可以使用热熔胶或溶剂型胶或热焊进行连接。在本实施例中,本体1还包括结构稳定网10和结构稳定条11,结构稳定网10设置于支撑底层2、液体吸附层3、液体挡流膜4、液体供给布5、液体补给层6和顶膜中的至少任意两层之间;结构稳定条11沿支撑底层2周侧设置并位于支撑底层2和液体挡流膜4之间。
需要说明的是,具体的,将结构稳定条11设置在本体1的两侧,有助于将本体1的两侧进行固定,增强整个本体1侧边的强度,且有利于将本体1与外部结构进行安装。优选的,结构稳定条11为高强度、抗老化的薄膜、编织布和/或金属带材料制成,结构稳定条11可以 通过热焊复合的方式与支撑底层2膜、液体挡流膜4或液体滞留膜7复合,也可使用热熔胶或溶剂型胶粘贴,结构稳定网10可通过胶粘或由液体滞留膜7和液体挡流膜4热焊复合夹持的方式固定在本体1内。结构稳定网10上间隔均匀的开设有网孔,网孔的直径为0.5~3cm。当网孔的直径小于0.5cm后,植物发芽出苗就会产生困难,当网孔的直径大于3cm后,网孔则容易变形,就会导致生产制造过程中的难度增大。优选的,安装通孔21与K型本体1侧边之间的距离为2cm~10cm。
实施例23
在实施例22的基础上,本发明提供一种植生卷,具体为:本体1的周侧开设有安装通孔21,安装通孔21被设置用于将本体1与外界结构进行安装。需要说明的是,安装通孔21的面积为0.25cm 2~5cm 2,相邻两个安装通孔21的间距为20cm~80cm。
实施例24
在实施例23的基础上,本发明提供一种植生卷,具体为:支撑底层2下表面设置有液体防渗层12,液体防渗层12为高分子树脂防水卷材,通过设置防水层后,本申请的植生卷则能够应用于有防水要求的建筑墙面、屋顶等环境,增加了产品的适用范围。支撑底层2、液体挡流膜4、液体滞留膜7均由不透水、不透光、抗老化的薄膜布和/或编织材料制成。
实施例25
在实施例24的基础上,本发明提供一种植生卷,具体为:两个相邻种子无土生长诱导结构17之间形成供给开口14,支撑底层2上间隔均匀的开设有与供给开口14相对应的呼吸孔13。值得说明的是,滴灌管9设置于供给开口14的上方;当本申请的植生卷铺设在土壤上方时,相对于将中空夹层8设置在丸化种子的旁边,本申请将中空夹层8设置在下方,则能够实现中空夹层8上开设的呼吸孔13直接与土壤进行接触,则当种子颗粒发芽与生根之后,其根系能够通过呼吸孔13进入外部的土壤基层中,使其能够直接吸取土壤基层中的养分,同时还能够将中空夹层8中多余的液体排放至土壤之中,能够最大可能的提高液体的利用率,实现资源的有效利用。可选的,液体吸附层3可以将呼吸孔13覆盖。
需要说明的是,当本装置用于屋面、墙面、围墙等无土壤的环境工况时,支撑底层2上可不开设呼吸孔13。液体挡流膜4可以为多块且间隔均匀的设置,也可以为一整块的结构设置在支撑底层2上,为使在对整个本体1进行安装能够最大可能的方便,优先选用多块液体挡流膜4间隔均匀的设置方法。在中空夹层8表面布置第一适应区18、液体供给布5、液体补给层、结构稳定网10和结构稳定条11,可以通过上述结构实现对太阳辐射热量的隔绝, 降低中空夹层8内液体吸收的热量,保持液体的温度,即在夏季最强辐射强度下,液体温不超过35℃,避免在高强太阳辐射的环境下液体吸收热量后温度太高导致损伤根系温度。现有技术通过液体补给层上开设的孔将中空夹层8中的水供应给液体补给层,经过一段时间后,中空夹层8内可能会产生沉积物,堵塞液体补给层上的孔,使供水效率降低,本实施例优选的,液体补给层的一端可以直接设置在中空夹层8中,液体补给层一端直接放置在中空夹层8的液体中,更能时刻保障液体补给层的有效性,另一方面,当丸化种子颗粒发芽生根之后,其根系可以顺着液体补给层直接生长进入中空夹层8内,从中空夹层8内直接吸取养分。还有,现有技术中,通过根系作用在液体吸附层3上,该结构限制了根系在液体吸附层3中的生长,植物根系受到抑制,植物生长速度较慢,本申请中液体吸附层3一端直接暴露设置在中空夹层8中,根系可以自由生长进入中空夹层8中,不受外部约束,促使植物根系生物量的快速增长,植物快速建成,需要控制生物量时,通过外部施加生长调节剂控制即可完成,可以根据实际的需求灵活的调整。
实施例26
在实施例25的基础上,本发明提供一种植生卷,具体为:还包括安装组件和供水组件,安装组件被设置用于将本体1与外界安装面31进行安装,供水组件被设置用于对本体1内种子的生长环境进行控制;安装组件包括锚杆22和紧固构件,若干锚杆22设置在本体1的周侧且一端嵌设于安装面31下方,锚杆22伸出安装面31的一端开设有安装孔;紧固构件包括紧固螺母38、L型夹片41、橡胶垫片39和安装夹片40,锚杆22伸出安装面31的一端朝安装面31的方向依次连接有紧固螺母38、L型夹片41、橡胶垫片39、安装夹片40和本体1。在一些较优的实施例中,为了使展开的本体1安装后能被有效拉紧,避免在使用中出现卷折或收缩的情况,考虑所述安装组件还包括纵向牵引索35和横向牵引索34。纵向牵引索35和横向牵引索34各自穿过安装孔与锚杆22相连
需要说明的是,安装组件被设置用于将本体1与外界安装面31进行安装,供水组件被设置用于对本体1内种子的生长环境进行控制与调节。详细的,锚杆22在本申请中主要用于对本体1进行整体固定,通过周边的设置进行加固土体和拦截局部垮塌以及落石,供水组件间隔设置的方式可以最大程度保证水分的均匀灌输,具体的,锚杆22设置在整个本体1的周侧,同时也可以将锚杆22设置在本体1区域中部,设置在本体1中部是需要将其穿插在供给开口14位置,避免将本体1内设置的中空夹层8破坏。需要说明的是,纵向牵引索35和横向牵引索34被设置用于将展开的本体1进行拉紧,锚杆22伸出安装面31的一端开设有安装孔, 纵向牵引索35和横向牵引索34各自穿过安装孔与锚杆22相连,通过纵向牵引索35和横向牵引索34将本体1的四周进行展平,保证其美观性。
需要说明的是,通过设置锚杆22和紧固构件将本体1进行固定,实际使用时,本体1上开设有安装通孔21,安装过程为,将锚杆22穿过安装面31安装位置、安装夹片40、本体1上的安装通孔21、橡胶垫片39,最后用紧固螺母38进行紧固,防止在使用过程中本体1从锚杆22生滑出,现有的结构中,对于安装面31上设置绿化产品时,绿化安装结构复杂且安装困难,且对安装面31两侧同时进行绿化产品的安装时操作更加的繁琐,另一方面,对于安装面31上安装绿化产品,需要实时考虑实物的品种,在特定的时间才能进行安装,本申请中设置的本体1,其内部具有植物种子,可以根据不同环境与季节进行放置,故在安装时只需将整个本体1安装上即可,种子自会发芽,不需要特定的时间进行安装。需要说明的是,橡胶垫片39的厚度和直径相互影响,安装夹片40的直径越大,安装夹片40本身的平整性就会比较差,则需要用更厚一点的橡胶垫片39才能适应其变形毛病达到最佳的安装与紧固的效果。本实用新型解决了现有技术的结构在安装面31两侧均设置绿化产品时结构复杂且安装困难的问题。通过设置L型夹片41,L型夹片41上开设有孔,纵向牵引索35和横向牵引索34穿过该孔再用销轴等圆柱状结构卡紧,防止其滑出。
需要说明的是,通过设置的供水组件,能够实现对本体1生长状态的远距离检测,控制器24生长的时间,则不需要工作人员在特定的时间设置特定的植物,工作人员只需要远距离监控植物的生长,控制器24在规定的时间内完成发芽生根以及长出绿叶。本实施例较佳的实施方式是等距间隔均布,等距具体数值为每2000~5000平方米中水平方向每隔700m设置,具体设置的间隔距离可以根据实际情况决定,超过5000平方米后,供水量需求变大,供水输水管32和供水水源流量、压力需要更大,一般的常规自来水等无法满足要求,所以不能太大,且面积太大,均匀性会变差,传感组件23检测到的数据可能准确性就会更差,而面积太小,控制系统的成本就会升高,故设置为不小于2000平方米。优选的,供水组件每15m高度差、每700m长度长设置一套,本体1是通过滴灌管9进行供水,滴灌管9的压力补偿范围为0.1~0.3MPa,也就是10~30m高差范围内是均匀的,所以设置高度差为15m,另一方面,输水管32的长度超过700m后,由于输水管32水压的损失会变大,本体1内部滴灌管9的压力差会超过滴灌管9的压力补偿范围0.1~0.3MPa,为保证供水能够正常的进行,故供水组件每15m高度差、每700m长度长设置一套。本发明还解决现有技术无法在不同环境下都能够安装牢固以及及时补水的问题。
实施例27
在实施例26的基础上,本发明提供一种植生卷,具体为:相邻两个锚杆22之间的横向间距为0.5-1.5m,相邻两个锚杆22之间的纵向间距为1~10m。需要说明的是,锚杆22深入安装面31,本实施例中的锚杆22的纵向间距长度为1~10m,其中本实施例中的较佳范围是1-6m以及4-10m,详细的,锚杆22的纵向间距小于4m时,所需要的锚杆22数量则会过多,生产成本则会呈上升趋势,而当锚杆22的纵向间距超过10m时,固定一次之后损坏的概率就会增大,安装的稳定性就会呈下降趋势,故相对于锚杆22的纵向间距小于4m或超过10m,锚杆22的纵向间距为4~10m,经实验对比得出,锚杆22的横向安装间距为0.5-1.5m时,本体1的安装强度与安装的美观程度最好,经过实验对比得知,本体1强度最大能够满足的锚杆22安装间距为10m。
实施例28
在实施例27的基础上,本发明提供一种植生卷,具体为:还包括储水槽33,储水槽33由本体1末端折叠后形成,储水槽33被设置用于储备用水;本体1末端折叠部位的长度为10~30cm。需要说明的是,本体1末端进行折叠之后用锚杆22固定,能够减少其末端没有植物部分的长度,同时还能够起到中空夹层8的作用,而针对于中空夹层8,折叠长度较短则储水能力较差,折叠长度较长则无法起到减少本体1末端无植物长度的作用,经实验对比得出,当中空夹层8的长度设置为10~30cm时,其储水量为中空夹层8储水量的50~130%,且其对整体本体1的储水均匀性影响较小。
实施例29
在实施例28的基础上,本发明提供一种植生卷,具体为:供水组件包括控制器24、控制阀组25、传感组件23以及输水管32;控制器24与一个锚杆22相连,输水管32上固设控制阀组25,输水管32安装在供水组件底部并与本体1相连,传感组件23铺设在本体1内部,传感组件23与控制器24信号联通;控制阀组25包括沿输水方向安装有输水管32上的恒压阀26、调压阀27、过滤器28以及电磁阀29;传感组件23包括依次信号连接的水量传感组件23、温度传感组件23以及EC值传感组件23。
实施例30
在实施例29的基础上,本发明提供一种植生卷,具体为:安装组件还包括主面板37和侧面板36,四个所述侧面板36分别与一个所述主面板37的四个侧边围合形成安装腔,主面板37设置在本体1上表面,侧面板36与本体1周缘粘接;主面板37上开设有若干异形孔; 主面板37的开孔率为40%以上。需要说明的是,设置主面板37和侧面板36,其作用之一是对整个本体1进行固定,其作用之二是使本体1中种植发芽生根长出绿叶之后的分布能够更加均匀与美观,其中,异形孔与生长口15和液体进入口16相对设置。主面板37和侧面板36的材料可以为金属的,也可以为塑料的,主面板37上开设的孔的尺寸为30~80mm,开孔率不低于40%。经过实际实验得出,当开孔尺寸小于30mm时,植物生长出主面板37的难度较大,且生长的不整齐,而当开孔过小,若植物生长茎干变粗后,会限制且损坏植物的茎干,另一方面,孔开设的过大会严重影响其美观效果,故开孔尺寸为30~80mm。经过实际实验得出,开孔率低于40%时,植物生长穿出主面板37的数量会减少20%以上,同样会严重影响其美观效果,故开孔率不低于40%。
实施例31
在实施例30的基础上,本发明提供一种植生卷,具体为:安装腔被设置用于安装本体1以及为本体1中中空夹层8在装满液体时提供空间。在本实施例中,锚杆22伸出安装面31的一端间隔设置有两个紧固构件,两个紧固组件分别位于主面板37的上下两端。需要说明的是,主面板37和四个侧面板36可以是一体式的,也可以为分体式的。
优选的,侧面板36上的开孔尺寸为10~50mm,开孔率不低于40%。优选的,主面板37每隔10~50cm使用夹扣固定在拉索上,夹扣为弹性钩或镀锌铁丝制成。主面板37与拉索固定的间距过大时,主面板37安装后容易出现不平整的现象,局部会发生翘曲变形,故主面板37每隔10~50cm固定一次。可选的,使用胶贴的方式封闭本体1侧面板36上对应处开设的孔,使侧面板36上不生长植物,可选的,胶贴为通用防水胶带,宽度为5~10cm。可选的,还可以设置深度10~40cm的嵌入式安装框安装本体1。
实施例32
在实施例31的基础上,本发明提供一种植生卷,具体为:呼吸孔13的面积为0.25cm 2~10cm 2,若干呼吸孔13的面积和为2.5cm 2~200cm 2。值得说明的是,经过实际实验得出,本体1内的植物主根系在10年内,一般最大会生长到直径5~30mm左右,由于不同植物品种根系的生长周期与长度不一样,如呼吸孔13面积过小,会限制根系的生长,造成根系畸形发育,故最小设置为0.25cm 2,但是呼吸孔13过大,会降低整体本体1的强度,故设置呼吸孔13最大为10cm 2。通过实际实验得出,每个单元最终植物通过呼吸孔13的根系的总数量在2~100cm 2,但由于不同植物品种的情况不一样,故设置呼吸孔13的总面积为2.5cm 2~200cm 2
实施例33
在实施例32的基础上,本发明提供一种植生卷,具体为:供给开口14的面积为5cm 2~50cm 2,若干供给开口14的面积和为20cm 2~300cm 2。值得说明的是,供给开口14的主要作用是保证液体吸附层3和液体补给层搭接交会位置的搭接面积,保障液体能顺利通过液体吸附层3传导给液体补给层,经过实际实验得出,液体吸附层3传导给液体补给层的搭接长度必须大于1cm才能不影响液体传导给液体补给层,根据液体吸附层3和液体补给层的宽度,同时考虑生产、制造过程中的误差等不确定性,故将供给开口14的面积为5cm 2~50cm 2,若干供给开口14的面积和为20cm 2~300cm 2
实施例34
在实施例33的基础上,本发明提供一种植生卷,具体为:相邻两个供给开口14的间距、相邻两个呼吸孔13的间距均为20cm~80cm。值得说明的是,当相邻两个供给开口14的间距小于20cm时,中空夹层8的储水量则会太小,就会不利于本体1的使用,造成后期需要经常进行浇水的情况。当相邻两个供给开口14的间距大于80cm时,中空夹层8的储水量又会太大,增加了对材料强度的要求,造成成本太高,另一方面,相邻两个供给开口14之间的间距大于80cm后,植物间距变大,覆盖度降低,就会严重影响整个本体1使用的美观效果。
实施例35
在实施例34的基础上,本发明提供一种植生卷,具体为:液体吸附层3的长度为相邻两个呼吸孔13间距的40%~90%。值得说明的是,经过实际实验得出,若液体吸附层3的长度低于相邻两个呼吸孔13间距的40%后,当中空夹层8内的储水量低于60%就无法接触到水,不利于植物的生长。通过实际实验得出,在全国各地区,液体吸附层3的长度为相邻两个呼吸孔13间距的40%~90%时,能够最大可能的满足一般情况下植物对于液体的需求,在干旱少雨地区可选择较长的液体吸附层3,在多雨地区可选择较短的液体吸附层3,若液体吸附层3的长度高于相邻两个呼吸孔13之间的间距的90%后,则增加了加工对位的准确性要求且会增加成本,故液体吸附层3的长度为相邻两个呼吸孔13间距的40%~90%。
实施例36
在实施例35的基础上,本发明提供一种植生卷,具体为:若干液体吸附层3宽度和为支撑底层2宽度的10%~60%,通过实际实验得出,本体1内植物最大耗水量一般在0.3~1kg/h.m 2。1cm宽液体吸附层3的输水效率为20g/h,故每平方米液体吸附层3的总宽度至少需要15~50cm,按照每个单元长度20~80cm,故液体吸附层3宽度和为支撑底层2的3%~40%,同时考虑生产、制造过程中的误差等不确定性,故若干液体吸附层3宽度和为支撑底层2宽度的10%~ 60%。
实施例37
在实施例36的基础上,本发明提供一种植生卷,具体为:若干液体供给布5的长度和为相邻两个供给开口14间距的40%~90%,若干液体供给布5的宽度和为支撑底层2宽度的30%~90%。经实际实验得出,若干液体供给布5的长度低于相邻两个供给开口14间距的40%后,植物成活率会出现较大的降低;若干液体供给布5的长度低于相邻两个供给开口14间距的30%相比若干液体供给布5的长度低于相邻两个供给开口14间距的40%时,即30%相比40%时,植物成活率降低达到12%以上;若干液体供给布5的长度大于相邻两个供给开口14间距的40%时,植物生长状态和成活率差异不显著。由于液体供给布5必须为液体吸附层3和液体补给层的搭接复合提供空间,故若干液体供给布5的长度最长不能超过相邻两个供给开口14间距的90%,太长会影响液体吸附层3和液体补给层的搭接效果。
实施例38
在实施例37的基础上,本发明提供一种植生卷,具体为:若干液体补给层的长度和为相邻两个供给开口14间距的50%以上。值得说明的是,经实际实验得出,若干液体补给层的长度低于相邻两个供给开口14间距的50%后,由于种子颗粒是放置在液体补给层上的,整个单元只有50%的长度能生长植物,植物覆盖度较低,故若干液体补给层的长度和为相邻两个供给开口14间距的50%以上。
实施例39
在实施例38的基础上,本发明提供一种植生卷,具体为:若干液体补给层的宽度和为支撑底层2宽度的10%~80%。通过实际实验得出,本体1内植物最大耗水量一般在0.3~1kg/h.m 2。1cm宽液体吸附层3的输水效率在20g/h,故每平方米液体吸附层3的总宽度至少需要15~50cm,按照每个单元长度20~80cm,故若干液体补给层的宽度和为支撑底层2宽度的3%~40%,同时考虑生产、制造过程中的误差等不确定性,故将若干液体补给层的宽度和设置为支撑底层2宽度的10%~80%,保证植物生长的安全性。
实施例40
在实施例39的基础上,本发明提供一种植生卷,具体为:液体进入口16的面积为1cm 2~20cm 2,相邻两个液体进入口16的间距为20cm~80cm。实际实验得出,液体进入口16的面积为小于1cm 2后,降雨入渗率显著降低,液体进入口16的面积为0.75cm 2与液体进入口16的面积为1cm 2相比,入渗率降低20%以上,当液体进入口16的面积达到1cm 2以上后,降雨 入渗率差别较小,但液体进入口16的面积过大时,会加大水分的蒸发速度,当液体进入口16的面积达到20cm 2时,水分蒸发量相比液体进入口16的面积为1cm 2时增加了15%以上,为了减少蒸发,故液体进入口16的面积最大为20cm 2
实施例41
在实施例40的基础上,本发明提供一种植生卷,具体为:若干液体进入口16的面积和为20cm 2~200cm 2。实际实验得出,液体进入口16的面积和达到20cm 2以上时,水分入渗总比例才能达到90%以上,但液体进入口16的面积过大时,会加大水分的蒸发速度,当液体进入口16总面积达到200cm 2时,水分蒸发量相比液体进入口16总面积为20cm 2时增加了10%以上,为了减少蒸发,故若干液体进入口16的面积和最大为200cm 2
实施例42
在实施例41的基础上,本发明提供一种植生卷,具体为:安装通孔21、供给开口14、液体进入口16和植物生长口15的形状可以为圆形、方形、三角形等,植物生长口15的形状可以为圆形、方形、三角形等或X型、Y型、∧型、∩型等。
实施例43
在实施例42的基础上,本发明提供一种植生卷,具体为:安装面31为屋面,本体1末端的折叠长度为20cm,锚杆22伸出屋面表面的长度为50±5mm。值得说明的是,实验对比得出,本体1最佳的折叠长度为20cm,折叠长度为20cm时的储水量与中空夹层8的储水量基本相同,同时还能够为本体1减少了20cm无植物的长度。可选的,本体1的底部还置有储水槽,本体1的末端放置在储水槽内,为本体1最底部进行供水,可选的,储水槽由塑料管材、金属管材、塑料盆、薄膜袋等制成,且固定在底部一排锚杆22上。本实施例的安装过程为:
(1)屋面清理:清理表面砂浆、钢铁等各类尖刺物;
(2)锚杆22位置测量:锚杆22横向间距应根据屋面糙度和弧度适当调整,且不能产生正偏差,相邻两个锚杆22之间的纵向间距偏差不宜大于5cm;
(3)锚杆22安装孔钻孔:锚杆22钻孔应垂直屋面,偏差不能超过3°;
(4)环氧树脂灌注:混凝土板屋面用毛刷、空压气吹尘枪,完全清理干净孔中粉渣和灰尘,后在孔中灌入环氧树脂,环氧树脂灌注前保持孔内干燥。避免环氧树脂与屋面基层粘接不密闭,造成屋面漏水
(5)锚杆22插入安装:混凝土板屋面在环氧树脂中插入锚杆22并调节锚杆22高度, 刮平表面冒出的环氧树脂,锚杆22安装时应保证孔内环氧树脂填满无空隙,檩条屋面插入锚杆22后调节锚杆22高度,锚杆22安装伸出屋面表面的长度为50±5mm;
(6)本体1裁剪:按测量的实际长度,沿本体1表面标记的裁剪标点裁剪下料,裁剪位置偏差不能超过2cm。
(7)防水油膏涂抹:在锚杆22安装孔表面涂满油膏。
(8)本体1安装固定在锚杆22上:铺设本体1,按锚杆22实际位置,在本体1上打孔,孔横向位置误差不得超过5mm,纵向位置误差不得超过20mm,本体1安装锚固扭力不小于20N.m;
(9)装饰面板安装:对拉索施加1KN的预应力拉紧用固定在锚杆22上,装饰面板固定在拉索上,装饰面板安装应平顺无翘曲;
(10)输水管32安装:输水管32固定在底部一排锚杆22上,输水管32钻孔安装滴管接头,滴管接头与本体1内部连接,滴管接头处安装保护罩42固定在输水管32上。
(11)供水组件安装:水量传感器、温度传感器和EC值传感器放置在离本体1边缘不小于3m处本体1最底部的中空夹层8内,测量坡度,调整供水组件坡度使其与实际相符。
(12)开启供水组件进行灌溉浇水。
实施例44
在实施例43的基础上,本发明提供一种植生卷,具体为:安装面31为坡面,锚杆22上均开设有安装孔,安装孔内涂有油膏,坡面的坡顶和坡底均开设有排水沟30,坡顶设置的锚杆22直径为10~20mm、长度为30~150cm,坡底和坡中设置的锚杆22直径为10~14mm、长度为30~60cm,本体1延伸至坡顶外部。需要说明的是,作为优选的,位于坡顶的锚杆22直径为10~20mm、长度为30~150cm,其本体1设置在坡顶外的长度不小于30cm;位于坡脚的锚杆22直径为10~14mm、长度为30~60cm。锚杆22为不低于HPB300的镀锌钢筋,其与坡面之间的倾角为0~10°。值得说明的是,锚杆22的倾角是影响锚杆22受力的主要因素,在锚杆22没有倾角时,锚杆22只受到剪切力,当锚杆22有倾角时,锚杆22承受的抗拔力会增大,进而影响锚杆22的受力,故锚杆22需要锚固得更紧,经实验对比得出,在当锚杆22与安装面31的面垂直面之间的倾斜角度不超过10°的范围时,其影响力较小,倾角过大必须要加长或加大锚杆22。可选的,构筑物坡面锚杆22为不低于8.8级的镀锌膨胀螺栓,位于坡顶的锚杆22直径为10~20mm、长度为10~20cm,其本体1设置在坡顶外的长度不小于10cm处;位于坡脚的锚杆22直径为10~14mm、长度为10~20cm,其与坡面之间的倾角为0~10°。 还可设置拉索以减少坡中锚杆,拉索为屈服强度不低于900MPa高强钢绞线或高强纤维绳等,其直径为3~6mm。拉索也可以为宽度为10~50mm、厚度为0.2~1mm的打孔镀锌钢带,拉索在坡高低于6m时可以不用设置。值得说明的是,锚杆22安装露在坡面的长度为50±5mm。水量传感器、温度传感器和EC值传感器均放置在离本体1边缘不小于3m处的中空夹层8内。安装过程为:
(1)坡面清理:清理坡面表面杂物、浮土、危石、杂物、障碍物和砂浆、钢铁等各类尖刺物;
(2)锚杆22位置测量:锚杆22横向间距应根据坡面糙度和弧度适当调整,且不能产生正偏差。纵向间距偏差不宜大于5cm;
(3)锚杆22安装孔钻孔:锚杆22钻孔应垂直坡面,偏差不能超过3°;
(4)砂浆灌注:清理干净孔中粉渣,孔中灌入砂浆;
(5)锚杆22插入安装:岩土坡面插入锚杆22砂浆中锚固,构筑物坡面安装热镀锌膨胀螺栓锚杆22,锚杆22安装冒出坡面表面长度50±5mm;
(6)本体1裁剪:按测量的实际长度,沿本体1表面标记的裁剪标点裁剪下料,裁剪位置偏差不能超过2cm;
(7)拉索安装:在本体1上打孔,用螺栓锚固拉索与本体1,锚固扭力不小于20N.m,拉索锚固段长度不得大于本体1锚固段长度;
(8)本体1安装固定在锚杆22上:铺设本体1,按锚杆22实际位置,在本体1上打孔,孔横向位置误差不得超过5mm,纵向位置误差不得超过20mm,本体1安装锚固扭力不小于20N.m;
(9)输水管32安装:用管卡固定在底部一排锚杆22上,供水管钻孔安装滴管接头,滴管接头与本体1内部的滴灌管9连接,接头处安装保护罩42固定在供水管上。
(10)供水组件安装:水量传感器、温度传感器和EC值传感器放置在离边缘不小于3m处本体1最底部的储水袋内,测量坡度和观测岩土类型,调整供水组件坡度和岩土类型设置与实际相符;
(11)开启供水组件进行灌溉浇水。
实施例45
在实施例43的基础上,本发明提供一种植生卷,具体为:安装面31为墙面,纵向牵引索35和横向牵引索34距离本体1上表面5~15cm的高度处安装。值得说明的是,对于实体 墙面,锚杆22不低于8.8级的镀锌膨胀螺栓,直径为10~20mm、长度为5~20cm,锚杆22安装倾角为0~10°;对于龙骨墙面,锚杆22为不低于8.8级的镀锌螺栓,直径为10~20mm,长度根据实际设计,锚杆22倾角为0~10°。拉索的安装悬空高度为5~15cm,拉索固定时应施加0.5~2KN的预应力拉紧。优选的,拉索可以选择直径为1~3mm且屈服强度不低于900MPa高强钢绳,也可选择宽度为10~50mm、厚度为0.2~1mm的打孔镀锌钢带,拉索的安装悬空高度为5~15cm,拉索固定时应施加0.5~2KN的预应力拉紧。详细的,为保证安装的装饰面板在风、雪等其它外力主作用下不会发生掉落的情况,则必须要满足一定的强度,通过计算全国各地区安装情况后得出,拉索在直径为1mm时的强度必须要大于0.5KN以上,另一方面,直径过大不便于安装且成本较高。详细的,本体1浇水后在不同坡度条件下的膨胀高度为5cm左右,故悬空高度不能低于5cm,另一方面,经过测试,悬空高度过大后,植物不能从装饰面板上开设的孔中顺利生长出来,故拉索的安装悬空高度为5~15cm。经过实际实验得出,拉索施加0.5KN的预应力后,在连接装饰面板时能够保证本体1的平整,而低于0.5KN时,本体1的局部就会发生变形,而超过2KN后,则会不便于施工,故拉索固定时应施加0.5~2KN的预应力。安装过程为:
(1)墙面清理:清理墙面表面杂物、障碍物和砂浆、钢铁等各类尖刺物;
(2)锚杆22位置测量:锚杆22横向间距应根据墙面糙度和弧度适当调整,且不能产生正偏差。纵向间距偏差不宜大于5cm;
(3)锚杆22安装孔钻孔:锚杆22钻孔应垂直墙面,偏差不能超过3°;
(4)锚杆22插入安装:插入锚杆22后,用螺母锁紧并调节锚杆22高度,锚杆22安装冒出墙面表面长度50±5mm;
(6)本体1裁剪:按测量的实际长度,沿本体1表面标记的裁剪标点裁剪下料,裁剪位置偏差不能超过2cm;
(7)本体1安装固定在锚杆22上:铺设本体1,按锚杆22实际位置,在本体1上打孔,孔横向位置误差不得超过5mm,纵向位置误差不得超过20mm。本体1安装锚固扭力不小于20N.m;
(8)装饰板安装:对拉索施加1KN的预应力拉紧用固定在锚杆22上,装饰板固定在拉索上,装饰板安装应平顺无翘曲;
(9)管道安装:用管卡固定在底部一排锚杆22上,供水管钻孔安装滴管接头,滴管接头与CNK卷内部的滴管连接,接头处安装保护罩42固定在供水管上;
(10)供水系统安装:水量传感器、温度传感器和EC值传感器放置在离边缘不小于3m处本体1最底部的储水水袋内;
(11)开启供水系统进行灌溉浇水。
实施例46
在实施例43的基础上,本发明提供一种植生卷,具体为:安装面31为护栏,护栏的两侧均设置有本体1和安装组件。需要说明的是,本申请设置的绿化安装组件,将锚杆22穿过护栏,即可通过一根锚杆22完成安装面31两侧本体1的安装,且安装过程简单易实现。若干锚杆22之间的纵向间距为1~6m、横向间距0.5-1.5m。安装过程为:
(1)基层清理:清理屋面表面杂物、障碍物和砂浆、钢铁等各类尖刺物;
(2)锚杆22位置测量:锚杆22横向间距应根据基层糙度和弧度适当调整,且不能产生正偏差。纵向间距偏差不宜大于5cm;
(3)锚杆22安装孔钻孔:锚杆22钻孔应垂直基层,偏差不能超过3°;
(4)锚杆22插入安装:插入锚杆22后,用螺母锁紧并调节锚杆22高度,锚杆22安装冒出基层表面长度50±5mm;
(6)本体1裁剪:按测量的实际长度,沿本体1表面标记的裁剪标点裁剪下料,裁剪位置偏差不能超过2cm;
(7)本体1安装固定在锚杆22上:铺设本体1,按锚杆22实际位置,在本体1上打孔,孔横向位置误差不得超过5mm,纵向位置误差不得超过20mm。本体1安装锚固扭力不小于20N.m;
(8)装饰面板安装:对拉索施加1KN的预应力拉紧用固定在锚杆22上,装饰面板固定在拉索上,装饰面板安装应平顺无翘曲;
(9)管道安装:用管卡固定在底部一排锚杆22上。供水管钻孔安装滴管接头,滴管接头与CNK卷内部的滴管连接,接头处安装保护罩42固定在供水管上;
(10)供水系统安装:水量传感器、温度传感器和EC值传感器放置在离边缘不小于3m处本体1最底部的储水水袋内;
(11)开启供水系统进行灌溉浇水。
实施例47
在实施例43的基础上,本发明提供一种植生卷,具体为:安装面31为渣场或荒漠,安装面31开设有安装沟45,本体1周缘埋设于安装沟45内,安装沟45内设置有补水组件, 本体1与补水组件相连。需要说明的是,安装面31为渣场或荒漠时可以不使用装饰面板,本体1周缘埋设于安装沟45内,本体1的覆盖降低岩土风化速度,同时控制水分的入渗量和入渗速度,避免坡面土体过饱水吸水而发生垮塌;同时本体1可以通过植物的生长使植物根系生长加筋土体,避免了对渣场或荒漠表层造成的伤害。可选的,安装沟45可以通过挖的方式得到,也可以通过压的方式得到。在本实施例中,补水组件包括连接管44和滴灌接头43,若干连接管44与输水管32连通,滴灌接头43的两端分别与连接管44和本体1中的滴灌管9连通,滴灌接头43外设置有保护罩42。需要说明的是,输水管32埋设在安装沟45内,若干连接管44与输水管32连通,滴管接头的两端分别与连接管44和本体1连通,支撑底层2和中空夹层8上层之间设置有供水管,输水管32与滴管接头连通。滴管接头与滴灌管9的外周均覆盖有保护罩42,保护罩42为高分子树脂材料,用来对滴灌管9等进行防护作用,避免其受阳光直射老化损坏。中空夹层8为不透光不透水的材料制成,中空夹层8的具有开口,即从中空夹层8为开放状态,则中空夹层8内的水通过开放端进入到种子层内为种子营养,支撑底层2和中空夹层8之间设置有供水管,优选的,安装沟45的深度为10~30cm、宽度为10~30cm。可选的,储水箱的容量设置为0.3~1m 3/100m 2渣场本体1的面积。基于渣场环境的特殊性,通过增设储水箱给中空夹层8补充水分,防止因为意外情况导致中空夹层8中水分耗尽的情况发生。传感组件238还包括用于检测土壤水分含量的土壤水分传感器。本体1的具体安装过程为:
(1)场地清理:清理场地表面杂物、障碍物和砂浆、钢铁等各类尖刺物;
(2)安装沟45位置测量:安装沟45间距应根据渣场地糙度和弧度适当调整,且不能产生正偏差;
(3)安装沟45开挖:挖沟深度不小于设计要求;
(4)本体1铺设:铺设本体1,两侧和两端放入安装沟45内;
(5)本体1压土固定:在安装沟45内填土,压土固定本体1,压土需要拍实压牢;
(6)输水管32安装:输水管32安装在安装沟45内,在输水管32上钻孔用以安装连接管44,连接管44上安装补水头,将滴管接头与本体1内部的供水管连接,在补水头与供水管的接头处安装保护罩42并使其固定在连接管44上;
(7)供水组件安装:水量传感器、温度传感器和EC值传感器放置在距离本体1边缘不小于3m处的储水水袋内,土壤水分传感器埋置在离本体1四周边缘不小于3m处的20cm深土壤中;
(8)启动供水组件进行灌溉浇水。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (21)

  1. 种子无土生长诱导结构,其特征在于,包括:液体补给层(6)、液体滞留膜(7)和多级生长室,所述液体补给层(6)位于所述液体滞留膜(7)的一侧,所述液体补给层(6)与所述液体滞留膜(7)之间的夹层区域为所述多级生长室,所述多级生长室包括从进液端开始沿液体流动方向依次设置的第一适应区(18)和第二适应区(19),所述第一适应区(18)用于放置植物种子颗粒。
  2. 根据权利要求1所述的种子无土生长诱导结构,其特征在于,所述多级生长室还包括第三适应区(20),所述第二适应区(19)位于所述第三适应区(20)和所述第一适应区(18)之间。
  3. 根据权利要求2所述的种子无土生长诱导结构,其特征在于,所述第二适应区(19)和所述第三适应区(20)的宽度各自沿液体传递方向递减。
  4. 根据权利要求1-3中任一项所述的种子无土生长诱导结构,其特征在于,还包括液体挡流膜(4),所述液体挡流膜(4)位于所述液体补给层(6)远离所述液体滞留膜(7)的一面。
  5. 根据权利要求4所述的种子无土生长诱导结构,其特征在于,所述液体补给层(6)和所述液体挡流膜(4)之间叠置有液体供给布(5),且所述液体供给布(5)与所述第一适应区(18)对应。
  6. 根据权利要求5所述的种子无土生长诱导结构,其特征在于,所述液体滞留膜(7)的透光率小于5%,所述液体供给布(5)的透气孔隙率为40%以上,所述液体补给层(6)的透气孔隙率为20%~40%。
  7. 根据权利要求4所述的种子无土生长诱导结构,其特征在于,所述液体滞留膜(7)上开设有若干个生长口(15),所述生长口(15)与所述第一适应区(18)位置相对应。
  8. 含有如权利要求4-7中任一项所述种子无土生长诱导结构的植生卷,其特征在于,包括本体(1),所述本体(1)包括支撑底层(2),所述支撑底层(2)上设置至少一个所述种子无土生长诱导结构(17),
    所述液体挡流膜(4)与所述支撑底层(2)边缘连接形成中空夹层(8),所述中空夹层(8)远离所述第二适应区(19)的端部敞开用于注入液体。
  9. 根据权利要求8所述的植生卷,其特征在于,所述本体(1)还包括液体吸附层(3),所述液体吸附层(3)位于所述支撑底层(2)和所述液体挡流膜(4)之间,所述液体吸附层(3)的一端位于所述中空夹层(8)内、另一端位于所述中空夹层(8)外。
  10. 根据权利要求9所述的植生卷,其特征在于,所述本体(1)包括若干种子无土生长诱导结构(17),沿物料输送方向,所有种子无土生长诱导结构(17)中的液体挡流膜(4)、液体补给层(6)各自与相邻下一个种子无土生长诱导结构(17)的液体吸附层(3)相连;不同的所述中空夹层(8)的液体出入口朝向相同。
  11. 根据权利要求10所述的植生卷,其特征在于,还包括滴灌管(9),所述滴灌管(9)的进水端连接外部水源,所述滴灌管(9)具有多个出水端,多个所述出水端一一对应连接各个中空夹层(8)所述滴灌管(9)由柔性材料制成。
  12. 根据权利要求10所述的植生卷,其特征在于,所有种子无土生长诱导结构(17)中的液体滞留膜(7)一体成型形成顶膜,所述顶膜的边缘与支撑底层(2)的边缘固定连接。
  13. 根据权利要求12所述的植生卷,其特征在于,所述本体(1)还包括结构稳定网(10)和结构稳定条(11),所述结构稳定网(10)设置于所述支撑底层(2)、所述液体吸附层(3)、所述液体挡流膜(4)、所述液体供给布(5)、所述液体补给层(6)和所述顶膜中的至少任意两层之间;所述结构稳定条(11)沿所述支撑底层(2)周侧设置并位于所述支撑底层(2)和所述液体挡流膜(4)之间。
  14. 根据权利要求12所述的植生卷,其特征在于,还包括储水槽(33),所述储水槽(33)由本体(1)末端折叠后形成;本体(1)末端折叠部位的长度为10~30cm。
  15. 根据权利要求12所述的植生卷,其特征在于,所述本体(1)的周侧开设有安装通孔(21)。
  16. 根据权利要求12所述的植生卷,其特征在于,还包括安装组件和供水组件,所述安装组件包括锚杆(22)和紧固构件,所述锚杆(22)一端开设有安装孔;
    所述紧固构件包括紧固螺母(38)、L型夹片(41)、橡胶垫片(39)和安装夹片(40),所述锚杆(22)的一端依次连接有所述紧固螺母(38)、L型夹片(41)、所述橡胶垫片(39)、所述安装夹片(40)和所述本体(1)。
  17. 根据权利要求16所述的植生卷,其特征在于,所述安装组件还包括纵向牵引索(35)和横向牵引索(34)。
  18. 根据权利要求16所述的植生卷,其特征在于,相邻两个所述锚杆(22)之间的横向间距为0.5-1.5m,相邻两个所述锚杆(22)之间的纵向间距为1~10m。
  19. 根据权利要求16所述的植生卷,其特征在于,所述供水组件包括控制器(24)、控制阀组(25)、传感组件(23)以及输水管(32);所述控制器(24)与一个所述锚杆(22)相连,所述输水管(32)上固设所述控制阀组(25),所述输水管(32)安装在所述供水组件底部并与所述本体(1)相连,所述传感组件(23)铺设在所述本体(1)内部,所述传感组件(23)与所述控制器(24)信号联通;
    所述控制阀组(25)包括沿输水方向安装有输水管(32)上的恒压阀(26)、调压阀(27)、过滤器(28)以及电磁阀(29);
    所述传感组件(23)包括依次信号连接的水量传感组件(23)、温度传感组件(23)以及EC值传感组件(23)。
  20. 根据权利要求16所述的植生卷,其特征在于,所述安装组件还包括主面板(37)和侧面板(36),四个所述侧面板(36)分别与一个所述主面板(37)的四个侧边围合形成安装腔,所述主面板(37)设置在所述本体(1)上表面,所述侧面板(36)与所述本体(1)周缘粘接;所述主面板(37)上开设有若干异形孔;所述主面板(37)的开孔率为40%以上。
  21. 根据权利要求20所述的植生卷的安装结构,其特征在于,所述锚杆(22)伸出所述安装面(31)的一端间隔设置有两个所述紧固构件,所述两个紧固组件分别位于所述主面板(37)的上下两端。
PCT/CN2022/132447 2021-11-29 2022-11-17 种子无土生长诱导结构和植生卷 WO2023093600A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202111431341.0 2021-11-29
CN202122946917.9 2021-11-29
CN202122957796.8U CN216600920U (zh) 2021-11-29 2021-11-29 用于安装植生卷的护栏安装结构
CN202111428895.5 2021-11-29
CN202111429242.9A CN114128593B (zh) 2021-11-29 2021-11-29 基于多场景用植生卷防护结构
CN202111428895.5A CN114128616B (zh) 2021-11-29 2021-11-29 一种用于种子无土生长的诱导装置及其应用
CN202122957796.8 2021-11-29
CN202111431341.0A CN114128565B (zh) 2021-11-29 2021-11-29 一种可工业化连续生产的k型植生卷
CN202111429242.9 2021-11-29
CN202122957738.5 2021-11-29
CN202122946917.9U CN216601091U (zh) 2021-11-29 2021-11-29 一种立体绿化滴灌管
CN202122957738.5U CN216601149U (zh) 2021-11-29 2021-11-29 基于植生卷的绿化滴灌结构

Publications (1)

Publication Number Publication Date
WO2023093600A1 true WO2023093600A1 (zh) 2023-06-01

Family

ID=86538839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132447 WO2023093600A1 (zh) 2021-11-29 2022-11-17 种子无土生长诱导结构和植生卷

Country Status (1)

Country Link
WO (1) WO2023093600A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204157404U (zh) * 2014-07-07 2015-02-18 贵州省烟草科学研究院 一种研究植物苗期根部生长状况的垂直板培养皿
CN205082318U (zh) * 2015-10-30 2016-03-16 潍坊友容实业有限公司 一种绿化种植毯
EP3383166A1 (en) * 2016-01-05 2018-10-10 Knauf Insulation SPRL Irrigation landscape and growing system
CN109688800A (zh) * 2018-07-10 2019-04-26 四川三合坡面科技有限公司 植物生长水分控制器及应用该控制器的植物种植系统
CN110024542A (zh) * 2019-03-28 2019-07-19 四川三合坡面科技有限公司 一种坡面植物灌溉节水站
CN209710967U (zh) * 2019-03-12 2019-12-03 厦门海石生态环境股份有限公司 一种矿坑生态修复种植毯
CN114128593A (zh) * 2021-11-29 2022-03-04 成都名富园艺有限公司 基于多场景用植生卷防护结构
CN114128565A (zh) * 2021-11-29 2022-03-04 成都名富园艺有限公司 一种可工业化连续生产的k型植生卷
CN114128616A (zh) * 2021-11-29 2022-03-04 成都名富园艺有限公司 一种用于种子无土生长的诱导装置及其应用
CN216600920U (zh) * 2021-11-29 2022-05-27 成都名富园艺有限公司 用于安装植生卷的护栏安装结构
CN216601149U (zh) * 2021-11-29 2022-05-27 成都名富园艺有限公司 基于植生卷的绿化滴灌结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204157404U (zh) * 2014-07-07 2015-02-18 贵州省烟草科学研究院 一种研究植物苗期根部生长状况的垂直板培养皿
CN205082318U (zh) * 2015-10-30 2016-03-16 潍坊友容实业有限公司 一种绿化种植毯
EP3383166A1 (en) * 2016-01-05 2018-10-10 Knauf Insulation SPRL Irrigation landscape and growing system
CN109688800A (zh) * 2018-07-10 2019-04-26 四川三合坡面科技有限公司 植物生长水分控制器及应用该控制器的植物种植系统
CN209710967U (zh) * 2019-03-12 2019-12-03 厦门海石生态环境股份有限公司 一种矿坑生态修复种植毯
CN110024542A (zh) * 2019-03-28 2019-07-19 四川三合坡面科技有限公司 一种坡面植物灌溉节水站
CN114128593A (zh) * 2021-11-29 2022-03-04 成都名富园艺有限公司 基于多场景用植生卷防护结构
CN114128565A (zh) * 2021-11-29 2022-03-04 成都名富园艺有限公司 一种可工业化连续生产的k型植生卷
CN114128616A (zh) * 2021-11-29 2022-03-04 成都名富园艺有限公司 一种用于种子无土生长的诱导装置及其应用
CN216600920U (zh) * 2021-11-29 2022-05-27 成都名富园艺有限公司 用于安装植生卷的护栏安装结构
CN216601149U (zh) * 2021-11-29 2022-05-27 成都名富园艺有限公司 基于植生卷的绿化滴灌结构

Similar Documents

Publication Publication Date Title
CN103583338B (zh) 一种屋顶绿化种植结构
US5724766A (en) Hygroscopic rock wool mat of low weight per unit volume capable of providing immediate landscaping to roofs or similar surfaces
CN203538032U (zh) 一种屋顶绿化种植结构
CN108360761B (zh) 一种雨水利用和减载节水控根的屋顶种植方法
CN104798664B (zh) 一种高陡坡植被恢复水分调控系统
WO2013123653A1 (zh) 绿化卷材
CN102577872B (zh) 绿化卷材
JP4976785B2 (ja) 屋根の緑化システム
CN102165890B (zh) 无土草坪立体绿化结构及其建造方法
CN205357219U (zh) 一种带储水功能的免维护建筑生态草皮
RU2247487C2 (ru) Способ создания участков растительности
RU2751851C1 (ru) Способ интенсивного выращивания газона с обогащением почвы водой с помощью суперабсорбента при орошении
CN205865199U (zh) 一种屋顶绿化植物结构
WO2023093600A1 (zh) 种子无土生长诱导结构和植生卷
CN114128565B (zh) 一种可工业化连续生产的k型植生卷
JP2004173564A (ja) 壁面緑化用植生コンテナ
CN105960163A (zh) 用于表面和表面下保水的方法和系统
CN106561318A (zh) 一种可自动灌溉的垂直绿化体系及施工方法
JP3285201B2 (ja) 自生型屋上緑化施工方法
KR101187407B1 (ko) 벽면 녹화장치 및 이를 이용한 벽면 녹화방법
CN214413602U (zh) 一种高陡边坡加固绿化装置
CN201602020U (zh) 一种高空绿化花池
CN211297815U (zh) 一种建筑物顶部绿化植被防水种植装置
CN211547762U (zh) 一种用于生态护坡的生态毯结构
CN110024587B (zh) 一种坡面植物生长控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897683

Country of ref document: EP

Kind code of ref document: A1