WO2023093021A1 - Recombinant long-acting human growth hormone fusion protein and its use thereof - Google Patents

Recombinant long-acting human growth hormone fusion protein and its use thereof Download PDF

Info

Publication number
WO2023093021A1
WO2023093021A1 PCT/CN2022/100114 CN2022100114W WO2023093021A1 WO 2023093021 A1 WO2023093021 A1 WO 2023093021A1 CN 2022100114 W CN2022100114 W CN 2022100114W WO 2023093021 A1 WO2023093021 A1 WO 2023093021A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
peptide
growth hormone
fragment
seq
Prior art date
Application number
PCT/CN2022/100114
Other languages
French (fr)
Inventor
Suofu QIN
Juan Li
Dongmei Zhou
Qiongying YOU
Wei Zhang
Original Assignee
Shenzhen Kexing Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Kexing Pharmaceutical Co., Ltd. filed Critical Shenzhen Kexing Pharmaceutical Co., Ltd.
Publication of WO2023093021A1 publication Critical patent/WO2023093021A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/06Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present disclosure relates to the field of molecular biology and medicine. Specifically, the present invention relates to recombinant long-acting human growth hormone fusion protein and itsuse thereof. More specifically, the present invention relates to an Fc fragmentmutant, a fusion protein, a nucleic acid molecule, an expression vector, a recombinant cell, a pharmaceutical composition and its use thereof, and a method of preventing and/or treating a diseaseassociated withabnormal growth hormone.
  • Growth hormone deficiency is a well-recognized clinical syndrome associated with many metabolic abnormalities, including abnormal body composition, decreased physical performance, altered lipid metabolism, decreased bone mass, increased insulin resistance, and decreased quality of life. Most metabolic abnormalities associated with growth hormone deficiency couldbe reversed with recombinant human growth hormone (rhGH) replacement.
  • rhGH human growth hormone
  • Traditional treatment for growth hormone deficiency involves daily subcutaneous injections of rhGH, but the treatment is cumbersome and inconvenient for many patients, which in turn raises concerns about poor compliance to treatment, and may lead to reduced efficacy.
  • Long-acting rhGH preparations or long-acting growth hormone (GH) preparations not only reduce the number of injections and improve compliance to treatment but also help to improve the therapeutic effect of GH.
  • the inventors surprisingly found that if specific sites of the wild-type IgG1 Fc fragmentwere mutated (such as P228 del, C229 del, P230 del, T366R, L368H, P395K and K409Xaa; or P228 del, C229 del, T366R, L368H, P395K, and K409Xaa; where in K409Xaa, Xaa represent D or T) , the Fc fragment in the native dimer form could be expressed to form the Fcfragment mutant in the form of a monomer.
  • specific sites of the wild-type IgG1 Fc fragment were mutated (such as P228 del, C229 del, P230 del, T366R, L368H, P395K and K409Xaa; or P228 del, C229 del, T366R, L368H, P395K, and K409Xaa
  • the fusion protein in the form of monomer could be formed by fusion of the above-mentioned Fc fragment mutant and growth hormone, which could be purified by ProteinAand simplify the purification process. More importantly, the fusion protein obtained a strong binding activity of human growth hormone receptor, good promoting cell proliferation activity and good reporter gene cell expression luciferase activity, as well as longer half-life and betterin vivo biological activity.
  • the present invention relates to anFc fragmentmutant.
  • the Fc fragment mutant comprises a first peptide, the first peptide comprises mutations at the following positions in comparison to a wild-type IgG1 Fc fragment: positions 228, 229, 366, 368, 395 and 409, and optional position 230.
  • the inventors found that the above-mentioned mutations could be beneficial to the formation of monomeric Fc fragment mutant after the expression of the Fc fragment in the native dimer form.
  • the Fc fragment mutant in the form of a monomer could be fused with bioactive molecules, which could be subsequently purified by ProteinA and simplify the purification process. More importantly, the fusion protein obtained by the Fc fragment mutanthasa higher in vitro and in vivo activity, and lower ADCC and CDC effects.
  • Fc fragment of the IgG antibodyreferredin this patent refers to the CH2 region and the CH3 regions of the IgG antibody.
  • amino acid sequence of a wild-type IgG1Fc fragment is as follows:
  • wild-type IgG1Fc fragment referred to in this patent refers to the wild-type IgG1Fc fragment of human.
  • amino acid sequence of the hinge region fragment of the wild-type IgG1is as follows:
  • the nucleotide sequence of the hinge region fragment of the wild-type IgG1 is as follows:
  • GACAAGACACACACCGGA (SEQ ID NO: 42) .
  • the present invention relates to a fusion protein.
  • the fusion protein comprises: a second peptide comprising a bioactive molecular functional region; and a third peptideconnected with the second peptide, the third peptide comprisingan Fc fragment mutant according to the first aspect.
  • the present invention relates to a fusion protein.
  • the general structure of the fusion protein is expressed as X-L-Y or Y-L-X; wherein X is the first bioactive molecule, L is absent or a linker peptide, Y is the second bioactive molecule, -is the peptide bond. And the X or Y is selected from the protein or protein domain, polypeptide, antibody or antibody fragment.
  • X-L-Y means that a C-terminal of X is connected with an N-terminal of L, and a C-terminal of L is connected with an N-terminal of Y.
  • Y-L-x means that a C-terminal of Y is connected with an N-terminal of L, and a C-terminal of L is connected with an N-terminal of X.
  • the fusion protein described in the second aspector the third aspect may further comprise at least one of the following additional technical characteristics:
  • the fusion protein is a monomer.
  • the X is a human growth hormone.
  • the amino acid sequence of the human growth hormone comprises an amino acid sequence as shown in SEQ ID NO: 1 or at least 80%-99%homologous thereof, or at least part of its sequence.
  • the nucleotide sequence of the human growth hormone comprises a nucleotide sequence as shown inSEQ ID NO: 11 or at least 80%-99%homologous thereof, or at least part of its sequence or a codon-optimized sequence of its sequence.
  • the Y is the IgG Fc fragment mutant.
  • the Y is the IgG1 Fc fragment mutant.
  • the amino acid sequence of the IgG1 Fc fragment mutant comprises an amino acid sequence as shown in any one of SEQ ID NOs: 2-7 or at least 80%-99%homologous thereof, or at least part of its sequence.
  • the mutations in the first peptide of SEQ ID NO: 2 comprises P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K and K409T.
  • the mutations in the first peptide of SEQ ID NO: 3 and SEQ ID NO: 7 comprise P228 Delete, C229 Delete, T366R, L368H, P395K and K409T.
  • NO: 4 comprises P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K, K409Tand K447A.
  • NO: 5 comprises P228 Delete, C229 Delete, P230 Delete, L351S, T366R, L368H, P395K, K409D and M428Y.
  • NO: 6 comprises P228 Delete, C229 Delete, P230 Delete, L351S, T366R, L368H, P395K, K409D, M428Yand K447A.
  • the above-mentionedmutations could be conducive to the formation of monomeric Fc fragment mutant after the expression of the Fc fragment in the native dimer form, which could form fusion proteins with bioactive molecules. And the fusion proteins could be subsequently purified by ProteinA, andsimplify the purification process, improve in vivo and in vitro activity.
  • the linker peptide comprises one or more amino acids selected from glycine, serine, alanine, and threonine.
  • the linker peptide comprises an amino acid sequence of (GGGGS) n or at least 80%-99%homologous thereof, or at least part of its sequence, n being an integer greater than or equal to 1, preferably 1, 2, 3, 4, 5 or 6.
  • the amino acid sequence of the linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10 or at least 80%-99%homologous thereof, or at least part of its sequence.
  • GGGGSGGGGSGGGGS SEQ ID NO: 8 .
  • GGGGS (SEQ ID NO: 10) .
  • the nucleotide sequence of the linker peptide comprises a nucleotide sequence as shown inany one of SEQ ID NOs: 21-23 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
  • GGCGGCGGAGGATCT SEQ ID NO: 23
  • the amino acid sequence of the fusion protein comprises an amino acid sequence as shown in any one of SEQ ID NOs: 24-31 or at least 80%-99%homologous thereof, or at least part of its sequence.
  • the first bioactive molecule, the second bioactive molecule, and the linker peptide in the amino acid sequence shown in SEQ ID NOs: 24-31 are shown in the table below:
  • the nucleotide sequence of the fusion protein comprises a nucleotide sequence as shown inany one of SEQ ID NOs: 32-39 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
  • the present invention relates to a linker peptide for constructing fusion protein.
  • the amino acid sequence of the linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10 or at least 80%-99%homologous thereof, or at least part of its sequence.
  • the present invention relates to a nucleic acid molecule.
  • the nucleic acid molecule encodesthe Fc fragment mutant of the first aspect, or the fusion protein of the second aspect and the third aspect, or the linker peptide of the fourth aspect.
  • the nucleotide sequence of the nucleic acid molecule comprises at least one of SEQ ID NOs: 21-23 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
  • SEQ ID NO: 21 encodes SEQ ID NO: 8.
  • SEQ ID NO: 22 encodes SEQ ID NO: 9.
  • SEQ ID NO: 23 encodes SEQ ID NO: 10.
  • the nucleotide sequence of the nucleic acid molecule comprises at least one of SEQ ID NOs: 32-39 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
  • SEQ ID NO: 32 encodes SEQ ID NO: 24.
  • SEQ ID NO: 33 encodes SEQ ID NO: 25.
  • SEQ ID NO: 34 encodes SEQ ID NO: 26.
  • SEQ ID NO: 35 encodes SEQ ID NO: 27.
  • SEQ ID NO: 36 encodes SEQ ID NO: 28.
  • SEQ ID NO: 37 encodes SEQ ID NO: 29.
  • SEQ ID NO: 38 encodes SEQ ID NO: 30.
  • SEQ ID NO: 39 encodes SEQ ID NO: 31.
  • the nucleotide sequence of the nucleic acid molecule comprises at least one of SEQ ID NOs: 12-20 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
  • SEQ ID NO: 12 SEQ ID NO: 13, SEQ ID NO: 15 and SEQ ID NO: 16 encode SEQ ID NO: 2.
  • SEQ ID NO: 14 encodes SEQ ID NO: 3.
  • SEQ ID NO: 17 encodes SEQ ID NO: 4.
  • SEQ ID NO: 18 encodes SEQ ID NO: 5.
  • SEQ ID NO: 19 encodes SEQ ID NO: 6.
  • SEQ ID NO: 20 encodes SEQ ID NO: 7.
  • the present invention relates to an expression vector.
  • the expression vector carries the nucleic acid molecule of the fifth aspect.
  • the recipient cell can be effectively achieved the expression of the above-mentioned Fc fragmentmutant or fusion protein under the mediation of a regulatory system, so as to obtain a large amount of the Fc fragmentmutant or the fusion protein.
  • the present invention relates to a recombinant cell.
  • the recombinant cell carries the nucleic acid molecule of the fifth aspect, or the expresses the Fc fragment mutant of the first aspect or the fusion protein of the second aspect or the third aspect.
  • the recombinant cell according to embodiments of the invention can be used for in vitro expression and large quantities of the Fc fragmentmutants or the fusion proteins.
  • the present invention relates to a pharmaceutical composition.
  • the pharmaceutical composition comprises the fusion protein of the second aspect or the third aspect.
  • the pharmaceutical composition could prevent or treat a disease associated withabnormal growth hormone.
  • the pharmaceutical composition is for oral and/or intravenous administration, such as pushing injection or continuous infusion for a period of time, via the subcutaneous, intramuscular, intraarterial, intraperitoneal, intrapulmonary, cerebrospinal, intra-articular, intrasynovial, intrathecal, or by inhalation routes such as intranasally.
  • a pharmaceutical composition is usually administered intravenously or subcutaneously.
  • the dosage form of the pharmaceutical composition is a tablet, a capsule, a spray, an injection, a freeze-dried powder injection or a prefilled injection.
  • the present invention relates to a method of preparing the fusion protein of the second aspect or the third aspect.
  • the method comprises: culturing of the recombinant cell of the seventh aspect to obtain a culture medium containing the fusion proteins of the second aspect or the third aspect; the fusion protein is separated from the culture medium.
  • the fusion proteins can be prepared effectively.
  • the present invention relates to a method ofpreventing or treating a disease associated withabnormal growth hormone.
  • the method comprises: administering to a subject in need a pharmaceutically acceptable amount of the fusion protein of the second aspect or the third aspect, or the pharmaceutical composition of the eighth aspect.
  • the present invention relates tothe use of the fusion protein of the second aspect or the third aspect, the nucleic acid molecule of the fifth aspect, the expression vector of the sixth aspect, the recombinant cell of the seventh aspect and the pharmaceutical composition of the eighth aspect inthe preparation of a medicament for preventing or treating a disease associated with abnormal growth hormone.
  • the present invention relates tothe fusion protein of the second aspect or the third aspect, the nucleic acid molecule of the fifth aspect, the expression vector of the sixth aspect, the recombinant cell of the seventh aspect, and the pharmaceutical composition of the eighth aspect, for use in preventing or treating a disease associated with abnormal growth hormone.
  • the present invention relates tothe fusion protein of the second aspect or the third aspect, the nucleic acid molecule of the fifth aspect, the expression vector of the sixth aspect, the recombinant cell of the seventh aspect, and the pharmaceutical composition of the eighth aspect, for use in preventing or treating a disease associated with abnormal growth hormone comprises at least one of the following: childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
  • the present invention has at least one of the following beneficial effects:
  • the Fc fragment mutant of the fusion protein is mutated at a specific site.
  • the fusion protein provided bythe present invention has a low EC 50 value for binding to the human growth hormone receptor (hGHR) and a strong binding activity with hGHR.
  • the fusion protein provided bythe present invention has a low EC 50 value for promoting the proliferation of NB2-11 cells and a good proliferation effect on NB2-11 cells.
  • the fusion protein provided bythe present invention has a low EC 50 value for promoting the expression of luciferase in reporter cells, which is equal to or lower than that of the control sample (Genexine GX-H9) . And the fusion protein has an excellent activity in promoting the expression of luciferase in reporter cells.
  • the fusion protein provided bythe present invention has a longer half-life and better in vivo biological activity.
  • FIG. 1 is a schematic diagram of monomer form of fusion protein in one embodiment of the present invention.
  • FIG. 2 is the result graph of ADCC of J2 or J18 in Example 7 of the present invention.
  • FIG. 3 is the trend diagram of the results of body weight gain of each group of rats measured in vivo biological activity in Example 9 of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance orimplying the number of indicated technical features. Thus, a feature defined as “first” or “second” may include, explicitly or implicitly, one or more of these features. Further, unless otherwise specified, in the description of the present invention, "more than one" means two or more.
  • room temperature refers to the ambient temperature, which may be 20°C-30°C. In some embodiments, the room temperature may be 22°C-28°C; In some embodiments, 24°C-26°C; In some embodiments, 25°C.
  • antibody fragment means the antigen-binding fragment and antibody analog, which usually contains at least some of the antigen-binding region or variable region of a parental antibody (e.g. one or more CDRS) .
  • variant or “mutant” generally refers to any naturally occurring or engineered molecule that contains one or more nucleotide or amino acid mutations.
  • position 366 refers to the 366th position according to the EU numbering system
  • T366R refers to the threonine at the 366th of the EU numbering system replacedby arginine
  • L368H refers to the leucine at the 368th of the EU numbering systemreplacedby histidine
  • P228 del refers to the absence of the proline at the228th of the EU numbering system.
  • (GGGGS) n indicates that n GGGGSs are connected, such as " (GGGGS) 3 " means GGGGSGGGGSGGGGS.
  • fusion protein generally refers to a protein resulting from the fusion of two or more proteins or polypeptides. Genes or nucleic acid molecules encoding two or more proteins or polypeptides are linked to each other to form a fusion gene or a fusion nucleic acid molecule, which may encode the fusion protein. The translation of the fusion gene produces a single polypeptide that has the properties of at least one or even each of the two or more proteins or polypeptides prior to fusion. Recombinant fusion proteins are artificially created using recombinant DNA technology for biological research or therapy. Recombinant fusion proteins are proteins created by the genetic engineering of fusion genes. The terms “fusion protein” and “recombinant fusion protein” are used herein with the same meaning.
  • the fusion proteins described in this paper generally contain at least two domains (A and C) , and optionally contain a third component, for example, a linker peptide between the two domains.
  • a and C domains
  • a linker peptide between the two domains.
  • the generation of recombinant fusion proteins is known in this field and usually involves the removal of stop codons from the cDNA sequence of the first protein or the first polypeptide, then attaching the cDNA sequence of the second protein in a frame compliant manner by linking or overlapping extension PCR.
  • This DNA sequence is expressed by the cell as a single protein.
  • the protein is engineered to include the entire sequence of the two original proteins or polypeptides, or only includea part of the entire sequence.
  • the fusion protein of the present invention is generally prepared by a biosynthesis method.
  • the persons skilled in thisfield can easily prepare the encoding nucleic acid of the present invention by various known methods. These methods include, but are not limited to: PCR, artificial DNA synthesis, etc. For specific methods, please refer to J. Sambrock, "Molecular Cloning Experiment Guide” .
  • the coding nucleic acid sequence of the present invention can be constructed by the method of segmented synthesis of nucleotide sequence followed by overlap extension PCR.
  • identity is used to describe the relative to the reference sequence of amino acid sequencesor nucleic acid sequence, determines the percentage of identical amino acids or nucleotides between two amino acid sequences or nucleic acid sequencesby conventional methods, see, for example, Ausubel et al., eds. (1995) , Current Protocols in Molecular Biology, Chapter 19 (Greene Publishing and Wiley-Interscience, New York) ; And the ALIGN program (Dayhoff (1978) , Atlas of Protein Sequence and Structure 5: Suppl. 3 (National Biomedical Research Foundation, Washington, D.C. ) .
  • ALIGN ALIGN or Megalign (DNASTAR) software
  • WU-BLAST-2 Altschul et al., Meth. Enzym., 266: 460-480 (1996)
  • GAP BESTFIT, BLAST Altschul et al., supra, FASTA, and TFASTA, available in the Genetics Computing Group (GCG) package, version 8, Madison, Wisconsin, USA
  • CLUSTAL CLUSTAL of PC/Gene program provided by Intelligenetics, Mountain View, California.
  • nucleotide generally is ribonucleotides, deoxynucleotides, or any type of nucleotide, and theirmodified forms, and their combinations.
  • At least 90%homologous or "at least 90%identity” means at least 90%identical to each reference sequence, which may be 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%identity.
  • At least 80%-99%homologous means, compared with each reference sequence, at least 80%-99%, at least 81-99%, at least 82-99%, at least 83%-99%, at least 84%-99%, at least 85%-99%, at least 86%-99%, at least 87%-99%, at least 88%-99%, at least 89%-99%, at least 90%-99%, at least 91-99%, at least 92-99%, at least 93-99%, at least 94-99%, at least 95%-99%, at least 96-99%, at least 97%-99%, at least 98%-99%or at least 99%homologous.
  • expression vector generally refers to a self-replicating nucleic acid molecule that can be inserted into a suitable host, which transfers the inserted nucleic acid molecule into and/or between host cells.
  • the expression vectors may include vectors primarily used for insertion of DNA or RNA into cells, vectors primarily used for replication of DNA or RNA, and vectors primarily used for expression of transcription and/or translation of DNA or RNA.
  • the expression vector also includes a vector having a variety of the above-mentioned functions.
  • the expression vector may be a polynucleotide that can be transcribed and translated into a polypeptide when introduced into a suitable host cell.
  • the expression vector can produce the desired expression product by culturing a suitable host cell containing the expression vector.
  • recombinant cell generally refers to a cell that is modified or recombined with the genetic material of the host cell using genetic engineering or cell fusion technology, in whichhas a unique character with stable inheritance.
  • host cell refers to a prokaryoticcell or a eukaryotic cell which a recombinant expression vector can be introduced.
  • transformed or “transfected” refers to the introduction of a nucleic acid (eg, a vector) into a cell by various techniques known in thisfield. Suitable host cells can be transformed or transfected with the DNA sequences of the present invention and can be used for the expression and/or secretion of the target protein.
  • suitable host cells include immortalized hybridoma cells, NS/0 myeloma cells, 293 cells, Chinese hamster ovary (CHO) cells, HeLa cells, Cap cells (human amniotic fluid-derived cells) and CoS cells.
  • composition generally refers to unit dosage form and can be prepared by any of the methods well known in the pharmaceutical field. All methods include the step of combining the active ingredient with the carrier which constitutes one or more accessory ingredients. Generally, the compositions are prepared by uniformly and thoroughly combining the active compound with liquid carriers, finely divided solid carriers, or both.
  • pharmaceutically acceptable refers to those compounds, materials, compositions, and/or dosage forms that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • pharmaceutically acceptable carrier includes any solvent, solid excipient, diluent or another liquid excipient, etc., suitable for the particular target dosage form. Except to the extent that any conventional excipients are incompatible with the compounds of the present invention, such as any adverse biological effect producedor interaction in a detrimental manner with any other component of a pharmaceutically acceptable composition, their usesare also considered in the scope of the present invention.
  • the term "administration" refers to the introduction of a predetermined amount of a substance into a patient by some suitable means.
  • the fusion protein of the present invention can be administered by any common route provided as long as it can reach the intended tissue.
  • Various modes of administration are contemplated, including peritoneal, intravenous, intramuscular, subcutaneous, cortical, oral, topical, nasal, pulmonary, rectal, and smear, but the present invention is not limited to these exemplified modes of administration.
  • the fusion protein of the present invention is administered by injection.
  • a disease associated with abnormal growth hormone generally refers to diseases caused by growth hormone abnormality, such as related diseases caused by a growth hormone deficiency or alienationstatus, including but not limited to, childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turners Syndrome, Prader Willi Syndrome, intrauterine growth retardation, idiopathic short stature, renal failure, and, alienation status during chemotherapy and AIDS treatment.
  • Growth hormone deficiency can include congenital deficiencyor acquired deficiency. With congenital defects, growth hormone deficiency can occur when the pituitary gland does not develop a growth hormone secretion disorder.
  • the occurrence of acquired growth hormone deficiency may result in hypoxia-induced brain tissue damage due to difficulty in delivery.
  • Other causes of growth hormone deficiency include damage to the pituitary gland caused by radiation used to treat brain tumors or postnatal tuberculous meningitis.
  • Growth hormone deficiency manifests symptoms such as growth retardation and short stature, and congenital growth hormone deficiency manifests symptoms of hypoglycemia, starting in neonates. Additionally, children showed symptoms such as increased anxiety and decreased vitality.
  • treatment includes an approach for obtaining beneficial or desired results including clinical results.
  • beneficial or desired clinical results may include one or more of the following: a) inhibiting the disease or condition (e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the extent of the disease or condition) ; b) slowing or arresting the development of one or more clinical symptoms associated with the disease or condition (e.g., stabilizing the disease or condition, preventing or delaying the worsening or progression of the disease or condition, and/or preventing or delaying the spread of the disease or condition) ; and/or c) relieving the disease, that is, causing the regression of clinical symptoms (e.g., ameliorating the disease state, providing partial or total remission of the disease or condition, enhancing effect of another medication, delaying the progression of the disease, increasing the quality of life, and/or prolonging survival.
  • a) inhibiting the disease or condition e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the
  • the present invention provides an Fc fragment mutant, a fusion protein, a nucleic acid molecule, an expression vector, a recombinant cell, a pharmaceutical composition, and a method of preventing or treating a disease associated with abnormal growth hormone, which is described in detail below.
  • the present invention relates to an Fc fragmentmutant.
  • the Fc fragment mutant comprises a first peptide, wherein the first peptide comprisesmutations at the following positions in comparison to a wild-type IgG1 Fc fragment: positions 228, 229, 366, 368, 395 and 409, and optional position 230.
  • the inventors found that the above-mentioned mutations could be beneficial to the formation of monomeric Fc fragment mutant after the expression of the Fc fragment in the native dimer form.
  • the Fc fragment mutant in the form of a monomer could be fused with bioactive molecules, which could be subsequently purified by ProteinA andsimplify the purification process. More importantly, the fusion protein obtained by the Fc fragmentmutanthad higher in vitro and in vivo activity, and lower ADCC and CDC effects.
  • the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: positions 228, 229, 230, 366, 368, 395 and 409; and at least one of positions 351, 428 and 447.
  • the mutations mentioned above can form Fc fragment mutants in monomer form.
  • the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: (1) positions 228, 229, 230, 366, 368, 395, 409 and 447; or (2) positions 228, 229, 230, 366, 368, 395, 409 and 447; or (3) positions 228, 229, 230, 351, 366, 368, 395, 409 and 428; or (4) positions 228, 229, 230, 351, 366, 368, 395, 409, 428 and 447.
  • the mutations mentioned above can form Fc fragment mutants in monomer form.
  • the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K, and K409D or K409T; and at least one of L351S, M428Y and K447A.
  • the mutations mentioned above can form Fc fragmentmutants in monomer form.
  • the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: (1) P228 del, C229 del, P230 del, T366R, L368H, P395K and K409Xaa; (2) P228 del, C229 del, P230 del, T366R, L368H, P395K, K447A and K409Xaa; (3) P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y and K409Xaa; (4) P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y, K447A and K409Xaa; (5) P228 del, C229 del, T366R, L368H, P395K and K409Xaa;
  • the inventors After a lot of experiments, the inventors mutated specific sites to obtain the above-mentioned Fc fragment mutant in the form of monomers.
  • the fusion protein fused with the Fc fragment mutant and the biologically active molecule is secreted and expressed in the form of monomers, and the fusion protein has higher in vitro and in vivo activity and lower ADCC and CDC effects.
  • the fusion protein formed by the fusion of Fc fragmentmutant with growth hormone has the advantages of strong binding capacity to a human growth hormone receptor, good cell proliferation activity and high in vitro activity.
  • the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y, K447A, and K409Xaa, where in K409Xaa, Xaa represent D or T.
  • the inventors found that the fusion protein obtained by fusing the above-mentioned Fc fragment mutant with human growth hormone has stronger binding capacity to a human growth hormone receptor, higher cell proliferation activity, and higher in vitro activity.
  • the Fc fragmentmutants of fusion proteins J16 and J18 in the examples of the present invention had different mutation sites.
  • the Fcfragment mutants of J18 contained mutations of the above sites simultaneously, while the Fcfragment mutants of J16 did not have L351S and M428Y mutations compared with J18.
  • the results showed that the fusion protein J18 has stronger binding ability to a human growth hormone receptor, better cell proliferation activity, and better in vitro activity.
  • the fusion protein J17 increased L351S and M428Y mutations, and the 409thposition of J2 and J17 is different (J17 is K409T) .
  • J17 has stronger activity on cell proliferation and better in vitro activity. Therefore, the fusion protein obtained by the Fc fragment mutation with both L351S and M428Y mutations hasstronger binding ability to a human growth hormone receptor, better cell proliferation activity, and better in vitro activity.
  • the Fc fragment mutant further comprises: ahinge region fragment of the wild-type IgG1, wherein a C-terminal of the hinge region fragment of the wild-type IgG1 is connected with an N-terminal of the first peptide segment.
  • the hinge region fragment of the wild-type IgG1 comprisesan amino acid sequence as shown in SEQ ID NO: 41.
  • the Fc fragment mutant comprises an amino acid sequence as shown in any one of SEQ ID NOs: 2 to 7.
  • the fusion protein obtained by fusion of the Fc fragment mutants with bioactive molecules has high in vitro and in vivo bioactivity.
  • the Fc fragment mutant is a monomer.
  • the present invention relates to a fusion protein.
  • the fusion protein comprises: a second peptide comprising a bioactive molecular functional region; and a third peptideconnected with the second peptide, the third peptide comprising an Fc fragment mutant according to any one of the above-mentioned Fc fragment mutant.
  • the fusion protein of the invention is a monomer, which has higher in vitro and in vivo activity and lower ADCC and CDC effects. And, the fusion protein can be subsequently purified by ProteinA and simplify the purification process.
  • the second peptide comprises a growth hormone, a growth hormone analog, a growth hormone functional region or a growth hormone analog functional region.
  • the above-mentioned fusion protein is a monomer, which has higher in vitro and in vivo activity and lower ADCC and CDC effects. And, the fusion protein hasthe advantages of strong binding ability to a human growth hormone receptor, good cell proliferation activity, and high in vitro activity.
  • the second peptide comprises the human growth hormone or the human growth hormone functional region.
  • the human growth hormone comprises an amino acid sequence as shown in SEQ ID NO: 1 or at least 90%homologous thereof.
  • an N-terminal of the second peptide is connected to a C-terminal of the third peptide; or a C-terminal of the second peptide is connected with an N-terminal of the third peptide.
  • the fusion protein obtained by the above-mentioned connection method has higher in vitro and in vivo activity.
  • the N-terminal of the second peptide is connected to the C-terminal of the third peptide.
  • the fusion protein further comprises a linker peptide, wherein the linker peptide is arranged between the second peptide and the third peptide.
  • the fusion protein is obtained by which the second peptide and the third peptide can be fused by the above-mentioned linker peptide.
  • the biological activity of the fusion protein can be improved.
  • the fusion proteins J1, J2, J6 and J7 have different linker peptides. Compared with J1 without the linker peptide, J2, J6 and J7 have better binding activity to hGHR and better effect on promoting cell proliferation.
  • an N-terminal of the linker peptide is connected with a C-terminal of the third peptide, and a C-terminal of the linker peptide is connected with an N-terminal of the second peptide; oran N-terminal of the linker peptide is connected with a C-terminal of the second peptide, and a C-terminal of the linker peptide is connected with an N-terminal of the third peptide.
  • the N-terminal of the linker peptide is connected with the C-terminal of the third peptide.
  • the fusion protein obtained by the above-mentioned method can further improve its binding ability to corresponding receptors, cell proliferation activity and in vitro activity.
  • the fusion protein obtained by the fusion of Fc fragment mutant and growth hormone can be more effective in animals.
  • the linker peptide comprises an amino acid sequence of (GGGGS) n , n being an integer greater than or equal to 1.
  • the fusion protein was obtained by using the second peptide and the third peptide that can be fused by the above-mentioned linker peptide. And the biological activity of the fusion protein can be improved.
  • the n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the fusion protein was obtained by using the second peptide and the third peptide that can be fused by the above-mentioned linker peptide, and the biological activity of the fusion protein can be improved.
  • the linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10.
  • the fusion protein is obtained by which the second peptide and the third peptide can be fused by the above-mentioned linker peptide. And the biological activity of the fusion protein can be improved.
  • the fusion protein comprises an amino acid sequence as shown in any one of SEQ ID NOs: 24-31.
  • the above-mentioned fusion protein has strong binding ability to corresponding receptors, better cell proliferation activity, and better in vitro activity.
  • the present invention relates to a nucleic acid molecule.
  • the nucleic acid molecule encodesthe above-mentionedFc fragment mutant andthe above-mentioned fusion protein.
  • the nucleic acid molecule can be effectively used to express the above-mentionedFc fragment mutants or the above-mentioned fusion proteins, especially in prokaryotes or low eukaryotes.
  • the fusion protein is a monomer form, which has higher in vitro and in vivo activity and lower ADCC and CDC effects.
  • the nucleic acid molecule is DNA.
  • the present invention relates to an expression vector.
  • theexpression vector carries the above-mentionednucleic acid molecule.
  • the above-mentioned expression vector can effectively express the above-mentioned Fc fragment mutant or the above-mentionedfusion protein, especially in prokaryotes or lower eukaryotes.
  • the fusion protein is a monomer, which has higher in vitro and in vivo activity and lower ADCC and CDC effects.
  • the expression vector is a eukaryotic expression vector.
  • the expression vector is a lentiviral vector.
  • the present invention relates to a recombinant cell.
  • the recombinant cell carries the above-mentionednucleic acid molecule; or expresses the above-mentionedFc fragmentmutant and the above-mentionedfusion protein.
  • the recombinant cells can effectively express the above-mentioned Fc fragment mutant or fusion protein, especially in prokaryotes or lower eukaryotes.
