WO2023093417A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2023093417A1
WO2023093417A1 PCT/CN2022/127117 CN2022127117W WO2023093417A1 WO 2023093417 A1 WO2023093417 A1 WO 2023093417A1 CN 2022127117 W CN2022127117 W CN 2022127117W WO 2023093417 A1 WO2023093417 A1 WO 2023093417A1
Authority
WO
WIPO (PCT)
Prior art keywords
control board
information
state
access network
network device
Prior art date
Application number
PCT/CN2022/127117
Other languages
English (en)
French (fr)
Inventor
倪锐
杨刚华
祝倩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22897500.9A priority Critical patent/EP4422218A1/en
Publication of WO2023093417A1 publication Critical patent/WO2023093417A1/zh
Priority to US18/673,219 priority patent/US20240314730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a communication method, device and computer-readable storage medium.
  • Reconfigurable intelligent surface is a reconfigurable antenna technology by changing the dielectric constant of the material surface unit.
  • RIS technology can realize the manipulation of electromagnetic waves in the spatial dimension based on the conversion and regulation between different states, that is, the direction, amplitude, and phase of electromagnetic waves can be adjusted by changing the dielectric constant of the surface unit of the material.
  • WPT Wireless power transfer
  • SRE Smart radio environment
  • the SRE technology can alleviate the influence caused by traditional wireless channel multipath propagation and Doppler spread, so as to improve the throughput performance of the wireless communication system.
  • channel state information channel state information
  • CSI channel state information
  • the embodiment of the invention discloses a communication method, device and computer-readable storage medium, which are used to improve the throughput of the communication system.
  • the first aspect discloses a communication method, which can be applied to a control board, and can also be applied to a module (for example, a chip) in the control board.
  • a communication method which can be applied to a control board, and can also be applied to a module (for example, a chip) in the control board.
  • the following uses the control board as an example to describe.
  • This method of communication may include:
  • location information from an access network device, the location information including rotation information and/or movement information;
  • the state of the control board is adjusted according to the state pattern.
  • the control board can receive the location information and status pattern from the access network device. Afterwards, the control board can adjust its own position according to the position information, and can adjust its own state according to the state pattern, so as to optimize the propagation environment of the surrounding space of the control board, improve the average transmission quality between the terminal device and the access network device, In turn, the throughput of the communication system can be improved.
  • the adjusting the position of the regulating board according to the position information includes:
  • control board can receive rotation information and/or movement information from the access network device, and then the control board can adjust its own spatial direction (angle) according to the rotation information, and/or adjust its own space according to the movement information position so that the propagation environment of the surrounding space of the regulating board can be optimized.
  • the rotation information includes a rotation direction and a rotation angle
  • adjusting the position of the regulating plate according to the position information includes:
  • the spatial direction of the control plate is adjusted according to the rotation direction and the rotation angle.
  • control board can receive rotation information from the access network device, and then the control board can adjust its own spatial direction according to the rotation direction and rotation angle, so as to optimize the propagation environment of the surrounding space of the control board.
  • the rotation information includes a rotation angle
  • adjusting the position of the regulating plate according to the position information includes:
  • the spatial direction of the regulating plate is adjusted according to the rotation angle.
  • control board can pre-specify a rotation direction. After the control board receives the rotation information from the access network device, it can adjust its own spatial direction (angle) according to the rotation angle and the specified rotation direction, so that it can Optimize the propagation environment of the surrounding space of the control panel.
  • the moving information includes a moving direction and a moving distance
  • the adjusting the position of the regulating board according to the position information includes: adjusting the spatial position of the regulating board according to the moving direction and the moving distance.
  • control board can receive movement information from the access network device, and then the control board can adjust its own spatial position according to the moving direction and moving distance, so as to optimize the propagation environment of the surrounding space of the control board.
  • the moving information includes a moving distance
  • the adjusting the position of the regulating board according to the position information includes: adjusting the spatial position of the regulating board according to the moving distance
  • control board can pre-specify a movement direction, and after receiving the movement information from the access network device, the control board can adjust its spatial position according to the moving distance and the specified moving direction, so that the control board can be optimized The propagation environment of the surrounding space.
  • the method may also include:
  • control board can directly send the energy storage value and absorption efficiency to the access network device, or can send the energy storage value and absorption efficiency to the access network device at a fixed period, so that the access network device can obtain control The energy storage value and absorption efficiency of the plate.
  • the method may also include:
  • the control board can receive the first request from the access network device, and then the control board can send the energy storage value and absorption efficiency to the access network device, so that the access network device can obtain the energy storage of the control board Numerical and Absorption Efficiencies. Since the control board can send the energy storage value and absorption efficiency to the access network only after receiving the first request, it can reduce the number of transmissions of the energy storage value and absorption efficiency, thereby reducing the average power consumption of the control board .
  • the second aspect discloses a communication method.
  • the communication method can be applied to access network equipment, and can also be applied to modules (eg, chips) in the access network equipment.
  • modules eg, chips
  • the application to the access network equipment will be described below as an example.
  • This method of communication may include:
  • the position information including rotation information and/or movement information
  • the state pattern includes state information, and the state corresponding to the state information is an energy storage state, an active forwarding state or a passive forwarding state;
  • the access network device can receive the position information and status pattern from the control board of the environment controller, and then, the access network device can send the position information and status pattern to the control board, so that the control board can Position information adjusts its own position, and can adjust its own state according to the state pattern, so as to optimize the propagation environment of the surrounding space of the control board, improve the average transmission quality between the terminal device and the access network device, and then improve the communication system. throughput.
  • the rotation information includes a rotation direction and a rotation angle.
  • the rotation information sent by the access network device to the control board may include the rotation direction and the rotation angle, so that after the control board receives the rotation information, the control board can adjust its spatial direction according to the rotation direction and the rotation angle.
  • the rotation information includes a rotation angle.
  • the movement information includes a movement direction and a movement distance.
  • the movement information sent by the access network device to the control board may include the moving direction and the moving distance, so that after the control board receives the moving information, the control board can adjust its own spatial position according to the moving direction and moving distance.
  • the movement information includes a movement distance.
  • the method may also include:
  • the access network device can directly send the energy storage value and absorption efficiency of the control panel to the environment controller, or can send the energy storage value and absorption efficiency of the control panel to the environment controller at a fixed period, so that the environment The controller can obtain the energy storage value and absorption efficiency of the regulating board.
  • the method may also include:
  • the access network device can receive the second request from the environment controller, and then the access network device can send the energy storage value and absorption efficiency of the regulation board to the environment controller, so that the environment controller can obtain the regulation The energy storage value and absorption efficiency of the plate. Since the access network device can send the energy storage value and absorption efficiency of the control panel to the environmental controller only after receiving the second request, the number of times of sending the energy storage value and absorption efficiency of the control panel can be reduced, thereby The average power consumption of the access network equipment can be reduced.
  • the method may also include:
  • the access network device can first receive the energy storage value and absorption efficiency from the control board, and then the access network device can send the energy storage value and absorption efficiency of the control board to the environment controller, so that the environment The controller can use this to regulate the energy storage value and absorption efficiency of the panel.
  • the method may also include:
  • a first request is sent to the regulating board, where the first request is used to request the energy storage value and absorption efficiency of the regulating board.
  • the access network device may send a first request to the control board to obtain the energy storage value and absorption efficiency of the control board. It can be seen that since the control board can send the energy storage value and absorption efficiency to the access network device only after receiving the first request, the times of sending the energy storage value and absorption efficiency can be reduced, thereby reducing the average power of the control board. consumption.
  • the method may also include:
  • the three-dimensional space map includes building structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and access network information.
  • Device deployment information includes building structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and access network information.
  • the access network device can determine the channel quality of the terminal device according to the three-dimensional space map, the position information of the control board, and the status pattern, and then, the access network device can allocate resources for the terminal device according to the channel quality, and then, The access network device may send the resource information to the terminal device, and instruct the terminal device to send data on the corresponding resource. Because the channel quality is better, the bit error rate is low, and the channel quality is poorer, the bit error rate is high. Therefore, the access network device can allocate more resources to terminal devices with better channel quality, thereby reducing the average bit error rate of the communication system, and further improving resource utilization of the communication system. In addition, the access network equipment can also reduce interference between different users by allocating resources to the terminal equipment according to the channel quality.
  • the method may also include:
  • the transmit power is sent to the terminal device.
  • the access network device can determine the channel quality of the terminal device according to the three-dimensional space map, the position information of the control board, and the status pattern, and then the access network device can determine the transmission power of the terminal device according to the channel quality, and then , the access network device may send the transmit power to the terminal device.
  • the access network device can determine an appropriate transmit power for the terminal device according to the channel quality, which can prevent the transmit power of the terminal device from being too small, thereby improving the signal-to-noise ratio of the terminal device and reducing the bit error rate.
  • excessive transmission power of the terminal device can be avoided, thereby reducing the average power consumption of the terminal device, increasing the battery life of the terminal device, and reducing interference to other terminal devices.
  • the absorption energy storage state is a state in which the absorbed electromagnetic wave is converted into electrical energy and stored
  • the active forwarding state is a state in which the incident electromagnetic wave is amplified and then reflected or transmitted
  • the passive forwarding state is A state in which incident electromagnetic waves are reflected or transmitted.
  • the access network device can send a state pattern to the control board, so that the control board can adjust its own state, and the control board can be in the three states of absorbing energy storage state, active forwarding state and passive forwarding state. convert.
  • the control board When the control board is in the energy-absorbing state, it can use the circuit of the control board to absorb energy from the electromagnetic waves in the surrounding environment and convert it into electric energy and store it in the local battery. Amplify and then reflect or transmit the amplified electromagnetic wave.
  • the control board is in the passive forwarding state, it can directly reflect or transmit the incident electromagnetic wave without any processing.
  • the control board controls the control board to switch between the absorbing energy storage state, the active forwarding state and the passive forwarding state, the energy stored in the energy storage state of the control board can be used in the active forwarding state, so that the access network The incident electromagnetic waves of equipment and terminal equipment are amplified, thereby improving the signal-to-noise ratio of access network equipment and terminal equipment.
  • the third aspect discloses a communication method, which can be applied to an environment controller, and can also be applied to a module (for example, a chip) in the environment controller.
  • a communication method which can be applied to an environment controller, and can also be applied to a module (for example, a chip) in the environment controller.
  • the application to the environment controller is taken as an example for description below.
  • This method of communication may include:
  • the state pattern includes state information, and the state corresponding to the state information is the absorbing energy storage state, the active forwarding state or the passive forwarding state.
  • the environment controller can send the position information and status pattern of the control board to the access network device, and then send the position information and status pattern of the control board to the control board through the access network device, so that the control board can Information adjusts its own position, and can adjust its own state according to the state pattern, so as to optimize the propagation environment of the surrounding space of the control board, improve the average transmission quality between the terminal device and the access network device, and then improve the throughput of the communication system quantity.
  • the method may also include:
  • the environment controller may first determine the position information of the control board, so that the environment controller may send the position information to the control board through the access network device.
  • the determining the position information of the regulatory board includes:
  • the position information of the control board is determined according to the three-dimensional space map, and the three-dimensional space map includes building structure information, position information and material information of fixed equipment, communication service model information of fixed equipment, and deployment information of access network equipment.
  • the environment controller can determine the location information of the optimal deployment position of the control board according to the building structure information, the location information and material information of the fixed equipment, the communication service model information of the fixed equipment, and the deployment information of the access network equipment , and then the location information can be sent to the control board through the access network equipment, so that the control board can adjust its own position according to the position information, thereby optimizing the propagation environment of the surrounding space of the control board, thereby improving the throughput of the communication system .
  • the determining the position information of the regulatory board includes:
  • the three-dimensional space map includes building structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and Deployment information of access network equipment.
  • the environment controller can determine the position information of the optimal deployment position of the control board according to the three-dimensional space map, as well as the energy storage value and absorption efficiency of the control board, and then send the position information to the The control board, so that the control board can adjust its own position according to the position information, so that the propagation environment of the surrounding space of the control board can be optimized.
  • the environmental controller since the environmental controller considers the energy storage value and absorption efficiency of the control board when determining the position information, the environmental controller can determine a position that is convenient for the control board to absorb electromagnetic wave energy from the surrounding environment, thereby improving the absorption of the control board energy storage efficiency.
  • the method may also include:
  • the energy storage value and absorption efficiency of the regulation board from the access network equipment are received.
  • the link controller can first receive the energy storage value and absorption efficiency from the access network equipment, so that the environment controller can use the energy storage value and absorption efficiency of the control board to determine the position information of the control board.
  • the method may also include:
  • the environment controller may send a second request to the access network device, and then the environment controller may receive the energy storage value and absorption efficiency from the control board of the access network device. It can be seen that the environmental controller can quickly and conveniently obtain the energy storage value and absorption efficiency of the control board by sending the second request to the access network device.
  • the access network device can only send the energy storage value and absorption efficiency to the environment controller after receiving the second request, which can reduce the number of times of sending the energy storage value and absorption efficiency, thereby reducing the energy consumption of the access network device. average power consumption.
  • the method may also include:
  • the environment controller may first determine the state pattern of the control board, so that the environment controller may send the state pattern to the control board through the access network device.
  • the determining the state pattern of the control board includes:
  • the state pattern of the control board is determined according to the three-dimensional space map and the position information of the control board.
  • the environment controller can determine the best state pattern of the control board according to the three-dimensional space map and the position information of the control board, and then can send the state pattern to the control board through the access network device, so that the control board can Adjust its own state according to the state pattern, so as to optimize the propagation environment of the surrounding space of the control board.
  • the determining the state pattern of the control board includes:
  • the state pattern of the control board is determined according to the three-dimensional space map, the position information of the control board, the energy storage value and the absorption efficiency of the control board.
  • the environmental controller can determine the best state pattern of the control board according to the three-dimensional space map, the position information of the control board, and the energy storage value and absorption efficiency of the control board, and then can use the access network device to The state pattern is sent to the control board, so that the control board can adjust its own state according to the state pattern, so that the propagation environment of the surrounding space of the control board can be optimized.
  • the environmental controller considers the energy storage value and absorption efficiency of the control board when determining the state pattern, it can avoid the situation that the self-energy storage value of the control board is 0 when the control board adjusts its state to the active forwarding state according to the state pattern.
  • the signal-to-noise ratio of the terminal equipment can be successfully improved.
  • the rotation information includes a rotation direction and a rotation angle.
  • the rotation information sent by the environment controller to the control panel through the access network device may include the rotation direction and the rotation angle, so that the control panel can adjust its own spatial direction according to the rotation direction and rotation angle, so that the control panel can be optimized The propagation environment of the surrounding space.
  • the rotation information includes a rotation angle.
  • the movement information includes a movement direction and a movement distance.
  • the movement information sent by the environment controller to the control panel through the access network device may include the moving direction and the moving distance, so that the control panel can adjust its own spatial position according to the moving direction and moving distance, so that the control panel can be optimized The propagation environment of the surrounding space.
  • the movement information includes a movement distance.
  • the absorption energy storage state is a state in which the absorbed electromagnetic wave is converted into electrical energy and stored
  • the active forwarding state is a state in which the incident electromagnetic wave is amplified and then reflected or transmitted
  • the passive forwarding state is A state in which incident electromagnetic waves are reflected or transmitted.
  • the environment controller can send the state pattern to the access network device, and then the access network device can send the state pattern to the control board, so that the control board can adjust its own state, so that the control board can absorb The energy storage state, the active forwarding state and the passive forwarding state are converted into three states.
  • the control board When the control board is in the energy-absorbing state, it can use the circuit of the control board to absorb energy from the electromagnetic waves in the surrounding environment and convert it into electric energy and store it in the local battery. Amplify and then reflect or transmit the amplified electromagnetic wave.
  • the control board is in the passive forwarding state, it can directly reflect or transmit the incident electromagnetic wave without any processing.
  • the control board controls the control board to switch between the absorbing energy storage state, the active forwarding state and the passive forwarding state, the energy stored in the energy storage state of the control board can be used in the active forwarding state, so that the access network The incident electromagnetic waves of equipment and terminal equipment are amplified, thereby improving the signal-to-noise ratio of access network equipment and terminal equipment.
  • the fourth aspect discloses a communication device, which may be a control board or a module (for example, a chip) in the control board.
  • the communication device may include:
  • a receiving unit configured to receive location information from an access network device, where the location information includes rotation information and/or movement information;
  • an adjustment unit configured to adjust the position of the control panel according to the position information
  • the receiving unit is also used to receive the status pattern from the access network device
  • the adjustment unit is also used to adjust the state of the control board according to the state pattern.
  • the adjusting unit adjusting the position of the regulating plate according to the position information includes:
  • the rotation information includes a rotation direction and a rotation angle
  • the adjusting unit adjusting the position of the regulating plate according to the position information includes:
  • the spatial direction of the regulating plate is adjusted according to the rotation direction and the rotation angle.
  • the rotation information includes a rotation angle
  • the adjusting unit adjusts the position of the regulating plate according to the position information includes:
  • the spatial direction of the regulating plate is adjusted according to the rotation angle.
  • the moving information includes a moving direction and a moving distance
  • the adjusting unit adjusts the position of the control panel according to the position information includes:
  • the spatial position of the regulating plate is adjusted according to the moving direction and moving distance.
  • the moving information includes a moving distance
  • the adjusting unit adjusts the position of the control board according to the position information includes:
  • the spatial position of the regulating plate is adjusted according to the moving distance.
  • the device may also include:
  • a sending unit configured to send the energy storage value and absorption efficiency to the access network device.
  • the receiving unit is further configured to receive a first request from the access network device, where the first request is used to request the energy storage value and the absorption efficiency.
  • a fifth aspect discloses a communication device, which may be an access network device, or may be a module (for example, a chip) in the access network device.
  • the communication device may include:
  • a receiving unit configured to receive position information from the control panel of the environment controller, the position information includes rotation information and/or movement information;
  • a sending unit configured to send the position information to the control board
  • the receiving unit is also used to receive the state pattern of the control board from the environmental controller, the state pattern includes state information, and the state corresponding to the state information is energy storage state, active forwarding state or passive forwarding state;
  • the sending unit is also used to send the status pattern to the control board.
  • the rotation information includes a rotation direction and a rotation angle.
  • the movement information includes a movement direction and a movement distance.
  • the sending unit is further configured to send the energy storage value and absorption efficiency of the regulating board to the environment controller.
  • the receiving unit is further configured to receive a second request from the environment controller, where the second request is used to obtain the energy storage value and absorption efficiency of the regulating board.
  • the receiving unit is also used to receive the energy storage value and absorption efficiency from the regulating board.
  • the sending unit is further configured to send a first request to the regulating board, where the first request is used to request the energy storage value and absorption efficiency of the regulating board.
  • the communication device may also include:
  • a determining unit configured to determine the channel quality of the terminal equipment according to the three-dimensional space map, the position information of the control panel and the status pattern, the three-dimensional space map including building structure information, position information and material information of the fixed equipment, and a communication service model of the fixed equipment Information and deployment information of access network equipment;
  • an allocation unit configured to allocate resources to the terminal device according to the channel quality
  • the sending unit is further configured to send the resource information to the terminal device.
  • the determining unit is further configured to determine the channel quality of the terminal device according to the three-dimensional space map, the position information of the control board and the status pattern;
  • the determination unit is also used to determine the transmission power according to the channel quality
  • the sending unit is further configured to send the sending power to the terminal device.
  • the absorption energy storage state is a state in which the absorbed electromagnetic wave is converted into electrical energy and stored
  • the active forwarding state is a state in which the incident electromagnetic wave is amplified and then reflected or transmitted
  • the passive forwarding state is A state in which incident electromagnetic waves are reflected or transmitted.
  • the sixth aspect discloses a communication device, which may be an environment controller, or a module (for example, a chip) in the environment controller.
  • the communication device may include:
  • a sending unit configured to send position information of the control board to the access network device, where the position information includes rotation information and/or movement information;
  • the sending unit is also used to send the status pattern of the control board to the access network device, the status pattern includes state information, and the state corresponding to the state information is energy storage state, active forwarding state or passive forwarding state.
  • the rotation information includes a rotation direction and a rotation angle.
  • the movement information includes a movement direction and a movement distance.
  • the communication device may also include:
  • a determining unit configured to determine the position information of the control board.
  • the determining unit determining the position information of the control panel includes: determining the position information of the control panel according to a three-dimensional space map, and the three-dimensional space map includes building structure information, position information and material information of fixed equipment, Communication service model information of fixed equipment and deployment information of access network equipment.
  • the determining unit determining the position information of the control panel includes: determining the position information of the control panel according to a three-dimensional space map, and the energy storage value and absorption efficiency of the control panel, the three-dimensional space map includes building Structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and deployment information of access network equipment.
  • the communication device may also include:
  • the receiving unit is configured to receive the energy storage value and absorption efficiency of the regulation board of the access network device.
  • the sending unit is further configured to send a second request to the access network device, where the second request is used to obtain the energy storage value and absorption efficiency of the regulation board.
  • the determination unit is further configured to determine the status pattern of the control board.
  • the determination unit determining the state pattern of the control panel includes: determining the state pattern of the control panel according to the three-dimensional space map and the position information of the control panel.
  • the determining unit determining the state pattern of the regulating board includes: determining the state pattern of the regulating board according to the three-dimensional space map, the position information of the regulating board, the energy storage value and the absorption efficiency of the regulating board.
  • the absorption energy storage state is a state in which the absorbed electromagnetic wave is converted into electrical energy and stored
  • the active forwarding state is a state in which the incident electromagnetic wave is amplified and then reflected or transmitted
  • the passive forwarding state is A state in which incident electromagnetic waves are reflected or transmitted.
  • the seventh aspect discloses a communication device, which may be a control board or a module (for example, a chip) in the control board.
  • the communication device may include a processor, a memory, and a transceiver for receiving information from other communication devices other than the communication device and outputting information to other communication devices other than the communication device.
  • the processor executes
  • the computer program stored in the memory enables the processor to execute the communication method disclosed in the first aspect or any implementation manner of the first aspect.
  • the eighth aspect discloses a communication device, which may be an access network device or a module (for example, a chip) in the access network device.
  • the communication device may include a processor, a memory, and a transceiver for receiving information from other communication devices other than the communication device and outputting information to other communication devices other than the communication device.
  • the processor executes
  • the computer program stored in the memory enables the processor to execute the communication method disclosed in the second aspect or any implementation manner of the second aspect.
  • the ninth aspect discloses a communication device, which may be an environment controller or a module (for example, a chip) in the environment controller.
  • the communication device may include a processor, a memory, and a transceiver for receiving information from other communication devices other than the communication device and outputting information to other communication devices other than the communication device.
  • the processor executes
  • the computer program stored in the memory enables the processor to execute the communication method disclosed in the third aspect or any implementation manner of the third aspect.
  • a tenth aspect discloses a communication system, and the communication system includes the communication device of the seventh aspect, the communication device of the eighth aspect, and the communication device of the ninth aspect.
  • the eleventh aspect discloses a computer-readable storage medium, on which a computer program or computer instruction is stored, and when the computer program or computer instruction is executed, the communication method disclosed in the above aspects is realized.
  • a twelfth aspect discloses a chip, including a processor, configured to execute a program stored in a memory, and when the program is executed, causes the chip to execute the above method.
  • the memory is located outside the chip.
  • a thirteenth aspect discloses a computer program product, the computer program product includes computer program code, and when the computer program code is executed, the above communication method is executed.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a scene disclosed by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of communication between a terminal device and an access network device disclosed in an embodiment of the present invention
  • Fig. 5 is a schematic diagram of a signaling frame format of an adjustment location request disclosed by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a query request signaling and query response signaling frame format for energy storage value and absorption efficiency disclosed in an embodiment of the present invention
  • Fig. 7 is a schematic diagram of a signaling frame format for adjusting location confirmation disclosed by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of incident waves and reflected/transmitted waves when a regulating plate disclosed in an embodiment of the present invention is in different states;
  • Fig. 9 is a schematic diagram of a state pattern request signaling frame format disclosed by an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of another scene disclosed by the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a time-frequency resource and transmit power allocation disclosed in an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of another scene disclosed in the embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a time-domain impulse response disclosed by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a time-frequency resource allocation disclosed in an embodiment of the present invention.
  • Fig. 15 is a schematic diagram of signaling interaction between a terminal device, an access network device, and a control board disclosed in an embodiment of the present invention
  • Fig. 16 is a schematic diagram of a state pattern confirmation signaling frame format disclosed in an embodiment of the present invention.
  • Fig. 17 is a flow chart of adjusting the position and state of a regulating board disclosed in an embodiment of the present invention.
  • Fig. 18 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • Fig. 19 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 20 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 21 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 22 is a schematic diagram of an analog circuit disclosed in an embodiment of the present invention.
  • Fig. 23 is a schematic diagram of state switching of a regulating board disclosed in an embodiment of the present invention.
  • Fig. 24 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 25 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 26 is a schematic structural diagram of a communication system disclosed by an embodiment of the present invention.
  • the embodiment of the invention discloses a communication method, device and computer-readable storage medium, which are used to improve the throughput of the communication system.
  • a unit may be, but is not limited to being limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or distributed between two or more computers.
  • these units can execute from various computer readable media having various data structures stored thereon.
  • a unit may, for example, be based on a signal having one or more data packets (eg, data from a second unit interacting with another unit between a local system, a distributed system, and/or a network. For example, the Internet via a signal interacting with other systems) Communicate through local and/or remote processes.
  • FIG. 1 is a schematic diagram of a network architecture disclosed by an embodiment of the present invention.
  • the network architecture may include access network equipment, an environment controller and a control board.
  • the access network device may include one or more access network devices (one is shown in Figure 1)
  • the environment controller may include one or more environment controllers (one is shown in Figure 1)
  • the control board may include One or more regulatory plates (one is schematically shown in Figure 1).
  • any two of the environmental controller, access network equipment, and control board can communicate, that is, any two of the environmental controller, access network equipment, and control board can be interconnected, and the communication method can be wireless
  • the communication may also be wired communication.
  • the access network devices can communicate through the optical fiber interface, and can also communicate through the Xn interface.
  • the access network device and the environment controller can communicate through an air interface (that is, an air interface, such as a Uu interface), and the access network device and the control board can also communicate through an air interface.
  • the environment controller and the control board can communicate through a wireless local area network (WLAN).
  • WLAN wireless local area network
  • any of the environmental controllers, access network devices, and control boards can also communicate with each other through Bluetooth (bluetooth), ultra wide band (UWB), long-range radio (long range radio, LoRa) , Narrowband Internet of Things (NB-IoT) and other ways to communicate.
  • Bluetooth blue
  • UWB ultra wide band
  • LRRa long-range radio
  • NB-IoT Narrowband Internet of Things
  • the network architecture shown in FIG. 1 may also include one or more terminal devices, and the terminal devices may communicate with access network devices, environment controllers, and control boards.
  • the communication method can be wireless communication or wired communication.
  • the wireless communication standard adopted for the communication between the terminal equipment and the access network equipment, the environmental controller, and the control board can be the second generation mobile communication technology (2th generation, 2G), the third generation mobile communication technology (3th generation, 3G) , the fourth generation mobile communication technology (4th generation, 4G), the fifth generation mobile communication technology (5th generation, 5G), WLAN/wireless fidelity (wireless fidelity, WiFi), bluetooth, UWB, LoRa, NB-IoT, etc., It may also be a combination of one or more of the above wireless communication systems.
  • the communication between the terminal device and the access network device may include uplink communication (that is, communication from the terminal device to the access network device) and downlink communication (that is, communication from the access network device to the terminal device).
  • uplink communication the terminal equipment is used to send uplink signals to the access network equipment; the access network equipment is used to receive uplink signals from the terminal equipment.
  • downlink communication the access network equipment is used to send downlink signals to the terminal equipment; the terminal equipment is used to receive downlink signals from the access network equipment.
  • the link corresponding to uplink communication is an uplink
  • the link corresponding to downlink communication is a downlink.
  • network architecture shown in FIG. 1 is not limited to include only the access network equipment, control board and environment controller shown in the figure.
  • FIG. 1 is only an example and does not constitute a limitation.
  • Terminal equipment also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • the terminal device can be a handheld terminal, a notebook computer, a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a tablet computer , wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, machine type communication (machine type communication, MTC) terminals, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR ) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control),
  • VR virtual reality
  • AR augmented reality
  • the access network equipment may include radio access network equipment, and the radio access network equipment is a device deployed in the radio access network to provide a wireless communication function for terminal equipment.
  • radio access network (radio access network, RAN) equipment may include various forms of base station (base station, BS).
  • base station BS
  • BS base station
  • a macro base station a micro base station (also called a small cell), a relay station, an access point, and the like.
  • the names of radio access network devices may be different.
  • base transceiver station in global system for mobile communication (GSM) or code division multiple access (CDMA) network, wideband code division multiple access (wideband NB (NodeB) in code division multiple access (WCDMA), eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the wireless access network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the radio access network device may also be a base station device in a future network (such as 6G, etc.) or a radio access network device in a future evolved public land mobile network (public land mobile network, PLMN) network.
  • the wireless access network device may also be a wearable device or a vehicle-mounted device.
  • the radio access network device may also be a transmission and reception point (TRP).
  • TRP transmission and reception point
  • the control panel also known as the electromagnetic wave control panel (electromagnetic panel, EP), is a device that can regulate (change) the direction, amplitude, and phase of electromagnetic waves.
  • the control board may include a transceiver, one or more metamaterial units. Among them, the transceiver can provide communication functions, and each metamaterial unit can include a phase shifting circuit, an amplitude modulation circuit, and an energy storage circuit, so that the direction, amplitude, and phase of electromagnetic waves can be adjusted.
  • An environmental controller is a device with computing power.
  • the environmental controller can perform numerical calculations, logic calculations, and storage functions.
