WO2023093374A1 - 天线控制方法、电子设备和存储介质 - Google Patents

天线控制方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023093374A1
WO2023093374A1 PCT/CN2022/125802 CN2022125802W WO2023093374A1 WO 2023093374 A1 WO2023093374 A1 WO 2023093374A1 CN 2022125802 W CN2022125802 W CN 2022125802W WO 2023093374 A1 WO2023093374 A1 WO 2023093374A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
network
information
network combination
requirements
Prior art date
Application number
PCT/CN2022/125802
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023093374A1 publication Critical patent/WO2023093374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface

Definitions

  • the present application relates to the technical field of wireless communication, for example, to an antenna control method, electronic equipment and a storage medium.
  • 5G 5th Generation Mobile Communication Technology
  • 5G 5th Generation Mobile Communication Technology
  • MIMO Multiple Input Multiple Output
  • the location and functional properties of the NR antennas used are generally fixed.
  • 5G terminals have the problems of unbalanced antenna efficiency and poor flexibility under different applications and networking methods, which affect the communication quality of terminals.
  • the present application proposes an antenna control method, electronic equipment, and a storage medium, so as to realize flexible control of antennas, improve the balance of antenna efficiency, and reduce the impact of antennas on terminal communication quality.
  • the present application provides an antenna control method, including: obtaining application environment information, network combination parameter information connected to a base station, and antenna state information corresponding to at least one antenna; according to the antenna state information, the network combination parameter information and the Applying the environment information to determine an antenna control strategy; and controlling at least one antenna according to the antenna control strategy.
  • the present application also provides an electronic device, wherein the electronic device includes: one or more processors; a memory configured to store one or more programs; when the one or more programs are executed by the one or more The processor executes, so that the one or more processors implement the above antenna control method.
  • the present application also provides a computer-readable storage medium, where one or more programs are stored in the computer-readable storage medium, and the above-mentioned antenna control method is implemented when the programs are executed by a processor.
  • FIG. 1 is a schematic diagram of antenna distribution of 5G terminals in the related art
  • FIG. 2 is a flowchart of an antenna control method provided in an embodiment of the present application.
  • FIG. 3 is a flow chart of another antenna control method provided by an embodiment of the present application.
  • FIG. 4 is an example diagram of antenna state information collection provided by an embodiment of the present application.
  • FIG. 5 is an example diagram of application environment information detection provided by an embodiment of the present application.
  • FIG. 6 is an example diagram of a main antenna switching provided in an embodiment of the present application.
  • FIG. 7 is an example diagram of an auxiliary antenna switching provided by an embodiment of the present application.
  • FIG. 8 is a preset example diagram of an antenna configuration provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an antenna control device provided in an embodiment of the present application.
  • FIG. 10 is an example diagram of an antenna control device provided in an embodiment of the present application.
  • FIG. 11 is an example diagram of an antenna structure provided by an embodiment of the present application.
  • Fig. 12 is an antenna connection circuit diagram provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the NR part of 5G terminals generally adopts 4 *4 MIMO antennas, if it is a non-independent networking (Non-Stand Alone, NSA), the number of antennas may be 5-6 antennas, if it is an independent networking (Stand Alone, SA), the number of antennas may be 2-4 antennas,
  • the positions and functional attributes of these NR antennas are generally fixed, resulting in a decline in call quality and failing to meet 5G requirements.
  • FIG 1 is a schematic diagram of the distribution of 5G terminal antennas in the related technology. See Figure 1. There are corresponding antennas for the 4G radio frequency chip and the 5G radio frequency chip. One of the factors depends on the total number of uplink and downlink throughput resources that the terminal can obtain. Radiated power (Total Radiated Power, TRP), total isotropic sensitivity (Total Istropic Sensitivity, TIS) and board-level conducted power and sensitivity, as well as external and internal interference. If some antennas among the N antennas are inefficient, the performance of Over-the-Air Technology (OTA) will be affected, and poor signal values may be reported, so that the base station will wrongly evaluate each The channel quality of the antenna channel provides relatively low resource scheduling.
  • TRP Total Radiated Power
  • TIS Total Istropic Sensitivity
  • OTA Over-the-Air Technology
  • the 5G terminal antenna has the problem of poor flexibility under different network combinations. Under weak signals, the mobile phone is far away from the base station, and the terminal will transmit signals to the base station with the maximum transmission power.
  • Some Evolved Universal Terrestrial Wireless Access (Evolved Universal Terrestrial The antenna under Radio Access (EUTRA) NR Dual-Connectivity (EUTRA NR Dual-Connectivity, ENDC) is antenna A, which has high efficiency, while the antenna under some ENDC combinations uses antenna B, which has low efficiency, and the total power actually radiated to the base station will decrease. If it is lower than expected, it will seriously affect the connection problems of SA and NSA, and at least it will affect the scheduling evaluation of the base station.
  • EUTRA Radio Access
  • ENDC Dual-Connectivity
  • NR carrier aggregation (Carrier Aggregation, CA) combinations sometimes require a strong signal for the Long Term Evolution (LTE) anchor point, and sometimes require a strong signal for NR 5G.
  • LTE Long Term Evolution
  • NR in one frequency band can only be switched between 4 MIMO antennas. If one or more antennas among the four antennas are inefficient, or some application scenarios and ENDC combinations are interfered or affected, one or more The problem of low antenna efficiency, because the number of four antennas is fixed and single, the maximum efficiency cannot meet the requirements, and the antenna cannot be dynamically expanded in a wider range, so it cannot meet user needs.
  • the position of diversity and MIMO antennas of 5G terminals is also relatively fixed, and the distribution and settings of diversity antennas, primary receive MIMO (PRXMIMO) antennas, and diversity receive (Diversity Receive MIMO, DRXMIMO) antennas are also related and fixed.
  • the efficiency of different auxiliary antennas may vary greatly. For example, the efficiency of auxiliary MIMO antennas is higher than that of diversity antennas, or even higher than that of the main antenna. Therefore, there is a problem that it cannot be flexibly configured. How to make the auxiliary antennas of 5G NR replace each other And configuration becomes a problem to be solved.
  • 5G MIMO antennas have problems of poor isolation, large correlation coefficient, or imbalance, which affect the overall throughput of the terminal. Under one condition, the antenna position is relatively fixed, which makes it impossible to adjust in a targeted manner, and the integrity of NR is affected. .
  • the purpose of this application is to realize the dynamic expansion and adjustment of antennas and improve the communication quality and performance of 5G terminals.
  • Fig. 2 is a flow chart of an antenna control method provided by the embodiment of the present application.
  • the embodiment of the present application can be applied to the situation of dynamically adjusting the terminal antenna.
  • the method can be executed by the antenna control device in the embodiment of the present application.
  • the device can It is realized by means of software and/or hardware, and generally can be integrated in a communication terminal. Referring to FIG. 2, the method provided by the embodiment of the present application includes:
  • the antenna can be a device configured to transmit or receive radio frequency signals, and the number of antennas can be one or more.
  • the network combination parameter information can be information identifying the frequency band of the radio frequency signal used by the terminal, and the antenna status information can be used to indicate that each antenna Each antenna can have its own corresponding antenna status information.
  • the antenna status information can include the signal strength and interference parameters of the antenna.
  • the network combination parameter information can include parameter information of one or more frequency bands.
  • the network combination parameter information can be used For determining the type of antenna used by the communication terminal, the application environment information may be the use environment information of the communication terminal, and the application environment information may include the software application environment information being used in the communication terminal and the physical environment information of the communication terminal.
  • the antenna status information of each antenna may be collected separately, and the collection method may include reading antenna log records or reading signal strength and interference parameters under each antenna path as corresponding antenna status information. It is also possible to collect network combination parameters for the communication terminal to register and connect to the base station, which may include collecting frequency band information or frequency band combination information for the registered connection.
  • the application environment of the communication terminal may be collected to obtain application environment information, which may include collecting communication terminal software interface to obtain application software information and collecting physical environment information where the communication terminal is located.
  • Factors affecting the antenna performance of the communication terminal can be determined by analyzing one or more of antenna state information, network combination parameter information, and application environment information, and a corresponding antenna control strategy can be generated according to the factors.
  • the factor may be information reflecting the current capability state or expected capability state of the communication terminal. For example, when it is determined according to the antenna state information, network combination parameter information and application environment information that the communication terminal has a high demand for uplink transmission performance, an antenna control strategy for controlling the main antenna may be generated to improve the performance of the main antenna.
  • the communication terminal may control the antennas that have collected the antenna status information according to the antenna control strategy, and change the performance of one or more antennas.
  • the number of antenna control strategies can be one or more. Multiple antenna control strategies can be executed sequentially to control the antenna. The generated multiple antenna control strategies can control different antennas or control the same antenna. The dynamic adjustment of the antenna can be realized to improve the performance balance of different antennas.
  • an antenna control strategy is generated based on the collected information, and the antenna is adjusted according to the antenna control strategy, and the antenna is realized through the antenna control strategy.
  • the dynamic adjustment of the antenna can improve the balance of antenna efficiency in the case of multiple antennas, and can enhance the communication signal quality of the terminal.
  • the antenna state information includes at least signal strength and interference parameters.
  • the communication terminal can collect the signal strength, interference parameters and performance parameters of the transmitting and receiving channels of each antenna as antenna state information, wherein the signal strength can include Reference Signal Receiving Power (RSRP), receiving Signal Strength Indication (Received Signal Strength Indication, RSSI) value and Signal Noise Ratio (Signal Noise Ration, SNR), receiving channel performance parameters can include throughput, bit error rate and rank number, etc.
  • RSRP Reference Signal Receiving Power
  • RSSI Receiveived Signal Strength Indication
  • SNR Signal Noise Ratio
  • Fig. 3 is a flowchart of another antenna control method provided by the embodiment of the present application.
  • the embodiment of the present application is described on the basis of the above-mentioned embodiment of the application.
  • the method provided by the embodiment of the present application includes:
  • the log collector may be a device for collecting log files, and may read the log files of the antenna.
  • the log collector can be used to read the log file to obtain the antenna status information corresponding to each antenna. After the antenna state information is acquired, a correspondence relationship between each antenna state information and a corresponding antenna may be established.
  • FIG. 4 is an example diagram of antenna state information collection provided by the embodiment of the present application.
  • the log collector can collect the direct data of each antenna including RSRP, RSSI and SNR. Parameters and indirect parameters including throughput value, bit error rate, Modulation and Coding Scheme (MCS) and rank (Rank) number.
  • MCS Modulation and Coding Scheme
  • Rank rank
  • each MIMO antenna determines the antenna state parameters of the four paths of Transmit and Receive (TRX), DRX, PRX-MIMO and DRX-MIMO.
  • the log collection unit may be a unit configured to collect the reporting capability of the communication terminal, and the reporting capability may include a frequency band used for communication.
  • the communication terminal can use the log collection unit to extract the reporting capability for registration and connection to the base station.
  • the reporting capability can include the frequency band used by the combined network, and the extracted reporting capability can be used as network combination parameter information.
  • the environmental sensor may be a device installed in the communication device configured to perceive the surrounding environment, and may include one or more of a synthetic aperture radar (Synthetic Aperture Radar, SAR), a proximity sensor, a light sensor, and a three-axis sensor.
  • the detection software can be a software device that detects the usage of the communication terminal application software.
  • the detection software can detect the bottom interface of the communication terminal to obtain the parameters used by the communication terminal.
  • the detection software can be flow detection software, flow detection software
  • the traffic used by the communication terminal can be detected.
  • the application environment information can be the use status of the terminal, including the status of external obstacles and the use status of the communication terminal.
  • the internal application environment can be the use status of the application program in the communication terminal, which can include traffic requirements and data throughput.
  • an environment sensor and detection software may be used to detect the environment where the communication terminal is located and the software used to obtain application environment information.
  • FIG. 5 is an example diagram of application environment information detection provided by the embodiment of the present application.
  • the parameters of the scene are collected.
  • the configuration information of NR MIMO antennas can be collected, including information such as the position of the main and auxiliary antennas, the number of antennas, and the serial numbers of the antennas.
  • This information can be used by the communication terminal to customize the antenna based on the application scenario. Detection and input, configure different NR MIMO antenna states and positions, which can improve antenna efficiency.
  • the collected application environment information can be divided into application scenario requirements, external scenario requirements, etc.
  • the application scenario requirements can include downlink throughput peak requirements, uplink throughput peak requirements, uplink total radiated power (Total Radiated Power), downlink TIS strong requirements , MIMO RSRP equalization requirements, 5G new air interface carrying voice (Voice over New Radio, VONR) non-jamming requirements.
  • External scene requirements include: terminal handheld scene requirements, among which, terminal handheld scene requirements include left and right hand scene requirements, free space placement scene requirements, left and right head close scene requirements; screen display requirements, among which, screen display requirements include vertical screen scene requirements, horizontal screen display requirements Screen scene requirements, base station distance requirements, wherein, the base station distance requirements include the base station away from the scene requirements, the base station close to the scene requirements; LTE anchor point strength requirements, among them, the LTE anchor point strength requirements include strong LTE anchor point strength requirements, weak LTE anchor point strength requirements requirements, interference suppression requirements, etc.
  • the detection of application scenario requirements and external scenario requirements can be obtained through the joint detection of environmental sensors and detection software.
  • the antenna state information determines that the antenna control requirement corresponds to the main antenna, and generate a priority adjustment policy for the main antenna.
  • Statistics and extraction of antenna status information, combined parameter information and application environment information can be performed to determine the main factor that needs to control the antenna as the main antenna, for example, to determine that the current communication terminal has high requirements for uplink transmission performance, or the efficiency of the main antenna is far low For other antennas, it can be determined that the antenna control needs to correspond to the main antenna.
  • statistics and extraction are carried out according to antenna state information, network combination parameter information, and application environment information, and it is determined that the main factor that needs to control the antenna is the auxiliary antenna. If the service requirements are not met, it is determined that the antenna control needs to correspond to the auxiliary antenna.
  • the antenna control requirement corresponds to multiple antennas according to the antenna state information, network combination parameter information, and application environment information, and then generate an antenna coding priority adjustment strategy.
  • antenna status information After statistics and analysis of antenna status information, network combination parameter information, and application environment information, it is determined that the main factor that needs to control antennas is the performance imbalance between multiple antennas, and it can be determined that antennas need to correspond to multiple antennas.
  • the selected antenna combination has affected the capability of the communication terminal, and the services with high communication quality requirements are assigned low-efficiency LTE anchor points and NR antennas, then determine The antenna control requirements correspond to the network combination, and a network combination priority adjustment strategy can be generated.
  • the main antenna switching trigger signaling may be signaling used by the communication terminal to trigger the main antenna switching, and the main antenna switching trigger signaling may control the switching of the circuit where the main antenna is located to change.
  • the main antenna switching trigger signaling can be generated corresponding to the policy, and the main antenna switching trigger signaling can be sent to the circuit where the main antenna is located to control the change of circuit on and off, and switch the main antenna to other antennas. After the switching of the main antenna is completed, calibration and compensation can be performed on the switched main antenna to ensure the performance of the main antenna.
  • FIG. 6 is an example diagram of a main antenna switch provided by the embodiment of the present application.
  • the conduction between the main antenna and other multi-antennas is realized to realize A wider range of dynamic adjustment configurations for the main antenna.
  • a Transimite (TX)-based calibration configuration is performed for each antenna, and the calibration data of different antennas are configured in the parameter storage module for real-time recall.
  • the configuration of the main antenna can be as follows:
  • NR MIMO antenna distribution ANT1 (main antenna), ANT2 (auxiliary antenna), ANT3 (PRXMIMO), ANT4 (DRXMIMO); NRMIMO antenna distribution: ANT1 (auxiliary antenna), ANT2 (main antenna), ANT3 (PRXMIMO), ANT4 ( DRXMIMO); NR MIMO antenna distribution: ANT1 (PRXMIMO), ANT2 (auxiliary antenna), ANT3 (main antenna), ANT4 (DRXMIMO); NRMIMO antenna distribution: ANT1 (DRXMIMO), ANT2 (auxiliary antenna), ANT3 (PRXMIMO), ANT4 (main antenna).
  • the auxiliary antenna switching trigger signaling can be generated, and the auxiliary antenna switching trigger signaling can be sent to the circuit where the auxiliary antenna is located to change the circuit of the antenna.
  • the on-off condition makes other antennas act as new auxiliary antennas. Similar to the switching of the main antenna, after the switching of the secondary antenna, calibration and compensation can be performed on the switched antenna to improve the accuracy of the secondary antenna.
  • FIG. 7 is an example diagram of an auxiliary antenna switching provided by an embodiment of the present application.
  • the communication terminal can collect the receive (Receive, RX) calibration compensation value of each signal path before leaving the factory, and the RX
  • the calibration offset value can reflect the sensitivity delivered by the antenna.
  • the antenna efficiency value of the frequency point corresponding to each antenna can be collected, and the antenna efficiency value of each antenna can reflect the current state of the antenna.
  • the auxiliary antenna can be adjusted and controlled, and the auxiliary antenna switch triggers signaling to switch the position of the auxiliary antenna in the communication terminal antenna.
  • the module can call The stored RX calibration compensation value is used to calibrate the secondary antenna.
  • the RX calibration parameters of different auxiliary antennas can be pre-stored and recalled in real time during use.
  • the configuration of the auxiliary antenna can be shown as follows:
  • NR MIMO antenna distribution ANT1 (main antenna), ANT2 (auxiliary antenna), ANT3 (PRXMIMO), ANT4 (DRXMIMO); NRMIMO antenna distribution: ANT1 (auxiliary antenna), ANT2 (main antenna), ANT3 (PRXMIMO), ANT4 ( DRXMIMO); NR MIMO antenna distribution: ANT1 (main antenna), ANT2 (PRXMIMO), ANT3 (secondary antenna), ANT4 (DRXMIMO); NRMIMO antenna distribution: ANT1 (main antenna), ANT2 (DRXMIMO), ANT3 (PRXMIMO), ANT4 (auxiliary antenna).
  • Multi-antenna adjustment requirements can be business scenario requirements that need to be met by adjusting the network combination of multiple antennas.
  • Multi-antenna adjustment requirements can include over-the-air performance requirements, throughput requirements, interference requirements, anti-interference and bit error requirements, call and network requirements
  • One or more types, different antenna adjustments require different numbers and types of corresponding antennas, and the distribution of corresponding antennas in the communication terminal may also be different.
  • Antenna distribution can be the combined use of multiple antennas in the communication terminal. Different antenna distributions can correspond to different multi-antenna adjustment requirements. Different antennas and multi-antenna adjustment requirements can be associated and stored in data tables or configuration files.
  • the type of multi-antenna adjustment requirements can be determined according to the antenna control strategy.
  • the type can be one or more of over-the-air performance requirements, throughput requirements, interference requirements, anti-interference and bit error requirements, and call and network requirements.
  • the corresponding antenna distribution is selected according to the type of antenna, so as to adjust the network combination corresponding to multiple antennas according to the antenna, so as to realize the multi-antenna adjustment requirement.
  • the number of antennas in the communication device is generally more than 10, and the number of antennas can reach 16 when the number of antennas is large.
  • each antenna can have its own code, for example, ANT1, ANT2, ANT3, ANT4, ..., etc., 1-4 antennas can be used in a conventionally used NR frequency band. Taking the N41 frequency band as an example, the distribution of TRX, DRX, PRXMIMO and DRXMIMO corresponds to the four antennas of ANT1, ANT2, ANT3, and ANT4. Affected by the application scenario or ENDC combination, the combination of these four antennas may not be optimal.
  • ANT3, ANT4, ANT1, ANT2 that is, the PRXMIMO/DRXMIMO antenna and TRX/DRX antenna are interchangeable. Recoding and sequencing of antennas to account for corresponding requirements.
  • multiple radio frequency conduction paths and multiple antenna paths are connected through multiple input multiple output switches, such as four pole four throw (4 Pole 4 Throw, 4P4T) switch, 3P3T switch, double pole double throw (Double Pole Double Throw, DPDT) switch, Single Pole 3 Throw (Single Pole 3 Throw,) SP3T switch, Single Pole Double Throw (Single Pole Double Throw, SPDT) switch, etc., enable NR's multiple MIMO antennas to be switched and redefined.
  • the corresponding antenna distribution can be selected according to one or more of over-the-air performance requirements, throughput requirements, interference requirements, anti-interference and bit error requirements, call and network requirements, so as to realize the adjustment of antenna coding.
  • antenna coding adjustment can be performed according to the following table:
  • the antenna code adjustment can be performed according to the following table:
  • antenna coding adjustment can be performed according to the following table:
  • the antenna coding adjustment can be performed according to the following table:
  • Antenna number corresponding scene Antenna distribution conversation quality Antenna Code 13 scene 17 A2A1A3A4 upstream priority Antenna Code 14 scene 18 A3A2A1A4 downlink priority Antenna Code 15 scene 19 A1A2A3A4 uplink and downlink balance Antenna number corresponding scene Antenna distribution Cell strength Antenna Code 13 scene 21 A2A3A1A4 Strong signal cell Antenna Code 14 scene 22 A3A1A2A4 Medium signal community Antenna Code 15 scene 23 A1A2A3A4 Weak signal cell
  • the OTA and state performance of each antenna coding combination has been measured as a basic model value before leaving the factory, and real-time collection and online calculation are carried out in the live network environment, and the secondary accurate weighting calculation is performed. Combine or reorganize the final decision-making antenna coding parameters through the actual measurement and simulation algorithm. If the environment changes, real-time fine-tuning can be performed according to the collected values of the antenna status, fine-tuning the branch antennas in each antenna combination, or recalculating and selecting other antenna angle combinations until the best communication state is achieved, such as the highest peak upload and download throughput.
  • the antenna configuration may be information for configuring antenna resources, and may include radio frequency configuration parameters and radio frequency drive control configuration parameters, and the antenna configuration may correspond to network combination or network combination application scenarios.
  • the network combination to be used or the application scenario of the network combination to be used can be determined according to the antenna control strategy, the corresponding antenna configuration can be selected according to the network combination or the application scenario of the network combination, and the antenna can be adjusted according to the antenna configuration.
  • the preset method of antenna configuration can be as follows:
  • SA band scenario 1 antenna configuration 1; SA band scenario 2: antenna configuration 2; NR CA scenario combination 1: antenna configuration 3; NR CA scenario combination 2: antenna configuration 4; ENDC scenario combination 1: antenna configuration 5; ENDC scenario combination 2: Antenna configuration 6; CA+ENDC scenario combination 1: Antenna configuration 7; CA+ENDC scenario combination 2: Antenna configuration 8; CA+NRCA scenario combination 1: Antenna configuration 9; CA+NRCA scenario combination 2: Antenna configuration 10; Aggregated frequency band combination n in network scenarios: antenna configuration n.
  • antenna configurations can be set for different network combinations, and the configuration can be as follows:
  • LTE power(dBm) NR power(dBm) antenna configuration EDNC1 twenty three twenty three A1A2A3A4 EDNC2 twenty three 20 A1A3A2A4 EDNC3 20 twenty three A2A1A3A4 EDNC4 20 20 A2A1A4A3 EDNC5 10 twenty three A3A2A4A1 EDNC6 twenty three 10 A3A4A1A2 EDNC7 10 10 A4A3A2A1 EDNC8 0 0 A4A2A3A1
  • the antenna configuration can be obtained by testing before leaving the factory. Referring to FIG. RF drive control configuration under combination and division of labor.
  • Step 2 collect antenna performance indicators of communication terminals under different network combinations, establish a mapping relationship between network combinations and antenna performance indicators, and store the mapping relationship in a memory of the communication terminal for future use.
  • Step 3 Write the calibration compensation values under different network combinations into the communication terminal, and use the calibration compensation values to complete the calibration compensation of the antenna before leaving the factory.
  • the network quality and network combination can be detected. If the network quality and network combination do not meet the user's needs or self-setting requirements, the relevant RF drive parameters will be called to reconfigure and adjust the antenna.
  • the adjustment instruction realizes network combination reconfiguration, and the above process can be repeated until the control antenna reaches the working mode corresponding to the requirement.
  • the report capability of each network combination is extracted in the log collection unit as the network combination parameter information
  • the application environment information is obtained respectively by using the environmental sensor and detection software, and using Antenna status information, network combination parameter information, and application environment information determine at least one of the primary antenna priority adjustment strategy, auxiliary antenna priority adjustment strategy, antenna coding priority adjustment strategy, and network combination priority adjustment strategy, and generate Main antenna switching trigger signaling, and use the main antenna switching trigger signaling to trigger the main antenna switching, and perform calibration compensation on the switched main antenna; generate auxiliary antenna switching main and auxiliary signaling, and use the auxiliary antenna switching trigger signaling Trigger auxiliary antenna switching, and perform calibration compensation for the switched auxiliary antenna; determine the multi-antenna adjustment requirements corresponding to the antenna control strategy, find the antenna distribution corresponding to the multi-antenna adjustment requirements, and use this antenna distribution to adjust at least one antenna; determine the corresponding antenna control strategy According to the network combination or network combination application scenario, search for the antenna
  • extract the reporting capability of each network combination in the log collection unit as network combination parameter information including:
  • the current network card can be a software and hardware device that is being used by the communication terminal to realize the network communication function, and the registered network information can be the operator information registered in the communication terminal during the use of the current network card, which can reflect the operation of the network service
  • Encrypting File System (Encrypting File System, EFS) frequency band can be used by communication terminals to store information components of International Mobile Equipment Identity (International Mobile Equipment Identity, IMEI), wireless network card address and network settings.
  • the EFS frequency band can be encrypted
  • the frequency band information stored in the file system may be the frequency band used by the communication terminal for communication
  • the driver configuration information may be a configuration file for running software
  • the configuration file may include network parameters used for running the software.
  • the reporting capability may be the communication capability reported by the communication terminal to the base station, and may include supported network types and network operators.
  • the driver configuration information can be extracted from the file, and the collected information can be used as the network combination parameter configuration, which can be connected with the base station according to the network combination parameter configuration, and the reporting capability of the network combination can be collected during the access process, and the reported The parameter information corresponding to the capability is used as the network combination parameter.
  • the position of the obstacle may be the position of the obstacle that blocks the antenna emission in the surrounding environment
  • the terminal usage status may be the status of the user using the terminal, for example, the horizontal screen is used in the vertical screen, etc.
  • the environment sensor used includes at least one of the following: synthetic aperture radar, proximity sensor, light sensor, and three-axis sensor; traffic statistics software and a modem are used to detect service application parameters as the application environment parameters.
  • the communication terminal can use the built-in synthetic aperture radar, proximity sensor, light sensor, three-axis sensor and other environmental sensors to check the environment of the communication terminal to collect application environment parameters; it can also use the installed traffic statistics software to collect system traffic
  • the requirements and the data throughput of the communication terminal are collected by using a modem, and the collected system flow requirements and data throughput can be used as application environment parameters.
  • the antenna state information includes at least one of the following: reference signal received power, received signal strength indication, signal-to-noise ratio, throughput value, bit error rate, modulation and coding strategy, and rank number.
  • the network combination includes at least one of the following: single NR frequency band, single NSA mode, single SA mode, ENDC dual connection under single LTE, multiple LTE CA and ENDC hybrid, multiple LTE CA Mixed with NR CA.
  • the network combination used by the communication terminal can include one or more of single NSA networking mode, single SA networking mode, ENDC dual connection under single LTE, multiple LTE CA and ENDC hybrid, multiple LTE CA and NR CA hybrid, Multi-LTE CA and ENDC mixed networking.
  • the network combination can be:
  • NSA band scenario 4 B3+N41
  • LTE 1CC+NRCA scenario combination 12 B1+N1+N78
  • LTE 3CC+NRCA scenario combination 14 B1+B3+B28+N3+N78.
  • Fig. 9 is a schematic structural diagram of an antenna control device provided in an embodiment of the present application, which can execute the method provided in any embodiment of the present application, and has corresponding functional modules and effects for executing the method.
  • the device can be implemented by software and/or hardware, and is generally integrated in a communication terminal, as shown in FIG. 9 , including: a parameter collection module 301 , a strategy generation module 302 and an antenna control module 303 .
  • the parameter acquisition module 301 is configured to acquire application environment information, network combination parameter information connected to the base station, and antenna state information corresponding to at least one antenna.
  • the strategy generation module 302 is configured to determine an antenna control strategy according to the antenna state information, the network combination parameter information and the application environment information.
  • the antenna control module 303 is configured to control at least one antenna according to the antenna control policy.
  • the antenna status information of the antenna, the network combination parameter information connected to the base station, and the application environment information are collected by the parameter collection module 301, the policy generation module 302 generates an antenna control strategy based on the collected information, and the antenna control module 303 controls the antenna according to the The strategy adjusts the antenna, and realizes the dynamic adjustment of the antenna through the antenna control strategy, which can improve the balance of antenna efficiency in the case of multiple antennas, and can enhance the communication signal quality of the terminal.
  • the antenna state information includes at least signal strength, interference parameters, and receiving channel performance parameters.
  • the parameter collection module 301 includes:
  • An antenna state collection unit configured to collect the antenna state information of each antenna collected by the log collector.
  • the network combination acquisition unit is configured to extract the reporting capability of each network combination in the log acquisition unit as the network combination parameter information.
  • the application environment collection unit is configured to use an environment sensor and detection software to acquire the application environment information, wherein the application environment information is used to indicate the use state of the terminal, and the use state includes an internal application environment and an external use environment.
  • the network combination acquisition unit includes:
  • the operator identification unit is configured to identify the registered network information of the current network card to determine the current operator.
  • the parameter configuration unit is configured to detect network combination parameter configuration according to the frequency band of the built-in encrypted file system and the driver configuration information of the current operator's network demand software.
  • the access scanning unit is configured to perform access scanning according to the network combination parameter configuration to obtain the reporting capability of each network combination.
  • the network parameter extraction unit is configured to use the parameter information of the reporting capability of each network combination read by the log collection unit as the network combination parameter.
  • the application environment collection unit includes:
  • the environmental parameter subunit is configured to use an environmental sensor to detect environmental parameters of the environment as the application environmental parameters, wherein the environmental parameters at least include obstacle positions and terminal use status.
  • the software parameter subunit is configured to use traffic statistics software and a modem to detect service application parameters as the application environment parameters, wherein the service application parameters at least include system flow requirements and data throughput.
  • the antenna state information includes at least one of the following: reference signal received power, received signal strength indication, signal-to-noise ratio, throughput value, bit error rate, modulation and coding strategy, and rank number.
  • the network combination includes at least one of the following:
  • the policy generation module 302 includes:
  • the main antenna unit is configured to determine that the antenna control requirement corresponds to the main antenna according to the antenna state information, the network combination parameter information and the application environment information, and generate a priority adjustment strategy for the main antenna.
  • the auxiliary antenna unit is configured to determine that the antenna control requirement corresponds to the auxiliary antenna according to the antenna state information, the network combination parameter information, and the application environment information, and then generate an auxiliary antenna priority adjustment strategy.
  • the encoding unit is configured to determine that the antenna control requirement corresponds to multiple antennas according to the antenna state information, the network combination parameter information, and the application environment information, and then generate an antenna encoding priority adjustment strategy.
  • the combination unit is configured to determine that the antenna control requirement corresponds to the network combination according to the antenna state information, the network combination parameter information and the application environment information, and then generate a network combination priority adjustment policy.
  • the antenna control module 303 includes a main antenna adjustment unit, which is configured to: generate a main antenna switching trigger signaling, and switch the main antenna to the other said main antenna according to the main antenna switching trigger signaling. an antenna; performing calibration compensation on the adjusted main antenna.
  • the antenna control module 303 includes a secondary antenna adjustment unit, which is configured to: generate secondary antenna switching trigger signaling, and switch the secondary antenna to the other said antenna according to the secondary antenna switching trigger signaling an antenna; performing calibration compensation on the adjusted auxiliary antenna.
  • the antenna control module 303 includes: an encoding adjustment unit configured to: determine the multi-antenna adjustment requirements corresponding to the antenna control strategy, wherein the multi-antenna adjustment requirements include at least over-the-air performance Requirements, throughput requirements, interference requirements, anti-interference and bit error requirements, call and network requirements; find the antenna distribution corresponding to the multi-antenna adjustment requirements; adjust the closure of at least one antenna corresponding to the circuit according to the antenna distribution.
  • an encoding adjustment unit configured to: determine the multi-antenna adjustment requirements corresponding to the antenna control strategy, wherein the multi-antenna adjustment requirements include at least over-the-air performance Requirements, throughput requirements, interference requirements, anti-interference and bit error requirements, call and network requirements; find the antenna distribution corresponding to the multi-antenna adjustment requirements; adjust the closure of at least one antenna corresponding to the circuit according to the antenna distribution.
  • the antenna control module 303 includes: a combination adjustment unit, configured to: determine the network combination or network combination application scenario corresponding to the antenna control strategy; search for the network combination or the network combination The antenna configuration corresponding to the application scene; according to the antenna configuration, adjust the closure of the circuit corresponding to at least one antenna.
  • FIG. 10 is an example diagram of an antenna control device provided in the embodiment of the present application.
  • the device provided in the embodiment of the present application includes: an L1 antenna state acquisition module, and an L2 network combination detection Module, L3 application scene detection module, L4 antenna configuration mapping calculation unit, L5 dynamic antenna control module, L6 parameter storage module, L7 main antenna adjustment module, L8 auxiliary antenna adjustment module, L9 antenna coding adjustment module, L10 network combination antenna adjustment module .
  • the antenna state collection module L1 is connected to the antenna configuration mapping calculation unit L4, and is set to collect the state of each MIMO antenna of the 5G terminal. Including signal strength and interference parameters under each antenna path, such as RSRP value, RSSI value, SNR value, or performance parameters of each antenna receiving channel, such as throughput rate, bit error rate, sounding reference signal (Sounding Reference Signal, SRS ) value, etc. Antenna status collection values are collected in real time through the built-in LOG collector of the mobile phone, capturing each reported value.
  • the network combination detection module L2 is connected to the antenna configuration mapping calculation unit L4, and is set to collect network combination parameters for 5G terminals to register and connect to the base station.
  • Network combination parameters include NR frequency band for registration and connection, NSA or SA mode, ENDC dual connection combination under single LTE, multi-LTE CA plus ENDC combination, multi-LTE CA plus NR CA combination.
  • the network combination detection module L2 is completed through the following steps: the first step: the terminal identifies the current operator through the current network card and registered network information; the second step: the terminal uses the built-in EFS frequency band, and the built-in current operator Provider network requirements software driver configuration information, detect the current NSA/SA/CA/ENDC/NRCA network combination requirements configuration; Step 3: The terminal performs access scanning, detects the terminal’s ability to report the first combination, and detects the current registration, access Or the reporting capability of the connected network; the fourth step: the network combination detection module L2 identifies the current network combination reporting information through the built-in LOG collection unit.
  • the application scene detection module L3 is connected to the antenna configuration mapping calculation unit L4, and is set to collect the application scene where the 5G terminal is located and the parameters of the surrounding environment scene, and to detect the user service scene requirements.
  • the configuration information of NR MIMO antennas such as the position of the main and auxiliary antennas, the number of antennas, and the serial numbers of antennas, etc., are customized based on application scenarios, that is, different NR MIMO antenna states and positions are configured according to the detection and input of different application scenarios. Improve work gain and efficiency.
  • the antenna configuration mapping calculation unit L4 is connected to the dynamic antenna control module L5, and is set to map antenna configurations in different antenna states and scenarios, and calculate and match corresponding adjustment algorithms.
  • the input variables of this module include antenna status, network combination and application scenarios.
  • the built-in algorithm of the antenna configuration mapping calculation unit L4 is: compare and analyze the signal quality parameters of different antenna numbers, and the correlation parameters of the combination sequence, and call one or more combination adjustment methods with higher priority, so that the NR MIMO antenna path It can be dynamically adjusted to the direction and sequence with higher signal quality, higher throughput rate and more stable rate.
  • Antenna resource configuration is realized by detecting key parameter indicators. If the current demand for uplink transmission performance is high, the main antenna adjustment module L7 is used to adjust the main antenna to the strongest scannable and switchable antenna. If the current auxiliary antenna has a short board, so that the overall TRP and TIS cannot meet the requirements, it is necessary to adjust the configuration of the auxiliary antenna and extend the auxiliary antenna to other antennas with higher efficiency.
  • the antenna coding can be adjusted to achieve four-way balance optimization. If the current antenna performance is poor because some network combinations are assigned low-efficiency LTE anchor points and NR antennas to the mobile phone, you need to call the combined antenna mapping adjustment mode to redefine and configure based on the network combination.
  • the dynamic antenna control module L5 is connected with other modules, and is configured as a coordinated control detection module and a dynamic antenna adjustment module.
  • Dynamic antenna control includes two parts: the extended control of the NR MIMO extended antenna on the 5G terminal and the module adjustment control.
  • the antenna dynamic control module L5 is connected to the antenna of the terminal.
  • the 5G antennas on the terminal can be connected in series through SPDT or SP3T, SPNT switches, etc.
  • the N3 frequency band can only be fixed at four antennas 2, 4, 3, and 6, while the 7, 9 antennas were originally used as N41 antennas , through the circuit shown in Figure 12 below, the 7 and 9 antennas are extended to the N3 antenna sequence to expand the adjustment range and coverage of the N3 antenna.
  • the antenna dynamic control module L5 adaptively modulates and controls the four antenna configuration adjustment methods according to the output results of the current antenna configuration mapping, antenna status parameter values, 5G terminal signal quality and throughput related parameters, including main antenna adjustment, auxiliary antenna adjustment, antenna Adaptive encoding adjustment, network combination matching adjustment, etc.
  • the dynamic antenna control module L5 is configured to perform adaptive dynamic adjustment control according to the current network conditions and service requirements.
  • the above adjustment methods can be adjusted one by one, or in combination of two, or more combinations can be used together until the network performance requirements are met. If it is a single adjustment, it is judged by the sensitivity of key parameters, and the sensitivity-related parameters are called first. High-performance adjustment methods and procedures, until the wireless call performance, uplink and downlink throughput, etc. meet the target requirements.
  • the main antenna adjustment module L7 is connected to the dynamic antenna control module L5, and is configured to adjust and control the configuration of the main antenna of the 5G terminal.
  • the distribution of the main transceiver antenna and other diversity, MIMO antennas has been set before leaving the factory. Calibration is also only used for the main TRX antenna, while no separate transmit calibration is done for the other diversity and MIMO antennas.
  • the user will hold the original default lower antenna, which will lead to performance degradation.
  • the traditional solution is to switch the upper and lower antennas of the main antenna, but if the efficiency of the upper antenna is low , even if the diversity antenna is switched, the effect is not good.
  • the conduction between the main antenna and other multi-antennas is conducted, so as to realize a wider range of dynamic adjustment configuration of the main antenna.
  • TX-based calibration configuration is performed for each antenna, and the calibration data of different antennas are configured in the parameter storage module L6 for real-time calling.
  • the auxiliary antenna adjustment module L8 is connected to the dynamic antenna control module L5, and is configured to adjust and control the configuration of the auxiliary antenna of the 5G terminal.
  • the position of the diversity and MIMO antennas of the current 5G terminals is also relatively fixed, and the distribution and setting of the diversity antennas, PRX MIMO antennas, and DRX MIMO antennas are also related and fixed. Efficiencies of different auxiliary antennas may vary greatly. For example, the efficiency of the auxiliary MIMO antenna is higher than that of the diversity antenna, or even higher than that of the main antenna, resulting in the problem of inflexible configuration.
  • the auxiliary antenna adjustment module L8 allows the auxiliary antennas of 5G NR to be replaced and configured according to requirements.
  • the auxiliary antenna adjustment module L8 collects the RX automatic gain control (Automatic Gain Control, AGC) value of each signal path before leaving the factory.
  • the conduction sensitivity can be fed back through the RX AGC value, and the antenna efficiency value of the corresponding frequency point of each antenna is collected at the same time.
  • the current antenna status is fed back through the antenna efficiency value, and the auxiliary antenna is customized according to the current application scenario and network combination, as well as the user's network quality requirements.
  • the module calls the new position.
  • Each auxiliary antenna corresponds to a specific RX calibration parameter, and the RX calibration parameters of different antennas are configured in the parameter storage module L6 for real-time calling. until the target threshold is met.
  • the antenna coding adjustment module L9 is connected to the dynamic antenna control module L5 and is set to adjust and control the antenna coding of 5G terminals. It is mainly responsible for recoding and defining multiple antennas at the same time.
  • a single NR antenna requires 2-4 MIMO antennas.
  • 5G The total number of terminal antennas is generally more than 10, and there are as many as 16.
  • Each antenna is encoded, such as ANT1, ANT2, ANT3, ANT4, AN5...ANT16, which will be called in a conventionally used NR frequency band 1-4 antennas, taking N41 as an example, such as TRX, DRX, PRXMIMO and DRXMIMO distribution correspond to ANT1, ANT2, ANT3, ANT4 four antennas.
  • the antenna coding adjustment module L9 connects multiple radio frequency conduction paths and multiple antenna paths of NR through multi-input multi-output switches, such as 4P4T switches, 3P3T switches, DPDT switches, SP3T switches, SPDT switches, etc., so that the multiple All MIMO antennas can be switched and redefined.
  • each antenna combination is specifically coded to cope with different scenarios and network requirements, corresponding to different TRP, TIS, uplink throughput, downlink throughput, total bit error rate, total SNR value, NR call quality Different requirements, cell distance and intensity are adjusted for different antenna coding positions.
  • the network combination antenna adjustment module L10 is connected to the dynamic antenna control module L5, and is set to configure antenna resources for 5G terminals under different network combinations and requirements.
  • the reconfiguration here is divided into two parts: the reconfiguration of the radio frequency and the antenna circuit and the radio frequency drive control of the network combination.
  • the reconfiguration of radio frequency and antenna circuits realizes the interconnection between different frequency bands and antenna branches through multi-channel switching circuits and switches.
  • the method of radio frequency drive control of network combination is as follows: first step, the terminal performs radio frequency drive configuration under different network combinations before leaving the factory, and radio frequency drive control configuration of different antenna paths, combinations, and division of labor.
  • the second step is to collect antenna performance indicators under different network combinations, establish a mapping relationship, and store them in corresponding parameter memory for recall.
  • the third step is to write the calibration and compensation parameters under different network combinations into the terminal to complete the calibration and compensation before leaving the factory.
  • the fourth step is to detect the network quality and network combination. If the user's needs and self-setting requirements are not met, call the relevant RF driver code to perform reconfiguration and adjustment; the fifth step is to receive the adjustment instruction for the antenna, perform combination reconfiguration, and control the antenna Enter the corresponding working mode until the target requirements are met.
  • This module configures and invokes the corresponding NR mimo antenna branch, combination and sequence through network combination differentiation requirements.
  • ENDC combinations and NR CA combinations sometimes require The signal of the LTE anchor point is strong, and sometimes the NR 5G signal is required to be strong, so that the NR antenna and the LTE antenna can be switched freely, that is, the LTE antenna with the same frequency as the NR antenna, and the LTE antenna with the same frequency as the NR antenna. And according to the requirements and network conditions, different antenna configurations are carried out.
  • Figure 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application, the electronic device includes a processor 70, a memory 41, an input device 42 and an output device 43; the number of processors 40 in the electronic device can be one or more
  • a processor 40 is taken as an example; the processor 40, memory 41, input device 42 and output device 43 in the electronic device can be connected by bus or other methods, and in FIG. 13, the connection by bus is taken as an example.
  • the memory 41 can be configured to store software programs, computer-executable programs and modules, such as the modules corresponding to the antenna control device in the embodiment of the present application (parameter acquisition module 301, policy generation module 302 and antenna control module 303).
  • the processor 40 executes various functional applications and data processing of the electronic device by running software programs, instructions and modules stored in the memory 41 , that is, implements the above method.
  • the memory 41 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system and at least one application required by a function; the data storage area can store data created according to the use of the electronic device, and the like.
  • the memory 41 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • memory 41 may include memory located remotely relative to processor 40, and these remote memories may be connected to the electronic device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 42 can be configured to receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the output device 43 may include a display device such as a display screen.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute an antenna control method when executed by a computer processor, and the method includes:
  • the present application can be realized by software and necessary general hardware, or by hardware.
  • the technical solution of the present application can be embodied in the form of software products in essence, and the computer software products can be stored in computer-readable storage media, such as computer floppy disks, read-only memory (Read-Only Memory, ROM), random access Memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including a plurality of instructions to make a computer device (which can be a personal computer, server, or network device, etc.) described method.
  • the multiple units and modules included are only divided according to the functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized; in addition, the names of the multiple functional units are also It is only for the convenience of distinguishing each other, and is not used to limit the protection scope of the present application.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of multiple The physical components cooperate to perform.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • a processor such as a central processing unit, digital signal processor or microprocessor
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory or other memory technologies, Compact Disc Read-Only Memory (CD) -ROM), Digital Versatile Disc (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other storage device that can be used to store desired information and that can be accessed by a computer medium.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种天线控制方法、电子设备和存储介质。天线控制方法包括:获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应的天线状态信息;根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制策略;按照所述天线控制策略控制至少一个天线。

Description

天线控制方法、电子设备和存储介质 技术领域
本申请涉及无线通信技术领域,例如涉及一种天线控制方法、电子设备和存储介质。
背景技术
随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)终端的发展和演进,手机制式和频段逐渐增多。新空口(New Radio,NR)天线的数量也越来越多,然而随着天线数量的增多,每个天线的效率分摊变低,5G终端的NR部分一般采用4*4多进多出(Multiple Input Multiple Output,MIMO)天线,不同的组网方式使用的天线数量不同。使用的NR天线位置和功能属性一般固定。5G终端在不同应用和组网方式下存在天线效率不均衡和灵活性较差的问题,影响终端的通信质量。
发明内容
本申请提出一种天线控制方法、电子设备和存储介质,以实现天线的灵活控制,提高天线效率的均衡程度,可降低天线对终端通信质量的影响。
本申请提供了一种天线控制方法,包括:获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应的天线状态信息;根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制策略;按照所述天线控制策略控制至少一个天线。
本申请还提供了一种电子设备,其中,该电子设备包括:一个或多个处理器;存储器,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述天线控制方法。
本申请还提供了一种计算机可读存储介质,其中,该计算机可读存储介质存储有一个或多个程序,该程序被处理器执行时实现上述天线控制方法。
附图说明
图1是相关技术中5G终端天线分布示意图;
图2是本申请实施例提供的一种天线控制方法的流程图;
图3是本申请实施例提供的另一种天线控制方法的流程图;
图4是本申请实施例提供的一种天线状态信息采集的示例图;
图5是本申请实施例提供的一种应用环境信息检测的示例图;
图6是本申请实施例提供的一种主天线切换的示例图;
图7是本申请实施例提供的一种辅天线切换的示例图;
图8是本申请实施例提供的一种天线配置的预设示例图;
图9是本申请实施例提供的一种天线控制装置的结构示意图;
图10是本申请实施例提供的一种天线控制装置的示例图;
图11是本申请实施例提供的一种天线结构的示例图;
图12是本申请实施例提供的一种天线连接电路图;
图13是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
此处所描述的具体实施例仅仅用以解释本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
随着5G终端的发展和演进,手机制式和频段逐渐增多,NR天线的数量也在增加,随着终端天线数量的增多,每个天线的效率分摊变低,5G终端的NR部分一般都采用4*4MIMO天线,如果是非独立组网(Non-Stand Alone,NSA),天线数量可能是5-6根天线,如果是独立组网(Stand Alone,SA),天线数量可能是2-4根天线,而这些NR天线位置及功能属性一般是固定的,造成通话质量下降,不能达到5G要求。针对这个问题,本申请主要解决当前5G终端天线在不同应用及组合下的效率不均衡性及灵活性较差的问题。图1是相关技术中5G终端天线分布示意图,参见图1,4G射频芯片和5G射频芯片各自存在对应的天线,终端能获取多少上下行吞吐资源,其中一个因素是取决于多个MIMO天线的总辐射功率(Total Radiated Power,TRP)、总全向灵敏度(Total Istropic Sensitivity,TIS)和板级传导功率及灵敏度,同时还有外界及内部的干扰。如果这N根天线之间有部分天线效率低,则空中下载技术(Over-the-Air Technology,OTA)性能会受到影响,可能会汇报较差的信号值,这样基站就会错误的评估每个天线通道的信道质量,从而给出比较低的资源调度。
首先,5G终端天线在不同网络组合下有灵活性差的问题,在弱信号下,手机距离基站较远,终端会以最大发射功率向基站传输信号,一些演进的通用陆 地无线接入(Evolved Universal Terrestrial Radio Access,EUTRA)新空口双连接(EUTRA NR Dual-Connectivity,ENDC)下的天线是A天线,效率高,而一些ENDC组合下的天线采用天线B,效率低,实际辐射到达基站的总功率会低于预期,重则影响SA及NSA的连接问题,轻则影响基站的调度评估,从而基站分配给手机的最大下行吞吐资源就会很低,从而导致用户的上网速率不能满足需求。同时,不同ENDC组合,NR载波聚合(Carrier Aggregation,CA)组合下,有时要求长期演进(Long Term Evolution,LTE)锚点的信号强,有时要求NR 5G的信号强,如何让NR天线和LTE天线之间可自由切换,即将同频的LTE天线作为NR天线,将同频的LTE天线作为NR天线,成为待解决的问题。
其次,一频段的NR只能在4个MIMO天线之间切换,如果四个天线之间一个或多个天线效率低,或一些应用场景及ENDC组合下,受到干扰或影响,出现一个或多个天线效率低的问题,由于4个天线数量固定,单一,则最大效率满足不了要求,而天线无法更大范围动态扩展,则无法满足用户需求。
再次,5G终端的分集及MIMO天线位置也是相对固定的,分集天线、主集接收(Primary Receive MIMO,PRXMIMO)天线及分集接收(Diversity Receive MIMO,DRXMIMO)天线的分布及设置也是相关固化。不同辅天线的效率可能存在差异大的问题,例如辅MIMO天线的效率高于分集天线,或甚至高于主天线,故存在不能灵活配置的问题,如何让5G NR的辅天线之间可以相互置换及配置成为待解决的问题。
最后,5G MIMO天线存在彼此隔离度差、相关系数大或者不均衡的问题,影响终端整体的吞吐率,在一个条件下,天线位置相对固定导致无法有针对性的进行调节,NR整体性受到影响。
本申请旨在实现天线的动态拓展调节,提高5G终端的通信质量和性能。
图2是本申请实施例提供的一种天线控制方法的流程图,本申请实施例可以适用于动态调节终端天线的情况,该方法可以由本申请实施例中的天线控制装置来执行,该装置可以通过软件和/或硬件的方式实现,并一般可以集成在通信终端中,参见图2,本申请实施例提供的方法包括:
110,获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应的天线状态信息。
天线可以是设置为发射或者接收射频信号的装置,天线的数量可以为一个或多个,网络组合参数信息可以是标识终端使用的射频信号的频段的信息,天线状态信息可以用于表示每个天线的状态,每个天线可以存在各自对应的天线状态信息,天线状态信息可以包括天线的信号强度以及干扰参数,网络组合参 数信息中可以包括一个或多个频段的参数信息,网络组合参数信息可以用于确定通信终端使用的天线种类,应用环境信息可以是通信终端的使用环境信息,应用环境信息可以包括通信终端中正在使用的软件应用环境信息以及通信终端所处的物理环境信息。
可以分别采集每个天线的天线状态信息,采集的方式可以包括读取天线的日志记录或者读取每个天线路径下的信号强度以及干扰参数作为对应的天线状态信息。还可以对通信终端注册连接基站的网络组合参数进行采集,可以包括采集注册连接的频段信息或者频段组合信息。可以对通信终端的应用环境进行采集以获取应用环境信息,可以包括采集通信终端软件接口以获取应用软件信息以及采集通信终端所处的物理环境信息。
120,根据天线状态信息、网络组合参数信息和应用环境信息确定天线控制策略。
可以通过对天线状态信息、网络组合参数信息以及应用环境信息中的一种或多种进行分析以确定影响通信终端天线性能的因素,可以根据该因素生成对应的天线控制策略。因素可以是反映通信终端当前能力状态的信息或者预期能力状态的信息。例如,根据天线状态信息、网络组合参数信息和应用环境信息确定通信终端对上行发射性能需求高时,可以生成对主天线进行控制的天线控制策略,以提高主天线的性能。
130,按照天线控制策略控制至少一个天线。
在本申请实施例中,通信终端可以按照天线控制策略对采集到天线状态信息的天线进行控制,改变其中一个或多个天线的性能。天线控制策略的数量可以为一个或多个,可以按照顺序依次执行多个天线控制策略从而实现对天线的控制,生成的多个天线控制策略可以控制不同的天线,也可以控制相同的天线。可以实现天线的动态调整,以提高不同天线性能的均衡性。
本申请实施例,通过采集天线的天线状态信息、连接基站的网络组合参数信息以及应用环境信息,基于采集到的信息生成天线控制策略,按照天线控制策略对天线进行调整,通过天线控制策略实现天线的动态调整,可提高多天线情况下的天线效率均衡程度,可增强终端的通信信号质量。
在上述申请实施例的基础上,天线状态信息至少包括信号强度和干扰参数。
在本申请实施例中,通信终端可以采集每个天线的信号强度、干扰参数和收发通道性能参数作为天线状态信息,其中,信号强度可以包括参考信号接收功率(Reference Signal Receiving Power,RSRP),接收信号强度指示(Received Signal Strength Indication,RSSI)值和信噪比(Signal Noise Ration,SNR),接 收通道性能参数可以包括吞吐率、误码率和秩数等。
图3是本申请实施例提供的另一种天线控制方法的流程图,本申请实施例是在上述申请实施例基础上进行说明,参见图3,本申请实施例提供的方法包括:
210,采集日志收集器收集的每个天线的天线状态信息。
日志收集器可以是对日志文件进行采集的装置,可以对天线的日志文件进行读取。
在本申请实施例中,可以使用日志收集器对日志文件进行读取,获取到每个天线对应的天线状态信息,使用日志收集器采集的方式可以包括对日志文件进行实时采集或者定时采集,在获取到天线状态信息后,可以建立每个天线状态信息与对应天线的对应关系。
示例性的,图4是本申请实施例提供的一种天线状态信息采集的示例图,参见图4,本申请实施例,可以通过日志收集器采集每个天线的包括RSRP、RSSI和SNR的直接参数以及包括吞吐值、误码率、调整与编码策略(Modulation and Coding Scheme,MCS)和秩(Rank)数的间接参数。日志收集器通过抓取各每个天线上传到控制面模块的上报值,获取上述的直接参数和间接参数,每个上报值可以与每个天线相关联,除了总的组合对应关系,还可以确定每个MIMO天线和上述上报值的对应关系,确定出发射和接收(Transimite and Receive,TRX)、DRX、PRX-MIMO和DRX-MIMO四个路径的天线状态参数。
220,提取日志采集单元内每个网络组合的上报能力作为网络组合参数信息。
日志采集单元可以是设置为采集通信终端的上报能力的单元,该上报能力可以包括通信使用的频段。
通信终端可以使用日志采集单元提取用于注册和连接到基站的上报能力,该上报能力可以包括组合网络使用的频段,可以将提取到的上报能力作为网络组合参数信息。
230,使用环境传感器和检测软件获取应用环境信息,其中,应用环境信息用于表示终端的使用状态,该使用状态包括内部应用环境和外部使用环境。
环境传感器可以是通信设备中安装的设置为感知周围环境的装置,可以包括合成孔径雷达(Synthetic Aperture Radar,SAR)、接近传感器、光感传感器、三轴传感器中的一种或者多种。检测软件可以是对通信终端应用软件使用情况进行检测的软件装置,检测软件可以对通信终端的底层接口进行检测,以获取通信终端使用的参数,例如,检测软件可以是流量检测软件,流量检测软件可以对通信终端使用的流量进行检测,应用环境信息可以是终端的使用状态,包括外部障碍物状态以及通信终端的使用状态,内部应用环境可以是通信终端中 应用程序的使用状态,可以包括流量需求以及数据吞吐量等。
本申请实施例中,可以分别使用环境传感器和检测软件对通信终端所处的环境和所使用的软件进行检测以获取到应用环境信息。
示例性的,图5是本申请实施例提供的一种应用环境信息检测的示例图,参见图5,本申请实施例中,通信终端可以对所处软件应用场景、周边环境场景和用户业务需求场景的参数进行采集。例如,可以采集NR MIMO天线的配置信息,包括主辅天线位置、天线数量、天线编码序号等信息,这些信息可以用于通信终端基于应用场景对天线进行定制化控制,可以根据不同的应用场景的检测和输入,配置不同的NR MIMO天线状态和位置,可提高天线效率。采集的应用环境信息可以划分为应用场景需求、外部场景需求等部分,其中,应用场景需求可以包括下行吞吐峰值需求、上行吞吐峰值需求、上行全向辐射功率(Total Radiated Power)、下行TIS强需求,MIMO RSRP均衡需求、5G新空口承载语音(Voice over New Radio,VONR)不卡顿需求。外部场景需求包括:终端手持场景需求,其中,终端手持场景需求包括左右人手场景需求、自由空间放置场景需求、左右人头靠近场景需求;屏幕显示需求,其中,屏幕显示需求包括竖屏场景需求、横屏场景需求、基站距离需求,其中,基站距离需求包括基站远离场景需求、基站接近场景需求;LTE锚点强度需求,其中,LTE锚点强度需求包括强LTE锚点强度需求、弱LTE锚点强度需求、干扰抑制需求等。应用场景需求和外部场景需求的检测可以通过环境传感器和检测软件共同检测获取。
240,根据天线状态信息、网络组合参数信息和应用环境信息确定天线控制需求对应主天线,则生成主天线优先调整策略。
可以对天线状态信息、组合参数信息以及应用环境信息进行统计和提取,确定需要控制天线的主要因素为主天线,例如,确定当前通信终端对上行发射性能要求高,或者,主天线的效率远低于其他天线,可以确定天线控制需要对应主天线。
250,根据天线状态信息、网络组合参数信息和应用环境信息确定天线控制需求对应辅天线,则生成辅天线优先调整策略。
在本申请实施例中,按照天线状态信息、网络组合参数信息和应用环境信息进行统计和提取,确定需要控制天线的主要因素为辅天线,例如,确定一辅天线性能存在短板,或者副天线不满足业务需求,则确定天线控制需要对应辅天线。
260,根据天线状态信息、网络组合参数信息和应用环境信息确定天线控制 需求对应多天线,则生成天线编码优先调整策略。
对天线状态信息、网络组合参数信息以及应用环境信息进行统计和分析后,确定需要控制天线的主要因素为多个天线之间的性能不均衡,可以确定天线需要对应多天线。
270,根据天线状态信息、网络组合参数信息和应用环境信息确定天线控制需求对应网络组合,则生成网络组合优先调整策略。
在对天线状态信息、网络组合参数信息和应用环境信息进行分析提取后确定选择使用的天线组合影响了通信终端的能力,高通信质量要求的业务分配了效率低LTE锚点和NR天线,则确定天线控制需求对应网络组合,可以生成网络组合优先调整策略。
280,生成主天线切换触发信令,并根据主天线切换触发信令将主天线切换到其他天线;对调整后的主天线进行校准补偿。
主天线切换触发信令可以是通信终端用于触发主天线切换的信令,主天线切换触发信令可以控制主天线所处的电路通断发生变化。
在生成主天线优先调整策略时,可以对应该策略生成主天线切换触发信令,发送主天线切换触发信令到主天线所处电路以控制电路通断的改变,将主天线切换到其他天线。在主天线切换完成后,可以对切换后的主天线进行校准补偿,以保障主天线的性能。
示例性的,图6是本申请实施例提供的一种主天线切换的示例图,参见图6,本申请实施例中通过射频电路的改进,将主天线和其他多天线之间导通,实现主天线的更广范围的动态调整配置。同时,针对只校准默认主TRX天线的功率不均衡问题,对每个天线进行基于发射(Transimite,TX)的校准配置,将不同天线的校准数据配置在参数存储模块中,进行实时调用。主天线的配置可以如下:
NR MIMO天线分布:ANT1(主天线)、ANT2(辅天线)、ANT3(PRXMIMO)、ANT4(DRXMIMO);NRMIMO天线分布:ANT1(辅天线)、ANT2(主天线)、ANT3(PRXMIMO)、ANT4(DRXMIMO);NR MIMO天线分布:ANT1(PRXMIMO)、ANT2(辅天线)、ANT3(主天线)、ANT4(DRXMIMO);NRMIMO天线分布:ANT1(DRXMIMO)、ANT2(辅天线)、ANT3(PRXMIMO)、ANT4(主天线)。
290,生成辅天线切换触发信令,并根据辅天线切换触发信令将辅天线切换到其他天线;对调整后的辅天线进行校准补偿。
在本申请实施例中,在确定生成的天线控制策略为辅天线优先调整策略时, 可以生成辅天线切换触发信令,将辅天线切换触发信令发送到辅天线所在电路,以改变天线的电路通断情况,使得其他天线作为新的辅天线。与主天线切换相同,在辅天线切换后可以对切换后的幅天线进行校准补偿,提高辅天线的精度。
示例性的,图7是本申请实施例提供的一种辅天线切换的示例图,参见图7,通信终端在出厂前可以采集每条信号路径的接收(Receive,RX)校准补偿值,该RX校准补偿值可以反映天线传递的灵敏度。在通信设备出厂前可以采集每个天线对应的频点的天线效率值,每个天线的天线效率值可以反映天线的当前状态。在确定生成辅天线优先调整策略后,可以对辅天线进行调整控制,由辅天线切换触发信令切换辅天线在通信终端天线中的位置,在辅天线调整到对应的新位置后,模块可以调用存储的RX校准补偿值对辅天线进行校准。不同的辅天线的RX校准参数可以预先存储并在使用时实时调用。辅天线的配置示意可以如下:
NR MIMO天线分布:ANT1(主天线)、ANT2(辅天线)、ANT3(PRXMIMO)、ANT4(DRXMIMO);NRMIMO天线分布:ANT1(辅天线)、ANT2(主天线)、ANT3(PRXMIMO)、ANT4(DRXMIMO);NR MIMO天线分布:ANT1(主天线)、ANT2(PRXMIMO)、ANT3(辅天线)、ANT4(DRXMIMO);NRMIMO天线分布:ANT1(主天线)、ANT2(DRXMIMO)、ANT3(PRXMIMO)、ANT4(辅天线)。
2100,确定天线控制策略对应的多天线调整需求,其中,多天线调整需求至少包括空中下载性能需求、吞吐需求、干扰需求、抗干扰及误码需求、通话及网络需求;查找多天线调整需求对应的天线分布;按照天线分布调整至少一个天线对应电路的闭合情况。
多天线调整需求可以是通过调整多个天线的网络组合需要满足的业务场景需求,多天线调整需求可以包括空中下载性能需求、吞吐需求、干扰需求、抗干扰及误码需求、通话及网络需求中的一种或多种,不同的天线调整需要对应的天线的数量和种类不同,相应的天线在通信终端中的分布情况也可以不同。天线分布可以是通信终端中多个天线的组合使用情况,不同的天线分布可以对应不同的多天线调整需求,不同天线分别和多天线调整需求可以关联存储在数据表或配置文件中。
可以根据天线控制策略确定出多天线调整需求的种类,该种类可以是空中下载性能需求、吞吐需求、干扰需求、抗干扰及误码需求、通话及网络需求中的一种或多种,根据确定的种类选择对应的天线分布,从而根据天线分别对多个天线对应的网络组合进行调整,以实现多天线调整需求。
在一个示例性的实施方式中,通信设备中天线数量一般在10个以上,天线 数量较多时天线数量可达16个,为了便于管理,每个天线可以存在各自的编码,例如,ANT1、ANT2、ANT3、ANT4、…等,常规使用的一个NR频段可以调用其中1-4个天线,以N41频段为例,TRX,DRX,PRXMIMO和DRXMIMO分布对应ANT1,ANT2,ANT3,ANT4四个天线。受到应用场景或ENDC组合的影响,这四个天线的组合可能不是最优,需要调整为ANT3,ANT4,ANT1,ANT2,即PRXMIMO/DRXMIMO天线和TRX/DRX天线互换,需要将上述两两进行天线的重新编码和排序,以负责对应的需求。通信设备中多个射频传导路径和多个天线路径之间通过多入多出开关连通起来,如四刀四掷(4 Pole 4 Throw,4P4T)开关,3P3T开关,双刀双掷(Double Pole Double Throw,DPDT)开关、单刀三掷(Single Pole 3 Throw,)SP3T开关、单刀双掷(Single Pole Double Throw,SPDT)开关等,使得NR的多路MIMO天线之间都可以相互切换和重定义。可以根据空中下载性能需求、吞吐需求、干扰需求、抗干扰及误码需求、通话及网络需求中的一种或多种选择各自对应的天线分布从而实现天线编码的调整。
针对OTA性能需求,天线编码调整可以按照下表执行:
天线编号 对应场景 天线分布 总TRP
天线编码1 场景1 A1A2A3A4 TRP1
天线编码2 场景2 A1A2A4A3 TRP2
天线编码3 场景3 A1A3A2A4 TRP3
天线编码4 场景4 A1A3A4A2 TRP4
天线编号 对应场景 天线分布 总TIS
天线编码5 场景5 A1A4A2A3 TIS1
天线编码6 场景6 A1A4A3A2 TIS2
天线编码7 场景7 A2A1A3A4 TIS3
天线编码8 场景8 A2A1A4A3 TIS4
针对吞吐需求,天线编码调整可以按照下表执行:
天线编号 对应场景 天线分布 上行吞吐
天线编码9 场景9 A2A3A4A1 Thru1
天线编码10 场景10 A2A3A1A4 Thru2
天线编码11 场景11 A2A4A1A3 Thru3
天线编码12 场景12 A2A4A3A1 Thru4
天线编号 对应场景 天线分布 下行吞吐
天线编码13 场景13 A3A1A2A4 Thru5
天线编码14 场景14 A3A1A4A2 Thru6
天线编码15 场景15 A3A2A1A4 Thru7
天线编码16 场景16 A3A2A4A1 Thru8
针对抗干扰和误码需求,天线编码调整可以按照下表执行:
Figure PCTCN2022125802-appb-000001
针对通话机网络需求,天线编码调整可以按照下表执行:
天线编号 对应场景 天线分布 通话质量
天线编码13 场景17 A2A1A3A4 上行优先
天线编码14 场景18 A3A2A1A4 下行优先
天线编码15 场景19 A1A2A3A4 上下行均衡
天线编号 对应场景 天线分布 小区强度
天线编码13 场景21 A2A3A1A4 强信号小区
天线编码14 场景22 A3A1A2A4 中信号小区
天线编码15 场景23 A1A2A3A4 弱信号小区
每个天线编码组合的OTA及状态性能在出厂前已实测出一个基本模型值,在现网环境中才进行实时采集和在线计算,进行二次准确的加权计算。通过实测加仿真算法将最后决策的天线编码参数进行组合搭配或重组。如果环境变化,可根据天线状态的采集值进行实时微调,微调每个天线组合中的分支天线,或重新计算选择其他天线角度组合,直到达到最佳的通讯状态,如上传和下载吞吐峰值最高。
2110、确定天线控制策略对应的网络组合或网络组合应用场景;查找网络组合或网络组合应用场景对应的天线配置;按照天线配置调整至少一个天线对应电路的闭合情况。
天线配置可以是对天线资源进行配置的信息,可以包括射频配置参数以及射频驱动控制配置参数,天线配置可以与网络组合或者网络组合应用场景相对应。
可以按照天线控制策略确定需要使用的网络组合或者需要使用的网络组合应用场景,可以按照网络组合或者网络组合的应用场景选择对应的天线配置,并根据该天线配置对天线进行调整。例如,天线配置的预设方式可以如下:
针对不同网络组合的应用场景设置不同的天线配置:
SA频段场景1:天线配置1;SA频段场景2:天线配置2;NR CA场景组合1:天线配置3;NR CA场景组合2:天线配置4;ENDC场景组合1:天线配置5;ENDC场景组合2:天线配置6;CA+ENDC场景组合1:天线配置7;CA+ENDC场景组合2:天线配置8;CA+NRCA场景组合1:天线配置9;CA+NRCA场景组合2:天线配置10;网络场景聚合频段组合n:天线配置n。
或者,可以针对不同网络组合设置不同的天线配置,配置可以如下表:
网络组合 LTE功率(dBm) NR功率(dBm) 天线配置
EDNC1 23 23 A1A2A3A4
EDNC2 23 20 A1A3A2A4
EDNC3 20 23 A2A1A3A4
EDNC4 20 20 A2A1A4A3
EDNC5 10 23 A3A2A4A1
EDNC6 23 10 A3A4A1A2
EDNC7 10 10 A4A3A2A1
EDNC8 0 0 A4A2A3A1
在上述申请实施例的基础上,天线配置可以通过在出厂前测试获取,参见图8,可以包括:第一步:通信终端在出厂前在不同网络组合下测试射频驱动配置、以及不同天线路径、组合以及分工下的射频驱动控制配置。第二步:采集不同网络组合下通信终端的天线性能指标,建立网络组合与天线性能指标的映射关系,可以将该映射关系存储到通信终端的存储器以备使用。第三步:将不同网络组合下的校准补偿值写入通信终端,在出厂前使用校准补偿值完成天线的校准补偿。
在使用天线配置进行天线调整时,可以检测网络质量及网络组合,如果网络质量和网络组合不满足用户需求或者自设定需求,则调用相关的射频驱动参数,对天线进行重配调整,天线接收调整指示实现网络组合重配,可以重复上述过程,直到控制天线达到需求对应的工作模式。
本申请实施例,通过采集日志收集器每个天线的天线状态信息,在日志采集单元内提取每个网络组合的上报能力作为网络组合参数信息,使用环境传感器和检测软件分别获取应用环境信息,使用天线状态信息、网络组合参数信息和应用环境信息确定主天线优先调整策略、辅天线优先调整策略、天线编码优先调整策略和网络组合优先调整策略中的至少之一,针对上述的优先调整策略,生成主天线切换触发信令,并使用该主天线切换触发信令触发主天线切换,并对切换后的主天线进行校准补偿;生成辅天线切换主辅信令,并使用该辅天线切换触发信令触发辅天线切换,对切换后的辅天线进行校准补偿;确定天线控制策略对应的多天线调整需求,查找多天线调整需求对应的天线分布,使用该天线分布调整至少一个天线;确定天线控制策略对应的网络组合或网络组合应用场景,查找网络组合或网络组合应用场景对应的天线配置,按照天线配置调整至少一个天线,以实现天线的动态调整,增强天线与通信终端的适配程度,可提高网络通信质量。
在上述申请实施例的基础上,提取日志采集单元内每个网络组合的上报能力作为网络组合参数信息,包括:
识别当前网卡的已注册网络信息以确定当前运营商;根据内置的加密文件系统频段和当前运营商的网络需求软件的驱动配置信息检测网络组合参数配置;按照网络组合参数配置进行接入扫描以获取每个网络组合的上报能力;将日志采集单元读取的每个网络组合的上报能力的参数信息作为网络组合参数。
当前网卡可以是通信终端正在使用的设置为实现网络通信功能的软硬件装置,已注册网络信息可以是在当前网卡使用的过程中在通信终端中注册的运营商信息,可以反映提供网络服务的运营商,加密文件系统(Encrypting FileSystem,EFS)频段可以是通信终端用于存储国际移动设备识别码(International Mobile  Equipment Identity,IMEI)、无线网卡地址以及网络设置的信息组件,该EFS频段可以是通过加密文件系统存储的频段信息,可以是通信终端通信使用的频段,驱动配置信息可以是用于运行软件的配置文件,该配置文件可以包括软件运行使用的网络参数。上报能力可以是通信终端上报到基站的通信能力,可以包括支持的网络类型以及网络运营商等。
可以读取通信终端当前使用的网卡的运营商信息以确定当前运行商,在EFS频段中查找配置的网络设置、无线网卡地址等信息,以及提取通信终端运行当前运营商网络需求软件时使用的配置文件以提取到驱动配置信息,可以将采集到的信息作为网络组合参数配置,可以按照该网络组合参数配置与基站进行接入,并在接入过程中采集网络组合的上报能力,可以将该上报能力对应的参数信息作为网络组合参数。
在上述申请实施例的基础上,使用环境传感器和检测软件获取应用环境信息,包括:
使用环境传感器检测环境的环境参数作为应用环境参数,其中,环境参数至少包括障碍物位置和终端使用状态;使用流量统计软件和调制解调器检测业务应用参数作为应用环境参数,其中,业务应用参数至少包括系统流量需求和数据吞吐量。
在本申请实施例中,障碍物位置可以是周围环境中遮挡天线发射的障碍物的位置,终端使用状态可以是用户使用终端的状态,例如,横屏使用竖屏使用等,为了采集环境参数,使用的环境传感器包括以下至少之一:合成孔径雷达、接近传感器、光感传感器、三轴传感器;使用流量统计软件和调制解调器检测业务应用参数作为所述应用环境参数。
通信终端可以使用内置的合成孔径雷达、接近传感器、光感传感器、三轴传感器等环境传感器对通信终端所处的环境进行检查以采集到应用环境参数;还可以使用安装的流量统计软件采集系统流量需求以及使用调制解调器modem对通信终端的数据吞吐量进行采集,可以将采集到的系统流量需求和数据吞吐量作为应用环境参数。
在上述申请实施例的基础上,所述天线状态信息包括以下至少之一:参考信号接收功率、接收信号强度指示、信噪比、吞吐值、误码率、调制与编码策略、秩数。
在上上述申请实施例的基础上,所述网络组合包括以下至少之一:单NR频段、单NSA模式、单SA模式、单LTE下的ENDC双连接、多LTE CA和ENDC混合、多LTE CA和NR CA混合。
通信终端使用的网络组合可以包括单NSA组网模式、单SA组网模式、单LTE下的ENDC双连接、多LTE CA和ENDC混合、多LTE CA和NR CA混合中的一种或者多种,多LTE CA和ENDC混合组网。示例性的,网络组合可以为:
SA频段场景1:N41
SA频段场景2:N78
SA频段场景3:N1
NSA频段场景4:B3+N41
NSA频段5:B3+N78
ENDC场景组合6:B1+N3
ENDC场景组合7:B8+N3
NR CA场景组合8:N41+N79
NR CA场景组合9:N1+N28
LTE 2分量载波(Component Carrier,CC)+ENDC场景组合10:B1+B3+N41
LTE 3CC+ENDC场景组合11:B1+B3+B7+N78
LTE 1CC+NRCA场景组合12:B1+N1+N78
LTE 2CC+NRCA场景组合13:B1+B3+N1+N78
LTE 3CC+NRCA场景组合14:B1+B3+B28+N3+N78。
图9是本申请实施例提供的一种天线控制装置的结构示意图,可执行本申请任意实施例提供的方法,具备执行方法相应的功能模块和效果。该装置可以由软件和/或硬件实现,一般集成在通信终端,参见图9,包括:参数采集模块301、策略生成模块302和天线控制模块303。
参数采集模块301,设置为获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应的天线状态信息。
策略生成模块302,设置为根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制策略。
天线控制模块303,设置为按照所述天线控制策略控制至少一个所述天线。
本申请实施例,通过参数采集模块301采集天线的天线状态信息、连接基站的网络组合参数信息以及应用环境信息,策略生成模块302基于采集到的信 息生成天线控制策略,天线控制模块303按照天线控制策略对天线进行调整,通过天线控制策略实现天线的动态调整,可提高多天线情况下的天线效率均衡程度,可增强终端的通信信号质量。
在上述申请实施例的基础上,所述天线状态信息至少包括信号强度、干扰参数和接收通道性能参数。
在上述申请实施例的基础上,所述参数采集模块301包括:
天线状态采集单元,设置为采集日志收集器收集的每个天线的天线状态信息。
网络组合获取单元,设置为提取日志采集单元内每个网络组合的上报能力作为所述网络组合参数信息。
应用环境采集单元,设置为使用环境传感器和检测软件获取所述应用环境信息,其中,所述应用环境信息用于表示终端的使用状态,该使用状态包括内部应用环境和外部使用环境。
在上述申请实施例的基础上,网络组合获取单元包括:
运营商识别单元,设置为识别当前网卡的已注册网络信息以确定当前运营商。
参数配置单元,设置为根据内置的加密文件系统频段和当前运营商的网络需求软件的驱动配置信息检测网络组合参数配置。
接入扫描单元,设置为按照所述网络组合参数配置进行接入扫描以获取每个网络组合的上报能力。
网络参数提取单元,设置为将日志采集单元读取的每个网络组合的上报能力的参数信息作为网络组合参数。
在上述申请实施例的基础上,应用环境采集单元包括:
环境参数子单元,设置为使用环境传感器检测所处环境的环境参数作为所述应用环境参数,其中,所述环境参数至少包括障碍物位置和终端使用状态。
软件参数子单元,设置为使用流量统计软件和调制解调器检测业务应用参数作为所述应用环境参数,其中,所述业务应用参数至少包括系统流量需求和数据吞吐量。
在上述申请实施例的基础上,所述天线状态信息包括以下至少之一:参考信号接收功率、接收信号强度指示、信噪比、吞吐值、误码率、调制与编码策略、秩数。
在上述申请实施例的基础上,所述网络组合包括以下至少之一:
单NR频段、单NSA模式、单SA模式、单LTE下的ENDC双连接、多LTE CA和ENDC混合、多LTE CA和NR CA混合。
在上述申请实施例基础上,所述策略生成模块302包括:
主天线单元,设置为根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于主天线,则生成主天线优先调整策略。
辅天线单元,设置为根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于辅天线,则生成辅天线优先调整策略。
编码单元,设置为根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于多天线,则生成天线编码优先调整策略。
组合单元,设置为根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于网络组合,则生成网络组合优先调整策略。
在上述申请实施例的基础上,所述天线控制模块303包括主天线调整单元,设置为:生成主天线切换触发信令,并根据所述主天线切换触发信令将主天线切换到其他所述天线;对调整后的所述主天线进行校准补偿。
在上述申请实施例的基础上,所述天线控制模块303包括辅天线调整单元,设置为:生成辅天线切换触发信令,并根据所述辅天线切换触发信令将辅天线切换到其他所述天线;对调整后的所述辅天线进行校准补偿。
在上述申请实施例的基础上,所述天线控制模块303包括:编码调整单元,设置为:确定所述天线控制策略对应的多天线调整需求,其中,所述多天线调整需求至少包括空中下载性能需求、吞吐需求、干扰需求、抗干扰及误码需求、通话及网络需求;查找所述多天线调整需求对应的天线分布;按照所述天线分布调整至少一个天线对应电路的闭合情况。
在上述申请实施例的基础上,所述天线控制模块303包括:组合调整单元,设置为:确定所述天线控制策略对应的网络组合或网络组合应用场景;查找所述网络组合或所述网络组合应用场景对应的天线配置;按照所述天线配置调整至少一个天线对应电路的闭合情况。
在一个示例性的实施方式中,图10是本申请实施例提供的一种天线控制装置的示例图,参见图10,本申请实施例提供的装置包括:L1天线状态采集模块,L2网络组合检测模块,L3应用场景检测模块,L4天线配置映射计算单元,L5动态天线控制模块,L6参数存储模块,L7主天线调整模块,L8辅天线调整模 块,L9天线编码调整模块,L10网络组合天线调整模块。
天线状态采集模块L1,与天线配置映射计算单元L4相连,设置为采集5G终端的每个MIMO天线的状态。包括每个天线路径下的信号强度及干扰参数,如RSRP值,RSSI值,SNR值,或每个天线接收通道的性能参数,如吞吐率,误码率,探测参考信号(Sounding Reference Signal,SRS)值等。天线状态采集值通过手机内置的LOG收集器实时采集,抓取每个上报值。和传统上报值的差异在于,这个上报值需要和天线序列相关联,即除了总的组合对应关系,还需要计算和映射每个NR MIMO天线和上述参数的对应关系,及TRX,DRX,PRX-MIMO,DRX-MIMO四个路径的天线状态参数值。
网络组合检测模块L2,与天线配置映射计算单元L4相连,设置为采集5G终端注册连接基站的网络组合参数。网络组合参数包括注册及连接的NR频段,NSA或SA模式,单LTE下ENDC双连接组合,多LTE CA加ENDC组合,多LTE CA加NR CA组合。网络组合检测模块L2,通过如下几步完成:第一步:终端通过当前的现网卡及已注册网络信息识别,识别当前运营商;第二步:终端通过内置的EFS频段,内置的当前的运营商网络需求软件驱动配置信息,检测当前的NSA/SA/CA/ENDC/NRCA的网络组合需求配置;第三步:终端进行接入扫描,检测终端的首次组合上报能力,检测当前注册、接入或已连接网络的上报能力;第四步:网络组合检测模块L2通过内置LOG采集单元识别当前网络组合上报信息。
应用场景检测模块L3,与天线配置映射计算单元L4相连,设置为采集5G终端所处应用场景及周边环境场景参数,以及检测用户业务场景需求。将NR MIMO天线的配置信息,如主辅天线位置、天线数量、天线编码序号等进行基于应用场景定制化配置,即根据不同的应用场景的检测及输入,配置不同的NR MIMO天线状态及位置,提高工作增益及效率。
天线配置映射计算单元L4,与动态天线控制模块L5相连,设置为不同天线状态及场景下天线配置映射,计算及匹配对应的调整算法。该模块的输入变量有天线状态,网络组合及应用场景三种。输出调整方式有主天线调整优先,辅天线调整优先,天线编码调整优先,网络组合天线配置调整四种。调整方式如何选择,如何匹配,是单一模式调整,还是多模式调整,通过天线配置映射计算单元L4来统一调配。通过天线编号、天线状态参数值和性能参数值,天线位置,MIMO天线组合情况进行一一映射对应匹配。天线配置映射计算单元L4的内置算法是:对比分析不同天线编号的信号质量参数,及组合序列的相关性参数,调用优先级较高的一种或多种组合的调整方式,使得NR MIMO天线路径可以动态调整到到信号质量较高,吞吐率更大,速率更稳定的方向及序列上 去。通过检测关键参数指标,实现天线资源配置,如当前对上行发射性能需求高,则通过主天线调整模块L7,将主天线调整到最强的可扫描及切换的天线上去。如当前一辅天线有短板,导致整体的TRP和TIS不能满足需求,则需要进行辅天线的配置调整,将该辅天线扩展到其他效率更高的天线上去。如当前的吞吐低是由于NR MIMO天线的四路不均衡性导致,则可进行天线编码调整,实现四路的均衡性优化。如果当前的天线性能差,是由于一些网络组合下手机被分配了效率低的LTE锚点和NR天线,则需要调用组合天线映射调整模式,进行基于网络组合的重新定义及配置。
动态天线控制模块L5,与其他多个模块相连,设置为协调控制检测模块及动态天线调整模块。动态天线控制包括5G终端上NR MIMO扩展天线的扩展控制及模块调整控制两部分。
扩展天线的控制功能,参见图11,天线动态控制模块L5与终端的天线连接。可以将终端上的5G天线通过SPDT或SP3T,SPNT开关等相互串联在一起,如N3频段,原来只能固定在2,4,3,6等四个天线,而7,9天线原来作为N41天线,通过如下图12所示的电路,将7,9天线扩展到N3天线序列,以扩展N3天线的调节范围及覆盖。天线动态控制模块L5根据当前天线配置映射的输出结果,天线状态参数值,5G终端信号质量及吞吐相关参数,对四种天线配置调节方式自适应调制控制,包括主天线调整,辅天线调整,天线自适应编码调整,网络组合匹配调整等。动态天线控制模块L5设置为根据当前网络情况和业务需求进行自适应动态调整控制。上述调整方法可以逐一调节,也可以是两两组合,也可以是更多个组合一起使用,直到满足网络性能需求,如果是单个调整的选取,依靠关键参数敏感度来判断,优先调用敏感度相关性高的调整方式和程序,直到无线通话性能,上下行吞吐等达到目标要求。
主天线调整模块L7,与动态天线控制模块L5相连,设置为调整控制5G终端主天线的配置。在传统设计中,主收发天线和其他分集,MIMO天线的分布在出厂前已经设置好。校准也只用于主TRX天线,而其他分集和MIMO天线不进行单独的发射校准。而在实际应用中,由于一些场景,如人头人手场景下,用户将原来默认的下天线握住,就会导致性能恶化,而传统的方案是主天线的上下天线切换,但如果上天线效率低,会导致即使切换上分集天线,效果也不佳。因此,这里通过射频电路的改进,将主天线和其他多天线之间导通,实现主天线的更广范围的动态调整配置。同时,针对只校准默认主TRX天线的功率不均衡问题,对每个天线进行基于TX的校准配置,将不同天线的校准数据配置在参数存储模块L6中,进行实时调用。
辅天线调整模块L8,与动态天线控制模块L5相连,设置为调整控制5G终 端辅天线的配置。当前的5G终端的分集及MIMO天线位置也是相对固定,分集天线、PRXMIMO天线及DRXMIMO天线的分布及设置也是相关固化。不同辅天线的效率可能存在差异大问题,如辅MIMO天线的效率高于分集天线,或甚至高于主天线,导致存在不能灵活配置问题。辅天线调整模块L8让5G NR的辅天线之间可以根据需求进行相互置换及配置。辅天线调整模块L8在出厂前采集每条信号路径的RX自动增益控制(Automatic Gain Control,AGC)值,通过RX AGC值可以反馈传导灵敏度,同时采集每个天线的对应频点的天线效率值,通过天线效率值反馈当前天线状态,通过当前的应用场景及网络组合情况,及用户的网络质量需求,进行辅天线的自定义调配,当辅天线调整到对应的新位置后,模块调用新位置的RX AGC补偿参数,以实现精确的RX接收汇报。每个辅助天线对应特定RX的校准参数,将不同天线的RX校准参数配置在参数存储模块L6中,进行实时调用。直到满足目标阈值要求。
天线编码调整模块L9,与动态天线控制模块L5相连,设置为用于调整控制5G终端的天线编码,主要负责多个天线的同时重新编码和定义,单一NR天线需要2-4个MIMO天线,5G终端天线的总的数量一般是10个以上,多的有16个,将每个天线进行编码,如ANT1,ANT2,ANT3,ANT4,AN5...ANT16,在常规使用的一个NR频段会调用其中的1-4个天线,以N41为例,如TRX,DRX,PRXMIMO和DRXMIMO分布对应ANT1,ANT2,ANT3,ANT4四个天线。而在实际使用中,受到应用场景或ENDC组合的影响,这四个天线的组合可能不是最优,需要调整为ANT3,ANT4,ANT1,ANT2,即PRXMIMO/DRXMIMO天线和TRX/DRX天线互换,需要将上述两两进行天线的重新编码和排序,以负责对应的需求功能。天线编码调整模块L9将NR的多个射频传导路径和多个天线路径之间通过多入多出开关连通起来,如4P4T开关,3P3T开关,DPDT开关、SP3T开关、SPDT开关等,使得NR的多路MIMO天线之间都可以相互彼此相互切换和重定义。在天线编码调整模块L9中将每个天线组合进行特定编码,以应对不同的场景和网络需求,对应不同的TRP、TIS、上行吞吐、下行吞吐、总误码率、总SNR值、NR通话质量需求,小区距离及强度进行不同的天线编码位置调整。
网络组合天线调整模块L10,与动态天线控制模块L5相连,设置为5G终端在不同网络组合及需求下的天线资源配置。这里的重配置分为射频及天线电路的重配置和网络组合的射频驱动控制两部分组成。射频及天线电路的重配置通过多通道切换电路及开关实现不同频段和天线分支之间的互联。通过射频驱动自适应控制,实现不同网络组合下的电路通路及MIMO天线配置的重构。网络组合的射频驱动控制的方法如下:第一步,终端在出厂前进行不同网络组合下的射频驱动配置,不同天线路径、组合、分工的射频驱动控制配置。第二步, 采集不同网络组合下的天线性能指标,建立映射关系,储存至对应的参数存储器以备调用。第三步,将不同网络组合下的校准及补偿参数写入终端,完成出厂前的校准补偿。第四步,检测网络质量及网络组合,如果不满足用户需求和自设定需求,调用相关的射频驱动代码,进行重配调整;第五步,天线接收调整指示,进行组合重配,控制天线进入对应的工作模式,直到满足目标要求。该模块通过网络组合差异化需求,配置和调用对应的NR mimo天线分支,组合及顺序,在多CA及ENDC或多CA及NRCA的网络组合场景中,不同ENDC组合,NR CA组合下,有时要求LTE锚点的信号强,有时要求NR 5G的信号强,可以让NR天线和LTE天线之间可自由切换,即将同频的LTE天线作为NR天线,将同频的LTE天线作为NR天线。并结合需求及网络情况,进行不同的天线配置。
图13是本申请实施例提供的一种电子设备的结构示意图,该电子设备包括处理器70、存储器41、输入装置42和输出装置43;电子设备中处理器40的数量可以是一个或多个,图13中以一个处理器40为例;电子设备中处理器40、存储器41、输入装置42和输出装置43可以通过总线或其他方式连接,图13中以通过总线连接为例。
存储器41作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的天线控制装置对应的模块(参数采集模块301、策略生成模块302和天线控制模块303)。处理器40通过运行存储在存储器41中的软件程序、指令以及模块,从而执行电子设备的多种功能应用以及数据处理,即实现上述方法。
存储器41可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器41可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器41可包括相对于处理器40远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置42可设置为接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置43可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种天线控制方法,该方法包括:
获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应 的天线状态信息;根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制策略;按照所述天线控制策略控制至少一个天线。
通过以上关于实施方式的描述,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现。本申请的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上述装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
上文中所公开方法中的全部或一些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (12)

  1. 一种天线控制方法,包括:
    获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应的天线状态信息;
    根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制策略;
    按照所述天线控制策略控制至少一个天线。
  2. 根据权利要求1所述方法,其中,所述获取应用环境信息、连接基站的网络组合参数信息以及至少一个天线对应的天线状态信息,包括:
    采集日志收集器收集的每个天线的天线状态信息;
    提取日志采集单元内每个网络组合的上报能力作为所述网络组合参数信息;
    使用环境传感器和检测软件获取所述应用环境信息,其中,所述应用环境信息用于表示终端的使用状态,所述使用状态包括内部应用环境和外部使用环境。
  3. 根据权利要求2所述方法,其中,所述提取日志采集单元内每个网络组合的上报能力作为所述网络组合参数信息,包括:
    识别当前网卡的已注册网络信息以确定当前运营商;
    根据内置的加密文件系统频段和所述当前运营商的网络需求软件的驱动配置信息检测网络组合参数配置;
    按照所述网络组合参数配置进行接入扫描以获取每个网络组合的上报能力;
    将所述日志采集单元读取的每个网络组合的上报能力的参数信息作为所述网络组合参数。
  4. 根据权利要求2所述方法,其中,所述使用环境传感器和检测软件获取所述应用环境信息,包括:
    使用所述环境传感器检测所处环境的环境参数作为所述应用环境参数,其中,所述环境参数至少包括障碍物位置和终端使用状态;
    使用流量统计软件和调制解调器检测业务应用参数作为所述应用环境参数,其中,所述业务应用参数至少包括系统流量需求和数据吞吐量。
  5. 根据权利要求2或3所述方法,其中,所述网络组合包括以下至少之一:
    单新空口NR频段、单非独立组网NSA模式、单独立组网SA模式、单长期演进LTE下的演进的通用陆地无线接入新空口双连接ENDC双连接、多LTE 载波聚合CA和ENDC混合、多LTE CA和NR CA混合。
  6. 根据权利要求1所述方法,其中,所述根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制策略,包括下述至少一种:
    在根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于主天线的情况下,生成主天线优先调整策略;
    在根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于辅天线的情况下,生成辅天线优先调整策略;
    在根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于多天线的情况下,生成天线编码优先调整策略;
    在根据所述天线状态信息、所述网络组合参数信息和所述应用环境信息确定天线控制需求对应于网络组合的情况下,生成网络组合优先调整策略。
  7. 根据权利要求1或8所述方法,其中,在所述天线控制策略包括主天线优先调整策略的情况下,所述按照所述天线控制策略控制至少一个天线,包括:
    生成主天线切换触发信令,并根据所述主天线切换触发信令将主天线切换到其他天线;
    对调整后的主天线进行校准补偿。
  8. 根据权利要求1或8所述方法,其中,在所述天线控制策略包括辅天线优先调整策略的情况下,所述按照所述天线控制策略控制至少一个天线,包括:
    生成辅天线切换触发信令,并根据所述辅天线切换触发信令将辅天线切换到其他天线;
    对调整后的辅天线进行校准补偿。
  9. 根据权利要求1或8所述方法,其中,在所述天线控制策略包括天线编码优先调整策略的情况下,所述按照所述天线控制策略控制至少一个天线,包括:
    确定所述天线控制策略对应的多天线调整需求,其中,所述多天线调整需求至少包括以下至少之一:空中下载性能需求、吞吐需求、干扰需求、抗干扰及误码需求、通话及网络需求;
    查找所述多天线调整需求对应的天线分布;
    按照所述天线分布调整至少一个天线对应电路的闭合情况。
  10. 根据权利要求1或8所述方法,其中,在所述天线控制策略包括网络组合优先调整策略的情况下,所述按照所述天线控制策略控制至少一个天线, 包括:
    确定所述天线控制策略对应的网络组合或网络组合应用场景;
    查找所述网络组合或所述网络组合应用场景对应的天线配置;
    按照所述天线配置调整至少一个天线对应电路的闭合情况。
  11. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-10中任一项所述天线控制方法。
  12. 一种计算机可读存储介质,存储有至少一个程序,所述至少一个程序被至少一个处理器执行时实现如权利要求1-10中任一项所述天线控制方法。
PCT/CN2022/125802 2021-11-23 2022-10-18 天线控制方法、电子设备和存储介质 WO2023093374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111395040.7 2021-11-23
CN202111395040.7A CN116155331A (zh) 2021-11-23 2021-11-23 一种天线控制方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023093374A1 true WO2023093374A1 (zh) 2023-06-01

Family

ID=86337721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125802 WO2023093374A1 (zh) 2021-11-23 2022-10-18 天线控制方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116155331A (zh)
WO (1) WO2023093374A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116881064A (zh) * 2023-09-06 2023-10-13 Tcl通讯科技(成都)有限公司 终端测试方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108449203A (zh) * 2018-02-27 2018-08-24 努比亚技术有限公司 一种参数配置方法、网络设备及计算机可读存储介质
WO2018161502A1 (zh) * 2017-03-09 2018-09-13 中兴通讯股份有限公司 一种调节天线切换的方法和装置
CN110300218A (zh) * 2018-03-23 2019-10-01 中兴通讯股份有限公司 性能调整方法及装置、终端、存储介质、电子装置
CN110649952A (zh) * 2019-09-10 2020-01-03 RealMe重庆移动通信有限公司 天线切换方法、装置、存储介质及电子设备
CN112436876A (zh) * 2019-08-26 2021-03-02 中兴通讯股份有限公司 5g天线控制方法和装置、5g终端及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161502A1 (zh) * 2017-03-09 2018-09-13 中兴通讯股份有限公司 一种调节天线切换的方法和装置
CN108449203A (zh) * 2018-02-27 2018-08-24 努比亚技术有限公司 一种参数配置方法、网络设备及计算机可读存储介质
CN110300218A (zh) * 2018-03-23 2019-10-01 中兴通讯股份有限公司 性能调整方法及装置、终端、存储介质、电子装置
CN112436876A (zh) * 2019-08-26 2021-03-02 中兴通讯股份有限公司 5g天线控制方法和装置、5g终端及计算机可读存储介质
CN110649952A (zh) * 2019-09-10 2020-01-03 RealMe重庆移动通信有限公司 天线切换方法、装置、存储介质及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116881064A (zh) * 2023-09-06 2023-10-13 Tcl通讯科技(成都)有限公司 终端测试方法、装置、设备和存储介质
CN116881064B (zh) * 2023-09-06 2023-12-15 Tcl通讯科技(成都)有限公司 终端测试方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN116155331A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
US11647411B2 (en) Beam measurement method, terminal and network device
EP2764717B1 (en) Using form factor information in radio network operations
EP3068156B1 (en) Beam precoding manner reporting method, and scheduling method and device
WO2021057215A1 (zh) 传输路径选择方法、装置及存储介质
CN108966242B (zh) 窄带物联网的覆盖估计方法和装置
EP3582430A1 (en) Configuration method and configuration device for reference signal and communication node
US20210195456A1 (en) Method and device for wireless communication
WO2023093374A1 (zh) 天线控制方法、电子设备和存储介质
US10605888B1 (en) Selecting optimal directional antenna orientation
CN112514451A (zh) 自动优化服务基站的小区参数
CN111491304A (zh) 一种广播波束处理的方法及通信装置
WO2019161550A1 (zh) 终端LTE和Wi-Fi共存测试方法及系统
CN110662235B (zh) 数据处理方法、主机单元、基站系统和存储介质
US20230262617A1 (en) Dual connectivity (dc) power control
US9907028B1 (en) Mitigating uplink interference
CN106506790B (zh) 信号处理电路、方法和用户设备
CN113709762B (zh) 小区合并场景的信号处理方法、装置、网络侧和存储介质
Halbauer et al. Field trial evaluation of 3D beamforming in a multicell scenario
CN114374968A (zh) 终端能力上报方法、装置及设备
US20230232258A1 (en) Ota estimation of an rf parameter of a radio transmitter
US10855344B1 (en) Reducing massive multiple-input multiple-output/5G interference with an adjacent band
CN103947241A (zh) 测量事件判决的方法和用户设备
CN117526990A (zh) 一种控制方法以及电子设备
KR20170004416A (ko) RRH(Remote Radio Head)의 전압 정재파비(VSWR)를 고려한 단말 전력 제어 방법 및 그를 위한 장치 및 시스템
CN117279010A (zh) 一种识别直放站下终端的方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897457

Country of ref document: EP

Kind code of ref document: A1