  • the fusion protein is a monomer form, which has higher in vitro and in vivo activity and lower ADCC and CDC effects.
  • the recombinant cell is obtainable by introducing the above-mentioned expression vector into a host cell.
  • the recombinant cell isa eukaryotic cell.
  • the recombinant cell isa mammalian cell.
  • the present invention relates to a pharmaceutical composition.
  • the pharmaceutical composition comprises the above-mentioned fusion protein.
  • the above-mentioned pharmaceutical compositions can be used to prevent and treat a disease associated with abnormal growth hormone.
  • the pharmaceutical composition is the dosage form of an injection.
  • the pharmaceutical composition has an administration routinecomprising subcutaneous or intravenous injection.
  • the present invention relates to a method for preventing or treating a disease associated withabnormal growth hormone.
  • the method comprises: administering to the subject in need a pharmaceutically effective amount of the above-mentioned fusion protein and the above-mentionedpharmaceutical composition. This method can effectively prevent or treat a diseases related to abnormal growth hormone.
  • the fusion protein is administered by subcutaneous injection or intravenous injection.
  • the disease associated withabnormal growth hormone comprises at least one of the followingchildhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
  • afusion protein a nucleic acid molecule, an expression vector, a recombinant cell and a pharmaceutical composition
  • the present invention relates to the use of the above-mentioned fusion protein, the above-mentioned nucleic acid molecule, the above-mentioned expression vector, the above-mentioned recombinant cell, and the above-mentioned pharmaceutical composition in the preparation of a medicament for preventing or treating a disease associated with abnormal growth hormone.
  • the disease associated with abnormal growth hormone comprises at least one of the following: childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
  • the present invention relates to the above-mentioned fusion protein, the above-mentioned nucleic acid molecule, the above-mentioned expression vector, the above-mentioned recombinant cell, and the above-mentioned pharmaceutical composition, for use in preventing or treating a disease associated with abnormal growth hormone.
  • the present invention relates to the above-mentioned fusion protein, the above-mentioned nucleic acid molecule, the above-mentioned expression vector, the above-mentioned recombinant cell, and the above-mentioned pharmaceutical composition, for use in preventing or treating a disease associated with abnormal growth hormonecomprises at least one of the following: childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
  • the compounds disclosed herein may be prepared by methods described herein, wherein the substituents are as defined for Formula (I) above, except where further noted.
  • the following non-limiting schemes and examples are presented to further exemplify the present invention.
  • Example 1 Preparation the expression vector of recombinant long-acting human growth hormone fusion protein.
  • the human growth hormone (SEQ ID NO: 1) was linked with the Fc fragmentmutant (SEQ ID NO: 2 or SEQ ID NO: 7) to construct a fusion protein, and J1 and J3 are obtained respectively. Andthe human growth hormone (SEQ ID NO: 1) was linked with various Fc fragmentmutants (SEQ ID NO: 2 or any one of SEQ ID NOs: 4-6) through linker peptides (any one of SEQ ID NOs: 8-10) to construct fusion proteins, and J2, J6, J7 and J16-18 were obtained respectively.
  • the specific experimental operations are as follows:
  • pCDNA3.4 Thermo Fisher
  • Example 2 Expression of recombinant long-acting human growth hormone fusion protein.
  • Example 2 Using Expi CHO-S (Gibco, A29133) as the host cell, the multiple plasmids obtained in Example 1 were transfected into the host cell, and the chemical transfection reagent Polyplus-FectoPRO (polyplus, 116-010) was used to transiently express the fusion protein (as the recombinant long-acting human growth hormone fusion protein) corresponding to amino acid sequence SEQ ID NOs: 24-31.
  • the experimental operation is as follows:
  • transfection complex 16 sterile cell culture flasks were taken, 8 labeled "DNA” and 8 labeled "FectoPRO” . And transfection reagent Polyplus-fectoPRO was added into the "FectoPRO” flask and mixed; 60mL opti-mem solution and 500 ⁇ g fusion protein expression vectors obtained in Example 1 were added into each "DNA” flask and mixed. And the diluent of the fusion protein expression vector was obtainded. And the diluent of the fusion protein expression vector of each nucleotide sequence was added to the "FectoPRO” flask and mixed. Then the diluent mixedwas incubated at room temperature for 10 minutes, then the diluent was added to the cell solution and shaken, and the cell culture flask was returned to the shaker to continue culture and transfection.
  • step 4) After the cell culture medium obtained in step 3) was transfected for 18-22 hours, an appropriate amount of OPM-CHO ProFeed was added, and the biochemical indicators of the cell solution were measured. According to biochemical indicators, supplement glucose to 6g/L. Titer was measured 4 days after transfection, and supplemented with sugar and culture solution every other day. The CHO cell fermentation broth could be obtained when the cell viability is less than 80%, and the supernatant can be harvested for purification.
  • Example 3 Purification of recombinant long-acting human growth hormone fusion protein.
  • the CHO cell fermentation liquid obtained in Example 2 was centrifuged in two stages (first stage: 3, 000 ⁇ g, 30 min; second stage: 12,000 ⁇ g, 20 min) .
  • the supernatant was collected and filtered through a 0.2 ⁇ m filter, and set aside.
  • Protein A affinity chromatography The aqueous solution containing 20 mM phosphate and 150 mM NaCl at pH 7.2 was used to equilibrate the chromatographycolumnfor at least 3 columnvolumes, and the filtered clarified filtrate was loaded and remained on the chromatography column for 5 minutes. After loading the sample, the aqueous solution containing 20 mM phosphate and 150 mM NaCl at pH 7.2 was used to equilibrate the chromatographycolumnfor at least 1 column volume, followed by 50 mM pH 4.5 Acetic acid (HAc) buffer, 50 mM pH 4.0 HAc buffer, and 50 mM pH 3.5 HAcbuffer were used to elute the target protein respectively.
  • HAc Acetic acid
  • Example 4 Binding of fusion protein to hGHR.
  • the purified fusion protein obtained in Example 3 was subjected to in vitro receptor (hGHR) binding activity detection, and Genexine GX-H9 was used as a control group.
  • the specific experimental operations are as follows:
  • hGHR was diluted to obtain a 0.5 ⁇ g/ml coating solution, which was added to ELISA plate at 100 ⁇ L/well, and coated for more than 12 hours at 2 ⁇ 8°C.
  • the plate residue was discarded, 300 ⁇ Lof 1%BSA-PBST (phosphate Tween buffer containing 1%bovine serum albumin) was added into each well, and blocked for 1 hour at 37°C.
  • 1%BSA-PBST phosphate Tween buffer containing 1%bovine serum albumin
  • PBST Phosphate Tween Buffer
  • the ELISA plate comprising the long-acting human growth hormone fusion protein or Genexine GX-H9 was incubated at 37°C for 1 hour, then 300 ⁇ L of PBST was added to each wellfor 3 washes, and the Goat anti-human IgG Fc-HRP that dilute 10000 foldwith 1%BSA-PBST was added, 100 ⁇ L/well of a sample. After incubation at 37°C for 1 hour, 300 ⁇ L of PBST was added to each wellfor 3 washes, and patted dry. TMB Substrate was added, 100 ⁇ L per well. After 5 minutes of reaction at room temperature, 2M H 2 SO 4 aqueous solution was added to stop the reaction, 100 ⁇ L/well.
  • the ELISA plate that stopped the reaction was put on a microplate reader, the absorbance OD 450 value was read at a wavelength of 450nm and the EC 50 of each fusion protein's binding activity to hGHR was calculated, as shown in Table 1.
  • the fusion proteins have a low EC 50 value for binding to hGHR, and has strong binding activity to hGHR. And compared with Genexine GX-H9, the fusion proteins binding activity with human GHR are similar or better.
  • Example 5 Promoting proliferation of NB2-11 cells of Recombinant long-acting Human growth hormone fusion protein.
  • the purified fusion protein obtained in Example 3 was subjected to the following experiments, and the above-mentioned Genexine GX-H9 was used as the control group.
  • Cells were collected and suspended in the medium (PRMI 1640 medium containing 1%FBS and 50 ⁇ M ⁇ -mercaptoethanol) at a concentration of 1 ⁇ 10 5 cells per ml. 50 ⁇ L of each cell sample was added to each well of a 96-well cell culture plate. The cells were cultured with 50 ⁇ L of assay medium containing various concentrations of recombinant long-acting human growth hormone fusion protein and Genexine GX-H9 from 0.051 ng/mL to 3000 ng/mL.
  • the medium PRMI 1640 medium containing 1%FBS and 50 ⁇ M ⁇ -mercaptoethanol
  • the cell plates were cultured at 37°C in a 5%CO 2 humidified incubator for 96 hours, and then 50 ⁇ L of cellTiter-Glo Luminescent Cell Viability Assay (Promega, G7571) was added to each well. After 10 minutes, the chemiluminescence signal was detected by a microplate reader. The biological activity of the recombinant long-acting human growth hormone fusion protein can be determined from the obtained dose-response curve. The results are shown in Table 2.
  • the fusion proteins have a low EC 50 value to promote the proliferation of NB2-11 cells, and have a good proliferation of Nb2-11 cells. Compared with Genexine GX-H9, the relative activity of Nb2-11 cell proliferation was convergent or better.
  • Example 6 Biological activity of recombinant long-acting human growth hormone fusion protein on reporter cells.
  • the purified fusion protein obtained in Example 3 was subjected to the following experiments, and the above-mentioned Genexine GX-H9 was used as the control group.
  • the reporter gene cells (293-GHR/STAT5 cell line) in the logarithmic growth phase were taken, and trypsin was used to digest the reporter gene cells. Then the reporter gene cells were plated (costar, 3917) at 4 ⁇ 10 4 cells/well, 50 ⁇ L/well, and the 96-well white plate was incubated at 37 °C in a 5%CO2 incubator to incubate overnight.
  • the reporter gene cells were added with the recombinant long-acting human growth hormone fusion protein diluted in gradient, the initial concentration was 100 nM, 5-fold gradient dilution, a total of 10 gradient concentrations; the dilution was added to the reporter gene cells, and the additional volume was 50 ⁇ L/well, and the 96-well white plate was incubated at 37 °C in a 5%CO 2 incubatorfor 6 hours. After the incubation, the 96-well white plate and Nano-Glo Luciferase Assay kit (promega, N112B) were taken out, and equilibrated to room temperature, the reaction substrate was added to the sample wells at a volume of 50 ⁇ L/well and placed at room temperature for 10 minutes.
  • the instrument (Promega, GM2000) recorded the luminescence signal value, with the protein concentration as the X-axis and the luminescence signal value as the Y-axis.
  • GraphPad Prisim 5 was used for four-parameter fitting to calculate the EC 50 value, and the results were shown in Table 3.
  • the results show that the EC 50 value of the fusion proteins to promote the reporter gene cells to express luciferase is low, which is equal to or lower than that of the control group. And the fusion proteins have excellent activity in promoting the reporter gene cells to express luciferase.
  • Example 7 The ADCC effect of test sample-induced effector cell Jurkat-CD16a-luc on target cell CHO-K1-PD-L1/GHR1) Sample information
  • Target cells CHO-K1-PD-L1/GHR (Shanghai Kabe Biomedical Technology Co., LTD., SBTCL015) treatment:
  • the cells were passaged 2 days before the experiment, and the supernatant was discarded. After washing the cells with 5 mL of PBS, 1 mL of 0.25%Trypsin-EDTA was added. After digestion in a 37°C incubator for 1 min, 6 mL of medium 1 (450 mL of F12 medium + 50 mL of FBS) was added to terminate digestion, and resuspend to single cell suspension. 5mL of cell suspension was discarded, and 8mL of medium 1 (450mL of F12 medium + 50mL of fetal bovine serum (FBS) ) was added, then 120 ⁇ L of G418 was added and mixed, G418 work concentration was 600 ⁇ g/mL. The cells were put into the incubator to continue culturing.
  • medium 1 450 mL of F12 medium + 50 mL of FBS
  • FBS fetal bovine serum
  • the cells were passaged 2 days before the experiment, and the cell suspension was mixed by pipetting.
  • the 5mL cell suspension was taken into the new T75 culture flask, then 15mL medium 2 (450mL RPMI 1640 medium +50mL FBS) was added, and 320 ⁇ L G418 was added, the work concentration of G418 was 800 ⁇ g/mL.
  • 60 ⁇ L Hygromycin B was added and mixed, and the action concentration of Hygromycin B was 150 ⁇ g/mL.
  • the cells were put into the incubator to continue culturing.
  • the density of target cells cho-K1-PD-L1 /GHR was adjusted to 1.83 ⁇ 10 5 cells /mL in analysis medium 1 (40mL F12 medium + 0.4ml FBS) , and the target cells were plated overnight at 50 ⁇ L/well.
  • the test samples i.e. J2 or J18
  • positive control M7824 Shanghai Jiabei Biomedical Technology Co., Ltd.
  • the positive control M7824 induces effector cell Jurkat-CD16A-Luc to havean obvious ADCC effect on target cell CHO-K1-PD-L1/GHR, the negative control Acterma has no ADCC effect, and the test sample has no ADCC effect, wherein the concentration unit of the abscissa in FIG. 2 is ng/ml.
  • Example 8 The CDC effect of test sample induced human serum complement on target cells
  • Target cells CHO-K1-PD-L1/GHR (Shanghai Kabe Biomedical Technology Co., LTD., SBTCL015) treatment:
  • the cells were passaged 2 days before the experiment, and the supernatant was discarded. After washing the cells with 5 mL of PBS, 1 mL of 0.25%Trypsin-EDTA was added. After digestion in a 37°C incubator for 1 min, 6 mL of medium 1 (450 mL of F12 medium + 50 mL of FBS) was added to terminate digestion, and resuspend to single cell suspension, 5mL of cell suspension was discarded, and 8mL of medium 1 (450mL of F12 medium + 50mL of fetal bovine serum (FBS) ) was added, then 120 ⁇ L of G418was added and mixed, G418 work concentration was 600 ⁇ g/mL. The cells were put into the incubator to continue culturing.
  • medium 1 450 mL of F12 medium + 50 mL of FBS
  • FBS fetal bovine serum
  • the density of target cells cho-K1-PD-L1 /GHR was adjusted to 2.0 ⁇ 10 5 cells /mL in the differentiation medium (99%F12 medium + 1%FBS) , and the target cells were plated overnight at 50 ⁇ L/well.
  • the test samples i.e. J2 or J18
  • Avelumab PD-1 antibody, Shanghai Jiabei Biomedical Technology Co., Ltd.
  • the cell plate was removed and equilibrated at room temperature, the 50 ⁇ L/well of one-GLo Luciferase Assay System (Promega, E6120) was added to the cell plate and pipetted blow 10 times and mixed well. After lysing at room temperature for 10 min in the dark, the chemiluminescence signal was detected by a microplate analyzer.
  • one-GLo Luciferase Assay System Promega, E6120
  • the positive control Avelumab After adding positive control PD-L1 antibody Avelumab, negative control IL-6R antibody Acterma and test samples in the CDC experiment, the positive control Avelumab induces human serum complement to havean obvious CDC effect on target cell CHO-K1-PD-L1/GHR, the negative control Acterma has no CDC effect, and the test sample has no CDC effect.
  • Example 9 In vivo biological activity test
  • 4-week-old SPF male SD rats with a body weight of 60g-80g were selected. Two weeks before the experiment, the pituitary gland was surgically removed under clean conditions, and the recovery period was 2 weeks after the pituitary removal operation. Before drug administration, qualified healthy animals whose body weight changes were less than ⁇ 10%of the preoperative body weight were selected, and the pituitary-removed rats were randomly divided according to their body weight. There were 5 groups, 8 mice in each group, namely the model group, J2 fusion protein low-dose group, J2 fusion protein high-dose group, J18 fusion protein low-dose group and J18 fusion protein high-dose group. The mode of administration was a subcutaneous injection in the neck.
  • J2 fusion protein low-dose group was given 9.35 nmol/kg J2 fusion protein.
  • J18 fusion protein low-dose group was given 9.35 nmol/kg J18 fusion protein.
  • J2 fusion protein high-dose group was administered with 56.1 nmol/kg J2 fusion protein.
  • J18 fusion protein high-dose group was administered with 56.1 nmol/kg J18 fusion protein; the model group was given solvent.
  • the drug or solvent was administered once a week in the above manner, and the drug or solvent were given twice in total. After drug administration, each rat was weighed at the same time every day, and the changes in body weight of the rats was calculated every day. After 14 days, the experiment was stopped and the rats were weighed.
  • Body weight gain (g) on a day after dosing is the difference between each animal's body weight on that day and its pre-dose body weight.
  • an anatomical examination confirms that there was no pituitary in the sella region.
  • the changes in body weight gain of each group within 14 days were compared.
  • the results are shown in FIG. 3, wherein "2#-low” was the low-dose J2 fusion protein group, "2#-high” was the high-dose J2 fusion protein group, "18#-low” was the low-dose J18 fusion protein group, and "18#-high” was the high-dose J18 fusion protein group.
  • J2 fusion protein and J18 fusion protein can significantly increase the body weight of rats at both low-dose and high-dose, indicating that the fusion protein provided by the invention has good in vivo activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are an Fc fragment mutant, a fusion protein, a nucleic acid molecule, an expression vector, a recombinant cell, pharmaceutical composition and use thereof, and a method for preventing or treating a disease associated with abnormal growth hormone. The Fc fragmentmutant has an amino acid sequence as shown in any one of SEQ ID NOs: 2 to 7; the fusion protein comprises: asecond peptide comprising a bioactive molecular functional region, and a third peptide connected with the second peptide, the third peptide comprising an Fc fragment mutant according to any one of the above-mentioned Fc fragment mutant.