  • the environmental controller can run according to the preset program, so that it can process massive data automatically and at high speed.
  • the environmental controller can be a microcomputer, a supercomputer, an embedded computer, etc., or other devices with computing capabilities.
  • the data processing work of the environment controller in the embodiment of the present invention may be performed by the access network device, therefore, the environment controller may be a module in the access network device.
  • FIG. 2 is a schematic diagram of a scene disclosed by an embodiment of the present invention.
  • the scenario shown in FIG. 2 may be an application scenario of an automated factory of Industry 4.0.
  • there may be one or more access network devices and there may be multiple different terminal devices, such as one or more industrial robots 201, one or more automated guided vehicles (automated guided vehicle, AGV) 202 , one or more surveillance cameras 203 , one or more laptop computers 204 , one or more control boards 205 , one or more access network devices 206 , one or more smart phones 207 .
  • AGV automated guided vehicle
  • surveillance cameras 203 one or more surveillance cameras 203
  • one or more laptop computers 204 one or more control boards 205
  • one or more access network devices 206 one or more smart phones 207 .
  • IoT Internet of things
  • IoT devices for storing goods generally have a large number of connections, have low requirements for network speed, are sensitive to power consumption, and are not sensitive to delay.
  • AGV equipment in general, will move frequently, have continuous coverage requirements, have general requirements for network speed, and are sensitive to delay.
  • Surveillance cameras usually in a fixed position, have high requirements for network speed, are convenient for data upload and storage, and require certain communication reliability.
  • Industrial robots Industrial robot arms
  • Laptops, tablets, etc. generally do not move frequently, and have general requirements for network speed and communication reliability.
  • small data packet services for data collection such as control sensors on mechanical equipment, sensors on industrial conveyor belts, and radio frequency identification (RFID) sensors on container supports may occur every 1 second or every few seconds;
  • the control signaling business of the robot may continue to occur in order to control it accurately;
  • the high-definition data business of the surveillance camera may occur every 10 minutes, that is, the real-time collected video data can be saved in the local memory first, Then upload the data once every 10 minutes to back up the data.
  • the rules of communication services of various terminal devices in the scenario shown in Figure 2 can be counted or predicted through industrial control programs, and then the types of communication services of various terminal devices (for example, small data collected by the above sensors) can be obtained.
  • the communication service data may include the occurrence frequency of the communication service of the terminal device, for example, it occurs once per hour, once per minute, once per second, occurs continuously for a duration, and so on.
  • the communication service data may also include the duration of each service of the terminal device and the size of the transmitted data volume.
  • the communication services of various terminal devices may occur periodically and repeatedly every day or every hour, therefore, the previous prior data (that is, known data) can be used to Predict the law of the next communication service of the terminal device.
  • FIG. 2 the scene shown in FIG. 2 is not limited to include only industrial robots, automatic guided vehicles, surveillance cameras, laptop computers, control boards, etc. shown in the figure.
  • reconfigurable intelligent surface is a reconfigurable antenna technology that can change the dielectric constant of the material surface unit.
  • RIS technology can realize the manipulation of electromagnetic waves in the spatial dimension based on the conversion and regulation between different states, that is, the direction, amplitude, and phase of electromagnetic waves can be adjusted by changing the dielectric constant of the surface unit of the material.
  • the RIS technology has the advantages of low cost, low power consumption, and low overhead.
  • Wireless power transfer is a wireless technology that can realize contactless energy transmission and charging through electromagnetic waves.
  • the WPT technology can be roughly divided into near-field inductive coupling WPT, far-field microwave WPT, laser beam WPT and other technologies.
  • SRE Smart radio environment
  • RIS and WPT wireless electromagnetic wave propagation environment
  • SRE technology can change the propagation environment between the access network equipment and the terminal equipment, so that the propagation environment can reach an ideal state, which can alleviate the influence caused by traditional wireless channel multipath propagation and Doppler expansion, and effectively solve the problem of signal fading, Obstacle occlusion and other problems can improve the data transmission efficiency, thereby improving the throughput performance of the wireless communication system.
  • FIG. 3 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention. As shown in Fig. 3, the communication method may include the following steps.
  • the environment controller sends the location information of the control board to the access network device.
  • the access network device may receive position information from the control board of the environment controller, and the position information may include only rotation information, or only movement information, or both movement information and rotation information.
  • the rotation information may include only the rotation angle, or may include both the rotation direction and the rotation angle
  • the movement information may include only the moving distance, or may include both the moving direction and the moving distance.
  • the embodiment of the present invention can optimize the propagation environment in the space around the control board by manipulating the control board, and improve the average transmission quality between the terminal device and the access network device, thereby improving the average throughput of the wireless communication system.
  • the "propagation environment” can be understood as the physical space environment where the environment controller, access network equipment, control panel, and terminal equipment are located, for example, a factory workshop, an office, a meeting room, and so on.
  • the environment controller may first determine the position information of the control board, and then send the position information of the control board to the access network device.
  • the environment controller can determine the position information of the control board according to the three-dimensional space map.
  • the three-dimensional spatial map may include building structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and deployment information of access network equipment.
  • Building structure information can include information such as the building structure of the plant of the automated factory, such as the length, width, and height information of the plant, the material information and thickness information of walls, floors, and ceilings, as well as the building positions of load-bearing columns and decorative columns in the plant, Building material and thickness information.
  • the environment controller can establish a space coordinate system according to the building structure information. For example, the environment controller can use the lower right corner of the factory building as the origin of space coordinates (0,0,0) to establish a three-dimensional space coordinate system. Therefore, the environment controller can determine the three-dimensional coordinates of the equipment and load-bearing columns in the plant according to the coordinate system.
  • the location information and material information of the fixed equipment may include the installation positions of the fixed equipment in the factory building, such as mechanical equipment, industrial conveyor belts, container brackets, robot arms, and industrial cameras, and their structural material information.
  • Structural material information may include the geometric size and shape of the device (for example, length, width, height, rectangle/circle/irregular shape, etc.), and may also include the material information of the device (for example, steel, aluminum alloy, plastic, glass, paper , leather, carbon fiber, etc.) and the roughness of the surface of the device (for example, mirror smooth, generally smooth, generally rough, very rough).
  • the communication business model information of fixed equipment can include control sensors of mechanical equipment, sensors on industrial conveyor belts, RFID sensors on container supports, communication equipment of robot arms, communication equipment of industrial cameras and other equipment communication business models, communication business models Specifically, it may include service types of each device (for example, small packet service for sensor data collection, robot control signaling service, camera high-definition data service, etc.) and service data.
  • the service data may include the occurrence frequency of the communication service of the terminal device, for example, once per hour, once per minute, once per second, or continuously for a duration.
  • the service data may also include the duration of each service of the terminal device and the size of the transmitted data volume.
  • the communication services of various terminal devices may occur periodically and repeatedly every day or every hour, therefore, the previous prior data (that is, known data) can be used to Predict the law of the next communication service of the terminal device.
  • the deployment information of the access network equipment may include information such as the deployment location of one or more antennas of the access network equipment in the plant, the specifications of the antennas, and the transmission power of the access network equipment. According to the deployment information of the access network equipment, the coverage area range of the access network equipment and the coverage strength of different ranges can be obtained.
  • Prior information such as the above-mentioned building structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and deployment information of access network equipment can be input into the environment controller in advance, and the environment controller can store it locally .
  • assets such as the plant, mechanical equipment, industrial conveyor belts, and freight robots of the automated factory shown in Figure 2 may belong to one enterprise or to multiple enterprises.
  • the enterprise or enterprises can obtain prior information such as the above-mentioned building structure information, location information and material information of fixed equipment, communication business model information of fixed equipment, and deployment information of access network equipment, and can input such information in advance Environmental controller.
  • the spatial position (ie, geographical location) of the control panel may be fixed. At this time, after the deployment of the control board is completed, the spatial position of the control board is fixed, and it cannot move back and forth, but can only rotate the angle or direction.
  • the spatial position of the control board can also be changed.
  • the control board can be deployed on the sliding track.
  • the control board can rotate in angle or direction, and can also be moved through the sliding track.
  • the number of control boards that may be required is different.
  • the communication service of the terminal equipment is a small data packet service, and the terminal equipment does not have high requirements on the communication rate and delay, less control boards may be required to regulate the propagation environment.
  • the communication service of the terminal device is a large data packet service, and the terminal device has high requirements on communication rate and delay, more control boards may be required to control the propagation environment.
  • the environment controller may select some control boards from all the deployed control boards, and then determine the location information of the selected control boards.
  • the environmental controller may determine the state of other non-selected regulating boards as absorbing charging state.
  • the absorbing energy storage state can also be referred to as the C state for short, which refers to the state in which the absorbed electromagnetic wave is converted into electric energy and stored.
  • the circuit of the control board can be used to absorb energy from the electromagnetic waves in the surrounding environment and convert it into electrical energy and store it in the local battery.
  • the environment controller can select the control board according to information such as building structure information, location information and material information of fixed equipment, communication business model information of fixed equipment, and deployment information of access network equipment.
  • N control boards are deployed, and N control boards correspond to N spatial positions; or, when the spatial position of the control board is variable, Q deployment
  • the control board, Q control boards can be located in any one of the N spatial positions by moving, but only one control board can exist in a spatial position at the same time.
  • the N spatial positions in both cases may be the same or different.
  • the number of control boards to be selected may be M.
  • N, Q, and M are integers greater than or equal to 1, and M ⁇ Q ⁇ N.
  • the environment controller can first select M spatial locations and then select M control boards according to information such as building structure information, location information and material information of fixed equipment, communication service model information of fixed equipment, and deployment information of access network equipment.
  • the environment controller selects M spatial locations from N spatial locations to exist In each case, the environmental controller can assume that there are control boards in M spatial positions in each case, and there are no control boards in the other NM spatial positions. Then, the environmental controller can determine that the access network equipment in each case Indicators such as average communication quality or average throughput with terminal devices. Afterwards, the environment controller may determine the M spatial positions with the best indicators such as average communication quality or average throughput as the target positions. It can be understood that the indicators such as average communication quality or average throughput determined by the environment controller may be for a period of time, therefore, the obtained target position may be a target position for a period of time.
  • the passive transmission state also referred to as the P state for short, refers to a state in which incident electromagnetic waves are reflected or transmitted.
  • the control board When the control board is in the passive forwarding state, it can directly reflect or transmit the incident electromagnetic wave without any processing. At this time, the control board neither absorbs energy from the surrounding environment nor releases the energy of the local battery.
  • the environment controller selects M spatial locations from N spatial locations using the following formula (1):
  • x m , y m , and z m represent the coordinate positions of the mth spatial position on the x-axis, y-axis, and z-axis respectively, that is, the coordinate positions determined according to the three-dimensional space map. It can represent the time-averaged sum rate (average sum-rate), and its unit can be bit per second (bit/s).
  • T may represent the length of the time window, and its unit may be seconds (s).
  • K can represent the number of service activated users, and can also be understood as the number of terminals with communication services (uplink communication service or downlink communication service), which can be obtained from the communication service model information included in the three-dimensional spatial map, or can be obtained through model prediction.
  • rank( ⁇ k (t)) can represent the rank number (rank) of the angular domain multipath of the kth user at time t, and can also be understood as the signal between the kth terminal device and the access network device at time t
  • the number of transmission paths (the transmission paths of the access network device and the terminal device may be the same).
  • ⁇ k,i (t) can represent the signal-to-noise ratio of the k-th user in the i-th angle domain at time t, and can also be understood as The signal-to-noise ratio of the signal of the network access device or the signal-to-noise ratio of the signal from the k-th terminal device received by the access network device on the i-th transmission path at time t.
  • the set of spatial locations includes M elements, which are selected from N spatial locations, and there are a total of A set of spatial locations, the environment controller can calculate each spatial location set max refers to the selection A set of spatial locations can be such that Largest collection of spatial locations.
  • the M spatial positions (target positions) obtained by the above formula (1) can be such that the downlink The M spatial positions with the maximum average communication rate, that is, the maximum downlink average throughput.
  • the target position obtained by the formula (1) can make the average uplink communication rate within a period of time
  • the largest M spatial positions are to maximize the average uplink throughput.
  • the target obtained by formula (1) The locations may be the M spatial locations that maximize the total average uplink and downlink communication rate within a period of time, that is, maximize the uplink and downlink average throughput of the communication system.
  • the length T of the time window in the formula (1) can be selected according to the actual situation, for example, it can be 10 seconds, 1 minute, 10 minutes and so on.
  • the environment controller Since the environment controller needs to know the communication service data (ie service type and service data) within a period of time (T), it can determine which terminal devices have communication services at each moment, so that K in the above formula can be determined. Therefore, the environment controller may first determine traffic data for a period of time (T).
  • the environment controller can determine the communication service data within a period of time (T) according to the communication service model information of the fixed equipment. For example, the environment controller can determine the communication service of the terminal device in the first time period (such as 8:10-8:15), and the communication service of the terminal device in the second time period (such as 8:15-8:15) through the communication service model information. 25) Communication services.
  • the communication service may include the control signaling service of the robot, and the control signaling service may occur every 5 seconds in the first time period, and each time lasts for 1 second; in the second time period Can occur every 10 seconds, each lasting 1 second.
  • the environment controller can directly determine the communication service data within a period of time (T) according to the communication service model information of the fixed equipment.
  • T period of time
  • the communication services of various terminal devices may occur periodically and repeatedly every day or every hour. Therefore, the environment controller can directly determine the future Service types and service data of terminal devices within a period of time.
  • the service type and service data of the terminal device can be the same every day, therefore, the environment controller can determine the service type and service data of the terminal device from 8:10 am to 8:15 am in the previous day as 8:10 am in the next day Business types and business data by 8:15 am.
  • the environment controller may also establish a model according to the communication service model information of the fixed equipment, and determine the communication service data within a period of time (T) through the model.
  • the environment controller can build a model to predict the rules of the communication services of the terminal device in a period of time in the future based on some or all of the prior data of the terminal device (that is, known business types and business data information), so as to determine the Business type and business data.
  • the environment controller can establish a neural network model or other machine learning models to predict the service type and service data of the terminal device in the next time period.
  • the training samples of the model can be the prior data of the terminal equipment (that is, the known service type and service data information of the terminal equipment), and the input of the model can be the previous time period of the terminal equipment (8:10-8: 15) information on the business type and business data, the output of the model can be the information on the business type and business data in a period of time (8:15-8:20) after the terminal device.
  • the environment controller After the environment controller determines the terminal equipment with communication services at each moment, it can determine the number of transmission paths of the terminal equipment with communication services at each moment (that is, rank( ⁇ k (t))), and each The signal-to-noise ratio corresponding to the transmission path (ie ⁇ k,i (t)).
  • the environment controller can determine the rank( ⁇ k (t)) according to the building structure information, the location information and material information of the fixed equipment, and the deployment information of the access network equipment. Specifically, the environment controller can determine the spatial location of the access network equipment according to the deployment information of the access network equipment, and can determine the spatial location of the terminal equipment according to the location information of the fixed equipment. Moreover, the environment controller can determine which transmission paths (propagation paths) the signals sent by the access network equipment to the terminal equipment can reach the terminal equipment through according to the building structure information, the location information and material information of the fixed equipment, and the deployment information of the access network equipment.
  • the transmission path can be determined by simulating the signals of access network equipment and terminal equipment in combination with information such as building structure information, location information and material information of fixed equipment, and deployment information of access network equipment.
  • the transmission path through which the terminal device sends signals to the access network device may be the same as the transmission path through which the access network device sends signals to the terminal device.
  • the transmission path through which the terminal device sends signals to the access network device may be different from the transmission path through which the access network device sends signals to the terminal device.
  • the environment controller can determine ⁇ k,i (t) according to the building structure information, the location information and material information of the fixed equipment, and the deployment information of the access network equipment. Specifically, the environment controller can determine the transmission loss according to the building structure information, the location information and material information of the fixed equipment, and the deployment information of the access network equipment, and determine ⁇ k,i (t) according to the transmission loss.
  • the environment controller can determine the transmission loss (that is, downlink loss) of the signal sent by the access network device to the terminal device on each transmission path, and can also determine the transmission loss of the signal sent by the terminal device to the access network device on each transmission path Transmission loss (that is, uplink loss). Transmission loss may include free space propagation loss, reflection loss, transmission loss, and the like.
  • the frequency of the electromagnetic wave signal is different, and its free space propagation loss, reflection loss, transmission loss, etc. will also be different.
  • the signal will be lost to varying degrees when it is reflected and transmitted on different materials such as glass, paper, leather, carbon fiber, gypsum board wall, and brick wall.
  • the signal of a 2.4GHz signal may drop by 3dB after passing through a plasterboard wall, that is, the signal will be attenuated by 3dB.
  • the signal of a 2.4GHz signal may drop by 12dB after penetrating a brick wall, that is, the signal will be attenuated by 12dB.
  • the environment controller can determine the spatial distance between the access network device and the terminal device, and determine the transmission loss according to the spatial distance.
  • the three-dimensional space coordinates of a transmitter (transmitter, TX) and a receiver (receiver, RX) may be recorded as (x 1 , y 1 , z 1 ) and (x 2 , y 2 , z 2 ), respectively.
  • the space distance d 3D between TX and RX can be determined by formula (2).
  • TX can be understood as a device for sending signals, which can be an access network device or a terminal device
  • RX can be understood as a device for receiving signals sent by a transmitter, which can be an access network device or a terminal device.
  • the environment controller can calculate the large-scale path transmission loss (path loss, PL) from TX to RX according to the line-of-sight (LOS) and non-line-of-sight (LOS) Line-of-sight, NLOS) are classified as PL LOS and PL NLOS respectively, and the unit is decibel (dB).
  • LOS can be understood as the connection path between two points in the three-dimensional space coordinates of TX and RX, and there is no obstruction in the middle of the connection; on the contrary, NLOS can be understood as the existence of an obstruction in the middle of the connection path in the case of .
  • the environment controller can use the following formula (3), formula (4) and formula (5) to calculate the transmission loss on the transmission path from the transmitter to the receiver:
  • the formula (3) can calculate the transmission loss of the direct line-of-sight path; the combination of formula (3), formula (4) and formula (5) can calculate the transmission loss of the non-line-of-sight path.
  • f c in the above formula may be the carrier frequency (that is, the carrier frequency of the access network device), and the unit is GHz.
  • the environmental controller can determine the signal-to-noise ratio ⁇ k,i (t) of the terminal equipment according to the transmission loss. Assuming that the transmission power of the access network equipment, the transmission power of the terminal equipment, and the noise in the signal transmission process are constant, the environment controller can determine the signal noise ratio (SNR) of the signal received by the terminal equipment and the access network equipment. , SNR). For example, the transmission power of the access network equipment can be 40dBm, the noise power can be -30dBm, and the signal is attenuated by 10dB during transmission. Therefore, the receiving power of the terminal equipment can be 30dBm, so that the signal-to-noise ratio of the signal received by the terminal equipment can be Can be 60dB.
  • SNR signal noise ratio
  • FIG. 4 is a schematic diagram of communication between a terminal device and an access network device disclosed in an embodiment of the present invention.
  • the selected M spatial locations can be spatial location 1, spatial location 4, and spatial location N, and the formula (1) can be used to calculate the
  • the environment controller can determine that the access network device sends to terminal device 1 according to the three-dimensional space map.
  • the signal can reach the terminal device 1 through ⁇ 1,1 , ⁇ 1,2 , ⁇ 1,3 ; the signal sent by the access network device to the terminal device 2 can reach the terminal device 2 through ⁇ 2,1 , ⁇ 2,2 .
  • the signal sent by the terminal device to the access network device can also reach the access network device through the same path.
  • the environmental controller can also determine the loss on each path of ⁇ 1,1 , ⁇ 1,2 , ⁇ 1,3 from the access network device to the terminal device 1, and ⁇ 2,1 from the access network device to the terminal device 2 , ⁇ 2,2 loss on each path.
  • the environment controller can determine the received power of each path of the terminal equipment 1 and the terminal equipment 2 The signal-to-noise ratio of the signal.
  • the environment controller can also determine the communication service data between the terminal equipment 1 and the terminal equipment 2 and the access network equipment, so that according to the formula (1), the communication service data within the time period can be determined
  • the environment controller can also choose different M spatial locations and then calculate then the largest The corresponding spatial position is determined as the target position. It should be understood that the communication between the terminal device and the access network device shown in FIG. 4 is only an example and does not constitute a limitation.
  • Formula (1) is a typical combinatorial optimization problem, which can be solved by alternating direction method of multipliers (ADMM) or other methods.
  • ADMM is a method that can solve decomposable convex optimization problems. It can equivalently decompose the objective function of the original problem into several solvable sub-problems, then solve each sub-problem in parallel, and finally coordinate the solution of the sub-problems to obtain global solution to the original problem.
  • the environment controller can also use various variations of formula (1) to select M spatial locations from the N spatial locations.
  • ⁇ k,i (t) may be replaced by other functions related to transmission loss, such as functions related to the reciprocal of transmission loss.
  • the formula (1) is only an illustration, and other formulas that can achieve the same function can also be used, which is not limited here.
  • M control boards After the environment controller selects M spatial positions (ie, target positions), M control boards can be selected.
  • the selected M control boards are in one-to-one correspondence with the selected M spatial positions.
  • the environment controller can select M control boards at the target position, and the M control boards correspond to their own spatial positions.
  • the environment controller can choose M control boards with higher energy storage value, or can choose M control boards at will.
  • the corresponding relationship between the M control boards and the M spatial positions can be: the control board with higher energy storage value can correspond to the spatial position farther from the access network equipment among the M spatial positions, and the energy storage value
  • the lower control board may correspond to a spatial location closer to the access network device among the M spatial locations.
  • the environment controller can determine the movement information according to the spatial positions corresponding to the selected M control boards. In the case that the spatial positions of the control boards are changed, the environment controller may determine the movement information according to the spatial positions corresponding to the selected M control boards.
  • the movement information may include movement direction and movement distance.
  • the movement information may be a specific absolute spatial position (such as three-dimensional space coordinates). At this time, the environment controller may directly determine the spatial position corresponding to the control board as the movement information.
  • the moving information can also be the specific moving direction and moving distance compared with the current spatial position of the control board. For example, the moving direction can be: move to the right, and the moving distance can be: 10 meters.
  • the current spatial position determines the movement information. In another case, the moving information can only include the moving distance.
  • the control board can pre-determine a default moving direction (such as moving to the right or left).
  • the location determines the movement information.
  • the environment controller may send the location information to the access network device, where the location information may include the movement information. It can be seen that the environment controller can determine the movement information according to the three-dimensional space map.
  • the environment controller When the environment controller sends the location information, it can also send the identification information of the control board, such as the identity document (ID) of the control board.
  • ID the identity document
  • the ID of the control board and the position information of the control board are in one-to-one correspondence. For example, all control boards can be numbered from 0.
  • the environment controller can determine the rotation information from the three-dimensional space map. Specifically, after the environment controller selects the control panel according to the three-dimensional space map, the environment controller can also determine the spatial direction of the selected control panel, and then the environment controller can determine the rotation information according to the space direction.
  • the environment controller can determine the spatial direction of the control board according to the three-dimensional space map. After the environment controller selects M control boards, it can determine the average communication quality or average throughput between the access network device and the terminal device when the M control boards are in the corresponding spatial positions and in different spatial directions. After that, the M spatial directions with the best indicators such as average communication quality or average throughput can be determined as target directions. It is assumed that there can be S spatial directions (attitudes) of the control board, therefore, there can be S M different combinations of spatial directions.
  • the spatial direction can be understood as the different angles of the control board. The spatial directions of the control boards are different, and the corresponding angles of the control boards are different.
  • the environment controller can respectively calculate the M control boards in different spatial directions through the formula (1).
  • Environmental controllers can get S M As a result, after that, the environmental controller can apply the maximum The M spatial directions of the corresponding control board are determined as the target directions.
  • the environmental controller can also determine M spatial positions and the spatial directions of the control boards at the M spatial positions at the same time, only need to add the angle L m in L in the formula (1) (that is, the spatial direction of the control board at the mth spatial position), namely 1 ⁇ m ⁇ M. Indicates the spatial direction of the control board at the mth spatial position, that is, the orientation of the control board.
  • the calculation load of the environmental controller is larger, and it is necessary to calculate under the circumstances
  • the calculation of the Therefore due to the consideration of the spatial position and spatial direction of the control board at the same time, the calculation of the Therefore, more accurate results can be obtained.
  • the environment controller can determine the rotation information according to the spatial orientation of the regulating plate.
  • the rotation information may include a rotation direction and a rotation angle.
  • the rotation information can be the specific rotation direction and rotation angle of the control board to be adjusted to the spatial direction.
  • the rotation direction is clockwise and the rotation angle is 90°.
  • the environment controller can determine it according to the current spatial direction of the control board.
  • Rotation information can also be an absolute angle value That is to say, the spatial direction (target orientation) of the regulating board, the spatial direction may be a spatial direction referenced to clockwise rotation in the horizontal direction, or a spatial direction referenced to counterclockwise rotation in the horizontal direction.
  • 90° can represent the spatial direction in which the control board is rotated 90° clockwise from the horizontal direction.
  • the environment controller may directly determine the corresponding angle of the control board as the rotation information.
  • the rotation information can also only include the rotation angle.
  • the control board can have a default rotation direction (counterclockwise or clockwise) in advance.
  • the spatial orientation determines the rotation information.
  • the environment controller may send the location information to the access network device, where the location information may include the rotation information.
  • the environment controller may locally store the information of the previous spatial position and spatial direction of the control board.
  • the position information sent by the environment controller to the access network device may only include rotation information.
  • the position information sent by the environment controller to the access network device may only include movement information or rotation information, or may include both movement information and rotation information.
  • the target position of the control board is the same as the current spatial position of the control board, the control board does not need to adjust its own spatial position, and the position information may only include rotation information.
  • the final effect that can be achieved may be the same, that is, the improvement of the performance (such as throughput) of the communication system may be the same.
  • the above-mentioned environmental controller only uses a three-dimensional space map when determining the location information, but in practice, the energy absorption and storage efficiency of the control board may vary with the distance from the access network device or terminal device. For example, the energy absorption and storage efficiency of the control panel closer to the access network equipment is usually higher, while the energy absorption and storage efficiency of the control panel farther away from the access network equipment is usually lower. Therefore, when the environment controller determines the position information of the control board, the absorption energy storage efficiency and the energy storage value of the control board can be considered.
  • the environmental controller can determine the position information of the control board according to the three-dimensional space map, as well as the energy storage value and absorption efficiency of the control board.
  • Absorption storage efficiency can also be referred to as absorption efficiency.
  • formula (1) can be improved. Since the energy absorption and storage efficiency of the control panel can be related to the distance between the access network equipment and the control panel, an offset term can be added to formula (1), which can be the energy storage efficiency of the control panel function of efficiency. For example, see the following formula (6):
  • the c j in can represent the absorption energy storage efficiency of the control panel at the jth spatial position among the selected M spatial positions, for example, it can be 30%, 50%, and a can be a weight coefficient, which can be selected according to the actual situation Different values, such as 0.5, 0.9, etc. can be used.
  • the energy storage value of the control panel can also be considered when selecting M spatial positions. If the energy storage value of the control panel is high, it indicates that the control panel has more energy storage. At this time, less consideration can be given to the control panel. Absorption energy storage efficiency. If the energy storage value of the control panel is low, it means that the energy storage of the control panel may be insufficient, and more consideration needs to be given to the energy absorption and storage efficiency of the control panel.
  • formula (6) can be improved accordingly, such as multiplying the absorption energy storage efficiency n j of the control panel by a weight b j , which is related to the energy storage value of the control panel, the greater the energy storage value, the greater the weight can be Small, the smaller the energy storage value, the greater the weight can be, see the following formula (7):
  • b j can be the difference between 1 and the energy storage value percentage of the control board (i.e., 1 minus the energy storage value), and the control board can be the control board corresponding to the jth spatial position among the selected M spatial positions, Therefore, b j is greater than or equal to 0 and less than or equal to 1.
  • Energy storage value can be 30%, 50%.
  • the formula (7) can comprehensively consider the energy storage value of the control panel and the energy absorption and storage efficiency of the control panel at different spatial positions. Therefore, the final M spatial positions can improve the average energy storage efficiency of the control panel.
  • the environment controller can also select M spatial locations from the N spatial locations by using various variations of formula (6) and formula (7).
  • the above formula (6) in It can also be replaced by a function of the distance between the M spatial positions and the access network equipment, for example, can be used Replacement, wherein d j can represent the distance from the jth spatial position in the selected M spatial positions to the access network device, and the unit can be meters (m).
  • the environment controller can receive the energy storage value and absorption efficiency from the control board of the access network device.
  • the access network device can actively send the energy storage value and absorption efficiency of the control board to the environmental controller, and accordingly, the environmental controller can receive the energy storage value and absorption efficiency of the control board from the access network device. efficiency.
  • the energy storage value can be the percentage of the energy storage value of the control board (such as 30%, 60%, etc.), or the specific energy storage value of the control board (such as 100 milliampere hours (mAh)).
  • the absorption efficiency can be the efficiency of the control board absorbing electromagnetic wave energy and converting it into electric energy (such as 50%, 80%, etc.), which can be related to the distance between the control board and the equipment (such as access network equipment, terminal equipment) that emits electromagnetic waves The function.
  • the environment controller may obtain the energy storage value and absorption efficiency of the regulation board by sending a second request to the access network device.
  • the access network device may receive the second request from the environment controller, and then, the access network device may send the energy storage value and absorption efficiency of the regulation board to the environment controller according to the second request.
  • the access network device sends the location information of the control board to the control board.
  • the access network device may send the position information to the control board.
  • the access network device can send the location information to the control board by adjusting the location request signaling (Request, REQ).
