WO2023093232A1 - 射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质 - Google Patents

射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2023093232A1
WO2023093232A1 PCT/CN2022/119633 CN2022119633W WO2023093232A1 WO 2023093232 A1 WO2023093232 A1 WO 2023093232A1 CN 2022119633 W CN2022119633 W CN 2022119633W WO 2023093232 A1 WO2023093232 A1 WO 2023093232A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
signal
radio frequency
frequency front
terminal
Prior art date
Application number
PCT/CN2022/119633
Other languages
English (en)
French (fr)
Inventor
赵旭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023093232A1 publication Critical patent/WO2023093232A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • H04B2001/3866Transceivers carried on the body, e.g. in helmets carried on the head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of computer technology, and in particular to a radio frequency front-end module, a wearable device, a data transmission method, and a computer-readable storage medium.
  • a wearable device is a portable device that is worn directly on the user, or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction. Wearable devices will bring great changes to human life and perception.
  • Augmented Reality (AR) glasses in smart head-mounted devices apply AR technology to glasses. In addition to the functions of ordinary glasses, they can also realize functions such as navigation, making calls, and watching videos. Therefore, it is favored by the majority of users.
  • AR Augmented Reality
  • Wearable devices have very strict requirements on parameters such as weight, volume, power consumption and heat generation, otherwise it will greatly affect the user experience. Therefore, common lightweight wearable devices will be closely integrated with terminals. Taking the wearable device as AR glasses and the terminal as a mobile phone as an example, the circuits of the display and audio parts in the AR glasses are allocated on the glasses, while the circuits of the central data processing chip (which consumes a lot of power during the calculation process and generates a lot of heat) It is distributed on mobile phones to reduce the weight, power consumption, volume and heat generation performance of AR glasses.
  • the wearable device and the terminal are connected through wireless communication to realize data transmission.
  • the wearable device and the terminal need to be equipped with Radio Front-end Modules (RFEM).
  • RFEM Radio Front-end Modules
  • the radio frequency front-end module increases the power consumption of the radio frequency front-end module and the wearable device while amplifying the transmitted signal and the received signal.
  • Embodiments of the present application provide a radio frequency front-end module, a wearable device, a data transmission method, and a computer-readable storage medium.
  • the power consumption of the power amplifier module is reduced, that is, the power consumption of the power amplifier module is reduced.
  • the power consumption of the RF front-end module thereby reducing the power consumption of wearable devices.
  • an embodiment of the present application provides a radio frequency front-end module;
  • the radio frequency front-end module includes: a logic control interface, a power amplification module, and an antenna;
  • the logic control interface is configured to receive a power control signal, and The power control signal is transmitted to the power amplifying module;
  • the power amplifying module is configured to control the N power amplifiers of the power amplifying module to be in the working state according to the power control signal, and through the The N power amplifiers amplify the transmission signal to obtain the amplified transmission signal, wherein, N is a positive integer less than M, and M is the total number of power amplifiers;
  • the antenna is configured to transmit the amplified transmission signal to the terminal.
  • the embodiment of the present application provides a data transmission method, the method is applied to the radio frequency front-end module described in the first aspect, and the method includes: receiving a power control signal; according to the power control signal, controlling the power The N power amplifiers of the amplifying module are in the working state; when the transmission signal is received, the transmission signal is amplified by the N power amplifiers in the working state to obtain the amplified transmission signal, and N is a positive integer less than M , M is the total number of power amplifiers; transmitting the amplified transmit signal to the terminal.
  • the embodiment of the present application provides a wearable device, the wearable device includes: the radio frequency front-end module as described in the first aspect, a memory and a processor; A computer program running on the computer, the processor implements the data transmission method described in the second aspect when executing the computer program.
  • the embodiments of the present application provide a computer-readable storage medium, on which executable instructions are stored, configured to implement the data transmission method described in the second aspect above when executed by a processor.
  • Embodiments of the present application provide a radio frequency front-end module, a wearable device, a data transmission method, and a computer-readable storage medium.
  • the radio frequency front-end module provided by the embodiment of the present application includes: a logic control interface, a power amplification module and an antenna; a logic control interface configured to receive a power control signal and transmit the power control signal to the power amplification module; the power amplification module , configured to control the N power amplifiers of the power amplification module to be in the working state according to the power control signal, and amplify the transmission signal through the N power amplifiers to obtain the amplified transmission signal; N is less than the total number of power amplifiers.
  • the antenna is configured to transmit the amplified transmission signal to the terminal, so that the terminal processes the data corresponding to the amplified transmission signal.
  • the RF front-end module provided by the embodiment of the present application can be applied to wearable devices. During the mutual communication between the wearable device and the terminal, most of the time, data is transmitted from the terminal to the wearable device. Therefore, in the embodiment of the present application, the number of power amplifiers in the working state is reduced by controlling the N power amplifiers of the power amplification module to be in the working state, instead of the entire power amplification module (that is, the M power amplifiers) being in the working state. Under the premise of ensuring the efficiency of the power amplifier, the gain and linearity indicators of the power amplifier module are appropriately reduced, and the power consumption of the RF front-end module is reduced, thereby reducing the power consumption of the wearable device.
  • FIG. 1 is a schematic diagram of an exemplary application scenario of a wearable device provided by an embodiment of the present application
  • FIG. 2 is an optional structural schematic diagram of a radio frequency front-end module provided by an embodiment of the present application
  • FIG. 3 is an optional structural schematic diagram of another radio frequency front-end module provided by the embodiment of the present application.
  • FIG. 4 is an optional structural schematic diagram of another radio frequency front-end module provided by the embodiment of the present application.
  • FIG. 5 is an optional structural schematic diagram of a power amplification module provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of optional steps of a data transmission method provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optional wearable device provided by an embodiment of the present application.
  • Augmented reality technology is a technology that ingeniously integrates virtual information with the real world. It widely uses various technical means such as multimedia, 3D modeling, real-time tracking and registration, intelligent interaction, and sensing to combine computer-generated text, images, 3D models, music, video and other virtual information are simulated and applied to the real world. The two kinds of information complement each other, thereby realizing the "enhancement" of the real world.
  • wearable devices include, but are not limited to, smart watches, smart necklaces, wearable electronic socks, wearable glasses, and smart clothing.
  • wearable device Take the wearable device as AR glasses as an example.
  • AR glasses is a product that applies AR technology to electronic glasses, which can realize many functions.
  • AR glasses can be regarded as a miniature mobile phone, which can be judged by tracking eye gaze trajectory. The state the user is in, and the corresponding function is enabled.
  • wearable devices are closely integrated with terminals.
  • wearable devices can be connected with terminals through wireless communication technologies, including but not limited to Bluetooth and wireless local area network (Wireless Local Area Network, WLAN ), the WLAN may include WIFI.
  • WLAN Wireless Local Area Network
  • the interconnection of computer equipment is realized through wireless communication technology, and a network system for mutual communication and resource sharing is formed.
  • the computer can be connected with the network without using communication cables, so that the construction of the network and the movement of the terminal are more flexible.
  • the wearable device is AR glasses
  • the terminal is a mobile phone
  • the wireless communication technology is WIFI.
  • the AR glasses are wirelessly connected to the mobile phone through WIFI.
  • WIFI has high stability, low delay and high exchange rate. Advantages such as bandwidth (for example, Gbps order of magnitude) transmission rate can provide fast data transmission solutions for AR glasses and mobile phones.
  • WIFI also has its own limitations. In order to ensure sufficient coverage (usually tens of meters), its peripheral circuits (ie, AR glasses and mobile phones) need to be equipped with RF front-end modules to ensure that it transmits and receives signals. power amplification, resulting in an increase in power consumption. Since the AR glasses use the combination of glasses and mobile phones, AR glasses and mobile phones need to adopt a low-latency, high-speed and low-power transmission method to facilitate data transmission between AR glasses and mobile phones.
  • one way is to reduce the requirement on the transmission rate by compressing the graphics quality, so as to reduce the power consumption. It also reduces the accuracy of the data.
  • the impact of high power consumption can be supported by increasing battery capacity and cooling equipment. Adding accessories also increases the weight of the wearable device.
  • FIG. 1 is a schematic diagram of an exemplary application scenario of a wearable device provided in an embodiment of the present application.
  • the wearable device is AR glasses
  • the terminal is a mobile phone
  • the power amplifier module is a power module.
  • the wearable device includes a radio frequency front-end module, and the radio frequency front-end module includes a power module.
  • Figure 1 shows the long distance, and both the mobile phone and the AR glasses transmit and receive at the highest power. Since the distance between the AR glasses and the mobile phone is usually a short distance (for example, within 5m), by reducing the transmission power of the mobile phone and the AR glasses, the power consumption has been reduced for the mobile phone, but for the AR glasses, Its power consumption is still high.
  • the embodiment of the present application provides a radio frequency front-end module, as shown in FIG. 2 , which is a schematic structural diagram of an optional radio frequency front-end module provided by the embodiment of the present application.
  • the RF front-end module 20 includes: a logic control interface 201, a power amplification module 202 and an antenna 203; the logic control interface 201 is configured to receive a power control signal, and transmit the power control signal to the power amplification module 202; the power amplification module 202, configured to control the N power amplifiers of the power amplification module 202 to be in the working state according to the power control signal, and amplify the transmission signal through the N power amplifiers to obtain the amplified transmission signal, where N is a positive integer less than M, M is the total number of power amplifiers; the antenna 203 is configured to transmit the amplified transmit signal to the terminal.
  • the RF front-end module 20 in FIG. 2 can be applied to wearable devices, and the RF front-end module 20 includes a logic control interface 201 , a power amplification module 202 and an antenna 203 .
  • the logic control interface 201 is used to represent different logic control states, which can be understood as representing different connection states through different inputs on its own interface in the logic control interface 201, and different connection states are related to different power amplifiers in the power amplifier module 202. corresponding to the working status.
  • the logic control interface 201 receives a power control signal, and the power control signal represents the number of power amplifiers in the power amplification module 202 that need to work.
  • the logic control interface 201 sets the connection state of its own interface according to the power control signal, and then transmits the power control signal to the power amplifier module 202, so that the power amplifier module 202 controls a part of the power amplifiers (i.e. N Power amplifiers) are in working condition, reducing the number of redundant power amplifiers in working condition.
  • the wearable device sends a signal (that is, a transmission signal) to the terminal through the RF front-end module 20, the transmission signal is amplified by N power amplifiers to obtain an amplified transmission signal, and then the amplified transmission signal is transmitted to the terminal through the antenna 203.
  • the power amplification module 202 includes M power amplifiers, where M is a positive integer greater than or equal to 2. It can also be understood that the power amplifying module 202 is a multi-stage amplifier, and when M is equal to 1, the power amplifying module 202 is a single-stage amplifier.
  • the wearable device sends a signal to the terminal through the radio frequency front-end module 20 (that is, transmits the signal)
  • the N power amplifiers of the control power amplifier module 202 are in the working state, rather than the entire M power amplifiers are in the working state, thereby reducing the power Power consumption of the amplifying module 202 .
  • the wearable device as AR glasses and the terminal as a mobile phone
  • the AR The emission power of the glasses is slightly reduced or not reduced, so that the reduction of the emission power of the AR glasses is much larger than that of the AR glasses in Figure 1, thereby reducing the power consumption of the wearable device.
  • both the wearable device and the terminal are equipped with a radio frequency front-end module 20.
  • the radio frequency front-end module 20 belongs to a hardware circuit and can complete the transmission amplification and reception amplification of radio frequency signals, that is, the amplification of the transmitted signal and the amplification of the received signal. It can also be used for power coupling, logic control and switching, etc. Since the terminal is less sensitive to power consumption than the wearable device, in the embodiment of this application, the practical application scenario is used, that is, the distance between the wearable device and the terminal is relatively short and does not require a large transmission power.
  • the number of power amplifiers in the working state in the power amplification module 202 in the device can reduce the transmission power of the RF front-end module 20 without affecting the communication quality between the wearable device and the terminal, thereby reducing the power of the wearable device. consumption.
  • the radio frequency front-end module 20 provided by the embodiment of the present application includes: a logic control interface 201, a power amplification module 202, and an antenna 203; the logic control interface 201 is configured to receive a power control signal and transmit the power control signal to the power amplification module 202; the power amplification module 202 is configured to control the N power amplifiers of the power amplification module 202 to be in the working state according to the power control signal, and amplify the transmission signal through the N power amplifiers to obtain an amplified transmission signal; N is less than Total number of power amplifiers.
  • the antenna 203 is configured to transmit the amplified transmission signal to the terminal, so that the terminal processes the data corresponding to the amplified transmission signal.
  • the embodiment of the present application reduces the number of power amplifiers in the working state by controlling the N power amplifiers of the power amplification module 202 to be in the working state, instead of the entire power amplification module 202 (that is, the M power amplifiers) being in the working state .
  • the gain and linearity indicators of the power amplifier module 202 are appropriately reduced, and the power consumption of the radio frequency front-end module 20 is reduced, thereby reducing the power consumption of the wearable device.
  • an optional structural schematic diagram of another radio frequency front-end module provided in the embodiment of the present application, as shown in FIG. 3 , based on the radio frequency front-end module 20 of FIG. , also includes: a power coupling circuit 204; the power coupling circuit 204 is connected to the power amplification module 202 and the antenna 203 respectively; the power coupling circuit 204 is configured to distribute the power of the amplified transmission signal, obtain the target transmission signal, and transmit the target The signal is transmitted to the antenna 203; the antenna 203 is configured to transmit the target transmission signal to the terminal.
  • the amplified transmission signal passes through the power coupling circuit 204, a small part of the signal enters the coupling port, and a large part of the signal enters the antenna 203. That is, the target transmits a signal, and then the target transmit signal is transmitted to the terminal through the antenna 203 . Since the antenna 203 transmits the target transmission signal to the terminal, the power of the target transmission signal is not known. Therefore, the embodiment of the present application can also calculate the power of the target transmission signal according to a small part of the signal entering the coupling port.
  • the power of the target transmission signal can be calculated according to the 1% power signal entering the coupling port , so as to determine the energy of the target transmission signal radiated by the antenna 203 .
  • the power coupling circuit 204 which can also be denoted as CPL or CPLR, can be understood as a splitter applied to a microwave system, which distributes the power on the trunk channel to each branch channel as required, so as to To achieve the split function.
  • the radio frequency front-end module 20 also includes a power coupling circuit 204; the power coupling circuit 204 is respectively connected to the power amplification module 202 and the antenna 203; the power coupling circuit 204 is configured to amplify the power of the transmitted signal Allocation is carried out to obtain the target transmission signal, and the power of the target transmission signal can also be calculated. Then transmit the target transmission signal to the antenna 203, and transmit the target transmission signal to the terminal through the antenna 203.
  • the adjustment result of the power amplification module 202 can be checked in time, and a reference can be provided for the next adjustment of the number of power amplifiers in the working state, so that the number of power amplifiers in the working state can be reduced more accurately in the future. quantity, reducing the power consumption of the power amplification module 202.
  • the power coupling circuit 204 is further configured to distribute the power of the amplified transmit signal to obtain the coupled port power; generate a new power control signal according to the coupled port power, and send the new power to the logic control interface 201 A control signal, the new power control signal is used to determine the number of power amplifiers in the working state when transmitting a signal to the terminal next time.
  • the power coupling circuit 204 distributes the power of the amplified transmission signal, a small part of the signal enters the coupling port, and a large part of the signal enters the antenna 203, that is, the target transmission signal. Based on a fraction of the signal entering the coupled port, the coupled port power can be obtained. Then, generate a new power control signal according to the coupled port power, and send the new power control signal to the logic control interface 201, the new power control signal is used to determine the number of power amplifiers in the working state when transmitting a signal to the terminal next time.
  • the power amplifying module can amplify the transmission signal, and the power of the amplified transmission signal obtained is more appropriate.
  • the power of the target transmit signal is calculated according to the power allocation ratio of the power coupling circuit 204 and the power of the coupling port. According to the power of the target transmitted signal, it can be judged whether the number of power amplifiers in the power amplification module 202 in the current working state is appropriate.
  • the power of the target transmission signal is too large, it is necessary to reduce the number of power amplifiers in the working state in the next power amplification module 202; if the power of the target transmission signal is appropriate, then keep the next power amplification module 202 The number of power amplifiers in the working state; if the power of the target transmission signal is too small, it is necessary to increase the number of power amplifiers in the working state in the power amplification module 202 next time.
  • the power coupling circuit 204 generates a new power control signal according to the power of the coupling port, and sends the new power control signal to the logic control interface 201 . It can be understood that the power coupling circuit 204 can also send the coupled port power to the power control signal generation module, and the power control signal generation module generates a new power control signal according to the coupled port power, and sends a new power control signal to the logic control interface 201 power control signal.
  • the embodiment of the present application does not limit the execution subject that generates the power control signal.
  • a new power control signal is generated according to the power of the coupled port, and the new power control signal is sent to the logic control interface 201.
  • the new power control signal Determine the number of active power amplifiers. Therefore, when the signal is transmitted to the terminal next time, the accuracy of the following aspects is improved: reducing the number of power amplifiers in the working state, and reducing the power consumption of the power amplification module 202 .
  • the logic control interface 201 includes a plurality of sub-interfaces; the plurality of sub-interfaces are configured to adjust their output level values according to the power control signal, wherein the output level values of the plurality of sub-interfaces control the power amplification module 202 Working states of the M power amplifiers.
  • the logic control interface 201 after the logic control interface 201 receives the power control signal, it adjusts the output level values of multiple sub-interfaces according to the power control signal.
  • the output level values include high level and low level, and the different outputs of multiple sub-interfaces Combination of level values, in response to different power control signals. In this way, it is possible to control the number of power amplifiers in the working state in the power amplification module 202 , that is, to control the working states of the M power amplifiers in the power amplification module 202 .
  • the logic control interface 201 includes four interfaces: PAEN, LNAEN, SEL3 and SEL4 as an example for illustration, the output level values of PAEN, LNAEN, SEL3 and SEL4 include high level and low level, and SEL3 and SEL4 can be It is used for controlling the dormancy of the RF front-end module 20 and selecting different switches to realize different functions. Take 1 to represent high level and 0 to represent low level as an example. The different output levels of the four interfaces can have various expressions.
  • the number of power amplifiers in the working state in the power amplifier module 202 is 3
  • the power amplifier module The number of power amplifiers in the working state in 202 is 2.
  • the output level values of PAEN, LNAEN, SEL3 and SEL4 are 1 1 1 0 respectively
  • the number of power amplifiers in the working state in the power amplification module 202 is 1.
  • the logic control interface 201 may be a general-purpose input/output (GPIO) control line group.
  • the GPIO control line group includes multiple ports, which can be controlled by computer programs and used freely. The specific ports are set through the GPIO control line group to realize the control of N power amplifiers of the power amplifier module 202 in working state.
  • the GPIO control line group can also be controlled by a watchdog, and the number of power amplifiers in the working state of the power amplification module 202 can be controlled through the access of different ports in the GPIO control line group.
  • the logic control interface 201 includes multiple sub-interfaces, and the output level values of the multiple sub-interfaces in the logic control interface 201 are adjusted according to the power control signal to control the N power amplifiers of the power amplification module 202 to be in the working state.
  • the power amplifying module 202 receives the transmitting signal, it amplifies the transmitting signal through N power amplifiers, instead of the whole power amplifying module 202 (that is, the M power amplifiers) being in the working state. The number of power amplifiers in working state is reduced, thereby reducing the power consumption of the power amplification module 202 .
  • radio frequency front-end modules 20 there are multiple radio frequency front-end modules 20; the antenna 203 is configured to transmit signals with the terminal in different communication frequency bands; different communication frequency bands correspond to different radio frequency front-end modules 20 respectively.
  • multiple RF front-end modules 20 can be equipped on the wearable device and the terminal, that is, multiple-in multiple-out (MIMO) technology is adopted.
  • MIMO multiple-in multiple-out
  • 2 ⁇ 2 MIMO requires wearable Both the device and the terminal are equipped with two radio frequency front-end modules 20 .
  • MIMO uses multiple antennas 203 at both the sending end and the receiving end to form a multi-channel antenna 203 system between the sending and receiving ends, thereby improving the data transmission efficiency of wearable devices and terminals.
  • the antenna 203 is configured to perform signal transmission with the terminal in the fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) or the sixth generation mobile communication technology (6G); the fifth generation mobile communication technologies or sixth-generation mobile communication technologies respectively correspond to different radio frequency front-end modules 20 .
  • 5G Fifth Generation Mobile Communication Technology
  • 6G sixth generation mobile communication technology
  • the communication frequency bands include but are not limited to the frequency bands 5.150GHz-5.935GHz, 5.935GHz-7.125GHz, that is, 5G technology and 6G technology.
  • the RF front-end module 20 provided by the embodiment of the present application is also applicable 3G technology, 4G technology, etc., and, with the development of technology, the RF front-end module 20 provided by the embodiment of the present application is also applicable to 7G technology, 8G technology, 9G technology, 10G technology, etc. Do limit.
  • different radio frequency front-end modules 20 are used for data transmission in different communication frequency bands, which can simultaneously support data transmission in multiple communication frequency bands and improve the efficiency of data transmission.
  • the logic control interface includes SEL/LNAEN/PAEN control lines
  • the power amplifier module is a power amplifier (Power Amplifier, PA)
  • the antenna is an antenna (ANT)
  • the power coupling circuit is a CPL for example
  • FIG. 4 is an optional structural schematic diagram of another radio frequency front-end module provided by the embodiment of the present application, wherein, SEL/LNAEN/PAEN (shown by SEL4_x, SEL3_x, LNAEN_x, PAEN_x in FIG. 4) corresponds to In the logic control interface 201 in FIG. 2 and FIG. 3
  • PA corresponds to the power amplifier module 202 in FIG. 2 and FIG. 3
  • ANT corresponds to the antenna 203 in FIG. 2 and FIG. 3
  • CPL corresponds to the power coupling circuit 204 in FIG. 3 .
  • the radio frequency front-end module 20 shown in FIG. 4 can be applied to wearable devices and terminals. If the wearable device and the terminal adopt the 2 ⁇ 2 MIMO solution, the wearable device and the terminal need to be equipped with two RF front-end modules, so Figure 4 includes two transmit channels (Transmit, T) and two receive channels (Receive , R), the two transmission channels include TX1 and TX0, and the two receiving channels include RX1 and RX0, where X is a pictographic symbol representing a cross, which can be understood as the TX of the A party connected to the RX of the B party, The TX of party B is connected to the RX of party A, and the two transmit/receive channels are the same.
  • T Transmit
  • R receive channels
  • RX1 and RX0 where X is a pictographic symbol representing a cross, which can be understood as the TX of the A party connected to the RX of the B party,
  • the TX of party B is connected to the RX of party A, and
  • the transmission channel TX in Fig. 4 includes a power amplifier PA, and the power amplifier PA is used for amplifying the transmission signal, and the receiving channel RX includes a low noise amplifier (low noise amplifier, LNA), and the low noise amplifier LNA is used for receiving Signal amplification.
  • the switch S0 is used to switch the working status of the transmission channel TX and the reception channel RX.
  • the wearable device sends a signal to the terminal through the RF front-end module 20
  • the connection mode of the switch S0 is shown in Figure 4, and the power coupling circuit
  • the CPL is connected to the ANT (ANT0 or ANT1), and the CPLR (CPLR0 or CPLR1) in FIG.
  • the ANT is connected to the low noise amplifier LNA, S by controlling the switch S0.
  • S is a switch for controlling the low-noise amplifier LNA to be in a pass-through or short-circuit state.
  • Vcc in Figure 4 indicates power connection, GND indicates ground, C indicates capacitance, and L indicates inductance.
  • the power coupling circuit CPL in Fig. 4 is used for coupling power detection, and the SEL/LNAEN/PAEN control line is used for logic state control.
  • the power consumption of the radio frequency front-end module 20 is reduced, thereby reducing the power consumption of the wearable device.
  • the power consumption in the transmission channel TX amplifier PA for illustration.
  • the power amplifier PA is composed of a multi-stage circuit, that is, a multi-stage amplifier, which can also be understood as a power amplifier module including M power amplifier.
  • FIG. 5 is a schematic structural diagram of an optional power amplification module provided by an embodiment of the present application. That is, the structural block diagram of a multi-stage amplifier.
  • Figure 5 shows a three-stage power amplifier, in which the input stage is used to complete the connection with the signal source and amplify the signal; the intermediate stage is used for voltage amplification to amplify the weak input The voltage is amplified to a sufficient voltage range; the output stage is used to amplify the power of the signal to achieve the power required by the output load and to match the load.
  • the wearable device is AR glasses
  • the terminal is a mobile phone
  • the wireless communication technology is WIFI. It needs to cover a long distance (such as tens of meters) like a mobile phone or a router product.
  • most of the data communication between AR glasses and mobile phones is transmitted from the mobile phone to the AR glasses. While improving the efficiency of the power amplifier PA, the gain and linearity index of the power amplifier PA are appropriately sacrificed.
  • the working mode of the power amplifier PA is set to single-stage amplification by controlling the output level value of the SEL/LNAEN/PAEN control line.
  • the output levels of PAEN, LNAEN, SEL3 and SEL4 are 1 0 0
  • the power amplifier in the transmission channel is a three-stage amplifier, and the current value corresponding to the transmission channel is 330mA.
  • the output levels of PAEN, LNAEN, SEL3 and SEL4 are 1 1 1 0, the power amplifier in the transmission channel is a single-stage amplifier, and the corresponding current value of the transmission channel is 60mA, thus effectively reducing the power consumption of the power amplifier.
  • the embodiment of this application aims at the technical problem of high power consumption during high-speed WIFI transmission, combined with the application scenario of AR glasses itself, through software means, according to the output level value of the SEL/LNAEN/PAEN control line, the transmission channel TX
  • the number of stages of the power amplifier PA is controlled, and the power amplifier PA in the radio frequency front-end module 20 is forcibly controlled from multi-stage amplification to single-stage amplification, thereby saving the power consumption of the intermediate stage and the output stage, so that the radio frequency front-end module 20 is
  • the power consumption of the radiated power is reduced to 20% of the original. While ensuring the transmission rate, the power consumption of the AR glasses during WIFI high-speed transmission is reduced.
  • FIG. 6 is a flow chart of the steps of a data transmission method provided in the embodiment of the present application.
  • the data transmission method includes the following steps:
  • N is a positive integer smaller than M
  • M is the total number of power amplifiers.
  • the transmission signal is amplified by N power amplifiers in the working state to obtain the amplified transmission signal.
  • the data transmission method provided by the embodiment of the present application is applied to the radio frequency front-end module of the wearable device.
  • the N power amplifiers of the power amplification module are controlled to be in the working state, and N is less than the power amplification module.
  • the total number of power amplifiers in the group When the transmission signal is received, the transmission signal is amplified by N power amplifiers in working state to obtain the amplified transmission signal.
  • the amplified transmission signal is transmitted to the terminal, so that the data corresponding to the amplified transmission signal is processed at the terminal.
  • data is transmitted from the terminal to the wearable device.
  • the embodiment of the present application controls the N power amplifiers of the power amplification module to be in the working state to reduce the number of power amplifiers in the working state, instead of the entire power amplification module (that is, the M power amplifiers) being in the working state.
  • the gain and linearity indicators of the power amplifier module are appropriately reduced, and the power consumption of the RF front-end module is reduced, thereby reducing the power consumption of wearable devices.
  • the logic control interface in the radio frequency front-end module includes multiple sub-interfaces, and the above S602 can also be implemented in the following manner, adjusting the output level values of the multiple sub-interfaces according to the power control signal, and controlling the N power amplifier modules
  • the power amplifier is in the working state; wherein, the output level values of the multiple sub-interfaces control the working state of the M power amplifiers of the power amplification module.
  • the above S604 may also be implemented by allocating the power of the amplified transmit signal to obtain the target transmit signal; and transmitting the target transmit signal to the terminal.
  • the data transmission method may further include the following steps: distributing the power of the amplified transmit signal to obtain the power of the coupled port; generating a new power control signal according to the power of the coupled port, and the new power control signal is used for the next transmission to The number of power amplifiers in working state is determined when the terminal transmits a signal.
  • radio frequency front-end modules which transmit signals with the terminal in different communication frequency bands; different communication frequency bands correspond to different radio frequency front-end modules.
  • signal transmission is performed with the terminal in the communication frequency band corresponding to the fifth-generation mobile communication technology or the sixth-generation mobile communication technology; the fifth-generation mobile communication technology and the sixth-generation mobile communication technology respectively correspond to different radio frequency front ends mod.
  • the data transmission method provided in the embodiment of this application can be executed by the wearable device described in any of the above embodiments.
  • the wearable device provided in the above embodiment and the data transmission method embodiment belong to the same concept, and the specific implementation process For details of the beneficial effects and the embodiment of the wearable device, details are not repeated here.
  • technical details not disclosed in the method embodiments of the present application please refer to the description of the device embodiments of the present application for understanding.
  • FIG. 7 is a schematic diagram of the composition structure of the wearable device proposed in the embodiment of the present application.
  • the wearable device 70 proposed in the embodiment of the present application includes the radio frequency
  • the front-end module 20 the processor 701 and the memory 702
  • the memory stores computer programs executable on the processor 701 .
  • the wearable device 70 may further include a communication interface 703 and a bus 704 for connecting the processor 701 , the memory 702 and the communication interface 703 .
  • the above-mentioned processor 701 may be an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a digital signal processor (Digital Signal Processor, DSP), a digital signal processing device (Digital Signal Processing Device, DSPD) , Programmable Logic Device (ProgRAMmable Logic Device, PLD), Field Programmable Gate Array (Field ProgRAMmable Gate Array, FPGA), Central Processing Unit (Central Processing Unit, CPU), controller, microcontroller, microprocessor in at least one.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • Field Programmable Gate Array Field ProgRAMmable Gate Array
  • CPU Central Processing Unit
  • controller microcontroller, microprocessor in at least one.
  • the bus 704 is used to connect the radio frequency front-end module 20 , the communication interface 703 , the processor 701 and the memory 702 and communicate with each other among these devices.
  • the above-mentioned processor 701 can be applied to the radio frequency front-end module 20, and when running the computer program stored in the memory 702, the following instructions can be executed: receive the power control signal; control the power amplification module according to the power control signal
  • the N power amplifiers in the working state are in the working state, N is a positive integer less than M, and M is the total number of power amplifiers; when the transmission signal is received, the transmission signal is amplified by the N power amplifiers in the working state to obtain the amplified transmission signal ;Transmit and amplify the transmit signal to the terminal.
  • the memory 702 in the wearable device 70 can be connected to the processor 701.
  • the memory 702 is used to store executable program codes and data.
  • the program codes include computer operation instructions.
  • the memory 702 may include high-speed RAM memory, and may also include non-volatile storage, eg, at least two disk storages.
  • the above-mentioned memory 702 may be a volatile memory (volatile memory), such as a random access memory (Random-Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read-Only Memory, ROM), flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid state disk (Solid-State Drive, SSD); Provide instructions and data.
  • each functional module in this embodiment may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software function modules.
  • the integrated unit is implemented in the form of a software function module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of this embodiment is essentially or The part contributed by the prior art or the whole or part of the technical solution can be embodied in the form of software products, the computer software products are stored in a storage medium, and include several instructions to make a computer device (which can be a personal A computer, a server, or a network device, etc.) or a processor (processor) executes all or part of the steps of the method of this embodiment.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other various media that can store program codes.
  • An embodiment of the present application provides a computer-readable storage medium, on which a program is stored, and when the program is executed by a processor, the data transmission method in any one of the above embodiments is implemented.
  • the program instructions corresponding to a data transmission method in this embodiment may be stored on a storage medium such as an optical disk, a hard disk, or a USB flash drive.
  • a storage medium such as an optical disk, a hard disk, or a USB flash drive.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in implementing one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • Embodiments of the present application provide a radio frequency front-end module, a wearable device, a data transmission method, and a computer-readable storage medium.
  • the radio frequency front-end module includes: a logic control interface, a power amplification module and an antenna; the logic control interface is configured to receive a power control signal and transmit the power control signal to the power amplification module; the power amplification module is configured to The power control signal controls the N power amplifiers of the power amplification module to be in the working state, and amplifies the transmission signal through the N power amplifiers to obtain the amplified transmission signal; N is less than the total number of power amplifiers.
  • the antenna is configured to transmit the amplified transmission signal to the terminal, so that the terminal processes the data corresponding to the amplified transmission signal.
  • the embodiment of the present application reduces the power consumption of the power amplification module by reducing the number of power amplifiers in the working state, thereby reducing the power consumption of the radio frequency front-end module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本申请实施例公开了一种射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质。该射频前端模组包括:逻辑控制接口、功率放大模组和天线;逻辑控制接口,被配置为接收功率控制信号,将功率控制信号传输至功率放大模组;功率放大模组,被配置为根据功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,并通过N个功率放大器对发射信号进行放大,得到放大发射信号;N小于功率放大器总数量。天线,被配置为将放大发射信号传输至终端,以在终端对放大发射信号所对应的数据进行处理。本申请实施例通过减少处于工作状态的功率放大器的数量,降低功率放大模组的功耗,从而降低了射频前端模组的功耗。

Description

射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202111392600.3、申请日为2021年11月23日、申请名称为“射频前端模组、可穿戴设备、数据传输方法和存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及计算机技术领域,尤其涉及一种射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质。
背景技术
可穿戴设备是直接穿在用户身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对人类的生活、感知带来很大的转变。例如,智能头戴式设备中的增强现实(Augmented Reality,AR)眼镜,是将AR技术应用于眼镜上,除了能够实现普通眼镜的功能外,还可以实现导航、打电话、观看视频等功能,因此,受到了广大用户的青睐。
可穿戴设备对重量、体积、功耗和发热等参数有非常严格的要求,否则将会极度影响用户的使用体验。因此,常见的轻量级可穿戴设备会和终端紧密结合起来。以可穿戴设备是AR眼镜、终端是手机为例,AR眼镜中的显示和音频部分的电路分配在眼镜上,而中央数据处理芯片(运算过程功耗较大,且发热较大)部分的电路则分配在手机上,以减轻AR眼镜的重量、功耗、体积和发热性能等。
可穿戴设备与终端通过无线通信连接,以实现数据传输,为了保证信号具有足够的覆盖范围,可穿戴设备和终端上需要搭配射频前端模组(Radio Front-end Modules,RFEM)。然而,射频前端模组在放大发射信号和接收信号的同时,增加了射频前端模组的功耗,也增加了可穿戴设备的功耗。
发明内容
本申请实施例提供一种射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质,通过减少处于工作状态的功率放大器的数量,降低了功率放大模组的功耗,即降低了射频前端模组的功耗,从而降低可穿戴设备的功耗。
本申请实施例的技术方案是这样实现的:
第一方面,本申请实施例提供一种射频前端模组;所述射频前端模组包括:逻辑控制接口、功率放大模组和天线;所述逻辑控制接口,被配置为接收功率控制信号,将所述功率控制信号传输至所述功率放大模组;所述功率放大模组,被配置为根据所述功率控制信号,控制所述功率放大模组的N个功率放大器处于工作状态,并通过所述N个功率放大器对发射信号进行放大,得到放大发射信号,其中,N为小于M的正整数,M为功率放大器总数量;所述天线,被配置为将所述放大发射信号传输至终端。
第二方面,本申请实施例提供一种数据传输方法,所述方法应用于第一方面所述的射频前端模组,所述方法包括:接收功率控制信号;根据所述功率控制信号,控制功率放大模组的N个功率放大器处于工作状态;当接收到发射信号时,通过处于工作状态的所述N个功率放大器对所述发射信号进行放大,得到放大发射信号,N为小于M的正整数,M为功率放大器总数量;传输所述放大发射信号至终端。
第三方面,本申请实施例提供一种可穿戴设备,所述可穿戴设备包括:如第一方面所述的射频前端模组、存储器和处理器;所述存储器存储有可 在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第二方面所述的数据传输方法。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有可执行指令,被配置为被处理器执行时,实现上述第二方面所述的数据传输方法。
本申请实施例提供了一种射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质。本申请实施例提供的射频前端模组包括:逻辑控制接口、功率放大模组和天线;逻辑控制接口,被配置为接收功率控制信号,将功率控制信号传输至功率放大模组;功率放大模组,被配置为根据功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,并通过N个功率放大器对发射信号进行放大,得到放大发射信号;N小于功率放大器总数量。天线,被配置为将放大发射信号传输至终端,以在终端对放大发射信号所对应的数据进行处理。本申请实施例提供的射频前端模组可以应用于可穿戴设备,在可穿戴设备和终端相互通信的过程中,大部分时间,数据是从终端传输到可穿戴设备。因此,本申请实施例通过控制功率放大模组的N个功率放大器处于工作状态,减少处于工作状态的功率放大器的数量,而不是整个功率放大模组(即,M个功率放大器)处于工作状态。在保证功率放大器的效率前提下,适当降低了功率放大模组的增益和线性度指标,降低了射频前端模组的功耗,从而降低了可穿戴设备的功耗。
附图说明
图1为本申请实施例提供的一种可穿戴设备的示例性的应用场景示意图;
图2为本申请实施例提供的一种射频前端模组的可选的结构示意图;
图3为本申请实施例提供的另一种射频前端模组的可选的结构示意图;
图4为本申请实施例提供的再一种射频前端模组的可选的结构示意图;
图5为本申请实施例提供的一种功率放大模组的可选的结构示意图;
图6为本申请实施例提供的一种数据传输方法的可选的步骤流程图;
图7为本申请实施例提供的一种可穿戴设备的可选的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。应当理解的是,此处所描述的一些实施例仅仅用以解释本申请的技术方案,并不用于限定本申请的技术范围。
为了更好地理解本申请实施例中提供的可穿戴设备,在对本申请实施例的技术方案进行介绍之前,先对可穿戴设备以及相关技术进行说明。
增强现实技术是一种将虚拟信息与真实世界巧妙融合的技术,广泛运用了多媒体、三维建模、实时跟踪及注册、智能交互、传感等多种技术手段,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。
在本申请实施例中,可穿戴设备包括但不限于智能手表、智能项链、可穿戴电子袜子、可穿戴眼镜和智能服装。以可穿戴设备是AR眼镜为例,AR眼镜是一种把AR技术应用在电子眼镜上的产品,可以实现诸多功能,可以将AR眼镜看作是一台微型的手机,通过跟踪眼球视线轨迹判断用户处于的状态,开启相应功能。
常见的轻量级可穿戴设备会和终端紧密结合起来,示例性的,可穿戴设备可以通过无线通信技术与终端进行连接,无线通信技术包括但不限于蓝牙和无线局域网(Wireless Local Area Network,WLAN),WLAN可以包括WIFI。通过无线通信技术实现计算机设备的互相连通,构成互相通信和实现资源共享的网络体系。通过无线通信技术连接,不需要使用通信电缆, 就可以将计算机与网络连接起来,从而使得网络的构建和终端的移动更加灵活。
示例性的,以可穿戴设备是AR眼镜、终端是手机、无线通信技术是WIFI为例进行说明,AR眼镜通过WIFI与手机进行无线连接,WIFI具有高稳定性、低延时和较高的交换带宽(例如,Gbps数量级)的传输速率等优点,可以为AR眼镜与手机提供快速的数据传输方案。但是WIFI也有其自身的局限性,为了保证足够的覆盖范围(通常数十米范围),其外围电路(即,AR眼镜和手机)需要搭配射频前端模组,用来保证其发射信号和接收信号的功率放大,进而导致功耗的增加。由于AR眼镜采用眼镜与手机相结合的方案,因此AR眼镜和手机需要采用一种低延时,高速率和低功耗的传输方式,以便于AR眼镜和手机之间的数据传输。
相关技术中,一种方式是通过压缩图形质量降低对传输速率的要求,从而降低功耗。同时也降低了数据的准确性。
另一种方式中,通过增加电池容量和散热设备,以支持高功耗的影响。增加附件,同时也增加了可穿戴设备的重量。
再一种方式中,如图1所示,图1为本申请实施例提供的一种可穿戴设备的示例性的应用场景示意图。图1中以可穿戴设备是AR眼镜、终端是手机、功率放大模组是功率模块为例进行说明,可穿戴设备包括射频前端模组,射频前端模组包括功率模块,当手机接近AR眼镜时,图1中以近距离表示,控制手机动态,调整手机和AR眼镜的发射功率,从而减少传输功率,以降低功耗(即降低功率)。当手机远离AR眼镜时,图1以远距离表示,手机和AR眼镜均以最高功率进行发射和接收。由于AR眼镜与手机之间的使用距离通常是近距离(例如,5m以内),通过降低手机和AR眼镜的发射功率的方式,对于手机而言,功耗已经降低,但是对于AR眼镜来说,其功耗依然很高。
基于上述提出的技术问题,本申请实施例提供一种射频前端模组,如 图2所示,图2为本申请实施例提供的一种射频前端模组的可选的结构示意图。
射频前端模组20包括:逻辑控制接口201、功率放大模组202和天线203;逻辑控制接口201,被配置为接收功率控制信号,将功率控制信号传输至功率放大模组202;功率放大模组202,被配置为根据功率控制信号,控制功率放大模组202的N个功率放大器处于工作状态,并通过N个功率放大器对发射信号进行放大,得到放大发射信号,N为小于M的正整数,M为功率放大器总数量;天线203,被配置为将放大发射信号传输至终端。
在本申请实施例中,图2中射频前端模组20可以应用于可穿戴设备,射频前端模组20包括逻辑控制接口201、功率放大模组202和天线203。逻辑控制接口201用于表示不同的逻辑控制状态,可以理解为通过逻辑控制接口201中自身接口上不同的输入表示不同的连接状态,不同的连接状态与功率放大模组202中不同的功率放大器的工作状态相对应。逻辑控制接口201接收功率控制信号,功率控制信号表征功率放大模组202中需要工作的功率放大器的数量。逻辑控制接口201根据功率控制信号对自身接口的连接状态进行设置,然后将功率控制信号传输至功率放大模组202,使得功率放大模组202根据功率控制信号,控制其中一部分的功率放大器(即N个功率放大器)处于工作状态,减少了多余的处于工作状态的功率放大器的数量。当可穿戴设备通过射频前端模组20向终端发送信号(即发射信号)时,通过N个功率放大器对发射信号进行放大,得到放大发射信号,再通过天线203将放大发射信号传输至终端。
在本申请实施例中,功率放大模组202包括M个功率放大器,M为大于或等于2的正整数。也可以理解为功率放大模组202是多级放大器,当M等于1时,功率放大模组202是单级放大器。当可穿戴设备通过射频前端模组20向终端发送信号(即发射信号)时,控制功率放大模组202的N个功率放大器处于工作状态,而不是整个M个功率放大器处于工作状态, 从而降低功率放大模组202的功耗。
示例性的,以可穿戴设备是AR眼镜、终端是手机为例,可以理解的是,相较于图1中通过降低手机和AR眼镜的发射功率的方式,在本申请实施例中,降低AR眼镜的发射功率,小幅降低或者不降低手机的发射功率,使得AR眼镜的发射功率的降低幅度远远大于图1中的AR眼镜,从而降低了可穿戴设备的功耗。
需要说明的是,可穿戴设备和终端上均搭配射频前端模组20,射频前端模组20属于硬件电路,可以完成射频信号的发送放大以及接收放大,即发射信号的放大和接收信号的放大,还可以用于功率耦合、逻辑控制和开关切换等。由于终端对于功耗的敏感度小于可穿戴设备,本申请实施例中结合实际应用场景,即,可穿戴设备与终端的使用距离较近,不需要很大的发射功率,因此,通过减少可穿戴设备中功率放大模组202中处于工作状态的功率放大器的数量,在不影响可穿戴设备与终端之间通信质量的前提下,降低射频前端模组20的发射功率,从而降低可穿戴设备的功耗。
本申请实施例提供的射频前端模组20包括:逻辑控制接口201、功率放大模组202和天线203;逻辑控制接口201,被配置为接收功率控制信号,将功率控制信号传输至功率放大模组202;功率放大模组202,被配置为根据功率控制信号,控制功率放大模组202的N个功率放大器处于工作状态,并通过N个功率放大器对发射信号进行放大,得到放大发射信号;N小于功率放大器总数量。天线203,被配置为将放大发射信号传输至终端,以在终端对放大发射信号所对应的数据进行处理。在可穿戴设备和终端相互通信的过程中,大部分时间,数据是从终端传输到可穿戴设备。因此,本申请实施例通过控制功率放大模组202的N个功率放大器处于工作状态,减少处于工作状态的功率放大器的数量,而不是整个功率放大模组202(即M个功率放大器)处于工作状态。在保证功率放大器的效率前提下,适当降低了功率放大模组202的增益和线性度指标,降低了射频前端模组20的功 耗,从而降低可穿戴设备的功耗。
在一些实施例中,本申请实施例提供的另一种射频前端模组的可选的结构示意图,如图3所示,基于图2的射频前端模组20,图3中射频前端模组20,还包括:功率耦合电路204;功率耦合电路204分别与功率放大模组202和天线203连接;功率耦合电路204,被配置为对放大发射信号的功率进行分配,得到目标发射信号,将目标发射信号传输至天线203;天线203,被配置为将目标发射信号传输至终端。
在本申请实施例中,在通过N个功率放大器对发射信号进行放大,得到放大发射信号之后,放大发射信号通过功率耦合电路204,一小部分信号进入耦合端口,一大部分信号进入天线203,即目标发射信号,然后通过天线203将目标发射信号传输至终端。由于天线203将目标发射信号传输至终端,不知道目标发射信号的功率,因此,本申请实施例还可以根据进入耦合端口的一小部分信号,计算目标发射信号的功率。
示例性的,放大发射信号通过功率耦合电路204之后,1%的功率信号进入耦合端口,99%的功率信号进入天线203,可以根据进入耦合端口的1%的功率信号,计算目标发射信号的功率,从而确定天线203辐射的目标发射信号的能量。
需要说明的是,功率耦合电路204,也可以表示为CPL或CPLR,可以理解为一种应用于微波系统的分路器,将主干通道上的功率按需分配到每个枝干通道上,以达到分路功能。
在本申请实施例中,射频前端模组20还包括功率耦合电路204;通过功率耦合电路204分别与功率放大模组202和天线203连接;功率耦合电路204,被配置为对放大发射信号的功率进行分配,得到目标发射信号,还可以计算目标发射信号的功率。然后将目标发射信号传输至天线203,通过天线203将目标发射信号传输至终端。根据目标发射信号的功率可以及时对本次功率放大模组202的调整结果进行检验,对下一次处于工作状态的 功率放大器的数量调整提供参考,以便后续更准确的减少处于工作状态的功率放大器的数量,降低功率放大模组202的功耗。
在一些实施例中,功率耦合电路204,还被配置为对放大发射信号的功率进行分配,得到耦合端口功率;根据耦合端口功率生成新的功率控制信号,并向逻辑控制接口201发送新的功率控制信号,新的功率控制信号用于在下一次向终端传输信号时确定处于工作状态的功率放大器的数量。
在本申请实施例中,功率耦合电路204对放大发射信号的功率进行分配,一小部分信号进入耦合端口,一大部分信号进入天线203,即目标发射信号。根据进入耦合端口一小部分信号,可以得到耦合端口功率。然后,根据耦合端口功率生成新的功率控制信号,并向逻辑控制接口201发送新的功率控制信号,新的功率控制信号用于在下一次向终端传输信号时确定处于工作状态的功率放大器的数量。使得功率放大模组对发射信号进行放大,得到的放大发射信号的功率更合适。
在本申请实施例中,根据功率耦合电路204的功率分配比例和耦合端口功率,计算目标发射信号的功率。根据目标发射信号的功率,可以对本次功率放大模组202中处于工作状态的功率放大器的数量是否合适进行判断。
示例性的,若目标发射信号的功率过大,则需要减少下一次功率放大模组202中处于工作状态的功率放大器的数量;若目标发射信号的功率合适,则保持下一次功率放大模组202中处于工作状态的功率放大器的数量;若目标发射信号的功率过小,则需要增加下一次功率放大模组202中处于工作状态的功率放大器的数量。
需要说明的是,本申请实施例中是功率耦合电路204根据耦合端口功率生成新的功率控制信号,并向逻辑控制接口201发送新的功率控制信号。可以理解的是,也可以由功率耦合电路204将耦合端口功率发送至功率控制信号生成模块,由功率控制信号生成模块根据耦合端口功率生成新的功 率控制信号,并向逻辑控制接口201发送新的功率控制信号。本申请实施例对于生成功率控制信号的执行主体不做限制。
在本申请实施例中,若目标发射信号的功率过大或过小,则根据耦合端口功率生成新的功率控制信号,并向逻辑控制接口201发送新的功率控制信号,根据新的功率控制信号确定处于工作状态的功率放大器的数量。从而在下一次向终端传输信号时,提高了以下方面的准确性:减少处于工作状态的功率放大器的数量,降低功率放大模组202的功耗。
在一些实施例中,逻辑控制接口201包括多个子接口;多个子接口,被配置为根据功率控制信号调整其输出电平值,其中,多个子接口的输出电平值控制功率放大模组202的M个功率放大器的工作状态。
在本申请实施例中,逻辑控制接口201接收功率控制信号之后,根据功率控制信号调整多个子接口的输出电平值,输出电平值包括高电平和低电平,多个子接口的不同的输出电平值组合,响应于不同的功率控制信号。从而实现控制功率放大模组202中处于工作状态的功率放大器的数量,也就是实现控制功率放大模组202的M个功率放大器的工作状态。
示例性的,以逻辑控制接口201包括4个接口:PAEN、LNAEN、SEL3和SEL4为例进行说明,PAEN、LNAEN、SEL3和SEL4的输出电平值包括高电平和低电平,SEL3和SEL4可以用于控制射频前端模组20休眠、选择不同的开关以实现不同的功能。以1表示高电平、以0表示低电平为例进行说明,4个接口的不同输出电平值可以有多种表现形式,例如,当PAEN、LNAEN、SEL3和SEL4的输出电平值分别为1 0 0 0时,功率放大模组202中处于工作状态的功率放大器的数量是3个,当PAEN、LNAEN、SEL3和SEL4的输出电平值分别为1 0 1 0时,功率放大模组202中处于工作状态的功率放大器的数量是2个,当PAEN、LNAEN、SEL3和SEL4的输出电平值分别为1 1 1 0时,功率放大模组202中处于工作状态的功率放大器的数量是1个。
需要说明的是,逻辑控制接口201可以是通用型之输入输出(General-purpose input/output,GPIO)控制线组。GPIO控制线组包括多个端口,其端口可以由计算机程序进行控制,自由使用,通过GPIO控制线组对特定的端口进行设置,实现控制功率放大模组202的N个功率放大器处于工作状态。也可以由监控芯片(watchdog)控制GPIO控制线组,通过GPIO控制线组中不同端口的接入,从而控制功率放大模组202处于工作状态的功率放大器的数量。
在本申请实施例中,逻辑控制接口201包括多个子接口,根据功率控制信号调整逻辑控制接口201中多个子接口的输出电平值,控制功率放大模组202的N个功率放大器处于工作状态。使得功率放大模组202接收到发射信号时,通过N个功率放大器对发射信号进行放大,而不是整个功率放大模组202(即M个功率放大器)处于工作状态。减少处于工作状态的功率放大器的数量,从而降低功率放大模组202的功耗。
在一些实施例中,射频前端模组20的数量为多个;天线203,被配置为在不同的通信频段,与终端进行信号传输;不同的通信频段分别对应不同的射频前端模组20。
在本申请实施例中,可穿戴设备和终端上可以搭配多个射频前端模组20,也就是采用多进多出(multiple-in multipleout,MIMO)技术,示例性的,2×2MIMO需要可穿戴设备和终端上均搭配两个射频前端模组20。MIMO可以为极大地提高信道容量,在发送端和接收端都使用多根天线203,在收发之间构成多个通道的天线203系统,从而提高可穿戴设备和终端的数据传输效率。
在一些实施例中,天线203,被配置为在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)或第六代移动通信技术(6G),与终端进行信号传输;第五代移动通信技术或第六代移动通信技术分别对应不同的射频前端模组20。
需要说明的是,通信频段包括但不限于频段5.150GHz-5.935GHz,5.935GHz-7.125GHz,即,5G技术和6G技术,可以理解的是,本申请实施例提供的射频前端模组20同样适用于3G技术,4G技术等,并且,随着技术的发展,本申请实施例提供的射频前端模组20也适用于7G技术、8G技术、9G技术、10G技术等,对此本申请实施例不做限制。
在本申请实施例中,不同的通信频段采用不同的射频前端模组20进行数据传输,可以同时支持多个通信频段的数据传输,并且提高了数据传输的效率。
下面,将说明本申请实施例在一个实际的应用场景中的示例性应用。
本申请实施例以逻辑控制接口包括SEL/LNAEN/PAEN控制线、功率放大模组是功率放大器(Power Amplifier,PA)、天线是antenna(ANT)、功率耦合电路是CPL为例进行说明,如图4所示,图4为本申请实施例提供的再一种射频前端模组的可选的结构示意图,其中,SEL/LNAEN/PAEN(图4中以SEL4_x、SEL3_x、LNAEN_x、PAEN_x示出)对应于图2和图3中逻辑控制接口201,PA对应于图2和图3中功率放大模组202,ANT对应于图2和图3中天线203,CPL对应于图3中功率耦合电路204。
在本申请实施例中,图4中示出的射频前端模组20可以应用于可穿戴设备和终端。若可穿戴设备和终端采用2×2MIMO的方案,则可穿戴设备和终端需要均搭配两个射频前端模组,因此图4中包括两个发射通道(Transmit,T)和两个接收通道(Receive,R),两个发射通道包括TX1和TX0,两个接收通道包括RX1和RX0,其中,X是一个象形的表示交叉(cross)的符号,可以理解为A方的TX接B方的RX、B方的TX接A方的RX,两个发射/接收通道均相同,可以以一个发射/接收通道为例进行说明。
在本申请实施例中,图4中发射通道TX包括功率放大器PA,功率放大器PA用于发射信号的放大,接收通道RX包括低噪声放大器(low noise  amplifier,LNA),低噪声放大器LNA用于接收信号放大。图4中开关S0用于切换发射通道TX和接收通道RX的工作状态,在可穿戴设备通过射频前端模组20向终端发送信号时,开关S0的连接方式如图4所示,将功率耦合电路CPL与ANT(ANT0或ANT1)连接,图4中的CPLR(CPLR0或CPLR1)表示功率耦合电路CPL的耦合端口。在可穿戴设备接收终端发送的信号时,通过控制开关S0,将ANT与低噪声放大器LNA、S相互连接。S为控制低噪声放大器LNA处于通路或短路状态的开关。图4中的Vcc表示电源连接,GND表示接地,C表示电容,L表示电感。图4中的功率耦合电路CPL用于耦合功率的检测,SEL/LNAEN/PAEN控制线用于逻辑状态控制。
在本申请实施例中,是通过降低发射通道TX中功率放大器PA的功耗,降低射频前端模组20的功耗,从而降低可穿戴设备的功耗,在此,对发射通道TX中的功率放大器PA进行说明。通常情况下,为了得到足够大的放大倍数或考虑到输入电阻、输出电阻等多种要求,功率放大器PA由多级电路组成,即多级放大器,也可以理解为功率放大模组包括M个功率放大器。如图5所示,图5为本申请实施例提供的一种功率放大模组的可选的结构示意图。也就是多级放大器的结构框图,图5示出的是三级功率放大器,其中,输入级用于完成与信号源的衔接,并对信号进行放大;中间级用于电压放大,将微弱的输入电压放大到足够的电压幅度;输出级用于信号的功率放大,以达到满足输出负载需要的功率,并要求和负载相匹配。
在本申请实施例中,以可穿戴设备是AR眼镜、终端是手机、无线通信技术是WIFI为例进行说明,由于AR眼镜与手机之间的使用距离通常是近距离(例如5m以内),不需要像手机或者路由器产品那样需要远距离(例如数十米)的覆盖距离。同时,AR眼镜与手机之间的数据通信,大部分时间是从手机传送至AR眼镜,也就是说AR眼镜大部分时间处于接收状态,对发射功率和发射信号质量要求相对较低,可以在保证功率放大器PA的效 率的同时,适当牺牲功率放大器PA的增益和线性度指标。
在本申请实施例中,通过控制SEL/LNAEN/PAEN控制线的输出电平值,将功率放大器PA的工作模式设置为单级放大。示例性的,当PAEN、LNAEN、SEL3和SEL4的输出电平值为1 0 0 0时,发射通道中功率放大器为3级放大器,发射通道所对应的电流值是330mA。当PAEN、LNAEN、SEL3和SEL4的输出电平值是1 1 1 0时,发射通道中功率放大器为单级放大器,发射通道所对应的电流值是60mA,从而有效降低了功率放大器的功耗。
本申请实施例针对WIFI高速传输过程中功耗很高的技术问题,结合AR眼镜本身的应用场景,通过软件手段,根据SEL/LNAEN/PAEN控制线的输出电平值,对发射通道TX中的功率放大器PA的级数进行控制,强行控制射频前端模组20中的功率放大器PA从多级放大变成单级放大,进而节省了中间级和输出级的功耗,使得射频前端模组20在辐射功率时的功耗降至原来的20%,在保证传输速率的同时,降低了AR眼镜WIFI高速传输时的功耗。
本申请实施例提供一种数据传输方法,该数据传输方法可以应用于以上任意实施例所描述的射频前端模组20。如图6所示,图6为本申请实施例提供的一种数据传输方法的步骤流程图,数据传输方法包括以下步骤:
S601、接收功率控制信号。
S602、根据功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,N为小于M的正整数,M为功率放大器总数量。
S603、当接收到发射信号时,通过处于工作状态的N个功率放大器对发射信号进行放大,得到放大发射信号。
S604、传输放大发射信号至终端。
本申请实施例提供的数据传输方法应用于可穿戴设备的射频前端模组,通过接收功率控制信号;根据功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,N小于功率放大模组的功率放大器总数量。当接 收到发射信号时,通过处于工作状态的N个功率放大器对发射信号进行放大,得到放大发射信号。传输放大发射信号至终端,以在终端对放大发射信号所对应的数据进行处理。在可穿戴设备和终端相互通信的过程中,大部分时间,数据是从终端传输到可穿戴设备。因此,本申请实施例通过控制功率放大模组的N个功率放大器处于工作状态,减少处于工作状态的功率放大器的数量,而不是整个功率放大模组(即M个功率放大器)处于工作状态。在保证功率放大器的效率前提下,适当降低了功率放大模组的增益和线性度指标,降低射频前端模组的功耗,从而降低可穿戴设备的功耗。
在一些实施例中,射频前端模组中逻辑控制接口包括多个子接口,上述S602还可以通过以下方式实现,根据功率控制信号调整多个子接口的输出电平值,控制功率放大模组的N个功率放大器处于工作状态;其中,多个子接口的输出电平值控制功率放大模组的M个功率放大器的工作状态。
在一些实施例中,上述S604还可以通过以下方式实现,对放大发射信号的功率进行分配,得到目标发射信号;将目标发射信号传输至终端。
在一些实施例中,数据传输方法还可以包括以下步骤:对放大发射信号的功率进行分配,得到耦合端口功率;根据耦合端口功率生成新的功率控制信号,新的功率控制信号用于在下一次向终端传输信号时确定处于工作状态的功率放大器的数量。
在一些实施例中,射频前端模组的数量为多个,在不同的通信频段,与终端进行信号传输;不同的通信频段分别对应不同的射频前端模组。
在一些实施例中,在第五代移动通信技术或第六代移动通信技术对应的通信频段,与终端进行信号传输;第五代移动通信技术和第六代移动通信技术分别对应不同的射频前端模组。
需要说明的是,本申请实施例提供的数据传输方法可以由以上任意实施例所描述的可穿戴设备执行,上述实施例提供的可穿戴设备与数据传输方法实施例属于同一构思,其具体实现过程及有益效果详见可穿戴设备的 实施例,这里不再赘述。对于本申请方法实施例中未披露的技术细节,请参照本申请设备实施例的描述而理解。
在本申请实施例中,图7为本申请实施例提出的可穿戴设备组成结构示意图,如图7所示,本申请实施例提出的可穿戴设备70包括以上任意一个实施例中所述的射频前端模组20、处理器701和存储器702,存储器存储有可在处理器701上执行的计算机程序。在一些实施例中,可穿戴设备70还可以包括通信接口703,和用于连接处理器701、存储器702以及通信接口703的总线704。
在本申请实施例中,上述处理器701可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(ProgRAMmable Logic Device,PLD)、现场可编程门阵列(Field ProgRAMmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。
在本申请实施例中,总线704用于连接射频前端模组20、通信接口703、处理器701以及存储器702以及这些器件之间的相互通信。
在本申请实施例中,上述处理器701可以应用于射频前端模组20,运行存储器702中存储的计算机程序时,可以执行以下指令:接收功率控制信号;根据功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,N为小于M的正整数,M为功率放大器总数量;当接收到发射信号时,通过处于工作状态的N个功率放大器对发射信号进行放大,得到放大发射信号;传输放大发射信号至终端。
可穿戴设备70中存储器702可以与处理器701连接,存储器702用于存储可执行程序代码和数据,该程序代码包括计算机操作指令,存储器702 可能包含高速RAM存储器,也可能还包括非易失性存储器,例如,至少两个磁盘存储器。在实际应用中,上述存储器702可以是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的存储器的组合,并向处理器701提供指令和数据。
另外,在本实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现如上任一实施例的数据传输方法。
示例性的,本实施例中的一种数据传输方法对应的程序指令可以被存储在光盘,硬盘,U盘等存储介质上,当存储介质中的与一种数据传输方法对应的程序指令被一电子设备读取或被执行时,可以实现如上述任一实施例的数据传输方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的实现流程示意图和/或方框图来描述的。应理解可由计算机程序指令实现流程示意图和/或方框图中的每一流程和/或方框、以及实现流程示意图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例提供的射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质。该射频前端模组包括:逻辑控制接口、功率放大模组和天线;逻辑控制接口,被配置为接收功率控制信号,将功率控制信号传输至功率放大模组;功率放大模组,被配置为根据功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,并通过N个功率放大器对发射信号进行放大,得到放大发射信号;N小于功率放大器总数量。天线,被配置为将放大发射信号传输至终端,以在终端对放大发射信号所对应的数据进行处理。本申请实施例通过减少处于工作状态的功率放大器的数量,降低功率放大模组的功耗,从而降低了射频前端模组的功耗。

Claims (14)

  1. 一种射频前端模组,所述射频前端模组包括:逻辑控制接口、功率放大模组和天线;
    所述逻辑控制接口,被配置为接收功率控制信号,将所述功率控制信号传输至所述功率放大模组;
    所述功率放大模组,被配置为根据所述功率控制信号,控制所述功率放大模组的N个功率放大器处于工作状态,并通过所述N个功率放大器对发射信号进行放大,得到放大发射信号,其中,N为小于M的正整数,M为功率放大器总数量;
    所述天线,被配置为将所述放大发射信号传输至终端。
  2. 根据权利要求1所述的射频前端模组,其中,所述射频前端模组,还包括:功率耦合电路;
    所述功率耦合电路分别与所述功率放大模组和天线连接;
    所述功率耦合电路,被配置为对所述放大发射信号的功率进行分配,得到目标发射信号,将所述目标发射信号传输至所述天线;
    所述天线,被配置为将所述目标发射信号传输至所述终端。
  3. 根据权利要求2所述的射频前端模组,其中,
    所述功率耦合电路,还被配置为对所述放大发射信号的功率进行分配,得到耦合端口功率;根据所述耦合端口功率生成新的功率控制信号,并向所述逻辑控制接口发送所述新的功率控制信号,所述新的功率控制信号用于在下一次向所述终端传输信号时确定处于工作状态的功率放大器的数量。
  4. 根据权利要求1-3任一项所述的射频前端模组,其中,所述逻辑控制接口包括多个子接口;
    所述多个子接口,被配置为根据所述功率控制信号调整其输出电平值,其中,所述多个子接口的输出电平值控制功率放大模组的M个功率放大器 的工作状态。
  5. 根据权利要求1-3任一项所述的射频前端模组,其中,所述射频前端模组的数量为多个;
    所述天线,被配置为在不同的通信频段,与所述终端进行信号传输;所述不同的通信频段分别对应不同的射频前端模组。
  6. 根据权利要求5所述的射频前端模组,其中,
    所述天线,被配置为在第五代移动通信技术或第六代移动通信技术对应的通信频段,与所述终端进行信号传输;
    所述第五代移动通信技术和所述第六代移动通信技术分别对应不同的射频前端模组。
  7. 一种数据传输方法,应用如权利要求1-5任一项所述的射频前端模组中,所述方法包括:
    接收功率控制信号;
    根据所述功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,N为小于M的正整数,M为功率放大器总数量;
    当接收到发射信号时,通过处于工作状态的所述N个功率放大器对所述发射信号进行放大,得到放大发射信号;
    传输所述放大发射信号至终端。
  8. 根据权利要求7所述的方法,其中,所述将所述放大发射信号传输至终端,包括:
    对所述放大发射信号的功率进行分配,得到目标发射信号;
    将所述目标发射信号传输至所述终端。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    对所述放大发射信号的功率进行分配,得到耦合端口功率;
    根据所述耦合端口功率生成新的功率控制信号,所述新的功率控制信号用于在下一次向所述终端传输信号时确定处于工作状态的功率放大器的 数量。
  10. 根据权利要求7-9任一项所述的方法,其中,所述射频前端模组中逻辑控制接口包括多个子接口,所述根据所述功率控制信号,控制功率放大模组的N个功率放大器处于工作状态,包括:
    根据所述功率控制信号调整所述多个子接口的输出电平值,控制所述功率放大模组的N个功率放大器处于工作状态;其中,所述多个子接口的输出电平值控制所述功率放大模组的M个功率放大器的工作状态。
  11. 根据权利要求7-9任一项所述的方法,其中,所述射频前端模组的数量为多个;
    在不同的通信频段,与所述终端进行信号传输;所述不同的通信频段分别对应不同的射频前端模组。
  12. 根据权利要求11所述的方法,其中,所述在不同的通信频段,与所述终端进行信号传输,包括:
    在第五代移动通信技术或第六代移动通信技术对应的通信频段,与所述终端进行信号传输;
    所述第五代移动通信技术和所述第六代移动通信技术分别对应不同的射频前端模组。
  13. 一种可穿戴设备,所述可穿戴设备包括:
    如权利要求1-6任一项所述的射频前端模组、存储器和处理器;
    所述存储器存储有可在所述处理器上运行的计算机程序;
    所述处理器执行所述计算机程序时实现权利要求7-12任一项所述的方法。
  14. 一种计算机可读存储介质,其上存储有可执行指令,被配置为被处理器执行时,实现权利要求7-12任一项所述的方法。
PCT/CN2022/119633 2021-11-23 2022-09-19 射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质 WO2023093232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111392600.3 2021-11-23
CN202111392600.3A CN114124118A (zh) 2021-11-23 2021-11-23 射频前端模组、可穿戴设备、数据传输方法和存储介质

Publications (1)

Publication Number Publication Date
WO2023093232A1 true WO2023093232A1 (zh) 2023-06-01

Family

ID=80440025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119633 WO2023093232A1 (zh) 2021-11-23 2022-09-19 射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114124118A (zh)
WO (1) WO2023093232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124118A (zh) * 2021-11-23 2022-03-01 Oppo广东移动通信有限公司 射频前端模组、可穿戴设备、数据传输方法和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075920A2 (en) * 2001-03-16 2002-09-26 Rf Micro Devices, Inc. Segmented power amplifier and method of control
US20090051461A1 (en) * 2007-08-21 2009-02-26 Azurewave Technologies, Inc. Output power detecting system with a directional coupler
US20160276980A1 (en) * 2015-03-18 2016-09-22 Samsung Electro-Mechanics Co., Ltd. Power amplifier and method of controlling output of power amplifier
CN108111185A (zh) * 2016-11-23 2018-06-01 英飞凌科技股份有限公司 用于毫米波5g mimo通信系统的发射器/接收器模块
CN114124118A (zh) * 2021-11-23 2022-03-01 Oppo广东移动通信有限公司 射频前端模组、可穿戴设备、数据传输方法和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082015B2 (en) * 2018-11-05 2021-08-03 Andrew Wireless Systems Gmbh Methods and apparatuses for reflection measurements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075920A2 (en) * 2001-03-16 2002-09-26 Rf Micro Devices, Inc. Segmented power amplifier and method of control
US20090051461A1 (en) * 2007-08-21 2009-02-26 Azurewave Technologies, Inc. Output power detecting system with a directional coupler
US20160276980A1 (en) * 2015-03-18 2016-09-22 Samsung Electro-Mechanics Co., Ltd. Power amplifier and method of controlling output of power amplifier
CN108111185A (zh) * 2016-11-23 2018-06-01 英飞凌科技股份有限公司 用于毫米波5g mimo通信系统的发射器/接收器模块
CN114124118A (zh) * 2021-11-23 2022-03-01 Oppo广东移动通信有限公司 射频前端模组、可穿戴设备、数据传输方法和存储介质

Also Published As

Publication number Publication date
CN114124118A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN108599785B (zh) 基于毫米波通信的射频系统、发射功率的调整方法及终端
WO2023093232A1 (zh) 射频前端模组、可穿戴设备、数据传输方法和计算机可读存储介质
KR20200071491A (ko) 안테나를 통해 수신된 신호의 적어도 일부를 감쇄하기 위한 전자 장치 및 통신 신호 제어 방법
CN114124124B (zh) 射频前端模组、可穿戴设备、数据传输方法和存储介质
CN108632974B (zh) 基于毫米波通信的射频系统、发射功率的调整方法及终端
CN111756396A (zh) 射频电路、电子设备和控制方法
CN114499575B (zh) 射频功率放大器、模组、电子设备、信号处理方法及装置
CN203660044U (zh) 一种能复用高低频天线的智能终端
CN112262532B (zh) 增加射频通路改善mimo吞吐方向的方法及终端设备
WO2024067406A1 (zh) 射频电路和电子设备
WO2024041253A1 (zh) 功耗调整方法、装置、设备、存储介质和程序产品
US11304134B2 (en) Radio frequency system based on millimeter wave communication, method for adjusting transmit power, and terminal
WO2024067028A1 (zh) 一种射频模组,射频系统及电子设备
CN210899166U (zh) 一种射频控制电路及电子设备
WO2023072153A1 (zh) 天线控制方法及相关设备
KR102614443B1 (ko) 송신기 및 송신기를 동작시키는 방법
CN107395131B (zh) 一种Doherty功率放大器及移动终端
CN213072652U (zh) 射频电路及电子设备
WO2020244113A1 (zh) 天线结构和电子设备
KR20210030319A (ko) 스위칭 레귤레이터를 이용하여 복수의 증폭기들에 선택적으로 전압을 공급하는 방법 및 장치
CN113115155A (zh) 无线耳机控制方法、无线耳机控制装置和电子设备
EP3602778B1 (en) Multi-channel doherty amplifier, multi-antenna transmitter, and method for turning on the multi-channel doherty amplifier
CN105929883B (zh) 发射电流控制方法及装置
CN112751584B (zh) 开关、射频电路以及终端设备
US8620227B2 (en) Device, system and method of selectively connecting between a transmit chain and an antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897318

Country of ref document: EP

Kind code of ref document: A1