WO2023093064A1 - 光复用段创建方法和装置、网络管理系统和盒式波分设备 - Google Patents

光复用段创建方法和装置、网络管理系统和盒式波分设备 Download PDF

Info

Publication number
WO2023093064A1
WO2023093064A1 PCT/CN2022/104098 CN2022104098W WO2023093064A1 WO 2023093064 A1 WO2023093064 A1 WO 2023093064A1 CN 2022104098 W CN2022104098 W CN 2022104098W WO 2023093064 A1 WO2023093064 A1 WO 2023093064A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
board
terminal station
constraint condition
network element
Prior art date
Application number
PCT/CN2022/104098
Other languages
English (en)
French (fr)
Inventor
胡骞
娄小伟
霍晓莉
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2023093064A1 publication Critical patent/WO2023093064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer

Definitions

  • the present disclosure relates to the field of communication networks, in particular to a method and device for creating an optical multiplex section, a network management system, and a box-type wavelength division device.
  • each manufacturer's EMS electronic manufacturing services, electronic manufacturing services
  • EMS electronic manufacturing services, electronic manufacturing services
  • a method for creating an optical multiplex section including:
  • the method for creating an optical multiplex section further includes:
  • At least one of the following four types of optical amplifier boards is supported: boards with integrated power amplifiers and preamplifiers, boards with power amplifiers only, boards with preamplifiers only Amplifier boards, optical line amplifier boards containing bidirectional Erbium-doped fiber amplifiers.
  • the selection of the board card and port resources along the current network management, and the automatic creation of the optical multiplex section include:
  • the selection of the board card and port resources along the current network management, and the automatic creation of the optical multiplex section include:
  • the selection of the along-way board and port resources of the current network management, and the automatic creation of the optical multiplex section further include:
  • the selection of the along-way board and port resources of the current network management, and the automatic creation of the optical multiplex section further include:
  • the optical amplifier board resource searched in the current network elements of the first terminal station and the second terminal station satisfies the third constraint condition, it is determined that the optical multiplex section is created successfully.
  • the selection of the along-way board and port resources of the current network management, and the automatic creation of the optical multiplex section further include:
  • the selection of the along-way board and port resources of the current network management, and the automatic creation of the optical multiplex section include:
  • the selection of the board card and port resources along the current network management, and the automatic creation of the optical multiplex section further include:
  • the selection of the board card and port resources along the current network management, and the automatic creation of the optical multiplex section further include:
  • the selection of the board card and port resources along the current network management, and the automatic creation of the optical multiplex section further include:
  • the first constraint condition includes: the optical amplifier board includes 2 power amplifiers and 2 preamplifiers; the priority principle when resources are duplicated is: the board card integrating the power amplifier and the preamplifier is The first priority, the single erbium-doped fiber amplifier is the second priority; the power amplifier and preamplifier of the main path, and the power amplifier and preamplifier of the backup path are located in different network elements.
  • the second constraint condition includes: one optical line protection device board is included, and each optical line protection device board has only one optical protection switch; the optical line protection device board is not connected to the main path
  • the power amplifier is the same as the network element.
  • the third constraint condition includes: the optical amplifier board includes 1 power amplifier and 1 preamplifier; the priority principle when resources are duplicated is: the board card integrating the power amplifier and the preamplifier is The first priority, single erbium-doped fiber amplifier is the second priority.
  • the method for creating an optical multiplex section further includes:
  • Network element information of each network element includes board information and port availability
  • the scheduling of required plate resources is carried out
  • a device for creating an optical multiplex section including:
  • the multiplex section creation module is used to select the board card and port resources along the current network management to automatically create the optical multiplex section, wherein the current network elements include terminal stations and optical amplifier station equipment;
  • the block scheduling module is used to allow cross-network element scheduling of board resources when the board cards on the current network element cannot meet the resource requirements;
  • the apparatus for creating an optical multiplex section is configured to perform operations for implementing the method for creating an optical multiplex section as described in any of the above-mentioned embodiments.
  • a device for creating an optical multiplex section including:
  • a processor configured to execute the instructions, so that the apparatus for creating an optical multiplex section executes operations for implementing the method for creating an optical multiplex section as described in any of the foregoing embodiments.
  • a network management system including the device for creating an optical multiplex section as described in any one of the above embodiments.
  • a box-type wavelength division device including the apparatus for creating an optical multiplex section according to any of the above embodiments, or including the network management system according to any of the above embodiments.
  • a non-transitory computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, any of the above-mentioned The method for creating an optical multiplex section described in the embodiment.
  • Fig. 1 is a schematic diagram of some embodiments of the method for creating an optical multiplex section of the present disclosure.
  • Fig. 2 is a schematic diagram of an optical amplifier board integrated with PA+BA in some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of an optical amplifier board including only a PA in some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical amplifier board containing only BAs in some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical amplifier board integrated with a bidirectional ILA in some embodiments of the present disclosure.
  • Fig. 6 is a schematic diagram of some embodiments of a method for creating a single-span optical multiplex section of the present disclosure.
  • Fig. 7 is a schematic diagram of some embodiments of a method for creating a multi-span optical multiplex section of the present disclosure.
  • Fig. 8 is a schematic diagram of other embodiments of the method for creating an optical multiplex section of the present disclosure.
  • Fig. 9 is a schematic diagram of some embodiments of an apparatus for creating an optical multiplex section according to the present disclosure.
  • Fig. 10 is a schematic diagram of other embodiments of an apparatus for creating an optical multiplex section according to the present disclosure.
  • Fig. 11 is a schematic structural diagram of some other embodiments of an apparatus for creating an optical multiplex section according to the present disclosure.
  • DCI scenarios generally have the characteristics of urgent business needs and fast expansion and growth.
  • OMS Optical Multiplex Section, Optical Multiplex Section
  • the present disclosure provides a method and device for creating an optical multiplex section, a network management system and a box-type wavelength division device, which can automatically select boards along the way including terminal stations and optical amplifier station equipment Card and port resources are used to automatically create optical multiplex sections.
  • Fig. 1 is a schematic diagram of some embodiments of the method for creating an optical multiplex section of the present disclosure.
  • this embodiment can be executed by the device for creating an optical multiplex section of the present disclosure, the network management system of the present disclosure, or the box-type wavelength division device of the present disclosure.
  • the method may include at least one of step 11 and step 12, wherein:
  • Step 11 select the board card and port resources along the route of the current network management, and perform automatic creation of the optical multiplexing section, wherein, the current network element includes the terminal station and the optical amplifier station equipment.
  • Step 12 in the case that the boards on the current network element cannot meet the resource requirements, allow cross-network element scheduling of board resources.
  • step 12 may include: for scenarios with different spans and different protection requirements, selecting board cards and port resources along the current network management to automatically create an optical multiplex section, wherein different spans include Single-span and multi-span, different protection requirements include optical multiplex section protection requirements and no protection requirements.
  • the above embodiments of the present disclosure can perform cross-network element board resource scheduling.
  • the above embodiments of the present disclosure use the routing method to create optical multiplexing sections, and can automatically select boards and port resources along the way including terminal stations and optical amplifier station equipment. Allows scheduling across network elements.
  • the method for creating an optical multiplex section may further include: supporting the four types of OA (Optical Amplifier, optical amplifier) boards shown in Fig. 2-Fig. At least one of the card types, where:
  • FIG. 2 is a schematic diagram of an optical amplifier board integrated with PA+BA in some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of an optical amplifier board that only includes a PA in some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical amplifier board containing only BAs in some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical amplifier board integrated with a bidirectional ILA in some embodiments of the present disclosure.
  • the above-mentioned embodiments of the present disclosure can provide a method for automatically creating an optical multiplex section for automatically scheduling board resources across network elements.
  • it can provide support for optical amplifier boards with different integration levels, and can realize Card flexible scheduling.
  • the scheduling method in the above embodiments of the present disclosure can support different integration levels of optical amplifier boards, and can support all optical amplifier boards.
  • the present disclosure can automatically select board cards and port resources along the way including terminal stations and optical radio station equipment, and automatically create optical multiplexing sections; the present disclosure can realize cross-network element board resource scheduling.
