WO2023093153A1 - 嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱 - Google Patents

嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱 Download PDF

Info

Publication number
WO2023093153A1
WO2023093153A1 PCT/CN2022/114657 CN2022114657W WO2023093153A1 WO 2023093153 A1 WO2023093153 A1 WO 2023093153A1 CN 2022114657 W CN2022114657 W CN 2022114657W WO 2023093153 A1 WO2023093153 A1 WO 2023093153A1
Authority
WO
WIPO (PCT)
Prior art keywords
door body
door
axis
line
built
Prior art date
Application number
PCT/CN2022/114657
Other languages
English (en)
French (fr)
Inventor
夏恩品
张�浩
孙永升
劳春峰
蒋孝奎
房雯雯
Original Assignee
青岛海尔智能技术研发有限公司
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2023093153A1 publication Critical patent/WO2023093153A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to the field of refrigeration equipment, in particular to a method for determining the rotational axis of a door body of a built-in refrigerator and the built-in refrigerator.
  • the object of the present invention is to provide a method for determining the rotational axis of a door body of a built-in refrigerator and the built-in refrigerator.
  • the present invention adopts the following technical solution: a method for determining the rotational axis of the door body of a built-in refrigerator, the built-in refrigerator is embedded in a cabinet, the built-in refrigerator includes a box body, and the box body The door body is connected by hinge rotation, and the determination method includes the following steps:
  • the target area is located on the side of the first trajectory line away from the pivoting side, and during the rotation of the door body, it is determined that the rotation axis of the door body is located in the target area or on the boundary line of the target area.
  • the target area is located on the hinge installation side of the door body.
  • fitting the first trajectory specifically includes the following steps:
  • the range of y in the formula x y*tanV/2-A-T/2 ⁇ y ⁇ T, where T represents the thickness of the door body.
  • the determination method also includes the following steps:
  • the target area is simultaneously located on a side of the second trajectory line close to the pivoting side.
  • the present invention also provides a built-in refrigerator, which is embedded in a cabinet.
  • the built-in refrigerator includes a box body and a door body connected to the box body through hinge rotation.
  • the The door body rotates around the rotation axis of the door body; the rotation axis of the door body is located in the target area or on the boundary line of the target area, and the target area is located on the side of the first trajectory line away from the pivoting side;
  • the actual maximum door opening angle of the door body is equal to the preset maximum door opening angle.
  • the target area is located on the hinge installation side of the door body.
  • the first intersection line is the X axis
  • the second intersection line between the pivoting side of the door body in the closed state and the hinge installation side of the door body is the Y axis
  • the intersection point of the X axis and the Y axis A curve drawn in the XY coordinate system constructed as the origin, wherein A represents the first gap between the pivoting side of the door and the cabinet when the door is in a closed state
  • V represents the preset maximum door opening angle.
  • the first intersection line between the front wall of the door body and the hinge installation side of the door body is the X axis
  • the second intersection line between the pivoting side of the door body in the closed state and the hinge installation side of the door body is the Y axis
  • the rotation axis of the door body is located on the second trajectory line, the door body rotates
  • the third gap between the front wall of the door body and the cabinet at 90° is equal to the first gap between the pivoting side of the door body and the cabinet when the door body is in a closed state.
  • the rotation axis of the door body is a solid axis or a virtual axis.
  • the front wall of the door body is higher than the hinge, and the hinge has an escape portion on the pivot side.
  • the door body is a glass door body.
  • the beneficial effects of the present invention are: according to the method for determining the rotational axis of the door body in the present invention, the target area of the rotational axis of the door body can be determined, thereby debugging can be carried out in the determined target area, and the actual maximum of the door body can be ensured.
  • the door opening angle is not less than the preset maximum door opening angle.
  • the present invention can determine the debugging area and the debugging direction according to the needs, so as to avoid the failure to open repeatedly during the debugging process.
  • the phenomenon that the maximum door opening angle is preset to increase the debugging time.
  • Fig. 1 is a partially schematic perspective view of a built-in refrigerator according to an embodiment of the present invention.
  • Fig. 2 is a schematic top view (hinge removed) of the built-in refrigerator shown in Fig. 1 .
  • Figure 3 shows a circle centered on the axis of rotation of the door body and passing through point D;
  • Fig. 4 shows a schematic diagram of the trajectory of the first trajectory line on the hinge installation side in the method for determining the rotation axis of the door body in the present invention
  • Fig. 5 shows a schematic structure diagram when the door body of the built-in refrigerator in the present invention is rotated by 90°;
  • Fig. 6 shows a schematic diagram of the trajectory of the second trajectory line on the hinge installation side in the method for determining the rotation axis of the door body in the present invention
  • Fig. 7 shows a schematic diagram of the trajectories of the third trajectory line and the fourth trajectory line on the hinge installation side in the method for determining the rotation axis of the door body in the present invention
  • Fig. 8 shows a schematic structural diagram of a built-in refrigerator according to a second embodiment of the present invention.
  • Fig. 9 is a schematic partial view of the built-in refrigerator in Fig. 8 .
  • Fig. 1 shows a partially schematic perspective view of a built-in refrigerator according to an embodiment of the present invention.
  • Fig. 2 shows a schematic top view (hinge removed) of a built-in refrigerator according to an embodiment of the present invention, wherein only one side of the cabinet 4 is shown, and in actual installation, the built-in refrigerator is completely embedded in the cabinet 4 .
  • the embedded refrigerator is not necessarily embedded in the cabinet 4, but also can be embedded in the wall.
  • the built-in refrigerator has the same structure as the refrigerator in the prior art, and generally includes a box body 1 and a door body 2 rotatably connected to the box body 1 through a hinge 3 .
  • the door body 2 includes a front wall 22 , a hinge installation side 23 and a pivoting side 21 .
  • the front wall 22 of the door body 2 is the side facing the external environment when the embedded refrigerator is embedded in the cabinet 4 .
  • the hinge installation side 23 of the door body 2 is the upper side of the door body 2, that is, one end of the hinge 3 is installed on the hinge installation side 23, and the other end of the hinge 3 is installed on the upper side of the casing 1 of the refrigerator.
  • the pivoting side 21 of the door body 2 is the side where the door body 2 rotates around the box body 1 .
  • the present invention provides a method for determining the rotational axis of a door body of an embedded refrigerator, comprising the following steps:
  • the above-mentioned boundary line refers to the first trajectory line.
  • the rotation axis of the door body may be a physical axis or a virtual axis.
  • the rotation axis of the door body is the axis of the rotation shaft in the single-axis hinge, that is, the physical axis.
  • the rotation axis of the door body is a virtual axis defined by multiple axes in the multi-axis hinge.
  • the actual maximum door opening angle of the door body 2 is equal to the preset maximum door opening angle, and when the first trajectory line is far away from the pivoting side 21
  • the actual maximum opening angle of the door body 2 is greater than the preset maximum opening angle.
  • the side of the first trajectory line close to the pivoting side 21 adjusts the rotation axis of the door body, the actual maximum door opening angle of the door body 2 is smaller than the preset maximum door opening angle.
  • the requirement for the opening of the door body is to make the actual maximum opening angle of the door body 2 greater than or equal to the preset maximum opening angle. Therefore, it is determined that the target area is located on the first trajectory line away from the pivoting side 21 One side, so that the actual maximum door opening angle of the door body 2 is not less than the preset maximum door opening angle.
  • the technician can know the relationship between the final actual maximum door opening angle of the door body 2 and the preset maximum door opening angle according to the finally determined positional relationship between the rotation axis of the door body and the first trajectory line.
  • the aforementioned door body rotation axis is located in the target area or on the boundary line of the target area can be understood as the door body 2 rotation process, the door body rotation axis is always located in the target area. It can also be understood that during the rotation process of the door body 2, the rotation axis of the door body is in the target area and/or the target area. Move on the boundary line of the area.
  • fitting the first trajectory line specifically includes the following steps:
  • the first intersection line between the front wall 22 of the door body 2 in the closed state and the hinge installation side 23 of the door body 2 is the X axis
  • the door body in the closed state The second intersection line between the pivoting side 21 of the door body 2 and the hinge installation side 23 of the door body 2 is the Y axis
  • the intersection of the X axis and the Y axis is taken as the origin O, thereby constructing an XY coordinate system
  • the determined target area is located within the range of the thickness of the door body 2 when it is in the closed state.
  • the value range of y can also be expanded adaptively, such as -T/2 ⁇ y ⁇ T or the range of y can also be set so that the target area is located on the hinge installation side 23 of the door body 2 in the closed state, so as to facilitate the setting of the hinge axis.
  • the cabinet 4 has a point D on the same horizontal line as the origin, with the center of rotation of the door body as the circle point, and the distance from the center of rotation of the door body to point D as the radius Draw a circle, the point of intersection between the circle and the front edge of the hinge installation side 23 when the door body 2 is in the closed state is point E, then the line between the axis of door rotation and point D and the line between the axis of door rotation and point E The included angle is the angle V through which the door body 2 turns.
  • the first trajectory G shown in Figure 4 can be drawn according to the above-mentioned formula and the range of y ⁇ y, which can be drawn as A straight line, when the rotation axis of the door body is located on the first trajectory line G, the actual maximum opening angle of the door body 2 is equal to the preset maximum opening angle, and when the rotation axis of the door body is located on the first trajectory line G, it is far away from the When pivoting on one side of side 21, the actual maximum opening angle of the door body 2 is greater than the preset maximum opening angle. The actual maximum door opening angle of the body 2 is smaller than the preset maximum door opening angle.
  • the determination method also includes the following steps:
  • the second intersection line of the hinge installation side 23 of the door body 2 is the Y axis, and the intersection of the X axis and the Y axis is taken as the origin O, thereby constructing an XY coordinate system;
  • the target area is located on the side of the second trajectory line close to the pivoting side 21 at the same time.
  • the third gap between the front wall 22 of the door body 2 and the cabinet 4 is equal to that of the door
  • the first gap between the pivoting side 21 of the door body 2 and the cabinet 4, that is, the door body 2 will not move inward, so as not to affect the user's picking and placing of items;
  • the axis is located on the side of the second trajectory line H close to the pivoting side 21, when the door body 2 rotates to 90°, the third gap is smaller than the first gap, that is, the door body 2.
  • the target area is further determined to be located on the side of the second trajectory line H close to the pivoting side 21, so that after the door body 2 is rotated to 90°, the storage space will not be blocked , will not affect the user to pick and place items.
  • the debugging area and the debugging direction can be determined according to whether the gap between the door body 2 and the cabinet 4 needs to be unchanged when the door body 2 is rotated to 90°.
  • x ⁇ y.
  • the second trajectory line H with the axis center on the hinge installation side 23 can be determined, and the axis center is selected on the second trajectory line H or on the second trajectory line H. Moving on the trajectory line H can ensure that the gap between the door body 2 and the cabinet 4 remains unchanged when the door body 2 rotates to 90°.
  • the target area is jointly defined by the first trajectory line G and the second trajectory line H, and the boundary line of the target area includes the first trajectory line G and the second trajectory line H.
  • the actual maximum opening angle of the door body 2 is greater than the preset maximum opening angle, and the door body 2 Move outward when turning to 90°.
  • the actual maximum opening angle of the door body 2 is greater than the preset maximum opening angle, so The gap between the door body 2 and the cabinet 4 remains unchanged when the door body 2 rotates to 90°.
  • the determination method also includes the following steps:
  • a third trajectory line is fitted, and when the rotation axis of the door body is located on the third trajectory line, during the rotation process of the door body 2, the front wall 22 of the door body 2 is located at the end of the pivot side 21 and cabinet4tangent;
  • the target area is located on a side of the third trajectory line away from the box body 1 .
  • the present invention can be adjusted in the determined target area or on the boundary line of the target area, which can ensure that no matter how the adjustment is performed, The cabinet 4 will not be interfered, thereby avoiding the phenomenon of repeatedly interfering with the cabinet 4 and increasing the debugging time during the debugging process.
  • fitting the third trajectory line specifically includes the following steps:
  • the second intersection line of the hinge installation side 23 of the door body 2 is the Y axis, and the intersection point of the X axis and the Y axis is used as the origin O to construct an XY coordinate system;
  • the determined target area is located within the range of the thickness of the door body 2 when it is in the closed state.
  • the value range of y can also be adaptively expanded, such as -T/2 ⁇ y ⁇ T; Or the range of y can also be set so that the target area is located on the hinge installation side 23 of the door body 2 in the closed state, so as to facilitate the setting of the hinge axis.
  • Trajectory line E If the center of circle is each point in the third locus line E, then the distance from the point on the third locus line E to the origin is used as the radius, then the circle passing through the origin will be tangent to the cabinet 4, that is, at the center of rotation of the door body When located on the third trajectory line E, during the rotation of the door body 2 , the end of the front wall 22 of the door body 2 on the pivoting side 21 is tangent to the cabinet 4 .
  • the circle passing through the origin will have a gap with the cabinet 4, that is, when the rotation axis of the door body is located at the third
  • the trajectory line E is away from the side of the box body 1 , during the rotation of the door body 2 , there is a gap between the end of the front wall 22 of the door body on the pivoting side 21 and the cabinet 4 . Therefore, it is further defined that the target area is located on the side of the third trajectory line E away from the box body 1 , so that the door body 2 will not interfere with the cabinet 4 during rotation.
  • the third trajectory line E, the first trajectory line G, and the second trajectory line H jointly define the target area.
  • the boundary line of the target area Including the first trajectory line G and the second trajectory line H.
  • the third trajectory line E may also jointly define the target area together with the first trajectory line G.
  • the boundary line of the target area includes the first trajectory line G and the third trajectory line G. Trajectory line E.
  • the determination method also includes the following steps:
  • the target area is located on a side of the fourth trajectory line close to the pivoting side 21 .
  • fitting the fourth trajectory line specifically includes the following steps:
  • the second intersection line of the hinge installation side 23 of the door body 2 is the Y axis, and the intersection point of the X axis and the Y axis is used as the origin O to construct an XY coordinate system;
  • the present invention is not limited thereto, and in an embodiment where the rotation axis of the door body is set outside the door body, the value range of x may also be adaptively expanded.
  • the hinge installation side 23 of the door body 2 includes four sides, which are respectively the front side, the rear side, the left side and the right side, wherein the front side is the side where the X-axis is located, and the right side is the side where the Y-axis is located.
  • the intersection point of the front side and the right side is the origin, and the intersection point of the back side and the right side is defined as N points.
  • the N point is located at one end of the rear wall of the door body 2 located at the pivoting side 21 .
  • the graph shown in Figure 7 can be drawn The fourth trajectory line F. If the center of the circle is each point in the fourth trajectory line F, and the distance from the fourth trajectory line F to point N is used as the radius, then the circle passing through point N will be tangent to the box body 1, that is, at the center of rotation of the door body When located on the fourth trajectory line F, during the rotation of the door body 2, the point N on the door body 2 is tangent to the box body 1 .
  • the target area is further limited to be located on the side of the fourth trajectory line close to the pivoting side 21, so that there is no interference between the door body 2 and the box body 1 during the rotation of the door body 2 .
  • the target area defined by the first trajectory line G and the second trajectory line H is located in the target area defined by the fourth trajectory line F, while the first trajectory line G and the The target area defined by the second trajectory line H is located in the target area defined by the third trajectory line E, that is, the door body rotation axis is located between the first trajectory line G and the second trajectory line H
  • the first trajectory line G, the second trajectory line H, and the third trajectory line E jointly define the target area or the boundary line of the cover target area, during the rotation of the door body 2, it can satisfy the The cabinet 1 and the cabinet 4 interfere with each other, and at the same time, the actual maximum opening angle of the door 2 is not less than the preset maximum opening angle, and the door 2 will not move inward when opened to 90°. Therefore, after the target area defined by the first trajectory G and the second trajectory H has been defined, the fourth trajectory F need not be considered.
  • the fourth trajectory line F can define the target area together with the first trajectory line G alone.
  • the boundary line of the target area includes the first trajectory line G and the fourth trajectory line F.
  • the fourth trajectory line F may define the target area together with the first trajectory line G and the third trajectory line E.
  • the boundary line of the target area includes the fourth trajectory line F, the first trajectory line Trajectory line G and a third trajectory line E.
  • the rotation axis of the door body is always located in the target area defined by the first trajectory line and the second trajectory line, thus, the position where the rotation axis center of the door body is set can be guaranteed It can make the door body 2 not interfere with the cabinet 4 or the box body 1 during the rotation process.
  • the present invention can be adjusted in the determined target area, and can ensure that the adjustment will not interfere with the cabinet 4 and cabinets no matter what. Body 1, so as to avoid repeated interference with cabinet 4 and/or interference with box body 1 during the debugging process, thus increasing the debugging time.
  • the present invention also provides a built-in refrigerator embedded in the cabinet 4 .
  • the built-in refrigerator includes a box body 1 and a door body 2 rotatably connected to the box body 1 through a hinge 3.
  • the door body 2 rotates around the rotation axis of the door body.
  • the rotation axis of the door body is set in the target area or on the boundary line of the target area.
  • the method for determining the target area is determined by the above-mentioned method for determining the position of the rotation axis of the door body, and will not be repeated here.
  • the rotation axis of the door body may be a physical axis or a virtual axis.
  • the rotation axis of the door body is the axis of the rotation shaft in the single-axis hinge, that is, the physical axis.
  • the rotation axis of the door body is a virtual axis defined by multiple axes in the multi-axis hinge.
  • the method for determining the door rotation axis of a built-in refrigerator in an embodiment under certain specific requirements will be described by taking the door rotation axis as the physical axis as an example.
  • the line segment between the intersection point P1 of the first trajectory line G and the second trajectory line H and the origin is defined as the first line segment.
  • the rotation axis of the door body is a fixed point on the first line segment, or the rotation axis of the door body moves on the first line segment.
  • the actual maximum opening angle of the door body 2 is not less than the preset maximum opening angle, and at the same time, the door body 2 will not interfere with the box body 1 and the cabinet 4 during rotation, Moreover, after the door body 2 is opened to 90°, it will not move inward.
  • the coordinates of point P1 can be obtained as (-5.46, 5.46), considering the diameter and strength requirements of the hinge shaft, the diameter of the hinge shaft is set to be greater than or equal to 6mm, In addition, considering the installation of the hinge shaft on the door body 2, the point P1 is finally selected as the pivot point.
  • the door body 2 does not interfere with the cabinet 4 and the cabinet body 1 during the rotation around the point P1, and the maximum opening angle is 120°. At the same time, the door body 2 will not move inward when it is opened to 90°.
  • the door hinge device 3 includes an upper hinge device 33 and a lower hinge device 34 .
  • the upper hinge device 33 and the lower hinge device 34 each have a hinge seat 31 and a hinge shaft 32 .
  • the above hinge device 33 will be described as an example below.
  • the lower hinge device 34 can be designed according to the installation form of the upper hinge device 33 on the door body 2 and the box body 1 .
  • the front wall 22 of the door body 2 is higher than the hinge 3 to achieve the purpose of concealing the hinge 3 . It is beneficial to the overall appearance effect of the embedded refrigerator.
  • the top side of the door body 2 (ie, the hinge installation side 23 ) is located higher than the top side of the box body 1 , and the hinge installation side 23 on the top side of the door body 2 has a groove 231 .
  • the hinge base 31 of the upper hinge device 33 straddles the top side of the box body 1 and the groove 231 of the door body 2 to hide the upper door body hinge device 3 at the rear side of the door body 2 .
  • the groove 231 runs through the pivoting side 21 of the door body 2, the hinge installation side 23 on the upper side and the rear side, that is to say, the groove 231 does not run through the front side 22 of the door body 2.
  • the groove 231 cannot be seen, so that the upper door hinge device 3 cannot be seen, and then the upper door hinge device 3 is hidden in the groove 231, ensuring that the door body 2 aesthetics.
  • the hinge seat 31 of the upper hinge device 33 can be configured as a rectangle, and a long side of the rectangular structure is aligned with the top side outer edge of the box body 1, and is also aligned with the top side outer edge of the door body 2 when the door body 2 is in a closed state. Align the edges. It can be understood that, since the groove 231 of the door body 2 does not pass through the front side 22 of the door body 2, the side of the hinge seat 31 located at the pivoting side 23 has a evacuation portion as shown in FIG. 9 311 , the escape portion 311 can avoid the front wall 22 of the door body 2 when the door body 2 is opened to a large angle, so as to smoothly install the hinge seat 31 on the top side of the box body 1 and the door body 2 .
  • the hinge shaft 32 in order to avoid assembly interference between the upper hinge device 33 and the door body 2 , compared with the first embodiment, the hinge shaft 32 needs to be closer to the box body 1 .
  • the hinge axis 32 is arranged on the connecting line between the intersection point of the third trajectory line E and the second trajectory line H and the intersection point P1.
  • the coordinates of the rotation axis of the door body can be selected as (-11.59,9).
  • the door body 2 is a glass door body. It is more resistant to scratches, and the glass door body has various designs and colors, which can be matched with furniture at will.
  • the door plastic trim strip that fixes the glass door body also needs to have a certain wall thickness. Adhesive gaps for adhesive tape or hot melt adhesive need to be set. Therefore, for the glass door body, the hinge axis needs to be far away from the front wall 22 of the door body 2 .
  • the side of the third trajectory line E away from the box body 1, the side of the fourth trajectory line F towards the pivoting side 21, and the side of the first trajectory line G away from the pivoting side 21 can be On one side, the second trajectory line H is away from the overlapping area of the side of the pivoting side 21 or on the first trajectory line G in the overlapping area to determine the position of the door body rotation axis, for example, the door body can be selected
  • the coordinates of the body rotation axis are (-15,11).
  • the target area of the rotation axis of the door body can be determined, so that debugging can be carried out in the determined target area, and the actual maximum opening of the door body can be guaranteed.
  • the angle is not less than the preset maximum door opening angle.
  • the present invention can determine the debugging area and the debugging direction according to the needs, so as to avoid the failure to open repeatedly during the debugging process.
  • the phenomenon that the maximum door opening angle is preset to increase the debugging time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hinges (AREA)
  • Refrigerator Housings (AREA)

Abstract

本发明提供一种嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱,确定方法包括如下步骤:获取所述门体的预设最大开门角度;拟合出第一轨迹线,在所述门体转动轴心位于所述第一轨迹线上时,所述门体的实际最大开门角度等于所述预设最大开门角度;确定目标区域位于所述第一轨迹线远离枢转侧的一侧。

Description

嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱 技术领域
本发明涉及制冷设备领域,尤其涉及一种嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱。
背景技术
随着社会的发展,生活品质的逐步提高,人们对冰箱的美观性需求也日益突出。将冰箱嵌入橱柜,即形成嵌入式冰箱以实现装修风格统一化的家装方式已趋于流行。
现有的嵌入式冰箱中的门体在转动过程中门体转动轴心不合适时,只能通过技术人员根据自己的经验去调节,调节时由于需要不断地在各个位置去尝试导致调节时长较长,并且极大可能无法调节到最佳位置。
有鉴于此,有必要提供一种新的嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱以解决上述问题。
发明内容
本发明的目的在于提供一种嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱。
为实现上述发明目的,本发明采用如下技术方案:一种嵌入式冰箱的门体转动轴心的确定方法,所述嵌入式冰箱嵌入橱柜内,所述嵌入式冰箱包括箱体、与所述箱体通过铰链转动连接的门体,所述确定方法包括如下步骤:
获取所述门体的预设最大开门角度;
拟合出第一轨迹线,在所述门体转动轴心位于所述第一轨迹线上时,所述门体的实际最大开门角度等于所述预设最大开门角度;
确定目标区域位于所述第一轨迹线远离枢转侧的一侧,门体转动过程中,确定门体转动轴心位于所述目标区域内或者位于所述目标区域的边界线上。
作为本发明进一步改进的技术方案,门体处于关闭状态时,所述目标区域位于所述门体的铰链安装侧上。
作为本发明进一步改进的技术方案,“拟合出第一轨迹线”具体包括如下步骤:
以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点,从而构建XY坐标系;
按照公式x=y*tanV/2-A在所述XY坐标系内绘制所述第一轨迹线,其中,V表示所述预设最大开门角度,A表示门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙。
作为本发明进一步改进的技术方案,公式x=y*tanV/2-A中y的范围-T/2≤y≤T,其中,T表示所述门体的厚度值。
作为本发明进一步改进的技术方案,所述确定方法还包括如下步骤:
以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点,从而构建XY坐标系;
按照公式x=y在所述XY坐标系内绘制第二轨迹线;在所述门体转动轴心位于所述第二轨迹线上时,所述门体转动至90°时所述门体的前壁与所述橱柜之间的第三间隙等于门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙;
确定所述目标区域同时位于所述第二轨迹线靠近所述枢转侧的一侧。
为实现上述发明目的,本发明还提供一种嵌入式冰箱,嵌入橱柜内,所述嵌入式冰箱包括箱体、与所述箱体通过铰链转动连接的门体,在开关门体过程中,所述门体绕门体转动轴心转动;所述门体转动轴心位于目标区域内或者位于所述目标区域的边界线上,所述目标区域位于第一轨迹线远离枢转侧的一侧;在所述门体转动轴心位于所述第一轨迹线上时,所述门体的实际最大开门角度等于预设最大开门角度。
作为本发明进一步改进的技术方案,所述门体处于关闭状态时,所述目标区域位于所述门体的铰链安装侧上。
作为本发明进一步改进的技术方案,所述第一轨迹线是按照公式x=y*tanV/2-A在以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点构建的XY坐标系内绘制出的曲线,其中,A表示门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙,V表示所述预设最大开门角度。
作为本发明进一步改进的技术方案,所述目标区域同时位于第二轨迹线靠近所述枢转侧的一侧,所述第二轨迹线是按照公式x=y在以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点构建的XY坐标系内绘制出的直线;在所述门体转动轴心位于所述第二轨迹线上时,所述门体转动至90°时所述门体的前壁与所述橱柜之间的第三间隙等于门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙。
作为本发明进一步改进的技术方案,所述门体转动轴心为实体轴心或者虚拟轴心。
作为本发明进一步改进的技术方案,所述门体的前壁高于所述铰链,所述铰链位于所述枢转侧的一侧具有避让部。
作为本发明进一步改进的技术方案,所述门体为玻璃门体。
本发明的有益效果是:根据本发明中的门体转动轴心的确定方法可以确定出门体转动轴心的目标区域,从而,可以在确定的目标区域内进行调试,能够保证门体的实际最大开门角度不小于预设最大开门角度。与现有技术中人为地根据经验不断调试来确定合适的门体转动轴心的方式相比,本发明可以根据需要来确定调试的区域以及调试方向,从而避免在调试过 程中反复出现无法打开至预设最大开门角度从而增加调试时间的现象。
附图说明
图1是本发明一个实施例的嵌入式冰箱的部分示意性立体图。
图2是图1所示的嵌入式冰箱的示意性俯视图(去除铰链)。
图3示出了以门体转动轴心为圆心且经过D点的圆;
图4示出了本发明中的门体转动轴心的确定方法中的第一轨迹线在铰链安装侧的轨迹示意图;
图5示出了本发明中的嵌入式冰箱的门体转动90°时的示意性结构图;
图6示出了本发明中的门体转动轴心的确定方法中的第二轨迹线在铰链安装侧的轨迹示意图;
图7示出了本发明中的门体转动轴心的确定方法中的第三轨迹线以及第四轨迹线在铰链安装侧的轨迹示意图;
图8示出了根据本发明第二实施方式中的嵌入式冰箱的示意性结构图;
图9为图8中的嵌入式冰箱的示意性局部图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述,请参照图1-图9所示,为本发明的较佳实施方式,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。但应当说明的是,这些实施方式并非对本发明的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本发明的保护范围之内。
在本发明的描述中,术语“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。例如,在下面的描述中,图2中的下侧为前,上侧为后。
图1示出了根据本发明一个实施例的嵌入式冰箱的部分示意性立体图。图2示出了根据本发明一个实施例的嵌入式冰箱的示意性俯视图(去除铰链),其中仅示出一侧的橱柜4,实际安装中,嵌入式冰箱是整个嵌入橱柜4中的。可以理解的是,嵌入式冰箱不一定是嵌入橱柜4内,也可以是嵌入墙体内。如图1和图2所示,该嵌入式冰箱与现有技术中的冰箱结构保持一致,一般性地包括箱体1和与箱体1通过铰链3转动连接的门体2。该门体2包括前壁22、铰链安装侧23和枢转侧21,该门体2的前壁22为嵌入式冰箱在嵌入橱柜4时面向外部环境的一侧。该门体2的铰链安装侧23为门体2的上侧,即铰链3的一端是安装在该铰链安装侧23的,铰链3的另一端安装在冰箱的箱体1的上侧。该门体2的枢转侧21为门体2绕箱体1转动的一侧。
本发明提供一种嵌入式冰箱的门体转动轴心的确定方法,包括如下步骤:
获取所述门体2的预设最大开门角度;
拟合出第一轨迹线,在所述门体转动轴心位于所述第一轨迹线上时,所述门体2的实际 最大开门角度等于所述预设最大开门角度;
确定目标区域位于所述第一轨迹线远离所述枢转侧21的一侧,在门体2转动过程中,确定门体转动轴心位于所述目标区域内或者位于所述目标区域的边界线上。
可以理解的是,在仅有所述第一轨迹线的实施方式中,上述的边界线即指所述第一轨迹线。
具体地,所述门体转动轴心可以为实体轴心也可以为虚拟轴心。如,在所述铰链3为单轴铰链时,所述门体转动轴心即为所述单轴铰链中的转轴的轴心,即为实体轴心。在所述铰链3为多轴铰链时,所述门体转动轴心即为由所述多轴铰链中的多轴限定出的虚拟轴心。
在所述第一轨迹线上调试所述门体转动轴心的位置时,门体2的实际最大开门角度等于预设最大开门角度,在所述第一轨迹线远离所述枢转侧21的一侧调试所述门体转动轴心的位置时,所述门体2的实际最大开门角度大于预设最大开门角度。在所述第一轨迹线靠近所述枢转侧21的一侧调试所述门体转动轴心时,所述门体2的实际最大开门角度小于预设最大开门角度。
本发明中,所述门体开度的需求为使得门体2的实际最大开门角度大于或等于预设最大开门角度,故,确定目标区域位于所述第一轨迹线远离所述枢转侧21的一侧,以使所述门体2的实际最大开门角度不小于所述预设最大开门角度。
可以理解的是,技术人员能够根据最终确定的门体转动轴心与第一轨迹线的位置关系,知晓最终的门体2的实际最大开门角度与预设最大开门角度的大小关系。
需要说明的是,上述的门体转动轴心位于所述目标区域内或者位于所述目标区域的边界线上可以理解为门体2转动过程中,所述门体转动轴心始终位于所述目标区域内的一个点上或者始终位于所述目标区域的边界线的一个点上;也可以理解为门体2转动过程中,所述门体转动轴心在所述目标区域和/或所述目标区域的边界线上移动。
进一步地,“拟合出第一轨迹线”具体包括如下步骤:
请参图4所示,以处于关闭状态下的所述门体2的前壁22与门体2的铰链安装侧23的第一交线为X轴,以处于关闭状态下的所述门体2的枢转侧21与门体2的铰链安装侧23的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点O,从而构建XY坐标系;
按照公式x=y*tanV/2-A在所述XY坐标系内绘制所述第一轨迹线,其中,V表示所述预设最大开门角度,A表示门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙。
进一步地,公式x=y*tanV/2-A中y的范围0≤y≤T,其中,T表示所述门体的厚度值。以使确定出的所述目标区域位于处于关闭状态时的门体2的厚度值范围内。当然,并不以此为限,在所述门体转动轴心设置于门体2外部的实施方式中,也可以适应性扩大所述y的取值范围,如-T/2≤y≤T;或者所述y的范围也可以设置为使所述目标区域位于处于关闭状态时的门体2的铰链安装侧23上,以便于铰链轴的设置。
优选地,公式x=y*tanV/2-A中,在A=3时,0≤y≤T/4;在A=4时,0≤y≤3T/10;在A=6时,0≤y≤2T/5;在A=10时,0≤y≤T/2;在A=18时,0≤y≤3T/5。
具体地,该公式x=y*tanV/2-A的获取方法是:设定门体转动轴心在XY坐标系上的坐标为(x,y),其中,x表示门体转动轴心的横坐标,y表示门体转动轴心的纵坐标。如图3所示,假设V为预设最大开门角度,橱柜4具有与原点在同一水平线上的D点,以门体转动轴心为圆点,门体转动轴心到D点的距离为半径画圆,该圆与门体2处于关闭状态时的铰 链安装侧23的前边的交点为E点,则门体转动轴心与D点连线与门体转动轴心与E点连线之间的夹角即为门体2转过的角度V,另外由于处于关闭状态下的门体2的前壁22与橱柜4的前端相齐平,即D点与E点处于同一条水平线上,所以从圆心做一条垂直于门体2的前壁22线可以平分角度V,即V=2W,且tanW=(x+A)/y,分解公式可得x=y*tanV/2-A。
假设门体2的厚度值T和第一间隙A为固定值,则根据上述求解的公式及y的范围0≤y可以绘制出如图4所示的第一轨迹线G,可以得出其为一直线,在门体转动轴心位于第一轨迹线G上时,门体2的实际最大开门角度等于所述预设最大开门角度,在门体转动轴心位于第一轨迹线G远离所述枢转侧21的一侧时,门体2的实际最大开门角度大于所述预设最大开门角,在门体转动轴心位于第一轨迹线G靠近所述枢转侧21的一侧时门体2的实际最大开门角度小于所述预设最大开门角。
进一步地,所述确定方法还包括如下步骤:
以处于关闭状态下的所述门体2的前壁22与门体2的铰链安装侧23的第一交线为X轴,以处于关闭状态下的所述门体2的枢转侧21与门体2的铰链安装侧23的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点O,从而构建XY坐标系;
如图6所示,按照公式x=y在所述XY坐标系内绘制第二轨迹线H;在所述门体转动轴心位于所述第二轨迹线上时,所述门体2转动至90°时所述门体2的前壁22与所述橱柜4之间的第三间隙等于门体2处于关闭状态时所述门体2的枢转侧21与橱柜4之间的第一间隙
确定所述目标区域同时位于所述第二轨迹线靠近所述枢转侧21的一侧。
在所述门体转动轴心位于所述第二轨迹线H上时,所述门体转动至90°时所述门体2的前壁22与所述橱柜4之间的第三间隙等于门体处于关闭状态时所述门体2的枢转侧21与橱柜4之间的第一间隙,即,门体2不会内移,从而不会影响用户取放物品;在所述门体转动轴心位于所述第二轨迹线H靠近所述枢转侧21的一侧时,所述门体2转动至90°时所述第三间隙小于所述第一间隙,即,所述门体2转动至90°时会外移,更有利于用户取放物品;在所述门体转动轴心位于所述第二轨迹线H上远离所述枢转侧21的一侧时,所述门体转动至90°时所述第三间隙大于所述第一间隙,即,所述门体2转动至90°时会内移,此时,所述门体2会遮蔽部分储物间室的储藏空间,影响用户取放物品。故,本发明中,将所述目标区域进一步确定为位于所述第二轨迹线H靠近所述枢转侧21的一侧,从而,门体2转动至90°后,不会遮蔽储物空间,不会影响用户取放物品。
可以理解的是,可以根据是否需要门体2转动至90°时门体2与橱柜4之间的间隙不变来确定调试的区域以及调试方向。
进一步地,公式x=y的获取方法是:设定门体转动轴心在XY坐标系上的坐标为(x,y),其中,x表示门体转动轴心的横坐标,y表示门体转动轴心的纵坐标。假设x≠y。可以理解的是,如图2所示,在门体2处于关闭状态时,门体2与橱柜4之间的间隙为第一间隙A,如图5所示,在门体2转动90°时,门体2与橱柜4之间的间隙变成第三间隙A+a。若需要门体2转动后门体2与橱柜4之间的间隙不变,则需要a=0,即x=y。
因此,若需要使得所述门体2转动至90°时所述门体2的所述前壁22与所述橱柜4之 间的第三间隙等于所述第一间隙,则需要在该第二轨迹线上寻找门体转动轴心或者需要使得门体转动轴心在所述第二轨迹线H上移动。
根据本发明实施例的方案,按照x=y的公式可以确定出轴心在铰链安装侧23上的第二轨迹线H,将轴心选择在该第二轨迹线H上或选择在该第二轨迹线H上移动,则可以保证门体2转动至90°时门体2与橱柜4之间的间隙不变。
此时,所述目标区域由所述第一轨迹线G以及第二轨迹线H共同限定,所述目标区域的边界线包括第一轨迹线G以及第二轨迹线H。
在所述门体转动轴心位于所述目标区域内时,所述门体2转动过程中,所述门体2的实际最大开门角度大于所述预设最大开门角度,且所述门体2转动至90°时外移。
在所述门体转动轴心位于作为边界线的第一轨迹线G上时,所述门体2转动过程中,所述门体2的实际最大开门角度等于所述预设最大开门角度,所述门体2转动至90°时外移。
在所述门体转动轴心位于作为边界线的第二轨迹线H上时,所述门体2转动过程中,所述门体2的实际最大开门角度大于所述预设最大开门角度,所述门体2转动至90°时与所述橱柜4之间的间隙不变。
进一步地,所述确定方法还包括如下步骤:
拟合出第三轨迹线,在所述门体转动轴心位于所述第三轨迹线上时,门体2转动过程中,所述门体2的前壁22位于枢转侧21的一端与橱柜4相切;
确定目标区域位于所述第三轨迹线远离所述箱体1的一侧。
在所述门体转动轴心位于所述第三轨迹线远离所述箱体1的一侧时,门体2转动过程中,所述门体2的前壁22位于枢转侧21的一端与橱柜4之间具有间隙,即,可以保证门体2在转动过程中不干涉橱柜4。与现有技术中人为地根据经验不断调试来确定合适的门体转动轴心的方式相比,本发明可以在确定的目标区域内或者目标区域的边界线上进行调试,能够保证无论如何调试都不会干涉橱柜4,从而避免在调试过程中反复出现干涉橱柜4从而增加调试时间的现象。
进一步地,上述的“拟合出第三轨迹线”具体包括如下步骤:
以处于关闭状态下的所述门体2的前壁22与门体2的铰链安装侧23的第一交线为X轴,以处于关闭状态下的所述门体2的枢转侧21与门体2的铰链安装侧23的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点O,构建XY坐标系;
按照公式x=(y 2-A 2)/2A在所述XY坐标系内绘制出所述第一轨迹线,其中,如图2中所示,A表示门体2处于关闭状态时所述门体2的枢转侧21与橱柜4之间的第一间隙。
可以理解的是,上述的原点为所述门体2的前壁22位于枢转侧21的一端。
进一步地,公式x=(y2-A2)/2A中y的范围为:0≤y≤T,其中,T表示所述门体的厚度值。以使确定出的所述目标区域位于处于关闭状态时的门体2的厚度值范围内。当然,并不以此为限,在所述门体转动轴心设置于门体外部的实施方式中,也可以适应性扩大所述y的取值范围,如-T/2≤y≤T;或者所述y的范围也可以设置为使所述目标区域位于处于关闭状态时的门体2的铰链安装侧23上,以便于铰链轴的设置。
优选地,公式x=(y 2-A 2)/2A中,在A=3时,0≤y≤T/4;在A=4时,0≤y≤3T/10;在A=6时,0≤y≤2T/5;在A=10时,0≤y≤T/2;在A=18时,0≤y≤3T/5。
其中,公式x=(y 2-A 2)/2A的获得方法是:设定门体转动轴心在XY坐标系上的坐标为(x,y),其中,x表示门体转动轴心的横坐标,y表示门体转动轴心的纵坐标。假设门体转动轴心到原点的距离为R1,则门体2在转动过程中,原点在围绕轴心(x,y)同时半径为R1的圆上运动,为了避免门体2与橱柜4干涉,则要保证原点不与橱柜4干涉,因此需要满足以下条件:R 1-x≤A且x 2+y 2=R 1 2,取R 1-x=A,则经过换算可得:x 2+y 2=(x+A) 2,分解公式可以得到上述公式x=(y 2-A 2)/2A。
可以理解的是,在R1-x=A时,门体2转动过程中,所述门体的前壁22位于枢转侧21的一端与橱柜4相切。
假设门体2的厚度值T和第一间隙A为固定值,那么根据公式x=(y 2-A 2)/2A以及y的范围0≤y≤T可以绘制出图7所示的第三轨迹线E。若圆心为第三轨迹线E中各个点,则第三轨迹线E上的点到原点的距离作为半径,则通过原点的圆都会与橱柜4相切,即,在所述门体转动轴心位于所述第三轨迹线E上时,门体2转动过程中,所述门体2的前壁22位于枢转侧21的一端与橱柜4相切。而若圆心处于第三轨迹线E远离所述箱体1的一侧的某一点,则通过原点的圆则会与橱柜4有间隙,即,在所述门体转动轴心位于所述第三轨迹线E远离所述箱体1的一侧时,门体2转动过程中,所述门体的前壁22位于枢转侧21的一端与橱柜4有间隙。因而,进一步限定所述目标区域位于所述第三轨迹线E远离所述箱体1的一侧,以使门体2转动过程中,不会与所述橱柜4干涉。
于图7所示的具体实施方式中,所述第三轨迹线E与所述第一轨迹线G、第二轨迹线H共同限定出所述目标区域,此时,所述目标区域的边界线包括第一轨迹线G、第二轨迹线H。在所述门体转动轴心位于所述目标区域内或者所述目标区域的边界线上时,能够保证所述门体2转动过程中,所述门体2不会与所述橱柜4相干涉,同时,保证所述门体2的实际最大开门角度不小于所述预设最大开门角度,且所述门体2转动至90°时不会内移。
当然,并不以此为限。于其他实施方式中,所述第三轨迹线E也可以与所述第一轨迹线G共同限定出所述目标区域,此时,所述目标区域的边界线包括第一轨迹线G以及第三轨迹线E。在所述门体转动轴心位于所述目标区域内或者所述目标区域的边界线上时,能够保证所述门体2转动过程中,所述门体2不会与所述橱柜4相干涉,同时,保证所述门体2的实际最大开门角度不小于所述预设最大开门角度。
进一步地,所述确定方法还包括如下步骤:
拟合出第四轨迹线,在所述门体转动轴心位于所述第四轨迹线上时,门体转动过程中,所述门体的后壁位于枢转侧的一端与所述箱体相切;
所述目标区域位于所述第四轨迹线靠近所述枢转侧21的一侧。
在所述门体转动轴心位于所述第四轨迹线靠近所述枢转侧21的一侧时,所述门体2的后壁位于枢转侧21的一端与所述箱体1之间具有间隙,从而,在所述门体转动轴心位于所述第四轨迹线靠近所述枢转侧21的一侧或者位于所述第四轨迹线上时,在门体2转动过程中,所述门体2的后壁位于枢转侧21的一端与所述箱体1之间不会干涉。
进一步地,上述“拟合出第四轨迹线”具体包括如下步骤:
以处于关闭状态下的所述门体2的前壁22与门体2的铰链安装侧23的第一交线为X轴,以处于关闭状态下的所述门体2的枢转侧21与门体2的铰链安装侧23的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点O,构建XY坐标系;
按照公式y=T-(x 2-B 2)/2B在所述XY坐标系内绘制出所述第四轨迹线,其中,B表示门体处于关闭状态时所述门体与所述箱体之间的第二间隙,T表示所述门体的厚度值。
进一步地,公式y=T-(x 2-B 2)/2B中x的范围0≤x≤L,其中,L表示所述门体的宽度值。以使确定出的所述目标区域位于处于关闭状态时的门体的宽度值范围内。当然,并不以此为限,在所述门体转动轴心设置于门体外部的实施方式中,也可以适应性扩大所述x的取值范围。
具体地,如图2所示,所述门体2的铰链安装侧23包括包括四条边,分别为前边、后边、左边和右边,其中,前边为X轴所在边,右边为Y轴所在边,前边与右边的交点为原点,后边与右边的交点定义为N点。
可以理解的是,所述N点位于所述门体2的后壁位于所述枢转侧21的一端。
其中,公式y=T-(x 2-B 2)/2B的获得方法是:设定门体转动轴心在XY坐标系上的坐标为(x,y),其中,x表示门体转动轴心的横坐标,y表示门体转动轴心的纵坐标。如图7所示,假设门体2的门体转动轴心到N点的距离为R2,且轴心到后边的距离为C,则门体2在转动过程中,N点在围绕轴心(x,y)半径为R2的圆上运动,为了避免门体2与箱体1干涉,则要保证N点不与箱体1干涉,因此需要满足以下条件:R 2-C≤B,y=T-C且x 2+C 2=R 2 2,取R 2-C=B,则经过换算可得:由此可得:x 2+C 2=(C+B) 2,分解公式可得:C=(x 2-B 2)/2B,将其代入y=T-C可得公式y=T-(x 2-B 2)/2B。
可以理解的是,在R 2-C=B时,门体2转动过程中,门体2上的N点与箱体1相切。
假设门体2的厚度值T和第二间隙B为固定值,那么根据公式y=T-(x 2-B 2)/2B以及x的范围0≤x≤L可以绘制出图7所示的第四轨迹线F。若圆心为第四轨迹线F中各个点,以第四轨迹线F到点N的距离作为半径,则通过点N的圆都会与箱体1相切,即,在所述门体转动轴心位于所述第四轨迹线F上时,门体2转动过程中,所述门体2上的N点与箱体1相切。而若圆心处于第四轨迹线F靠近所述枢转侧21的一侧的某一点时,通过N点的圆则会与箱体1之间有间隙,即,在所述门体转动轴心位于所述第四轨迹线F靠近所述枢转侧21的一侧时,门体2转动过程中,所述N点与所述箱体1之间有间隙。而若圆心处于第四轨迹线F远离所述枢转侧21的一侧的某一点时,通过N点的圆则会与箱体1之间有重叠,即,在所述门体转动轴心位于所述第四轨迹线F远离所述枢转侧21的一侧时,门体2转动过程中,所述N点与所述箱体1之间有干涉。因而,将所述目标区域进一步限定为位于所述第四轨迹线靠近枢转侧21的一侧,以使门体2转动过程中,所述门体2与所述箱体1之间无干涉。
如图7所示,所述第一轨迹线G与所述第二轨迹线H限定的目标区域位于所述第四轨迹线F限定的目标区域内,同时所述第一轨迹线G与所述第二轨迹线H限定的目标区域位于所述第三轨迹线E限定的目标区域内,即,在所述门体转动轴心位于由所述第一轨迹线G与所述第二轨迹线H或者第一轨迹线G、第二轨迹线H、第三轨迹线E共同限定的所述目标区域内或者盖目标区域的边界线上时,所述门体2转动过程中,能够满足不会与箱体1以及橱柜4相干涉,同时所述门体2的实际最大打开角度不小于所述预设最大打开角度,所述门体2打开至90°时,不会内移。故,在已经限定有第一轨迹线G以及第二轨迹线H限定的目标区域后,无需考虑所述第四轨迹线F。
基于上,所述第四轨迹线F可单独与所述第一轨迹线G共同限定所述目标区域,此时,所述目标区域的边界线包括所述第一轨迹线G以及第四轨迹线F。在所述门体2位于该目标区域内或者位于该目标区域的边界线上时,所述门体2的实际最大打开角度不小于所述预设最大打开角度,同时,所述门体2转动过程中,不会与所述箱体1之间产生干涉。
或者,所述第四轨迹线F可与所述第一轨迹线G以及第三轨迹线E共同限定所述目标 区域,此时,所述目标区域的边界线包括第四轨迹线F、第一轨迹线G以及第三轨迹线E。在所述门体2位于该目标区域内或者位于该目标区域的边界线上时,所述门体2的实际最大打开角度不小于所述预设最大打开角度,同时,所述门体2转动过程中,不会与所述箱体1以及橱柜4之间产生干涉。
在所述门体2在转动过程中,门体转动轴心始终位于由所述第一轨迹线以及第二轨迹线限定的所述目标区域内,从而,可以保证门体转动轴心设置的位置能够使得门体2在转动过程中既不干涉橱柜4也不干涉箱体1。与现有技术中人为地根据经验不断调试来确定合适的门体转动轴心的方式相比,本发明可以在确定的目标区域内进行调试,能够保证无论如何调试都不会干涉橱柜4以及箱体1,从而避免在调试过程中反复出现干涉橱柜4和/或干涉箱体1从而增加调试时间的现象。
进一步地,请参图1-图2所示,本发明还提供一种嵌入式冰箱,嵌入所述橱柜4内。所述嵌入式冰箱包括箱体1、与所述箱体1通过铰链3转动连接的门体2,在开关门体2过程中,所述门体2绕门体转动轴心转动。所述门体转动轴心设置于目标区域内或者位于所述目标区域的边界线上。所述目标区域的确定方法由上述的门体转动轴心的位置确定方法进行确定,于此,不再一一赘述。
具体地,所述门体转动轴心可以为实体轴心也可以为虚拟轴心。如,在所述铰链3为单轴铰链时,所述门体转动轴心即为所述单轴铰链中的转轴的轴心,即为实体轴心。在所述铰链3为多轴铰链时,所述门体转动轴心即为由所述多轴铰链中的多轴限定出的虚拟轴心。
下面,以所述门体转动轴心为实体轴心为例,对若干具体需求下的实施方式中的嵌入式冰箱的门体转动轴心的确定方法进行阐述。
第一实施方式:
如图7所示,定义第一轨迹线G与第二轨迹线H的交点P1与原点之间的线段为第一线段。综合考虑,最终确定门体转动轴心为所述第一线段上的某一定点,或者所述门体转动轴心在所述第一线段上移动。此时,所述门体2的实际最大打开角度不小于所述预设最大打开角度,同时,所述门体2转动过程中,不会与所述箱体1以及橱柜4之间产生干涉,且,门体2打开至90°后,不会内移。
于一具体实施方式中,A=4,V=120°,可以求得P1点的坐标为(-5.46,5.46),考虑到铰链轴的直径强度要求,设定铰链轴直径大于或等于6mm,另考虑铰链轴在门体2上的安装,最终选定P1点为轴心点,门体2绕P1点转动过程中与橱柜4、箱体1均无干涉,且最大开门角度为120°,同时,门体2打开至90°时不会内移。
第二实施方式:
本实施方式与第一实施方式的区别在于:如图8所示,该门体铰链装置3包括上铰链装置33和下铰链装置34。上铰链装置33和下铰链装置34各自具有铰链座31和铰链轴32。以下以上铰链装置33为例进行说明,本领域技术人员可知,下铰链装置34可以按照上铰链装置33在门体2和箱体1上的安装形式进行设计。
所述门体2的前壁22高于所述铰链3,以达到隐藏设置所述铰链3的目的。有利于所述嵌入式冰箱的整体外观效果。
具体地,该门体2的顶侧(即铰链安装侧23)所在位置高于箱体1的顶侧所在位置,且门体2顶侧的铰链安装侧23具有一凹槽231。该上铰链装置33的铰链座31横跨在箱体1的顶侧和该门体2的凹槽231处,以将上门体铰链装置3隐藏于门体2的后侧。
参见图8,该凹槽231贯穿门体2的枢转侧21、上侧的铰链安装侧23和后侧,也就是 说,该凹槽231并没有贯穿门体2的前侧22,在门体2处于关闭状态时,从前方观察冰箱时,无法看见该凹槽231,从而无法看到上门体铰链装置3,进而将上门体铰链装置3隐藏在该凹槽231内,保证了门体2的美观度。
该上铰链装置33的铰链座31可以构造成长方形,该长方形结构的一条长边与箱体1的顶侧外边缘对齐,且在门体2处于关闭状态时也与门体2的顶侧外边缘对齐。可以理解的是,由于该门体2的凹槽231并未贯穿门体2的前侧22,因此,该铰链座31位于所述枢转侧23的一侧具有如图9所示的避让部311,该避让部311可以在门体2打开至较大角度时,避让门体2的前壁22,以顺利将该铰链座31安装在箱体1和门体2的顶侧。
并且,该实施例中,为了避免上铰链装置33与门体2产生装配干涉,相较于第一实施方式,需要使铰链轴32更靠近所述箱体1。将铰链轴32设置于第三轨迹线E与第二轨迹线H的交点与交点P1之间的连线上。
于一具体示例中,若要同时满足门体2的实际最大开门角度不小于所述预设最大开门角度,可以选取门体转动轴心的坐标为(-11.59,9)。
第三实施方式:
本发明中的第三实施方式与第一实施方式的区别为:所述门体2为玻璃门体。更耐划伤,且玻璃门体花色多样,可以与家具等随意搭配。
因玻璃门体的前壁22为具有一定厚度的玻璃面板,同时固定所述玻璃门体的门体塑料饰条也需要有一定的壁厚,所述门体塑料饰条与玻璃面板之间还需要设置胶带或者热熔胶的粘结间隙。故,对于玻璃门体而言,铰链轴需要距离所述门体2的前壁22距离较大。此时,可以在由第三轨迹线E远离所述箱体1的一侧、第四轨迹线F朝向所述枢转侧21的一侧、第一轨迹线G远离所述枢转侧21的一侧、第二轨迹线H远离所述枢转侧21的一侧的重叠区域内或者在所述重叠区域中的第一轨迹线G上确定门体转动轴心的位置,如,可以选取门体转动轴心的坐标为(-15,11)。
综上所述,根据本发明中的门体转动轴心的位置确定方法可以确定出门体转动轴心的目标区域,从而,可以在确定的目标区域内进行调试,能够保证门体的实际最大开门角度不小于预设最大开门角度。与现有技术中人为地根据经验不断调试来确定合适的门体转动轴心的方式相比,本发明可以根据需要来确定调试的区域以及调试方向,从而避免在调试过程中反复出现无法打开至预设最大开门角度从而增加调试时间的现象。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种嵌入式冰箱的门体转动轴心的确定方法,所述嵌入式冰箱嵌入橱柜内,所述嵌入式冰箱包括箱体、与所述箱体通过铰链转动连接的门体;其特征在于:所述确定方法包括如下步骤:
    获取所述门体的预设最大开门角度;
    拟合出第一轨迹线,在所述门体转动轴心位于所述第一轨迹线上时,所述门体的实际最大开门角度等于所述预设最大开门角度;
    确定目标区域位于所述第一轨迹线远离枢转侧的一侧,门体转动过程中,确定门体转动轴心位于所述目标区域内或者位于所述目标区域的边界线上。
  2. 如权利要求1所述的嵌入式冰箱的门体转动轴心的确定方法,其特征在于:门体处于关闭状态时,所述目标区域位于所述门体的铰链安装侧上。
  3. 如权利要求1所述的嵌入式冰箱的门体转动轴心的确定方法,其特征在于:“拟合出第一轨迹线”具体包括如下步骤:
    以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点,从而构建XY坐标系;
    按照公式x=y*tanV/2-A在所述XY坐标系内绘制所述第一轨迹线,其中,V表示所述预设最大开门角度,A表示门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙。
  4. 如权利要求3所述的嵌入式冰箱的门体转动轴心的确定方法,其特征在于:公式x=y*tanV/2-A中y的范围-T/2≤y≤T,其中,T表示所述门体的厚度值。
  5. 如权利要求1所述的嵌入式冰箱的门体转动轴心的确定方法,其特征在于:所述确定方法还包括如下步骤:
    以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点,从而构建XY坐标系;
    按照公式x=y在所述XY坐标系内绘制第二轨迹线;在所述门体转动轴心位于所述第二轨迹线上时,所述门体转动至90°时所述门体的前壁与所述橱柜之间的第三间隙等于门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙;
    确定所述目标区域同时位于所述第二轨迹线靠近所述枢转侧的一侧。
  6. 一种嵌入式冰箱,嵌入橱柜内,所述嵌入式冰箱包括箱体、与所述箱体通过铰链转动连接的门体,在开关门体过程中,所述门体绕门体转动轴心转动;其特征在于:所述门体转动轴心位于目标区域内或者位于所述目标区域的边界线上,所述目标区域位于第一轨迹线远离枢转侧的一侧;在所述门体转动轴心位于所述第一轨迹线上时,所述门体的实际最大开门角度等于预设最大开门角度。
  7. 如权利要求6所述的嵌入式冰箱,其特征在于:所述门体处于关闭状态时,所述目标区域位于所述门体的铰链安装侧上。
  8. 如权利要求6所述的嵌入式冰箱,其特征在于:所述第一轨迹线是按照公式x=y*tanV/2-A在以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点构建的XY坐标系内绘制出的曲线,其中,A表示门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙,V表示所述预设最大开门角度。
  9. 如权利要求6所述的嵌入式冰箱,其特征在于:所述目标区域同时位于第二轨迹线靠近所述枢转侧的一侧,所述第二轨迹线是按照公式x=y在以处于关闭状态下的所述门体的前壁与门体的铰链安装侧的第一交线为X轴,以处于关闭状态下的所述门体的枢转侧与门体的铰链安装侧的第二交线为Y轴,并以所述X轴和所述Y轴的交点作为原点构建的XY坐标系内绘制出的直线;在所述门体转动轴心位于所述第二轨迹线上时,所述门体转动至90°时所述门体的前壁与所述橱柜之间的第三间隙等于门体处于关闭状态时所述门体的枢转侧与橱柜之间的第一间隙。
  10. 如权利要求6所述的嵌入式冰箱,其特征在于:所述门体转动轴心为实体轴心或者虚拟轴心。
  11. 如权利要求6所述的嵌入式冰箱,其特征在于:所述门体的前壁高于所述铰链,所述铰链位于所述枢转侧的一侧具有避让部。
  12. 如权利要求6所述的嵌入式冰箱,其特征在于:所述门体为玻璃门体。
PCT/CN2022/114657 2021-11-29 2022-08-25 嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱 WO2023093153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111436397.5A CN116182485A (zh) 2021-11-29 2021-11-29 嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱
CN202111436397.5 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023093153A1 true WO2023093153A1 (zh) 2023-06-01

Family

ID=86449479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114657 WO2023093153A1 (zh) 2021-11-29 2022-08-25 嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱

Country Status (2)

Country Link
CN (1) CN116182485A (zh)
WO (1) WO2023093153A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734750A (ja) * 1993-07-23 1995-02-03 Tec Corp 回動開閉式ドア機構
DE10234962A1 (de) * 2002-07-31 2004-02-12 Gronbach Forschungs- Und Entwicklungs Gmbh & Co. Kg Geräteeinheit mit einem Gerät und einem Korpus
CN101936636A (zh) * 2010-04-20 2011-01-05 合肥美的荣事达电冰箱有限公司 限位止挡及冰箱
CN205980539U (zh) * 2016-07-26 2017-02-22 合肥华凌股份有限公司 门安装结构和嵌入式冰箱
CN112443221A (zh) * 2019-08-28 2021-03-05 青岛海尔电冰箱有限公司 带有可活动铰链组件的冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734750A (ja) * 1993-07-23 1995-02-03 Tec Corp 回動開閉式ドア機構
DE10234962A1 (de) * 2002-07-31 2004-02-12 Gronbach Forschungs- Und Entwicklungs Gmbh & Co. Kg Geräteeinheit mit einem Gerät und einem Korpus
CN101936636A (zh) * 2010-04-20 2011-01-05 合肥美的荣事达电冰箱有限公司 限位止挡及冰箱
CN205980539U (zh) * 2016-07-26 2017-02-22 合肥华凌股份有限公司 门安装结构和嵌入式冰箱
CN112443221A (zh) * 2019-08-28 2021-03-05 青岛海尔电冰箱有限公司 带有可活动铰链组件的冰箱

Also Published As

Publication number Publication date
CN116182485A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP7100063B2 (ja) 冷蔵庫
CN112304008B (zh) 对开门冰箱
WO2021012656A1 (zh) 带有装饰片的铰链组件及具有其的冰箱
CN217465112U (zh) 嵌入式冰箱
WO2023093153A1 (zh) 嵌入式冰箱的门体转动轴心的确定方法及嵌入式冰箱
WO2023093152A1 (zh) 嵌入式冰箱的门体转动轴心的位置确定方法及嵌入式冰箱
WO2023093317A1 (zh) 冰箱的门体转动轴心的确定方法及冰箱
WO2023093318A1 (zh) 冰箱的门体转动轴心的位置确定方法及冰箱
WO2023155769A1 (zh) 嵌入式冰箱
WO2023155768A1 (zh) 嵌入式冰箱
WO2023109583A1 (zh) 冰箱
WO2023109584A1 (zh) 嵌入式冰箱
US20220252329A1 (en) Hinge assembly with movable plate and refrigerator having the same
WO2023109586A1 (zh) 冰箱
WO2021012652A1 (zh) 带有挡板的铰链组件及具有其的冰箱
CN219262203U (zh) 一种大开度的进户门
CN221053513U (zh) 一种门架与门面同平面的明缝隐藏式铰链门
CN109405024A (zh) 吸油烟机
CN219494558U (zh) 冰箱
CN116201427A (zh) 一种七轴联动式隐藏合页
WO2023274345A1 (zh) 铰链组件及具有其的制冷设备
CN205382833U (zh) 一种窗中窗
CN116105449A (zh) 冰箱
CN117847904A (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897248

Country of ref document: EP

Kind code of ref document: A1