  • the adjusted position REQ may include the identification (BS-ID) of the access network device, the identification (EP-ID) of the control board, the rotation information of the control board, the movement information of the control board, and the CRC check digit.
  • the position information may only include rotation information. Therefore, only rotation information may be included in the adjusted position REQ.
  • the position information may only include movement information or rotation information, or may include movement information and rotation information at the same time. Therefore, the adjusted position REQ may only include movement information or rotation information, or may include both movement information and rotation information.
  • the adjusted position REQ may include movement information and rotation information. However, if the position information does not include movement information or rotation information, the values of the movement information and rotation information in the adjusted position REQ can be set to NULL.
  • the environment controller can also send location information to the access network device by adjusting the location REQ.
  • FIG. 5 is a schematic diagram of a format of an adjustment location request signaling frame disclosed by an embodiment of the present invention.
  • the position adjustment request signaling (type 1) may include the access network device ID, the control board ID, the target position (that is, the spatial position corresponding to the control board), the target orientation (that is, the angle corresponding to the control board), CRC check character.
  • the position adjustment request signaling (Type 2) may include access network device ID, control board ID, moving direction and moving distance, rotating direction and rotating angle, and CRC check digit. It can be understood that, the frame format shown in FIG. 5 is only an exemplary description, and does not constitute a limitation thereto.
  • the access network device can receive the energy storage value and absorption efficiency from the control panel.
  • the control board can directly send its own energy storage value and absorption efficiency to the access network device, and accordingly, the access network device can receive the energy storage value and reception efficiency from the control board.
  • the access network device may obtain the energy storage value and absorption efficiency of the control board by sending a first request to the control board.
  • the control board may receive the first request from the access network device, and then the control board may send its own energy storage value and absorption efficiency to the access network device according to the first request.
  • the first request may include energy storage value query signaling (check, CEK), wherein the energy storage value CEK may include the identification (BS-ID) of the access network device, the identification (EP-ID) of the control board, the query Type, cyclic redundancy check (cyclic redundancy check, CRC) character.
  • CEK energy storage value query signaling
  • the energy storage value CEK may include the identification (BS-ID) of the access network device, the identification (EP-ID) of the control board, the query Type, cyclic redundancy check (cyclic redundancy check, CRC) character.
  • control board can receive the energy storage value query CEK from the access network device, and then the control board can send (feedback) the energy storage value response signaling (response, RSP) to the access network device, and the energy storage value RSP can be Carry the current energy storage value information of the local battery of the control board, where the energy storage value RSP can include the identification of the control board (EP-ID), the identification of the access network device (BS-ID), query type, query value, CRC check symbol.
  • the first request may also include absorption efficiency query signaling (CEK), where the absorption efficiency CEK may include the identification (BS-ID) of the access network device, the identification (EP-ID) of the control board, the query type, and the CRC check symbol.
  • the control board can receive the absorption efficiency CEK from the access network device, and then the control board can send (feedback) the absorption efficiency response signaling (RSP) to the access network device, and the absorption efficiency RSP can carry the absorption efficiency CEK of the control board.
  • the relationship between the efficiency and the distance between the control board and the equipment emitting electromagnetic waves can also carry the efficiency information of the conversion of the average electromagnetic wave absorbed by the control board into local battery electric energy in the previous period.
  • the absorption efficiency RSP can include the identification of the control board (EP- ID), the identification (BS-ID) of the access network device, the query type, the query value, and the CRC check digit.
  • the energy storage value query request (signaling) and absorption efficiency query request (signaling) can be sent separately, that is, the environmental controller can only query the energy storage value or absorption efficiency each time.
  • the energy storage value and absorption efficiency query signaling can use a unified frame format.
  • the BS-ID can uniquely identify an access network device, and it can be an identification composed of a public land mobile network (public land mobile network, PLMN) code and the like.
  • the query type can be energy storage value, absorption efficiency, etc., and it can be a specific value. For example, the value "1" can indicate that the energy storage value is queried, and the value "2" can indicate that the absorption efficiency is queried.
  • the query value can be the value corresponding to the specific query type. For example, when the query type is absorption efficiency, the corresponding query value is the absorption efficiency of the control board; when the query type is energy storage value, the corresponding query value is the storage value of the control board. able value.
  • FIG. 6 is a schematic diagram of an energy storage value and absorption efficiency query request signaling and query response signaling frame format disclosed by an embodiment of the present invention.
  • the query request signaling may include an access network device ID, a control board ID, a query type, and a CRC check character.
  • the query response signaling may include an access network device ID, a control board ID, a query type, a query value, and a CRC check digit. It can be understood that, the frame format shown in FIG. 6 is only an exemplary description, and does not constitute a limitation thereto.
  • the access network device can send the energy storage value and absorption efficiency of the control board to the environment controller.
  • the access network device can directly send the energy storage value and absorption efficiency of the regulating board to the environmental controller.
  • the access network device may send the energy storage value and absorption efficiency of the regulating board to the environment controller at a fixed period (eg, 10 seconds, 30 seconds).
  • the access network device may send the energy storage value and absorption efficiency of the regulation board to the environment controller according to the second request.
  • the control board adjusts the position according to the position information.
  • the control board After receiving the location information from the access network device, the control board can adjust its own location according to the location information.
  • the control board can receive the position information through the position adjustment REQ from the access network device.
  • the adjustment position REQ may include the identification of the control board (such as EP-ID), the rotation information of the control board, the movement information of the control board, and the like.
  • the control board can determine whether the adjustment position REQ is sent to itself according to the identification of the control board. When the adjustment board determines that the adjustment position REQ is sent to itself, the adjustment board can adjust its own position according to the rotation information and/or movement information included in the adjustment position REQ.
  • the control board can adjust its spatial direction according to the rotation information. If the rotation information includes the rotation direction and the rotation angle, the control panel can adjust its spatial direction according to the rotation direction and the rotation angle.
  • the rotation information may implicitly include a rotation direction and a rotation angle.
  • the rotation information can be an absolute angle value That is, the spatial direction (target orientation) of the control board, and the angle value Can be an angle value referenced to the horizontal direction.
  • the rotation direction can be clockwise or counterclockwise by default, that is, the rotation direction can be predetermined.
  • 90° may represent the angle at which the control board is rotated 90° clockwise from the horizontal direction, and may also represent the angle at which the control board is rotated 90° counterclockwise from the horizontal direction.
  • the control board can be adjusted according to the angle value Determine how many degrees you need to rotate clockwise or counterclockwise. For example, the current spatial direction of the control board is 50° clockwise, and the rotation information is 90°.
  • control board needs to be rotated 40° clockwise to adjust to the spatial direction corresponding to the rotation information. Adjusting the direction of the space by the control panel is to adjust the orientation (namely the posture) of the metamaterial panel itself.
  • the rotation information may explicitly include the rotation direction and rotation angle.
  • the control board can directly adjust its spatial direction according to the rotation direction and rotation angle. For example, if the rotation direction is clockwise and the rotation angle is 90°, the control board can be directly rotated 90° clockwise according to the rotation information to adjust to the corresponding spatial direction.
  • the control panel can adjust its spatial direction according to the rotation angle.
  • the control board may have a default rotation direction (counterclockwise or clockwise) in advance.
  • the default rotation direction of the control board is clockwise.
  • the control board can be directly rotated 90° clockwise to adjust to the corresponding spatial direction.
  • the control board can adjust its spatial position according to the movement information. If the moving information includes the moving direction and the moving distance, the control panel can adjust its spatial direction according to the moving direction and the moving distance.
  • the movement information may implicitly include movement direction and movement distance.
  • the movement information may be an absolute target space position (such as three-dimensional space coordinates).
  • the control board can determine the moving direction and moving distance according to the three-dimensional space coordinates of its current position and the three-dimensional space coordinates of the target space position. For example, the three-dimensional space coordinates of the target space position are (0,1,2), the three-dimensional space coordinates of the current position of the control board are (0,0,2), and the control board can determine that it needs to move one meter straight ahead.
  • the control panel can be moved by sliding guide rails.
  • the movement information may also explicitly include the movement direction and the movement distance.
  • the control panel can directly adjust its spatial position according to the moving direction and moving distance. For example, if the moving direction is rightward and the moving distance is 10 meters, the control panel can be directly moved 10 meters to the right to adjust to the corresponding spatial position.
  • the control panel can adjust its spatial position according to the moving distance.
  • the control board may have a default moving direction (such as moving to the right or moving to the left) in advance.
  • the default moving direction of the control panel is leftward, and when the moving distance is 8 meters, the control panel can be directly moved 8 meters to the left to adjust to the corresponding spatial position.
  • the control board may send an adjustment position acknowledgment signal (acknowledge, ACK) to the access network device.
  • the position adjustment ACK may include the identification of the control board (EP-ID), the identification of the access network equipment (BS-ID), the identifier of whether the adjustment is successful or not (Flag), and the CRC check digit. If Flag is True, it means that the adjustment of the position of the control board is successful; if Flag is False, it means that the adjustment of the position of the control board fails. When Flag is False, the adjusted position ACK may also include the current position information of the control board (such as the spatial position and the spatial direction of the control board).
  • Adjusting position may refer to adjusting spatial position, may also refer to adjusting spatial direction, and may also refer to adjusting spatial direction and spatial position.
  • FIG. 7 is a schematic diagram of a format of an adjusted location confirmation signaling frame disclosed by an embodiment of the present invention.
  • the position adjustment confirmation signaling may include an access network device ID, a control board ID, a Flag identifier, and a CRC check character.
  • the position adjustment confirmation signaling may include the access network device ID, the control board ID, the Flag identification, the current position (that is, the current spatial position), the current orientation (that is, the current angle), and the CRC check symbol.
  • the frame format shown in FIG. 7 is only an example and does not constitute a limitation.
  • the access network device can monitor the quality of service (QoS) of the terminal device, and dynamically trigger the next propagation environment regulation (that is, the position regulation of the control board) according to the QoS. For example, when the access network device monitors that the QoS of the terminal device is low, that is, when the communication quality of the terminal device is poor, it can send a location adjustment request to the environment controller. After the location adjustment request of the network access device, the environment controller can re-determine the location information of the control board, and then send the location information to the access network device.
  • QoS quality of service
  • the environment controller After the location adjustment request of the network access device, the environment controller can re-determine the location information of the control board, and then send the location information to the access network device.
  • the access network device After the access network device receives the location information from the environment controller, the access network device can send the adjustment position REQ to the control board, and then, when the control board receives the adjustment position REQ sent by the access network device, the control board can timely Adjust your position (spatial position and spatial direction) so that the propagation environment in the surrounding space of the control board can be optimized, and the average transmission quality between the terminal device and the access network device can be improved, thereby improving the throughput of the communication system.
  • the environment controller sends the status pattern of the control board to the access network device.
  • the access network device may receive the status pattern from the control board of the environment controller.
  • a status pattern may include status information.
  • the state corresponding to the state information may be the absorbing energy storage state, the active forwarding state or the passive forwarding state.
  • Active transmission (active transmission) state which can also be referred to as A state for short, refers to the state in which the incident electromagnetic wave is amplified and then reflected or transmitted. Amplify and then reflect or transmit the amplified electromagnetic wave.
  • FIG. 8 is a schematic diagram of incident waves and reflected/transmitted waves when a regulating plate disclosed in an embodiment of the present invention is in different states.
  • the control board when the control board is in the state of absorbing energy storage, the energy storage of the control board will increase, and the control board will absorb the ability of the incident electromagnetic wave to convert it into electrical energy and store it in the local battery, so there is no corresponding reflection at this time / Transmitted waves.
  • the control board is in the passive forwarding state, the energy storage of the control board remains unchanged. At this time, the control board only passively reflects or transmits the incident electromagnetic wave, neither absorbing energy from the surrounding environment nor releasing the energy of the local battery .
  • the energy storage of the control board will be reduced (power reduction), and the control board can use the energy of the local battery to amplify the incident electromagnetic wave and then reflect or transmit the amplified electromagnetic wave, but the amplified electromagnetic wave
  • the amplitude of the incident electromagnetic wave can be smaller or larger than that of the incident wave, which is related to the corresponding magnification, but the amplitude of the reflected/transmitted wave in the active forwarding state is larger than that in the passive forwarding state. It should be understood that the schematic diagrams of the incident wave and the reflected/transmitted wave shown in FIG. 8 are only illustrative and not limiting.
  • the environment controller may first determine the state pattern of the control board, and then send the state pattern of the control board to the access network device.
  • the environment controller After the environment controller determines the location information, it can determine the status pattern of the control panel corresponding to the location information.
  • the environment controller can determine the status pattern of the control board according to the three-dimensional space map and the position information of the control board.
  • the position information of the control board is different, and the transmission path and transmission loss of the access network device and the terminal device may be different. Therefore, the environment controller may first determine the position information of the control board. After the environment controller determines the position information of the control board, the position (spatial position and spatial direction) of the control board can be in a fixed state. At this time, when the control board is in different states, the control board will cause different changes to the propagation environment in the surrounding space.
  • the signal sent by the access network device to the terminal device can reach the terminal device and the signal received by the terminal device through different paths.
  • the power can vary.
  • FIG. 4 there can be three paths for the wireless electromagnetic wave signal emitted from the access network device to reach the terminal device 1 (robot arm), ⁇ 1,1 is the path from the access network device to the terminal device 1 ⁇ 1,2 is the non-line-of-sight path (NLOS) of the access network device to the terminal device 1 after being reflected by the control board 4, ⁇ 1,3 is the reflection of the access network device through the control board 1 Then reach the non-line-of-sight path (NLOS) of terminal equipment 1.
  • NLOS non-line-of-sight path
  • the control board 4 is in the absorbing energy storage state (C state), the signal on the path of ⁇ 1, 2 will not reach the terminal device 1, but will be absorbed by the control board and converted into electric energy and stored in the local battery; if the control board Board 4 is in the passive or active forwarding state (P state or A state), and the signal on the path ⁇ 1, 2 can reach the terminal device 1, but the loss in the passive forwarding state is greater than that in the active forwarding state (the attenuation is more serious), so The strength of the signal reaching the end device 1 is not the same. The signal strength is greater (received power is greater) in the active forwarding state.
  • ⁇ 2,1 is the direct line-of-sight path from the access network device to the terminal device 2
  • ⁇ 2,2 is the non-line-of-sight path from the access network device to the terminal device 2 after being reflected by the control board N.
  • the control board N is in the C state, P state, and A state respectively, the signals on the path ⁇ 2,1 reaching the terminal device 2 may also be different.
  • the control board can be in any of the above three states at a moment, assuming that the time granularity of the state pattern of the control board is ⁇ t, so within the time period T there can be situation.
  • the environment controller can determine indicators such as average communication quality or average throughput between the access network device and the terminal device in each case. Afterwards, the environment controller can determine the M state patterns in the case of the best indicators such as average communication quality or average throughput as the target state patterns.
  • the state pattern set includes M elements, one of the M elements is a control board in time T states, each of which can be any of the three states, therefore, there are a total of A collection of state patterns.
  • Formula (8) is similar to formula (1), and reference may be made to the relevant description of step 301 , which will not be described in detail here. It can be seen that through formula (8) it can be determined that The largest M state patterns are the state patterns of the M control boards selected above, and the M state patterns can maximize the average throughput of the communication system.
  • the environment controller may send the state pattern to the access network device.
  • the start time of the state pattern can be t0
  • the time granularity can be ⁇ t
  • the state pattern can be expressed as S
  • the state pattern can also be called a state pattern sequence.
  • the state pattern can be a sequence of three states: A state, P state, and C state, such as ⁇ AAAAAPPC ⁇ , or a simplified form of the sequence, such as ⁇ C5P2A1 ⁇ , or a specific state pattern index ⁇ Index ⁇ .
  • State pattern S ⁇ Index ⁇ , where Index indicates a known state pattern agreed in advance by the transmitting and receiving ends (ie, the environment controller and the access network device) through a standard protocol.
  • the environment controller may also send identification information of the control board, such as the ID of the control board. There is a one-to-one correspondence between the ID of the control board and the status pattern of the control board.
  • the above environmental controller determines the state pattern, it does not consider the energy storage value and absorption efficiency of the regulating board. Therefore, there may be situations where certain state patterns are not available.
  • the control board will be in state A for a long period of time, which will consume more power, but the control board may not have enough power . Therefore, when the control board is in the A state at a certain moment, there may not be enough power available for use, which may cause the control board to be unable to actively forward the incident electromagnetic waves effectively. It can be seen that the energy storage value of the battery on the control board constrains the effective duration of the A state in the state pattern.
  • the control board will be in the energy storage state (C state) for a longer period of time, and the control board will absorb the energy of the surrounding electromagnetic waves for a long time, and can absorb The energy converted to electrical energy is stored locally in the battery.
  • the control board may have reached the upper limit of the energy storage value of the local battery within a short period of time. At this time, the energy of the control board that continues to absorb electromagnetic waves and converts it into electrical energy cannot be stored in the local battery, thereby causing waste of electrical energy.
  • the environmental controller can consider the energy storage value and absorption efficiency of the control board when determining the state pattern, that is, the environmental controller can use the three-dimensional space map, the position information of the control board, and the storage efficiency of the control board.
  • the energy value and absorption efficiency determine the state pattern of the control panel.
  • the formula (8) can be improved by adding a function related to the energy storage value of the control panel and the absorption efficiency in the formula (8).
  • a function related to the energy storage value of the control panel For example, you can add qualifying functions, by which you can get from Partial cases are excluded in this case, that is, the case of excluding unavailable status patterns.
  • the time granularity ⁇ t is 5 seconds
  • the state pattern includes the states of 8 ⁇ t of the control board
  • the absorption efficiency of the control board at one position is 50%
  • the The energy storage value is 20%
  • the total battery capacity of the control board can be 100 milliampere hours (mAh).
  • the control board may need to consume 1mAh when it is in the A state for 5 seconds, and can store 1mAh of energy when it is in the C state for 5 seconds. Therefore, the control board can consume 4mAh net every 40 seconds, and the energy storage value of the control board can be 0 after the state pattern is repeated for four cycles. Therefore, at the beginning of the fifth cycle, the control board is in the A state and has no power to use, so that the incident electromagnetic wave cannot be actively forwarded effectively.
  • the environment controller can determine some unavailable state patterns through calculation, so as to ensure that the control board can effectively forward the incident electromagnetic waves actively when using the state patterns.
  • the environment controller can also determine the position of the control board and the status pattern of the control board at the same time.
  • the environmental controller can simultaneously consider the set L of the M positions of the control panel and the state S of the control panel at the M positions, that is, formula (1) and formula (8) can be combined, see formula (9).
  • the environmental controller When the environmental controller separately determines the spatial position of the control board and the state pattern of the control board, it needs to consider In this case, it is necessary to calculate indivual When determining the spatial position and state pattern of the control board at the same time, it is necessary to consider situation. When separately determining the position (spatial position and spatial direction) of the control board and separately determining the state pattern of the control board, it is necessary to consider situation. When determining the position and status pattern of the control board at the same time, it is necessary to consider situation. It can be seen that the calculation amount of the environment controller may be different in each case. When determining the position and state pattern of the control board at the same time, the calculation amount of the environment controller may be relatively large, but more situations can be considered at this time of Thus more accurate results (position and status patterns) can be obtained.
  • the environment controller may simultaneously send the location information and the status pattern of the control board to the access network device.
  • the access network device sends the status pattern of the control board to the control board.
  • the access network device After the access network device receives the state pattern from the control board of the environment controller, the access network device can send the state pattern to the control board.
  • the access network can send the location information to the control board through a status pattern request signaling (Request, REQ).
  • the status pattern REQ may include the identification (BS-ID) of the access network device, the identification (EP-ID) of the control board, the start time t0, the time granularity ⁇ t, the sequence of status patterns, and the CRC check digit.
  • FIG. 9 is a schematic diagram of a state pattern request signaling frame format disclosed by an embodiment of the present invention. It can be understood that, the frame format shown in FIG. 9 is only an exemplary description, and does not constitute a limitation thereto.
  • the control board After the access network device sends the location information and status pattern to the control board, the control board can adjust (configure) its own position and status pattern according to the location information and status pattern. Therefore, a wireless propagation environment in which the transmission loss (such as the average value of large-scale path transmission loss) can be expected can be constructed within a certain space range and a certain period of time, so that the access network equipment can determine the channel quality of the terminal equipment.
  • the transmission loss such as the average value of large-scale path transmission loss
  • the access network device can determine the channel quality of the terminal device according to the three-dimensional space map, the position information of the control board, and the status pattern. Then, the access network device can allocate resources to the terminal device according to the channel quality, and then can send the resource information to the terminal device.
  • the channel quality can be signal-to-noise ratio, transmission loss, reference signal receiving power (reference signal receiving power, RSRP), etc.
  • the resources allocated by the access network device to the terminal device may include uplink resources and/or downlink resources.
  • the access network device can determine the average communication quality of the terminal device within a period of time. For example, ⁇ k,i (t) in formula (1) can be determined, and then the access network device can use the average signal-to-noise ratio of the rank( ⁇ k (t)) transmission paths as the average communication quality of the terminal device. For the method of determining ⁇ k,i (t), reference may be made to the above related descriptions, which will not be repeated here.
  • the access network device can allocate resources to the terminal device according to the channel quality. Since the noise interferes less with the useful signal when the channel quality is better, that is, when the signal-to-noise ratio is larger, the communication bit error rate is lower, and the receiver of the communication can effectively receive the communication. The data sent by the sender. In the case of poor channel quality, the communication bit error rate is high, and the receiver of the communication cannot effectively receive the data sent by the sender. Therefore, the access network device can allocate more resources to terminal devices with better signal quality (such as terminal devices with a signal-to-noise ratio greater than a specific threshold), and can allocate more resources to terminal devices with poor signal quality (such as a terminal device with a signal-to-noise ratio smaller than a specific threshold). The terminal equipment of the terminal equipment) allocates less resources, thereby avoiding the waste of resources, and further improving the utilization rate of resources.
  • the access network device may send resource information to the terminal device through time-frequency resource allocation command signaling (command, CMD).
  • the signaling may include an access network device identifier (BS-ID), a terminal device identifier (UE-ID), a time-frequency resource block identifier (resource block ID, RB-ID), and a CRC check digit.
  • the identifier of the terminal device may be a unique identifier assigned by the access network device to the terminal device under the access network device, and the time-frequency resource block identifier may uniquely identify the time-frequency resource allocated to the terminal device.
  • the time-frequency resource block identifier may be a specific time-domain resource and frequency-domain resource (such as a subcarrier), or may be an index corresponding to the time-domain resource and the frequency-domain resource.
  • the terminal device may send time-frequency resource allocation acknowledgment signaling (acknowledge, ACK) to the access network device, and the signaling may include an identifier of the terminal device ( UE-ID), access network device identification (BS-ID), time-frequency resource configuration success identifier (Flag), CRC check digit. If Flag is True, it means that the terminal device configures the time-frequency resource successfully, and if Flag is False, it means that the terminal device fails to configure the time-frequency resource.
  • the uplink resource allocation or downlink resource allocation frame format may be a time-frequency resource allocation frame format defined by an existing standard.
  • the access network device can also determine the transmit power according to the channel quality.
  • the sending power may include its own sending power and the sending power of the terminal device.
  • the access network device can send a signal to the terminal device with a lower transmission power. And a small transmit power can be indicated for the terminal equipment, so that the average power consumption of the access network equipment and the terminal equipment can be reduced.
  • the communication bit error rate may be high. Therefore, the access network device can send a signal to the terminal device with a large transmission power, and can indicate a large transmission power for the terminal device, thereby The bit error rate can be reduced, and the average throughput of the communication system can be improved.
  • the access network device may determine the transmission power of the access network device and the terminal device according to the transmission loss. Taking the determination of the transmission power of the access network equipment as an example, assuming that the receiving sensitivity (minimum receiving power) of the terminal equipment is -100dBm, the signal sent by the access network equipment to the terminal equipment may be attenuated by 45dB during transmission, and a certain Fading margin (for example, 10dB), so that greater transmission loss can be tolerated. Therefore, the minimum transmission power of the access network equipment to transmit signals to the terminal equipment can be -45dBm. Correspondingly, the access network device may also determine the transmit power of the terminal device according to its own receiving sensitivity.
  • the access network device may send information about the transmit power of the terminal device to the terminal device through a transmit power allocation command signaling (command, CMD), where the signaling may include the identifier (BS-ID) of the access network device, the identifier of the terminal device (UE-ID), power level ID (power level ID, PL-ID), CRC check digit.
  • PL-ID can be a specific power value (such as -20dBm), or a power index (such as "01").
  • the power index can correspond to a specific power value. For example, the power value corresponding to "01" can be - 25dBm.
  • the terminal device may send a transmit power allocation acknowledgment signaling (acknowledge, ACK) to the access network device, and the signaling may include the identifier of the terminal device (UE- ID), the identification (BS-ID) of the access network equipment, the identifier (Flag) of whether the power configuration is successful or not, and the CRC check digit. If Flag is True, it means that the power configuration of the terminal device is successful, and if Flag is False, it means that the power configuration of the terminal device fails.
  • the downlink power allocation frame format may be a time-frequency resource allocation frame format defined by an existing standard.
  • the embodiment of the present invention configures the status pattern of the control board, when the access network device determines its own transmission power and the transmission power of the terminal device, it can also consider the energy storage value and absorption of the control board. Energy storage efficiency, so that the absorption energy storage efficiency of the control board can be improved. For example, when the state of the control board is in the energy-absorbing state, the access network device can send signals to the terminal device with a larger transmission power, so that the control board can absorb more electromagnetic wave energy from the surrounding environment, and can Convert more energy into electrical energy and store it locally, thereby improving the energy absorption and storage efficiency of the control panel.
  • FIG. 10 is a schematic diagram of another scene disclosed by an embodiment of the present invention.
  • the coverage area of the access network equipment is divided into the near area, the middle area, and the far area according to the distance between the access network equipment and the terminal equipment 1 and the control area in the near area of the access network equipment Board 1, terminal equipment 2 and control board 2 in the middle area, terminal equipment 3 and control board 3 in the far area.
  • the state pattern configuration of control board 1 is ⁇ CCCAACCCAA ⁇
  • the state pattern configuration of control board 2 is ⁇ CCCSACCCSA ⁇
  • the state pattern configuration of control board 3 is ⁇ CCCCCCCSSA ⁇ .
  • the reflection or transmission of the control board to the incident electromagnetic wave can be diffuse reflection and diffuse transmission.
  • the diffuse reflection can make the incident electromagnetic wave on the control board have reflection signals with approximately equal energy in all directions
  • the diffuse transmission can make the incident electromagnetic wave on the control board There are transmitted signals of approximately equal energy in all directions.
  • control board 1, control board 2, and control board 3 are all in the C state. At this time, the control board can absorb incident electromagnetic waves. Therefore, for the coverage area of the access network equipment, 3, on average, the whole is in a state of weakened energy, that is, at this time, the power of the signal received by the terminal device from the access network device will be correspondingly reduced compared with the power received when the control board is in the passive reflection state.
  • the original wireless receiving power is relatively strong, therefore, the signal-to-noise ratio of the signal sent by the terminal device 1 to receive the access network device is high, so that time slots 1 to 3 It can be assigned to the terminal device 1 to communicate with the access network device.
  • control board 1 In time slots 4 to 8, control board 1 is in A state in the first two time slots, and in C state in the last three time slots; control board 2 is in S state in time slot 4, and in A state in time slot 5. Slots 6 to 8 are in C state; control board 3 is in C state in time slots 4 to 7, and time slot 8 is in S state. Therefore, for the coverage area of access network equipment, in time slots 4 to 8, on average , the whole is in a state of constant energy, that is, the power received by the terminal device at this time from the signal from the access network device is basically the same as that received when the control board is in the passive reflection state. Since the distance between terminal equipment 2 and the access network equipment is moderate, the original wireless receiving power is weaker than that of terminal equipment 1 and stronger than that of terminal equipment 3. It is lower than the terminal device 1 and higher than the terminal device 3, so that the time slots 4-8 can be allocated to the terminal device 2 to communicate with the access network device.
  • control board 1 is in state A
  • control board 2 is in state S in time slot 9, and is in state A in time slot 10.
  • Control board 3 is in state S in time slot 9 and in state A in time slot 10.
  • State A therefore, for the coverage area of the access network equipment, within time slots 9 to 10, on average, the overall state is in a state of energy enhancement, that is, the power of the signal received by the terminal equipment from the access network equipment at this time is relatively high. Compared with when the control board is in the passive reflection state, the received power will increase accordingly.
  • time slots 9 to 10 are suitable for allocation For the terminal device 3 to communicate with the access network device.
  • the above time-frequency resource allocation method can be understood as absorbing and converting the wireless electromagnetic wave energy of the terminal equipment in the near area into the electric energy of the local battery through the control board, and then assisting the terminal equipment in the far area to communicate through the ability of the control board to consume the local battery, so that The communication capability (signal-to-noise ratio) of the terminal equipment in the edge area of the access network equipment is enhanced, thereby improving the average throughput of the entire wireless communication system. It should be understood that the scene shown in FIG. 10 is only an example and not a limitation.
  • FIG. 11 is a schematic diagram of allocation of time-frequency resources and transmission power disclosed by an embodiment of the present invention.
  • the minimum unit of resource allocation in the time domain can be two time slots, and a time slot can include 14 symbols.
  • the minimum unit of resource allocation in the frequency domain can be a resource block (resource block, RB), and RB can refer to 12 subcarriers contiguous in frequency.
  • the access network device can allocate 3 RBs of time slots 1 to 2 to terminal device 1, can allocate 3 RBs of time slots 5 to 6 to terminal device 2, and can allocate time slots 7 to 8 to terminal device 2.
  • One RB of the terminal device 3 may be allocated one RB of time slots 7-8, and the terminal device 3 may be allocated three RBs of time slots 9-10.
  • the access network device can also allocate the transmit power corresponding to the time-frequency resource for the terminal device.
  • the transmit power of terminal device 1 can be P1
  • the transmit power of terminal device 2 can be P2
  • the transmit power of terminal device 3 can be P3 .
  • the terminal equipment may adopt different transmission powers.
  • P1, P2, and P3 may be determined by the access network device, and reference may be made to the above related description.
  • FIG. 12 is a schematic diagram of another scene disclosed by an embodiment of the present invention.
  • it may include an access network device, a terminal device 1, a terminal device 2, and a control board.
  • the signal sent by the access network device to the terminal device 1 can reach the terminal device 1 or the terminal device 2 after being reflected by the control board.
  • the propagation path from the access network device to the control board is denoted as P1
  • the propagation path from the control board to terminal device 1 is denoted as P2
  • the propagation path from the control board to terminal device 2 is denoted as P3
  • the propagation path from the access network device to terminal device 1 is denoted as P2.
  • the propagation path (LOS) of the terminal device 2 is denoted as P4, and the propagation path (LOS) from the access network device to the terminal device 2 is denoted as P5.
  • the speed of light can be represented by c, and the unit can be meters per second (m/s); the length and distance of the propagation path Pn can be represented by the symbol
  • , and the unit can be meters; the propagation time delay on the path Pn can be represented by the symbol ⁇ n
  • the access network device sends a signal X A to the terminal device 1, wherein the signal X A reaches the terminal device 1 through path P4 and path P1+P2.
  • terminal device 1 can receive two X A with the same information respectively.
  • the X A signal can also be received (listened) by the terminal device 2 through the paths P5 and P1+P3, that is, at the time t0+ ⁇ s and t0+ ⁇ 1 + ⁇ 3 , the terminal Device 2 can respectively receive two X A with the same information.
  • ⁇ T represents the continuous sending time of the signal X A , and the access network device can send the signal X B to the terminal device 2 .
  • terminal device 2 can receive signal XB ; at time t1+ ⁇ 4 and t1+ ⁇ 1 + ⁇ 2 , terminal device 1 can also receive Signal X B is received.
  • the signal sent by the access network device to the terminal device 1 will be sent to the terminal device 2 by the access network device
  • the signal of the signal generates interference, that is, the terminal device 2 can receive the signal X A and the signal X B at the same time. Therefore, the two signals will be superimposed to generate interference, and when the frequencies of the two signals are the same, the terminal equipment cannot effectively distinguish them.
  • control board when the control board is in the absorbing energy storage state, the control board can absorb the signal of the access network device through the path P1 and convert it into the electric energy of the local battery of the control board, so that the interference of terminal device 1 to terminal device 2 can be reduced.
  • FIG. 13 is a schematic diagram of a time-domain impulse response disclosed by an embodiment of the present invention.
  • the time-domain impulse responses of terminal equipment 1 and terminal equipment 2 produce multi-user signal aliasing, while in a controllable propagation environment, by setting the control board at an appropriate time
  • the state switching between the C state, P state, and A state in the interval can absorb the energy of the original reflection path and convert it into the electric energy of the local battery of the control board, thereby reducing or even eliminating the aliasing of multi-user signals in the time domain.
  • FIG. 14 is a schematic diagram of time-frequency resource allocation disclosed by an embodiment of the present invention.
  • the minimum unit of resource allocation in the time domain may be a time slot, and a time slot may include 14 symbols, and the minimum unit of resource allocation in the frequency domain may be RB.
  • the access network device may allocate 3 RBs of time slots 1-2 to terminal device 1, and may allocate 3 RBs of time slots 3-4 to terminal device 2.
  • the terminal device uses this resource to send a signal to the access network device or the terminal device uses this resource to receive a signal from the access network device, when the signal reaches the control board, the signal can be absorbed by the control board, thereby reducing or eliminating the terminal Signal aliasing between devices improves the signal to interference plus noise ratio (SINR) of the terminal device.
  • SINR signal to interference plus noise ratio
  • the access network device may simultaneously send the position information and the status pattern of the control board to the control board.
  • the access network device may also send resource information and transmit power to the terminal device at the same time.
  • FIG. 15 is a schematic diagram of signaling interaction among a terminal device, an access network device, and a control board disclosed in an embodiment of the present invention.
  • the access network device may request the control board to adjust its position.
  • the access network device can send the adjustment position REQ to the control board; then, the control board can adjust its own position according to the adjustment position REQ; after the position adjustment of the control board is completed, the control board can feed back the position adjustment ACK to the base station.
  • the access network device may request the control board to configure the status pattern.
  • the access network device can send a state pattern REQ to the control board; then, the control board can adjust its own state according to the state pattern REQ, that is, make its own metamaterial panel as a whole between the C state, P state, and A state Regular switching; after the configuration of the status pattern of the control board is completed, the control board can feed back the status pattern ACK to the access network device.
  • the access network device can allocate time-frequency resources and transmit power to the terminal device.
  • the access network device can send the time-frequency resource allocation CMD to the terminal device, and the terminal device can feed back the time-frequency resource allocation ACK to the access network device; then, the access network device can send the energy storage value CEK to the control board, and the control board
  • the energy storage value RSP can be fed back to the access network device, which can carry the current energy storage value information of its own local battery; then, the access network device can send the transmission power distribution CMD to the terminal device, and the terminal device can feedback to the access network device Transmission power allocation ACK; finally, the access network device can send the absorption efficiency CEK (which can be triggered by a periodic timer or an aperiodic event) to the control board, and the control board can feed back the absorption efficiency RSP to the access network device.
  • CEK absorption efficiency
  • CCD/ACK time-frequency resource allocation
  • CEK/RSP energy storage value
  • CEK/RSP transmission power allocation
  • CEK/RSP absorption efficiency
  • the control board adjusts the state of the control board according to the state pattern.
  • the control board After receiving the state pattern from the access network device, the control board can adjust the state of the control board according to the state pattern.
  • the control board may receive the state pattern through the state pattern REQ from the access network device.
  • the state pattern REQ may include the identification of the control board (such as EP-ID), the start time t0, the time granularity ⁇ t, the state pattern sequence, and so on.
  • the control board can determine whether the status pattern REQ is sent to itself according to the identification of the control board.
  • control board determines that the state pattern REQ is sent to itself, the control board can determine the start time t0, time granularity ⁇ t, and state pattern sequence.
  • the control board can configure a state pattern sequence, and then adjust its own state according to the state pattern sequence.
  • the state pattern sequence is ⁇ AAAAAPPC ⁇ .
  • the control board can adjust its state to A state from time t0 to t0+5 ⁇ t; from time t0+5 ⁇ t to t0+7 ⁇ t, the control board can adjust its state to P state; from time t0+7 ⁇ t to t0+8 ⁇ t At this time, the control board can adjust its state to C state. From the moment after t0+8 ⁇ t, the control board can periodically repeat the above state patterns until a new state pattern is received.
  • the control board can send (feedback) the status pattern response signaling (ACK) to the access network device, and the signaling can include the identification (EP-ID) of the control board, the EP-ID of the access network device Identification (BS-ID), status pattern configuration success or not identifier (Flag), CRC check digit. If Flag is True, it means that the configuration of the status pattern of the control board is successful; if Flag is False, it means that the configuration of the status pattern of the control board fails.
  • FIG. 16 is a schematic diagram of a state pattern confirmation signaling frame format disclosed by an embodiment of the present invention. It should be understood that the frame format shown in FIG. 16 is only an example and not a limitation.
  • the access network device may receive the state pattern ACK from the control board, and then send the state pattern ACK of the control board to the environment controller, so that the environment controller may summarize and record the state pattern of the control board. It can be seen that the environment controller can locally store the information of the current state pattern and the information of the historical state pattern of all control boards.
  • FIG. 17 is a flow chart of adjusting the position and status of a regulating board disclosed in an embodiment of the present invention.
  • the control board can adjust the position according to the configuration signaling (that is, the above-mentioned adjustment position REQ), and can switch between the passive forwarding state, the active forwarding state, and the energy storage state according to the control signaling (that is, the above-mentioned state pattern REQ). switch between states.
  • the control board can form a specific propagation environment, assist terminal equipment to communicate, and improve the average throughput of the communication system.
  • the environment controller can readjust its own position and status pattern after receiving a new configuration signal. It should be understood that the flow chart shown in FIG. 16 is only an example and not a limitation.
  • the environment controller calculates and determines the position information and status pattern of the control board, and then sends it to the control board through the access network equipment, so that the control board can adjust its own position and state. Since the environment controller determines the location information and state pattern, it considers the maximization of the communication system’s average communication rate, average throughput and other indicators. Therefore, the communication system’s average throughput can be maximized through the optimized propagation environment of the control board. .
  • FIG. 18 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • the communication device may be a control board, or a module in the control board.
  • the communication device may include:
  • a receiving unit 1801 configured to receive location information from an access network device, where the location information includes rotation information and/or movement information;
  • An adjustment unit 1802 configured to adjust the position of the control board according to the position information
  • the receiving unit 1801 is also configured to receive a status pattern from the access network device
  • the adjustment unit 1802 is also configured to adjust the state of the control board according to the state pattern.
  • the adjusting unit 1802 adjusting the position of the control panel according to the position information includes:
  • the spatial direction of the regulating board is adjusted according to the rotation information, and/or the spatial position of the regulating board is adjusted according to the movement information.
  • the rotation information includes a rotation direction and a rotation angle
  • the adjustment unit 1802 adjusts the position of the control board according to the position information includes:
  • the spatial direction of the control plate is adjusted according to the rotation direction and the rotation angle.
  • the rotation information includes a rotation angle
  • the adjusting unit 1802 adjusts the position of the control board according to the position information includes:
  • the spatial direction of the regulating plate is adjusted according to the rotation angle.
  • the movement information includes movement direction and movement distance
  • the adjustment unit 1802 adjusts the position of the control panel according to the position information includes:
  • the spatial position of the regulating plate is adjusted according to the moving direction and the moving distance.
  • the movement information includes a movement distance
  • the adjustment unit 1802 adjusts the position of the control panel according to the position information includes:
  • the spatial position of the regulating plate is adjusted according to the moving distance.
  • the communication device may also include:
  • the sending unit 1803 is configured to send the energy storage value and absorption efficiency to the access network device.
  • the receiving unit 1801 is further configured to receive a first request from the access network device, where the first request is used to request the energy storage value and the absorption efficiency.
  • FIG. 19 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may be an access network device, or may be a module in the access network device.
  • the communication device may include:
  • the receiving unit 1901 is configured to receive position information from the control board of the environment controller, where the position information includes rotation information and/or movement information;
  • a sending unit 1902 configured to send the location information to the control board
  • the receiving unit 1901 is also used to receive the status pattern of the regulation board from the environmental controller, the status pattern includes state information, and the state corresponding to the state information is energy storage state, active forwarding state or passive forwarding state;
  • the sending unit 1902 is also configured to send the status pattern to the control board.
  • the rotation information includes a rotation direction and a rotation angle.
  • the rotation information includes a rotation angle.
  • the movement information includes movement direction and movement distance.
  • the movement information includes movement distance.
  • the sending unit 1902 is also configured to send the energy storage value and absorption efficiency of the regulating board to the environment controller.
  • the receiving unit 1901 is further configured to receive a second request from the environment controller, and the second request is used to acquire the energy storage value and absorption efficiency of the regulating board.
  • the receiving unit 1901 is also used to receive the energy storage value and absorption efficiency from the regulating board.
  • the sending unit 1902 is further configured to send a first request to the regulating board, where the first request is used to request the energy storage value and absorption efficiency of the regulating board.
  • the communication device may also include:
  • the determination unit 1903 is configured to determine the channel quality of the terminal equipment according to the three-dimensional space map, the position information of the control panel and the status pattern, the three-dimensional space map includes building structure information, location information and material information of the fixed equipment, and communication services of the fixed equipment Model information and deployment information of access network equipment;
  • an allocating unit 1904 configured to allocate resources for the terminal device according to the channel quality
  • the sending unit 1902 is further configured to send the resource information to the terminal device.
  • the determining unit 1903 is further configured to determine the channel quality of the terminal device according to the three-dimensional space map, the position information of the control panel and the status pattern;
  • the determining unit 1903 is further configured to determine the transmission power according to the channel quality
  • the sending unit 1902 is further configured to send the sending power to the terminal device.
  • the absorbing energy storage state is a state in which absorbed electromagnetic waves are converted into electrical energy and stored
  • the active forwarding state is a state in which incident electromagnetic waves are amplified and then reflected or transmitted
  • the passive forwarding state is a state in which incident electromagnetic waves are amplified The state in which electromagnetic waves are reflected or transmitted.
  • receiving unit 1901 sending unit 1902, determining unit 1903, and allocating unit 1904 can be directly obtained by referring to the relevant description of the access network device in the method embodiment shown in FIG. 3 above, and will not be repeated here.
  • FIG. 20 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may be an environment controller, or a module in the environment controller.
  • the communication device may include:
  • the sending unit 2001 is configured to send the position information of the control board to the access network device, where the position information includes rotation information and/or movement information;
  • the sending unit 2001 is further configured to send a state pattern of the control board to the access network device, the state pattern includes state information, and the state corresponding to the state information is energy storage state, active forwarding state or passive forwarding state.
  • the rotation information includes a rotation direction and a rotation angle.
  • the rotation information includes a rotation angle.
  • the movement information includes movement direction and movement distance.
  • the movement information includes movement distance.
  • the communication device may also include:
  • the determining unit 2002 is configured to determine the position information of the regulating board.
  • the determination unit 2002 determining the position information of the control panel includes: determining the position information of the control panel according to a three-dimensional space map, and the three-dimensional space map includes building structure information, position information and material information of fixed equipment, fixed Communication service model information of the device and deployment information of the access network device.
  • the determining unit 2002 determining the position information of the regulating board includes: determining the position information of the regulating board according to the three-dimensional space map, the energy storage value and the absorption efficiency of the regulating board, the three-dimensional space map including the building structure Information, location information and material information of fixed equipment, communication service model information of fixed equipment, and deployment information of access network equipment.
  • the communication device may also include:
  • the receiving unit 2003 is configured to receive the energy storage value and absorption efficiency of the regulation board of the access network device.
  • the sending unit 2001 is further configured to send a second request to the access network device, where the second request is used to obtain the energy storage value and absorption efficiency of the regulation board.
  • the determination unit 2002 is also used to determine the status pattern of the control board.
  • the determining unit 2002 determining the state pattern of the control panel includes: determining the state pattern of the control panel according to the three-dimensional space map and the position information of the control panel.
  • the determining unit 2002 determining the state pattern of the regulating board includes: determining the state pattern of the regulating board according to the three-dimensional space map, the position information of the regulating board, the energy storage value and the absorption efficiency of the regulating board.
  • the absorbing energy storage state is a state in which absorbed electromagnetic waves are converted into electrical energy and stored
  • the active forwarding state is a state in which incident electromagnetic waves are amplified and then reflected or transmitted
  • the passive forwarding state is a state in which incident electromagnetic waves are amplified The state in which electromagnetic waves are reflected or transmitted.
  • FIG. 21 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may be a control device.
  • the communication device may include: a control board 2102 composed of multiple metamaterial units 2101 , a sliding track 2103 , analog circuits corresponding to the metamaterial units 2101 , and a wireless transceiver 2104 .
  • the number of metamaterial units 2101 on the control plate 2102 may be different in different application scenarios, and the metamaterial units 2101 can be rotated, thereby changing the angle or direction of the control plate.
  • the sliding track 2103 may include a motor and a mechanical gear, which can realize the movement of the spatial position of the regulating plate.
  • the wireless transceiver 2104 may include a battery, a clock, and a state controller, and the wireless transceiver may be used to communicate with other communication devices (access network devices or environment controllers).
  • the state controller can be used to control the state of the metamaterial unit 2101 of the regulating board 2102, so that it can be in the passive forwarding state (P state), the active forwarding state (A state), and the energy storage state (C state). state to convert.
  • the analog circuit corresponding to the metamaterial unit may include a phase shifting circuit (phase shifting module), an amplitude modulation circuit (amplitude modulation module), an absorption energy storage circuit (absorption energy storage module), and K1 and K2 state switches, wherein each metamaterial unit There may be corresponding analog circuits, and the analog circuits corresponding to each metamaterial unit may be the same.
  • K1 and K2 can be physical switches or virtual switches.
  • the analog circuit may include an absorption storage circuit, a phase shifting circuit and an amplitude modulation circuit.
  • the amplitude modulation circuit is electrically connected to the phase shifting circuit and the absorbing energy storage circuit respectively.
  • the phase shifting circuit may include a variable capacitor C1, a resistor R1 and an inductor L1, wherein the phase of the incident electromagnetic wave may be changed differently by controlling the capacitance change of the variable capacitor C1.
  • the amplitude modulation circuit may include a resistor R2, a resistor R3, a resistor R4, and an operational amplifier (ie, an operational amplifier).
  • the amplitude modulation circuit can amplify and forward incident electromagnetic waves.
  • the absorbing energy storage circuit may include a capacitor C2, a diode D1, a diode D2, and a capacitor C3.
  • the absorbing energy storage circuit can absorb incident electromagnetic waves, and then convert them into electrical energy and store them in a local battery. It should be noted that all the metamaterial units 2101 of the control board 2102 can uniformly adjust the state, that is, the switching process of the C state, P state, and A state can be performed uniformly, so the processing complexity and average value of the control board can be reduced. System power consumption.
  • the control board can adjust its own K1 and K2 switches at different times according to the state pattern, so that the overall metamaterial panel 2102 changes regularly among the C state, P state, and A state.
  • K1 facing up and K2 facing up can make the control board in the state of absorbing energy
  • K1 facing down and K2 facing up can make the control board in the passive forwarding state
  • K1 facing down and K2 facing up can make the control board in the active forwarding state
  • K1, K2 facing up or down is not the state of opening and closing of physical real fingers, but the state switching of conceptual virtual fingers.
  • FIG. 23 is a schematic diagram of state switching of a regulating board disclosed in an embodiment of the present invention. As shown in Figure 23, the control board can change its own state by adjusting the K1 and K2 switches.
  • the communication device may include a processor 2401 , a memory 2402 , a transceiver 2403 and a bus 2404 .
  • the memory 2402 may exist independently, and may be connected to the processor 2401 through the bus 2404 .
  • the memory 2402 can also be integrated with the processor 2401.
  • the bus 2404 is used to realize the connection between these components.
  • the transceiver 2403 may include a transmitter 24031 , a receiver 24032 and an antenna 24033 .
  • the transceiver 2403 may include a transmitter (ie, an output interface) and a receiver (ie, an input interface).
  • a transmitter may include a transmitter and an antenna, and a receiver may include a receiver and an antenna.
  • the communication device may be a control board or a module (for example, a chip) in the control board.
  • the processor 2401 is used to control the receiving unit 1801 and the sending unit 1803
  • the processor 2401 is also used to perform the operations performed by the adjustment unit 1802
  • the transceiver 2403 is used to perform the operations performed by the sending unit 1803 and the receiving unit 1801 in the above embodiments.
  • the control board or the modules in the control board may also be used to execute the method performed by the control board in the method embodiment in FIG. 3 , which will not be repeated here.
  • the communication device may be an access network device or a module (for example, a chip) in the access network device.
  • the processor 2401 is used to control the receiving unit 1901
  • the processor 2401 is also used to execute the operations performed by the determination unit 1903 and the allocation unit 1904, and the transceiver 2403 is used to perform the operations performed by the receiving unit 1901 and the sending unit 1902 in the above embodiments.
  • the action to perform may also be used to execute the method performed by the access network device in the method embodiment in FIG. 3 above, which will not be repeated here.
  • the communication device may be an environment controller or a module (for example, a chip) in the environment controller.
  • the processor 2401 is used to control the sending unit 2001 and the receiving unit.
  • the unit 2003 performs the operations performed in the above embodiments
  • the processor 2401 is also used to perform the operations performed by the determination unit 2002
  • the transceiver 2403 is used to perform the operations performed by the sending unit 2001 and the receiving unit 2003 in the above embodiments.
  • the above-mentioned environment controller or modules in the environment controller can also be used to execute the method executed by the environment controller in the method embodiment in FIG. 3 above, which will not be repeated here.
  • FIG. 25 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include an input interface 2501 , a logic circuit 2502 and an output interface 2503 .
  • the input interface 2501 and the output interface 2503 are connected through a logic circuit 2502 .
  • the input interface 2501 is used to receive information from other communication devices
  • the output interface 2503 is used to output, schedule or send information to other communication devices.
  • the logic circuit 2502 is used to perform operations other than the operations of the input interface 2501 and the output interface 2503 , for example, realizing the functions implemented by the processor 2401 in the above-mentioned embodiments.
  • the communication device may be a control board or a module in the control board, an access network device or a module in the access network device, or an environment controller or a module in the environment controller.
  • the input interface 2501, the logic circuit 2502, and the output interface 2503 can be directly obtained by referring to the relevant descriptions of the control board, the access network device, or the environment controller in the above method embodiments, and will not be repeated here.
  • FIG. 26 is a schematic structural diagram of a communication system disclosed by an embodiment of the present invention.
  • the communication system may include a control board 2601 , an access network device 2602 and an environment controller 2603 .
  • control board 2601 the communication system may include a control board 2601 , an access network device 2602 and an environment controller 2603 .
  • environment controller 2603 the communication method shown in FIG. 3 .
  • the embodiment of the present invention also discloses a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the methods in the above method embodiments are executed.
  • the embodiment of the present invention also discloses a computer program product including an instruction, and when the instruction is executed, the method in the above method embodiment is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种通信方法、装置及计算机可读存储介质,该方法包括:环境控制器通过接入网设备向调控板发送位置信息和状态图样,调控板根据该位置信息和状态图样调整自身的位置和状态。本发明实施例,可以通过调整调控板位置和状态来优化周围空间的传播环境,从而可以提高通信系统的吞吐量。

Description

一种通信方法、装置及计算机可读存储介质
本申请要求于2021年11月23日提交中国专利局、申请号为202111396726.8、申请名称为“一种通信方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种通信方法、装置及计算机可读存储介质。
背景技术
可重构智能表面(reconfigurable intelligent surface,RIS)是一种通过改变材料表面单元的介电常数的可重构天线技术。RIS技术可以基于不同状态之间的转换调控,来实现在空间维度上对电磁波的操控,也即是通过改变材料表面单元的介电常数,来对电磁波的方向、幅度、相位等进行调控。无线传能(wireless power transfer,WPT)是一种通过电磁波实现无接触式的能量传输和充电的无线技术。智慧无线电环境(smart radio environment,SRE)是一种通过RIS和WPT等技术手段实现人为调控的无线电磁波传播环境(信道)。SRE技术可以缓解传统的无线信道多径传播和多普勒扩展等引起的影响,从而可以提升无线通信系统的吞吐量性能。
然而,在通过RIS实现SRE的过程中,需要测量终端设备与RIS之间的信道状态信息(channelstateinformation,CSI)以及RIS与接入网设备之间的CSI。而测量终端设备与RIS之间以及RIS与接入网设备之间的CSI所需系统开销较大,以致降低了通信系统的吞吐量。因此,如何提高通信系统的吞吐量非常重要。
发明内容
本发明实施例公开了一种通信方法、装置及计算机可读存储介质,用于提高通信系统的吞吐量。
第一方面公开一种通信方法,该通信方法可以应用于调控板,也可以应用于调控板中的模块(例如,芯片),下面以应用于调控板为例进行描述。该通信方法可以包括:
接收来自接入网设备的位置信息,该位置信息包括旋转信息和/或移动信息;
根据该位置信息调整调控板的位置;
接收来自该接入网设备的状态图样;
根据该状态图样调整该调控板的状态。
本发明实施例中,调控板可以接收到来自接入网设备的位置信息和状态图样。之后,调控板可以根据位置信息调整自身的位置,以及可以根据状态图样调整自身的状态,从而可以优化调控板的周围空间的传播环境,提高终端设备与接入网设备之间的平均传输质量,进而可以提高通信系统的吞吐量。
作为一种可能的实施方式,该根据该位置信息调整调控板的位置包括:
根据该旋转信息调整该调控板的空间方向,和/或根据该移动信息调整该调控板的空间位置。
本发明实施例中,调控板可以接收来自接入网设备的旋转信息和/或移动信息,之后,调控板可以根据旋转信息调整自身的空间方向(角度),和/或移动信息调整自身的空间位置,以便可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该旋转信息包括旋转方向和旋转角度,该根据该位置信息调整调控板的位置包括:
根据该旋转方向和旋转角度调整该调控板的空间方向。
本发明实施例中,调控板可以接收来自接入网设备的旋转信息,之后,调控板可以根据旋转方向和旋转角度调整自身的空间方向,以便可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该旋转信息包括旋转角度,该根据该位置信息调整调控板的位置包括:
根据该旋转角度调整该调控板的空间方向。
本发明实施例中,调控板可以预先规定一个旋转方向,调控板在接收到来自接入网设备的旋转信息之后,可以根据旋转角度和规定的旋转方向调整自身的空间方向(角度),以便可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该移动信息包括移动方向和移动距离,该根据该位置信息调整调控板的位置包括:根据该移动方向和该移动距离调整该调控板的空间位置。
本发明实施例中,调控板可以接收来自接入网设备的移动信息,之后,调控板可以根据移动方向和移动距离调整自身的空间位置,以便可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该移动信息包括移动距离,该根据该位置信息调整调控板的位置包括:根据该移动距离调整该调控板的空间位置。
本发明实施例中,调控板可以预先规定一个移动方向,调控板在接收到来自接入网设备的移动信息之后,可以根据移动距离和规定的移动方向调整自身的空间位置,以便可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该方法还可以包括:
向该接入网设备发送储能数值和吸收效率。
本发明实施例中,调控板可以直接向接入网设备发送储能数值和吸收效率,也可以以固定的周期向接入网设备发送储能数值和吸收效率,以便接入网设备可以获得调控板的储能数值和吸收效率。
作为一种可能的实施方式,该方法还可以包括:
接收来自该接入网设备的第一请求,该第一请求用于请求该储能数值和该吸收效率。
本发明实施例中,调控板可以接收来自接入网设备的第一请求,之后,调控板可以向接入网设备发送储能数值和吸收效率,以便接入网设备可以获得调控板的储能数值和吸收效率。由于调控板可以在接收到第一请求的情况下,才向接入网发送储能数值和吸收效率,因此,可以减少储能数值和吸收效率的发送次数,从而可以降低调控板的平均功耗。
第二方面公开一种通信方法,该通信方法可以应用于接入网设备,也可以应用于接入网设备中的模块(例如,芯片),下面以应用于接入网设备为例进行描述。该通信方法可以包括:
接收来自环境控制器的调控板的位置信息,该位置信息包括旋转信息和/或移动信息;
向该调控板发送该位置信息;
接收来自该环境控制器的该调控板的状态图样,该状态图样包括状态信息,该状态信息对应的状态为吸收储能态、主动转发态或被动转发态;
向该调控板发送该状态图样。
本发明实施例中,接入网设备可以接收到来自环境控制器的调控板的位置信息和状态图样,之后,接入网设备可以向调控板发送该位置信息和状态图样,以便调控板可以根据位置信息调整自身的位置,以及可以根据状态图样调整自身的状态,从而可以优化调控板的周围空间的传播环境,提高终端设备与接入网设备之间的平均传输质量,进而可以提高通信系统的吞吐量。
作为一种可能的实施方式,该旋转信息包括旋转方向和旋转角度。
本发明实施例中,接入网设备向调控板发送的旋转信息可以包括旋转方向和旋转角度,以便调控板接收到旋转信息之后,调控板可以根据旋转方向和旋转角度调整自身的空间方向。
作为一种可能的实施方式,该旋转信息包括旋转角度。
作为一种可能的实施方式,该移动信息包括移动方向和移动距离。
本发明实施例中,接入网设备向调控板发送的移动信息可以包括移动方向和移动距离,以便调控板接收到移动信息之后,调控板可以根据移动方向和移动距离调整自身的空间位置。
作为一种可能的实施方式,该移动信息包括移动距离。
作为一种可能的实施方式,该方法还可以包括:
向该环境控制器发送该调控板的储能数值和吸收效率。
本发明实施例中,接入网设备可以直接向环境控制器发送调控板的储能数值和吸收效率,也可以以固定的周期向环境控制器发送调控板的储能数值和吸收效率,以便环境控制器可以获得调控板的储能数值和吸收效率。
作为一种可能的实施方式,该方法还可以包括:
接收来自该环境控制器的第二请求,该第二请求用于获取该调控板的储能数值和吸收效率。
本发明实施例中,接入网设备可以接收来自环境控制器的第二请求,之后,接入网设备可以向环境控制器发送调控板的储能数值和吸收效率,以便环境控制器可以获得调控板的储能数值和吸收效率。由于接入网设备可以在接收到第二请求的情况下,才向环境控制器发送调控板的储能数值和吸收效率,因此,可以减少调控板的储能数值和吸收效率的发送次数,从而可以降低接入网设备的平均功耗。
作为一种可能的实施方式,该方法还可以包括:
接收来自该调控板的储能数值和吸收效率。
本发明实施例中,接入网设备可以先接收来自调控板的储能数值和吸收效率,之后,接入网设备可以向环境控制器发送该调控板的储能数值和吸收效率,以便于环境控制器可以使用该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该方法还可以包括:
向该调控板发送第一请求,该第一请求用于请求该调控板的储能数值和吸收效率。
本发明实施例中,接入网设备可以向调控板发送第一请求,获取调控板的储能数值和吸收效率。可见,由于调控板可以在接收到第一请求的情况下,才向接入网设备发送储能数值和吸收效率,可以减少储能数值和吸收效率的发送次数,从而可以降低调控板的平均功耗。
作为一种可能的实施方式,该方法还可以包括:
根据三维空间地图、该调控板的位置信息和状态图样确定终端设备的信道质量,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息;
根据该信道质量为该终端设备分配资源;
向该终端设备发送该资源的信息。
本发明实施例中,接入网设备可以根据三维空间地图、调控板的位置信息和状态图样确定终端设备的信道质量,之后,接入网设备可以根据信道质量为终端设备分配资源,再之后,接入网设备可以向终端设备发送该资源的信息,指示终端设备在对应的资源上进行数据的发送。由于信道质量较好,误码率低,信道质量较差,误码率高。因此,接入网设备可以给信道质量较好的终端设备分配较多的资源,从而可以降低通信系统的平均误码率,进而可以提高通信系统的资源的利用率。此外,接入网设备根据信道质量为终端设备分配资源还可以降低不同用户之间的干扰。
作为一种可能的实施方式,该方法还可以包括:
根据该三维空间地图、该调控板的位置信息和状态图样确定该终端设备的信道质量;
根据该信道质量确定发送功率;
向该终端设备发送该发送功率。
本发明实施例中,接入网设备可以根据三维空间地图、调控板的位置信息和状态图样确定终端设备的信道质量,之后,接入网设备可以根据信道质量确定终端设备的发送功率,再之后,接入网设备可以向终端设备发送该发送功率。可见,接入网设备可以根据信道质量为终端设备确定一个合适的发送功率,可以避免终端设备的发送功率过小,从而可以提高终端设备的信噪比,进而可以降低误码率。此外,还可以避免终端设备的发送功率过大,从而可以降低终端设备的平均功耗,提高终端设备的电池使用时长,以及可以减小对其它终端设备的干扰。
作为一种可能的实施方式,该吸收储能态是将吸收的电磁波转换为电能并存储的状态,该主动转发态是将入射的电磁波经放大后进行反射或透射的状态,该被动转发态是将入射的电磁波进行反射或透射的状态。
本发明实施例中,接入网设备可以向调控板发送状态图样,以便调控板可以调整自身的状态,可以使调控板在吸收储能态、主动转发态和被动转发态这三种状态中进行转换。调控板处于吸收储能态时可以利用调控板的电路从周围环境的电磁波吸收能量并转化为电能存储在本地电池中,调控板处于主动转发态时可以利用调控板本地电池的能量对入射电磁波进行放大再对放大后的电磁波进行反射或透射,调控板处于被动转发态时可以对入射电磁波不做任何处理直接进行反射或透射。可见,通过控制调控板在吸收储能态、主动转发态和被动转发态之间进行转换,可以将调控板在吸收储能态存储的能量在主动转发态时进行使用,从而可以对接入网设备和终端设备的入射电磁波进行放大,进而可以提高接入网设备和终端设备的信噪比。
第三方面公开一种通信方法,该通信方法可以应用于环境控制器,也可以应用于环境控制器中的模块(例如,芯片),下面以应用于环境控制器为例进行描述。该通信方法可以包括:
向接入网设备发送调控板的位置信息,该位置信息包括旋转信息和/或移动信息;
向该接入网设备发送该调控板的状态图样,该状态图样包括状态信息,该状态信息对应的状态为吸收储能态、主动转发态或被动转发态。
本发明实施例中,环境控制器可以向接入网设备发送调控板的位置信息和状态图样,然后通过接入网设备向调控板发送调控板的位置信息和状态图样,以便调控板可以根据位置信息调整自身的位置,以及可以根据状态图样调整自身的状态,从而可以优化调控板的周围空 间的传播环境,提高终端设备与接入网设备之间的平均传输质量,进而可以提高通信系统的吞吐量。
作为一种可能的实施方式,该方法还可以包括:
确定该调控板的位置信息。
本发明实施例中,环境控制器可以先确定调控板的位置信息,以便环境控制器可以通过接入网设备向调控板发送该位置信息。
作为一种可能的实施方式,该确定该调控板的位置信息包括:
根据三维空间地图确定该调控板的位置信息,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
本发明实施例中,环境控制器可以根据建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息确定调控板的最佳部署位置的位置信息,之后可以通过接入网设备将该位置信息发送给调控板,以便调控板可以根据该位置信息调整自身的位置,从而可以优化调控板的周围空间的传播环境,进而可以提高通信系统的吞吐量。
作为一种可能的实施方式,该确定该调控板的位置信息包括:
根据三维空间地图,以及该调控板的储能数值和吸收效率确定该调控板的位置信息,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
本发明实施例中,环境控制器可以根据三维空间地图,以及调控板的储能数值和吸收效率确定调控板的最佳部署位置的位置信息,之后可以通过接入网设备将该位置信息发送给调控板,以便调控板可以根据位置信息调整自身的位置,从而可以优化调控板的周围空间的传播环境。此外,由于环境控制器在确定位置信息时考虑了调控板的储能数值和吸收效率,因此,环境控制器可以确定一个便于调控板从周围环境吸收电磁波能量的位置,从而可以提高调控板的吸收储能效率。
作为一种可能的实施方式,该方法还可以包括:
接收来自该接入网设备的该调控板的储能数值和吸收效率。
本发明实施例中,环节控制器可以先接收来自接入网设备的储能数值和吸收效率,以便环境控制器可以使用该调控板的储能数值和吸收效率确定调控板的位置信息。
作为一种可能的实施方式,该方法还可以包括:
向该接入网设备发送第二请求,该第二请求用于获取该调控板的储能数值和吸收效率。
本发明实施例中,环境控制器可以向接入网设备发送第二请求,之后,环境控制器可以接收到来自接入网设备的调控板的储能数值和吸收效率。可见,环境控制器通过向接入网设备发送第二请求可以快速便捷的获取到调控板的储能数值和吸收效率。此外,接入网设备可以在接收到第二请求的情况下,才向环境控制器发送储能数值和吸收效率,可以减少储能数值和吸收效率的发送次数,从而可以降低接入网设备的平均功耗。
作为一种可能的实施方式,该方法还可以包括:
确定该调控板的状态图样。
本发明实施例中,环境控制器可以先确定调控板的状态图样,以便环境控制器可以通过接入网设备向调控板发送该状态图样。
作为一种可能的实施方式,该确定该调控板的状态图样包括:
根据三维空间地图和该调控板的位置信息确定该调控板的状态图样。
本发明实施例中,环境控制器可以根据三维空间地图和调控板的位置信息确定调控板的最佳的状态图样,之后可以通过接入网设备将该状态图样发送给调控板,以便调控板可以根据状态图样调整自身的状态,从而可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该确定该调控板的状态图样包括:
根据三维空间地图、该调控板的位置信息、该调控板的储能数值和吸收效率确定该调控板的状态图样。
本发明实施例中,环境控制器可以根据三维空间地图、调控板的位置信息,以及调控板的储能数值和吸收效率确定调控板的最佳的状态图样,之后可以通过接入网设备将该状态图样发送给调控板,以便调控板可以根据状态图样调整自身的状态,从而可以优化调控板的周围空间的传播环境。此外,由于环境控制器在确定状态图样时考虑了调控板的储能数值和吸收效率,因此,可以避免调控板根据状态图样调整自身状态为主动转发态时自身储能数值为0的情况发生,从而可以成功提高终端设备的信噪比。
作为一种可能的实施方式,该旋转信息包括旋转方向和旋转角度。
本发明实施例中,环境控制器通过接入网设备向调控板发送的旋转信息可以包括旋转方向和旋转角度,以便调控板可以根据旋转方向和旋转角度调整自身的空间方向,从而可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该旋转信息包括旋转角度。
作为一种可能的实施方式,该移动信息包括移动方向和移动距离。
本发明实施例中,环境控制器通过接入网设备向调控板发送的移动信息可以包括移动方向和移动距离,以便调控板可以根据移动方向和移动距离调整自身的空间位置,从而可以优化调控板的周围空间的传播环境。
作为一种可能的实施方式,该移动信息包括移动距离。
作为一种可能的实施方式,该吸收储能态是将吸收的电磁波转换为电能并存储的状态,该主动转发态是将入射的电磁波经放大后进行反射或透射的状态,该被动转发态是将入射的电磁波进行反射或透射的状态。
本发明实施例中,环境控制器可以向接入网设备发送状态图样,之后接入网设备可以将该状态图样发送给调控板,以便调控板可以调整自身的状态,从而可以使调控板在吸收储能态、主动转发态和被动转发态这三种状态中进行转换。调控板处于吸收储能态时可以利用调控板的电路从周围环境的电磁波吸收能量并转化为电能存储在本地电池中,调控板处于主动转发态时可以利用调控板本地电池的能量对入射电磁波进行放大再对放大后的电磁波进行反射或透射,调控板处于被动转发态时可以对入射电磁波不做任何处理直接进行反射或透射。可见,通过控制调控板在吸收储能态、主动转发态和被动转发态之间进行转换,可以将调控板在吸收储能态存储的能量在主动转发态时进行使用,从而可以对接入网设备和终端设备的入射电磁波进行放大,进而可以提高接入网设备和终端设备的信噪比。
第四方面公开一种通信装置,该通信装置可以为调控板,也可以为调控板中的模块(例如,芯片)。该通信装置可以包括:
接收单元,用于接收来自接入网设备的位置信息,该位置信息包括旋转信息和/或移动信息;
调整单元,用于根据该位置信息调整调控板的位置;
该接收单元,还用于接收来自该接入网设备的状态图样;
该调整单元,还用于根据该状态图样调整该调控板的状态。
作为一种可能的实施方式,该调整单元根据该位置信息调整调控板的位置包括:
根据该旋转信息调整该调控板的空间方向,和/或根据该移动信息调整该调控板的空间位置。
作为一种可能的实施方式,该旋转信息包括旋转方向和旋转角度,该调整单元根据该位置信息调整调控板的位置包括:
根据该旋转方向和旋转角度调整该调控板的空间方向。
作为一种可能的实施方式,该旋转信息包括旋转角度,该调整单元根据该位置信息调整调控板的位置包括:
根据该旋转角度调整该调控板的空间方向。
作为一种可能的实施方式,该移动信息包括移动方向和移动距离,该调整单元根据该位置信息调整调控板的位置包括:
根据该移动方向和移动距离调整该调控板的空间位置。
作为一种可能的实施方式,该移动信息包括移动距离,该调整单元根据该位置信息调整调控板的位置包括:
根据该移动距离调整该调控板的空间位置。
作为一种可能的实施方式,该装置还可以包括:
发送单元,用于向该接入网设备发送储能数值和吸收效率。
作为一种可能的实施方式,该接收单元,还用于接收来自该接入网设备的第一请求,该第一请求用于请求该储能数值和该吸收效率。
第五方面公开一种通信装置,该通信装置可以为接入网设备,也可以为接入网设备中的模块(例如,芯片)。该通信装置可以包括:
接收单元,用于接收来自环境控制器的调控板的位置信息,该位置信息包括旋转信息和/或移动信息;
发送单元,用于向该调控板发送该位置信息;
该接收单元,还用于接收来自该环境控制器的该调控板的状态图样,该状态图样包括状态信息,该状态信息对应的状态为吸收储能态、主动转发态或被动转发态;
该发送单元,还用于向该调控板发送该状态图样。
作为一种可能的实施方式,该旋转信息包括旋转方向和旋转角度。
作为一种可能的实施方式,该移动信息包括移动方向和移动距离。
作为一种可能的实施方式,该发送单元,还用于向该环境控制器发送该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该接收单元,还用于接收来自该环境控制器的第二请求,该第二请求用于获取该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该接收单元,还用于接收来自该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该发送单元,还用于向该调控板发送第一请求,该第一请求用于请求该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该通信装置还可以包括:
确定单元,用于根据三维空间地图、该调控板的位置信息和状态图样确定终端设备的信道质量,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的 通信业务模型信息以及接入网设备的部署信息;
分配单元,用于根据该信道质量为该终端设备分配资源;
该发送单元,还用于向该终端设备发送该资源的信息。
作为一种可能的实施方式,该确定单元,还用于根据该三维空间地图、该调控板的位置信息和状态图样确定该终端设备的信道质量;
该确定单元,还用于根据该信道质量确定发送功率;
该发送单元,还用于向该终端设备发送该发送功率。
作为一种可能的实施方式,该吸收储能态是将吸收的电磁波转换为电能并存储的状态,该主动转发态是将入射的电磁波经放大后进行反射或透射的状态,该被动转发态是将入射的电磁波进行反射或透射的状态。
第六方面公开一种通信装置,该通信装置可以为环境控制器,也可以为环境控制器中的模块(例如,芯片)。该通信装置可以包括:
发送单元,用于向接入网设备发送调控板的位置信息,该位置信息包括旋转信息和/或移动信息;
该发送单元,还用于向该接入网设备发送该调控板的状态图样,该状态图样包括状态信息,该状态信息对应的状态为吸收储能态、主动转发态或被动转发态。
作为一种可能的实施方式,该旋转信息包括旋转方向和旋转角度。
作为一种可能的实施方式,该移动信息包括移动方向和移动距离。
作为一种可能的实施方式,该通信装置还可以包括:
确定单元,用于确定该调控板的位置信息。
作为一种可能的实施方式,该确定单元确定该调控板的位置信息包括:根据三维空间地图确定该调控板的位置信息,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
作为一种可能的实施方式,该确定单元确定该调控板的位置信息包括:根据三维空间地图,以及该调控板的储能数值和吸收效率确定该调控板的位置信息,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
作为一种可能的实施方式,该通信装置还可以包括:
接收单元,用于接收来自该接入网设备的该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该发送单元,还用于向该接入网设备发送第二请求,该第二请求用于获取该调控板的储能数值和吸收效率。
作为一种可能的实施方式,该确定单元,还用于确定该调控板的状态图样。
作为一种可能的实施方式,该确定单元确定该调控板的状态图样包括:根据三维空间地图和该调控板的位置信息确定该调控板的状态图样。
作为一种可能的实施方式,该确定单元确定该调控板的状态图样包括:根据三维空间地图、该调控板的位置信息、该调控板的储能数值和吸收效率确定该调控板的状态图样。
作为一种可能的实施方式,该吸收储能态是将吸收的电磁波转换为电能并存储的状态,该主动转发态是将入射的电磁波经放大后进行反射或透射的状态,该被动转发态是将入射的电磁波进行反射或透射的状态。
第七方面公开一种通信装置,该通信装置可以为调控板或者调控板内的模块(例如,芯片)。该通信装置可以包括处理器、存储器和收发器,该收发器用于接收来自该通信装置之 外的其它通信装置的信息,以及向该通信装置之外的其它通信装置输出信息,当该处理器执行该存储器存储的计算机程序时,使得该处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第八方面公开一种通信装置,该通信装置可以为接入网设备或者接入网设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器和收发器,该收发器用于接收来自该通信装置之外的其它通信装置的信息,以及向该通信装置之外的其它通信装置输出信息,当该处理器执行该存储器存储的计算机程序时,使得该处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第九方面公开一种通信装置,该通信装置可以为环境控制器或者环境控制器内的模块(例如,芯片)。该通信装置可以包括处理器、存储器和收发器,该收发器用于接收来自该通信装置之外的其它通信装置的信息,以及向该通信装置之外的其它通信装置输出信息,当该处理器执行该存储器存储的计算机程序时,使得该处理器执行第三方面或第三方面的任一实施方式公开的通信方法。
第十方面公开一种通信系统,该通信系统包括第七方面的通信装置、第八方面的通信装置以及第九方面的通信装置。
第十一方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如上述各方面公开的通信方法。
第十二方面公开一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被执行时,使得芯片执行上面的方法。
作为一种可能的实施方式,存储器位于芯片之外。
第十三方面公开一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述通信方法被执行。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的一种场景示意图;
图3是本发明实施例公开的一种通信方法的流程示意图;
图4是本发明实施例公开的一种终端设备与接入网设备的通信示意图;
图5是本发明实施例公开的一种调整位置请求信令帧格式的示意图;
图6是本发明实施例公开的一种储能数值、吸收效率的查询请求信令和查询响应信令帧格式的示意图;
图7是本发明实施例公开的一种调整位置确认信令帧格式的示意图;
图8是本发明实施例公开的一种调控板处于不同状态时入射波和反射/透射波的示意图;
图9是本发明实施例公开的一种状态图样请求信令帧格式的示意图;
图10是本发明实施例公开的另一种场景示意图;
图11为本发明实施例公开的一种时频资源和发射功率分配的示意图;
图12是本发明实施例公开的又一种场景示意图;
图13是本发明实施例公开的一种时域冲击响应的示意图;
图14是本发明实施例公开的一种时频资源分配的示意图;
图15是本发明实施例公开的一种终端设备、接入网设备、调控板之间信令交互的示意图;
图16是本发明实施例公开的一种状态图样确认信令帧格式的示意图;
图17是本发明实施例公开的一种调控板的调整位置和状态的流程图;
图18是本发明实施例公开的一种通信装置的结构示意图;
图19是本发明实施例公开的另一种通信装置的结构示意图;
图20是本发明实施例公开的又一种通信装置的结构示意图;
图21是本发明实施例公开的又一种通信装置的结构示意图;
图22是本发明实施例公开的一种模拟电路的示意图;
图23是本发明实施例公开的一种调控板的状态切换示意图;
图24是本发明实施例公开的又一种通信装置的结构示意图;
图25是本发明实施例公开的又一种通信装置的结构示意图;
图26是本发明实施例公开的一种通信系统的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法、装置及计算机可读存储介质,用于提高通信系统的吞吐量。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或者特性可以包含在本实施例申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是相同的实施例,也不是与其它实施例互斥的独立的或是备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本申请的说明书和权利要求书及所述附图中术语“第一”、“第二”、“第三”等是区别于不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元,或者可选地,还包括没有列出的步骤或单元,或者可选地还包括这些过程、方法、产品或设备固有的其它步骤或单元。
附图中仅示出了与本申请相关的部分而非全部内容。在更加详细地讨论示例性实施例之前,应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
在本说明书中使用的术语“部件”、“模块”、“系统”、“单元”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件或执行中的软件。例如,单元可以是但不限于在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或分布在两个或多个计算机之间。此外,这些单元可从在上面存储有各种数据结构的各种计算机可读介质执行。单元可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一单元交互的第二单元数据。例如,通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
为了更好地理解本发明实施例,下面先对本发明实施例使用的网络架构进行描述。
请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括接入网设备、环境控制器和调控板。接入网设备可以包括一个或多个接入网设备(图1中示意出了一个),环境控制器可以包括一个或多个环境控制器(图1中示意出了一个),调控板可以包括一个或多个调控板(图1中示意出了一个)。
环境控制器、接入网设备、调控板任意两者之间可以进行通信,也即是环境控制器、接入网设备、调控板任意两者之间可以是互联互通的,通信方式可以为无线通信,也可以为有线通信。其中,接入网设备之间可以通过光纤接口进行通信,也可以通过Xn接口进行通信。接入网设备与环境控制器之间可以通过空口(即空中接口,如Uu口)进行通信,接入网设备与调控板之间也可以通过空口进行通信。环境控制器与调控板之间可以通过无线局域网(wireless local area network,WLAN)进行通信。除了上述通信方式以外,环境控制器、接入网设备、调控板任意两者之间还可以通过蓝牙(bluetooth)、超宽带(ultra wide band,UWB)、远距离无线电(long range radio,LoRa)、窄带物联网(narrow band internet of things,NB-IoT)等方式进行通信。
需要说明的是,图1所示的网络架构中还可以包括一个或多个终端设备,终端设备与接入网设备、环境控制器、调控板之间可以进行通信。通信方式可以为无线通信,也可以为有线通信。终端设备与接入网设备、环境控制器、调控板之间的通信采用的无线通信制式可以为第二代移动通信技术(2th generation,2G)、第三代移动通信技术(3th generation,3G)、第四代移动通信技术(4th generation,4G)、第五代移动通信技术(5th generation,5G)、WLAN/无线保真(wireless fidelity,WiFi)、bluetooth、UWB、LoRa、NB-IoT等,也可以为上述一种或多种无线通信制式的组合。
其中,终端设备与接入网设备之间的通信可以包括上行通信(即终端设备到接入网设备的通信)和下行通信(即接入网设备到终端设备的通信)。在上行通信中,终端设备用于向接入网设备发送上行信号;接入网设备用于接收来自终端设备的上行信号。在下行通信中,接入网设备用于向终端设备发送下行信号;终端设备用于接收来自接入网设备的下行信号。上行通信对应的链路为上行链路,下行通信对应的链路为下行链路。
需要说明的是,图1所示的网络架构中不限于仅包括图中所示的接入网设备、调控板和环境控制器。
应理解,图1所示的网络架构只是示例性说明,并不对其构成限定。
终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。终端设备可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(如智能手表、智能手环、计步器等),车载设备(如汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(如冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无 线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(如智能机器人、热气球、无人机、飞机等)或其他可以接入网络的设备。
接入网设备可以包括无线接入网设备,无线接入网设备是部署在无线接入网中为终端设备提供无线通信功能的装置。其中,无线接入网(radio access network,RAN)设备可以包括各种形式的基站(base station,BS)。例如,宏基站、微基站(也称为小站)、中继站、接入点等。在采用不同的无线接入技术的系统中,无线接入网设备的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。无线接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。无线接入网设备还可以是未来网络(如6G等)中的基站设备或者未来演进的公共陆地移动网(public land mobile network,PLMN)网络中的无线接入网设备。无线接入网设备还可以是可穿戴设备或车载设备。无线接入网设备还可以是传输接收节点(transmission and reception point,TRP)。
调控板,又可以称为电磁波调控板(electromagnetic pannel,EP),是一种可以对电磁波的方向、幅度、相位等进行调控(改变)的设备。调控板可以包括有收发信机、一个或多个超材料单元。其中,收发信机可以提供通信功能,每个超材料单元可以包括有移相电路、调幅电路、吸收储能电路,从而可以实现对电磁波的方向、幅度、相位等进行调控。
环境控制器,是一种具有计算能力的设备。环境控制器可以进行数值计算,也可以进行逻辑计算,还可以具有存储功能。环境控制器可以按照预先设定的程序运行,从而可以自动、高速的处理海量数据。环境控制器可以为微型计算机、超级计算机、嵌入式计算机等,也可以为其它具备计算能力的设备。
需要说明的是,本发明实施例中环境控制器的数据处理工作可以由接入网设备执行,因此,环境控制器可以为接入网设备中的模块。
为了更好地理解本发明实施例,下面先对本发明实施例的应用场景进行描述。
请参阅图2,图2是本发明实施例公开的一种场景示意图。图2所示的场景可以为工业4.0的自动化工厂的应用场景。在该场景中,可以存在一个或多个接入网设备,以及可以存在多个不同的终端设备,如一个或多个工业机器人201、一个或多个自动引导车(automated guided vehicle,AGV)202、一个或多个监控摄像头203、一个或多个笔记本电脑204、一个或多个调控板205、一个或多个接入网设备206、一个或多个智能手机207。除了上述设备之外,还可以包括环境控制器、仓储货物的物联网(internet of thing,IoT)设备、可穿戴设备、巡逻机器人、平板电脑等。
其中,不同类型的终端设备,其对网络速率、时延、可靠性、连接数量等需求可能不同,对服务质量(quality of service,QoS)的要求差异较大。仓储货物的IoT设备,一般情况下连接数量较大,对网络速度的要求较低,功耗敏感,时延不敏感。AGV设备,一般情况下位置会经常移动,有连续性覆盖的需求,对网络速率的要求一般,时延敏感。监控摄像头,通常情况下位置是处于固定状态,对网络速率的要求较高,便于数据的上传保存,需要一定的通信可靠性。工业机器人(工业机器人手臂),一般情况下位置是固定的,对网络速率的要求一般,时延敏感,对通信可靠性的要求较高。笔记本电脑、平板电脑等,一般情况下不会 经常移动,对网络速率的要求一般,对通信的可靠性要求一般。
并且,在图2所示的场景中,在不同的时间段内,不同类型的终端设备的通信业务具有一定的规律。
例如,机械设备的控制传感器、工业传送皮带上的传感器、货柜支架上的射频识别标签(radio frequency identification,RFID)传感器等数据采集的小数据包业务,可能每1秒或者每几秒发生一次;机器人的控制信令业务可能一直持续不间断的发生,以便精确的对其进行控制;监控摄像头的高清数据业务可能每10分钟发生一次,即可以将实时采集的视频数据先保存在本地存储器内,然后10分钟进行一次数据的上传,进行数据的备份。
其中,在图2所示场景中的各种终端设备的通信业务的规律可以通过工业控制程序进行统计或预测,之后可以得到各种终端设备的通信业务类型(例如,上述传感器的数据采集的小数据包业务、机器人的控制信令业务、摄像头的高清数据业务等)和相应的通信业务数据。通信业务数据可以包括终端设备的通信业务的发生频次,例如,每小时发生1次、每分钟发生1次、每秒钟发生1次、持续时间不间断发生等。此外,通信业务数据还可以包括终端设备每次业务的持续时间以及传输数据量的大小。并且,由于在图2所示的自动化工厂的场景下,每天或者每小时各种终端设备的通信业务可能呈周期性重复的发生,因此,可以通过之前的先验数据(即已知的数据)预测接下来终端设备的通信业务的规律。
需要说明的是,图2所示的场景中不限于仅包括图中所示的工业机器人、自动引导车、监控摄像头、笔记本电脑、调控板等。
应理解,图2所示的场景只是示例性说明,并不对其构成限定。
为了更好地理解本发明实施例,下面先对本发明实施例的相关技术进行描述。
随着通信技术的不断发展,以及各种新型通信业务模式的出现,对于无线通信系统的性能要求越来越高。例如,针对于智能工厂(smart factory,SF),其需要满足智能工厂中的不同终端设备的通信需求,面临着高可靠性和海量连接数的挑战。因此,需要采取相应的措施增加无线通信系统的吞吐量,提高通信的可靠性。
其中,可重构智能表面(reconfigurable intelligent surface,RIS)是一种可以通过改变材料表面单元的介电常数的可重构天线技术。RIS技术可以基于不同状态之间的转换调控,来实现在空间维度上对电磁波的操控,也即是通过改变材料表面单元的介电常数,来对电磁波的方向、幅度、相位等进行调控。并且,RIS技术具有低成本、低功耗、低开销的优点。
无线传能(wireless power transfer,WPT)是一种可以通过电磁波实现无接触式的能量传输和充电的无线技术。其中,WPT技术大致可以分为近场的感应耦合WPT、远场的微波WPT、激光束WPT等技术。
智慧无线电环境(smart radio environment,SRE)是一种通过RIS和WPT等技术手段实现人为调控的无线电磁波传播环境(信道)。SRE技术可以改变接入网设备与终端设备之间的传播环境,使传播环境达到一个理想的状态,可以缓解传统的无线信道多径传播和多普勒扩展等引起的影响,有效解决信号衰落、障碍物遮挡等问题,可以提高数据传输效率,从而可以提升无线通信系统的吞吐量性能。
目前,在通过RIS实现SRE的过程中,为了精确的改变信号的传播环境,通常情况下需要测量终端设备与RIS之间的瞬时或统计信道状态信息(channel state information,CSI)以及RIS与接入网设备之间的瞬时或统计CSI。而测量终端设备与RIS之间以及RIS与接入网设备之间的CSI所需系统开销较大,以致降低了通信系统的吞吐量。因此,如何提高通信系 统的吞吐量非常重要。
基于上述网络架构,请参阅图3,图3是本发明实施例公开的一种通信方法的流程示意图。如图3所示,该通信方法可以包括以下步骤。
301.环境控制器向接入网设备发送调控板的位置信息。
相应地,接入网设备可以接收来自环境控制器的调控板的位置信息,位置信息可以只包括旋转信息,也可以只包括移动信息,还可以同时包括移动信息和旋转信息。旋转信息可以只包括旋转角度,也可以同时包括旋转方向和旋转角度,移动信息可以只包括移动距离,也可以同时包括移动方向和移动距离。
由于在如图2所示的工业4.0场景下,空间较大、环境较复杂,因此室内各个终端设备的通信质量不能得到有效的保证,无法满足终端设备的混合业务的通信需求。因此,本发明实施例可以通过操控调控板来优化调控板周围空间的传播环境,提高终端设备与接入网设备之间的平均传输质量,从而可以提高无线通信系统的平均吞吐量。“传播环境”可以理解为环境控制器、接入网设备、调控板、终端设备所处的物理空间环境,例如,一个工厂车间、一个办公室、一个会议室等。
环境控制器可以先确定调控板的位置信息,之后再向接入网设备发送调控板的位置信息。
环境控制器可以根据三维空间地图确定调控板的位置信息。三维空间地图可以包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
建筑结构信息可以包括自动化工厂的厂房的建筑结构等信息,如厂房的长度、宽度、高度信息,墙壁、地板、天花板的材质信息和厚度信息,以及厂房内的承重柱、装饰柱的建筑位置、建筑材质和厚度信息。之后,环境控制器可以根据建筑结构信息建立空间坐标系,例如,环境控制器可以将厂房的右下角作为空间坐标原点(0,0,0),建立三维空间坐标系。因此,环境控制器可以根据该坐标系确定厂房中的设备以及承重柱等的三维坐标。
固定设备的位置信息和材质信息可以包括厂房内的机械设备、工业传送皮带、货柜支架、机器人手臂、工业摄像头等固定设备在厂房内的安装位置以及它们的结构材料信息。结构材料信息可以包括设备的几何尺寸和形状(例如,长宽高、矩形/圆形/不规则形状等),还可以包括设备的材料信息(例如,钢铁、铝合金、塑料、玻璃、纸质、皮质、碳纤维等)和设备的表面的粗糙程度(例如,镜面光滑、一般光滑、一般粗糙、非常粗糙)。
固定设备的通信业务模型信息可以包括机械设备的控制传感器、工业传送皮带上的传感器、货柜支架上的RFID传感器、机器人手臂的通信设备、工业摄像头的通信设备等设备的通信业务模型,通信业务模型具体可以包括各个设备的业务类型(例如,传感器数据采集的小包业务、机器人的控制信令业务、摄像头的高清数据业务等)和业务数据。业务数据可以包括终端设备的通信业务的发生频次,例如,每小时发生1次、每分钟发生1次、每秒钟发生1次、持续时间不间断发生等。此外,业务数据还可以包括终端设备每次业务的持续时间以及传输数据量的大小。并且,由于在图2所示的自动化工厂的场景下,每天或者每小时各种终端设备的通信业务可能呈周期性重复的发生,因此,可以通过之前的先验数据(即已知的数据)预测接下来终端设备的通信业务的规律。
接入网设备的部署信息可以包括1个或多个接入网设备的天线在厂房的部署位置、天线的规格信息、接入网设备的发射功率等信息。根据接入网设备的部署信息可以获得接入网设备的覆盖区域范围以及不同范围的覆盖强度。
上述建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息等先验信息可以提前输入到环境控制器,环境控制器可以将其存储在本地。可以理解的是,如图2所示的自动化工厂的厂房、机械设备、工业传输皮带、货运机器人等资产可以属于一家企业,也可以属于多家企业。该一家企业或多家企业可以获得上述建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息等先验信息,并且可以将这些信息提前输入环境控制器。
调控板的空间位置(即地理位置)可以是固定不变的。此时,在调控板部署完成后,调控板的空间位置被固定,无法来回移动,仅能旋转角度或方向。
调控板的空间位置也可以是变动的。此时,调控板可以部署在滑动轨道上,在调控板部署完成后,调控板可以旋转角度或方向,也可以通过滑动轨道进行移动。
在终端设备的通信业务和通信需求不同的情况下,可能需要的调控板的数量不同。在终端设备的通信业务为小数据包业务,以及终端设备对通信速率、时延等要求不高的情况下,可能需要较少的调控板进行传播环境的调控。相应地,在终端设备的通信业务为大数据包业务,以及终端设备对通信速率、时延等要求较高的情况下,可能需要较多的调控板进行传播环境的调控。
在仅需要部署的所有调控板中的部分调控板的情况下,环境控制器可以从部署的所有调控板中选择部分调控板,再确定选择的调控板的位置信息。环境控制器可以将其它未选择的调控板的状态确定为吸收储能(charging)态。吸收储能态也可以简称为C态,是指将吸收的电磁波转换为电能并存储的状态。调控板处于吸收储能态时可以利用调控板的电路从周围环境的电磁波吸收能量并转化为电能存储在本地电池中。
环境控制器可以根据建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息、接入网设备的部署信息等信息选择调控板。
假设在调控板的空间位置是固定不变的情况下,部署了N个调控板,N个调控板对应N个空间位置;或者,在调控板的空间位置是变动的情况下,部署了Q个调控板,Q个调控板可以通过移动位于N个空间位置中的任意一个空间位置,但一个空间位置上同时只能存在一个调控板。在这两种情况下的N个空间位置可以相同,也可以不同。需要选择的调控板的数量可以为M。N、Q、M为大于或等于1的整数,且M≤Q≤N。
环境控制器可以根据建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息、接入网设备的部署信息等信息先选择M个空间位置,再选择M个调控板。
环境控制器从N个空间位置中选择M个空间位置存在
Figure PCTCN2022127117-appb-000001
种情况,环境控制器可以假设每一种情况下的M个空间位置上存在调控板,其它N-M个空间位置上不存在调控板,然后,环境控制器可以确定每一种情况下接入网设备与终端设备之间的平均通信质量或平均吞吐量等指标。之后,环境控制器可以将平均通信质量或平均吞吐量等指标最好的情况下的M个空间位置确定为目标位置。可以理解的是,环境控制器确定的平均通信质量或平均吞吐量等指标可以是一段时间的,因此,得到的目标位置可以为一段时间的目标位置。
由于调控板在同一空间位置的不同空间方向以及不同状态时,可以对周围空间的传播环境造成不同的改变,可能会导致终端设备与接入网设备之间传输路径不同以及传输损耗不同,从而终端设备和接入网设备接收到的信号的功率可能会发生改变。因此,在确定目标位置时,可以假设每一种情况下的M个空间位置上的调控板都处于被动转发态,并且调控板的空间方向都为垂直于墙壁的方向。被动转发(passive transmission)态,也可以简称为P态,是指将入射的电磁波进行反射或透射的状态。调控板处于被动转发态时可以对入射电磁波不做任何处理 直接进行反射或透射,此时,调控板既没有从周围环境吸收能量,也没有向外释放本地电池的能量。
环境控制器从N个空间位置中选出M个空间位置可以采用如下公式(1):
Figure PCTCN2022127117-appb-000002
L是空间位置集合,其可以有
Figure PCTCN2022127117-appb-000003
种情况(取值),可以记为L={L 1,…,L m,…,L M},L m=(x m,y m,z m),1≤m≤M。x m,y m,z m分别表示第m个空间位置的x轴,y轴,z轴的坐标位置,也即是根据三维空间地图确定的坐标位置。
Figure PCTCN2022127117-appb-000004
可以表示时间平均的和速率(average sum-rate),其单位可以为比特每秒(bit/s)。T可以表示时间窗口的长度,其单位可以为秒(s)。K可以表示业务激活用户数,也可以理解为存在通信业务(上行通信业务或下行通信业务)的终端个数,其可以由三维空间地图包括的通信业务模型信息得到,也可以通过模型预测得到。rank(Ω k(t))可以表示第k个用户在t时刻的角度域多径的秩数(rank),也可以理解为在t时刻,第k个终端设备与接入网设备之间信号的传输路径的个数(接入网设备与终端设备的传输路径可以是相同的)。γ k,i(t)可以表示第k个用户在t时刻的第i个角度域的信噪比,也可以理解为第k个终端设备在t时刻的第i条传输路径接收到的来自接入网设备的信号的信噪比或者接入网设备在t时刻的第i条传输路径接收到的来自第k个终端设备的信号的信噪比。
空间位置集合包括M个元素,这M个元素是从N个空间位置中选择的,总共有
Figure PCTCN2022127117-appb-000005
个空间位置集合,环境控制器可以计算每个空间位置集合的
Figure PCTCN2022127117-appb-000006
max是指选择
Figure PCTCN2022127117-appb-000007
个空间位置集合中可以使得
Figure PCTCN2022127117-appb-000008
最大的空间位置集合。
根据香农公式,假设信道带宽W为1的情况下,上式中的log 2(1+γ k,i(t)可以理解为第k个终端设备在t时刻的第i条传输路径上的通信速率(信道容量)。
Figure PCTCN2022127117-appb-000009
可以理解为第k个终端设备在t时刻的rank(Ω k(t))条传输路径上的通信速率的和。
Figure PCTCN2022127117-appb-000010
可以理解为K个终端设备中每个终端设备在t时刻的通信速率的和的累加。
Figure PCTCN2022127117-appb-000011
表示对一段时间T进行积分,通过积分可以求得K个终端设备中每个终端设备在时间周期T内每个时刻的通信速率的和的累加,然后再除以T可以得到该时间周期的平均值
Figure PCTCN2022127117-appb-000012
可以理解的是,如果只考虑一段时间(T)内接入网设备向终端设备发送的信号,也即是只考虑下行通信,此时,
Figure PCTCN2022127117-appb-000013
可以表示如图2所示的自动化工厂的厂房中的所有终端设备在一段时间内的下行平均通信速率,因此,通过上述公式(1)求得的M个空间位置(目标位置)可以是使得下行平均通信速率最大的M个空间位置,也即是使得下行平均吞吐量最大。同理,如果只考虑一段时间(T)内终端设备向接入网设备发送的信号,也即是只考虑上行通信,通过公式(1)求得的目标位置可以使得一段时间内上行平均通信速率最大的M个空间位置,也即是使得上行平均吞吐量最大。如果考虑一段时间(T)内终端设备向接入网设备发送的信号以及接入网设备向终端设备发送的信号,也即是同时考虑上行通信的下行通信,通过公式(1) 求得的目标位置可以使得一段时间内上下行的总的平均通信速率最大的M个空间位置,也即是使得通信系统的上下行平均吞吐量最大。
其中,公式(1)中的时间窗口的长度T可以根据实际情况选择,例如,可以为10秒、1分钟、10分钟等。
由于环境控制器需要知道一段时间(T)内的通信业务数据(即业务类型和业务数据),才可以确定每个时刻哪些终端设备存在通信业务,从而才可以确定上式中的K。因此,环境控制器可以先确定一段时间(T)内的通信业务数据。
环境控制器可以根据固定设备的通信业务模型信息确定一段时间(T)内的通信业务数据。例如,环境控制器通过通信业务模型信息,可以确定终端设备在第一时间段内(如8:10-8:15)的通信业务,以及在第二时间段内(如8:15-8:25)的通信业务。在终端设备为机器人的情况下,通信业务可以包括机器人的控制信令业务,控制信令业务在第一时间段内可以每5秒钟发生一次,每次持续1秒钟;在第二时间段内可以每10秒钟发生一次,每次持续1秒钟。
环境控制器可以直接根据固定设备的通信业务模型信息确定一段时间(T)内的通信业务数据。由于在图2所示的自动化工厂的场景下,每天或者每小时各种终端设备的通信业务可能呈周期性重复的发生,因此,环境控制器可以直接根据之前的业务类型和业务数据确定在未来一个时间段内终端设备的业务类型和业务数据。例如,终端设备每一天的业务类型和业务数据可以相同,因此,环境控制器可以将前一天终端设备在上午8:10到上午8:15的业务类型和业务数据确定为后一天上午8:10到上午8:15的业务类型和业务数据。
环境控制器也可以根据固定设备的通信业务模型信息建立模型,通过模型确定一段时间(T)内的通信业务数据。具体地,环境控制器可以根据终端设备之前的部分或者全部先验数据(即已知的业务类型和业务数据信息)建立模型预测未来一段时间内终端设备的通信业务的规律,从而确定终端设备的业务类型和业务数据。例如,环境控制器可以建立神经网络模型或者其它机器学习模型对终端设备下一个时间段的业务类型和业务数据进行预测。其中,模型的训练样本可以为终端设备之前的先验数据(即已知的终端设备的业务类型和业务数据信息),模型的输入可以为终端设备前一个时间段内(8:10-8:15)的业务类型和业务数据的信息,模型的输出可以为终端设备后一个时间段内(8:15-8:20)的业务类型和业务数据的信息。
环境控制器在确定了每个时刻存在通信业务的终端设备之后,可以确定存在通信业务的终端设备在每个时刻的传输路径的个数(即rank(Ω k(t))),以及每条传输路径对应的信噪比(即γ k,i(t))。
环境控制器可以根据建筑结构信息、固定设备的位置信息和材质信息、接入网设备的部署信息确定rank(Ω k(t))。具体地,环境控制器可以根据接入网设备的部署信息可以确定接入网设备的空间位置,根据固定设备的位置信息可以确定终端设备的空间位置。并且,环境控制器根据建筑结构信息、固定设备的位置信息和材质信息、接入网设备的部署信息可以确定接入网设备向终端设备发送的信号可以经过哪些传输路径(传播路径)到达终端设备,以及可以确定终端设备向接入网设备发送的信号可以经过哪些传输路径到达接入网设备,从而可以确定传输路径的个数(即rank(Ω k(t)))。如可以结合建筑结构信息、固定设备的位置信息和材质信息、接入网设备的部署信息等信息,通过对接入网设备与终端设备的信号进行仿真来确定传输路径。在周围的传播环境不变的情况下,终端设备向接入网设备发送信号的传输路径与接入网设备向终端设备发送信号的传输路径可以相同。在周围的传播环境变化(如调控板的空间位置发生变化)的情况下,终端设备向接入网设备发送信号的传输路径与接入网 设备向终端设备发送信号的传输路径可以不同。
环境控制器可以根据建筑结构信息、固定设备的位置信息和材质信息、接入网设备的部署信息确定γ k,i(t)。具体地,环境控制器可以根据建筑结构信息、固定设备的位置信息和材质信息、接入网设备的部署信息确定传输损耗,根据传输损耗确定γ k,i(t)。环境控制器可以确定接入网设备向终端设备发送的信号在每一条传输路径上的传输损耗(即下行损耗),也可以确定终端设备向接入网设备发送的信号在每一条传输路径上的传输损耗(即上行损耗)。传输损耗可以包括自由空间传播损耗、反射损耗、透射损耗等。其中,电磁波信号的频率不同,其自由空间传播损耗、反射损耗、透射损耗等也会不同,电磁波频率越高,波长越短,自由空间传播损耗越大,电磁波频率越低,波长越长,自由空间传播损耗越小。并且,信号在玻璃、纸质、皮质、碳纤维、石膏板墙、砖墙等不同材质上发生反射、透射会有不同程度的损耗。例如,2.4GHz信号在穿透石膏板墙后的信号可能会下降3dB,也即是信号会衰减3dB。再例如,2.4GHz信号穿透砖墙后的信号可能会下降12dB,也即是信号会衰减12dB。
下面介绍本发明实施例确定传输损耗的一种方式:
环境控制器可以确定接入网设备和终端设备的空间距离,根据该空间距离确定传输损耗。具体地,发射机(transmitter,TX)和接收机(receiver,RX)的三维空间坐标,可以分别记为(x 1,y 1,z 1)和(x 2,y 2,z 2)。然后根据TX和RX的三维空间坐标可以通过公式(2)确定TX和RX之间的空间距离d 3D。TX可以理解为发送信号的设备,其可以为接入网设备或终端设备,RX可以理解为接收发射机发送的信号的设备,其可以为接入网设备或终端设备。
Figure PCTCN2022127117-appb-000014
当1m≤d 3D≤150m时,环境控制器可以将TX到RX的大尺度路径传输损耗(path loss,PL)根据直视径(line-of-sight,LOS)和非直视径(non-line-of-sight,NLOS)进行分类,分别记为PL LOS和PL NLOS,单位为分贝(dB)。LOS可以理解为TX和RX的三维空间坐标的两个点之间进行连线时,连线的中间没有遮挡物的情况下的连线路径;相反,NLOS可以理解为连线的中间存在遮挡物的情况下的路径。当d 3D≥150m时,环境控制器可以按照d 3D=150m计算TX到RX的大尺度路径传输损耗。
环境控制器对发射机到接收机的传输路径上的传输损耗的计算可以采用如下公式(3)、公式(4)以及公式(5):
PL LOS=32.4+17.3log 10(d 3D)+20log 10(f c) (3)
PL NLOS=max(PL LOS,PL′ NLOS) (4)
PL′ NLOS=32.4+31.9log 10(d 3D)+20log 10(f c) (5)
其中,公式(3)可以计算直视径的传输损耗;公式(3)、公式(4)以及公式(5)联合起来可以计算非直视径的传输损耗。上述公式中的f c可以为载波的频率(即接入网设备的载波频率),单位为GHz。算符max(a,b)是选择a和b中相对较大的值,例如,max(10,5)=10。
环境控制器可以根据传输损耗确定终端设备的信噪比γ k,i(t)。假设接入网设备的发送功率、终端设备的发送功率以及信号传输过程中的噪声一定的情况下,环境控制器可以确定终端设备和接入网设备接收到的信号的信噪比(signal noise ratio,SNR)。例如,接入网设备的发送功率可以为40dBm,噪声功率可以为-30dBm,信号在传输过程中衰减10dB,因此,终端设备的接收功率可以为30dBm,从而终端设备接收到的信号的信噪比可以为60dB。
举例说明,请参见图4,图4是本发明实施例公开的一种终端设备与接入网设备的通信示意图。如图4所示,假设M为3,选择的M个空间位置可以为空间位置1、空间位置4以及空间位置N,通过公式(1)可以计算此时的
Figure PCTCN2022127117-appb-000015
在此种情况下,也即是只有空间位置1、空间位置4以及空间位置N存在调控板(P态)的情况下,环境控制器根据三维空间地图可以确定 接入网设备向终端设备1发送的信号可以通过Ω 1,1,Ω 1,2,Ω 1,3到达终端设备1;接入网设备向终端设备2发送的信号可以通过Ω 2,1,Ω 2,2到达终端设备2。同理,在传播环境不变的情况下,终端设备向接入网设备发送的信号也可以通过相同的路径到达接入网设备。环境控制器也可以确定接入网设备到终端设备1的Ω 1,1,Ω 1,2,Ω 1,3每一条路径上的损耗,以及接入网设备到终端设备2的Ω 2,1,Ω 2,2每一条路径上的损耗。并且,在接入网设备的发送功率以及终端设备的发送功率是固定的,以及传输路径的噪声功率也是固定的情况下,环境控制器可以确定终端设备1和终端设备2每一条路径接收到的信号的信噪比。环境控制器也可以确定终端设备1和终端设备2与接入网设备之间的通信业务数据,从而可以根据公式(1)可以确定该时间段内的
Figure PCTCN2022127117-appb-000016
环境控制器也可以选择不同的M个空间位置然后计算
Figure PCTCN2022127117-appb-000017
之后将最大的
Figure PCTCN2022127117-appb-000018
对应的空间位置确定为目标位置。应理解,图4所示的终端设备与接入网设备的通信只是示例性说明,并不对其构成限定。
公式(1)是典型的组合优化问题,可以采用交替方向乘子法(alternating direction method of multipliers,ADMM)或者其他方法进行求解。ADMM是一种可以解决可分解凸优化问题的方法,它可以将原问题的目标函数等价的分解成若干个可求解的子问题,然后并行求解每一个子问题,最后协调子问题的解得到原问题的全局解。
可以理解的是,环境控制器也可以采用公式(1)的各种变形来从N个空间位置中选出M个空间位置。例如,可以将γ k,i(t)替换为与其它与传输损耗相关的函数,如传输损耗的倒数相关的函数等。公式(1)只是示例性说明,还可以采用其他可以实现同等功能的公式,在此不作限定。
环境控制器选择了M个空间位置(即目标位置)之后,可以再选择M个调控板。选择的M个调控板与选择的M个空间位置一一对应。在调控板的空间位置是固定不变的情况下,环境控制器可以选择目标位置上的M个调控板,该M个调控板对应自身的空间位置。在调控板的空间位置是变动的情况下,环境控制器可以选择储能数值较高的M个调控板,也可以随意选择M个调控板。此时,该M个调控板和该M个空间位置的对应关系可以是:储能数值较高的调控板可以对应该M个空间位置中距离接入网设备较远的空间位置,储能数值较低的调控板可以对应该M个空间位置中距离接入网设备较近的空间位置。
环境控制器可以根据选择的M个调控板对应的空间位置确定移动信息。在调控板的空间位置是变动的情况下,环境控制器可以根据选择的M个调控板对应的空间位置,确定移动信息。在一种情况下,移动信息可以包括移动方向和移动距离。移动信息可以是具体的绝对空间位置(如三维空间坐标),此时,环境控制器可以直接将调控板对应的空间位置确定为移动信息。移动信息也可以是相较于调控板当前空间位置的具体的移动方向和移动距离,例如,移动方向可以为:右移,移动距离可以为:10米,此时,环境控制器可以根据调控板当前的空间位置确定移动信息。在另一种情况下,移动信息可以只包括移动距离,此时调控板可以预先规定一个默认的移动方向(如右移或左移),此时,环境控制器也可以根据调控板当前的空间位置确定移动信息。在确定移动信息之后,环境控制器可以向接入网设备发送位置信息,该位置信息可以包括移动信息。可见,环境控制器可以根据三维空间地图确定移动信息。
环境控制器在发送位置信息的同时,可以发送调控板的标识信息,如调控板的标识(identity document,ID),调控板的ID和调控板的位置信息是一一对应的。例如,可以对所有调控板从0进行编号。
环境控制器可以根据三维空间地图确定旋转信息。具体地,环境控制器根据三维空间地图选择调控板之后,环境控制器还可以确定选择的调控板的空间方向,之后,环境控制器可 以根据空间方向确定旋转信息。
环境控制器可以根据三维空间地图确定调控板的空间方向。环境控制器在选择了M个调控板之后,可以确定该M个调控板在对应的空间位置上,处于不同的空间方向时,接入网设备与终端设备之间的平均通信质量或平均吞吐量等指标,之后,可以将平均通信质量或平均吞吐量等指标最好的情况下的M个空间方向确定为目标方向。假设调控板的空间方向(姿态)可以有S个,因此,可以有S M种不同的空间方向组合。空间方向可以理解为调控板的不同角度。调控板的空间方向不同,调控板对应的角度不同。
例如,环境控制器可以通过公式(1)的分别计算出该M个调控板处于不同的空间方向的情况下的
Figure PCTCN2022127117-appb-000019
环境控制器可以得到S M
Figure PCTCN2022127117-appb-000020
结果,之后,环境控制器可以将最大的
Figure PCTCN2022127117-appb-000021
对应的调控板的M个空间方向确定为目标方向。
可以理解的是,环境控制器也可以同时确定M个空间位置,以及M个空间位置上的调控板的空间方向,只需要将公式(1)中的L中的L m添加上角度
Figure PCTCN2022127117-appb-000022
(即第m个空间位置上的调控板的空间方向),即
Figure PCTCN2022127117-appb-000023
1≤m≤M。
Figure PCTCN2022127117-appb-000024
表示第m个空间位置上的调控板的空间方向,也即是调控板的朝向。此种情况下,环境控制器的计算量更大,需要计算
Figure PCTCN2022127117-appb-000025
种情况下的
Figure PCTCN2022127117-appb-000026
但由于同时考虑了调控板的空间位置以及空间方向,计算了更多情况下的
Figure PCTCN2022127117-appb-000027
因此可以得到更加准确的结果。
环境控制器可以根据调控板的空间方向确定旋转信息。在一种情况下,旋转信息可以包括旋转方向和旋转角度。此时,旋转信息可以是调控板要调整到该空间方向的具体的旋转方向和旋转角度,例如,旋转方向为顺时针,旋转角度为90°,环境控制器可以根据调控板当前的空间方向确定旋转信息。旋转信息也可以是一个绝对的角度值
Figure PCTCN2022127117-appb-000028
也即是调控板的空间方向(目标朝向),该空间方向可以是以水平方向顺时针旋转为参照的空间方向,也可以是以水平方向逆时针旋转为参照的空间方向。例如,
Figure PCTCN2022127117-appb-000029
为90°可以表示调控板从水平方向顺时针旋转90°所处的空间方向。此时,环境控制器可以直接将调控板的对应的角度确定为旋转信息。在另一种情况下,旋转信息也可以只包括旋转角度,此时,调控板可以预先有一个默认的旋转方向(逆时针或顺时针),此时,环境控制器也可以根据调控板当前的空间方向确定旋转信息。在确定旋转信息之后,环境控制器可以向接入网设备发送位置信息,该位置信息可以包括旋转信息。
需要说明的是,环境控制器本地可以保存有调控板之前的空间位置和空间方向的信息。
可以理解的是,在调控板的空间位置是固定不变的情况下,环境控制器向接入网设备发送的位置信息中可以只包括旋转信息。在调控板的空间位置是变动的情况下,环境控制器向接入网设备发送的位置信息中可以只包括移动信息或旋转信息,也可以移动信息和旋转信息都包括。在调控板的目标位置和调控板的当前空间位置相同时,调控板不需要调整自身的空间位置,位置信息可以只包括旋转信息。上述两种情况下,最后可以达到的效果可以是一样的,也即是对通信系统的性能(如吞吐量)提升可以是一样的。
上述环境控制器确定位置信息时只利用了三维空间地图,但在实际中,调控板的吸收储能效率随着与接入网设备或终端设备的距离的远近可以不同。例如,距离接入网设备越近的调控板的吸收储能效率通常会更高,而距离接入网设备距离越远的调控板的吸收储能效率通常会更低。因此,环境控制器在确定调控板的位置信息时可以考虑调控板的吸收储能效率以及储能数值。
环境控制器可以根据三维空间地图,以及调控板的储能数值和吸收效率确定调控板的位置信息。吸收储能效率也可以称为吸收效率。
考虑到不同空间位置上的调控板的吸收储能效率不同,可以对公式(1)进行改进。由于调控板的吸收储能效率可以和接入网设备与调控板之间的距离有关,因此,可以在公式(1)中添加一个偏置项,该偏置项可以为调控板的吸收储能效率的函数。例如,可以参见下式公式(6):
Figure PCTCN2022127117-appb-000030
其中,
Figure PCTCN2022127117-appb-000031
中的c j可以表示选择的M个空间位置中的第j个空间位置上的调控板的吸收储能效率,例如可以为30%、50%,a可以为权重系数,其可以根据实际情况选择不同的值,如可以为0.5、0.9等。
可见,如果选择的M个空间位置上的调控板的吸收储能效率越高,该偏置项
Figure PCTCN2022127117-appb-000032
的结果会越大,因此
Figure PCTCN2022127117-appb-000033
取得的结果会越大,从而通过公式(6)最后确定的M个空间位置会偏向在调控板的吸收储能效率较大的空间位置,可以便于调控板储能。
同时,在选择M个空间位置时还可以考虑调控板的储能数值,如果调控板的储能数值较高,表明该调控板的储能较多,此时,可以较少的考虑调控板的吸收储能效率。如果调控板的储能数值较低,表示该调控板的储能可能不足,需要较多的考虑调控板的吸收储能效率。因此,可以对公式(6)进行相应的改进,如对调控板的吸收储能效率n j乘以一个权重b j,该权重与调控板的储能数值相关,储能数值越大权重可以越小,储能数值越小权重可以越大,可以参见下式公式(7):
Figure PCTCN2022127117-appb-000034
其中,b j可以为1与调控板的储能数值百分比的差值(即1减储能数值),该调控板可以是选择的M个空间位置中的第j个空间位置对应的调控板,因此,b j大于等于0,并且小于等于1。储能数值可以为30%、50%。
可见,公式(7)可以综合考虑调控板的储能数值以及调控板在不同空间位置上的吸收储能效率,因此,最后确定的M个空间位置可以提高调控板的平均吸收储能效率。
可以理解的是,环境控制器也可以采用公式(6)、公式(7)的各种变形来从N个空间位置中选出M个空间位置。例如,上式公式(6)中的
Figure PCTCN2022127117-appb-000035
也可以用M个空间位置与接入网设备之间的距离的函数替代,例如,可以用
Figure PCTCN2022127117-appb-000036
替换,其中d j可以表示选择的M个空间位置中的第j个空间位置到接入网设备的距离,单位可以为米(m),可见,如果选择的M个空间位置距离接入网设备越远,该M个空间位置与接入网设备之间距离的和会越大,因此,该偏置项
Figure PCTCN2022127117-appb-000037
的结果会越大,因此
Figure PCTCN2022127117-appb-000038
取得的结果会越小,因此,通过公式(6)最后确定的M个空间位置会偏向在距离接入网设备较近的空间位置。公式(6)、公式(7)只是示例性说明,还可以采用其他可以实现同等功能的公式,在此不作限定。
环境控制器可以接收来自接入网设备的调控板的储能数值和吸收效率。在一种情况下,接入网设备可以主动向环境控制器发送调控板的储能数值和吸收效率,相应地,环境控制器可以接收到来自接入网设备的调控板的储能数值和吸收效率。其中,储能数值可以为调控板的储能数值百分比(如为30%、60%等),也可以为调控板的具体储能数值(如为100毫安时(mAh))。吸收效率可以为调控板吸收电磁波能量转化为电能的效率(如为50%、80%等),其可以为调控板与发射电磁波的设备(如接入网设备、终端设备)之间的距离相关的函数。在另一种情况下,环境控制器可以通过向接入网设备发送第二请求获取调控板的储能数值和吸收效率。相应地,接入网设备可以接收到来自环境控制器的第二请求,之后,接入网设备可以根据第二请求向环境控制器发送调控板的储能数值和吸收效率。
302.接入网设备向调控板发送调控板的位置信息。
接入网设备在接收到来自环境控制器的调控板的位置信息之后,接入网设备可以向调控板发送该位置信息。
接入网设备可以通过调整位置请求信令(Request,REQ)向调控板发送位置信息。调整位置REQ可以包括接入网设备的标识(BS-ID),调控板的标识(EP-ID),调控板的旋转信息,调控板的移动信息,CRC校验符。
可以理解的是,在调控板的空间位置是固定不变的情况下,位置信息可以只包括旋转信息。因此,调整位置REQ中可以只包括旋转信息。在调控板的空间位置是变动的情况下,位置信息可以只包括移动信息或旋转信息,也可以同时包括移动信息和旋转信息。因此,调整位置REQ中可以只包括移动信息或旋转信息,也可以同时包括移动信息和旋转信息。
为了统一调整位置REQ的帧格式,调整位置REQ中可以包括移动信息和旋转信息。但在位置信息不包括移动信息或旋转信息的情况下,可以将调整位置REQ中移动信息和旋转信息的值设置为空(NULL)。环境控制器也可以通过调整位置REQ向接入网设备发送位置信息。
请参见图5,图5是本发明实施例公开的一种调整位置请求信令帧格式的示意图。如图5所示,调整位置请求信令(类型一)可以包括接入网设备ID、调控板ID、目标位置(即调控板对应的空间位置)、目标朝向(即调控板对应的角度)、CRC校验符。调整位置请求信令(类型二)可以包括接入网设备ID、调控板ID、移动方向和移动距离、旋转方向和旋转角度、CRC校验符。可以理解的是,图5所示的帧格式只是示例性说明,并不对其构成限定。
接入网设备可以接收来自调控板的储能数值和吸收效率。在一种情况下,调控板可以直接向接入网设备发送自身的储能数值和吸收效率,相应地,接入网设备可以接收到来自调控板的储能数值和接收效率。
在另一种情况下,接入网设备可以通过向调控板发送第一请求获取调控板的储能数值和吸收效率。相应地,调控板可以接收到来自接入网设备的第一请求,之后,调控板可以根据第一请求向接入网设备发送自身的储能数值和吸收效率。
其中,第一请求可以包括储能数值查询信令(check,CEK),其中,储能数值CEK可以包括接入网设备的标识(BS-ID),调控板的标识(EP-ID),查询类型,循环冗余校验(cyclic redundancy check,CRC)符。相应地,调控板可以接收来自接入网设备的储能数值查询CEK,之后调控板可以向接入网设备发送(反馈)储能数值响应信令(response,RSP),储能数值RSP中可以携带调控板本地电池的当前储能数值信息,其中储能数值RSP可以包括调控板的标识(EP-ID),接入网设备的标识(BS-ID),查询类型,查询数值,CRC校验符。
第一请求也可以包括吸收效率查询信令(CEK),其中,吸收效率CEK可以包括接入网设备的标识(BS-ID),调控板的标识(EP-ID),查询类型,CRC校验符。相应地,调控板可 以接收来自接入网设备的吸收效率CEK,之后,调控板可以向接入网设备发送(反馈)吸收效率响应信令(RSP),吸收效率RSP中可以携带调控板的吸收效率与调控板与发射电磁波的设备之间的距离的关系,也可以携带调控板在之前一段时间的平均吸收电磁波转换成本地电池电能的效率信息,吸收效率RSP可以包括调控板的标识(EP-ID),接入网设备的标识(BS-ID),查询类型,查询数值,CRC校验符。
可以理解的是,上述储能数值查询请求(信令)以及吸收效率查询请求(信令)可以分别进行发送,也即是环境控制器每次可以只查询储能数值或吸收效率。储能数值和吸收效率查询信令可以使用统一的帧格式。BS-ID可以唯一标识一个接入网设备,其可以为公共陆地移动网(public land mobile network,PLMN)码等组成的标识。查询类型可以为储能数值、吸收效率等类型,具体可以为一个具体的数值,如数值“1”可以表示查询的为储能数值,数值“2”可以表示查询的为吸收效率。循环冗余校验符可以用于检测或校验数据传输出现的错误。查询数值可以为具体的查询类型对应的数值,如当查询类型为吸收效率时,对应的查询数值为调控板的吸收效率,当查询类型为储能数值时,对应的查询数值为调控板的储能数值。
请参见图6,图6是本发明实施例公开的一种储能数值、吸收效率的查询请求信令和查询响应信令帧格式的示意图。如图6所示,查询请求信令可以包括接入网设备ID、调控板ID、查询类型、CRC校验符。查询响应信令可以包括接入网设备ID、调控板ID、查询类型、查询数值、CRC校验符。可以理解的是,图6所示的帧格式只是示例性说明,并不对其构成限定。
接入网设备在接收到来自调控板的储能数值和吸收效率之后,可以向环境控制器发送调控板的储能数值和吸收效率。在一种情况下,接入网设备可以直接向环境控制器发送调控板的储能数值和吸收效率。例如,接入网设备可以以一个固定的周期(如10秒、30秒)向环境控制器发送调控板的储能数值和吸收效率。在另一种情况下,接入网设备可以在接收到来自环境控制器的第二请求之后,根据第二请求向环境控制器发送调控板的储能数值和吸收效率。
303.调控板根据位置信息调整位置。
调控板可以在接收到来自接入网设备的位置信息之后,根据位置信息调整自身的位置。
调控板可以通过来自接入网设备的调整位置REQ接收到位置信息。调整位置REQ可以包括调控板的标识(如EP-ID)、调控板的旋转信息,调控板的移动信息等。调控板可以根据调控板的标识确定该调整位置REQ是否是发送给自身的。调控板在确定该调整位置REQ是发送给自身的情况下,调控板可以根据该调整位置REQ包括的旋转信息和/或移动信息调整自身的位置。
在旋转信息不为NULL的情况下,调控板可以根据旋转信息调整自身的空间方向。如果旋转信息包括旋转方向和旋转角度,调控板可以根据旋转方向和旋转角度调整自身的空间方向。
在一种情况下,旋转信息可以隐式的包括旋转方向和旋转角度。此时,旋转信息可以为一个绝对的角度值
Figure PCTCN2022127117-appb-000039
也即是调控板的空间方向(目标朝向),角度值
Figure PCTCN2022127117-appb-000040
可以是以水平方向为参照的角度值。旋转方向可以默认为顺时针或者逆时针,也即是旋转方向可以预先规定。如90°可以表示调控板从水平方向顺时针旋转90°的所处的角度,也可以表示调控板从水平方向逆时针旋转90°所处的角度。调控板可以根据角度值
Figure PCTCN2022127117-appb-000041
确定自身需要顺时针或者逆时针旋转多少度。例如,调控板当前的空间方向为顺时针50°的方向,而旋转信息为90°,假设默认为顺时针,此时,调控板需要再顺时针旋转40°调整到旋转信息对应的空间方向。调控板调整空间方向也即是调整自身超材料面板的朝向(即姿态)。
在另一种情况下,旋转信息可以显式的包括旋转方向和旋转角度。此时,调控板可以直 接根据旋转方向和旋转角度调整自身的空间方向。例如,旋转方向为顺时针,旋转角度为90°,调控板可以直接根据旋转信息顺时针旋转90°调整到对应的空间方向。
如果旋转信息只包括旋转角度,调控板可以根据旋转角度调整自身的空间方向。此时,调控板可以预先有一个默认的旋转方向(逆时针或顺时针)。例如,调控板的默认旋转方向为顺时针,当旋转角度为90°时,调控板可以直接顺时针旋转90°调整到对应的空间方向。
在移动信息不为NULL的情况下,调控板可以根据移动信息调整自身的空间位置。如果移动信息包括移动方向和移动距离,调控板可以根据移动方向和移动距离调整自身的空间方向。
在一种情况下,移动信息可以隐式的包括移动方向和移动距离。此时,移动信息可以为一个绝对的目标空间位置(如三维空间坐标)。调控板可以根据自身当前位置的三维空间坐标和目标空间位置的三维空间坐标确定移动方向和移动距离。例如,目标空间位置的三维空间坐标为(0,1,2),调控板当前位置的三维空间坐标为(0,0,2),调控板可以确定自身需要向正前方移动一米。调控板可以通过滑动导轨进行移动。
在另一种情况下,移动信息也可以显式的包括移动方向和移动距离。此时,调控板可以直接根据移动方向和移动距离调整自身的空间位置。例如,移动方向为右移,移动距离为10米,调控板可以直接向右移动10米调整到对应的空间位置。
如果移动信息只包括移动距离,调控板可以根据移动距离调整自身的空间位置。此时,调控板可以预先有一个默认的移动方向(如右移或左移)。例如,调控板的默认移动方向为左移,当移动距离为8米时,调控板可以直接向左移动8米调整到对应的空间位置。
当调控板调整完毕之后,调控板可以向接入网设备发送调整位置确认信令(acknowledge,ACK)。调整位置ACK可以包括调控板的标识(EP-ID),接入网设备的标识(BS-ID),调整成功与否标识符(Flag),CRC校验符。如果Flag为True,则表示调控板调整位置成功;如果Flag为False,则表示调控板调整位置失败。当Flag为False时,该调整位置ACK还可以包括调控板的当前位置信息(如调控板的空间位置和空间方向)。接入网设备接收到来自调控板的调整位置ACK之后,可以将调控板的调整位置ACK发送给环境控制器,以便环境控制器可以对调控板的位置进行汇总和记录。可见,环境控制器可以在本地存储所有调控板的当前空间位置和当前空间方向信息,以及历史空间位置和历史空间方向信息。调整位置可以指调整空间位置,也可以指调整空间方向,还可以指调整空间方向和空间位置。
请参见图7,图7是本发明实施例公开的一种调整位置确认信令帧格式的示意图。如图7所示,当调控板调整位置成功时,调整位置确认信令可以包括接入网设备ID、调控板ID、Flag标识、CRC校验符。当调控板调整位置失败时,调整位置确认信令可以包括接入网设备ID、调控板ID、Flag标识、当前位置(即当前的空间位置)、当前朝向(即当前的角度)、CRC校验符。可以理解的是,图7所示的帧格式只是示例性说明,并不对其构成限定。
接入网设备可以监控终端设备的服务质量(qualityof service,QoS),并根据QoS动态触发下一次传播环境调控(即调控板的位置调控)。例如,接入网设备在监控到终端设备QoS较低的情况下,也即是终端设备的通信质量较差的情况下,可以向环境控制器发送位置调整请求,当环境控制器接收到来自接入网设备的位置调整请求之后,环境控制器可以重新确定调控板的位置信息,然后向接入网设备发送该位置信息。当接入网设备接收到来自环境控制器的位置信息之后,接入网设备可以向调控板发送调整位置REQ,之后,当调控板接收到接入网设备发送的调整位置REQ,调控板可以及时调整自己的位置(空间位置和空间方向),以便可以优化调控板的周围空间的传播环境,提高终端设备与接入网设备之间的平均传输质量, 进而可以提高通信系统的吞吐量。
304.环境控制器向接入网设备发送调控板的状态图样。
相应地,接入网设备可以接收到来自环境控制器的调控板的状态图样。
状态图样可以包括状态信息。状态信息对应的状态可以为吸收储能态、主动转发态或被动转发态。主动转发(active transmission)态,也可以简称为A态,是指将入射的电磁波经放大后进行反射或透射的状态,调控板处于主动转发态时可以利用调控板本地电池的能量对入射电磁波进行放大再对放大后的电磁波进行反射或透射。
请参见图8,图8是本发明实施例公开的一种调控板处于不同状态时入射波和反射/透射波的示意图。如图8所示,当调控板处于吸收储能态时,调控板的储能会增加,调控板会吸收入射电磁波的能力将其转化为电能存储在本地电池中,因此此时没有相应的反射/透射波。当调控板处于被动转发态时,调控板的储能不变,此时,调控板只是被动的对入射电磁波进行反射或透射,既没有从周围环境吸收能量,也没有向外释放本地电池的能量。当调控板处于主动转发态时,调控板的储能会减少(电量减少),调控板可以利用本地电池的能量对入射电磁波进行放大再对放大后的电磁波进行反射或透射,但放大后的电磁波可以比入射电磁波的幅度小,也可以比入射波大,其与相应的放大倍数有关,但主动转发态的反射/透射波比被动转发态的反射/透射波的幅度大。应理解,图8所示的入射波和反射/透射波的示意图只是示例性说明,并不对其构成限定。
环境控制器可以先确定调控板的状态图样,之后可以再向接入网设备发送调控板的状态图样。
环境控制器在确定位置信息之后,可以确定该位置信息对应的调控板的状态图样。环境控制器可以根据三维空间地图和调控板的位置信息确定调控板的状态图样。调控板的位置信息不同,接入网设备和终端设备的传输路径和传输损耗可以不同,因此,环境控制器可以先确定调控板的位置信息。环境控制器在确定调控板的位置信息之后,调控板的位置(空间位置和空间方向)可以处于固定状态。此时,调控板处于不同的状态时,调控板会对周围空间的传播环境造成不同的改变,接入网设备向终端设备发送的信号可以经过不同的路径到达终端设备以及终端设备接收到的信号的功率可以不同。
例如,请参见图4,如图4所示,从接入网设备发射的无线电磁波信号到达终端设备1(机器人手臂)的路径可以有三条,Ω 1,1是接入网设备到终端设备1的直视径(LOS),Ω 1,2是接入网设备经过调控板4反射之后到达终端设备1的非直视径(NLOS),Ω 1,3是接入网设备经过调控板1反射之后到达终端设备1的非直视径(NLOS)。但如果调控板4处于吸收储能态(C态),Ω 1,2这一条路径上的信号就不会到达终端设备1,而是被调控板吸收转化为电能存储在本地电池中;如果调控板4处于被动或主动转发态(P态或A态),Ω 1,2这一条路径上的信号可以到达终端设备1,但被动转发态比主动转发态损耗更大(衰减更严重),因此到达终端设备1的信号强度不一样。主动转发态时的信号强度更大(接收功率更大)。同理的,从接入网设备发射的无线电磁波信号到达终端设备2(手机)的路径可以有两条。Ω 2,1是接入网设备到终端设备2的直视径,Ω 2,2是接入网设备经过调控板N反射之后到达终端设备2的非直视径。当调控板N分别处于C态、P态、A态时,Ω 2,1这一条路径上到达终端设备2的信号也可以是不同的。
调控板在一个时刻可以处于上述三种状态中的任意一种状态,假设调控板的状态图样的时间粒度为Δt,因此在时间周期T内可以存在
Figure PCTCN2022127117-appb-000042
种情况。环境控制器可以确定每一种情况下接入网设备与终端设备之间的平均通信质量或平均吞吐量等指标。之后,环境控制器可 以将平均通信质量或平均吞吐量等指标最好的情况下的M个状态图样确定为目标状态图样。
环境控制器从
Figure PCTCN2022127117-appb-000043
种情况中确定目标状态图样可以采用如下公式(8):
Figure PCTCN2022127117-appb-000044
上式中的S是状态图样集合,其有
Figure PCTCN2022127117-appb-000045
种情况(取值),可以记为S={S 1,…,S M},S m=[…,C m(t1),P m(t2),A m(t3),…],1≤m≤M,0≤t1<t2<t3≤T。状态图样集合包括M个元素,这M个元素中的一个元素是一个调控板在时间T内的
Figure PCTCN2022127117-appb-000046
个状态,每个状态可以为三种状态中的任意一种,因此,总共有
Figure PCTCN2022127117-appb-000047
个状态图样集合。公式(8)和公式(1)类似,可以参考步骤301的相关描述,在此不再详细赘述。可见,通过公式(8)可以确定使得
Figure PCTCN2022127117-appb-000048
最大的M个状态图样,也即是上述选择的M个调控板的状态图样,该M个状态图样可以使得通信系统的平均吞吐量最大。
环境控制器确定了调控板的状态图样之后,环境控制器可以向接入网设备发送该状态图样。状态图样的起始时间可以为t0,时间粒度可以为Δt,状态图样为可以表示为S,状态图样也可以称为状态图样序列。
具体地,状态图样可以为A态、P态、C态这三个状态组成的序列,如{AAAAAPPC},也可以为序列的简化形式,如{C5P2A1},还可以为一个具体的状态图样索引{Index}。
例如,状态图样S={AAAAAPPC}可以表示从t0时刻到t0+5Δt时刻,调控板处于A态;从t0+5Δt时刻到t0+7Δt时刻,调控板处于P态;从t0+7Δt时刻到t0+8Δt时刻,调控板处于C态;从t0+8Δt以后的时刻,调控板可以周期重复上述状态图样序列。状态图样S={AAAAAPPC}也可以表示为S={C5P2A1}这种压缩表达,字符C/P/A表示调控板的状态,字符后面的数字表示该状态持续的时间粒度数量。状态图样S={Index},其中,Index索引表示收发两端(即环境控制器和接入网设备)通过标准协议事先约定好的公知的状态图样。如索引“1”可以表示S={AAAAAPPC}。
环境控制器在发送状态图样的同时,也可以发送调控板的标识信息,如调控板的ID。调控板的ID和调控板的状态图样是一一对应的。
由于上述环境控制器确定状态图样时,没有考虑调控板的储能数值和吸收效率。因此,可能会存在确定的状态图样不可用的情况。
例如,环境控制器确定的状态图样为S={AAAAAPPC},此时,调控板会在较长的时间段内处于A态,会导致消耗自身较多的电量,但调控板可能自身的电量不足。因此,在某个时刻调控板处于A态时可能没有足够的电量可以使用,可能导致调控板不能有效的对入射电磁波进行主动转发。可见,调控板的电池的储能数值约束了状态图样中A态的有效持续时间。相应地,如果S={CCCCCPAC}此时,调控板会在较长的时间段内处于吸收储能态(C态),调控板会在较多的时间吸收周围电磁波的能量,并可以将吸收的能量转换为电能存储在本地电池中。但如果调控板初始时自身的电量较多,调控板可能在很短的时间内本地电池的储能数值已经达到了上限。此时,调控板继续吸收电磁波的能量转换为电能之后不能存储在本地电池中,从而会造成电能的浪费。
为了避免上述情况的发生,环境控制器在确定状态图样的时候可以考虑调控板的储能数 值和吸收效率,也即是环境控制器可以根据三维空间地图、调控板的位置信息、调控板的储能数值和吸收效率确定调控板的状态图样。
具体地,可以改进公式(8),在公式(8)中添加调控板的储能数值和吸收效率相关的函数。例如,可以添加限定函数,通过限定函数可以从
Figure PCTCN2022127117-appb-000049
种情况中排除部分情况,也即是排除不可用的状态图样的情况。假设调控板的状态图样为S={AAAAAPPC},时间粒度Δt为5秒,状态图样包括调控板8个Δt的状态,并且,调控板在一个位置上的吸收效率为50%,以及调控板的储能数值为20%,调控板的总电池容量可以为100毫安时(mAh)。调控板在处于5秒的A态时可能需要消耗1mAh,处于5秒的C态时可以储能1mAh。因此,每40秒调控板可以净消耗4mAh,在状态图样重复四个周期后,调控板的储能数值可以为0。因此,在第五个周期开始时,调控板处于A态没有电量可以使用,从而不能有效的对入射电磁波进行主动转发。
环境控制器可以通过计算确定部分不可用的状态图样,从而可以保证调控板使用状态图样时可以有效的对入射电磁波进行主动转发。
可以理解的是,环境控制器也可以同时确定调控板的位置以及调控板的状态图样。环境控制器可以同时考虑调控板的M个位置的集合L以及M个位置上的调控板的状态S,也即是可以将公式(1)和公式(8)合并,可以参见公式(9)。
Figure PCTCN2022127117-appb-000050
上式L和S组合在一起,当L只包括空间位置不包括空间方向时,共有
Figure PCTCN2022127117-appb-000051
中情况,当L既包括空间位置又包括空间方向时,共有
Figure PCTCN2022127117-appb-000052
中情况,可以理解的是,通过公式(9)可以确定使得
Figure PCTCN2022127117-appb-000053
最大的M个位置,以及每个位置上的调控板的状态图样。
环境控制器在分别单独确定调控板的空间位置和单独确定调控板的状态图样时,需要考虑
Figure PCTCN2022127117-appb-000054
种情况,也即是需要计算
Figure PCTCN2022127117-appb-000055
Figure PCTCN2022127117-appb-000056
在同时确定调控板的空间位置和状态图样时,需要考虑
Figure PCTCN2022127117-appb-000057
种情况。在分别单独确定调控板的位置(空间位置和空间方向)和单独确定调控板的状态图样时,需要考虑
Figure PCTCN2022127117-appb-000058
种情况。在同时确定调控板的位置和状态图样时,需要考虑
Figure PCTCN2022127117-appb-000059
种情况。可见,环境控制器在每种情况下的计算量可以是不同的,在同时确定调控板的位置和状态图样时,环境控制器的计算量可能较大,但此时可以考虑到更多情况下的
Figure PCTCN2022127117-appb-000060
因此可以得到更加准确的结果(位置和状态图样)。
可以理解的是,环境控制器可以同时向接入网设备发送调控板的位置信息和状态图样。
305.接入网设备向调控板发送调控板的状态图样。
接入网设备在接收到来自环境控制器的调控板的状态图样之后,接入网设备可以向调控 板发送该状态图样。
接入网可以通过状态图样请求信令(Request,REQ)向调控板发送位置信息。状态图样REQ可以包括接入网设备的标识(BS-ID),调控板的标识(EP-ID),起始时间t0,时间粒度Δt,状态图样序列,CRC校验符。请参见图9,图9是本发明实施例公开的一种状态图样请求信令帧格式的示意图。可以理解的是,图9所示的帧格式只是示例性说明,并不对其构成限定。
由于接入网设备向调控板发送位置信息和状态图样之后,调控板可以根据位置信息和状态图样对自身的位置和状态图样的进行相应的调整(配置)。因此,在一定空间范围和一定时间段内可以构建一个传输损耗(如大尺度路径传输损耗的平均值)可以预期的无线传播环境,从而接入网设备可以确定终端设备的信道质量。
接入网设备可以根据三维空间地图、调控板的位置信息和状态图样确定终端设备的信道质量。然后,接入网设备可以根据信道质量为终端设备分配资源,之后可以向终端设备发送该资源的信息。信道质量可以为信噪比,也可以为传输损耗、参考信号接收功率(reference signal receiving power,RSRP)等。接入网设备为终端设备分配的资源可以包括上行资源和/或下行资源。
接入网设备可以确定一段时间内终端设备的平均通信质量。如可以确定公式(1)中的γ k,i(t),之后,接入网设备可以将rank(Ω k(t))条传输路径的平均信噪比作为终端设备的平均通信质量。确定γ k,i(t)方式可以参考上述相关描述,在此不再赘述。
接入网设备可以根据信道质量为终端设备分配资源。由于在信道质量较好的情况下,也即是信噪比较大的情况下,噪声对有用信号的干扰较小,因此,通信误码率较低,通信的接收方可以有效的接收到通信发送方发送的数据。而在信道质量较差的情况下,通信误码率较高,通信的接收方不能有效的接收到发送方发送的数据。因此,接入网设备可以给信号质量较好(如信噪比大于一个特定阈值的终端设备)的终端设备分配较多的资源,以及可以给信号质量较差(如信噪比小于一个特定阈值的终端设备)的终端设备分配较少的资源,从而可以避免资源的浪费,进而可以提高资源的利用率。
接入网设备可以通过时频资源分配命令信令(command,CMD),向终端设备发送资源的信息。该信令可以包括接入网设备的标识(BS-ID),终端设备的标识(UE-ID),时频资源块标识(resource block ID,RB-ID),CRC校验符。终端设备的标识可以为接入网设备为终端设备分配的在该接入网设备下的唯一标识,时频资源块标识可以唯一标识分配给终端设备的时频资源。时频资源块标识可以为具体的时域资源和频域资源(如子载波),也可以为时域资源和频域资源对应的索引。当终端设备接收到来自接入网设备的时频资源分配CMD之后,终端设备可以向接入网设备发送时频资源分配确认信令(acknowledge,ACK),该信令可以包括终端设备的标识(UE-ID),接入网设备的标识(BS-ID),时频资源配置成功与否标识符(Flag),CRC校验符。如果Flag为True,则表示终端设备配置时频资源成功,如果Flag为False,则表示终端设备配置时频资源失败。其中,上行链路资源分配或下行链路资源分配帧格式可以为现有的标准定义的时频资源分配帧格式。
接入网设备还可以根据信道质量确定发送功率。发送功率可以包括自身的发送功率以及终端设备的发送功率。
由于在信道质量较好的情况下,也即是信噪比较大的情况下,噪声对有用信号的干扰较小,因此,接入网设备可以以较小的发送功率向终端设备发送信号,以及可以为终端设备指示一个较小的发送功率,从而可以降低接入网设备和终端设备的平均功耗。在信道质量较差 的情况下,通信误码率可能较高,因此,接入网设备可以以较大的发送功率向终端设备发送信号,以及可以为终端设备指示一个较大的发送功率,从而可以降低误码率,进而可以提高通信系统的平均吞吐量。
例如,接入网设备可以根据传输损耗确定接入网设备和终端设备的发送功率。以确定接入网设备的发送功率为例,假设终端设备的接收灵敏度(最小接收功率)为-100dBm,接入网设备向终端设备发送的信号在传输过程中可能衰减45dB,并且,可以考虑一定的衰落余量(如10dB),以便可以容忍更大的传输损耗,因此,接入网设备向终端设备发送信号的最小发送功率可以为-45dBm。相应地,接入网设备也可以根据自身的接收灵敏度确定终端设备的发射功率。
接入网设备可以通过发射功率分配命令信令(command,CMD)向终端设备发送终端设备的发射功率的信息,该信令可以包括接入网设备的标识(BS-ID),终端设备的标识(UE-ID),功率水平标识(power level ID,PL-ID),CRC校验符。PL-ID可以为一个具体的功率数值(如-20dBm),也可以为一个功率索引(如“01”),功率索引可以对应一个具体的功率数值,如“01”对应的功率数值可以为-25dBm。当终端设备接收到来自接入网设备的发射功率分配CMD之后,终端设备可以向接入网设备发送发射功率分配确认信令(acknowledge,ACK),该信令可以包括终端设备的标识(UE-ID),接入网设备的标识(BS-ID),功率配置成功与否标识符(Flag),CRC校验符。如果Flag为True,则表示终端设备配置功率成功,如果Flag为False,则表示终端设备配置功率失败。其中,下行链路功率分配帧格式可以为现有的标准定义的时频资源分配帧格式。
可以理解的是,由于本发明实施例配置了调控板的状态图样,因此,接入网设备在确定自身的发送功率以及终端设备的发射功率的时候,还可以考虑调控板的储能数值和吸收储能效率,以便可以提高调控板的吸收储能效率。例如,当调控板的状态处于吸收储能态的时候,接入网设备可以以较大的发射功率向终端设备发送信号,从而调控板可以从周围环境中吸收到更多的电磁波能量,以及可以将更多的能量转换为电能存储在本地,从而可以提高调控板的吸收储能效率。
举例说明,请参见图10,图10是本发明实施例公开的另一种场景示意图。如图10所示,假设接入网设备的覆盖区域按照与接入网设备之间的距离分为近区、中区、远区,以及在接入网设备的近区有终端设备1和调控板1,中区有终端设备2和调控板2,远区有终端设备3和调控板3。其中,调控板1的状态图样配置为{CCCAACCCAA},调控板2的状态图样配置为{CCCSACCCSA},调控板3的状态图样配置为{CCCCCCCSSA}。
调控板对入射电磁波的反射或透射可以是漫反射和漫透射,漫反射可以使调控板上的入射电磁波在各个方向上都有近似相等能量的反射信号,漫透射可以使调控板上的入射电磁波在各个方向都有近似相等能量的透射信号。
可见,在不同的时间,在调控板1、调控板2以及调控板3的综合作用下,可以对接入网设备以及终端设备之间的通信产生不同的影响。假设调控板的状态图样的一个状态持续时间为一个时隙。
在时隙1~3内,调控板1、调控板2以及调控板3都处于C态,此时,调控板可以吸收入射电磁波,因此,对于接入网设备的覆盖区域,在时隙1~3内,平均而言,整体处于能量削弱状态,即此时终端设备接收到来自接入网设备的信号的功率相较于调控板处于被动反射态时接收到的功率会相应的减小。但是,由于终端设备1与接入网设备的距离比较近,原有的无线接收功率相对较强,因此,其接收接入网设备发送的信号的信噪比较高,从而时隙1~3可以分配 给终端设备1与接入网设备进行通信。
在时隙4~8内,调控板1在前两个时隙处于A态,在后三个时隙处于C态;调控板2在时隙4处于S态、时隙5处于A态,时隙6~8处于C态;调控板3在时隙4~7处于C态,时隙8处于S态,因此,对于接入网设备的覆盖区域,在时隙4~8内,平均而言,整体处于能量不变的状态,即此时终端设备接收到来自接入网设备的信号的功率相较于调控板处于被动反射态时接收到的功率基本上相同。由于终端设备2与接入网设备的距离适中,原有的无线接收功率比终端设备1较弱、比终端设备3较强,因此,其接收接入网设备发送的信号的信噪比相较于终端设备1较低,相较于终端设备3较高,从而时隙4~8可以分配给终端设备2与接入网设备进行通信。
在时隙9~10内,调控板1处于A态,调控板2在时隙9处于S态,在时隙10处于A态,调控板3在时隙9处于S态,在时隙10处于A态,因此,对于接入网设备的覆盖区域,在时隙9~10内,平均而言,整体处于能量增强的状态,即此时终端设备接收到来自接入网设备的信号的功率相较于调控板处于被动反射态时接收到的功率会相应的增大。由于终端设备3与接入网设备的距离比较远,原有的无线接收功率相对较弱,因此,其接收接入网设备发送的信号的信噪比较低,从而时隙9~10适合分配给终端设备3与接入网设备进行通信。
上述时频资源分配方式,可以理解为将近区的终端设备的无线电磁波能量通过调控板吸收转换为本地电池的电能,之后,通过调控板消耗本地电池的能力辅助远区的终端设备进行通信,以便增强接入网设备边缘区域的终端设备的通信能力(信噪比),进而可以提升整个无线通信系统的平均吞吐量。应理解,图10所示的场景只是示例性说明,并不对其构成限定。
针对图10所示的传播环境下,终端设备1、终端设备2、终端设备3的一组时频资源和发射功率分配的方案效果如图11所示。图11为本发明实施例公开的一种时频资源和发射功率分配的示意图。如图11所示,时域资源分配的最小单位可以为两个时隙,一个时隙可以包括14个符号,频域资源分配的最小单位可以为资源块(resource block,RB),RB可以指在频率上连续的12个子载波。可见,接入网设备可以给终端设备1分配时隙1~2的3个RB,可以给终端设备2分配时隙5~6的3个RB,以及可以给终端设备2分配时隙7~8的一个RB,可以给终端设备3分配时隙7~8的1个RB,以及可以给终端设备3分配时隙9~10的3个RB。并且,接入网设备还可以为终端设备分配时频资源对应的发送功率,如终端设备1的发送功率可以为P1,终端设备2的发射功率可以为P2,终端设备3的发送功率可以为P3。终端设备在不同的时频资源下,可以采用不同的发送功率。P1、P2、P3可以是接入网设备确定的,可以参考上述相关描述。
应理解,图11所示的时频资源和发射功率分配只是示例性说明,并不对其构成限定。
请参见图12,图12是本发明实施例公开的又一种场景示意图。如图12所示的场景中,可以包括接入网设备、终端设备1、终端设备2和调控板。接入网设备发送给终端设备1的信号在经过调控板的反射之后可以到达终端设备1,也可以到达终端设备2。假设,接入网设备到调控板的传播路径记为P1,调控板到终端设备1的传播路径记为P2,调控板到终端设备2的传播路径记为P3,接入网设备到终端设备1的传播路径(LOS)记为P4,接入网设备到终端设备2的传播路径(LOS)记为P5。光速可以用c表示,单位可以为米每秒(m/s);传播路径Pn的长度距离可以用符号|Pn|表示,单位可以为米;路径Pn上的传播时延可以用符号τ n=|Pn|/c表示,单位可以为秒。
假设调控板处于被动反射态或者主动反射态,在t0时刻,接入网设备向终端设备1发送信号X A,其中,信号X A到达终端设备1可以通过路径P4和路径P1+P2。在t0+τ 4时刻和t0+τ 12时刻,终端设备1可以分别收到两个信息相同的X A。由于无线通信的广播效应,X A信号经过路径P5和P1+P3也可以被终端设备2接收(侦听)到,也即是在t0+τ s时刻和t0+τ 13时刻, 终端设备2可以分别收到两个信息相同的X A。在t1=t0+ΔT时刻,ΔT表示信号X A的持续发送时间,接入网设备可以向终端设备2发送信号X B。同理,在t1+τ 5时刻和t1+τ 13时刻,终端设备2可以接收到信号X B;在t1+τ 4时刻和t1+τ 12时刻,终端设备1也可以接收到信号X B
可见,如果在t1+τ 5与t0+τ 13之间的时间间隔不大于ΔT的情况下,接入网设备向终端设备1发送的信号会对接入网设备向终端设备2发送的信号产生干扰,也即是终端设备2可以同时接收到信号X A和信号X B。因此,两个信号会叠加在一起产生干扰,并且当两个信号的频率相同时,终端设备不能有效的对其进行区分。但是,当调控板处于吸收储能态时,调控板可以将接入网设备通过路径P1的信号吸收掉,转换成调控板本地电池的电能,因此可以减轻终端设备1对终端设备2的干扰。
请参见图13,图13是本发明实施例公开的一种时域冲击响应的示意图。如图13所示,在不可控的传播环境下,终端设备1和终端设备2的时域冲击响应产生多用户信号混叠,而在可控的传播环境下,通过将调控板在合适的时间区间在C态、P态、A态之间进行状态切换,可以将原本的反射径能量吸收掉转变成调控板本地电池的电能,从而可以减轻甚至消除时域多用户信号混叠。
可见,接入网设备为终端设备分配时频资源时,可以考虑调控板的状态图样,在调控板处于吸收储能态时,为不同的终端设备分配同频不同时的资源(即相同的频域资源,不同的时域资源),利用调控板降低同频不同时的终端设备之间串扰。请参见图14,图14是本发明实施例公开的一种时频资源分配的示意图。如图14所示,时域资源分配的最小单位可以为一个时隙,一个时隙可以包括14个符号,频域资源分配的最小单位可以为RB。接入网设备可以给终端设备1分配时隙1~2的3个RB,可以给终端设备2分配时隙3~4的3个RB。当终端设备采用该资源向接入网设备发送信号或者终端设备采用该资源接收来自接入网设备的信号时,当信号到达调控板时,该信号可以被调控板吸收,从而可以减轻或者消除终端设备之间的信号混叠,提高终端设备的信干噪比(signal to interference plus noise ratio,SINR)。应理解,图11所示的场景以及图14所示的时频资源分配只是示例性说明,并不对其构成限定。
可以理解的是,接入网设备可以同时向调控板发送调控板的位置信息和状态图样。接入网设备也可以同时向终端设备发送资源的信息和发送功率。
请参见图15,图15是本发明实施例公开的一种终端设备、接入网设备、调控板之间信令交互的示意图。如图15所示,接入网设备可以请求调控板调整位置。首先,接入网设备可以向调控板发送调整位置REQ;然后,调控板可以根据调整位置REQ调整自身的位置;当调控板的位置调整完毕之后,调控板可以向基站反馈调整位置ACK。
接入网设备可以请求调控板配置状态图样。首先,接入网设备可以向调控板发送状态图样REQ;然后,调控板可以根据状态图样REQ调整自身的状态,也即是使得自身的超材料面板整体在C态、P态、A态之间有规律地切换;当调控板的状态图样配置完成之后,调控板可以向接入网设备反馈状态图样ACK。
接入网设备可以为终端设备分配时频资源和发射功率。首先,接入网设备可以向终端设备发送时频资源分配CMD,终端设备可以向接入网设备反馈时频资源分配ACK;然后,接入网设备可以向调控板发送储能数值CEK,调控板可以向接入网设备反馈储能数值RSP,其中可以携带自身本地电池的当前储能数值信息;接着,接入网设备可以向终端设备发送发射功率分配CMD,终端设备可以向接入网设备反馈发射功率分配ACK;最后,接入网设备可以向调控板发送吸收效率CEK(其可以由周期的定时器触发或非周期的事件触发),调控板 可以向接入网设备反馈吸收效率RSP。
应理解,图15所示的流程图只是示例性说明,并不对其构成限定。上述时频资源分配(CMD/ACK)、储能数值(CEK/RSP)、发射功率分配(CMD/ACK)和吸收效率(CEK/RSP)四个信令对,它们的先后顺序不是固定的,可以根据系统的实际情况灵活的调整它们的先后顺序。
306.调控板根据状态图样调整调控板的状态。
调控板可以在接收到来自接入网设备的状态图样之后,根据状态图样调整调控板的状态。
调控板可以通过来自接入网设备的状态图样REQ接收到状态图样。状态图样REQ可以包括调控板的标识(如EP-ID)、起始时间t0,时间粒度Δt,状态图样序列等。调控板可以根据调控板的标识确定该状态图样REQ是否是发送给自身的。
调控板在确定该状态图样REQ是发送给自身的情况下,调控板可以确定起始时间t0,时间粒度Δt,状态图样序列。
调控板可以配置状态图样序列,之后可以根据该状态图样序列调整自身的状态。例如,状态图样序列为{AAAAAPPC}。调控板在t0时刻到t0+5Δt时刻可以调整自身的状态为A态;在t0+5Δt时刻到t0+7Δt时刻,调控板可以调整自身的状态为P态;在t0+7Δt时刻到t0+8Δt时刻,调控板可以调整自身的状态为C态。从t0+8Δt以后的时刻,调控板可以周期重复上述状态图样,直到收到新的状态图样。
当调控板配置完状态图样之后,调控板可以向接入网设备发送(反馈)状态图样响应信令(ACK),该信令可以包括调控板的标识(EP-ID),接入网设备的标识(BS-ID),状态图样配置成功与否标识符(Flag),CRC校验符。如果Flag为True,则表示调控板状态图样配置成功,如果Flag为False,则表示调控板状态图样配置失败。请参见图16,图16是本发明实施例公开的一种状态图样确认信令帧格式的示意图。应理解,图16所示的帧格式只是示例性说明,并不对其构成限定。相应地,接入网设备可以接收到来自调控板的状态图样ACK,之后,可以将调控板的状态图样ACK发送给环境控制器,以便环境控制器可以对调控板的状态图样进行汇总和记录。可见,环境控制器可以在本地存储所有调控板的当前状态图样的信息,以及历史状态图样的信息。
请参见图17,图17是本发明实施例公开的一种调控板的调整位置和状态的流程图。如图17所示,调控板可以根据配置信令(即上述调整位置REQ)调整位置,以及可以根据控制信令(即上述状态图样REQ)在被动转发态、主动转发态、吸收储能态之间进行状态的切换。之后,调控板可以构成特定的传播环境,辅助终端设备进行通信,提高通信系统的平均吞吐量。之后,环境控制器可以在接收到新的配置信令的情况下,重新调整自身的位置和状态图样。应理解,图16所示的流程图只是示例性说明,并不对其构成限定。
本发明实施例通过环境控制器计算确定调控板的位置信息和状态图样,然后通过接入网设备发送给调控板,以便调控板调整自身的位置和状态。由于环境控制器确定位置信息和状态图样时,考虑的是最大化通信系统的平均通信速率、平均吞吐量等指标,因此,通过调控板优化之后的传播环境,可以使得通信系统的平均吞吐量最大。
基于上述网络架构,请参阅图18,图18是本发明实施例公开的一种通信装置的结构示意图。其中,该通信装置可以为调控板,也可以为调控板中的模块。如图18所示,该通信装置可以包括:
接收单元1801,用于接收来自接入网设备的位置信息,该位置信息包括旋转信息和/或移动信息;
调整单元1802,用于根据该位置信息调整调控板的位置;
该接收单元1801,还用于接收来自该接入网设备的状态图样;
该调整单元1802,还用于根据该状态图样调整该调控板的状态。
在一个实施例中,该调整单元1802根据该位置信息调整调控板的位置包括:
根据该旋转信息调整该调控板的空间方向,和/或该移动信息调整该调控板的空间位置。
在一个实施例中,该旋转信息包括旋转方向和旋转角度,该调整单元1802根据该位置信息调整调控板的位置包括:
根据该旋转方向和旋转角度调整该调控板的空间方向。
在一个实施例中,该旋转信息包括旋转角度,该调整单元1802根据该位置信息调整调控板的位置包括:
根据该旋转角度调整该调控板的空间方向。
在一个实施例中,该移动信息包括移动方向和移动距离,该调整单元1802根据该位置信息调整调控板的位置包括:
根据该移动方向和该移动距离调整该调控板的空间位置。
在一个实施例中,该移动信息包括移动距离,该调整单元1802根据该位置信息调整调控板的位置包括:
根据该移动距离调整该调控板的空间位置。
在一个实施例中,该通信装置还可以包括:
发送单元1803,用于向该接入网设备发送储能数值和吸收效率。
在一个实施例中,该接收单元1801,还用于接收来自该接入网设备的第一请求,该第一请求用于请求该储能数值和该吸收效率。
有关上述接收单元1801、调整单元1802以及发送单元1803更详细的描述可以直接参考上述图3所示的方法实施例中调控板的相关描述直接得到,在此不再赘述。
基于上述网络架构,请参阅图19,图19是本发明实施例公开的另一种通信装置的结构示意图。其中,该通信装置可以为接入网设备,也可以为接入网设备中的模块。如图19所示,该通信装置可以包括:
接收单元1901,用于接收来自环境控制器的调控板的位置信息,该位置信息包括旋转信息和/或移动信息;
发送单元1902,用于向该调控板发送该位置信息;
该接收单元1901,还用于接收来自该环境控制器的该调控板的状态图样,该状态图样包括状态信息,该状态信息对应的状态为吸收储能态、主动转发态或被动转发态;
该发送单元1902,还用于向该调控板发送该状态图样。
在一个实施例中,该旋转信息包括旋转方向和旋转角度。
在一个实施例中,该旋转信息包括旋转角度。
在一个实施例中,该移动信息包括移动方向和移动距离。
在一个实施例中,该移动信息包括移动距离。
在一个实施例中,该发送单元1902,还用于向该环境控制器发送该调控板的储能数值和吸收效率。
在一个实施例中,该接收单元1901,还用于接收来自该环境控制器的第二请求,该第二请求用于获取该调控板的储能数值和吸收效率。
在一个实施例中,该接收单元1901,还用于接收来自该调控板的储能数值和吸收效率。
在一个实施例中,该发送单元1902,还用于向该调控板发送第一请求,该第一请求用于请求该调控板的储能数值和吸收效率。
在一个实施例中,该通信装置还可以包括:
确定单元1903,用于根据三维空间地图、该调控板的位置信息和状态图样确定终端设备的信道质量,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息;
分配单元1904,用于根据该信道质量为该终端设备分配资源;
该发送单元1902,还用于向该终端设备发送该资源的信息。
在一个实施例中,该确定单元1903,还用于根据该三维空间地图、该调控板的位置信息和状态图样确定该终端设备的信道质量;
该确定单元1903,还用于根据该信道质量确定发送功率;
该发送单元1902,还用于向该终端设备发送该发送功率。
在一个实施例中,该吸收储能态是将吸收的电磁波转换为电能并存储的状态,该主动转发态是将入射的电磁波经放大后进行反射或透射的状态,该被动转发态是将入射的电磁波进行反射或透射的状态。
有关上述接收单元1901、发送单元1902、确定单元1903以及分配单元1904更详细的描述可以直接参考上述图3所示的方法实施例中接入网设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图20,图20是本发明实施例公开的又一种通信装置的结构示意图。其中,该通信装置可以为环境控制器,也可以为环境控制器中的模块。如图20所示,该通信装置可以包括:
发送单元2001,用于向接入网设备发送调控板的位置信息,该位置信息包括旋转信息和/或移动信息;
该发送单元2001,还用于向该接入网设备发送该调控板的状态图样,该状态图样包括状态信息,该状态信息对应的状态为吸收储能态、主动转发态或被动转发态。
在一个实施例中,该旋转信息包括旋转方向和旋转角度。
在一个实施例中,该旋转信息包括旋转角度。
在一个实施例中,该移动信息包括移动方向和移动距离。
在一个实施例中,该移动信息包括移动距离。
在一个实施例中,该通信装置还可以包括:
确定单元2002,用于确定该调控板的位置信息。
在一个实施例中,该确定单元2002确定该调控板的位置信息包括:根据三维空间地图确定该调控板的位置信息,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
在一个实施例中,该确定单元2002确定该调控板的位置信息包括:根据三维空间地图,以及该调控板的储能数值和吸收效率确定该调控板的位置信息,该三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
在一个实施例中,该通信装置还可以包括:
接收单元2003,用于接收来自该接入网设备的该调控板的储能数值和吸收效率。
在一个实施例中,该发送单元2001,还用于向该接入网设备发送第二请求,该第二请求用于获取该调控板的储能数值和吸收效率。
在一个实施例中,该确定单元2002,还用于确定该调控板的状态图样。
在一个实施例中,该确定单元2002确定该调控板的状态图样包括:根据三维空间地图和该调控板的位置信息确定该调控板的状态图样。
在一个实施例中,该确定单元2002确定该调控板的状态图样包括:根据三维空间地图、该调控板的位置信息、该调控板的储能数值和吸收效率确定该调控板的状态图样。
在一个实施例中,该吸收储能态是将吸收的电磁波转换为电能并存储的状态,该主动转发态是将入射的电磁波经放大后进行反射或透射的状态,该被动转发态是将入射的电磁波进行反射或透射的状态。
有关上述发送单元2001、确定单元2002以及接收单元2003更详细的描述可以直接参考上述图3所示的方法实施例中环境控制器的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图21,图21是本发明实施例公开的又一种通信装置的结构示意图。其中,该通信装置可以为调控装置。如图21所示,该通信装置可以包括:多个超材料单元2101组成的调控板2102、滑动轨道2103、超材料单元2101对应的模拟电路、无线收发信机2104。
其中,调控板2102上的超材料单元2101的个数在不同的应用场景下可以不同,超材料单元2101可以旋转,从而可以改变调控板的角度或方向。滑动轨道2103可以包括电机马达和机械齿轮,可以实现调控板的空间位置移动。无线收发信机2104可以包括电池、时钟以及状态控制器,无线收发信机可以用于与其它通信设备(接入网设备或环境控制器)进行通信。状态控制器可以用于对调控板2102的超材料单元2101的状态进行控制,使其在被动转发态(P态)、主动转发态(A态)、吸收储能态(C态)这三种状态下进行转换。超材料单元对应的模拟电路可以包括移相电路(移相模块)、调幅电路(调幅模块)、吸收储能电路(吸收储能模块),以及K1和K2状态开关,其中,每个超材料单元都可以有对应的模拟电路,并且,每个超材料单元对应的模拟电路可以是相同的。K1和K2可以是物理开关,也可以是虚拟开关。
请参见图22,图22是本发明实施例公开的一种模拟电路的示意图。如图22所示,该模拟电路可以包括吸收储能电路、移相电路和调幅电路。调幅电路分别电连接移相电路和吸收储能电路。移相电路可以包括可变电容C1、电阻R1和电感L1,其中,可以通过控制可变电容C1的电容变化使入射电磁波的相位发生不同的改变。调幅电路可以包括电阻R2、电阻R3、电阻R4、运放(即运算放大器),调幅电路可以对入射电磁波进行放大转发。吸收储能电路可以包括电容C2、二极管D1、二极管D2、电容C3,吸收储能电路可以吸收入射电磁波,然后转换为电能存储在本地电池中。需要说明的是,调控板2102的所有超材料单元2101可以统一化调整状态,也即是可以统一进行C态、P态、A态的切换过程,因此,可以降低调控板的处理复杂度和平均系统功耗。
调控板可以根据状态图样在不同的时间调整自己的K1和K2开关,使得超材料面板2102整体在C态、P态、A态之间有规律地变化。其中,K1朝上、K2朝上可以使调控板处于吸收储能态,K1朝下、K2朝上可以使调控板处于被动转发态,K1朝下、K2朝上可以使调控板处于主动转发态。K1、K2朝上或朝下不是物理实指开合状态,而是概念虚指状态切换。请参见图23,图23是本发明实施例公开的一种调控板的状态切换示意图。如图23所示,调控板可以通过调整K1和K2开关,改变自身的状态。
基于上述网络架构,请参阅图24,图24是本发明实施例公开的又一种通信装置的结构示意图。如图24所示,该通信装置可以包括处理器2401、存储器2402、收发器2403和总线2404。存储器2402可以是独立存在的,可以通过总线2404与处理器2401相连接。存储器2402也可以和处理器2401集成在一起。其中,总线2404用于实现这些组件之间的连接。在一种情况下,如图15所示,收发器2403可以包括发射机24031、接收机24032和天线24033。在另一种情况下,收发器2403可以包括发射器(即输出接口)和接收器(即输入接口)。发射器可以包括发射机和天线,接收器可以包括接收机和天线。
在一个实施例中,该通信装置可以为调控板或者调控板内的模块(例如,芯片),存储器2402中存储的计算机程序被执行时,该处理器2401用于控制接收单元1801和发送单元1803执行上述实施例中执行的操作,该处理器2401还用于执行上述调整单元1802执行的操作,收发器2403用于执行上述实施例中发送单元1803和接收单元1801执行的操作。上述调控板或者调控板内的模块还可以用于执行上述图3方法实施例中调控板执行的方法,在此不再赘述。
在一个实施例中,该通信装置可以为接入网设备或者接入网设备内的模块(例如,芯片),存储器2402中存储的计算机程序被执行时,该处理器2401用于控制接收单元1901和发送单元1902执行上述实施例中执行的操作,该处理器2401还用于执行上述确定单元1903和分配单元1904执行的操作,收发器2403用于执行上述实施例中接收单元1901和发送单元1902执行的操作。上述接入网设备或者接入网设备内的模块还可以用于执行上述图3方法实施例中接入网设备执行的方法,在此不再赘述。
在一个实施例中,该通信装置可以为环境控制器或者环境控制器内的模块(例如,芯片),存储器2402中存储的计算机程序被执行时,该处理器2401用于控制发送单元2001和接收单元2003执行上述实施例中执行的操作,该处理器2401还用于执行上述确定单元2002执行的操作,收发器2403用于执行上述实施例中发送单元2001和接收单元2003执行的操作。上述环境控制器或者环境控制器内的模块还可以用于执行上述图3方法实施例中环境控制器执行的方法,在此不再赘述。
基于上述网络架构,请参阅图25,图25是本发明实施例公开的又一种通信装置的结构示意图。如图25所示,该通信装置可以包括输入接口2501、逻辑电路2502和输出接口2503。输入接口2501与输出接口2503通过逻辑电路2502相连接。其中,输入接口2501用于接收来自其它通信装置的信息,输出接口2503用于向其它通信装置输出、调度或者发送信息。逻辑电路2502用于执行除输入接口2501与输出接口2503的操作之外的操作,例如实现上述实施例中处理器2401实现的功能。其中,该通信装置可以为调控板或者调控板内的模块,也可以为接入网设备或者接入网设备内的模块,还可以为环境控制器或者环境控制器内的模块。其中,有关输入接口2501、逻辑电路2502和输出接口2503更详细的描述可以直接参考上述方法实施例中调控板、接入网设备或环境控制器的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图26,图26是本发明实施例公开的一种通信系统的结构示意图。如图26所示,该通信系统可以包括调控板2601、接入网设备2602和环境控制器2603。其中,详细描述可以参考图3所示的通信方法。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种包括指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说 明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    接收来自接入网设备的位置信息,所述位置信息包括旋转信息和/或移动信息;
    根据所述位置信息调整调控板的位置;
    接收来自所述接入网设备的状态图样;
    根据所述状态图样调整所述调控板的状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述位置信息调整调控板的位置包括:
    根据所述旋转信息调整所述调控板的空间方向,和/或根据所述移动信息调整所述调控板的空间位置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送储能数值和吸收效率。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第一请求,所述第一请求用于请求所述储能数值和所述吸收效率。
  5. 一种通信方法,其特征在于,包括:
    接收来自环境控制器的调控板的位置信息,所述位置信息包括旋转信息和/或移动信息;
    向所述调控板发送所述位置信息;
    接收来自所述环境控制器的所述调控板的状态图样,所述状态图样包括状态信息,所述状态信息对应的状态为吸收储能态、主动转发态或被动转发态;
    向所述调控板发送所述状态图样。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向所述环境控制器发送所述调控板的储能数值和吸收效率。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收来自所述环境控制器的第二请求,所述第二请求用于获取所述调控板的储能数值和吸收效率。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    接收来自所述调控板的储能数值和吸收效率。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述调控板发送第一请求,所述第一请求用于请求所述调控板的储能数值和吸收效率。
  10. 根据权利要求5-9任一项所述的方法,其特征在于,所述方法还包括:
    根据三维空间地图、所述调控板的位置信息和状态图样确定终端设备的信道质量,所述三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息;
    根据所述信道质量为所述终端设备分配资源;
    向所述终端设备发送所述资源的信息。
  11. 根据权利要求5-10任一项所述的方法,其特征在于,所述方法还包括:
    根据所述三维空间地图、所述调控板的位置信息和状态图样确定所述终端设备的信道质量;
    根据所述信道质量确定发送功率;
    向所述终端设备发送所述发送功率。
  12. 一种通信方法,其特征在于,包括:
    向接入网设备发送调控板的位置信息,所述位置信息包括旋转信息和/或移动信息;
    向所述接入网设备发送所述调控板的状态图样,所述状态图样包括状态信息,所述状态信息对应的状态为吸收储能态、主动转发态或被动转发态。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    确定所述调控板的位置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述确定所述调控板的位置信息包括:
    根据三维空间地图确定所述调控板的位置信息,所述三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
  15. 根据权利要求13所述的方法,其特征在于,所述确定所述调控板的位置信息包括:
    根据三维空间地图,以及所述调控板的储能数值和吸收效率确定所述调控板的位置信息,所述三维空间地图包括建筑结构信息、固定设备的位置信息和材质信息、固定设备的通信业务模型信息以及接入网设备的部署信息。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的所述调控板的储能数值和吸收效率。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送第二请求,所述第二请求用于获取所述调控板的储能数值和吸收效率。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述方法还包括:
    确定所述调控板的状态图样。
  19. 根据权利要求18所述的方法,其特征在于,所述确定所述调控板的状态图样包括:
    根据三维空间地图和所述调控板的位置信息确定所述调控板的状态图样。
  20. 根据权利要求18所述的方法,其特征在于,所述确定所述调控板的状态图样包括:
    根据三维空间地图、所述调控板的位置信息、所述调控板的储能数值和吸收效率确定所述调控板的状态图样。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,所述旋转信息包括旋转方向和旋转角度。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,所述移动信息包括移动方向和移动距离。
  23. 根据权利要求5-22任一项所述的方法,其特征在于,所述吸收储能态是将吸收的电磁波转换为电能并存储的状态,所述主动转发态是将入射的电磁波经放大后进行反射或透射的状态,所述被动转发态是将入射的电磁波进行反射或透射的状态。
  24. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自接入网设备的位置信息,所述位置信息包括旋转信息和/或移动信息;
    调整单元,用于根据所述位置信息调整调控板的位置;
    所述接收单元,还用于接收来自所述接入网设备的状态图样;
    所述调整单元,还用于根据所述状态图样调整所述调控板的状态。
  25. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自环境控制器的调控板的位置信息,所述位置信息包括旋转信息 和/或移动信息;
    发送单元,用于向所述调控板发送所述位置信息;
    所述接收单元,还用于接收来自所述环境控制器的所述调控板的状态图样,所述状态图样包括状态信息,所述状态信息对应的状态为吸收储能态、主动转发态或被动转发态;
    所述发送单元,还用于向所述调控板发送所述状态图样。
  26. 一种通信装置,其特征在于,包括:
    发送单元,用于向接入网设备发送调控板的位置信息,所述位置信息包括旋转信息和/或移动信息;
    所述发送单元,还用于向所述接入网设备发送所述调控板的状态图样,所述状态图样包括状态信息,所述状态信息对应的状态为吸收储能态、主动转发态或被动转发态。
  27. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-23任一项所述的方法。
  28. 根据权利要求27所述的通信装置,其特征在于,所述通信装置还包括收发器,所述收发器用于接收来自所述通信装置之外的其它通信装置的信息,以及向所述通信装置之外的其它通信装置输出信息。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-23任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1-23任一项所述的方法。
  31. 一种通信系统,其特征在于,所述通信系统包括调控板、接入网设备和环境控制器,所述调控板用于执行如权利要求1-4任一项所述的方法,所述接入网设备用于执行如权利要求5-11任一项所述的方法,所述环境控制器用于执行如权利要求12-23任一项所述的方法。
PCT/CN2022/127117 2021-11-23 2022-10-24 一种通信方法、装置及计算机可读存储介质 WO2023093417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22897500.9A EP4422218A1 (en) 2021-11-23 2022-10-24 Communication method and apparatus, and computer-readable storage medium
US18/673,219 US20240314730A1 (en) 2021-11-23 2024-05-23 Communication method and apparatus, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111396726.8A CN116156415A (zh) 2021-11-23 2021-11-23 一种通信方法、装置及计算机可读存储介质
CN202111396726.8 2021-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/673,219 Continuation US20240314730A1 (en) 2021-11-23 2024-05-23 Communication method and apparatus, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2023093417A1 true WO2023093417A1 (zh) 2023-06-01

Family

ID=86372385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127117 WO2023093417A1 (zh) 2021-11-23 2022-10-24 一种通信方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20240314730A1 (zh)
EP (1) EP4422218A1 (zh)
CN (1) CN116156415A (zh)
WO (1) WO2023093417A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211824A (zh) * 2020-01-14 2020-05-29 东南大学 一种智能反射表面辅助无线通信反射相位配置方法
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、系统、存储介质和电子装置
US20210250143A1 (en) * 2020-02-07 2021-08-12 Samsung Electronics Co., Ltd. Method and appartus for designing and operating multi-dimensional constellation
WO2021228076A1 (zh) * 2020-05-15 2021-11-18 维沃移动通信有限公司 信息传输方法及节点设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN111211824A (zh) * 2020-01-14 2020-05-29 东南大学 一种智能反射表面辅助无线通信反射相位配置方法
US20210250143A1 (en) * 2020-02-07 2021-08-12 Samsung Electronics Co., Ltd. Method and appartus for designing and operating multi-dimensional constellation
WO2021228076A1 (zh) * 2020-05-15 2021-11-18 维沃移动通信有限公司 信息传输方法及节点设备
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、系统、存储介质和电子装置

Also Published As

Publication number Publication date
EP4422218A1 (en) 2024-08-28
US20240314730A1 (en) 2024-09-19
CN116156415A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
US9882689B2 (en) Apparatus and method for base station cooperative communication in wireless communication system
WO2022095978A1 (zh) 指示工作模式的方法、装置及设备
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
EP3080925B1 (en) Method and network node for broadcasting
JP7259066B2 (ja) 電力制御方法および電力制御装置
WO2023098223A1 (zh) 智能反射面相移控制方法、装置及存储介质
CN107615679A (zh) 用于控制波束成形跟踪的方法和通信装置
Tran et al. RF energy harvesting: an analysis of wireless sensor networks for reliable communication
CN103442419A (zh) 一种基于自适应波束调节的短距离点对点电磁波通信方法
CN113905394A (zh) 一种波束管理方法和设备
CN103391628A (zh) 一种载波聚合系统中信息传输方法及装置
US20220124669A1 (en) Communication method and apparatus, device, system, and storage medium
TWI807115B (zh) 毫米波信號的通訊路徑確定方法、測量裝置及測量控制器
Terauchi et al. Harvest-then-transmit-based TDMA protocol with statistical channel state information for wireless powered sensor networks
KR20150040770A (ko) 무선 통신 시스템에서 전력 제어 방법 및 장치
WO2023093417A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN110958612B (zh) 一种多用户场景下的边缘计算卸载周期最小化方法
WO2019195970A1 (zh) 一种通信方法及相关设备
WO2020255354A1 (ja) 無線通信システム、無線通信方法及び端末装置
CN109698715A (zh) 一种基于动态波束赋形的分布式天线系统及方法
Saggese et al. Efficient URLLC with a reconfigurable intelligent surface and imperfect device tracking
CN114650545A (zh) 一种波束参数的确定方法、装置及网络设备
CN116847464A (zh) 数据通信的方法、终端设备及网络设备
Kong et al. Joint adaptation framework in mobile ad hoc networks: A control theory perspective
US20240243833A1 (en) Ranging rate switch control method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447038999

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022897500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2024530498

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024009809

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022897500

Country of ref document: EP

Effective date: 20240521

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202403139V

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112024009809

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240517