Description

RECOMBINANT LONG-ACTING HUMAN GROWTH HORMONE FUSION PROTEIN AND ITS USE THEREOF
CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefits of Chinese Patent Application 202111420842.9, filed November 26, 2021, and Chinese Patent Application 202210395423.2, filed April 14, 2022, which are incorporated herein by reference in their entirety.
FIELD
The present disclosure relates to the field of molecular biology and medicine. Specifically, the present invention relates to recombinant long-acting human growth hormone fusion protein and itsuse thereof. More specifically, the present invention relates to an Fc fragmentmutant, a fusion protein, a nucleic acid molecule, an expression vector, a recombinant cell, a pharmaceutical composition and its use thereof, and a method of preventing and/or treating a diseaseassociated withabnormal growth hormone.
BACKGROUND
Growth hormone deficiency is a well-recognized clinical syndrome associated with many metabolic abnormalities, including abnormal body composition, decreased physical performance, altered lipid metabolism, decreased bone mass, increased insulin resistance, and decreased quality of life. Most metabolic abnormalities associated with growth hormone deficiency couldbe reversed with recombinant human growth hormone (rhGH) replacement. Traditional treatment for growth hormone deficiency involves daily subcutaneous injections of rhGH, but the treatment is cumbersome and inconvenient for many patients, which in turn raises concerns about poor compliance to treatment, and may lead to reduced efficacy. Long-acting rhGH preparations or long-acting growth hormone (GH) preparations not only reduce the number of injections and improve compliance to treatment but also help to improve the therapeutic effect of GH.
Therefore, there is still an urgent need to develop a new fusion protein that can effectively treat growth hormone deficiency.
SUMMARY
The present invention is accomplished based on the following findings of the inventor:
In the research and development process, the inventors surprisingly found that if specific sites of the wild-type IgG1 Fc fragmentwere mutated (such as P228 del, C229 del, P230 del, T366R, L368H, P395K and K409Xaa; or P228 del, C229 del, T366R, L368H, P395K, and K409Xaa; where in K409Xaa, Xaa represent D or T) , the Fc fragment in the native dimer form could be expressed to form the Fcfragment mutant in the form of a monomer. In addition, it is further found that the fusion protein in the form of monomer could be formed by fusion of the above-mentioned Fc fragment mutant and growth hormone, which could be purified by ProteinAand simplify the purification process. More importantly, the fusion protein obtained a strong binding activity of human growth hormone receptor, good promoting cell proliferation activity and good reporter gene cell expression luciferase activity, as well as longer half-life and betterin vivo biological activity.
Therefore, in the first aspect, the present invention relates to anFc fragmentmutant. According to an embodiment of the present invention, the Fc fragment mutant comprises a first peptide, the first peptide comprises mutations at the following positions in comparison to a wild-type IgG1 Fc fragment: positions 228, 229, 366, 368, 395 and 409, and optional position 230.
In the research and development process, the inventors found that the above-mentioned mutations could be beneficial to the formation of monomeric Fc fragment mutant after the expression of the Fc fragment in the native dimer form. The Fc fragment mutant in the form of a monomer could be fused with bioactive molecules, which could be subsequently purified by ProteinA and simplify the purification process. More importantly, the fusion protein obtained by the Fc fragment mutanthasa higher in vitro and in vivo activity, and lower ADCC and CDC effects.
It should be noted that the Fc fragment of the IgG antibodyreferredin this patent refers to the CH2 region and the CH3 regions ofthe IgG antibody.
For example, the amino acid sequence of a wild-type IgG1Fc fragment (including CH2-CH3) is as follows:
Figure PCTCN2022100114-appb-000001
It should be noted that the wild-type IgG1Fc fragment referred to in this patent refers to the wild-type IgG1Fc fragment of human.
The amino acid sequence of the hinge region fragment of the wild-type IgG1is as follows:
DKTHTG (SEQ ID NO: 41) .
The nucleotide sequence of the hinge region fragment of the wild-type IgG1 is as follows:
GACAAGACACACACCGGA (SEQ ID NO: 42) .
In the second aspect, the present invention relates toa fusion protein. According to an embodiment of the present invention, the fusion protein comprises: a second peptide comprising a bioactive molecular functional region; and a third peptideconnected with the second peptide, the third peptide comprisingan Fc fragment mutant according to the first aspect.
In the third aspect, the present invention relates to a fusion protein. According to an embodiment of the present invention, the general structure of the fusion protein is expressed as X-L-Y or Y-L-X; wherein X is the first bioactive molecule, L is absent or a linker peptide, Y is the second bioactive molecule, -is the peptide bond. And the X or Y is selected from the protein or protein domain, polypeptide, antibody or antibody fragment.
It should be noted that the "X-L-Y" means that a C-terminal of X is connected with an N-terminal of L, and a C-terminal of L is connected with an N-terminal of Y. The "Y-L-x" means that a C-terminal of Y is connected with an N-terminal of L, and a C-terminal of L is connected with an N-terminal of X.
In some embodiments, the fusion protein described in the second aspector the third aspect may further comprise at least one of the following additional technical characteristics:
In some embodiments, the fusion protein is a monomer.
In some embodiments, the X is a human growth hormone.
In some embodiments, the amino acid sequence of the human growth hormone comprises an amino acid sequence as shown in SEQ ID NO: 1 or at least 80%-99%homologous thereof, or at least part of its sequence.
Figure PCTCN2022100114-appb-000002
In some embodiments, the nucleotide sequence of the human growth hormone comprises a nucleotide sequence as shown inSEQ ID NO: 11 or at least 80%-99%homologous thereof, or at least part of its sequence or a codon-optimized sequence of its sequence.
Figure PCTCN2022100114-appb-000003
In some embodiments, the Y is the IgG Fc fragment mutant.
In some embodiments, the Y is the IgG1 Fc fragment mutant.
In some embodiments, the amino acid sequence of the IgG1 Fc fragment mutant comprises an amino acid sequence as shown in any one of SEQ ID NOs: 2-7 or at least 80%-99%homologous thereof, or at least part of its sequence.
Figure PCTCN2022100114-appb-000004
Figure PCTCN2022100114-appb-000005
Compared with wild-type IgG1Fc fragment, the mutations in the first peptide of SEQ ID NO: 2 comprises P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K and K409T.
Compared with wild-type IgG1Fc fragment, the mutations in the first peptide of SEQ ID NO: 3 and SEQ ID NO: 7comprise P228 Delete, C229 Delete, T366R, L368H, P395K and K409T.
Compared with wild-type IgG1Fc fragment, the mutations in the first peptide of SEQ ID
NO: 4comprises P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K, K409Tand K447A.
Compared with wild-type IgG1Fc fragment, the mutations in the first peptide of SEQ ID
NO: 5comprises P228 Delete, C229 Delete, P230 Delete, L351S, T366R, L368H, P395K, K409D and M428Y.
Compared with wild-type IgG1Fc fragment, the mutations in the first peptide of SEQ ID
NO: 6comprises P228 Delete, C229 Delete, P230 Delete, L351S, T366R, L368H, P395K, K409D, M428Yand K447A.
The above-mentionedmutations could be conducive to the formation of monomeric Fc fragment mutant after the expression of the Fc fragment in the native dimer form, which could form fusion proteins with bioactive molecules. And the fusion proteins could be subsequently purified by ProteinA, andsimplify the purification process, improve in vivo and in vitro activity.
In some embodiments, the linker peptide comprises one or more amino acids selected from glycine, serine, alanine, and threonine.
In some embodiments, the linker peptide comprises an amino acid sequence of (GGGGS)  nor at least 80%-99%homologous thereof, or at least part of its sequence, n being an integer greater than or equal to 1, preferably 1, 2, 3, 4, 5 or 6.
In some embodiments, the amino acid sequence of the linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10 or at least 80%-99%homologous thereof, or at least part of its sequence.
GGGGSGGGGSGGGGS (SEQ ID NO: 8) .
GGGGSGGGGS (SEQ ID NO: 9) .
GGGGS (SEQ ID NO: 10) .
In some embodiments, the nucleotide sequence of the linker peptide comprises a nucleotide sequence as shown inany one of SEQ ID NOs: 21-23 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
GGAGGAGGAGGAAGCGGAGGCGGAGGATCTGGAGGAGGAGGAAGC (SEQ ID NO: 21) .
GGCGGCGGAGGATCTGGCGGAGGTGGAAGT (SEQ ID NO: 22) .
GGCGGCGGAGGATCT (SEQ ID NO: 23) .
In some embodiments, the amino acid sequence of the fusion protein comprises an amino acid sequence as shown in any one of SEQ ID NOs: 24-31 or at least 80%-99%homologous thereof, or at least part of its sequence.
Figure PCTCN2022100114-appb-000006
Figure PCTCN2022100114-appb-000007
In some embodiments, the first bioactive molecule, the second bioactive molecule, and the linker peptide in the amino acid sequence shown in SEQ ID NOs: 24-31 are shown in the table below:
Figure PCTCN2022100114-appb-000008
In some embodiments, the nucleotide sequence of the fusion protein comprises a nucleotide sequence as shown inany one of SEQ ID NOs: 32-39 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
Figure PCTCN2022100114-appb-000009
Figure PCTCN2022100114-appb-000010
Figure PCTCN2022100114-appb-000011
Figure PCTCN2022100114-appb-000012
In the fourth aspect, the present invention relates toa linker peptide for constructing fusion protein. According to an embodiment of the present invention, the amino acid sequence of the linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10 or at least 80%-99%homologous thereof, or at least part of its sequence.
In the fifth aspect, the present invention relates to a nucleic acid molecule. According to an embodiment of the present invention, the nucleic acid molecule encodesthe Fc fragment mutant of the first aspect, or the fusion protein of the second aspect and the third aspect, or the linker peptide of the fourth aspect.
In some embodiments, the nucleotide sequence of the nucleic acid molecule comprises at least one of SEQ ID NOs: 21-23 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
SEQ ID NO: 21 encodes SEQ ID NO: 8.
SEQ ID NO: 22 encodes SEQ ID NO: 9.
SEQ ID NO: 23 encodes SEQ ID NO: 10.
In some embodiments, the nucleotide sequence of the nucleic acid molecule comprises at least one of SEQ ID NOs: 32-39 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
SEQ ID NO: 32 encodes SEQ ID NO: 24.
SEQ ID NO: 33 encodes SEQ ID NO: 25.
SEQ ID NO: 34 encodes SEQ ID NO: 26.
SEQ ID NO: 35 encodes SEQ ID NO: 27.
SEQ ID NO: 36 encodes SEQ ID NO: 28.
SEQ ID NO: 37 encodes SEQ ID NO: 29.
SEQ ID NO: 38 encodes SEQ ID NO: 30.
SEQ ID NO: 39 encodes SEQ ID NO: 31.
In some embodiments, the nucleotide sequence of the nucleic acid molecule comprises at least one of SEQ ID NOs: 12-20 or at least 80%-99%homologous thereof, or at least part of its sequence, or a codon-optimized sequence of its sequence.
SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 15 and SEQ ID NO: 16 encode SEQ ID NO: 2.
SEQ ID NO: 14 encodes SEQ ID NO: 3.
SEQ ID NO: 17 encodes SEQ ID NO: 4.
SEQ ID NO: 18 encodes SEQ ID NO: 5.
SEQ ID NO: 19 encodes SEQ ID NO: 6.
SEQ ID NO: 20 encodes SEQ ID NO: 7.
Figure PCTCN2022100114-appb-000013
Figure PCTCN2022100114-appb-000014
Figure PCTCN2022100114-appb-000015
Inthe sixth aspect, the present invention relates to an expression vector. According to an embodiment of the present invention, the expression vectorcarries the nucleic acid molecule of the fifth aspect. After the expression vector according to embodiments of the invention is introduced into a suitable recipient cell, the recipient cell can be effectively achieved the expression of the above-mentioned Fc fragmentmutant or fusion protein under the mediation of a regulatory system, so as to obtain a large amount of the Fc fragmentmutant or the fusion protein.
Inthe seventh aspect, the present invention relates to a recombinant cell. According to an embodiment of the present invention, the recombinant cell carries the nucleic acid molecule of the fifth aspect, or the expresses the Fc fragment mutant of the first aspect or the fusion protein of the second aspect or the third aspect. The recombinant cell according to embodiments of the invention can be used for in vitro expression and large quantities of the Fc fragmentmutants or the fusion proteins.
In theeighth aspect, the present invention relates toa pharmaceutical composition. According to an embodiment of the present invention, the pharmaceutical composition comprises the fusion protein of the second aspect or the third aspect. The pharmaceutical composition could prevent or treat a disease associated withabnormal growth hormone.
In some embodiments, the pharmaceutical composition is for oral and/or intravenous administration, such as pushing injection or continuous infusion for a period of time, via the subcutaneous, intramuscular,  intraarterial, intraperitoneal, intrapulmonary, cerebrospinal, intra-articular, intrasynovial, intrathecal, or by inhalation routes such as intranasally. A pharmaceutical composition is usually administered intravenously or subcutaneously.
In some embodiments, the dosage form of the pharmaceutical composition is a tablet, a capsule, a spray, an injection, a freeze-dried powder injection or a prefilled injection.
Inthe ninthaspect, the present invention relates to a method of preparing the fusion protein of the second aspect or the third aspect. According to an embodiment of the present invention, the method comprises: culturing of the recombinant cell of the seventh aspect to obtain a culture medium containing the fusion proteins of the second aspect or the third aspect; the fusion protein is separated from the culture medium. The fusion proteins can be prepared effectively.
Inthe tenthaspect, the present invention relates to a method ofpreventing or treating a disease associated withabnormal growth hormone. According to an embodiment of the present invention, the method comprises: administering to a subject in need a pharmaceutically acceptable amount of the fusion protein of the second aspect or the third aspect, or the pharmaceutical composition of the eighth aspect.
Inthe eleventh aspect, the present invention relates tothe use of the fusion protein of the second aspect or the third aspect, the nucleic acid molecule of the fifth aspect, the expression vector of the sixth aspect, the recombinant cell of the seventh aspect and the pharmaceutical composition of the eighth aspect inthe preparation of a medicament for preventing or treating a disease associated with abnormal growth hormone.
In the twelfth aspect, the present invention relates tothe fusion protein of the second aspect or the third aspect, the nucleic acid molecule of the fifth aspect, the expression vector of the sixth aspect, the recombinant cell of the seventh aspect, and the pharmaceutical composition of the eighth aspect, for use in preventing or treating a disease associated with abnormal growth hormone.
In the thirteenthaspect, the present invention relates tothe fusion protein of the second aspect or the third aspect, the nucleic acid molecule of the fifth aspect, the expression vector of the sixth aspect, the recombinant cell of the seventh aspect, and the pharmaceutical composition of the eighth aspect, for use in preventing or treating a disease associated with abnormal growth hormone comprises at least one of the following: childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
Beneficial effects:
Compared with the prior art, the present invention has at least one of the following beneficial effects:
(1) In the present invention, the Fc fragment mutant of the fusion proteinis mutated at a specific site. The fusion protein formed by the fusion of theFc fragment mutant and growth hormoneis secreted and expressed in the form of a monomer, which can be purified by ProteinA andsimplify the purification process.
(2) The fusion protein provided bythe present invention has a low EC 50 value for binding to the human growth hormone receptor (hGHR) and a strong binding activity with hGHR.
(3) The fusion protein provided bythe present invention has a low EC 50 value for promoting the proliferation of NB2-11 cells and a good proliferation effect on NB2-11 cells.
(4) The fusion protein provided bythe present invention has a low EC 50 value for promoting the expression of luciferase in reporter cells, which is equal to or lower than that of the control sample (Genexine GX-H9) . And the fusion protein has an excellent activity in promoting the expression of luciferase in reporter cells.
(5) Compared with human growth hormone, the fusion protein provided bythe present invention has a longer half-life and better in vivo biological activity.
BRIEF DESCRIPTION OF THE FIGURES
The present application can be best understood by reference to the following description taken in conjunction with the accompanying figures included in the specification.
FIG. 1 is a schematic diagram of monomer form of fusion protein in one embodiment of the present invention.
FIG. 2 is the result graph of ADCC of J2 or J18 in Example 7 of the present invention.
FIG. 3 is the trend diagram of the results of body weight gain of each group of rats measured in vivo biological activity in Example 9 of the present invention.
DESCRIPTION OF THE DISCLOSURE
The present invention is intended to cover all alternatives, modifications, and equivalents which may be included within the scope of the present invention as defined by the claims. One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. The present invention is in no way limited to the methods and materials described herein. In the event that one or more of the incorporated literature, patents, and similar materials differ from or contradict this application, including but not limited to defined terms, term usage, described techniques, or the like, this application controls.
It is further appreciated that certain features of the present invention, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features of the present invention which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable subcombination.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one skilled in the art to which this invention belongs. All patents and publications referred to herein are incorporated by reference in their entirety. Although many methods and materials similar or equivalent to those described herein could be used in the practice or test of the present invention, the preferred methods, equipment and materials are described in the present invention.
It should be noted that the terms "first" and "second" are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance orimplying the number of indicated technical features. Thus, a feature defined as "first" or "second" may include, explicitly or implicitly, one or more of these features. Further, unless otherwise specified, in the description of the present invention, "more than one" means two or more.
The term “a” , “an” and “the” , as used herein, are intended to include “at least one” or “one or more” unless otherwise indicated herein or clearly contradicted by the context. Thus, the articles used herein refer to one or more than one (i.e. at least one) of the grammatical objects of the article. For example, “an embodiment” refers to one or more embodiments.
The term “comprise” , “contain” or “include” is an open expression, it means comprising the contents disclosed herein, but don’t exclude other contents.
The terms “optionally” or “optional” generally mean that the subsequently described event or condition can occur, but may not must, and that the description includes the circumstances in which the event or condition occurs and the circumstances in which the event or condition does not occur.
The term “room temperature” refers to the ambient temperature, which may be 20℃-30℃. In some embodiments, the room temperature may be 22℃-28℃; In some embodiments, 24℃-26℃; In some embodiments, 25℃.
The term "antibody fragment" means the antigen-binding fragment and antibody analog, which usually contains at least some of the antigen-binding region or variable region of a parental antibody (e.g. one or more CDRS) .
The term "variant" or "mutant" generally refers to any naturally occurring or engineered molecule that contains one or more nucleotide or amino acid mutations.
The amino acid number of the IgG1 Fc fragmentis numbered according to the EU numbering system. For example, position 366 refers to the 366th position according to the EU numbering system; "T366R" refers to the threonine at the 366th of the EU numbering system replacedby arginine; "L368H" refers to the leucine at the 368th of the EU numbering systemreplacedby histidine; "P228 del" refers to the absence of the proline at the228th of the EU numbering system.
The term " (GGGGS)  n" indicates that n GGGGSs are connected, such as " (GGGGS)  3" means GGGGSGGGGSGGGGS.
The term "fusion protein" generally refers to a protein resulting from the fusion of two or more proteins or polypeptides. Genes or nucleic acid molecules encoding two or more proteins or polypeptides are linked to each other to form a fusion gene or a fusion nucleic acid molecule, which may encode the fusion protein. The translation of the fusion gene produces a single polypeptide that has the properties of at least one or even each of the two or more proteins or polypeptides prior to fusion. Recombinant fusion proteins are artificially created using recombinant DNA technology for biological research or therapy. Recombinant fusion proteins are proteins created by the genetic engineering of fusion genes. The terms “fusion protein” and  “recombinant fusion protein” are used herein with the same meaning. The fusion proteins described in this paper generally contain at least two domains (A and C) , and optionally contain a third component, for example, a linker peptide between the two domains. The generation of recombinant fusion proteins is known in this field and usually involves the removal of stop codons from the cDNA sequence of the first protein or the first polypeptide, then attaching the cDNA sequence of the second protein in a frame compliant manner by linking or overlapping extension PCR. This DNA sequence is expressed by the cell as a single protein. The protein is engineered to include the entire sequence of the two original proteins or polypeptides, or only includea part of the entire sequence.
The fusion protein of the present invention is generally prepared by a biosynthesis method. According to the nucleotide sequence of the present invention, the persons skilled in thisfield can easily prepare the encoding nucleic acid of the present invention by various known methods. These methods include, but are not limited to: PCR, artificial DNA synthesis, etc. For specific methods, please refer to J. Sambrock, "Molecular Cloning Experiment Guide" . In some implementations, the coding nucleic acid sequence of the present invention can be constructed by the method of segmented synthesis of nucleotide sequence followed by overlap extension PCR.
The term "identity" , "homologous" or "similar" are used to describe the relative to the reference sequence of amino acid sequencesor nucleic acid sequence, determines the percentage of identical amino acids or nucleotides between two amino acid sequences or nucleic acid sequencesby conventional methods, see, for example, Ausubel et al., eds. (1995) , Current Protocols in Molecular Biology, Chapter 19 (Greene Publishing and Wiley-Interscience, New York) ; And the ALIGN program (Dayhoff (1978) , Atlas of Protein Sequence and Structure 5: Suppl. 3 (National Biomedical Research Foundation, Washington, D.C. ) . There are many algorithms for aligning sequences and determining sequence identity, including, the homology alignment algorithm ofNeedleman et al. ( (1970) J. Mol. Biol. 48: 443) ; the local homology algorithmof Smith et al. ( (1981) Adv. Appl. Math. 2: 482) ; the similarity search method of Pearson et al. ( (1988) Proc. Natl. Acad. Sci. 85: 2444) ; the Smith-Waterman algorithm (Meth. Mol. Biol. 70: 173-187 (1997) ) ; and the BLASTP, BLASTN, and BLASTX algorithms (see Altschul et al. (1990) J. Mol. Biol. 215: 403-410) . Using computer programs for these algorithms are also available, and the computer programsinclude, but are not limited to: ALIGN or Megalign (DNASTAR) software, or WU-BLAST-2 (Altschul et al., Meth. Enzym., 266: 460-480 (1996) ) ; or GAP, BESTFIT, BLAST Altschul et al., supra, FASTA, and TFASTA, available in the Genetics Computing Group (GCG) package, version 8, Madison, Wisconsin, USA; and the CLUSTAL of PC/Gene program provided by Intelligenetics, Mountain View, California.
The term "nucleotide" generally is ribonucleotides, deoxynucleotides, or any type of nucleotide, and theirmodified forms, and their combinations.
The term "at least 90%homologous" or "at least 90%identity" means at least 90%identical to each reference sequence, which may be 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%identity.
The term "at least 80%-99%homologous" means, compared with each reference sequence, at least 80%-99%, at least 81-99%, at least 82-99%, at least 83%-99%, at least 84%-99%, at least 85%-99%, at least 86%-99%, at least 87%-99%, at least 88%-99%, at least 89%-99%, at least 90%-99%, at least 91-99%, at least 92-99%, at least 93-99%, at least 94-99%, at least 95%-99%, at least 96-99%, at least 97%-99%, at least 98%-99%or at least 99%homologous.
The term "expression vector" generally refers to a self-replicating nucleic acid molecule that can be inserted into a suitable host, which transfers the inserted nucleic acid molecule into and/or between host cells. The expression vectors may include vectors primarily used for insertion of DNA or RNA into cells, vectors primarily used for replication of DNA or RNA, and vectors primarily used for expression of transcription and/or translation of DNA or RNA. The expression vector also includes a vector having a variety of the above-mentioned functions. The expression vector may be a polynucleotide that can be transcribed and translated into a polypeptide when introduced into a suitable host cell. Typically, the expression vector can produce the desired expression product by culturing a suitable host cell containing the expression vector.
The term "recombinant cell" generally refers to a cell that is modified or recombined with the genetic material of the host cell using genetic engineering or cell fusion technology, in whichhas a unique character with stable inheritance. The term "host cell" refers to a prokaryoticcell or a eukaryotic cell which a recombinant expression vector can be introduced. The term "transformed" or "transfected" refers to the introduction of a nucleic acid (eg, a vector) into a cell by various techniques known in thisfield. Suitable host cells can be transformed or transfected with the DNA sequences of the present invention and can be used for  the expression and/or secretion of the target protein. Examples of suitable host cells that can be used in the present invention include immortalized hybridoma cells, NS/0 myeloma cells, 293 cells, Chinese hamster ovary (CHO) cells, HeLa cells, Cap cells (human amniotic fluid-derived cells) and CoS cells.
The term "pharmaceutical composition" generally refers to unit dosage form and can be prepared by any of the methods well known in the pharmaceutical field. All methods include the step of combining the active ingredient with the carrier which constitutes one or more accessory ingredients. Generally, the compositions are prepared by uniformly and thoroughly combining the active compound with liquid carriers, finely divided solid carriers, or both.
The term “pharmaceutically acceptable” as used herein, refers to those compounds, materials, compositions, and/or dosage forms that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
The term "pharmaceutically acceptable carrier" includes any solvent, solid excipient, diluent or another liquid excipient, etc., suitable for the particular target dosage form. Except to the extent that any conventional excipients are incompatible with the compounds of the present invention, such as any adverse biological effect producedor interaction in a detrimental manner with any other component of a pharmaceutically acceptable composition, their usesare also considered in the scope of the present invention.
Extensive literature could be referencedon this subject for other pharmaceutically acceptable carriers or processes mentioned, see particularly Handbook of Pharmaceutical Excipients, 3rd Edition, ed. by Arthur H. Kibbe, American Pharmaceutical Association, Washington, USA and Pharmaceutical Press, London; and Lexikon der Hilfsstoffe für Pharmazie, Kosmetik and angrenzende Gebiete, edited by H.P. Fiedler, 4th edition, edited by Cantor, Aulendorf and earlier editions.
The term "administration" refers to the introduction of a predetermined amount of a substance into a patient by some suitable means. The fusion protein of the present invention can be administered by any common route provided as long as it can reach the intended tissue. Various modes of administration are contemplated, including peritoneal, intravenous, intramuscular, subcutaneous, cortical, oral, topical, nasal, pulmonary, rectal, and smear, but the present invention is not limited to these exemplified modes of administration. Preferably, the fusion protein of the present invention is administered by injection.
The term "a disease associated with abnormal growth hormone" generally refers to diseases caused by growth hormone abnormality, such as related diseases caused by a growth hormone deficiency or alienationstatus, including but not limited to, childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turners Syndrome, Prader Willi Syndrome, intrauterine growth retardation, idiopathic short stature, renal failure, and, alienation status during chemotherapy and AIDS treatment. Growth hormone deficiency can include congenital deficiencyor acquired deficiency. With congenital defects, growth hormone deficiency can occur when the pituitary gland does not develop a growth hormone secretion disorder. The occurrence of acquired growth hormone deficiency may result in hypoxia-induced brain tissue damage due to difficulty in delivery. Other causes of growth hormone deficiency include damage to the pituitary gland caused by radiation used to treat brain tumors or postnatal tuberculous meningitis. Growth hormone deficiency manifests symptoms such as growth retardation and short stature, and congenital growth hormone deficiency manifests symptoms of hypoglycemia, starting in neonates. Additionally, children showed symptoms such as increased anxiety and decreased vitality.
In some embodiments, “treatment” or “treating” includes an approach for obtaining beneficial or desired results including clinical results. Beneficial or desired clinical results may include one or more of the following: a) inhibiting the disease or condition (e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the extent of the disease or condition) ; b) slowing or arresting the development of one or more clinical symptoms associated with the disease or condition (e.g., stabilizing the disease or condition, preventing or delaying the worsening or progression of the disease or condition, and/or preventing or delaying the spread of the disease or condition) ; and/or c) relieving the disease, that is, causing the regression of clinical symptoms (e.g., ameliorating the disease state, providing partial or total remission of the disease or condition, enhancing effect of another medication, delaying the progression of the disease, increasing the quality of life, and/or prolonging survival.
The present invention provides an Fc fragment mutant, a fusion protein, a nucleic acid molecule, an expression vector, a recombinant cell, a pharmaceutical composition, and a method of preventing or treating a disease associated with abnormal growth hormone, which is described in detail below.
Fc fragmentmutant
In one aspect, the present invention relates to an Fc fragmentmutant. According to an embodiment of the present invention, the Fc fragment mutantcomprises a first peptide, wherein the first peptide comprisesmutations at the following positions in comparison to a wild-type IgG1 Fc fragment: positions 228, 229, 366, 368, 395 and 409, and optional position 230.
In the research and development process, the inventors found that the above-mentioned mutations could be beneficial to the formation of monomeric Fc fragment mutant after the expression of the Fc fragment in the native dimer form. The Fc fragment mutant in the form of a monomer could be fused with bioactive molecules, which could be subsequently purified by ProteinA andsimplify the purification process. More importantly, the fusion protein obtained by the Fc fragmentmutanthad higher in vitro and in vivo activity, and lower ADCC and CDC effects.
In some embodiments, the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: positions 228, 229, 230, 366, 368, 395 and 409; and at least one of positions 351, 428 and 447. The mutations mentioned above can form Fc fragment mutants in monomer form.
In some embodiments, the first peptidecomprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: (1) positions 228, 229, 230, 366, 368, 395, 409 and 447; or (2) positions 228, 229, 230, 366, 368, 395, 409 and 447; or (3) positions 228, 229, 230, 351, 366, 368, 395, 409 and 428; or (4) positions 228, 229, 230, 351, 366, 368, 395, 409, 428 and 447. The mutations mentioned above can form Fc fragment mutants in monomer form.
In some embodiments, the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K, and K409D or K409T; and at least one of L351S, M428Y and K447A. The mutations mentioned above can form Fc fragmentmutants in monomer form.
In some embodiments, the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: (1) P228 del, C229 del, P230 del, T366R, L368H, P395K and K409Xaa; (2) P228 del, C229 del, P230 del, T366R, L368H, P395K, K447A and K409Xaa; (3) P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y and K409Xaa; (4) P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y, K447A and K409Xaa; (5) P228 del, C229 del, T366R, L368H, P395K and K409Xaa; where in K409Xaa, Xaa represent D or T.
After a lot of experiments, the inventors mutated specific sites to obtain the above-mentioned Fc fragment mutant in the form of monomers. The fusion protein fused with the Fc fragment mutant and the biologically active molecule is secreted and expressed in the form of monomers, and the fusion protein has higher in vitro and in vivo activity and lower ADCC and CDC effects. For example, the fusion protein formed by the fusion of Fc fragmentmutant with growth hormone has the advantages of strong binding capacity to a human growth hormone receptor, good cell proliferation activity and high in vitro activity.
In some embodiments, the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment: P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y, K447A, and K409Xaa, where in K409Xaa, Xaa represent D or T.
After extensive experiments, the inventors found that the fusion protein obtained by fusing the above-mentioned Fc fragment mutant with human growth hormone has stronger binding capacity to a human growth hormone receptor, higher cell proliferation activity, and higher in vitro activity. For example, the Fc fragmentmutants of fusion proteins J16 and J18 in the examples of the present invention had different mutation sites. The Fcfragment mutants of J18 contained mutations of the above sites simultaneously, while the Fcfragment mutants of J16 did not have L351S and M428Y mutations compared with J18. The results showed that the fusion protein J18 has stronger binding ability to a human growth hormone receptor, better cell proliferation activity, and better in vitro activity. Moreover, compared with fusion protein J2 (P228 Delete, C229 Delete, P230 Delete, T366R, L368H, P395K and K409D) , the fusion protein J17 increased L351S and M428Y mutations, and the 409thposition of J2 and J17 is different (J17 is K409T) . The results showed that the J17 has stronger activity on cell proliferation and better in vitro activity. Therefore, the fusion protein obtained by the Fc fragment mutation with both L351S and M428Y mutations hasstronger binding ability to a human growth hormone receptor, better cell proliferation activity, and better in vitro activity.
In some embodiments, the Fc fragment mutant further comprises: ahinge region fragment of the wild-type IgG1, wherein a C-terminal of the hinge region fragment of the wild-type IgG1 is connected with an N-terminal of the first peptide segment.
In some embodiments, the hinge region fragment of the wild-type IgG1 comprisesan amino acid sequence as shown in SEQ ID NO: 41.
In some embodiments, the Fc fragment mutant comprises an amino acid sequence as shown in any one of SEQ ID NOs: 2 to 7. The fusion protein obtained by fusion of the Fc fragment mutants with bioactive molecules has high in vitro and in vivo bioactivity.
In some embodiments, the Fc fragment mutant is a monomer.
Fusion protein
In another aspect, the present invention relates to a fusion protein. According to an embodiment of the present invention, the fusion protein comprises: a second peptide comprising a bioactive molecular functional region; and a third peptideconnected with the second peptide, the third peptide comprising an Fc fragment mutant according to any one of the above-mentioned Fc fragment mutant.
After a lot of experiments, the inventor found that the fusion protein of the invention is a monomer, which has higher in vitro and in vivo activity and lower ADCC and CDC effects. And, the fusion protein can be subsequently purified by ProteinA and simplify the purification process.
It should be noted that "monomer" refers to having one Fc fragment mutant, and the specific structure is shown in FIG. 1.
In some embodiments, the second peptide comprises a growth hormone, a growth hormone analog, a growth hormone functional region or a growth hormone analog functional region. The above-mentioned fusion protein is a monomer, which has higher in vitro and in vivo activity and lower ADCC and CDC effects. And, the fusion protein hasthe advantages of strong binding ability to a human growth hormone receptor, good cell proliferation activity, and high in vitro activity.
In some embodiments, the second peptide comprises the human growth hormone or the human growth hormone functional region.
In some embodiments, the human growth hormone comprises an amino acid sequence as shown in SEQ ID NO: 1 or at least 90%homologous thereof.
In some embodiments, an N-terminal of the second peptide is connected to a C-terminal of the third peptide; ora C-terminal of the second peptide is connected with an N-terminal of the third peptide. The fusion protein obtained by the above-mentioned connection method has higher in vitro and in vivo activity.
In some embodiments, the N-terminal of the second peptide is connected to the C-terminal of the third peptide. After a lot of experiments, the inventor found that the fusion protein obtained by the above-mentioned connection method can further improve its binding ability to the corresponding receptor, cell proliferation activity and in vitro activity. For example, the fusion protein obtained by fusion of Fc fragment mutant and growth hormone has better efficacy in animals.
In some embodiments, the fusion protein further comprises a linker peptide, wherein the linker peptide is arranged between the second peptide and the third peptide. The fusion protein is obtained by which the second peptide and the third peptide can be fused by the above-mentioned linker peptide. And the biological activity of the fusion protein can be improved. For example, the fusion proteins J1, J2, J6 and J7 have different linker peptides. Compared with J1 without the linker peptide, J2, J6 and J7 have better binding activity to hGHR and better effect on promoting cell proliferation.
In some embodiments, an N-terminal of the linker peptide is connected with a C-terminal of the third peptide, and a C-terminal of the linker peptide is connected with an N-terminal of the second peptide; oran N-terminal of the linker peptide is connected with a C-terminal of the second peptide, and a C-terminal of the linker peptide is connected with an N-terminal of the third peptide.
In some embodiments, the N-terminal of the linker peptide is connected with the C-terminal of the third peptide. The fusion protein obtained by the above-mentioned method can further improve its binding ability to corresponding receptors, cell proliferation activity and in vitro activity. For example, the fusion protein obtained by the fusion of Fc fragment mutant and growth hormone can be more effective in animals.
In some embodiments, the linker peptide comprises an amino acid sequence of (GGGGS)  n, n being an integer greater than or equal to 1. The fusion protein was obtained by using the second peptide and the third peptide that can be fused by the above-mentioned linker peptide. And the biological activity of the fusion protein can be improved.
In some embodiments, the n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. The fusion protein was obtained by using the second peptide and the third peptide that can be fused by the above-mentioned linker peptide, and the biological activity of the fusion protein can be improved.
In some embodiments, the linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10. The fusion protein is obtained by which the second peptide and the third peptide can be fused by the above-mentioned linker peptide. And the biological activity of the fusion protein can be improved.
In some embodiments, the fusion protein comprises an amino acid sequence as shown in any one of SEQ ID NOs: 24-31. The above-mentioned fusion protein has strong binding ability to corresponding receptors, better cell proliferation activity, and better in vitro activity.
Technical personnel in this field can understand that the characteristics and advantages described for the above-mentioned Fc fragment mutants are also applicable to this fusion protein, and details are not repeated here.
Nucleic acid molecule
In another aspect, the present invention relates to a nucleic acid molecule. According to an embodiment of the present invention, the nucleic acid moleculeencodesthe above-mentionedFc fragment mutant andthe above-mentioned fusion protein. The nucleic acid molecule can be effectively used to express the above-mentionedFc fragment mutants or the above-mentioned fusion proteins, especially in prokaryotes or low eukaryotes. The fusion protein is a monomer form, which has higher in vitro and in vivo activity and lower ADCC and CDC effects.
In some embodiments, the nucleic acid molecule is DNA.
Technical personnel in this field can understand that the characteristics and advantages described for the above-mentioned Fc fragment mutants, and the above-mentionedfusion protein are also applicable to this nucleic acid molecule, and details are not repeated here.
Expression vector
In another aspect, the present invention relates to an expression vector. According to an embodiment of the present invention, theexpression vector carries the above-mentionednucleic acid molecule. The above-mentioned expression vector can effectively express the above-mentioned Fc fragment mutant or the above-mentionedfusion protein, especially in prokaryotes or lower eukaryotes. The fusion protein is a monomer, which has higher in vitro and in vivo activity and lower ADCC and CDC effects.
In some embodiments, the expression vector is a eukaryotic expression vector.
In some embodiments, the expression vector is a lentiviral vector.
Technical personnel in this field can understand that the characteristics and advantages described for the above-mentioned Fc fragment mutants, the above-mentionedfusion protein and the above-mentioned nucleic acid moleculeare also applicable to thisexpression vector, and details are not repeated here.
Recombinant cell
In another aspect, the present invention relates to a recombinant cell. According to an embodiment of the present invention, the recombinant cell carries the above-mentionednucleic acid molecule; or expresses the above-mentionedFc fragmentmutant and the above-mentionedfusion protein. The recombinant cells can effectively express the above-mentioned Fc fragment mutant or fusion protein, especially in prokaryotes or lower eukaryotes. The fusion protein is a monomer form, which has higher in vitro and in vivo activity and lower ADCC and CDC effects.
In some embodiments, the recombinant cell is obtainable by introducing the above-mentioned expression vector into a host cell.
In some embodiments, the recombinant cell isa eukaryotic cell.
In some embodiments, the recombinant cell isa mammalian cell.
Technical personnel in this field can understand that the characteristics and advantages described for the above-mentioned Fc fragment mutants, the above-mentionedfusion protein, the above-mentionednucleic acid molecule, and the above-mentionedexpression vectorare also applicable to thisrecombinant cell, and details are not repeated here.
Pharmaceutical composition
In another aspect, the present invention relates to a pharmaceutical composition. According to an embodiment of the present invention, the pharmaceutical composition comprises the above-mentioned fusion protein. The above-mentioned pharmaceutical compositions can be used to prevent and treat a disease associated with abnormal growth hormone.
In some embodiments, the pharmaceutical composition is the dosage form of an injection.
In some embodiments, the pharmaceutical composition has an administration routinecomprising subcutaneous or intravenous injection.
Technical personnel in this field can understand that the characteristics, and advantages described for the above-mentioned fusion proteinare also applicable to this pharmaceutical composition, and details are not repeated here.
Method for preventing or treating a disease associated with abnormal growth hormone
In another aspect, the present invention relates to a method for preventing or treating a disease associated withabnormal growth hormone. According to an embodiment of the present invention, the method comprises: administering to the subject in need a pharmaceutically effective amount of the above-mentioned fusion protein and the above-mentionedpharmaceutical composition. This method can effectively prevent or treat a diseases related to abnormal growth hormone.
In some embodiments, the fusion protein is administered by subcutaneous injection or intravenous injection.
In some embodiments, the disease associated withabnormal growth hormonecomprises at least one of the followingchildhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
Technical personnel in this field can understand that the characteristics and advantages described for the above-mentioned fusion proteinand the above-mentionedpharmaceutical composition are also applicable to this method, and details are not repeated here.
Use of afusion protein, a nucleic acid molecule, an expression vector, a recombinant cell and a  pharmaceutical composition
In another aspect, the present invention relates to the use of the above-mentioned fusion protein, the above-mentioned nucleic acid molecule, the above-mentioned expression vector, the above-mentioned recombinant cell, and the above-mentioned pharmaceutical composition in the preparation of a medicament for preventing or treating a disease associated with abnormal growth hormone.
In some embodiments, the disease associated with abnormal growth hormonecomprises at least one of the following: childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
In another aspect, the present invention relates to the above-mentioned fusion protein, the above-mentioned nucleic acid molecule, the above-mentioned expression vector, the above-mentioned recombinant cell, and the above-mentioned pharmaceutical composition, for use in preventing or treating a disease associated with abnormal growth hormone.
In another aspect, the present invention relates to the above-mentioned fusion protein, the above-mentioned nucleic acid molecule, the above-mentioned expression vector, the above-mentioned recombinant cell, and the above-mentioned pharmaceutical composition, for use in preventing or treating a disease associated with abnormal growth hormonecomprises at least one of the following: childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
Technical personnel in this field can understand that the characteristics and advantages described for the above-mentioned fusion protein, the above-mentionednucleic acid molecule, the above-mentionedexpression vector, the above-mentionedrecombinant cell, and the above-mentionedpharmaceutical composition, are also applicable to these use, and details are not repeated here.
Examples
The following Examples are merely illustrative and is not meant to limit any aspects of the present disclosure in any way.
Generally, the compounds disclosed herein may be prepared by methods described herein, wherein the substituents are as defined for Formula (I) above, except where further noted. The following non-limiting schemes and examples are presented to further exemplify the present invention.
Professionals skilled in the art will recognize that the chemical reactions described may be readily adapted to prepare a number of other compounds disclosed herein, and alternative methods for preparing the compounds disclosed herein are deemed to be within the scope disclosed herein. For example, the synthesis of non-exemplified compounds according to the present invention may be successfully performed by modifications apparent to those skilled in the art, e.g., by appropriately protecting interfering groups, by utilizing other suitable reagents known in the art other than those described, and/or by making routine modifications of reaction conditions. Alternatively, the known reaction conditions or the reaction disclosed in the present invention will be recognized as having applicability for preparing other compounds disclosed herein.
Example 1: Preparation the expression vector of recombinant long-acting human growth hormone fusion protein.
The human growth hormone (SEQ ID NO: 1) was linked with the Fc fragmentmutant (SEQ ID NO: 2 or SEQ ID NO: 7) to construct a fusion protein, and J1 and J3 are obtained respectively. Andthe human growth hormone (SEQ ID NO: 1) was linked with various Fc fragmentmutants (SEQ ID NO: 2 or any one of SEQ ID NOs: 4-6) through linker peptides (any one of SEQ ID NOs: 8-10) to construct fusion proteins, and J2, J6, J7 and J16-18 were obtained respectively. The specific experimental operations are as follows:
The nucleotide sequences encoding human growth hormone (SEQ ID NO: 11) , the nucleotide sequences encoding linker peptides (SEQ ID NOs: 21-23) , and the nucleotide sequences encoding various Fc fragmentmutants (SEQ ID NOs: 16-20) ware linked, and the nucleotide sequences (SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 35, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 35, ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39) were cloned into the expression vector pCDNA3.4 (Thermo Fisher) by total gene synthesis and molecular cloning, and the fusion protein expression vector of each nucleotide sequence was obtained respectively.
Example 2: Expression of recombinant long-acting human growth hormone fusion protein.
Using Expi CHO-S (Gibco, A29133) as the host cell, the multiple plasmids obtained in Example 1 were transfected into the host cell, and the chemical transfection reagent Polyplus-FectoPRO (polyplus, 116-010) was used to transiently express the fusion protein (as the recombinant long-acting human growth hormone fusion protein) corresponding to amino acid sequence SEQ ID NOs: 24-31. The experimental operation is as follows:
1) Expi Cho-Scells were subcultured one day before transient transfection, and the cell density was adjusted to about 3×10 6 cells /mL by the medium. The cell culture flask was returned to the shaker (37℃, 8%CO 2) for further culture.
2) On the day of transfection: Expi Cho-Scell fluid was taken for cell count, and the cell density was adjusted to about 6×10 6 cells /mL by the medium. Then 1L cell fluid with a density of 6×10 6 cells /mLwas required for each fusion protein expression vector to be transfected.
3) To prepare the transfection complex: 16 sterile cell culture flasks were taken, 8 labeled "DNA" and 8 labeled "FectoPRO" . And transfection reagent Polyplus-fectoPRO was added into the "FectoPRO" flask and mixed; 60mL opti-mem solution and 500μg fusion protein expression vectors obtained in Example 1 were added into each "DNA" flask and mixed. And the diluent of the fusion protein expression vector was obtainded. And the diluent of the fusion protein expression vector of each nucleotide sequence was added to the "FectoPRO" flask and mixed. Then the diluent mixedwas incubated at room temperature for 10 minutes, then the diluent was added to the cell solution and shaken, and the cell culture flask was returned to the shaker to continue culture and transfection.
4) After the cell culture medium obtained in step 3) was transfected for 18-22 hours, an appropriate amount of OPM-CHO ProFeed was added, and the biochemical indicators of the cell solution were measured. According to biochemical indicators, supplement glucose to 6g/L. Titer was measured 4 days after transfection, and supplemented with sugar and culture solution every other day. The CHO cell fermentation broth could be obtained when the cell viability is less than 80%, and the supernatant can be harvested for purification.
Example 3: Purification of recombinant long-acting human growth hormone fusion protein.
The CHO cell fermentation liquid obtained in Example 2 was centrifuged in two stages (first stage: 3, 000×g, 30 min; second stage: 12,000×g, 20 min) . The supernatant was collected and filtered through a 0.2μm filter, and set aside.
Protein A affinity chromatography: The aqueous solution containing 20 mM phosphate and 150 mM NaCl at pH 7.2 was used to equilibrate the chromatographycolumnfor at least 3 columnvolumes, and the filtered clarified filtrate was loaded and remained on the chromatography column for 5 minutes. After loading the sample, the aqueous solution containing 20 mM phosphate and 150 mM NaCl at pH 7.2 was used to equilibrate the chromatographycolumnfor at least 1 column volume, followed by 50 mM pH 4.5 Acetic acid (HAc) buffer, 50 mM pH 4.0 HAc buffer, and 50 mM pH 3.5 HAcbuffer were used to elute the target protein respectively. When an absorption peak appeared, the peak range was 50 mAU-peak-50 mAU, and the desired SEC purity (> 98.0) fusion protein is obtained. A variety of Expi Cho-Scells respectively containing  nucleotide sequence SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38 or SEQ ID NO: 39, were fermented and chromatographed to obtain J1 fusion protein, J2 fusion protein, J3 fusion protein, J6 fusion protein, respectively , J7 fusion protein, J16 fusion protein, J17 fusion protein, J18 fusion protein. The specific structure of the fusion protein is shown in FIG. 1, wherein the structures of J1, J2, J3, J6, J7 and J17 are shown in the left figure of FIG. 1, and the structures of J16 and J18 are shown in the right figure of FIG. 1.
Example 4: Binding of fusion protein to hGHR.
The purified fusion protein obtained in Example 3 was subjected to in vitro receptor (hGHR) binding activity detection, and Genexine GX-H9 was used as a control group. The specific experimental operations are as follows:
hGHR was diluted to obtain a 0.5 μg/ml coating solution, which was added to ELISA plate at 100μL/well, and coated for more than 12 hours at 2~8℃. The plate residue was discarded, 300 μLof 1%BSA-PBST (phosphate Tween buffer containing 1%bovine serum albumin) was added into each well, and blocked for 1 hour at 37℃. 300 μL of PBST (Phosphate Tween Buffer) was added to each well for 3 washes, then dilute the recombinant long-acting human growth hormone fusion protein and Genexine GX-H9 were diluted to 5 μg/ml, and then diluted 5 times to 8 gradient concentrations, added to100 μL/well to ELISA plate. The ELISA plate comprising the long-acting human growth hormone fusion protein or Genexine GX-H9 was incubated at 37℃ for 1 hour, then 300 μL of PBST was added to each wellfor 3 washes, and the Goat anti-human IgG Fc-HRP that dilute 10000 foldwith 1%BSA-PBST was added, 100 μL/well of a sample. After incubation at 37℃ for 1 hour, 300μL of PBST was added to each wellfor 3 washes, and patted dry. TMB Substrate was added, 100μL per well. After 5 minutes of reaction at room temperature, 2M H 2SO 4 aqueous solution was added to stop the reaction, 100 μL/well. The ELISA plate that stopped the reaction was put on a microplate reader, the absorbance OD 450 value was read at a wavelength of 450nm and the EC 50 of each fusion protein's binding activity to hGHR was calculated, as shown in Table 1.
The results show that from the perspective of binding activity, the fusion proteins have a low EC 50 value for binding to hGHR, and has strong binding activity to hGHR. And compared with Genexine GX-H9, the fusion proteins binding activity with human GHR are similar or better.
The amino acid sequence of Genexine GX-H9 isas follows:
Figure PCTCN2022100114-appb-000016
Table 1: Results of hGHR binding activity test of the fusion protein
Figure PCTCN2022100114-appb-000017
Example 5: Promoting proliferation of NB2-11 cells of Recombinant long-acting Human growth hormone fusion protein.
The purified fusion protein obtained in Example 3 was subjected to the following experiments, and the above-mentioned Genexine GX-H9 was used as the control group.
Cells were collected and suspended in the medium (PRMI 1640 medium containing 1%FBS and 50μM β -mercaptoethanol) at a concentration of 1×10 5 cells per ml. 50 μL of each cell sample was added to each well of a 96-well cell culture plate. The cells were cultured with 50 μL of assay medium containing various concentrations of recombinant long-acting human growth hormone fusion protein and Genexine GX-H9 from 0.051 ng/mL to 3000 ng/mL. The cell plates were cultured at 37℃ in a 5%CO 2 humidified incubator for 96 hours, and then 50 μL of cellTiter-Glo Luminescent Cell Viability Assay (Promega, G7571) was added to each well. After 10 minutes, the chemiluminescence signal was detected by a microplate reader. The biological activity of the recombinant long-acting human growth hormone fusion protein can be determined from the obtained dose-response curve. The results are shown in Table 2.
The fusion proteins have a low EC 50 value to promote the proliferation of NB2-11 cells, and have a good proliferation of Nb2-11 cells. Compared with Genexine GX-H9, the relative activity of Nb2-11 cell proliferation was convergent or better.
Table 2: Results of fusion protein promoting Nb2-11 cell proliferation
Figure PCTCN2022100114-appb-000018
Example 6: Biological activity of recombinant long-acting human growth hormone fusion protein on reporter cells.
The purified fusion protein obtained in Example 3 was subjected to the following experiments, and the above-mentioned Genexine GX-H9 was used as the control group.
The reporter gene cells (293-GHR/STAT5 cell line) in the logarithmic growth phase were taken, and trypsin was used to digest the reporter gene cells. Then the reporter gene cells were plated (costar, 3917) at 4×10 4 cells/well, 50 μL/well, and the 96-well white plate was incubated at 37 ℃ in a 5%CO2 incubator to incubate overnight. The reporter gene cells were added with the recombinant long-acting human growth hormone fusion protein diluted in gradient, the initial concentration was 100 nM, 5-fold gradient dilution, a total of 10 gradient concentrations; the dilution was added to the reporter gene cells, and the additional volume was 50 μL/well, and the 96-well white plate was incubated at 37 ℃ in a 5%CO 2incubatorfor 6 hours. After the incubation, the 96-well white plate and Nano-Glo Luciferase Assay kit (promega, N112B) were taken out, and equilibrated to room temperature, the reaction substrate was added to the sample wells at a volume of 50 μL/well and placed at room temperature for 10 minutes. The instrument (Promega, GM2000) recorded the luminescence signal value, with the protein concentration as the X-axis and the luminescence signal value as the Y-axis. GraphPad Prisim 5 was used for four-parameter fitting to calculate the EC 50 value, and the results were shown in Table 3.
The results show that the EC 50 value of the fusion proteins to promote the reporter gene cells to express luciferase is low, which is equal to or lower than that of the control group. And the fusion proteins have excellent activity in promoting the reporter gene cells to express luciferase.
Table 3: Results of fusion proteins promoting luciferase expression in reporter cells
Figure PCTCN2022100114-appb-000019
Example 7: The ADCC effect of test sample-induced effector cell Jurkat-CD16a-luc on target cell CHO-K1-PD-L1/GHR1) Sample information
sample name concentration (mg/mL)
M7824 2.05
2 (J2) 0.6
5 (Genexine GX-H9) 1.33
18 (J18) 2.66
Acterma 20
2) Cell processing
Target cells CHO-K1-PD-L1/GHR (Shanghai Kabe Biomedical Technology Co., LTD., SBTCL015) treatment:
The cells were passaged 2 days before the experiment, and the supernatant was discarded. After washing the cells with 5 mL of PBS, 1 mL of 0.25%Trypsin-EDTA was added. After digestion in a 37℃ incubator for 1 min, 6 mL of medium 1 (450 mL of F12 medium + 50 mL of FBS) was added to terminate digestion, and resuspend to single cell suspension. 5mL of cell suspension was discarded, and 8mL of medium 1 (450mL of F12 medium + 50mL of fetal bovine serum (FBS) ) was added, then 120μL of G418 was added and mixed, G418 work concentration was 600 μg/mL. The cells were put into the incubator to continue culturing.
Effector cells Jurkat-CD16a-luc (Shanghai Jiabei Biomedical Technology Co., Ltd., SBTCL001) treatment:
The cells were passaged 2 days before the experiment, and the cell suspension was mixed by pipetting. The 5mL cell suspension was taken into the new T75 culture flask, then 15mL medium 2 (450mL RPMI 1640 medium +50mL FBS) was added, and 320μL G418 was added, the work concentration of G418 was 800μg/mL. Then 60μL Hygromycin Bwas added and mixed, and the action concentration of Hygromycin B was 150μg/mL. The cells were put into the incubator to continue culturing.
3) experimental process
On the first day, the density of target cells cho-K1-PD-L1 /GHR was adjusted to 1.83×10 5 cells /mL in analysis medium 1 (40mL F12 medium + 0.4ml FBS) , and the target cells were plated overnight at 50μL/well. On the second day, the test samples (i.e. J2 or J18) , positive control M7824 (Shanghai Jiabei Biomedical Technology Co., Ltd. ) , and negative control Acterma (Roche) were first diluted to 0.1mg/mL in an analysis medium 2 (RPMI 1640 medium) and were second diluted to 24μg/mL in analysis medium 2, and then diluted by 3 times to 9 gradients, 25μL/well was added to the cell plate, and mixed. After incubating at 37℃ for 45min, the cell plate was removed. The density of effector cells Jurkat-CD16A-Luc was adjusted to 1.47×10 6 cells /mL with the analysis medium 2, and 25μL/well was added to the cell plate, mixed, and placed in a 37℃ incubator for 5.5hours of co-incubation. After the cell plate was removed and equilibrated at room temperature, 100 μL/well of one-GLo Luciferase Assay System (Promega, E6120) was added to the cell plate and pipetted blow 10 times, mixed well. After lysing at room temperature for 10 min in the dark, the chemiluminescence signal was detected by a microplate analyzer. The results are shown in FIG. 2.
After adding positive control PD-L1 antibody M7824, negative control IL-6R antibody Acterma and test samples in the ADCC experiment, the positive control M7824 induces effector cell Jurkat-CD16A-Luc to  havean obvious ADCC effect on target cell CHO-K1-PD-L1/GHR, the negative control Acterma has no ADCC effect, and the test sample has no ADCC effect, wherein the concentration unit of the abscissa in FIG. 2 is ng/ml.
Example 8: The CDC effect of test sample induced human serum complement on target cells
1) Sample information
sample name concentration (mg/mL)
Avelumab 2.05
2 (J2) 0.6
Genexine GX-H9 1.33
18 (J18) 2.66
Acterma 20
2) Cell processing
Target cells CHO-K1-PD-L1/GHR (Shanghai Kabe Biomedical Technology Co., LTD., SBTCL015) treatment:
The cells were passaged 2 days before the experiment, and the supernatant was discarded. After washing the cells with 5 mL of PBS, 1 mL of 0.25%Trypsin-EDTA was added. After digestion in a 37℃ incubator for 1 min, 6 mL of medium 1 (450 mL of F12 medium + 50 mL of FBS) was added to terminate digestion, and resuspend to single cell suspension, 5mL of cell suspension was discarded, and 8mL of medium 1 (450mL of F12 medium + 50mL of fetal bovine serum (FBS) ) was added, then 120μL of G418was added and mixed, G418 work concentration was 600 μg/mL. The cells were put into the incubator to continue culturing.
3) experimental process
On the first day, the density of target cells cho-K1-PD-L1 /GHR was adjusted to 2.0×10 5 cells /mL in the differentiation medium (99%F12 medium + 1%FBS) , and the target cells were plated overnight at 50μL/well. On the second day, the test samples (i.e. J2 or J18) , positive control Avelumab (PD-1 antibody, Shanghai Jiabei Biomedical Technology Co., Ltd. ) and negative control Acterma (Roche) were first diluted to 0.1mg/mL in the differentiation medium (99%F12 medium + 1%FBS) , and were second diluted to 15μg/mL in the differentiation medium (99%F12 medium + 1%FBS) and then diluted by 3 times to 7 gradients, 50μL/well was added to the cell plate, and mixed. After incubating at 37℃ for 30min, the cell plate was removed. The 50μL/well of 30%complement (containing 70%differentiation medium +30%complement) was added and mixed. And placed in a 37℃ incubator for 6 hours of co-incubation. After the cell plate was removed and equilibrated at room temperature, the 50 μL/well of one-GLo Luciferase Assay System (Promega, E6120) was added to the cell plate and pipetted blow 10 times and mixed well. After lysing at room temperature for 10 min in the dark, the chemiluminescence signal was detected by a microplate analyzer. 
After adding positive control PD-L1 antibody Avelumab, negative control IL-6R antibody Acterma and test samples in the CDC experiment, the positive control Avelumab induces human serum complement to havean obvious CDC effect on target cell CHO-K1-PD-L1/GHR, the negative control Acterma has no CDC effect, and the test sample has no CDC effect.
Example 9: In vivo biological activity test
Pharmacodynamics study on long-term growth promotion in vivo of the J2 fusion protein and J18 fusion protein:
4-week-old SPF male SD rats with a body weight of 60g-80g were selected. Two weeks before the experiment, the pituitary gland was surgically removed under clean conditions, and the recovery period was 2 weeks after the pituitary removal operation. Before drug administration, qualified healthy animals whose body weight changes were less than ±10%of the preoperative body weight were selected, and the pituitary-removed rats were randomly divided according to their body weight. There were 5 groups, 8 mice in each group, namely the model group, J2 fusion protein low-dose group, J2 fusion protein high-dose group, J18 fusion protein low-dose group and J18 fusion protein high-dose group. The mode of administration was a subcutaneous injection in the neck. and the J2 fusion protein low-dose group was given 9.35 nmol/kg J2 fusion protein. J18 fusion protein low-dose group was given 9.35 nmol/kg J18 fusion protein. J2 fusion protein high-dose group was administered with 56.1 nmol/kg J2 fusion protein. J18 fusion protein high-dose group was administered with 56.1 nmol/kg J18 fusion protein; the model group was given solvent. The drug or solvent was administered once a week in the above manner, and the drug or solvent were given twice in total. After  drug administration, each rat was weighed at the same time every day, and the changes in body weight of the rats was calculated every day. After 14 days, the experiment was stopped and the rats were weighed. Body weight gain (g) on a day after dosing is the difference between each animal's body weight on that day and its pre-dose body weight. At the end of the experiment, an anatomical examination confirms that there was no pituitary in the sella region. The changes in body weight gain of each group within 14 days were compared. The results are shown in FIG. 3, wherein "2#-low" was the low-dose J2 fusion protein group, "2#-high" was the high-dose J2 fusion protein group, "18#-low" was the low-dose J18 fusion protein group, and "18#-high" was the high-dose J18 fusion protein group. 2#-low VS model group, P =0.0083; 2#-high vs model group, P < 0.0001; 18#-low VS model group, P =0.0030; 18#-high vs model group, P =0.0003.
According to the results of FIG. 3:
(1) Compared with the model group, J2 fusion protein and J18 fusion protein can significantly increase the body weight of rats at both low-dose and high-dose, indicating that the fusion protein provided by the invention has good in vivo activity.
(2) The weight gain of the high-dose group was greater than that of the low-dose group.
(3) The high-dose J18 fusion protein group had a more significant effect than the high-dose J2 group.
Reference throughout this specification to "an embodiment, " "some embodiments, " "one embodiment" , "another example, " "an example, " "a specific examples, " or "some examples, " means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as "in some embodiments, " "in one embodiment" , "in an embodiment" , "in another example, " in an example, " "in a specific examples, " or "in some examples, " in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.

Claims (39)

  1. AnFc fragment mutant comprising afirst peptide, wherein the first peptide comprises mutations atthe followingpositions in comparison toa wild-type IgG1 Fc fragment:
    positions 228, 229, 366, 368, 395 and 409; and
    optional position 230.
  2. The Fc fragment mutantof claim 1, wherein the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment:
    positions 228, 229, 230, 366, 368, 395 and 409; and
    at least one of positions 351, 428 and 447.
  3. The Fc fragment mutantof claim 1, wherein the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment:
    (1) positions 228, 229, 230, 366, 368, 395, 409 and 447;
    (2) positions 228, 229, 230, 366, 368, 395 and 409;
    (3) positions 228, 229, 230, 351, 366, 368, 395, 409 and 428; or
    (4) positions 228, 229, 230, 351, 366, 368, 395, 409, 428 and 447.
  4. The Fc fragment mutantof claim1, wherein the first peptide comprises mutations at the following positions in comparison to the wild-type IgG1 Fc fragment:
    (1) P228 del, C229 del, P230 del, T366R, L368H, P395K and K409Xaa;
    (2) P228 del, C229 del, P230 del, T366R, L368H, P395K, K447A and K409Xaa;
    (3) P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y and K409Xaa;
    (4) P228 del, C229 del, P230 del, L351S, T366R, L368H, P395K, M428Y, K447A and K409Xaa; or
    (5) P228 del, C229 del, T366R, L368H, P395K and K409Xaa,
    where in K409Xaa, Xaa represent D or T.
  5. The Fc fragment mutantof claim 1, whereinthe Fc fragmentmutantfurther comprises:
    a hinge region fragment of the wild-type IgG1, wherein a C-terminal of the hinge region fragment of the wild-type IgG1 is connected with an N-terminal of the first peptide.
  6. The Fc fragment mutantof claim 5, whereinthe hinge region fragment of the wild-type IgG1comprises an amino acid sequence as shown in SEQ ID NO: 41.
  7. The Fc fragment mutantof claim 1, wherein the Fc fragment mutantcomprises an amino acid sequence as shown in any one of SEQ ID NOs: 2 to 7.
  8. The Fc fragment mutantof any one of claims1-7, wherein the Fc fragmentmutant is a monomer.
  9. A fusion protein comprising:
    asecond peptidecomprising a bioactive molecular functional region; and
    a third peptide connected with the second peptide, the third peptide comprising an Fc fragment mutantaccording to anyone of claims1-8.
  10. The fusion protein of claim 9, wherein the second peptide comprises a growth hormone, a growth hormone analog, a growth hormone functional region or a growth hormone analog functional region.
  11. The fusion protein of claim 9 or 10, whereinthe second peptide comprises the human growth hormone or the human growth hormone functional region.
  12. The fusion protein of claim 11, wherein the human growth hormone comprises an amino acid sequence as shown in SEQ ID NO: 1 or at least 90%homologous thereof.
  13. The fusion protein of claim 9, whereinan N-terminal of the second peptide is connected with a C-terminal of the third peptide; or,
    a C-terminal of the second peptide is connected with an N-terminal of the third peptide.
  14. The fusion protein of claim 9, whereinthe fusion protein further comprises a linker peptide, wherein the linker peptide is arranged between the second peptide and the third peptide.
  15. The fusion protein of claim 14, whereinan N-terminal of the linker peptide is connected with a C-terminal of the third peptide, and a C-terminal of the linker peptide is connected with an N-terminal of the second peptide; or
    an N-terminal of the linker peptide is connected with a C-terminal of the second peptide, and a C-terminal of the linker peptide is connected with an N-terminal of the third peptide.
  16. The fusion protein of claim 14 or 15, whereinthe linker peptide comprises an amino acid sequence of (GGGGS)  n, n being an integer greater than or equal to 1.
  17. The fusion protein of claim 16, wherein the n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  18. The fusion protein of claim 14 or 15, whereinthe linker peptide comprises an amino acid sequence as shown in any one of SEQ ID NOs: 8-10.
  19. The fusion protein of claim 9, whereinthe fusion protein comprises an amino acid sequence as shown in any one of SEQ ID NOs: 24-31.
  20. A nucleic acid molecule encoding the Fc fragment mutant of any one of claims 1-8 or the fusion protein of any one of claims 9-19.
  21. The nucleic acid molecule of claim 20, whereinthe nucleic acid molecule is DNA.
  22. An expression vector carrying the nucleic acid molecule of claim 20 or 21.
  23. The expression vector of claim 22, whereinthe expression vector is a eukaryotic expression vector.
  24. The expression vector of claim 22 or 23, whereinthe expression vector is a lentiviral vector.
  25. A recombinant cellcarrying the nucleic acid molecule of claims20 or 21; or
    expressingthe Fc fragmentmutant of any one of claims 1-8 or the fusion protein of any one of claims 9-19.
  26. The recombinant cell of claim 25, whereinthe recombinant cell is obtainable by introducing the expression vector of any one of claims22-24 into a host cell.
  27. The recombinant cell of claim 25 or 26, wherein the recombinant cell isa eukaryotic cell.
  28. The recombinant cell of claim 25 or 26, wherein the recombinant cell is a mammalian cell.
  29. A pharmaceutical composition comprising the fusion protein of any one of claims 9-19.
  30. The pharmaceutical composition of claim 29, whereinthe pharmaceutical compositionfurther comprisesa pharmaceutically acceptable carrier.
  31. The pharmaceutical composition of claim 29 or 30, whereinthe pharmaceutical composition is in a dosage form of an injection.
  32. The pharmaceutical composition of claim 29 or 30, wherein the pharmaceutical composition has an administration routine comprising subcutaneous or intravenous injection.
  33. A method of preventing or treating a diseaseassociated withabnormal growth hormone, wherein the method comprises:
    administering a subject in need a pharmaceutically effective amount ofthe fusion protein of any one of claims 9-19 or the pharmaceutical composition of any one of claims 29-32.
  34. The method of claim 33, whereinthe fusion protein is administered by subcutaneous injection or intravenous injection.
  35. The method of claim 33 or 34, whereinthediseaseassociated withabnormal growth hormonecomprises at least one of the following:
    childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
  36. Use of the fusion protein of any one of claims 9-19, the nucleic acid moleculeof any one of claims 20-21, the expression vector of any one of claims 22-24, the recombinant cell of any one of claims 25-28 or the pharmaceutical composition of any one of claims 29-32 in the preparation of a medicament for preventing or treating a diseaseassociated withabnormal growth hormone.
  37. The use of claim 36, whereinthe diseaseassociated withabnormal growth hormonecomprises at least one of the following:
    childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
  38. The fusion protein of any one of claims 9-19, the nucleic acid molecule of any one of claims 20-21, the expression vector of any one of claims 22-24, the recombinant cell of any one of claims 25-28 or the pharmaceutical composition of any one of claims 29-32, for use in preventing or treating a diseaseassociated withabnormal growth hormone.
  39. The fusion protein of any one of claims 9-19, the nucleic acid molecule of any one of claims 20-21, the expression vector of any one of claims 22-24, the recombinant cell of any one of claims 25-28 or the pharmaceutical composition of any one of claims 29-32, for use in preventing or treating adiseaseassociated withabnormal growth hormone comprise at least one of the following:
    childhood growth hormone deficiency, idiopathic short stature, adult growth hormone deficiency, Turner's syndrome, Prader-Willi syndrome, kidney failure, disorders caused by alienated states during chemotherapy and AIDS treatment, and intrauterine growth retardation.
PCT/CN2022/100114 2021-11-26 2022-06-21 Recombinant long-acting human growth hormone fusion protein and its use thereof WO2023093021A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111420842.9 2021-11-26
CN202111420842 2021-11-26
CN202210395423.2 2022-04-14
CN202210395423.2A CN115873127A (en) 2021-11-26 2022-04-14 Recombinant long-acting human growth hormone fusion protein and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2023093021A1 true WO2023093021A1 (en) 2023-06-01

Family

ID=85769358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100114 WO2023093021A1 (en) 2021-11-26 2022-06-21 Recombinant long-acting human growth hormone fusion protein and its use thereof

Country Status (2)

Country Link
CN (1) CN115873127A (en)
WO (1) WO2023093021A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827300A (en) * 2011-06-30 2014-05-28 中外制药株式会社 Heterodimerized polypeptide
US20150344570A1 (en) * 2012-12-27 2015-12-03 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
CN105916880A (en) * 2014-01-15 2016-08-31 豪夫迈·罗氏有限公司 Fc-region variants with improved protein a-binding
CN110997714A (en) * 2017-02-17 2020-04-10 赛诺菲 Multispecific binding molecules specific for dystrophin glycans and laminin-2
CN111741977A (en) * 2018-01-10 2020-10-02 戴纳立制药公司 Transferrin receptor binding polypeptides and uses thereof
CN113194990A (en) * 2018-07-11 2021-07-30 动量制药公司 Compositions and methods relating to engineered Fc-antigen binding domain constructs targeting CD38

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827300A (en) * 2011-06-30 2014-05-28 中外制药株式会社 Heterodimerized polypeptide
US20150344570A1 (en) * 2012-12-27 2015-12-03 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
CN105916880A (en) * 2014-01-15 2016-08-31 豪夫迈·罗氏有限公司 Fc-region variants with improved protein a-binding
CN110997714A (en) * 2017-02-17 2020-04-10 赛诺菲 Multispecific binding molecules specific for dystrophin glycans and laminin-2
CN111741977A (en) * 2018-01-10 2020-10-02 戴纳立制药公司 Transferrin receptor binding polypeptides and uses thereof
CN113194990A (en) * 2018-07-11 2021-07-30 动量制药公司 Compositions and methods relating to engineered Fc-antigen binding domain constructs targeting CD38

Also Published As

Publication number Publication date
CN115873127A (en) 2023-03-31

Similar Documents

Publication Publication Date Title
JP6640834B2 (en) Modified IL-2 variants that selectively activate regulatory T cells for treatment of autoimmune diseases
JP2019073552A (en) Delivery and formulation of engineered nucleic acids
CN106220724B (en) 21 recombinant protein of human fibroblastic growth factor and its preparation method and application
MX2010011343A (en) Recombinant fsh including alpha 2,3- and alpha 2,6-sialylation.
PT99107A (en) METHOD FOR THE PREPARATION OF HYBRID GROWTH AND COMPOSITION-PHARMACEUTICAL FACTORS THAT CONTAIN THEM
WO2023065700A1 (en) A growth hormone fusion protein and itsuse thereof
US20210388326A1 (en) Sphingosine kinase 1 and fusion protein comprising the same and use thereof
KR0172969B1 (en) Water-soluble polypeptides having high affinity for interferon alpha and beta
JP2023061978A (en) Pharmaceutical compositions containing hgh fusion protein for treating growth hormone deficiency
JP2022518850A (en) Fibroblast Growth Factor 21 mutants, their fusion proteins and their use
US20220033454A1 (en) Interleukin-22 fusion proteins, and their pharmaceutical compositions and therapeutic applications
CN104558198A (en) Preparation method and application of fusion protein of GLP-1 analogue and amylin analogue
CA3103684A1 (en) Solubilized apyrases, methods and use
WO2023093021A1 (en) Recombinant long-acting human growth hormone fusion protein and its use thereof
CN111499764B (en) Long-acting fusion protein with erythropoietin activity
US20130211051A1 (en) Fusion protein containing vegi, and pharmaceutical composition and use thereof
CN104645317A (en) Application of polypeptide compound as polypeptide or protein drug carrier, method, and fused protein compound of polypeptide compound
CN106608915A (en) GLP-1(7-37) polypeptide analog
CN106008717B (en) Long-acting recombinant GLP-1 fusion protein and preparation method and application thereof
CN106957365B (en) Monoclonal antibody FnAb8 and application thereof
WO2023093020A1 (en) Human growth hormone fusion protein and its use thereof
WO2022121667A1 (en) Glp-1, gip and gcg multi-receptor activation protein
CN113150172B (en) GLP-1R/GIPR double-target agonist fusion protein and preparation method and application thereof
US20220362359A1 (en) Dna vaccine capable of effectively treating and/or preventing type 1 diabetes and use thereof
CN113151182A (en) Preparation method and application of gene recombinant cell based on MSC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE