WO2023093592A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2023093592A1
WO2023093592A1 PCT/CN2022/132270 CN2022132270W WO2023093592A1 WO 2023093592 A1 WO2023093592 A1 WO 2023093592A1 CN 2022132270 W CN2022132270 W CN 2022132270W WO 2023093592 A1 WO2023093592 A1 WO 2023093592A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna module
frequency
tuning unit
electrically connected
Prior art date
Application number
PCT/CN2022/132270
Other languages
English (en)
French (fr)
Inventor
熊鹏
张磊
周煜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023093592A1 publication Critical patent/WO2023093592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/005Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna

Definitions

  • the application belongs to the technical field of antennas, and in particular relates to an antenna module and electronic equipment.
  • the tuned frequency of the antenna cannot deviate too far from the frequency of the fundamental resonant mode, otherwise the radiation efficiency of the antenna will drop rapidly, making it difficult to cover certain independent specific frequency bands.
  • the closest frequency band is also B3 (1710MHz ⁇ 1880MHz); ⁇ 1990MHz), B1 (1920MHz ⁇ 2170MHz), B40 (2300MHz ⁇ 2170MHz), B7 (2500MHz ⁇ 2690MHz) can not take into account the performance, and even cannot cover.
  • the antenna module in the related art has the problem of small frequency coverage.
  • the purpose of the present application is to provide an antenna module and electronic equipment, which can solve the problem of small frequency coverage of the antenna module in the related art.
  • an antenna module including:
  • the first radiator is an annular radiator, and the first radiator has a first end and a second end;
  • the second radiator is integrally connected or coupled to the first radiator
  • a first feed, the first end of the first feed is electrically connected to the first end, and the second end of the first feed is grounded;
  • a first tuning unit the first end of the first tuning unit is electrically connected to the second end, and the second end of the first tuning unit is grounded.
  • the embodiment of the present application provides an electronic device, including the antenna module as described in the first aspect.
  • the first radiator is a loop radiator
  • the characteristics that the frequency of each resonant mode is basically consistent with the multiple of the resonant mode of the first radiator (that is, the loop antenna) can be used, and then by adjusting the first Tuning the impedance of the unit to realize the adjustment of the electrical length of the first radiator, so that the first radiator can excite the frequency of each resonant mode, and realize the overlap and complementarity of the adjustable range of the resonant frequency of the mode, and then realize the coverage without dead angle
  • the commonly used wireless communication frequency band is to achieve the purpose of increasing the frequency coverage of the antenna module.
  • Fig. 1 is one of the structural diagrams of the antenna module provided by the embodiment of the present application.
  • Fig. 2 is the reflection coefficient-frequency diagram of the antenna module provided by the embodiment of the present application.
  • Fig. 3 is the second structural diagram of the antenna module provided by the embodiment of the present application.
  • Fig. 4 is the third structural diagram of the antenna module provided by the embodiment of the present application.
  • Fig. 5 is the fourth structural diagram of the antenna module provided by the embodiment of the present application.
  • FIG. 6 is a structural diagram of a fourth tuning unit provided by an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • an antenna module including:
  • the first radiator 10, the first radiator 10 is an annular radiator, and the first radiator 10 has a first end 11 and a second end 12;
  • the second radiator 20, the second radiator 20 is integrally connected or coupled with the first radiator 10;
  • a first feed 30, the first end of the first feed 30 is electrically connected to the first end 11, and the second end of the first feed 30 is grounded;
  • the first tuning unit 40 the first end of the first tuning unit 40 is electrically connected to the second end 12 , and the second end of the first tuning unit 40 is grounded.
  • the integral connection between the second radiator 20 and the first radiator 10 can be understood as the direct connection between the second radiator 20 and the first radiator 10; the coupled connection between the second radiator 20 and the first radiator 10 can be understood as the second The radiator 20 is connected to the first radiator 10 through an antenna gap coupling.
  • the first radiator 10 is a ring radiator
  • the first radiator 10 is a loop structure, that is, when the first radiator 10 of the antenna module transmits or receives signals, the first radiator 10 can It is understood as a loop antenna radiator, that is, the first radiator 10 is essentially a loop antenna.
  • the resonant modes excited by it are shown in Table 1, and the resonant mode ⁇ /2 with the lowest frequency can be determined as the fundamental mode.
  • the resonant modes of the first radiator 10 are continuous in multiples, and can be stepped sequentially according to ⁇ /2. For example, assuming that the fundamental mode resonant frequency is 800 MHz, the resonant mode frequency of the first radiator 10 should ideally increase by 800 MHz.
  • the electrical length of the loop antenna ⁇ /2 lambda 3 ⁇ /2 2 ⁇ 5 ⁇ /2 3 ⁇ Frequency multiple of fundamental mode resonance 1 2 3 4 5 6 Resonant mode frequency (MHz) 800 1600 2400 3200 4000 4800
  • the electrical length represents the ratio of the physical length of the antenna to the wavelength of the transmitted electromagnetic wave, that is, the electrical length of the loop antenna can be understood as the ratio of the physical length of the first radiator 10 to the wavelength of the transmitted electromagnetic wave.
  • Table 2 is based on the currently commonly used wireless communication frequency bands, combining frequency bands with similar frequencies to define the required resonant mode frequency.
  • the frequency of each resonant mode basically coincides with the multiple of the resonant mode of the first radiator 10 (that is, the loop antenna). That is, in the case where the first radiator 10 is a ring radiator, that is, the first radiator 10 is a loop antenna radiator, the characteristics that each resonant mode frequency is substantially consistent with the multiple of the resonant mode of the first radiator 10 can be utilized, and then By adjusting the impedance of the first tuning unit 40, the adjustment of the electrical length of the first radiator 10 is realized, so that the first radiator 10 can excite the frequency of each resonance mode, and realize the overlap and complementarity of the adjustable range of the mode resonance frequency , so as to achieve the coverage of common wireless communication frequency bands without dead angles, that is, to achieve the purpose of increasing the frequency coverage of the antenna module.
  • the fundamental mode resonant frequency is 800MHz
  • the resonant mode frequency of the first radiator 10 can be increased by 800MHz under ideal conditions, that is, the resonant mode frequencies that can be excited by the first radiator 10 include 800MHz, 1600MHz, ... 4000MHz and 4800MHz, etc.
  • the antenna module can cover the frequency bands B28, B20, n74, n79, n77, B28, B1, B2, B3, B5, B7 and B40 in Table 2, so that The purpose of effectively improving the frequency coverage of the antenna module is achieved.
  • the first tuning unit 40 may be composed of a capacitor, an inductor, a resistor and a switch, and the impedance of the first tuning unit 40 may be adjusted by switching the switch, so as to realize the adjustment of the electrical length of the first radiator 10, This enables the first radiator 10 to excite the frequency of each resonant mode, thereby realizing overlapping and complementarity of adjustable ranges of resonant frequencies of the modes.
  • the antenna module can be effectively simplified structure and reduce the workload of antenna wiring debugging.
  • the antenna module includes a first radiating branch 51, the first end of the first radiating branch 51 extends toward the first direction to form the second radiating branch 52, and the first end of the first radiating branch 51 extends toward the second direction forming a third radial stub 53;
  • the first radiation branch 51 and the second radiation branch 52 are used to form the first radiator 10, that is, the annular radiator used to form the ring structure; the first radiation branch 51 and the third radiation branch 53 are used to form the second Radiator 20.
  • the second radiator 20 may be an L-shaped linear structure.
  • the first radiator 10 and the second radiator 20 can share part of the radiation branch, that is, they can share the first radiation branch 51, so as to achieve the purpose of reducing the physical length of the antenna module and realize the antenna module.
  • the miniaturized design enables the antenna module to be applied to smaller electronic devices.
  • the first radiating branch 51 and the second radiating branch 52 are used to form the first radiating body 10, and the second end of the first radiating branch 51 is the second end 12, that is, the first radiating branch can be
  • the second end of 51 is set as the ground point of the first radiator 10 , that is, the first radiator 10 is electrically connected to the ground structure through the second end of the first radiating branch 51 .
  • the first tuning unit 40 includes devices such as resistors, variable capacitors, inductors, switches, etc., and the ground point of the first radiator 10 can be connected to different devices by switching or combining the paths of the switches, such as 0 ohm resistors, inductors or capacitors of different values to achieve impedance tuning of the antenna module.
  • the first radiator 10 can be understood as a loop antenna
  • the second radiator 20 can be understood as an inverted-F antenna (Inverted-F Antenna, IFA)
  • the second end of the first radiation branch 51 It is the common ground point of the first radiator 10 and the second radiator 20 .
  • their grounding points are both high current areas of the antenna module. In the strong current area, connecting the 0 ohm resistor to the ground is equivalent to direct grounding, and the resonance mode is at the basic resonance frequency; connecting the inductor will realize the loading effect, which is equivalent to lengthening the electrical length of the first radiator 10 and making the resonance mode frequency towards the ground.
  • each frequency band always has a resonant mode close to its center frequency to cover, that is, the frequency of the resonant mode that can be excited by the first radiator 10 corresponds to the center of the frequency band in Table 2
  • the frequencies are similar, so the electrical length of the first radiator 10 can be adjusted through the first tuning unit 40 , thereby realizing the overlap and complementarity of the adjustable range of the mode resonance frequency, and achieving the purpose of increasing the frequency coverage of the antenna module.
  • the second radiator 20 can excite a ⁇ /4 monopole (monopole) resonant mode, and can be used to support the 3GHz-6GHz frequency band, so as to expand and supplement the frequency range covered by the first radiator 10 .
  • the resonant mode frequency shift principle of the second radiator 20 is similar to the resonant mode frequency shift principle of the first radiator 10, that is, when the second end of the first radiating branch 51 is directly grounded through a 0 ohm resistor, it is equivalent to direct grounding, Its resonant mode is at the fundamental resonant frequency; when the second end of the first radiating branch 51 is grounded through an inductance, a loading effect will be achieved, which is equivalent to lengthening the electrical length of the second radiator 20 and making the resonant mode frequency lower. move; when the second end of the first radiating branch 51 is grounded through a capacitor, the unloading effect will be realized, which is equivalent to shortening the electrical length of the second radiator 20 and moving the resonant
  • the reflection coefficient-frequency diagram of the antenna module shown in Figure 2 shows that by using the antenna module shown in Figure 1, it can not only solve the problem that is difficult to cover such as B32 (1452MHz ⁇ 1496MHz) and n74 (1427MHz ⁇ 1518MHz) ; Moreover, the mutual coverage between the resonant modes compensates, so that any frequency band is covered by the antenna resonant modes of adjacent frequencies, avoiding the problem of a dead angle in the frequency band coverage and too far away from the antenna resonant mode frequency, resulting in a sharp drop in frequency band efficiency.
  • the first radiating branch 51 and the second radiating branch 52 are used to form the first radiating body 10, and the second end of the first radiating branch 51 is the first end 11, that is, the first radiating branch can be
  • the second end of 51 is set as the feed point of the first radiator 10, that is, the first radiator 10 is electrically connected to the first feed source 30 through the second end of the first radiating branch 51;
  • the antenna module further includes a second tuning unit 60, the first end of the second tuning unit 60 is electrically connected to the feeding point, and the second end of the second tuning unit 60 is electrically connected to the first end of the first feeding source 30 .
  • the antenna module can not only excite the first radiator 10 and the second radiator 20 to radiate, but also excite the third radiator to radiate.
  • the third radiator includes the third radiating branch 53 and the first radiating Other parts of the body 10 except the first radiating branch 51.
  • the working principle of the first radiator 10 and the second radiator 20 in FIG. 3 is the same as that of the first radiator and the second radiator in the antenna module shown in FIG. 1, that is, the first radiator 10 can excite a loop resonant mode, and the second radiator 20 can excite a ⁇ /4 monopole resonant mode, which can reach the frequency range covered by the antenna module shown in FIG. 1 .
  • the resonant mode excited by the third radiator also belongs to the ⁇ /4 monopole resonant mode, but because of its longer electrical length, the resonant frequency is lower.
  • the resonance mode is at the base Resonant frequency;
  • the loading effect will be realized, which is equivalent to making the second radiator 20
  • the electrical length is lengthened, and the resonant mode frequency is shifted to a low frequency; when the ground point of the third radiator, that is, the second end 12 of the first radiator 10 is switched to capacitive ground through the first tuning unit 40, then Realizing the unloading effect is equivalent to shortening the electrical length of the second radiator 20 and moving the resonant mode frequency to a higher frequency.
  • the second tuning unit 60 electrically connected to the first feed source 30, it includes devices such as resistors, variable capacitors, inductors, switches, etc., and can make the first feed source 30 by switching or combining the paths of the switches. Different devices can be connected to the terminal, such as 0 ohm resistors, inductors or capacitors of different values, so as to realize impedance tuning of the antenna module.
  • the resonant frequency of the third radiator can be shifted to the high frequency direction; correspondingly, when the second tuning unit 60 is switched to a high-value capacitor, the resonant frequency of the third radiator can be shifted to the low frequency direction.
  • the antenna module shown in FIG. 3 can further enrich the tuning combination of the antenna module by connecting the tuning units at the first end 11 and the second end 12, and make The tuning flexibility of the resonant mode of the antenna module has been further improved.
  • the second radiator 20 is coupled and connected to the first radiator 10;
  • the second radiator 20 includes a third end 21 and a fourth end 22.
  • the antenna module further includes a third tuning unit 70.
  • the first end of the third tuning unit 70 is electrically connected to the third end 21.
  • the third tuning The second end of the unit 70 is grounded;
  • the first radiator 10 may be understood as a loop antenna
  • the second radiator 20 may be understood as an inverted-F antenna.
  • the second radiator 20 may be an L-shaped linear structure.
  • the third tuning unit 70 includes devices such as resistors, variable capacitors, inductors, switches, etc., and can switch or combine the paths of the switches so that the ground point of the first radiator 10 can be connected to different devices, such as 0 ohm resistors, different value Inductance or capacitance, in order to realize the impedance tuning of the antenna module.
  • the frequency band coverage of the second radiator 20 can be effectively expanded.
  • first gap 91 between the radiation branch of the first radiator 10 including the first end and the radiation branch of the second radiator 20 including the third end.
  • the first radiator 10 and the second radiator The two radiators 20 are coupled and connected through the first gap 91 .
  • the distance between the first end and the second end may range from 1 mm to 2 mm; the distance between the traces of the first radiator 10 may range from 1 mm to 2.5 mm; the first end The distance from the third end may range from 0.5 mm to 1.5 mm.
  • the second radiator 20 can be understood as an inverted L parasitic element antenna, and the section between the first end 11 and the third end 21 can be understood as a magnetic field coupling feeding area of the second radiator 20 . Since the first end portion 11 is a high current region and has a strong magnetic field distribution; therefore, the second radiator 20 can be driven by spatial magnetic field coupling. Moreover, after passing through the magnetic field coupling region, the traces of the second radiator 20 are separated from the first radiator 10 in the form of back separation, such as the traces of the first radiator 10 are directed to the right, and the traces of the second radiator 20 are traced to the left. The second radiator 20 thus exhibits an L-shaped linear structure. The purpose of this design is to keep the current offset effect of the first radiator 10 and the second radiator 20 , and at the same time expand the radiator aperture of the entire antenna module, and achieve the purpose of improving antenna efficiency and bandwidth.
  • the working principle of the first radiator 10 and the second radiator 20 shown in FIG. 4 is the same as that of the first radiator 10 and the second radiator 20 in the antenna module shown in FIG. 1
  • the first radiator 10 can excite the loop resonant mode
  • the second radiator 20 can excite the ⁇ /4 monopole resonant mode, and can reach the frequency range covered by the antenna module shown in FIG. 1 .
  • the second radiator 20 can excite a ⁇ /4 monopole (monopole) resonance mode, and can be used to support the 3GHz-6GHz frequency band, so as to expand and supplement the frequency range covered by the first radiator 10 .
  • monopole monopole
  • the resonance bandwidth of the second radiator 20 can be effectively improved.
  • the back-splitting design can also enable the resonant modes of the second radiator 20 and the first radiator 10 to merge, and avoid antenna efficiency pits caused by current mutual cancellation.
  • the side of the first radiator 10 facing the second radiator 20 extends to form a fourth radiating branch 13 , and the end of the fourth radiating branch 13 and the fourth end 22 having a second gap 92;
  • the antenna module also includes a second feed 90, the first end of the second feed 90 is electrically connected to the second end of the third tuning unit 70, and the second end of the second feed 90 is grounded;
  • first radiator 10 and the second radiator 20 are coupled and connected through the second gap 92 .
  • the antenna module provided in this embodiment is similar to the antenna module shown in FIG. 4 , the first radiator 10 may be understood as a loop antenna, and the second radiator 20 may be understood as an inverted-F antenna.
  • the first end 11 of the first radiator 10 has a feed point, that is, the first radiator 10 can be electrically connected to the first feed source 30 through the feed point of the first end 11, and the first radiator 10
  • the two ends 12 have a grounding point, that is, the first radiator 10 can be grounded through the grounding point of the second end 12, and the first end 11 and the second end 12 need to be arranged in close proximity, and the distance between them ranges from 1 mm to 2 mm. mm.
  • the traces of the first radiator 10 can start from the first end 11 thereof to form a ring structure, and the distance between the traces ranges from 1 mm to 2.5 mm.
  • the antenna module further includes a fourth tuning unit 80, the first end of the fourth tuning unit 80 is electrically connected to the first end 11, and the second end of the fourth tuning unit 80 is connected to the first feed source 30. the first end is electrically connected;
  • the fourth tuning unit 80 includes a first capacitor 81, a first resistor 82, a first switch 83 and a second switch 84, the first end of the first capacitor 81 is electrically connected to the first end 11, the second The second end of a capacitor 81 is electrically connected to the first end of the first feed source 30 through the first switch; the first end of the first resistor 82 is electrically connected to the first end 11, and the second end of the first resistor 82 is connected through the The second switch 84 is electrically connected to the first end of the first feed 30 .
  • the first radiator 10 when the first end 11 of the first radiator 10 is switched to 0 ohm resistance and electrically connected to the first feed 30, that is, when the fourth tuning unit 80 is switched to 0 ohm resistance, the first radiator 10 can To excite the loop resonant mode, the wiring path corresponding to its associated electrical length is shown in path 1; when the first end 11 of the first radiator 10 is switched to a capacitor and is electrically connected to the first feed source 30, that is, when the fourth When the tuning unit 80 is switched to a capacitor, the first radiator 10 can excite two ⁇ /4monopole resonant modes because the capacitor has the characteristic of blocking low frequency and passing high frequency, and the electrical lengths associated with the two ⁇ /4monopole resonant modes correspond to The routing paths are path 2 and path 3.
  • the resonant mode frequency of path 2 is relatively low, generally designed around 0.7GHz to 1GHz; the resonant mode frequency of path 3 is relatively high, generally designed around 4.5GHz to 6GHz.
  • the resonant mode frequency of the first radiator 10 will shift to the high frequency direction
  • the resonant mode frequency of the first radiator 10 will shift to the low frequency direction
  • the third end of the second radiator 20 and the fourth radiation branch 13 of the first radiator 10 can form an electric field coupling effect, so that the second radiator 20 is driven by excitation.
  • the characteristic of the second radiator 20 is that it can also excite the ⁇ /4monopole resonant mode. Due to the short electrical length, the frequency of the ⁇ /4monopole resonant mode is relatively high, which is generally considered to be around 3GHz-6GHz.
  • the second radiator 20 It can be used to support the 3GHz-6GHz frequency band, so as to expand and supplement the frequency range covered by the first radiator 10 .
  • the tuning methods of the antenna modules provided in the embodiments of FIG. 3 , FIG. 4 and FIG. 5 can refer to the tuning method of the antenna mode shown in FIG. 1 , which all use the first radiator 10 with The characteristics of multiple resonant modes, and the adjustment of the electrical length of the first radiator 10 can be realized through the first tuning unit 40, so that the first radiator 10 can excite the frequency of each resonant mode, and then realize the mode resonant frequency
  • the adjustable ranges overlap complementary.
  • variable capacitor is in a state of high capacitance value, its It is equivalent to conduction, and when the variable capacitor is in a low-capacity state, it is equivalent to disconnecting the radio frequency current; therefore, a variable capacitor can be used to replace the switch, and the resonance mode of the antenna module can be realized by switching between different gears. frequency tuning.
  • the adjustable devices in the above tuning unit are not limited to simply connecting capacitors or inductors, and band-pass or band-stop filter networks based on capacitors and inductors can also be used to realize the conduction or cut-off of specific frequency currents.
  • band-pass or band-stop filter networks based on capacitors and inductors can also be used to realize the conduction or cut-off of specific frequency currents.
  • the switch can even be dispensed with, without adjustment, and the purpose of reducing the cost of the antenna module can be achieved.
  • An embodiment of the present application further provides an electronic device, including the above-mentioned antenna module.
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle electronic device, a wearable device, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a netbook or a personal digital assistant (Personal Digital Assistant, PDA) etc.
  • Ultra-Mobile Personal Computer UMPC
  • PDA Personal Digital Assistant
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Abstract

本申请公开了一种天线模组及电子设备,该天线模组包括第一辐射体,所述第一辐射体为环形辐射体,且所述第一辐射体具有第一端部和第二端部;第二辐射体,所述第二辐射体与所述第一辐射体一体连接或耦合连接;第一馈源,所述第一馈源的第一端与所述第一端部电连接,所述第一馈源的第二端接地;第一调谐单元,所述第一调谐单元的第一端与所述第二端部电连接,所述第一调谐单元的第二端接地。

Description

天线模组及电子设备
相关申请的交叉引用
本申请主张在2021年11月23日在中国提交的中国专利申请No.202111395498.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于天线技术领域,具体涉及一种天线模组及电子设备。
背景技术
由于天线调谐后的频率不能偏离基础谐振模频率太远,否则会导致天线辐射效率快速下降,进而使得某些独立的特定频段难以覆盖。比如,针对B32(1452MHz~1496MHz)、n74(1427MHz~1518MHz)等频段,最邻近的频段也在B3(1710MHz~1880MHz);因此,如果兼顾B32/n74,则意味着其它常用频段如B2(1850MHz~1990MHz)、B1(1920MHz~2170MHz)、B40(2300MHz~2170MHz)、B7(2500MHz~2690MHz)无法兼顾性能,甚至无法覆盖。
可见,相关技术中的天线模组存在频率覆盖范围小的问题。
发明内容
本申请旨在提供一种天线模组及电子设备,能够解决相关技术中的天线模组存在的频率覆盖范围小的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提出了一种天线模组,包括:
第一辐射体,所述第一辐射体为环形辐射体,且所述第一辐射体具有第一端部和第二端部;
第二辐射体,所述第二辐射体与所述第一辐射体一体连接或耦合连接;
第一馈源,所述第一馈源的第一端与所述第一端部电连接,所述第一 馈源的第二端接地;
第一调谐单元,所述第一调谐单元的第一端与所述第二端部电连接,所述第一调谐单元的第二端接地。
第二方面,本申请实施例提出了一种电子设备,包括如第一方面所述的天线模组。
在本申请的实施例中,由于第一辐射体为环形辐射体,因此可以利用各谐振模频率与第一辐射体(即loop天线)的谐振模的倍数基本吻合的特性,然后通过调整第一调谐单元的阻抗,实现第一辐射体的电长度的调整,使得第一辐射体能够激发出每个谐振模式的频率,并实现模式谐振频率的可调范围的重叠互补,进而实现无死角的覆盖常用无线通信频段,即达到增大天线模组的频率覆盖范围的目的。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例提供的天线模组的结构图之一;
图2是本申请实施例提供的天线模组的反射系数-频率图;
图3是本申请实施例提供的天线模组的结构图之二;
图4是本申请实施例提供的天线模组的结构图之三;
图5是本申请实施例提供的天线模组的结构图之四;
图6是本申请实施例提供的第四调谐单元的结构图。
具体实施方式
下面将详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类 似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1至图6所示,本申请实施例提供一种天线模组,包括:
第一辐射体10,第一辐射体10为环形辐射体,且第一辐射体10具有第一端部11和第二端部12;
第二辐射体20,第二辐射体20与第一辐射体10一体连接或耦合连接;
第一馈源30,第一馈源30的第一端与第一端部11电连接,第一馈源30的第二端接地;
第一调谐单元40,第一调谐单元40的第一端与第二端部12电连接,第一调谐单元40的第二端接地。
其中,第二辐射体20与第一辐射体10一体连接可以理解为第二辐射体20与第一辐射体10直接连接;第二辐射体20与第一辐射体10耦合连接可以理解为第二辐射体20与第一辐射体10通过天线间隙耦合连接。
第一辐射体10为环形辐射体可以理解为第一辐射体10为环(loop) 结构,即当天线模组的第一辐射体10进行发射或接收信号的情况下,第一辐射体10可以理解为一个loop天线辐射体,即第一辐射体10的本质为一个loop天线。
而且,针对第一辐射体10(即loop天线),其激发的谐振模式如表1所示,且可以将频率最低的谐振模式λ/2确定为基模。其中,第一辐射体10的谐振模式在倍数上是连续的,并可以按照λ/2依次步进。比如,假设基模谐振频率为800MHz,则第一辐射体10的谐振模频率在理想情况下应当按照800MHz递增。
表1
loop天线的电长度 λ/2 λ 3λ/2 5λ/2
基模谐振的频率倍数 1 2 3 4 5 6
谐振模频率(MHz) 800 1600 2400 3200 4000 4800
表1中,电长度表示天线的物理长度与所传输电磁波波长之比,即loop天线的电长度可以理解第一辐射体10的物理长度与所传输电磁波波长之比。
表2是根据目前常用的无线通讯频段,将频率相近的频段组合,定义所需的谐振模频率。
表2
Figure PCTCN2022132270-appb-000001
Figure PCTCN2022132270-appb-000002
从表1和表2可以看出,各谐振模频率基本吻合第一辐射体10(即loop天线)的谐振模式的倍数。即在第一辐射体10为环形辐射体,即第一辐射体10为loop天线辐射体的情况下,可以利用各谐振模频率与第一辐射体10的谐振模式的倍数基本吻合的特性,然后通过调整第一调谐单元40的阻抗,实现第一辐射体10的电长度的调整,使得第一辐射体10能够激发出每个谐振模式的频率,并实现模式谐振频率的可调范围的重叠互补,进而实现无死角的覆盖常用无线通信频段,即达到增大天线模组的频率覆盖范围的目的。
假设基模谐振频率为800MHz,且第一辐射体10的谐振模频率在理想情况下可以按照800MHz递增,即第一辐射体10能够激发的谐振模频率包括800MHz、1600MHz、……4000MHz及4800MHz等,并可以通过调整第一调谐单元40,以使天线模组能够覆盖表2中的B28、B20、n74、n79、n77、B28、B1、B2、B3、B5、B7及B40等频段,从而可以达到有效提升天线模组的频率覆盖范围的目的。
其中,第一调谐单元40可以是由电容、电感、电阻及开关组合而成,并可以通过开关的切换,调整第一调谐单元40的阻抗,以实现第一辐射体10的电长度的调整,使得第一辐射体10能够激发出每个谐振模式的频率,进而实现模式谐振频率的可调范围的重叠互补。
而且,由于第一辐射体10具有多个谐振模式的特性,并可以通过第一调谐单元40实现第一辐射体10的电长度的调整,相对于直接调整天线走线,可以有效简化天线模组的结构以及降低天线走线调试的工作量。
可选地,天线模组包括第一辐射枝节51、第一辐射枝节51的第一端 朝向第一方向延伸形成第二辐射枝节52,第一辐射枝节51的第一端的朝向第二方向延伸形成第三辐射枝节53;
其中,第一辐射枝节51和第二辐射枝节52用于形成第一辐射体10,即用于形成环结构的环状辐射体;第一辐射枝节51和第三辐射枝节53用于形成第二辐射体20。
一示例中,第二辐射体20可以为L型线状结构。
本实施方式中,第一辐射体10和第二辐射体20可以共用部分辐射枝节,即可以共用第一辐射枝节51,以达到降低天线模组的物理长度的目的,并可以实现天线模组的小型化设计,使得天线模组可以应用到体积更小的电子设备上。
如图1所示,第一辐射枝节51和第二辐射枝节52用于形成第一辐射体10,且第一辐射枝节51的第二端为第二端部12,即可以将第一辐射枝节51的第二端设置为第一辐射体10的接地点,即第一辐射体10通过第一辐射枝节51的第二端实现与接地结构的电连接。
如图1所示,第一调谐单元40包括电阻、可变电容、电感、开关等器件,并可以通过切换或组合开关的通路,使第一辐射体10的接地点可以连接不同的器件,比如0欧姆电阻、不同值的电感或电容,以实现天线模组的阻抗调谐。
从天线的拓扑构造上来看,第一辐射体10可以理解为一个loop天线,第二辐射体20可以理解为倒F天线(Inverted-F Antenna,IFA),且第一辐射枝节51的第二端为第一辐射体10和第二辐射体20共同的接地点。如图1所示,对于第一辐射体10和第二辐射体20来说,其接地点都是天线模组的强电流区域。而在强电流区域接0欧姆电阻下地,相当于直接接地,谐振模式处于基础谐振频率;接电感,会实现加载效果,相当于使第一辐射体10的电长度加长,并使得谐振模频率向低频率移动;接电容,则实现去载效果,相当于使第一辐射体10的电长度变短,并使得谐振模频率向高频率移动。即可以通过调整第一调谐单元40的阻抗,以使第一 辐射体10能够激发出每个谐振模式的频率,进而实现模式谐振频率的可调范围的重叠互补。
如上述表1和表2所示,由于每个频段总有一个与其中心频率相近的谐振模式去覆盖,即第一辐射体10所能激发的谐振模式的频率与表2中的频段对应的中心频率相近,因此可以通过第一调谐单元40实现第一辐射体10的电长度的调整,进而实现模式谐振频率的可调范围的重叠互补,并达到增大天线模组的频率覆盖范围的目的。
另外,针对第二辐射体20,其可以激励出λ/4单极子(monopole)谐振模式,并可以用于支持3GHz~6GHz频段,以便对第一辐射体10覆盖的频率范围进行拓展补充。其中,第二辐射体20的谐振模频率移动原理与第一辐射体10的谐振模频率移动原理类似,即当第一辐射枝节51的第二端通过0欧姆电阻直接接地,相当于直接接地,其谐振模式处于基础谐振频率;当第一辐射枝节51的第二端通过接电感接地,则会实现加载效果,相当于使第二辐射体20的电长度加长,并使得谐振模频率向低频率移动;当第一辐射枝节51的第二端通过接电容接地,则会实现去载效果,相当于使第二辐射体20的电长度变短,并使得谐振模频率向高频率移动。
如图2所示的天线模组的反射系数-频率图可知,通过采用如图1所示的天线模组,不仅可以解决如B32(1452MHz~1496MHz)、n74(1427MHz~1518MHz)难以覆盖的问题;而且,谐振模式之间的相互覆盖弥补,使得任意频段都有相邻的频率的天线谐振模式所覆盖,避免了频段覆盖有死角以及偏离天线谐振模频率太远导致频段效率急剧下降的问题。
如图3所示,第一辐射枝节51和第二辐射枝节52用于形成第一辐射体10,且第一辐射枝节51的第二端为第一端部11,即可以将第一辐射枝节51的第二端设置为第一辐射体10的馈电点,即第一辐射体10通过第一辐射枝节51的第二端实现与第一馈源30的电连接;
其中,天线模组还包括第二调谐单元60,第二调谐单元60的第一端 与馈电点电连接,第二调谐单元60的第二端与第一馈源30的第一端电连接。
在本实施方式中,天线模组不仅可以激发第一辐射体10和第二辐射体20进行辐射,还可以激发第三辐射体进行辐射,第三辐射体包括第三辐射枝节53以及第一辐射体10的除第一辐射枝节51之外的其他部分。
其中,图3中的第一辐射体10和第二辐射体20的工作原理与图1所示的天线模组中的第一辐射体和第二辐射体的工作原理相同,即第一辐射体10可以激励出loop谐振模式,第二辐射体20可以激励出λ/4monopole谐振模式,并可以达到如图1所示的天线模组所覆盖的频率范围。
其中,第三辐射体所激发的谐振模式,也属于λ/4monopole谐振模式,但由于其电长度更长,谐振频率更低。与第二辐射体20的调谐相似,当第三辐射体的接地点,即第一辐射体10的第二端部12通过第一调谐单元40切换至0欧姆电阻接地时,其谐振模式处于基础谐振频率;当第三辐射体的接地点,即第一辐射体10的第二端部12通过第一调谐单元40切换至电感接地时,则会实现加载效果,相当于使第二辐射体20的电长度加长,并使得谐振模频率向低频率移动;当第三辐射体的接地点,即第一辐射体10的第二端部12通过第一调谐单元40切换至电容接地时,则会实现去载效果,相当于使第二辐射体20的电长度变短,并使得谐振模频率向高频率移动。
而对于与第一馈源30电连接的第二调谐单元60,其包括电阻、可变电容、电感、开关等器件,并可以通过切换或组合开关的通路,使第一馈源30的第一端可以连接不同的器件,比如0欧姆电阻、不同值的电感或电容,以实现天线模组的阻抗调谐。
其中,在第一馈源30的第一端通过电容(即第二调谐单元60的阻抗调谐器件)与辐射体的馈电点电连接的情况下,且当第二调谐单元60切换至小值电容时,可以使第三辐射体的谐振频率向高频方向偏移;相应地,当第二调谐单元60切换至高值电容时,可以使第三辐射体的谐振频率向 低频方向偏移。
相对于图1所示的天线模组,图3所示的天线模组,通过在第一端部11和第二端部12均连接调谐单元,可以进一步丰富天线模组的调谐组合,并使得天线模组的谐振模式的调谐灵活性得到了进一步的提升。
可选地,如图4所示,第二辐射体20与第一辐射体10耦合连接;
第二辐射体20包括第三端部21和第四端部22,天线模组还包括第三调谐单元70,第三调谐单元70的第一端与第三端部21电连接,第三调谐单元70的第二端接地;
其中,第一辐射体10可以理解为loop天线,第二辐射体20可以理解为倒F天线。
一示例中,第二辐射体20可以为L型线状结构。
第三调谐单元70包括电阻、可变电容、电感、开关等器件,并可以通过切换或组合开关的通路,使第一辐射体10的接地点可以连接不同的器件,比如0欧姆电阻、不同值的电感或电容,以实现天线模组的阻抗调谐。
本实施方式中,通过设置第三调谐单元70,可以有效扩展第二辐射体20的频段覆盖范围。
如图3所示,第一辐射体10的包括第一端部的辐射枝节与第二辐射体20的包括第三端部的辐射枝节之间具有第一间隙91,第一辐射体10和第二辐射体20通过第一间隙91耦合连接。
一些实施例中,第一端部和第二端部的间距范围可以为1毫米~2毫米;第一辐射体10的走线之间的间距范围可以为1毫米~2.5毫米;第一端部和第三端部的间距范围可以为0.5毫米~1.5毫米。
而且,第二辐射体20可以理解为一个倒L寄生单元天线,且第一端部11和第三端部21之间的区间可以理解为第二辐射体20的磁场耦合馈电区。由于第一端部11为强电流区,并具有很强的磁场分布;因此可以通过空间磁场耦合,驱动第二辐射体20。而且,在经过磁场耦合区域后, 第二辐射体20的走线与第一辐射体10呈背向分离形式,如第一辐射体10走线向右,第二辐射体20走线向左,第二辐射体20由此呈现L型线状结构。该设计的目的在于一直第一辐射体10和第二辐射体20的电流抵消效应,同时也能扩大整个天线模组的辐射体口径,并达到提升天线效率及带宽的目的。
需要说明的是,图4中所示的第一辐射体10和第二辐射体20的工作原理与图1所示的天线模组中的第一辐射体10和第二辐射体20的工作原理相同,即第一辐射体10可以激励出loop谐振模式,第二辐射体20可以激励出λ/4monopole谐振模式,并可以达到如图1所示的天线模组所覆盖的频率范围。
而且,第二辐射体20可以激励出λ/4单极子(monopole)谐振模式,并可以用于支持3GHz~6GHz频段,以便对第一辐射体10覆盖的频率范围进行拓展补充。
另外,针对磁场耦合馈电,能够有效提升第二辐射体20的谐振带宽。且背向分离设计,还能够使得第二辐射体20和第一辐射体10的谐振模式能够融合,并避免因电流互消所产生的天线效率凹坑。
其中,通过采用如图4所示的天线模组,也可以解决如B32(1452MHz~1496MHz)、n74(1427MHz~1518MHz)难以覆盖的问题;而且,谐振模式之间的相互覆盖弥补,无论是低频B28(703MHz~803MHz),还是位于高频的n79(4400MHz~5000MHz),甚至WIFI 5G(5.15GHz~5.85GHz),使得任意频段都有相邻的频率的天线谐振模式所覆盖,避免了频段覆盖有死角以及偏离天线谐振模频率太远导致频段效率急剧下降的问题。
进一步可选地,如图5所示,第一辐射体10的朝向第二辐射体20的一侧延伸形成有第四辐射枝节13,第四辐射枝节13的末端与第四端部22之间具有第二间隙92;
天线模组还包括第二馈源90,第二馈源90的第一端与第三调谐单元 70的第二端电连接,第二馈源90的第二端接地;
其中,第一辐射体10和第二辐射体20通过第二间隙92耦合连接。
本实施方式提供的天线模组与如图4所示的天线模组相似,第一辐射体10可以理解为loop天线,第二辐射体20可以理解为倒F天线。且第一辐射体10的第一端部11具有馈电点,即第一辐射体10可以通过第一端部11的馈电点与第一馈源30电连接,第一辐射体10的第二端部12具有接地点,即第一辐射体10可以通过第二端部12的接地点接地,且第一端部11和第二端部12需要紧邻设置,其间距范围为1毫米~2毫米。
一实施方式中,第一辐射体10的走线可以从其第一端部11出发,并形成一个环状结构,且走线之间的间距范围为1毫米~2.5毫米。
进一步可选地,天线模组还包括第四调谐单元80,第四调谐单元80的第一端与第一端部11电连接,第四调谐单元80的第二端与第一馈源30的第一端电连接;
如图6所示,第四调谐单元80包括第一电容81、第一电阻82、第一开关83和第二开关84,第一电容81的第一端与第一端部11电连接,第一电容81的第二端通过第一开关与第一馈源30的第一端电连接;第一电阻82的第一端与第一端部11电连接,第一电阻82的第二端通过第二开关84与第一馈源30的第一端电连接。
其中,当第一辐射体10的第一端部11切换到0欧姆电阻与第一馈源30电连接时,即当第四调谐单元80切换至0欧姆电阻的时候,第一辐射体10能激励loop谐振模式,其关联的电长度对应的走线路径如路径1所示;当第一辐射体10的第一端部11切换到电容与第一馈源30电连接时,即当第四调谐单元80切换至电容的时候,由于电容具有阻低频通高频的特性,第一辐射体10能够激励出两个λ/4monopole谐振模式,且两个λ/4monopole谐振模式所关联的电长度对应的走线路径分别为路径2和路径3,路径2的谐振模频率相对偏低,一般设计在0.7GHz~1GHz左右;路径3的谐振模频率相对偏高,一般设计在4.5GMz~6GHz左右。
而且,需要注意的是,当第一辐射体10的第一端部11切换到小值电容与第一馈源30电连接时,第一辐射体10的谐振模频率会向高频方向偏移;相应地,当第一辐射体10的第一端部切换到大值电容与第一馈源30电连接时,第一辐射体10的谐振模频率会向低频方向偏移。
在本实施方式中,第二辐射体20的第三端部与第一辐射体10的第四辐射枝节13可以形成电场耦合效应,从而使第二辐射体20被激励驱动。
另外,第二辐射体20的特点是也能够激励λ/4monopole谐振模式,由于电长度偏短,其λ/4monopole谐振模式的频率偏高,一般考虑落在3GHz~6GHz左右,第二辐射体20可以用于支持3GHz~6GHz频段,以便对第一辐射体10覆盖的频率范围进行拓展补充。
需要说明的是,图3、图4和图5等实施例所提供的天线模组,其调谐方式均可以参照图1所示的天线模式的调谐方式,其均是利用第一辐射体10具有的多个谐振模式的特性,并可以通过第一调谐单元40实现第一辐射体10的电长度的调整,以使第一辐射体10能够激发出每个谐振模式的频率,进而实现模式谐振频率的可调范围的重叠互补。
而且,针对前述实施方式中的第一调谐单元40、第二调谐单元60、第三调谐单元70和第四调谐单元80等调谐单元,由于可变电容在高容值状态下,其对于射频电流相当于导通,可变电容在低容值状态下,其对于射频电流相当于断开;因此可以采用可变电容替换开关,并通过不同档位容值的切换,实现天线模组的谐振模式的频率调谐。
另外,上述调谐单元中的可调器件不限于单纯的连接电容或电感,也可以使用基于电容、电感搭建的带通或带阻滤波网络,以实现特定频率电流的导通或截止。在所需频段较少等特殊场景下,在天线模组能够满足覆盖的情况下,甚至可以免除开关,不做可调,并达到降低天线模组的成本的目的。
本申请实施例还提供一种电子设备,包括上述天线模组。
需要说明的是,上述天线模组实施例的实现方式同样适应于该电子设 备的实施例中,并能达到相同的技术效果,在此不再赘述。
其中,电子设备可以是为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种天线模组,包括:
    第一辐射体,所述第一辐射体为环形辐射体,且所述第一辐射体具有第一端部和第二端部;
    第二辐射体,所述第二辐射体与所述第一辐射体一体连接或耦合连接;
    第一馈源,所述第一馈源的第一端与所述第一端部电连接,所述第一馈源的第二端接地;
    第一调谐单元,所述第一调谐单元的第一端与所述第二端部电连接,所述第一调谐单元的第二端接地。
  2. 根据权利要求1所述的天线模组,其中,所述天线模组包括第一辐射枝节,所述第一辐射枝节的第一端朝向第一方向延伸形成第二辐射枝节,所述第一辐射枝节的第一端的朝向第二方向延伸形成第三辐射枝节,且所述第一方向和所述第二方向不同;
    其中,所述第一辐射枝节和所述第二辐射枝节用于形成所述第一辐射体,所述第一辐射枝节和所述第三辐射枝节用于形成所述第二辐射体。
  3. 根据权利要求2所述的天线模组,其中,所述第一辐射枝节的第二端为所述第二端部。
  4. 根据权利要求2所述的天线模组,其中,所述第一辐射枝节的第二端为所述第一端部,所述天线模组还包括第二调谐单元,所述第二调谐单元的第一端与所述第一端部电连接,所述第二调谐单元的第二端与所述第一馈源的第一端电连接。
  5. 根据权利要求1所述的天线模组,其中,所述第二辐射体与所述第一辐射体耦合连接;
    所述第二辐射体包括第三端部和第四端部,所述天线模组还包括第三调谐单元,所述第三调谐单元的第一端与所述第三端部电连接,所述第三调谐单元的第二端接地。
  6. 根据权利要求5所述的天线模组,其中,所述第一辐射体的包括所述第一端部的辐射枝节与所述第二辐射体的包括所述第三端部的辐射枝节之间具有第一间隙,所述第一辐射体和所述第二辐射体通过所述第一间隙耦合连接。
  7. 根据权利要求5所述的天线模组,其中,所述第一辐射体的朝向所述第二辐射体的一侧延伸形成有第四辐射枝节,所述第四辐射枝节的末端与所述第四端部之间具有第二间隙;
    所述天线模组还包括第二馈源,所述第二馈源的第一端与所述第三调谐单元的第二端电连接,所述第二馈源的第二端接地;
    其中,所述第一辐射体和所述第二辐射体通过所述第二间隙耦合连接。
  8. 根据权利要求7所述的天线模组,其中,所述天线模组还包括第四调谐单元,所述第四调谐单元的第一端与所述第一端部电连接,所述第四调谐单元的第二端与所述第一馈源的第一端电连接。
  9. 根据权利要求8所述的天线模组,其中,所述第四调谐单元包括第一电容、第一电阻、第一开关和第二开关,所述第一电容的第一端与所述第一端部电连接,所述第一电容的第二端通过所述第一开关与所述第一馈源的第一端连接,所述第一电阻的第一端与所述第一端部电连接,所述第一电阻的第二端通过所述第二开关与所述第一馈源的第一端电连接。
  10. 一种电子设备,包括如权利要求1至9中任一项所述的天线模组。
PCT/CN2022/132270 2021-11-23 2022-11-16 天线模组及电子设备 WO2023093592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111395498.2A CN114069237A (zh) 2021-11-23 2021-11-23 天线模组及电子设备
CN202111395498.2 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023093592A1 true WO2023093592A1 (zh) 2023-06-01

Family

ID=80279584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132270 WO2023093592A1 (zh) 2021-11-23 2022-11-16 天线模组及电子设备

Country Status (2)

Country Link
CN (1) CN114069237A (zh)
WO (1) WO2023093592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069237A (zh) * 2021-11-23 2022-02-18 维沃移动通信有限公司 天线模组及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714471A (zh) * 2002-11-18 2005-12-28 株式会社友华 多频段用天线
US20120306709A1 (en) * 2011-06-03 2012-12-06 Wistron Neweb Corp. Multi-band antenna
CN107230825A (zh) * 2016-03-23 2017-10-03 联发科技股份有限公司 可切换辐射方向的天线与无线通信装置
CN109586036A (zh) * 2018-12-29 2019-04-05 维沃移动通信有限公司 一种天线结构及无线通信终端
CN210956994U (zh) * 2019-12-30 2020-07-07 西安易朴通讯技术有限公司 天线组件及电子设备
CN113193336A (zh) * 2021-04-06 2021-07-30 深圳市广和通无线股份有限公司 天线组件及射频控制方法
CN113497345A (zh) * 2020-03-18 2021-10-12 北京小米移动软件有限公司 天线结构和电子设备
CN114069237A (zh) * 2021-11-23 2022-02-18 维沃移动通信有限公司 天线模组及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714471A (zh) * 2002-11-18 2005-12-28 株式会社友华 多频段用天线
US20120306709A1 (en) * 2011-06-03 2012-12-06 Wistron Neweb Corp. Multi-band antenna
CN107230825A (zh) * 2016-03-23 2017-10-03 联发科技股份有限公司 可切换辐射方向的天线与无线通信装置
CN109586036A (zh) * 2018-12-29 2019-04-05 维沃移动通信有限公司 一种天线结构及无线通信终端
CN210956994U (zh) * 2019-12-30 2020-07-07 西安易朴通讯技术有限公司 天线组件及电子设备
CN113497345A (zh) * 2020-03-18 2021-10-12 北京小米移动软件有限公司 天线结构和电子设备
CN113193336A (zh) * 2021-04-06 2021-07-30 深圳市广和通无线股份有限公司 天线组件及射频控制方法
CN114069237A (zh) * 2021-11-23 2022-02-18 维沃移动通信有限公司 天线模组及电子设备

Also Published As

Publication number Publication date
CN114069237A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
TWI487198B (zh) 多頻天線
TWI622231B (zh) 天線結構及具有該天線結構的無線通訊裝置
CN1778012B (zh) 天线装置和包括该天线装置的便携式无线电通信装置
US7825863B2 (en) Compact antenna
US6218992B1 (en) Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
TWI505566B (zh) 寬頻天線及其相關射頻裝置
US20030103010A1 (en) Dual-band antenna arrangement
US7453402B2 (en) Miniature balanced antenna with differential feed
EP1776736A1 (en) A multi-band antenna arrangement
KR20130122761A (ko) 평형 안테나 시스템
WO2015110918A2 (en) Dual branch common conductor antenna
WO2015143714A1 (zh) 一种天线及移动终端
KR101217468B1 (ko) 기생 커플링 공진을 부가한 역f 안테나
WO2019071847A1 (zh) 天线装置及终端
WO2014106465A1 (zh) 印刷电路板天线和印刷电路板
TWI446626B (zh) 寬頻行動通訊天線
CN105449379A (zh) 一种能抑制高频谐波的滤波天线
WO2010120218A1 (en) Multiband antenna device and portable radio communication device comprising such an antenna device
WO2023093592A1 (zh) 天线模组及电子设备
EP2495811A1 (en) Antenna device and portable radio communication device comprising such antenna device
US20240014556A1 (en) Antenna assembly and electronic device
TWI524595B (zh) 天線
TWI715313B (zh) 天線結構及通訊裝置
WO2022166444A1 (zh) 一种天线及终端设备
TWI717847B (zh) 通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897675

Country of ref document: EP

Kind code of ref document: A1