  • Fig. 6 is a schematic diagram of some embodiments of a method for creating a single-span optical multiplex section of the present disclosure.
  • this embodiment can be executed by the device for creating an optical multiplex section of the present disclosure, the network management system of the present disclosure, or the box-type wavelength division device of the present disclosure.
  • the method for creating an optical multiplex segment in the present disclosure may include at least one of step 601 and step 613, wherein:
  • step 601 multiplex ports of the first terminal station A and the second terminal station Z are selected.
  • Step 602 judging whether to create optical multiplex section protection. In the case of creating the optical multiplex section protection, execute step 603; otherwise, in the case of not creating the optical multiplex section protection, execute step 609.
  • Step 603 Search in the current network elements of the first terminal station and the second terminal station whether the resource of the optical amplifier card satisfies the first constraint condition (constraint condition 1).
  • Step 604 Search whether the OLP (Optical Line Protection, optical line protection equipment) board resource satisfies the second constraint condition (constraint condition 2) in the current network elements of the first terminal station and the second terminal station.
  • OLP Optical Line Protection, optical line protection equipment
  • Step 605 judging whether the resource is satisfied. That is, it is judged whether searching for optical amplifier board resources in the current network elements of the first terminal station and the second terminal station satisfies the first constraint condition, and searching for optical lines in the current network elements of the first terminal station and the second terminal station Whether the board resource of the protection device satisfies the second constraint condition.
  • step 606 Search for the optical amplifier board card resources in the current network elements of the first terminal station and the second terminal station to meet the first constraint condition, and search for the optical line protection device board card in the current network elements of the first terminal station and the second terminal station If the resource satisfies the second constraint condition, then execute step 608; otherwise, search for the optical amplifier board resource in the current network element of the first terminal station and the second terminal station and do not satisfy the first constraint condition, or in the first terminal station In the case where the board resource of the optical line protection equipment searched in the current network element of the station and the second terminal station does not meet the second constraint condition, step 606 is executed;
  • Step 606 Search for other network element board resources in the available network element set.
  • Step 607 judging whether the resource is satisfied, that is, judging whether other network element board resources satisfy the first constraint condition and the second constraint condition.
  • execute step 608 otherwise, other network element board resources in the available network element set do not satisfy the first constraint condition and the second constraint condition, execute step 613.
  • step 608 it is determined that the optical multiplex section is created successfully.
  • Step 609 without creating optical multiplex section protection, search the current network elements of the first terminal station and the second terminal station to see whether the optical amplifier board resources satisfy the third constraint condition (constraint condition 3).
  • Step 610 judging whether the resources are satisfied, that is, judging whether the optical amplifier board resources of the current network elements of the first terminal station and the second terminal station satisfy the third constraint condition.
  • step 608 is performed; in the current network elements of the first terminal station and the second terminal station, the optical If the amplifier board resource does not satisfy the third constraint condition, step 611 is executed.
  • Step 611 Search for other network element board resources in the available network element set.
  • Step 612 judging whether the resource is satisfied, that is, whether other network element board resources satisfy the third constraint condition. In the case that other network element board resources in the available network element set satisfy the third constraint condition, execute step 608; otherwise, in the case that other network element board resources in the available network element set do not satisfy the third constraint condition, execute Step 613.
  • step 613 it is determined that the creation of the optical multiplex section fails.
  • Fig. 7 is a schematic diagram of some embodiments of the method for creating a multi-span optical multiplex section of the present disclosure.
  • this embodiment can be executed by the device for creating an optical multiplex section of the present disclosure, the network management system of the present disclosure, or the box-type wavelength division device of the present disclosure.
  • the method for creating an optical multiplex section in the present disclosure may include at least one of steps 701 to 717, wherein:
  • step 701 multiplex ports of the first terminal station A and the second terminal station Z are selected.
  • Step 702 judging whether to create optical multiplex section protection. In the case of creating the optical multiplex section protection, execute step 703; otherwise, in the case of not creating the optical multiplex section protection, execute step 712.
  • Step 703 select all optical playback stations along the main path and the backup path.
  • Step 704 Search in the current network elements of the first terminal station and the second terminal station whether the resource of the optical amplifier card satisfies the first constraint condition (constraint condition 1).
  • Step 705 Search whether the board resource of the optical line protection device satisfies the second constraint condition (constraint condition 2) in the current network elements of the first terminal station and the second terminal station.
  • Step 706 judging whether the resource is satisfied. That is, it is judged whether searching for optical amplifier board resources in the current network elements of the first terminal station and the second terminal station satisfies the first constraint condition, and searching for optical lines in the current network elements of the first terminal station and the second terminal station Whether the board resource of the protection device satisfies the second constraint condition.
  • step 709 Search for the optical amplifier board card resources in the current network elements of the first terminal station and the second terminal station to meet the first constraint condition, and search for the optical line protection device board card in the current network elements of the first terminal station and the second terminal station If the resource satisfies the second constraint condition, then execute step 709; otherwise, search for the optical amplifier board resource in the current network element of the first terminal station and the second terminal station does not meet the first constraint condition, or in the first terminal station In a case where the board resource of the optical line protection device searched in the current network elements of the station and the second terminal station does not satisfy the second constraint condition, step 707 is executed.
  • Step 707 Search for other network element board resources in the available network element set.
  • Step 708 judging whether the resources are satisfied, that is, judging whether other network element board resources satisfy the first constraint condition and the second constraint condition.
  • execute step 709 otherwise, other network element board card resources in the available network element set do not satisfy the first constraint condition and the second constraint condition, execute step 717.
  • Step 709 in the available network element sets of each optical radio station along the way, respectively search for board resources: boards are required to meet 2 ILAs.
  • the paths of the main and backup paths are different from the optical amplifier station (that is, the optical cable path is different), but for the bidirectional optical fiber on the same path, it is required to be in the same optical amplifier board (including Zoom in on ILA*2).
  • Step 710 judging whether the resources are sufficient, that is, judging whether the bidirectional optical fibers on the same path are amplified in the same optical amplifier board.
  • step 711 judging whether the resources are sufficient
  • step 711 judging whether the bidirectional optical fibers on the same path are amplified in the same optical amplifier board.
  • Step 711 determine that the optical multiplex section is created successfully.
  • Step 712 select an optical playback station along the route without creating optical multiplex section protection.
  • Step 713 Search in the current network elements of the first terminal station and the second terminal station whether the resource of the optical amplifier card satisfies the third constraint condition (constraint condition 3).
  • Step 714 judging whether the resources are satisfied, that is, judging whether the optical amplifier board resources of the current network elements of the first terminal station and the second terminal station satisfy the third constraint condition.
  • step 709 is performed; in the current network elements of the first terminal station and the second terminal station, the optical If the amplifier board resource does not satisfy the third constraint condition, step 715 is executed.
  • Step 715 Search for other network element board resources in the available network element set.
  • Step 716 judging whether the resource satisfies, that is, whether other network element board resources satisfy the third constraint condition. In the case that other network element board resources in the available network element set satisfy the third constraint condition, execute step 709; otherwise, in the case that other network element board resources in the available network element set do not satisfy the third constraint condition, execute Step 717.
  • step 717 it is determined that the creation of the optical multiplex section fails.
  • step 703 , step 709 , step 710 and step 712 of the embodiment of FIG. 7 are different parts from the process of creating a single span in the embodiment of FIG. 6 .
  • the first constraint condition, the second constraint condition and the third constraint condition are applicable to the single-span scenario and the multi-span scenario, that is, applicable to the embodiments of FIG. 6 and FIG. 7 .
  • the first constraints may include:
  • the optical amplifier board includes 2 power amplifiers and 2 preamplifiers, that is, the number of EDFAs included in the OA board is: BA*2, PA*2.
  • the principle of priority when resources are duplicated is: the integrated power amplifier and preamplifier board is the first priority, and the single erbium-doped fiber amplifier is the second priority. That is, the board integrated with BA+PA is preferred; the single EDFA is second best.
  • the power amplifier and preamplifier (BA+PA) of the main path, and the power amplifier and preamplifier (BA+PA) of the backup path are located in different network elements. In this way, the device-level separation capability of the active and standby paths can be provided.
  • the second constraints may include:
  • the board card of the optical line protection equipment shall not be the same network element as the power amplifier of the main path. This can provide power-down retention capability.
  • the third constraint may include:
  • the optical amplifier board includes 1 power amplifier and 1 preamplifier; namely, BA*1, PA*1.
  • the principle of priority when resources are duplicated is: the integrated power amplifier and preamplifier board is the first priority, and the single erbium-doped fiber amplifier is the second priority. That is, the board integrated with BA+PA is preferred; the single EDFA is second best.
  • the foregoing embodiments of the present disclosure can realize automatic creation of optical multiplex sections in single-span and multi-span, protected and unprotected scenarios.
  • the foregoing embodiments of the present disclosure can meet requirements for automatic creation of optical multiplex sections with different spans and different protection requirements.
  • the foregoing embodiments of the present disclosure provide a method for automatically creating an optical multiplex section applied to a cassette-type wavelength division system.
  • the foregoing embodiments of the present disclosure propose an automatic creation method for an optical multiplex section.
  • the above-mentioned embodiments of the present disclosure can be applied to single-span or multi-span scenarios at the same time, and the box-type WDM management and control system automatically selects board cards and port resources along the way including terminal stations and optical amplifier station equipment to perform optical multiplexing.
  • Automatic creation; the above-mentioned embodiments of the present disclosure allow cross-network element scheduling of board resources when the boards on the network elements cannot meet the resource requirements; the above-mentioned embodiments of the present disclosure can support optical amplifier board forms with different integration levels.
  • Fig. 8 is a schematic diagram of other embodiments of the method for creating an optical multiplex section of the present disclosure.
  • this embodiment can be executed by the device for creating an optical multiplex section of the present disclosure, the network management system of the present disclosure, or the box-type wavelength division device of the present disclosure.
  • the method may include at least one of step 81-step 85, wherein:
  • Step 81 obtain the available network element resources of the relevant site.
  • Step 82 acquire network element information of each network element, wherein the network element information includes information such as board information and port availability.
  • Step 83 according to business requirements, according to any one of the above embodiments (for example, any embodiment of FIG. 1-FIG. 7) described in the optical multiplex section creation method to schedule the required block resources.
  • Step 84 obtaining connection information between network elements.
  • Step 85 performing port-level concatenation on the scheduled board resources to form an optical multiplexing section.
  • the foregoing embodiments of the present disclosure can implement cross-network element board resource scheduling. Since box-type WDM equipment is different from traditional WDM equipment, its easy-to-stack design also brings about equipment volume limitations. In the case of limited board resources of a single network element, the above embodiments of the present disclosure propose cross-network element boards In the resource scheduling method, the network element boards that meet the availability conditions in the same site can be included in the board resource pool for unified scheduling.
  • Fig. 9 is a schematic diagram of some embodiments of an apparatus for creating an optical multiplex section according to the present disclosure.
  • the apparatus for creating an optical multiplex section of the present disclosure may include a multiplex section creation module 91 and a block scheduling module 92, wherein:
  • the multiplex section creation module 91 is used to select boards and port resources along the route of the current network management to automatically create an optical multiplex section, wherein the current network elements include terminal stations and optical amplifier station equipment.
  • the block scheduling module 92 is configured to allow cross-network element scheduling of board resources when the board cards on the current network element cannot meet the resource requirements.
  • the apparatus for creating an optical multiplex section can be used to support at least one of the following four types of optical amplifier boards according to different board integration levels of the box-type WDM equipment: integrated power amplifier and front-end Amplifier-only boards, Power Amplifier-only boards, Preamplifier-only boards, Optical Line Amplifier boards with bidirectional Erbium-doped fiber amplifiers.
  • the above embodiments of the present disclosure can perform cross-network element board resource scheduling.
  • the above embodiments of the present disclosure use the routing method to create optical multiplexing sections, and can automatically select boards and port resources along the way including terminal stations and optical amplifier station equipment. Allows scheduling across network elements.
  • the above-mentioned embodiments of the present disclosure can provide a method for automatically creating an optical multiplex section for automatically scheduling board resources across network elements.
  • it can provide support for optical amplifier boards with different integration levels, and can realize Card flexible scheduling.
  • the scheduling method in the above embodiments of the present disclosure can support different integration levels of optical amplifier boards, and can support all optical amplifier boards.
  • Fig. 10 is a schematic diagram of other embodiments of an apparatus for creating an optical multiplex section according to the present disclosure.
  • the apparatus for creating an optical multiplex section of the present disclosure may include a multiplex section creation module 91, a block scheduling module 92, a site management module 93, a network element management module 94, and a topology management module 95 And resource concatenation module 96, wherein:
  • the site management module 93 is configured to acquire available network element resources of relevant sites.
  • the network element management module 94 is configured to acquire network element information of each network element, wherein the network element information includes board information and port availability.
  • the multiplex section creation module 91 and the block scheduling module 92 are used to perform the required block resources according to the optical multiplex section creation method described in any of the above-mentioned embodiments (such as any embodiment in Fig. 1-Fig. 7) according to business requirements scheduling.
  • the topology management module 95 is configured to obtain connection information between network elements.
  • the resource concatenation module 96 is configured to perform port-level concatenation on the dispatched board resources to form an optical multiplexing section.
  • the device for creating an optical multiplexing section of the present disclosure can be realized by relying on the network management system of the box-type wavelength division equipment.
  • the site management module realizes the automatic creation of optical multiplex sections.
  • the multiplex section creation module 91 can be used to select the board and port resources along the route of the current network management for the scenarios of different spans and different protection requirements, and perform automatic creation of the optical multiplex section, wherein, Different spans include single-span and multi-span, and different protection requirements include optical multiplex section protection requirements and no protection requirements.
  • the multiplex section creation module 91 can be used to select the multiplexing ports of the first terminal station and the second terminal station; determine whether to create optical multiplex section protection; In the case of section protection, search whether the optical amplifier board resource satisfies the first constraint condition in the current network elements of the first terminal station and the second terminal station, and whether the current network elements of the first terminal station and the second terminal station Search whether the board resource of the optical line protection device satisfies the second constraint condition; search for the optical amplifier board resource in the current network element of the first terminal station and the second terminal station to meet the first constraint condition, and in the first terminal station and the current network element of the second terminal station If the resource of the board card of the optical line protection device is searched in the current network element of the second terminal station to meet the second constraint condition, it is determined that the optical multiplex section is created successfully.
  • the multiplex section creation module 91 may be used to search for optical amplifier board resources in the current network elements of the first terminal station and the second terminal station that do not satisfy the first constraint condition, or in the case of searching for the board resources of the optical line protection equipment in the current network elements of the first terminal station and the second terminal station does not meet the second constraint condition, whether to search for other network element board resources in the available network element set Satisfy the first constraint condition and the second constraint condition; in the case that other network element board resources in the available network element set meet the first constraint condition and the second constraint condition, it is determined that the optical multiplex section is successfully created; in the available network element set When other network element board resources do not satisfy the first constraint condition and the second constraint condition, it is determined that the creation of the optical multiplex section fails.
  • the multiplex section creation module 91 can be used to create an optical multiplex section protection in the current network elements of the first terminal station and the second terminal station Search whether the optical amplifier board resource meets the third constraint condition; if the optical amplifier board resource is searched in the current network elements of the first terminal station and the second terminal station to meet the third constraint condition, it is determined that the optical multiplex section is created successfully .
  • the multiplex section creation module 91 may be used to ensure that the optical amplifier card resources in the current network elements of the first terminal station and the second terminal station do not satisfy the third constraint condition In the case of , search whether other network element board resources in the available network element set meet the third constraint condition; if other network element board resources in the available network element set meet the third constraint condition, determine the creation of the optical multiplex section Success; when other network element board resources in the available network element set do not satisfy the third constraint condition, it is determined that the creation of the optical multiplex section fails.
  • the multiplex section creation module 91 can be used to select the multiplexing ports of the first terminal station and the second terminal station; determine whether to create optical multiplex section protection; In the case of section protection, select all optical amplifier stations along the main path and the standby path; search whether the optical amplifier board resources in the current network elements of the first terminal station and the second terminal station meet the first constraint condition, and Search the current network elements of the first terminal station and the second terminal station to see if the board resources of the optical line protection equipment meet the second constraint condition; search for the optical amplifier board resources in the current network elements of the first terminal station and the second terminal station If the first constraint condition is met, and the board resources of the optical line protection equipment are searched in the current network elements of the first terminal station and the second terminal station to meet the second constraint condition, then the available network elements of each optical amplifier station along the way In the set, search whether the bidirectional optical fibers on the same path meet the requirements of amplifying in the same optical amplifier board; if
  • the multiplex section creation module 91 may be used to search for optical amplifier board resources in the current network elements of the first terminal station and the second terminal station that do not satisfy the first constraint condition, or in the case of searching for the board resources of the optical line protection equipment in the current network elements of the first terminal station and the second terminal station does not meet the second constraint condition, whether to search for other network element board resources in the available network element set Satisfy the first constraint condition and the second constraint condition; in the case that other network element board resources in the available network element set meet the first constraint condition and the second constraint condition, execute the available network element set at each optical radio station along the way , search whether the bidirectional optical fiber on the same path satisfies the operation of amplifying in the same optical amplifier board; in the case of other network element board resources in the available network element set that do not meet the first constraint condition and the second constraint condition Next, it is determined that the creation of the optical multiplex section fails.
  • the multiplex section creation module 91 can be used to select an optical playback station along the way without creating an optical multiplex section protection; at the first terminal station and the second terminal In the current network element of the station, search whether the optical amplifier board resource meets the third constraint condition; if the optical amplifier board resource searched in the current network element of the first terminal station and the second terminal station meets the third constraint condition, then Execute the operation of searching whether the bidirectional optical fibers on the same path meet the requirements of amplification in the same optical amplifier board in the available network element sets of each optical amplifier station along the route.
  • the multiplex section creation module 91 can be used to determine that the optical amplifier card resources in the current network elements of the first terminal station and the second terminal station do not satisfy the third constraint condition In the case of , search whether other network element board resources in the available network element set meet the third constraint condition; if other network element board resources in the available network element set meet the third constraint condition, execute In the available network element set of the station, search whether the bidirectional optical fiber on the same path satisfies the operation of amplifying in the same optical amplifier board; in the available network element set, other network element board resources do not meet the third constraint condition In the case of , it is determined that the creation of the optical multiplex section fails.
  • the first constraint condition, the second constraint condition and the third constraint condition are applicable to single-span scenario and multi-span scenario.
  • the first constraint condition may include: the optical amplifier board includes 2 power amplifiers and 2 preamplifiers; the priority principle when resources are repeated is: boards with integrated power amplifiers and preamplifiers The first priority is the first priority, and the single erbium-doped fiber amplifier is the second priority; the power amplifier and preamplifier of the main path, and the power amplifier and preamplifier of the backup path are located in different network elements.
  • the second constraint may include: one optical line protection device board is included, and each optical line protection device board has only one optical protection switch; the optical line protection device board is not connected to the main path
  • the power amplifier is the same as the network element.
  • the third constraint condition may include: the optical amplifier board includes 1 power amplifier and 1 preamplifier; the priority principle when resources are repeated is: boards with integrated power amplifiers and preamplifiers is the first priority, single erbium-doped fiber amplifier is the second priority.
  • the apparatus for creating an optical multiplex section may be configured to implement operations for implementing the method for creating an optical multiplex section as described in any of the above embodiments (for example, any of the embodiments in FIGS. 1-8 ).
  • the foregoing embodiments of the present disclosure can realize automatic creation of optical multiplex sections in single-span and multi-span, protected and unprotected scenarios.
  • the foregoing embodiments of the present disclosure can meet requirements for automatic creation of optical multiplex sections with different spans and different protection requirements.
  • the foregoing embodiments of the present disclosure provide an automatic creation device for an optical multiplex section applied to a cassette-type wavelength division system.
  • the foregoing embodiments of the present disclosure provide an automatic creation device for an optical multiplex section.
  • the above-mentioned embodiments of the present disclosure can be applied to single-span or multi-span scenarios at the same time, and the box-type WDM management and control system automatically selects board cards and port resources along the way including terminal stations and optical amplifier station equipment to perform optical multiplexing.
  • Automatic creation; the above-mentioned embodiments of the present disclosure allow cross-network element scheduling of board resources when the boards on the network elements cannot meet the resource requirements; the above-mentioned embodiments of the present disclosure can support optical amplifier board forms with different integration levels.
  • Fig. 11 is a schematic structural diagram of some other embodiments of an apparatus for creating an optical multiplex section according to the present disclosure. As shown in FIG. 11 , the apparatus for creating an optical multiplex section includes a memory 111 and a processor 112 .
  • the memory 111 is used to store instructions
  • the processor 112 is coupled to the memory 111, and the processor 112 is configured to execute the instructions stored in the memory to implement the recovery as described in any of the above-mentioned embodiments (for example, any of the embodiments in FIGS. 1-8 ). Create method with section.
  • the apparatus for creating an optical multiplex section further includes a communication interface 113 for exchanging information with other devices. Meanwhile, the apparatus for creating an optical multiplex section further includes a bus 114 , and the processor 112 , the communication interface 113 , and the memory 111 communicate with each other through the bus 114 .
  • the memory 111 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one magnetic disk memory.
  • the memory 111 may also be a memory array.
  • the storage 111 may also be divided into blocks, and the blocks can be combined into virtual volumes according to certain rules.
  • processor 112 may be a central processing unit CPU, or may be an application specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present disclosure.
  • the foregoing embodiments of the present disclosure can implement cross-network element board resource scheduling. Since box-type WDM equipment is different from traditional WDM equipment, its easy-to-stack design also brings about equipment volume limitations. In the case of limited board resources of a single network element, the above embodiments of the present disclosure propose cross-network element boards
  • the resource scheduling device can list all the network element boards meeting the available conditions in the same site into the board resource pool for unified scheduling.
  • a network management system including the apparatus for creating an optical multiplex section as described in any of the above embodiments (for example, any of the embodiments in FIGS. 9-11 ).
  • a box-type wavelength division device including the apparatus for creating an optical multiplex section as described in any of the above-mentioned embodiments (for example, any of the embodiments in FIG. 9-FIG. 11 ), or including any of the above-mentioned A network management system described in an embodiment.
  • a non-transitory computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, the aforementioned The method for creating an optical multiplex section described in any embodiment (for example, any embodiment in FIGS. 1-8 ). A step of.
  • the embodiments of the present disclosure may be provided as methods, apparatuses, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • optical multiplex section creation device and network management system described above can be implemented as including a general-purpose processor for performing the functions described in this application, a programmable logic controller (PLC), a digital signal processor (DSP), a dedicated integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • PLC programmable logic controller
  • DSP digital signal processor
  • ASICs dedicated integrated circuits
  • FPGAs field programmable gate arrays
  • the steps for realizing the above embodiments can be completed by hardware, and can also be used to instruct related hardware to complete by a program, and the program can be stored in a non-transitory computer-readable storage medium
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本公开涉及一种光复用段创建方法和装置、网络管理系统和盒式波分设备。该光复用段创建方法包括:选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备;在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源。本公开可以自动选择包括终端站、光放站设备在内的沿途板卡、端口资源,进行光复用段的自动创建;本公开可以实现跨网元板卡资源调度。

Description

光复用段创建方法和装置、网络管理系统和盒式波分设备
相关申请的交叉引用
本申请是以CN申请号为202111394037.3,申请日为2021年11月23日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及通信网络领域,特别涉及一种光复用段创建方法和装置、网络管理系统和盒式波分设备。
背景技术
相关技术传统波分由各厂商独立管控,一般由各厂商EMS(electronic Manufacturing Services,电子制造服务)逐板卡配置创建,或在单站网元能够满足板卡资源要求时进行路由法创建。
对于大带宽、点到点DCI(Data Center Inter-connect,数据中心互联)场景,传统波分因尺寸、能耗、散热方式、成本、封闭性等诸多问题导致难以适用。开放解耦的盒式波分设备能够较好满足DCI场景。
发明内容
根据本公开的一个方面,提供一种光复用段创建方法,包括:
选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备;
在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源。
在本公开的一些实施例中,所述光复用段创建方法还包括:
根据盒式波分设备的不同板卡集成度,支持以下四种光放大器板卡类型中的至少一种:集成功率放大器和前置放大器的板卡、仅包含功率放大器的板卡、仅包含前置放大器的板卡、包含双向掺铒光纤放大器的光线路放大器板卡。
在本公开的一些实施例中,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建包括:
针对不同跨段、不同保护需求的场景,选择当前网管的沿途板卡和端口资源,进行光 复用段的自动创建,其中,不同跨段包括单跨段和多跨段,不同保护需求包括光复用段保护需求和无保护需求。
在本公开的一些实施例中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建包括:
选择第一终端站和第二终端站的合波端口;
判断是否创建光复用段保护;
在创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件;
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则判定光复用段创建成功。
在本公开的一些实施例中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第一约束条件和第二约束条件;
在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,判定光复用段创建成功;
在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
在不创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件;
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,则判定光复用段创建成功。
在本公开的一些实施例中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第三约束条件;
在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,判定光复用段创建成功;
在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建包括:
选择第一终端站和第二终端站的合波端口;
判断是否创建光复用段保护;
在创建光复用段保护的情况下,选择主路径和备路径上所有沿途光放站;
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件;
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大;
在同一条路径上的双向光纤满足在同一个光放板卡中放大的情况下,判定光复用段创建成功;
在同一条路径上的双向光纤不满足在同一个光放板卡中放大的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第一约束条件和第二约束条件;
在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,则执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同 一个光放板卡中放大的步骤;
在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
在不创建光复用段保护的情况下,选择沿途光放站;
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件;
在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,则执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的步骤。
在本公开的一些实施例中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第三约束条件;
在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的步骤;
在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,第一约束条件包括:光放大器板卡包含2个功率放大器和2个前置放大器;资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级;主路径的功率放大器和前置放大器、以及备路径的功率放大器和前置放大器处于不同网元。
在本公开的一些实施例中,第二约束条件包括:包含一个光线路保护设备板卡,每个光线路保护设备板卡上只有一个光保护开关;光线路保护设备板卡不与主路径的功率放大器同网元。
在本公开的一些实施例中,第三约束条件包括:光放大器板卡包含1个功率放大器和1个前置放大器;资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级。
在本公开的一些实施例中,所述光复用段创建方法还包括:
获取相关站点的可用网元资源;
获取各网元的网元信息,其中,所述网元信息包括板块信息和端口可用性;
根据业务需求,按照如上述任一实施例所述的光复用段创建方法进行所需板块资源的调度;
获取网元之间的连接信息;
对调度到的板块资源进行端口级的串接,形成光复用段。
根据本公开的另一方面,提供一种光复用段创建装置,包括:
复用段创建模块,用于选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备;
板块调度模块,用于在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源;
在本公开的一些实施例中,所述光复用段创建装置用于执行实现如上述任一实施例所述的光复用段创建方法的操作。
根据本公开的另一方面,提供一种光复用段创建装置,包括:
存储器,用于存储指令;
处理器,用于执行所述指令,使得所述光复用段创建装置执行实现如上述任一实施例所述的光复用段创建方法的操作。
根据本公开的另一方面,提供一种网络管理系统,包括如上述任一实施例所述的光复用段创建装置。
根据本公开的另一方面,提供一种盒式波分设备,包括如上述任一实施例所述的光复用段创建装置、或包括如上述任一实施例所述的网络管理系统。
根据本公开的另一方面,提供一种非瞬时性计算机可读存储介质,其中,所述非瞬时性计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如上述任一实施例所述的光复用段创建方法。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以 根据这些附图获得其他的附图。
图1为本公开光复用段创建方法一些实施例的示意图。
图2为本公开一些实施例中集成PA+BA的光放板卡的示意图。
图3为本公开一些实施例中仅包含PA的光放板卡的示意图。
图4为本公开一些实施例中仅包含BA的光放板卡的示意图。
图5为本公开一些实施例中集成双向ILA的光放板卡的示意图。
图6为本公开单跨段光复用段创建方法一些实施例的示意图。
图7为本公开多跨段光复用段创建方法一些实施例的示意图。
图8为本公开光复用段创建方法另一些实施例的示意图。
图9为本公开光复用段创建装置一些实施例的示意图。
图10为本公开光复用段创建装置另一些实施例的示意图。
图11为本公开光复用段创建装置又一些实施例的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人通过研究发现:DCI场景一般存在业务需求急迫、扩容增速快等特点,相关 技术对盒式波分系统的配置管理,如果采用单站法配置OMS则人工开通时间长,路由法又存在部分厂商因尺寸和板卡集成度差异导致可能需要跨网元调度板卡资源的问题,难以对多厂商盒式波分设备实现自动OMS(Optical Multiplex Section,光复用段)创建。
鉴于以上技术问题中的至少一项,本公开提供了一种光复用段创建方法和装置、网络管理系统和盒式波分设备,可以自动选择包括终端站、光放站设备在内的沿途板卡、端口资源,进行光复用段的自动创建。
图1为本公开光复用段创建方法一些实施例的示意图。优选的,本实施例可由本公开光复用段创建装置或本公开网络管理系统或本公开盒式波分设备执行。该方法可以包括步骤11和步骤12中的至少一个步骤,其中:
步骤11,选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备。
步骤12,在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源。
在本公开的一些实施例中,步骤12可以包括:针对不同跨段、不同保护需求的场景,选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,不同跨段包括单跨段和多跨段,不同保护需求包括光复用段保护需求和无保护需求。
本公开上述实施例可以进行跨网元板卡资源调度,本公开上述实施例采用路由法进行光复用段创建,可以自动选择包括终端站、光放站设备在内的沿途板卡和端口资源,允许跨网元调度。
在本公开的一些实施例中,所述光复用段创建方法还可以包括:根据盒式波分设备的不同板卡集成度,支持图2-图5四种OA(Optical Amplifier,光放大器)板卡类型中的至少一种,其中:
1)集成BA(Booster-Amplifier,功率放大器)和PA(Pre-Amplifier,前置放大器)的板卡,图2为本公开一些实施例中集成PA+BA的光放板卡的示意图。
2)仅包含PA的板卡,图3为本公开一些实施例中仅包含PA的光放板卡的示意图。
3)仅包含BA的板卡,图4为本公开一些实施例中仅包含BA的光放板卡的示意图。
4)ILA(in-Line-Amplifier,光线路放大器板卡)板卡,其中,ILA板卡含双向EDFA(Erbium Doped Fiber Amplifier,掺铒光纤放大器)。图5为本公开一些实施例中集成双向ILA的光放板卡的示意图。
本公开上述实施例能够提供跨网元自动调度板卡资源的光复用段自动创建方法,在开放解耦的多厂商光网络中,能够为不同集成度的光放板卡提供支持,可以实现板卡灵活调 度。
传统波分设备往往采用烟囱式管理,单厂商仅需要处理特定的板卡形态,而盒式波分因其开放解耦的特征,会导致需要纳管不同厂商的不同光放板卡,因实现差异往往会存在不同集成度的板卡,本公开上述实施例的调度方法可以支持不同光放板卡集成度,可以支持所有光放板卡。
本公开可以自动选择包括终端站、光放站设备在内的沿途板卡、端口资源,进行光复用段的自动创建;本公开可以实现跨网元板卡资源调度。
图6为本公开单跨段光复用段创建方法一些实施例的示意图。优选的,本实施例可由本公开光复用段创建装置或本公开网络管理系统或本公开盒式波分设备执行。对于单跨段场景,本公开光复用段创建方法可以包括步骤601和步骤613中的至少一个步骤,其中:
步骤601,选择第一终端站A和第二终端站Z的合波端口。
步骤602,判断是否创建光复用段保护。在创建光复用段保护的情况下,执行步骤603;否则,在不创建光复用段保护的情况下,执行步骤609。
步骤603,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件(约束条件1)。
步骤604,在第一终端站和第二终端站的当前网元中搜索OLP(Optical Line Protection,光线路保护设备)板卡资源是否满足第二约束条件(约束条件2)。
步骤605,判断资源是否满足。即,判断在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件。在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则执行步骤608;否则,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,执行步骤606;
步骤606,在可用网元集合中搜索其它网元板卡资源。
步骤607,判断资源是否满足,即,判断其它网元板卡资源是否满足第一约束条件和第二约束条件。在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,执行步骤608;否则,在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,执行步骤613。
步骤608,判定光复用段创建成功。
步骤609,在不创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件(约束条件3)。
步骤610,判断资源是否满足,即,判断第一终端站和第二终端站的当前网元的光放大器板卡资源是否满足第三约束条件。在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,执行步骤608;在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,执行步骤611。
步骤611,在可用网元集合中搜索其它网元板卡资源。
步骤612,判断资源是否满足,即,其它网元板卡资源是否满足第三约束条件。在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,执行步骤608;否则,在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,执行步骤613。
步骤613,判定光复用段创建失败。
图7为本公开多跨段光复用段创建方法一些实施例的示意图。优选的,本实施例可由本公开光复用段创建装置或本公开网络管理系统或本公开盒式波分设备执行。对于多跨段场景,本公开光复用段创建方法可以包括步骤701-步骤717中的至少一个步骤,其中:
步骤701,选择第一终端站A和第二终端站Z的合波端口。
步骤702,判断是否创建光复用段保护。在创建光复用段保护的情况下,执行步骤703;否则,在不创建光复用段保护的情况下,执行步骤712。
步骤703,选择主路径和备路径上所有沿途光放站。
步骤704,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件(约束条件1)。
步骤705,在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件(约束条件2)。
步骤706,判断资源是否满足。即,判断在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件。在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则执行步骤709;否则,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束 条件的情况下,执行步骤707。
步骤707,在可用网元集合中搜索其它网元板卡资源。
步骤708,判断资源是否满足,即,判断其它网元板卡资源是否满足第一约束条件和第二约束条件。在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,执行步骤709;否则,在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,执行步骤717。
步骤709,在各沿途光放站的可用网元集合中,分别搜索板卡资源:板卡要求满足2个ILA。
在本公开的一些实施例中,对于OMS保护,允许主备路径的途径光放站不同(即光缆路径不同),但对于同一条路径上的双向光纤,要求在同一个光放板卡(含ILA*2)中放大。
步骤710,判断资源是否满足,即,判断同一条路径上的双向光纤是否满足在同一个光放板卡中放大。在同一条路径上的双向光纤满足在同一个光放板卡中放大的情况下,执行步骤711;否则,在同一条路径上的双向光纤不满足在同一个光放板卡中放大的情况下,执行步骤717。
步骤711,判定光复用段创建成功。
步骤712,在不创建光复用段保护的情况下,选择沿途光放站。
步骤713,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件(约束条件3)。
步骤714,判断资源是否满足,即,判断第一终端站和第二终端站的当前网元的光放大器板卡资源是否满足第三约束条件。在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,执行步骤709;在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,执行步骤715。
步骤715,在可用网元集合中搜索其它网元板卡资源。
步骤716,判断资源是否满足,即,其它网元板卡资源是否满足第三约束条件。在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,执行步骤709;否则,在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,执行步骤717。
步骤717,判定光复用段创建失败。
在本公开的一些实施例中,图7实施例的步骤703,步骤709、步骤710和步骤712为与图6实施例的单跨段创建流程不同的部分。
在本公开的一些实施例中,第一约束条件、第二约束条件和第三约束条件适应于单跨段场景和多跨段场景,即,适用于图6和图7实施例。
在本公开的一些实施例中,第一约束条件可以包括:
1、光放大器板卡包含2个功率放大器和2个前置放大器,即,OA板卡包含的EDFA数量为:BA*2,PA*2。
2、资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级。即,集成BA+PA的板卡优先;单EDFA次优。
3、主路径的功率放大器和前置放大器(BA+PA)、以及备路径的功率放大器和前置放大器(BA+PA)处于不同网元。由此可以提供主备路径的设备级分离能力。
在本公开的一些实施例中,第二约束条件可以包括:
1、包含一个光线路保护设备板卡(OLP板卡*1),假设每个光线路保护设备板卡上只有一个光保护开关。
2、光线路保护设备板卡不得与主路径的功率放大器同网元。由此可以提供掉电保持能力。
在本公开的一些实施例中,第三约束条件可以包括:
1、光放大器板卡包含1个功率放大器和1个前置放大器;即,BA*1,PA*1。
2、资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级。即,集成BA+PA的板卡优先;单EDFA次优。
本公开上述实施例可以实现单跨和多跨、有保护和无保护场景的自动化创建光复用段。本公开上述实施例能够满足不同跨段、不同保护需求的光复用段自动化创建需求。
本公开上述实施例提供了一种应用于盒式波分系统的光复用段自动化创建方法。
本公开上述实施例提出一种光复用段自动化创建方法。本公开上述实施例可以同时适用于单跨段或多跨段场景,由盒式波分管控系统自动选择包括终端站、光放站设备在内的沿途板卡、端口资源,进行光复用段的自动创建;本公开上述实施例当网元上的板卡不能满足资源要求时,允许跨网元调度板卡资源;本公开上述实施例可以支持不同集成度的光放板卡形态。
图8为本公开光复用段创建方法另一些实施例的示意图。优选的,本实施例可由本公开光复用段创建装置或本公开网络管理系统或本公开盒式波分设备执行。该方法可以包括步骤81-步骤85中的至少一个步骤,其中:
步骤81,获取相关站点的可用网元资源。
步骤82,获取各网元的网元信息,其中,所述网元信息包括板块信息和端口可用性等信息。
步骤83,根据业务需求,按照如上述任一实施例(例如图1-图7任一实施例)所述的光复用段创建方法进行所需板块资源的调度。
步骤84,获取网元之间的连接信息。
步骤85,对调度到的板块资源进行端口级的串接,形成光复用段。
本公开上述实施例可以实现跨网元板卡资源调度。由于盒式波分设备不同于传统波分设备,其易堆叠的设计也同时带来设备体积限制,在单一网元的板卡资源受限情况下,本公开上述实施例提出跨网元板卡资源调度方法,可以将同一站点中满足可用条件的网元板卡均列入板卡资源池,进行统一调度。
图9为本公开光复用段创建装置一些实施例的示意图。如图9所示,本公开光复用段创建装置可以包括复用段创建模块91和板块调度模块92,其中:
复用段创建模块91,用于选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备。
板块调度模块92,用于在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源。
在本公开的一些实施例中,光复用段创建装置可以用于根据盒式波分设备的不同板卡集成度,支持以下四种光放大器板卡类型中的至少一种:集成功率放大器和前置放大器的板卡、仅包含功率放大器的板卡、仅包含前置放大器的板卡、包含双向掺铒光纤放大器的光线路放大器板卡。
本公开上述实施例可以进行跨网元板卡资源调度,本公开上述实施例采用路由法进行光复用段创建,可以自动选择包括终端站、光放站设备在内的沿途板卡和端口资源,允许跨网元调度。
本公开上述实施例能够提供跨网元自动调度板卡资源的光复用段自动创建方法,在开放解耦的多厂商光网络中,能够为不同集成度的光放板卡提供支持,可以实现板卡灵活调度。
传统波分设备往往采用烟囱式管理,单厂商仅需要处理特定的板卡形态,而盒式波分因其开放解耦的特征,会导致需要纳管不同厂商的不同光放板卡,因实现差异往往会存在不同集成度的板卡,本公开上述实施例的调度方法可以支持不同光放板卡集成度,可以支 持所有光放板卡。
图10为本公开光复用段创建装置另一些实施例的示意图。与图9实施例相比,图10实施例中,本公开光复用段创建装置可以包括复用段创建模块91、板块调度模块92、站点管理模块93、网元管理模块94、拓扑管理模块95和资源串接模块96,其中:
站点管理模块93,用于获取相关站点的可用网元资源。
网元管理模块94,用于获取各网元的网元信息,其中,所述网元信息包括板块信息和端口可用性。
复用段创建模块91和板块调度模块92,用于根据业务需求,按照如上述任一实施例(例如图1-图7任一实施例)所述的光复用段创建方法进行所需板块资源的调度。
拓扑管理模块95,用于获取网元之间的连接信息。
资源串接模块96,用于对调度到的板块资源进行端口级的串接,形成光复用段。
本公开光复用段创建装置可依托于盒式波分设备的网络管理系统实现,本公开上述实施例扩展了板卡调度模块、资源串接模块,并利用了网络管理系统的拓扑、网元、站点管理模块,实现了光复用段自动化创建功能。
在本公开的一些实施例中,复用段创建模块91可以用于针对不同跨段、不同保护需求的场景,选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,不同跨段包括单跨段和多跨段,不同保护需求包括光复用段保护需求和无保护需求。
在本公开的一些实施例中,对于单跨段场景,复用段创建模块91可以用于选择第一终端站和第二终端站的合波端口;判断是否创建光复用段保护;在创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件;在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则判定光复用段创建成功。
在本公开的一些实施例中,对于单跨段场景,复用段创建模块91可以用于在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第一约束条件和第二约束条件;在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,判定光复用段创建成功;在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条 件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于单跨段场景,复用段创建模块91可以用于在不创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件;在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,则判定光复用段创建成功。
在本公开的一些实施例中,对于单跨段场景,复用段创建模块91可以用于在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第三约束条件;在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,判定光复用段创建成功;在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于多跨段场景,复用段创建模块91可以用于选择第一终端站和第二终端站的合波端口;判断是否创建光复用段保护;在创建光复用段保护的情况下,选择主路径和备路径上所有沿途光放站;在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件;在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大;在同一条路径上的双向光纤满足在同一个光放板卡中放大的情况下,判定光复用段创建成功;在同一条路径上的双向光纤不满足在同一个光放板卡中放大的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于多跨段场景,复用段创建模块91可以用于在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第一约束条件和第二约束条件;在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,则执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的操作;在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,对于多跨段场景,复用段创建模块91可以用于在不创建 光复用段保护的情况下,选择沿途光放站;在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件;在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,则执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的操作。
在本公开的一些实施例中,对于多跨段场景,复用段创建模块91可以用于在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第三约束条件;在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的操作;在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,判定光复用段创建失败。
在本公开的一些实施例中,第一约束条件、第二约束条件和第三约束条件适应于单跨段场景和多跨段场景。
在本公开的一些实施例中,第一约束条件可以包括:光放大器板卡包含2个功率放大器和2个前置放大器;资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级;主路径的功率放大器和前置放大器、以及备路径的功率放大器和前置放大器处于不同网元。
在本公开的一些实施例中,第二约束条件可以包括:包含一个光线路保护设备板卡,每个光线路保护设备板卡上只有一个光保护开关;光线路保护设备板卡不与主路径的功率放大器同网元。
在本公开的一些实施例中,第三约束条件可以包括:光放大器板卡包含1个功率放大器和1个前置放大器;资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级。
在本公开的一些实施例中,所述光复用段创建装置可以用于执行实现如上述任一实施例(例如图1-图8任一实施例)所述的光复用段创建方法的操作。
本公开上述实施例可以实现单跨和多跨、有保护和无保护场景的自动化创建光复用段。本公开上述实施例能够满足不同跨段、不同保护需求的光复用段自动化创建需求。
本公开上述实施例提供了一种应用于盒式波分系统的光复用段自动化创建装置。
本公开上述实施例提出一种光复用段自动化创建装置。本公开上述实施例可以同时适用于单跨段或多跨段场景,由盒式波分管控系统自动选择包括终端站、光放站设备在内的沿途板卡、端口资源,进行光复用段的自动创建;本公开上述实施例当网元上的板卡不能 满足资源要求时,允许跨网元调度板卡资源;本公开上述实施例可以支持不同集成度的光放板卡形态。
图11为本公开光复用段创建装置又一些实施例的结构示意图。如图11所示,光复用段创建装置包括存储器111和处理器112。
存储器111用于存储指令,处理器112耦合到存储器111,处理器112被配置为基于存储器存储的指令执行实现如上述任一实施例(例如图1-图8任一实施例)所述的光复用段创建方法。
如图11所示,该光复用段创建装置还包括通信接口113,用于与其它设备进行信息交互。同时,该光复用段创建装置还包括总线114,处理器112、通信接口113、以及存储器111通过总线114完成相互间的通信。
存储器111可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器111也可以是存储器阵列。存储器111还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器112可以是一个中央处理器CPU,或者可以是专用集成电路ASIC,或是被配置成实施本公开实施例的一个或多个集成电路。
本公开上述实施例可以实现跨网元板卡资源调度。由于盒式波分设备不同于传统波分设备,其易堆叠的设计也同时带来设备体积限制,在单一网元的板卡资源受限情况下,本公开上述实施例提出跨网元板卡资源调度装置,可以将同一站点中满足可用条件的网元板卡均列入板卡资源池,进行统一调度。
根据本公开的另一方面,提供一种网络管理系统,包括如上述任一实施例(例如图9-图11任一实施例)所述的光复用段创建装置。
根据本公开的另一方面,提供一种盒式波分设备,包括如上述任一实施例(例如图9-图11任一实施例)所述的光复用段创建装置、或包括如上述任一实施例所述的网络管理系统。
根据本公开的另一方面,提供一种非瞬时性计算机可读存储介质,其中,所述非瞬时性计算机可读存储介质存储有计算机指令,该指令被处理器执行时实现如图本公开上述任一实施例(例如图1-图8任一实施例)所述的光复用段创建方法。的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开 可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在上面所描述的光复用段创建装置和网络管理系统可以实现为包括用于执行本申请所描述功能的通用处理器、可编程逻辑控制器(PLC)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件完成,所述的程序可以存储于一种非瞬时性计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实 施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (19)

  1. 一种光复用段创建方法,包括:
    选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备;
    在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源。
  2. 根据权利要求1所述的光复用段创建方法,还包括:
    根据盒式波分设备的不同板卡集成度,支持以下四种光放大器板卡类型中的至少一种:集成功率放大器和前置放大器的板卡、仅包含功率放大器的板卡、仅包含前置放大器的板卡、包含双向掺铒光纤放大器的光线路放大器板卡。
  3. 根据权利要求2所述的光复用段创建方法,其中,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建包括:
    针对不同跨段、不同保护需求的场景,选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,不同跨段包括单跨段和多跨段,不同保护需求包括光复用段保护需求和无保护需求。
  4. 根据权利要求3所述的光复用段创建方法,其中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建包括:
    选择第一终端站和第二终端站的合波端口;
    判断是否创建光复用段保护;
    在创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件;
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则判定光复用段创建成功。
  5. 根据权利要求4所述的光复用段创建方法,其中,对于单跨段场景,所述选择当 前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第一约束条件和第二约束条件;
    在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,判定光复用段创建成功;
    在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,判定光复用段创建失败。
  6. 根据权利要求4所述的光复用段创建方法,其中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
    在不创建光复用段保护的情况下,在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件;
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,则判定光复用段创建成功。
  7. 根据权利要求6所述的光复用段创建方法,其中,对于单跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
    在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第三约束条件;
    在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,判定光复用段创建成功;
    在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,判定光复用段创建失败。
  8. 根据权利要求3所述的光复用段创建方法,其中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建包括:
    选择第一终端站和第二终端站的合波端口;
    判断是否创建光复用段保护;
    在创建光复用段保护的情况下,选择主路径和备路径上所有沿途光放站;
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源是否满足第二约束条件;
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第一约束条件、且在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源满足第二约束条件的情况下,则在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大;
    在同一条路径上的双向光纤满足在同一个光放板卡中放大的情况下,判定光复用段创建成功;
    在同一条路径上的双向光纤不满足在同一个光放板卡中放大的情况下,判定光复用段创建失败。
  9. 根据权利要求8所述的光复用段创建方法,其中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源不满足第一约束条件、或在第一终端站和第二终端站的当前网元中搜索光线路保护设备板卡资源不满足第二约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第一约束条件和第二约束条件;
    在可用网元集合中其它网元板卡资源满足第一约束条件和第二约束条件的情况下,则执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的步骤;
    在可用网元集合中其它网元板卡资源不满足第一约束条件和第二约束条件的情况下,判定光复用段创建失败。
  10. 根据权利要求8所述的光复用段创建方法,其中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
    在不创建光复用段保护的情况下,选择沿途光放站;
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源是否满足第三约束条件;
    在第一终端站和第二终端站的当前网元中搜索光放大器板卡资源满足第三约束条件的情况下,则执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的步骤。
  11. 根据权利要求10所述的光复用段创建方法,其中,对于多跨段场景,所述选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建还包括:
    在第一终端站和第二终端站的当前网元中光放大器板卡资源不满足第三约束条件的情况下,在可用网元集合中搜索其它网元板卡资源是否满足第三约束条件;
    在可用网元集合中其它网元板卡资源满足第三约束条件的情况下,执行在各沿途光放站的可用网元集合中,分别搜索同一条路径上的双向光纤是否满足在同一个光放板卡中放大的步骤;
    在可用网元集合中其它网元板卡资源不满足第三约束条件的情况下,判定光复用段创建失败。
  12. 根据权利要求4-11中任一项所述的光复用段创建方法,其中:
    第一约束条件包括:光放大器板卡包含2个功率放大器和2个前置放大器;资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级;主路径的功率放大器和前置放大器、以及备路径的功率放大器和前置放大器处于不同网元;
    第二约束条件包括:包含一个光线路保护设备板卡,每个光线路保护设备板卡上只有一个光保护开关;光线路保护设备板卡不与主路径的功率放大器同网元。
  13. 根据权利要求6-7、10-11中任一项所述的光复用段创建方法,其中,
    第三约束条件包括:光放大器板卡包含1个功率放大器和1个前置放大器;资源重复时的优先原则为:集成功率放大器和前置放大器的板卡为第一优先级,单掺铒光纤放大器为第二优先级。
  14. 根据权利要求1-11中任一项所述的光复用段创建方法,还包括:
    获取相关站点的可用网元资源;
    获取各网元的网元信息,其中,所述网元信息包括板块信息和端口可用性;
    根据业务需求,按照如权利要求1-11中任一项所述的光复用段创建方法进行所需板块资源的调度;
    获取网元之间的连接信息;
    对调度到的板块资源进行端口级的串接,形成光复用段。
  15. 一种光复用段创建装置,包括:
    复用段创建模块,用于选择当前网管的沿途板卡和端口资源,进行光复用段的自动创建,其中,当前网元包括终端站和光放站设备;
    板块调度模块,用于在当前网元上的板卡不能满足资源要求的情况下,允许跨网元调度板卡资源;
    其中,所述光复用段创建装置用于执行实现如权利要求1-14中任一项所述的光复用段创建方法的操作。
  16. 一种光复用段创建装置,包括:
    存储器,用于存储指令;
    处理器,用于执行所述指令,使得所述光复用段创建装置执行实现如权利要求1-14中任一项所述的光复用段创建方法的操作。
  17. 一种网络管理系统,包括如权利要求15或16所述的光复用段创建装置。
  18. 一种盒式波分设备,包括如权利要求15或16所述的光复用段创建装置、或包括如权利要求17所述的网络管理系统。
  19. 一种非瞬时性计算机可读存储介质,其中,所述非瞬时性计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求1-14中任一项所述的光复用段创建方法。
PCT/CN2022/104098 2021-11-23 2022-07-06 光复用段创建方法和装置、网络管理系统和盒式波分设备 WO2023093064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111394037.3A CN116155438A (zh) 2021-11-23 2021-11-23 光复用段创建方法和装置、网络管理系统和盒式波分设备
CN202111394037.3 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023093064A1 true WO2023093064A1 (zh) 2023-06-01

Family

ID=86353070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104098 WO2023093064A1 (zh) 2021-11-23 2022-07-06 光复用段创建方法和装置、网络管理系统和盒式波分设备

Country Status (2)

Country Link
CN (1) CN116155438A (zh)
WO (1) WO2023093064A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184342A (zh) * 2007-12-19 2008-05-21 中兴通讯股份有限公司 一种在光复用段层上创建业务的方法
CN105072035A (zh) * 2015-08-27 2015-11-18 中国电信股份有限公司 一种光传送网原子路由的生成方法和系统
CN106998340A (zh) * 2016-01-22 2017-08-01 大唐移动通信设备有限公司 一种板卡资源的负载均衡方法及装置
CN111884716A (zh) * 2020-06-30 2020-11-03 中国南方电网有限责任公司 一种基于神经网络的光纤通信系统性能评估方法
CN112911428A (zh) * 2021-01-29 2021-06-04 烽火通信科技股份有限公司 基于多波长路径的快速性能优化方法、装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184342A (zh) * 2007-12-19 2008-05-21 中兴通讯股份有限公司 一种在光复用段层上创建业务的方法
CN105072035A (zh) * 2015-08-27 2015-11-18 中国电信股份有限公司 一种光传送网原子路由的生成方法和系统
CN106998340A (zh) * 2016-01-22 2017-08-01 大唐移动通信设备有限公司 一种板卡资源的负载均衡方法及装置
CN111884716A (zh) * 2020-06-30 2020-11-03 中国南方电网有限责任公司 一种基于神经网络的光纤通信系统性能评估方法
CN112911428A (zh) * 2021-01-29 2021-06-04 烽火通信科技股份有限公司 基于多波长路径的快速性能优化方法、装置及电子设备

Also Published As

Publication number Publication date
CN116155438A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
US8345538B2 (en) Apparatus and method for finding a pair of disjoint paths in a communication network
US7693422B2 (en) Constraint-based design of optical transmission systems
CN101971563A (zh) 在mpls网络中提供全逻辑连接的方法和装置
CN101616024B (zh) 一种业务开通/阻断的方法和系统
US10476587B2 (en) System and method for enhancing reliability in a transport network
WO2017032024A1 (zh) 一种处理potn虚接口的方法及装置
CN113973026B (zh) 一种站点互连方法、中央控制器和路由反射器
EP3038302A1 (en) Grooming method and device for packet optical transport network
CN112291160B (zh) 一种bum报文抑制方法、设备及介质
CN101908942B (zh) 一种损伤信息传送方法、节点和网络系统
WO2023093064A1 (zh) 光复用段创建方法和装置、网络管理系统和盒式波分设备
Zhang et al. Failure recovery solutions using cognitive mechanisms based on software-defined optical network platform
CN100418320C (zh) 基于移动存储设备的互联网络数据主动获取方法
Askari et al. On dynamic service chaining in filterless optical metro-aggregation networks
DE60200693D1 (de) Wegeleitsystem zur Sicherstellung der Kontinuität der Dienste, zu Nachbar-Wegeleitsystemen assoziierte Zustandsmaschinen
CN103858441B (zh) 一种ason网络的路径计算方法及装置
CN102833161A (zh) 隧道负荷分担方法及装置
CN101989886A (zh) 站点间波分资源统计方法和装置
CN108345374B (zh) 供电方法和供电系统
WO2022062215A1 (zh) 参数调整方法、装置、电子设备和存储介质
US6937823B2 (en) Method for preventing lasing in an optical ring network
ATE270785T1 (de) Wegeleitsystem zur sicherstellung der kontinuität der interfacedienste zu den assoziierten nachbarnetzen
Beňo et al. University network with Remlabnet and communication among individual datacenters
Yu et al. MPNACK: an optical switching scheme enabling the buffer-less reliable transmission
CN111510321B (zh) 网络故障处理方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE