WO2023092766A1 - 音箱的校准控制方法、装置、设备及可读存储介质 - Google Patents

音箱的校准控制方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2023092766A1
WO2023092766A1 PCT/CN2021/139413 CN2021139413W WO2023092766A1 WO 2023092766 A1 WO2023092766 A1 WO 2023092766A1 CN 2021139413 W CN2021139413 W CN 2021139413W WO 2023092766 A1 WO2023092766 A1 WO 2023092766A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
calibration
rotation
external force
interference
Prior art date
Application number
PCT/CN2021/139413
Other languages
English (en)
French (fr)
Inventor
吕廷昌
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023092766A1 publication Critical patent/WO2023092766A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers

Definitions

  • the present application relates to the technical field of smart speakers, in particular to a calibration control method, device, equipment and readable storage medium for speakers.
  • smart speaker products with more and more functions, such as on-demand songs, online shopping, or understanding the weather forecast.
  • smart home devices such as opening the curtains, setting the temperature of the refrigerator, and setting the water heater in advance. Heating, etc., and these functions generally need to be realized on the basis of human-computer interaction through speech recognition.
  • the smart speakers on the market now generally use fixed-position speakers, but in home application scenarios, users often shuttle back and forth at home frequently, the position is not fixed, and the distance from the smart speaker is long and short, which makes the smart speaker The distance between the speaker and the user is too far, resulting in inaccurate or unresponsive voice recognition. Therefore, the smart speaker needs to be equipped with a rotation function to rotate the speaker to the direction facing the user according to the direction of the user's voice, that is, the smart speaker determines the user's direction through sound source positioning, and then the smart speaker follows the rotation to the user's direction, thereby improving intelligence.
  • the voice recognition rate of the speaker in response to the voice information input by the user, executes the operation indicated by the voice information.
  • the rotation control accuracy of smart speakers is often easily disturbed by external forces, such as pushing, pressing and moving the smart speakers by external forces, which will easily lead to a decrease in the rotation control accuracy. Therefore, when the smart speaker is disturbed by external force, the smart speaker needs to perform a rotation calibration operation, such as controlling the speaker to rotate.
  • the IMU Inertial measurement unit, inertial measurement unit
  • the IMU that detects the value of each rotation angle of the speaker
  • it is easy to be disturbed by an external force which may lead to errors in the rotation calibration operation, resulting in the inability to calibrate the rotation control accuracy of the speaker, or the calibrated rotation control accuracy still has errors.
  • the main purpose of the present application is to provide a speaker calibration control method, device, equipment and readable storage medium, aiming to solve the technical problem that the rotation calibration operation of the speaker is prone to error after being interfered by external force.
  • the present application provides a method for calibrating and controlling speakers, including the following steps:
  • the speaker is controlled to restart from the calibration starting point of the speaker, and the IMU module in the speaker is rotated and calibrated.
  • the step of detecting whether the strength value corresponding to the external force disturbance is greater than a preset strength threshold it further includes:
  • step of controlling the speaker to suspend the rotation calibration operation includes:
  • the external force interference is the interference of the interference object, output a prompt message indicating that there is an interference object on the rotation path of the speaker;
  • the step of determining whether the external force disturbance is interference from an interference object on the rotation path of the sound box includes:
  • the step of controlling the speaker to restart from the calibration starting point of the speaker, and performing a rotation calibration operation on the IMU module in the speaker includes:
  • attitude inclination safety warning threshold If the attitude inclination is greater than the inclination safety warning threshold, an early warning prompt that the attitude inclination of the speaker is too large is generated;
  • attitude inclination is less than or equal to the inclination safety warning threshold, then perform: the step of controlling the speaker to re-start from the calibration starting point of the speaker, and perform a rotation calibration operation on the IMU module in the speaker.
  • the step of controlling the speaker to restart from the calibration starting point of the speaker, and performing a rotation calibration operation on the IMU module in the speaker includes:
  • the IMU module in the sound box is calibrated according to the actual rotation angle value and the mapped IMU data.
  • the step of calibrating the IMU module in the sound box according to the actual rotation angle value and the mapped IMU data includes:
  • mapping IMU data determine the monitoring rotation angle value corresponding to the actual rotation angle value
  • the IMU module is calibrated according to the angle monitoring error.
  • the present application also provides a speaker calibration control device, including:
  • the acquisition module is used to obtain the real-time IMU data of the speaker during the rotation calibration process, and judge whether the speaker is disturbed by external force according to the real-time IMU data;
  • An analysis module configured to control the speaker to stop the rotation calibration operation if it is determined that the speaker is disturbed by an external force, and detect whether the force value corresponding to the external force disturbance is greater than a preset force threshold;
  • the calibration module is configured to control the speaker to restart from the calibration starting point of the speaker to perform a rotation calibration operation on the IMU module in the speaker if the force value is greater than the preset force threshold.
  • the present application also provides a calibration control device for speakers
  • the calibration control device includes a memory, a processor, and a calibration control program stored in the memory and operable on the processor, the calibration control program is controlled by When the processor executes, the steps of realizing the above-mentioned speaker calibration control method are implemented.
  • the present application also provides a readable storage medium, on which a calibration control program is stored, and when the calibration control program is executed by a processor, the steps of the above-mentioned speaker calibration control method are implemented. .
  • the completed calibration steps in the rotation calibration operation are abandoned, and the speaker is controlled to start from the calibration starting point of the speaker again.
  • the rotation calibration operation is performed on the IMU module, so that even if the speaker is disturbed by an external force during the rotation calibration operation, the rotation calibration operation will not cause errors, that is, it can still ensure that the rotation calibration operation maintains good calibration accuracy for the IMU module, and there is no A case where the calibration is off.
  • the placement position of the speaker changes due to external force interference.
  • the steps of the rotation calibration operation of the IMU module so that the speaker can restart the rotation simulation operation, and realize the pre-verification again whether there is interference with other objects in the current placement position during the rotation of the speaker, so as to give an early warning and will not affect the speaker in practical applications.
  • the rotation function of the speaker can still maintain good control of the rotation angle of the speaker by the IMU module.
  • the application controls the speaker to start from the calibration starting point of the speaker to rotate the IMU module in the speaker
  • the steps of the calibration operation abandon the calibration steps that have been completed in the current rotation calibration operation, start from the first step of the rotation calibration operation on the IMU module, and re-calibrate to correct the measurement error of the speaker rotation angle by the IMU module, so that the speaker is in progress
  • the rotation calibration operation even if the external force is disturbed, the rotation calibration operation will not cause errors, and the external force interference is prevented from affecting the calibration accuracy of the rotation calibration operation.
  • Fig. 1 is a schematic diagram of the terminal/device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of the first embodiment of the method for calibrating the speakers of the present application
  • Fig. 3 is a schematic flow chart of the second embodiment of the method for calibrating the speakers of the present application
  • FIG. 4 is a schematic diagram of a scene of an external force vector direction in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a detailed flow chart of the third embodiment of the calibration control method for speakers of the present application.
  • FIG. 6 is a schematic diagram of the hardware structure of the speaker in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a detailed flow chart of the fourth embodiment of the calibration control method for speakers of the present application.
  • Fig. 8 is a schematic diagram of the module structure of the speaker in the embodiment of the present application.
  • Fig. 9 is a schematic diagram of the device structure of the speaker in the embodiment of the present application.
  • first and second are used to distinguish different objects, not to describe a specific order.
  • the terms “include” and “have”, as well as any variations thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally further includes For other steps or units inherent in these processes, methods, products or apparatuses.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal in this embodiment of the present application is a calibration control device.
  • the terminal may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 can be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the terminal may also include a camera, an RF (Radio Frequency, radio frequency) circuit, a sensor, an audio circuit, a WiFi module, and the like.
  • sensors such as light sensors, motion sensors and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor may turn off the display screen and/or backlight.
  • the terminal device may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, and an infrared sensor, which will not be repeated here.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than those shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a calibration control program.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be used to call the calibration control program stored in memory 1005, and perform the following operations:
  • the speaker is controlled to restart from the calibration starting point of the speaker, and the IMU module in the speaker is rotated and calibrated.
  • the voice recognition rate of the speaker in response to the voice information input by the user, executes the operation indicated by the voice information.
  • the rotation control accuracy of smart speakers is often easily disturbed by external forces, such as pushing, pressing and moving the smart speakers by external forces, which will easily lead to a decrease in the rotation control accuracy. Therefore, when the smart speaker is disturbed by external force, the smart speaker needs to perform a rotation calibration operation, such as controlling the speaker to rotate.
  • the IMU Inertial measurement unit, inertial measurement unit
  • the IMU that detects the value of each rotation angle of the speaker
  • it is easy to be disturbed by an external force which may lead to errors in the rotation calibration operation, resulting in the inability to calibrate the rotation control accuracy of the speaker, or the calibrated rotation control accuracy still has errors.
  • the applicant found that in fact, during the rotation calibration operation of the speaker, the attitude inclination or position of the speaker changes due to external force, which in turn leads to the failure of the rotation calibration operation.
  • the calibrated and calibrated rotation angle monitoring accuracy deviates.
  • the three-axis gyroscope in the IMU module will be offset due to the change of attitude tilt, and the offset of the three-axis gyroscope will directly cause a large error in the monitoring accuracy of the calibrated and calibrated rotation angle in the current rotation calibration operation.
  • a change in the position of the speaker may also cause an error in the rotation calibration operation of the speaker.
  • the speaker when the speaker is performing the rotation calibration operation, the user moves the speaker to another placement, or the user pushes the speaker to produce a displacement. The inclination has not changed.
  • the speaker rotates with the user through sound source positioning or image positioning, the speaker after changing the position may interfere with other objects, which will affect the rotation function of the speaker.
  • the speaker calibration control method includes the following steps:
  • Step S100 acquiring real-time IMU data of the speaker during the rotation calibration process, and judging whether the speaker is disturbed by external force according to the real-time IMU data;
  • the real-time IMU data of the speaker can be obtained based on the IMU (Inertial measurement unit, inertial measurement unit) module in the speaker, and the IMU module can include a three-axis gyroscope and a three-axis acceleration sensor.
  • the real-time IMU data is the data measured by the acceleration sensor and the gyroscope in real time, such as acceleration, angular velocity and attitude inclination.
  • the attitude inclination characterizes the inclination angle of the speaker on the vertical plane.
  • obtaining the real-time IMU data of the speaker during the rotation calibration process means that the real-time IMU data of the speaker is obtained during the rotation calibration operation of the speaker.
  • Step S200 if it is determined that the speaker is disturbed by an external force, control the speaker to stop the rotation calibration operation, and detect whether the force value corresponding to the external force disturbance is greater than a preset force threshold;
  • the preset strength threshold can be set by those skilled in the art according to the actual situation, so as to better detect whether the strength value changes the position or attitude inclination of the speaker, or to better detect the Whether the force value makes the change of the position or attitude of the speaker greater than a certain value shall prevail, which is not specifically limited in this embodiment.
  • the acceleration sensor can detect the magnitude of the change in acceleration on the three axes to calculate the force value corresponding to the external force interference of the speaker.
  • Step S300 if the force value is greater than the preset force threshold, control the speaker to start from the calibration starting point of the speaker again, and perform a rotation calibration operation on the IMU module in the speaker.
  • the rotation calibration operation is to control the speaker to perform a rotation simulation operation.
  • the IMU module detects the IMU data of the speaker at each rotation angle value, and realizes the IMU according to the IMU data of each rotation angle value. module calibration.
  • the calibration steps completed in the rotation calibration operation are abandoned, and the speaker is controlled to start from the calibration starting point of the speaker again. , perform the rotation calibration operation on the IMU module, so that even if the speaker is disturbed by an external force during the rotation calibration operation, the rotation calibration operation will not cause errors, that is, it can still ensure that the rotation calibration operation maintains good calibration accuracy for the IMU module. There are instances where the calibration is off.
  • the IMU module performs the steps of rotation calibration operation, so that the speaker can restart the rotation simulation operation, and realizes to pre-verify whether there is interference with other objects in the current placement position during the rotation process of the speaker, so as to give an early warning and will not affect the actual application.
  • the rotation function of the speaker can still maintain the good control of the rotation angle of the speaker by the IMU module.
  • this embodiment controls the speaker to re-start from the calibration starting point of the speaker to perform the IMU module in the speaker.
  • the steps of the rotation calibration operation abandon the calibration steps that have been completed in the current rotation calibration operation, start from the first step of the rotation calibration operation on the IMU module, and re-calibrate to correct the measurement error of the speaker rotation angle by the IMU module, so that the speaker
  • the rotation calibration operation is performed, even if external force is disturbed, the rotation calibration operation will not cause errors, and the external force interference is prevented from affecting the calibration accuracy of the rotation calibration operation.
  • the step of detecting whether the strength value corresponding to the external force disturbance is greater than a preset strength threshold it further includes:
  • this embodiment controls the sound box to continue from the stop point of the rotation calibration operation when the external force interference is eliminated, and the IMU in the sound box
  • the module performs the rotation calibration operation, so as to avoid the rotation calibration operation performed when the external force interference is not eliminated, and the calibration accuracy is not accurate.
  • the force value corresponding to the external force disturbance is less than or equal to the preset force threshold
  • the calibrated and calibrated rotation angle monitoring accuracy deviates, that is, the completed calibration steps in the current rotation calibration operation are still valid. Therefore, in this embodiment, if the force value is less than or equal to the preset force threshold, then when the external force interference is eliminated, the speaker is controlled to continue to start from the stop point of the rotation calibration operation, and the IMU module in the speaker The step of performing a rotation calibration operation, thereby improving calibration efficiency of the rotation calibration operation while ensuring good calibration accuracy of the rotation calibration operation.
  • the second embodiment of the method for calibrating the speakers of the present application is proposed.
  • the step of controlling the speakers to suspend the rotation calibration operation includes:
  • Step S400 determining whether the external force interference is the interference of the speaker on the rotation path
  • the rotation path refers to a rotation traveling route of the sound box during the rotation process.
  • the interfering object refers to an obstacle in the rotational path of the loudspeaker. It is understandable that if there is an interfering object in the rotation path of the sound box, the sound box will be hindered during the rotation process, which seriously affects the rotation function of the sound box.
  • the interference caused by the interference objects on the rotation path to the rotation function of the speaker is called interference object interference.
  • step S500 executes step S500 to output a prompt message indicating that there is an interference object on the rotation path of the speaker; if the external force interference is the interference of the non-interference object, execute: A step of whether the strength value corresponding to the external force disturbance is greater than a preset strength threshold.
  • the non-interfering object interference does not represent the interference effect on the rotation function of the speaker caused by the interfering object on the rotation path, and the non-interfering object interference may include the force generated by pushing, pulling or moving the speaker.
  • the prompt information can be output in the form of controlling the speaker to generate a preset sound source or light source.
  • the external force interference of the speaker on the rotation path is the interference of interference objects
  • the step of prompting information that there is an interference object on the rotation path of the speaker thereby reminding the user that there is an interference object in the rotation path of the speaker.
  • the interference object is removed, or the position of the speaker is changed, so as to restore the rotation function of the speaker, thereby improving the adaptability and robustness of the calibration control method of the embodiment of the present application.
  • the step of determining whether the external force disturbance is interference from an interference object on the rotation path of the sound box includes:
  • Step a when the sound box is disturbed by the external force, detecting the direction of the external force vector corresponding to the external force disturbance;
  • the direction of the external force vector represents the direction of the external force acting on the sound box.
  • the cylinder in the figure represents the sound box
  • the direction of the external force F acting on the sound box is the direction of the external force vector.
  • the direction of the external force vector can be detected by an acceleration sensor arranged in the sound box.
  • Step b judging whether the direction of the external force vector continuously exists for a predetermined number of times, all of which are opposite to the direction of rotation of the sound box;
  • Step c based on the judging result of whether the direction of the external force vector for a predetermined number of times is continuously opposite to the direction of rotation of the sound box, determine whether the external force disturbance is an interference object on the rotation path of the sound box interference.
  • the external force disturbance is an interference of the sound box on the rotation path.
  • the force direction of the interference object on the speaker is opposite to the direction of rotation of the speaker during each rotation of the speaker, that is, the external force vector generated by the interference object on the speaker The direction is opposite to the direction of rotation of the speaker.
  • the preset number of times can be set by those skilled in the art according to the actual situation, so as to better detect whether the external force interference received by the sound box is interference from an interference object, which is not specifically limited in this embodiment.
  • the preset number of times is 3 times, that is, if the direction of the external force vector corresponding to the external force received by the speaker for 3 consecutive times is opposite to the rotation direction of the speaker, it is determined that there is an interference object on the rotation path of the speaker. It can be understood that the direction of the external force vector generated by the interference of non-interfering objects may also be opposite to the direction of rotation of the speaker, but relatively speaking, the probability of this happening is low, and the larger the value of the preset number of times , the lower the probability.
  • by setting the judging condition whether there is a predetermined number of consecutive external force vector directions, all of which are opposite to the rotation direction of the sound box it is ensured to accurately distinguish whether the external force interference suffered by the sound box is interference from interference objects.
  • the step of determining whether the external force disturbance is interference from an interference object on the rotation path of the sound box includes:
  • Step d counting the abnormal rotation angle value of the speaker
  • the abnormal rotation angle value is the actual rotation angle value when the sound box is disturbed by external force during the rotation process.
  • Step e obtaining the abnormal rotation angle value of the preset number of times continuously counted recently, and comparing the abnormal rotation angle value of the preset number of times to obtain an angle deviation value;
  • Step f based on the angle deviation value, it is determined whether the external force disturbance is interference from an interfering object on the rotation path of the sound box.
  • the angle deviation value is less than the preset angle deviation threshold, it is determined that the external force interference is the interference of the sound box on the rotation path.
  • the interference object will often exert a force on the speaker at the same position every time during the rotation of the speaker. It is understandable that even if the interference object often The force acting on the speaker at the same position may also be due to the monitoring error of the rotation angle, or a certain angle deviation due to vibration during the rotation of the speaker. However, when the speaker is disturbed by an external force during the rotation process, the corresponding actual rotation angle value tends to have a small deviation.
  • this embodiment sets the judgment condition of the preset angle deviation threshold, so as to ensure a certain fault tolerance during the rotation of the speaker, and at the same time, it can also accurately distinguish whether the external force interference of the speaker is the interference of the speaker on the rotation path .
  • the preset angle deviation threshold can be set by those skilled in the art according to the actual situation, so as to better detect whether the external force interference received by the sound box is the interference of the sound box on the rotation path. In one embodiment, the preset angle deviation threshold is 3°
  • the preset angle deviation threshold is 3°
  • the preset number of times is 3
  • the abnormal rotation angle value of the first detection is 82°
  • the abnormal rotation angle value of the second detection is 81°
  • the abnormal rotation angle value of the first detection is 81°.
  • the abnormal rotation angle value of 83°, the average value of the abnormal rotation angle value of the preset number of times is 82°, and the difference between the average value and the abnormal rotation angle value of the preset number of times is 0°, 1° and -1°.
  • the angle deviation value of 2° is smaller than the preset angle deviation threshold value of 3°, so it is determined that the external force interference on the speaker box is interference from an interference object on the rotation path of the speaker box.
  • the preset number of The variance value of the abnormal rotation angle value is used as the angle deviation threshold and compared with the preset angle deviation threshold. According to the comparison result, it is determined whether the external force interference of the speaker is the interference of the speaker on the rotation path.
  • the preset number of times can be set by those skilled in the art according to the actual situation, so as to better detect whether the external force interference received by the sound box is interference from an interference object, which is not specifically limited in this embodiment.
  • the preset number of times is 3 times, that is, the angle deviation value is obtained through 3 consecutive abnormal rotation angle values of the sound box. It can be understood that the direction of the external force vector generated by the interference of non-interfering objects may also have accidental situations where the value of the abnormal rotation angle is the same for three consecutive times, but the probability of occurrence of the accidental situation is relatively low, and the value of the preset number of times can be Set larger, so that the probability of occurrence of accidental situations is lower.
  • the third embodiment of the method for calibrating the speakers of the present application is proposed. Based on the above-mentioned first embodiment, the speakers are controlled to restart from the calibration starting point of the speakers, and the IMU module in the speakers.
  • the steps for performing the rotation calibration operation also include:
  • Step S600 when the external force interference is eliminated, detect the attitude inclination of the speaker, and judge whether the attitude inclination is greater than a preset inclination safety warning threshold;
  • the current attitude inclination of the sound box can be detected based on the acceleration sensor. Since the external force interference may continue to have an impact on the attitude inclination of the speaker, this embodiment detects the current attitude inclination of the speaker when the external force interference is eliminated, thereby avoiding the detected attitude inclination when the external force interference of the speaker is not eliminated inaccuracies occur.
  • the acceleration sensor can be used to detect the attitude inclination of the sound box.
  • the attitude inclination characterizes the inclination angle of the speaker on the vertical plane. Since the acceleration sensor is subjected to gravity when it is placed at rest, there will be a gravitational acceleration of 1g. By measuring the component of the gravitational acceleration on the X or Y axis, the inclination angle on the vertical plane can be calculated, and then judged according to the attitude inclination of the speaker. Whether the speaker is placed stably.
  • step S700 is performed to generate an early warning prompt that the attitude inclination of the speaker is too large;
  • attitude inclination is less than or equal to the inclination safety warning threshold, then perform: the step of controlling the speaker to re-start from the calibration starting point of the speaker, and perform a rotation calibration operation on the IMU module in the speaker.
  • the inclination safety warning threshold can be set by those skilled in the art according to the actual situation, so as to better judge whether there is a greater risk of the sound box toppling over, which is not specifically limited in this embodiment.
  • the speaker in this embodiment includes a front camera, a front microphone, a display and a speaker host, wherein the front camera and the front microphone are arranged on the side where the display screen of the display is.
  • the speaker host can recognize the audio signal collected by the microphone, and perform corresponding operations according to the recognized voice information, such as searching, playing audio, etc., so as to perform voice interaction with the user .
  • the front camera can be used to collect video images, and to identify whether there is a human body in the video image, and when the presence of a human body is recognized, the front microphone of the smart speaker is turned on, so that when it is judged that there is an interaction demand Then turn on the front microphone, so as to save the power consumption of the speaker.
  • the user's orientation can also be determined by image positioning.
  • the video image collected by the front camera can be used to identify the video image and judge the video Whether there is a human body in the image, if there is a human body in the video image, then identify the human body orientation of the human body in the video image, and then control the speaker to rotate to the human body orientation, so as to improve the accuracy of the voice recognition of the user by the speaker host.
  • the fourth embodiment of the calibration control method for the speaker of the present application is proposed.
  • the speaker is controlled to restart from the calibration starting point of the speaker.
  • the steps for the IMU module in the speaker to perform the rotation calibration operation include:
  • Step S310 controlling the speaker to rotate from the calibration starting point of the speaker to the calibration end point of the speaker, and collecting the actual rotation angle value of the speaker and the actual rotation angle value of the speaker during the rotation of the speaker.
  • the mapping IMU data corresponding to the rotation angle value
  • the actual rotation angle value is calculated from the calibration starting point, and the rotation angle value of the speaker has been rotated.
  • the calibration start point represents the rotation start point of the speaker for the rotation calibration operation
  • the calibration end point represents the rotation end point of the speaker for the rotation calibration operation.
  • the calibration start point and calibration end point can be preset by those skilled in the art before the speaker is put into the market, and can also be customized by the user after the speaker is put into the market.
  • the actual rotation angle value is calculated from the calibration starting point, and the rotation angle value of the speaker has been rotated.
  • the mapped IMU data represents the IMU data measured by the gyroscope and the acceleration sensor corresponding to the speaker's rotation to different actual rotation angle values.
  • the mapped IMU data may include the rotational angular velocity of the speaker, and the integral of the rotational angular velocity with respect to time.
  • Step S320 calibrate the IMU module in the sound box according to the actual rotation angle value and the mapped IMU data.
  • the angular velocity and acceleration in the mapped IMU data can be fitted with the least squares algorithm to calculate the monitored rotation angle value, and the actual rotation angle value is compared with the monitored rotation angle value to obtain the gyroscope’s deflection Move the scale to calibrate the gyroscope in the IMU module.
  • the speaker by controlling the speaker to rotate from the calibration start point to the calibration end point, and during the rotation of the speaker, the actual rotation angle value of the speaker and the step of mapping the IMU data corresponding to the actual rotation angle value are collected, thereby according to This actual rotation angle value and mapped IMU data, calibrates the offset scale of the gyroscope.
  • before the step of collecting the actual rotation angle value of the sound box includes:
  • Step g during the rotation of the sound box, count the pulse data output by the motor in the sound box, and determine the actual rotation angle value of the sound box according to the number of pulse data.
  • the motor is a rotating motor, which is used to drive the speaker to rotate to realize the rotation control function of the speaker.
  • the user application can represent intelligent service applications such as ordering songs, shopping online, or understanding weather forecasts, and the functions of these user applications are realized on the basis of human-computer interaction through voice recognition.
  • the sensors may include a three-axis acceleration sensor and a three-axis gyroscope in the IMU module.
  • the main control board is electrically connected to the sensor and the motor respectively, and the main control board receives the actual rotation angle value of the motor and the IMU data of the sensor to realize the calibration of the rotation control accuracy of the speaker.
  • the actual rotation angle value of the sound box can be calculated based on a certain preset algorithm and according to the number of pulse data. For example, if the rotation angle corresponding to one output pulse data is 0.5 degrees, then when the motor outputs 50 pulse data, the corresponding actual rotation angle value can be calculated to be 25 degrees.
  • before the step of collecting the actual rotation angle value of the sound box includes:
  • step h during the rotation of the sound box, the motor rotation time of the motor in the sound box is counted, and the actual rotation angle value of the sound box is determined according to the rotation time of the motor.
  • the actual rotation angle value of the sound box can be calculated based on a certain preset algorithm and according to the rotation time of the motor. For example, if the motor rotates for 1 second and the corresponding rotation angle is 3 degrees, then when the motor rotates for 10 seconds, the corresponding actual rotation angle value can be calculated as 30 degrees.
  • a calibration reference point is set within the rotation angle range between the calibration start point and the calibration end point, and the speaker is rotated from the calibration start point to the actual calibration reference point
  • the rotation angle value is a reference rotation angle value; the step of collecting the actual rotation angle value of the speaker includes:
  • Step i based on the proximity sensor in the speaker, detecting whether the speaker is rotated to the calibration reference point;
  • the calibration reference point is preset at a certain position between the calibration start point and the calibration end point by those skilled in the art, and the actual rotation angle of the speaker from the calibration start point to the calibration reference point is The reference rotation angle value, and the reference rotation angle value is stored in the system of the speaker, so that the reference rotation angle value can be called to calibrate the IMU module when the speaker performs rotation calibration operation.
  • the reference rotation angle value may be 90 degrees, 180 degrees or 210 degrees, etc.
  • Step j if the speaker is rotated to the calibration reference point, then use the reference rotation angle value as the actual rotation angle value of the speaker.
  • Multiple calibration reference points can be set within the rotation angle range between the calibration end points, for example, 4 calibration reference points, wherein the reference rotation angle value corresponding to the first calibration reference point is 60 degrees, and the second calibration reference point The reference rotation angle value corresponding to the point is 120 degrees, the reference rotation angle value corresponding to the third calibration reference point is 180 degrees, and the reference rotation angle value corresponding to the fourth calibration reference point is 240 degrees.
  • the IMU module can be calibrated based on multiple calibration reference point positions, thereby improving the calibration accuracy and calibration efficiency of the IMU module calibration.
  • the speaker when the speaker passes the calibration reference point, the speaker can determine the actual rotation angle value currently rotated, calibrate the IMU module according to the actual rotation angle value, and correct the monitoring error of the IMU module on the rotation angle of the speaker, so that the IMU In the actual application process, the module can accurately monitor the angle value of the current speaker's rotation, thereby improving the rotation control accuracy of the speaker.
  • the step S320 is to control the speaker to rotate from the calibration start point to the calibration end point, and collect the actual rotation of the speaker during the rotation of the speaker Angle value, and the step of mapping IMU data corresponding to said actual rotation angle value comprises:
  • Step k controlling the speaker to rotate from the calibration start point to the calibration end point at a preset first rotational angular velocity, and when the speaker rotates to the calibration end point, update the calibration end point to Calibrate the starting point, and update the calibration starting point as the calibration ending point;
  • Step 1 controlling the speaker to rotate from the updated calibration start point to the updated calibration end point at a preset second rotational angular velocity
  • the first rotational angular velocity is greater than the second rotational angular velocity
  • Step n during the rotation process of the speaker, preset the rotation angle every interval, collect the actual rotation angle value of the speaker, and the mapping IMU data corresponding to the actual rotation angle value.
  • the sound box rotates once in different directions of clockwise and counterclockwise respectively.
  • One of the rotation directions is for IMU calibration of the high-speed rotation motion model
  • the other rotation direction is for the IMU calibration of the low-speed rotation motion model.
  • mapping IMU data is collected at intervals of 5 degrees, and the mapping IMU data may include 3-axis gravity acceleration data and measured values of rotation angular velocity corresponding to different actual rotation angle values.
  • the actual rotation angle value is 0 degrees
  • the actual rotation angle value corresponding to the calibration end point is 355 degrees
  • the preset rotation angle is 5 degrees
  • the first rotation angular velocity is 0.6m/s
  • the second rotation angular velocity is 0.3m/s.
  • the actual rotation angle value corresponding to the calibration start point is 0 degrees
  • the actual rotation angle value corresponding to the calibration end point is 350 degrees
  • the preset rotation angle is 5 degrees
  • the first rotation angular velocity is 0.8 m/s
  • the second rotational angular velocity is 0.5m/s.
  • the speaker is controlled to rotate from the calibration start point to the calibration end point, and during the rotation of the speaker, the actual The rotation angle value, and the step of mapping IMU data corresponding to the actual rotation angle value also includes:
  • Step m controlling the speaker to rotate from the calibration start point to the calibration end point at a preset third rotational angular velocity, and when the speaker rotates to the calibration end point, update the calibration end point to Calibrate the starting point, and update the calibration starting point as the calibration ending point;
  • Step o controlling the speaker to rotate from the updated calibration start point to the updated calibration end point at a preset third rotational angular velocity, when the speaker rotates to the updated calibration end point , updating the calibration end point to the calibration start point again, and updating the calibration start point to the calibration end point;
  • Step p controlling the speaker to rotate from the updated calibration start point to the updated calibration end point at a preset fourth rotational angular velocity, when the speaker rotates to the updated calibration end point , updating the calibration end point to the calibration start point again, and updating the calibration start point to the calibration end point, wherein the third rotational angular velocity is greater than the fourth rotational angular velocity;
  • Step q controlling the speaker to rotate from the updated calibration start point to the updated calibration end point at a preset fourth rotational angular velocity
  • Step r during the rotation of the sound box, preset the rotation angle at intervals, collect the actual rotation angle value of the sound box, and the mapping IMU data corresponding to the actual rotation angle value.
  • the difference between this embodiment and the previous embodiment is that the sound box rotates twice in clockwise and counterclockwise directions respectively.
  • one rotation clockwise and one counterclockwise are for IMU calibration of the high-speed rotation motion model
  • the other clockwise rotation and the other anti-clockwise rotation are IMU calibrations for low-speed rotation motion models.
  • step S330 of the above-mentioned fourth embodiment according to the actual rotation angle value and the mapping IMU data, refinement of the step of calibrating the IMU module in the speaker, the step S330 includes:
  • Step s according to the mapped IMU data, determine the monitoring rotation angle value corresponding to the actual rotation angle value
  • the mapped IMU data may include the acceleration detected by the acceleration sensor, the rotational angular velocity detected by the gyroscope, and the integral of the rotational angular velocity with respect to time.
  • the step of determining the monitoring rotation angle value corresponding to the actual rotation angle value according to the mapping IMU data includes:
  • Step t determining the monitored rotational angular velocity corresponding to the actual rotational angle value according to the mapped IMU data
  • Step u Acquiring the accumulated rotation duration corresponding to the actual rotation angle value, and calculating the monitored rotation angle value corresponding to the actual rotation angle value according to the monitored rotation angular velocity and the accumulated rotation duration.
  • the solution formula for monitoring the rotation angle value may be:
  • ⁇ (t+ ⁇ t) is the monitoring rotation angle value
  • ⁇ (t) is the actual rotation angle value corresponding to the calibration starting point
  • the actual rotation angle value corresponding to the calibration starting point is generally 0 degrees
  • w( ⁇ ) is the monitoring Rotation angular velocity
  • ⁇ t is the cumulative rotation duration corresponding to the actual rotation angle value.
  • w( ⁇ ) ⁇ t is the integral of the monitored rotation angle value to the rotation time, that is, the current monitored rotation angle value of the speaker is the integral of the monitored rotation angular velocity to the rotation time.
  • the IMU module is pre-rotated to each actual rotation angle value, and the angular velocity sum corresponding to each actual rotation angle value and the integral of the angular velocity to time are measured by the IMU module, so as to calculate the monitoring rotation angle value, which is convenient for subsequent use.
  • the monitored rotation angle value is compared with the actual rotation angle value, and then it is judged whether there is a monitoring error in the IMU module. If there is, the IMU module is calibrated according to the deviation angle value between the monitored rotation angle value and the actual rotation angle value.
  • Step v calculating the angle monitoring error of the IMU module according to the actual rotation angle value and the monitored rotation angle value
  • the calculated monitoring rotation angle value is 182.30 degrees, while the actual rotation angle value is 180.00 degrees, which indicates that there is an error in the rotation control accuracy of the sound box, and the angle monitoring error is 2.3 degrees at this time. According to the The 2.3 degree angle monitoring error recalibrates the IMU module.
  • Step w calibrate the IMU module according to the angle monitoring error.
  • the deviation parameter between the actual rotation angle value and the monitored rotation angle value is used to correct the drift error of the gyroscope in the IMU module due to external force interference, thereby correcting the measurement error of the rotation angle of the speaker by the IMU module,
  • the IMU can accurately check the angle value of the current speaker's rotation, thereby improving the rotation control accuracy of the speaker.
  • the embodiment of the present application also provides a speaker calibration control device, including:
  • the acquisition module A10 is used to obtain the real-time IMU data of the speaker during the rotation calibration process, and judge whether the speaker is disturbed by external force according to the real-time IMU data;
  • An analysis module A20 configured to control the speaker to stop the rotation calibration operation if it is determined that the speaker is disturbed by an external force, and detect whether the force value corresponding to the external force disturbance is greater than a preset force threshold;
  • the calibration module A30 is configured to control the speaker to restart from the calibration starting point of the speaker to perform a rotation calibration operation on the IMU module in the speaker if the force value is greater than the preset force threshold.
  • analysis module A20 is also used for:
  • analysis module A20 is also used for:
  • the external force interference is the interference of the interference object, output a prompt message indicating that there is an interference object on the rotation path of the speaker;
  • analysis module A20 is also used for:
  • the calibration module A30 is also used for:
  • attitude inclination safety warning threshold If the attitude inclination is greater than the inclination safety warning threshold, an early warning prompt that the attitude inclination of the speaker is too large is generated;
  • attitude inclination is less than or equal to the inclination safety warning threshold, then perform: the step of controlling the speaker to re-start from the calibration starting point of the speaker, and perform a rotation calibration operation on the IMU module in the speaker.
  • the calibration module A30 is also used for:
  • the IMU module in the sound box is calibrated according to the actual rotation angle value and the mapped IMU data.
  • the calibration module A30 is also used for:
  • mapping IMU data determine the monitoring rotation angle value corresponding to the actual rotation angle value
  • the IMU module is calibrated according to the angle monitoring error.
  • the present application also provides a speaker calibration control device, the calibration control device includes: a memory, a processor, and a calibration control program stored in the memory; the processor is used to execute the calibration control program to The steps of each embodiment of the above-mentioned calibration control method for a speaker are realized.
  • the present application also provides a readable storage medium, the readable storage medium stores one or more programs, and the one or more programs can also be executed by one or more processors to realize the above-mentioned sound box The steps of each embodiment of the calibration control method.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, computer, server, air conditioner, or network device, etc.) execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

本申请公开了一种音箱的校准控制方法、装置、设备及可读存储介质,音箱的校准控制方法包括:获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。本申请使得音箱设备在进行旋转校准操作时,即使受到外力干扰,仍然能保持对音箱的旋转控制精度进行良好校准。

Description

音箱的校准控制方法、装置、设备及可读存储介质
本申请要求于2021年11月23日提交中国专利局、申请号202111398507.3、发明名称为“音箱的校准控制方法、装置、设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能音箱技术领域,尤其涉及一种音箱的校准控制方法、装置、设备及可读存储介质。
背景技术
目前智能音箱产品越来越多,功能也越来越丰富,比如点播歌曲、上网购物,或是了解天气预报,同时也可以对智能家居设备进行控制,比如打开窗帘、设置冰箱温度、提前让热水器升温等,而这些功能一般需要建立在通过语音识别来进行人机交互的基础上实现。
现在市场上的智能音箱,一般采用固定位置式音箱,而在家庭应用场景中,用户往往会很频繁的在家中来回反复穿梭,位置不固定,与智能音箱的距离时长时短,这就使得智能音箱与用户距离过远,导致语音识别不精准或者无响应。因此,智能音箱需要搭载旋转功能,根据用户的声音方位,来使音箱旋转至面对用户的方向,即智能音箱通过声源定位确定用户方位,然后智能音箱跟随旋转至该用户方位,从而提高智能音箱的语音识别率,响应用户输入的语音信息,执行语音信息所指示的操作。
然而,智能音箱的旋转控制精度往往容易受外力干扰,例如外力对智能音箱的推动、按压和搬动等易导致其旋转控制精度将会降低。因此,当智能音箱受到外力干扰时,智能音箱需要进行旋转校准操作,例如控制音箱进行旋转,在音箱的进行旋转的过程中,检测音箱在各个旋转角度值的IMU(Inertial measurement unit,惯性测量单元)数据,并根据该IMU数据实现对音箱旋转控制精度的校准。但是音箱在进行旋转校准操作的过程中,容易受外力干扰而导致该旋转校准操作出错,进而导致无法实现对音箱的旋转控制精度进行校准,或者校准后的旋转控制精度仍然存在误差。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种音箱的校准控制方法、装置、设备及可读存储介质,旨在解决音箱的旋转校准操作受外力干扰后易出错的技术问题。
为实现上述目的,本申请提供一种音箱的校准控制方法,包括以下步骤:
获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点 开始,对音箱中的IMU模块进行旋转校准操作。
可选地,所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤之后,还包括:
若所述力度值小于或等于所述预设力度阈值,则在所述外力干扰消除时,控制所述音箱继续从所述旋转校准操作的中止点开始,对音箱中的IMU模块进行旋转校准操作。
可选地,所述控制所述音箱中止所述旋转校准操作的步骤之后包括:
确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰;
若所述外力干扰为所述干涉物干扰,则输出音箱在旋转路径上存在干涉物的提示信息;
若所述外力干扰为非干涉物干扰,则执行:所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤。
可选地,所述确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰的步骤包括:
在所述音箱受到所述外力干扰时,检测所述外力干扰对应的外力矢量方向;
判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反;
基于所述判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反的判断结果,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰。
可选地,所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤包括:
在所述外力干扰消除时,检测所述音箱的姿态倾斜度,并判断所述姿态倾斜度是否大于预设的倾斜度安全预警阈值;
若所述姿态倾斜度大于所述倾斜度安全预警阈值,则生成音箱的姿态倾斜度太大的预警提示;
若所述姿态倾斜度小于或等于所述倾斜度安全预警阈值,则执行:所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤。
可选地,所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤包括:
控制所述音箱重新从所述音箱的校准起始点旋转至所述音箱的校准终止点,并在所述音箱的旋转过程中,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据,其中,所述实际旋转角度值为从校准起始点起开始计算,所述音箱已旋转的旋转角度值;
依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准。
可选地,所述依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准的步骤包括:
根据所述映射IMU数据,确定所述实际旋转角度值对应的监测旋转角度值;
依据所述实际旋转角度值和所述监测旋转角度值,计算得到所述IMU模块的角度监测误差;
根据所述角度监测误差,对所述IMU模块进行校准。
此外,为实现上述目的,本申请还提供一种音箱的校准控制装置,包括:
采集模块,用于获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
分析模块,用于若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
校准模块,用于若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。
此外,为实现上述目的,本申请还提供一种音箱的校准控制设备,校准控制设备包括存储器、处理器及存储在存储器上并可在处理器上运行的校准控制程序,所述校准控制程序被处理器执行时实现如上述的音箱的校准控制方法的步骤。
此外,为实现上述目的,本申请还提供一种可读存储介质,可读存储介质上存储有校准控制程序,所述校准控制程序被处理器执行时实现如上述的音箱的校准控制方法的步骤。
由于音箱在进行旋转校准操作的过程中,当该外力干扰对应的力度值超过预设力度阈值时,可以确定音箱很可能已经发生了姿态倾斜度或者位置的偏移,而音箱的姿态倾斜度或者位置的偏移,将会导致音箱在当前旋转校准操作中所标定校准好的旋转角度监测精度出现偏差。因此,当前旋转校准操作中已完成的校准步骤只能作废,即如果继续沿着当前旋转校准操作的校准步骤执行下去,将导致该旋转校准操作所校准的旋转控制精度存在较大误差,进而影响音箱的旋转控制精度。而本申请通过检测旋转校准操作中外力干扰对应的力度值,若该力度值大于预设力度阈值,则放弃该旋转校准操作中已完成的校准步骤,控制音箱重新从音箱的校准起始点开始,对IMU模块进行旋转校准操作,从而使得音箱在旋转校准操作中,即使受到外力干扰也不会导致该旋转校准操作出错,即仍然能确保该旋转校准操作对IMU模块保持良好的校准精度,不存在校准出现偏差的情况。
需要说明的是,即使音箱在进行旋转校准操作的过程中,因为外力干扰导致音箱的摆放位置发生改变,本申请通过控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤,使音箱重新开始进行旋转模拟操作,实现再次预先验证音箱旋转过程中是否与当前摆放位置的其他物体产生干涉,从而进行提前预警,不会影响实际应用中音箱的旋转功能,进而仍然能保持IMU模块对音箱旋转角度的良好控制。同时即使音箱在进行旋转校准操作的过程中,因外力作用导致音箱的姿态倾斜度发生改变,本申请通过控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤,放弃当前旋转校准操作中已完成的校准步骤,从对IMU模块进行旋转校准操作的第一步骤开始,重新进行校准,修正IMU模块对音箱旋转角度的测量误差,使得音箱在进行旋转校准操作时,即使受到外力干扰也不会导致该旋转校准操作出错,避免该外力干扰影响该旋转校准操作的校准精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本申请实施例方案涉及的硬件运行环境的终端\装置结构示意图;
图2为本申请音箱的校准控制方法第一实施例的流程示意图;
图3为本申请音箱的校准控制方法第二实施例的流程示意图;
图4为本申请一实施例中的外力矢量方向的场景示意图;
图5为本申请音箱的校准控制方法第三实施例的细化流程示意图;
图6为本申请实施例中音箱的硬件结构示意图;
图7为本申请音箱的校准控制方法第四实施例的细化流程示意图;
图8为本申请实施例中音箱的模块结构示意图;
图9为本申请实施例中音箱的装置结构示意图;
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本申请所属领域技术人员所理解的通常意义。
另外,术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端为校准控制设备。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗 来调节显示屏的亮度,接近传感器可在终端设备移动到耳边时,关闭显示屏和/或背光。当然,终端设备还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及校准控制程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的校准控制程序,并执行以下操作:
获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。
现在市场上的智能音箱,一般采用固定位置式音箱,而在家庭应用场景中,用户往往会很频繁地在家中来回反复穿梭,位置不固定,与智能音箱的距离时长时短,这就使得智能音箱与用户距离过远,导致语音识别不精准或者无响应。因此,智能音箱需要搭载旋转功能,根据用户的声音方位,来使音箱旋转至面对用户的方向,即智能音箱通过声源定位确定用户方位,然后智能音箱跟随旋转至该用户方位,从而提高智能音箱的语音识别率,响应用户输入的语音信息,执行语音信息所指示的操作。
然而,智能音箱的旋转控制精度往往容易受外力干扰,例如外力对智能音箱的推动、按压和搬动等易导致其旋转控制精度将会降低。因此,当智能音箱受到外力干扰时,智能音箱需要进行旋转校准操作,例如控制音箱进行旋转,在音箱的进行旋转的过程中,检测音箱在各个旋转角度值的IMU(Inertial measurement unit,惯性测量单元)数据,并根据该IMU数据实现对音箱旋转控制精度的校准。但是音箱在进行旋转校准操作的过程中,容易受外力干扰而导致该旋转校准操作出错,进而导致无法实现对音箱的旋转控制精度进行校准,或者校准后的旋转控制精度仍然存在误差。
对于此问题现象,本申请经过多次反复的测试和实验研究,发现实际上音箱在进行旋转校准操作的过程中,由于外力作用使音箱的姿态倾斜度或位置发生改变,进而导致旋转校准操作中所标定校准好的旋转角度监测精度出现偏差。例如,IMU模块中的三轴陀螺仪会因为姿态倾斜度发生变化而产生偏移,而三轴陀螺仪产生偏移直接导致当前旋转校准操作中已标定校准好的旋转角度监测精度存在较大误差。另外,音箱的位置发生改变也同样可能导致音箱的旋转校准操作出错,例如当音箱在进行旋转校准操作时,用户搬动音箱至其他的摆放位置,或者用户推动音箱产生位移,就算音箱的姿态倾斜度未发生变化,音箱在通过声源定位或者图像定位而跟随用户进行旋转时,改变位置后的音箱也很有可能与其 他物体产生干涉,进而影响音箱的旋转功能。
基于此,请参照图2,本申请提供一种音箱的校准控制方法,在音箱的校准控制方法的第一实施例中,音箱的校准控制方法包括以下步骤:
步骤S100,获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
其中,可基于音箱中的IMU(Inertial measurement unit,惯性测量单元)模块获取音箱的实时IMU数据,该IMU模块可包括三轴陀螺仪和三轴加速度传感器。该实时IMU数据为加速度传感器和陀螺仪实时所测得的数据,例如加速度、角速度和姿态倾斜度。该姿态倾斜度表征音箱在垂直平面上的倾斜角度。本领域技术人员可知的是,可根据加速度传感器检测3个轴上加速度是否发生变化,来判断音箱是否受到外力干扰。
需要说明的是,获取音箱在旋转校准过程中的实时IMU数据,是代表音箱在进行旋转校准操作的过程中,获取该音箱的实时IMU数据。
步骤S200,若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
其中,该预设力度阈值,本领域技术人员可根据实际情况进行设置,以更好的检测出该力度值是否使音箱的位置或姿态倾斜度发生改变为准,或者以更好的检测出该力度值是否使音箱的位置或姿态倾斜度的改变量大于一定量值为准,本实施例不作具体的限定。可以理解的是,可通过加速度传感器检测3个轴上加速度的变化量大小值,来计算出音箱受到外力干扰对应的力度值。
步骤S300,若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。
在本实施例中,该旋转校准操作为控制音箱进行旋转模拟操作,在旋转模拟操作中通过IMU模块检测音箱在各个旋转角度值的IMU数据,并根据各个旋转角度值的IMU数据,实现对IMU模块的校准。
由于音箱在进行旋转校准操作的过程中,当该外力干扰对应的力度值超过预设力度阈值时,可以确定音箱很可能已经发生了姿态倾斜度或者位置的偏移,而音箱的姿态倾斜度或者位置的偏移,将会导致音箱在当前旋转校准操作中所标定校准好的旋转角度监测精度出现偏差。因此,当前旋转校准操作中已完成的校准步骤只能作废,即如果继续沿着当前旋转校准操作的校准步骤执行下去,将导致该旋转校准操作所校准的旋转控制精度存在较大误差,进而影响音箱的旋转控制精度。而本实施例通过检测旋转校准操作中外力干扰对应的力度值,若该力度值大于预设力度阈值,则放弃该旋转校准操作中已完成的校准步骤,控制音箱重新从音箱的校准起始点开始,对IMU模块进行旋转校准操作,从而使得音箱在旋转校准操作中,即使受到外力干扰也不会导致该旋转校准操作出错,即仍然能确保该旋转校准操作对IMU模块保持良好的校准精度,不存在校准出现偏差的情况。
需要说明的是,即使音箱在进行旋转校准操作的过程中,因为外力干扰导致音箱的摆放位置发生改变,本实施例通过控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤,使音箱重新开始进行旋转模拟操作,实现再次预 先验证音箱旋转过程中是否与当前摆放位置的其他物体产生干涉,从而进行提前预警,不会影响实际应用中音箱的旋转功能,进而仍然能保持IMU模块对音箱旋转角度的良好控制。同时即使音箱在进行旋转校准操作的过程中,因外力作用导致音箱的姿态倾斜度发生改变,本实施例通过控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤,放弃当前旋转校准操作中已完成的校准步骤,从对IMU模块进行旋转校准操作的第一步骤开始,重新进行校准,修正IMU模块对音箱旋转角度的测量误差,使得音箱在进行旋转校准操作时,即使受到外力干扰也不会导致该旋转校准操作出错,避免该外力干扰影响该旋转校准操作的校准精度。
在一种可能的实施方式中,所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤之后,还包括:
若所述力度值小于或等于所述预设力度阈值,则在所述外力干扰消除时,控制所述音箱继续从所述旋转校准操作的中止点开始,对音箱中的IMU模块进行旋转校准操作。
需要说明的是,可根据IMU模块中的加速度传感器和陀螺仪采集的实时IMU数据,判断音箱受到的外力干扰是否已消除。由于外力干扰可能一直持续在对音箱的姿态倾斜度或位置产生影响,本实施例通过在外力干扰消除时,再控制所述音箱继续从所述旋转校准操作的中止点开始,对音箱中的IMU模块进行旋转校准操作,从而避免在外力干扰未消除时所进行的旋转校准操作,校准精度不准。
在本实施例中,当确定若外力干扰对应的力度值小于或等于预设力度阈值时,可确定当前音箱的姿态倾斜度或者位置的偏移量,不足以导致音箱在当前旋转校准操作中所标定校准好的旋转角度监测精度出现偏差,即当前旋转校准操作中已完成的校准步骤仍然有效。因此,本实施例通过若所述力度值小于或等于所述预设力度阈值,则在外力干扰消除时,控制所述音箱继续从所述旋转校准操作的中止点开始,对音箱中的IMU模块进行旋转校准操作的步骤,从而在确保该旋转校准操作的良好校准精度的同时,提高该旋转校准操作的校准效率。
进一步地,请参照图3,提出本申请音箱的校准控制方法的第二实施例,在本实施例中,基于上述第一实施例,控制所述音箱中止所述旋转校准操作的步骤之后包括:
步骤S400,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰;
其中,该旋转路径是指音箱在旋转过程中的旋转行进路线。该干涉物是指音箱在旋转路径上的障碍物。可以理解的是,若音箱的旋转路径中存在干涉物,则将导致音箱在旋转过程中受到阻碍,严重影响音箱的旋转功能。而旋转路径上的干涉物对音箱旋转功能产生的干扰作用称为干涉物干扰。
具体地,若所述外力干扰为所述干涉物干扰,则执行步骤S500,输出音箱在旋转路径上存在干涉物的提示信息;若所述外力干扰为非干涉物干扰,则执行:所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤。
可以理解的是,该非干涉物干扰代表不为旋转路径上的干涉物对音箱旋转功能产生的干扰作用,非干涉物干扰可包括人为对音箱产生推、拉或搬动等产生的作用力。另外,该提示信息可通过控制音箱产生预设声源或光源的形式进行输出。
需要说明的是,由于在音箱的旋转路径中存在干涉物,若不移除该干涉物,或改变音箱的摆放位置,该干涉物将持续影响音箱的旋转功能,进而导致音箱无法顺利进行旋转校准操作,即干涉物干扰将持续影响音箱的旋转功能。而人为对音箱进行推、拉或搬动等产生的作用力往往是非持续性的或短暂的,在该作用力消除时,音箱仍然可以顺利进行旋转校准操作,即非干涉物干扰往往并不会持续影响音箱的旋转功能。基于此,本实施例通过若音箱在旋转路径上的外力干扰为干涉物干扰,则输出音箱在旋转路径上存在干涉物的提示信息的步骤,从而提醒用户音箱在旋转路径中存在干涉物,需要移除该干涉物,或改变音箱的摆放位置,以恢复音箱的旋转功能,进而提高本申请实施例校准控制方法的适应性和鲁棒性。
在一种可能的实施方式中,所述步骤S400,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰的步骤包括:
步骤a,在所述音箱受到所述外力干扰时,检测所述外力干扰对应的外力矢量方向;
可以理解的是,该外力矢量方向代表外力对音箱的作用方向,示例性的,如图4所述,图中的圆柱体代表音箱,外力F对音箱的作用方向即为外力矢量方向。其中,可通过设置于音箱中的加速度传感器来检测该外力矢量方向。
步骤b,判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反;
步骤c,基于所述判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反的判断结果,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰。
具体地,若连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反,则确定所述外力干扰为所述音箱在旋转路径上的干涉物干扰。
可以理解的是,当音箱在旋转路径上存在干涉物时,音箱每次在旋转过程中,该干涉物对音箱的作用力方向均与音箱的旋转方向相反,即干涉物对音箱产生的外力矢量方向均与音箱的旋转方向相反。
其中,该预设次数,本领域技术人员可根据实际情况进行设置,以更好检测出音箱受到的外力干扰是否为干涉物干扰为准,本实施例不作具体的限定。在一实施例中,该预设次数为3次,即若音箱连续3次受到外力对应的外力矢量方向均与音箱的旋转方向相反,则判定音箱在旋转路径上存在干涉物。可以理解的是,非干涉物干扰所产生的外力矢量方向也可能存在与音箱的旋转方向相反的情况,但是相对来说,该情况发生的概率较低,且该预设次数设置的值越大,该概率越低。本实施例通过设置是否存在连续预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反的判断条件,从而确保准确地分辨出音箱所受的外力干扰是否为干涉物干扰。
在另一种可能的实施方式中,所述步骤S400,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰的步骤包括:
步骤d,统计所述音箱的异常旋转角度值;
其中,需要说明的是,该异常旋转角度值为音箱在旋转过程中受到外力干扰时的实际 旋转角度值。
步骤e,获取最近连续统计的预置次数的所述异常旋转角度值,将所述预置次数的所述异常旋转角度值进行比较,得到角度偏差值;
步骤f,基于所述角度偏差值,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰。
具体地,若该角度偏差值小于预设角度偏差阈值,则确定外力干扰为音箱在旋转路径上的干涉物干扰。需要说明的是,当音箱在旋转路径上存在干涉物时,音箱在旋转过程中,该干涉物往往每次在同一位置对音箱产生作用力,可以理解的是,即使该干涉物往往每次在同一位置对音箱产生作用力,也可能由于旋转角度的监测误差,或者音箱旋转过程中因抖动而产生一定的角度偏差。但是音箱在旋转过程中受到外力干扰时对应的实际旋转角度值往往偏差较小。基于此,本实施例通过设置预设角度偏差阈值的判断条件,从而确保音箱旋转过程中一定的容错能力,同时也能准确分辨出音箱受到的外力干扰是否为音箱在旋转路径上的干涉物干扰。其中,所述预设角度偏差阈值,本领域技术人员可根据实际情况进行设置,以更好的检测出音箱受到的外力干扰是否为音箱在旋转路径上的干涉物干扰为准。在一实施例中,该预设角度偏差阈值为3°
为了助于理解本申请实施例,列举一具体实施例,首先计算该预置次数的异常旋转角度值的平均值,然后再一一计算该平均值与该预置次数的异常旋转角度值的差值,分别将该差值的绝对值进行相加,得到角度偏差值。例如,该预设角度偏差阈值为3°,该预置次数为3次,第一次检测的异常旋转角度值为82°,第二次检测的异常旋转角度值为81°,第一次检测的异常旋转角度值为83°,则该预置次数的异常旋转角度值的平均值为82°,该平均值与该预置次数的异常旋转角度值的差值分别为0°、1°和-1°。此时该角度偏差值2°小于预设角度偏差阈值3°,因此判定音箱受到的外力干扰为音箱在旋转路径上的干涉物干扰。需要说明的是,该具体实施例并不构成对本申请的限定,基于此进行更多形式的变换也同样属于本申请的保护范围,例如在另一种可实施的方式中,计算该预置次数的异常旋转角度值的方差值,将该方差值作为角度偏差阈值与预设角度偏差阈值进行比较,根据该比较结果确定音箱受到的外力干扰是否为音箱在旋转路径上的干涉物干扰。
其中,该预置次数,本领域技术人员可根据实际情况进行设置,以更好检测出音箱受到的外力干扰是否为干涉物干扰为准,本实施例不作具体的限定。在一实施例中,该预置次数为3次,即通过音箱连续3次的异常旋转角度值,得到角度偏差值。可以理解的是,非干涉物干扰所产生的外力矢量方向也可能存在连续3次异常旋转角度值相同的偶然情况,但是偶然情况的发生概率相对较低,且可通过将该预置次数的值设置的更大,使偶然情况的发生概率更低。
本实施例通过获取最近连续统计的预置次数的所述异常旋转角度值,将所述预置次数的所述异常旋转角度值进行比较,得到角度偏差值;基于所述角度偏差值,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰的步骤,从而准确的分辨出音箱所受的外力干扰是否为干涉物干扰。
进一步地,请参照图5,提出本申请音箱的校准控制方法的第三实施例,基于上述第 一实施例,控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤还包括:
步骤S600,在所述外力干扰消除时,检测所述音箱的姿态倾斜度,并判断所述姿态倾斜度是否大于预设的倾斜度安全预警阈值;
本领域技术人员可以理解的是,可通过基于加速度传感器检测音箱当前的姿态倾斜度。由于外力干扰可能一直持续在对音箱的姿态倾斜度产生影响,本实施例通过在外力干扰消除时,再检测音箱当前的姿态倾斜度,从而避免在音箱的外力干扰未消除时所检测的姿态倾斜度不准确的现象发生。
需要说明的是,本实施例可利用加速度传感器检测音箱的姿态倾斜度。该姿态倾斜度表征音箱在垂直平面上的倾斜角度。由于加速度传感器在静止放置时受到重力作用,会有1g的重力加速度,通过测量重力加速度在X或Y轴上的分量,可计算出在垂直平面上的倾斜角度,进而根据音箱的姿态倾斜度判断音箱是否放置平稳。
若所述姿态倾斜度大于所述倾斜度安全预警阈值,则执行步骤S700,生成音箱的姿态倾斜度太大的预警提示;
若所述姿态倾斜度小于或等于所述倾斜度安全预警阈值,则执行:所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤。
其中,该倾斜度安全预警阈值,本领域技术人员可根据实际情况进行设置,以更好的判断出音箱是否存在较大的倾倒风险为准,本实施例不作具体的限定。
由于当外力作用到音箱时,有可能存在外力导致音箱的摆放姿态发生了倾斜,音箱的放置不平稳,随时可能导致音箱发生倾倒的风险,例如当音箱在根据用户方位而旋转的实际应用过程中,音箱的重心失去平衡而发生侧翻。
本实施例通过检测音箱的姿态倾斜度,来判断音箱是否因为外力干扰而导致摆放姿态倾斜,并通过若姿态倾斜度大于倾斜度安全预警阈值,则生成音箱的姿态倾斜度太大的预警提示的步骤,从而提醒用户当前音箱放置不平稳,需要重新摆正音箱当前的摆放姿态,进而提高本申请实施例校准控制方法的适应性和鲁棒性。
在一种可能的实施方式中,请参照图6,本实施例的音箱包括前摄像头、前麦克风、显示器和音箱主机,其中前摄像头和前麦克风设置在该显示器的显示屏幕所在一侧。在本实施例中,在开启前麦克风之后,音箱主机可对麦克风采集到的音频信号进行识别,并根据识别出的语音信息执行相应的操作,例如搜索、播放音频等,从而与用户进行语音交互。在一种可能的实施方式中,可利用前摄像头采集视频图像,并识别该视频图像中是否存在人体,在识别出存在人体时,再开启智能音箱的前麦克风,使得在判断出存在交互需求时再开启前麦克风,从而节省音箱电能的消耗。另外,除了基于前麦克风进行声源定位的方式来确定用户方位,还可通过图像定位的方式确定用户方位,例如可通过前摄像头采集的视频图像,并对该视频图象进行识别,判断该视频图像中是否存在人体,若该视频图像中存在人体,则识别该视频图像中人体所处的人体方位,进而控制音箱旋转至该人体方位,以使提升音箱主机对用户的语音识别的精准度。
进一步地,请参照图7,基于第一实施例,提出本申请音箱的校准控制方法的第四实 施例,在本实施例中,控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤包括:
步骤S310,控制所述音箱重新从所述音箱的校准起始点旋转至所述音箱的校准终止点,并在所述音箱的旋转过程中,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据;
其中,所述实际旋转角度值为从校准起始点起开始计算,所述音箱已旋转的旋转角度值。
需要说明的是,该校准起始点代表音箱进行旋转校准操作的旋转起始点,校准终止点代表音箱进行旋转校准操作的旋转结束点。该校准起始点和校准终止点,可为本领域技术人员在音箱投入市场前进行预先设置,也可在音箱投入市场后用户进行自定义设置。
其中,所述实际旋转角度值为从校准起始点起开始计算,所述音箱已旋转的旋转角度值。另外,该映射IMU数据代表音箱旋转至不同实际旋转角度值所对应陀螺仪和加速度传感器所测得的IMU数据,该映射IMU数据可包括音箱的旋转角速度,以及该旋转角速度对时间的积分等。
步骤S320,依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准。
其中,可通过将映射IMU数据中的角速度和加速度采用最小二乘算法进行拟合运算,计算得到监测旋转角度值,并将该实际旋转角度值和监测旋转角度值进行对比,得到陀螺仪的偏移刻度,进而校准IMU模块中的陀螺仪。
本申请实施例通过控制音箱从校准起始点旋转至校准终止点,并在该音箱的旋转过程中,采集音箱的实际旋转角度值,以及该实际旋转角度值对应的映射IMU数据的步骤,从而根据该实际旋转角度值和映射IMU数据,校准陀螺仪的偏移刻度。
在一实施例中,所述采集所述音箱的实际旋转角度值的步骤之前包括:
步骤g,在音箱的旋转过程中,统计音箱中电机所输出的脉冲数据,根据所述脉冲数据的数量确定所述音箱的实际旋转角度值。
其中,请参照图8,该电机为旋转电机,用于驱动音箱进行旋转,实现音箱的旋转控制功能。该用户应用可代表点播歌曲、上网购物,或是了解天气预报等智能服务应用,而这些用户应用的功能是在通过语音识别来进行人机交互的基础上实现。该传感器可包括IMU模块中的三轴加速度传感器和三轴陀螺仪。另外,主控板分别与该传感器和电机进行电性连接,主控板接收电机的实际旋转角度值,以及接收传感器的IMU数据,实现对音箱的旋转控制精度的校准。
本领域技术可以理解的是,可基于一定的预设算法,根据脉冲数据的数量,计算得到音箱的实际旋转角度值。例如,假如输出一个脉冲数据对应的旋转角度为0.5度,则当电机输出50个脉冲数据时,可计算得到其对应的实际旋转角度值为25度。
在另一实施例中,所述采集所述音箱的实际旋转角度值的步骤之前包括:
步骤h,在音箱的旋转过程中,统计音箱中电机的电机旋转时长,根据所述电机旋转时长确定所述音箱的实际旋转角度值。
本领域技术可以理解的是,可基于一定的预设算法,根据电机旋转时长,计算得到音箱的实际旋转角度值。例如,假如电机旋转1秒对应的旋转角度为3度,则当电机旋转时长为10秒时,可计算得到其对应的实际旋转角度值为30度。
在又一实施例中,所述校准起始点和所述校准终止点之间的旋转角度范围内设置有校准参考点,且所述音箱从所述校准起始点旋转至所述校准参考点的实际旋转角度值为参考旋转角度值;所述采集所述音箱的实际旋转角度值的步骤之前包括:
步骤i,基于所述音箱中的接近传感器,检测所述音箱是否旋转至所述校准参考点;
需要说明的是,该校准参考点为本领域技术人员预先设置于校准起始点和所述校准终止点之间的某一位置,且音箱从校准起始点旋转至校准参考点的实际旋转角度值为参考旋转角度值,并且参考旋转角度值存储于音箱的系统中,便于后续音箱进行旋转校准操作时,调取该参考旋转角度值对IMU模块进行校准。该参考旋转角度值可为90度、180度或者210度等。
步骤j,若所述音箱旋转至所述校准参考点,则将所述参考旋转角度值作为所述音箱的实际旋转角度值。
为了助于理解本申请实施例,列举一具体实施例:在一实施例中,当音箱在进行旋转校准操作的过程中,音箱旋转至该校准参考点时,调取音箱系统中预存的该校准参考点对应的参考旋转角度值“180度”,即当前音箱的实际旋转角度值为180度。需要说明的是,该具体实施例并不构成对本申请的限定,基于此进行更多形式的变换也同样属于本申请的保护范围,例如在另一种可实施的方式中,在校准起始点和所述校准终止点之间的旋转角度范围内可设置多个校准参考点,例如4个校准参考点,其中,第一个校准参考点对应的参考旋转角度值为60度,第二个校准参考点对应的参考旋转角度值为120度,第三个校准参考点对应的参考旋转角度值为180度,第四个校准参考点对应的参考旋转角度值为240度,从而在音箱旋转一周的过程中,能基于多个校准参考点位置对IMU模块进行校准,从而提高对IMU模块进行校准的校准精度和校准效率。
本实施例通过在音箱经过该校准参考点时,音箱能确定当前已旋转的实际旋转角度值,根据该实际旋转角度值对IMU模块进行校准,修正IMU模块对音箱旋转角度的监测误差,使得IMU模块在实际应用过程中能精确的监测出当前音箱已旋转的角度值,进而提高了音箱的旋转控制精度。
示例性的,在一实施例中,所述步骤S320,控制所述音箱从所述校准起始点旋转至所述校准终止点,并在所述音箱的旋转过程中,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据的步骤包括:
步骤k,控制所述音箱以预设的第一旋转角速度从所述校准起始点旋转至所述校准终止点,当所述音箱旋转至所述校准终止点后,将所述校准终止点更新为校准起始点,将所述校准起始点更新为校准终止点;
步骤l,控制所述音箱以预设的第二旋转角速度从更新后的所述校准起始点旋转至更新后的所述校准终止点;
其中,所述第一旋转角速度大于所述第二旋转角速度;
步骤n,在所述音箱的旋转过程中,每间隔预设旋转角度,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据。
即在本实施例中,音箱按顺时针和逆时针的不同方向分别旋转一周。旋转方向的其中一周为高速旋转运动模型的IMU校准,旋转方向的另一周为低速旋转运动模型的IMU校准。
为了助于理解本申请实施例,列举一具体实施例:音箱在进行顺时针旋转时,建立高速旋转0至360度音箱校准模型,控制音箱以0.5m/s的速度顺时针旋转一周,且每间隔5度采集映射IMU数据,该映射IMU数据可包括不同实际旋转角度值对应的3轴重力加速度数据和旋转角速度实测值等。而当音箱旋转至360度时,控制音箱停止旋转,并开始控制音箱从当前位置进行逆时针旋转,即将当前的校准终止点更新为校准起始点,将校准起始点更新为校准终止点,建立低速旋转0至360度音箱姿态模型,控制音箱以0.2m/s的速度逆时针旋转一周,同样每间隔5度采集映射IMU数据。即本实施例中,校准起始点对应的实际旋转角度值为0度,校准终止点对应的实际旋转角度值为360度,预设旋转角度为10度,第一旋转角速度为0.5m/s,第二旋转角速度为0.2m/s。需要说明的是,该具体实施例并不构成对本申请的限定,基于此进行更多形式的变换也同样属于本申请的保护范围,例如在另一种可实施的方式中,校准起始点对应的实际旋转角度值为0度,校准终止点对应的实际旋转角度值为355度,预设旋转角度为5度,第一旋转角速度为0.6m/s,第二旋转角速度为0.3m/s。在又一种可实施的方式中,校准起始点对应的实际旋转角度值为0度,校准终止点对应的实际旋转角度值为350度,预设旋转角度为5度,第一旋转角速度为0.8m/s,第二旋转角速度为0.5m/s。
示例性的,在另一实施例中,所述步骤S320,控制所述音箱从所述校准起始点旋转至所述校准终止点,并在所述音箱的旋转过程中,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据的步骤还包括:
步骤m,控制所述音箱以预设的第三旋转角速度从所述校准起始点旋转至所述校准终止点,当所述音箱旋转至所述校准终止点后,将所述校准终止点更新为校准起始点,将所述校准起始点更新为校准终止点;
步骤o,控制所述音箱以预设的第三旋转角速度从更新后的所述校准起始点旋转至更新后的所述校准终止点,当所述音箱旋转至更新后的所述校准终止点后,再次将所述校准终止点更新为校准起始点,将所述校准起始点更新为校准终止点;
步骤p,控制所述音箱以预设的第四旋转角速度从更新后的所述校准起始点旋转至更新后的所述校准终止点,当所述音箱旋转至更新后的所述校准终止点后,再次将所述校准终止点更新为校准起始点,将所述校准起始点更新为校准终止点,其中,所述第三旋转角速度大于所述第四旋转角速度;
步骤q,控制所述音箱以预设的第四旋转角速度从更新后的所述校准起始点旋转至更新后的所述校准终止点;
步骤r,在所述音箱的旋转过程中,每间隔预设旋转角度,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据。
本实施例相对于上一实施例的区别为,音箱按顺时针和逆时针的不同方向分别旋转两周。其中,旋转的顺时针一周和逆时针一周为高速旋转运动模型的IMU校准,旋转的顺时针另一周和逆时针另一周为低速旋转运动模型的IMU校准。
在实际应用过程中,由于用户在房间中行走移动的速度不同或行走的方位不同,音箱在跟随用户进行旋转的过程中,也存在不同的旋转速度和旋转方向的具体应用场景。为了使音箱在跟随用户进行旋转的实际应用过程中,能适配不同旋转速度和不同旋转方向的旋转控制,因此也需要提高音箱对于不同旋转速度和不同旋转方向的旋转控制精度,本实施例通过在旋转校准操作过程中,设置多个不同的旋转校准方向和旋转校准速度的校准机制,从而校准音箱在不同旋转速度层面,以及不同旋转方向层面的旋转控制精度,进一步提高了音箱的旋转控制精度。
进一步地,基于上述第四实施例,提出本申请音箱的校准控制方法的第五实施例,在本实施例中,为上述第四实施例步骤S330,依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准的步骤的细化,所述步骤S330包括:
步骤s,根据所述映射IMU数据,确定所述实际旋转角度值对应的监测旋转角度值;
本领域技术人员可以理解的是,映射IMU数据中可包括加速度传感器检测的加速度、陀螺仪检测的旋转角速度,以及该旋转角速度对时间的积分。
进一步地,所述根据所述映射IMU数据,确定所述实际旋转角度值对应的监测旋转角度值的步骤包括:
步骤t,依据所述映射IMU数据,确定所述实际旋转角度值对应的监测旋转角速度;
步骤u,获取所述实际旋转角度值对应的旋转累积时长,根据所述监测旋转角速度和所述旋转累积时长,计算得到所述实际旋转角度值对应的监测旋转角度值。
在一实施例中,监测旋转角度值的求解公式可为:
θ(t+Δt)=θ(t)+w(θ)ωΔt;
其中,θ(t+Δt)为监测旋转角度值,θ(t)为校准起始点对应的实际旋转角度值,该校准起始点对应的实际旋转角度值一般为0度,w(θ)为监测旋转角速度,ωΔt为实际旋转角度值对应的旋转累积时长。
可以理解的是,w(θ)ωΔt即为监测旋转角度值对旋转时间的积分,即音箱当前的监测旋转角度值为监测旋转角速度对旋转时间的积分。
本实施例通过将IMU模块预先旋转至各个实际旋转角度值,并通过IMU模块测得各个实际旋转角度值对应的角速度和以及该角速度对时间的积分,从而计算出监测旋转角度值,便于后续将该监测旋转角度值与实际旋转角度值对比,进而判断IMU模块是否存在监测误差,若存在,则根据该监测旋转角度值与实际旋转角度值的偏差角度值,对IMU模块进行校准。
步骤v,依据所述实际旋转角度值和所述监测旋转角度值,计算得到所述IMU模块的角度监测误差;
其中,在一实施例中,计算得到的监测旋转角度值为182.30度,而实际旋转角度值为180.00度,则说明音箱的旋转控制精度存在误差,角度监测误差此时为2.3度,可根据该2.3度的角度监测误差对IMU模块进行重新校准。
步骤w,根据所述角度监测误差,对所述IMU模块进行校准。
本实施例利用实际旋转角度值和所述监测旋转角度值之间的偏差参数,来修正IMU模块中陀螺仪因受到外力干扰而导致的漂移误差,从而修正IMU模块对音箱旋转角度的测量误差,使得音箱跟随用户的移动而进行旋转的实际应用过程中,IMU能精确的检查出当前音箱已旋转的角度值,进而提高了音箱的旋转控制精度。
此外,参照图9,本申请实施例还提供一种音箱的校准控制装置,包括:
采集模块A10,用于获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
分析模块A20,用于若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
校准模块A30,用于若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。
可选地,分析模块A20,还用于:
若所述力度值小于或等于所述预设力度阈值,则在所述外力干扰消除时,控制所述音箱继续从所述旋转校准操作的中止点开始,对音箱中的IMU模块进行旋转校准操作。
可选地,分析模块A20,还用于:
确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰;
若所述外力干扰为所述干涉物干扰,则输出音箱在旋转路径上存在干涉物的提示信息;
若所述外力干扰为非干涉物干扰,则执行:所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤。
可选地,分析模块A20,还用于:
在所述音箱受到所述外力干扰时,检测所述外力干扰对应的外力矢量方向;
判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反;
基于所述判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反的判断结果,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰。
可选地,校准模块A30,还用于:
在所述外力干扰消除时,检测所述音箱的姿态倾斜度,并判断所述姿态倾斜度是否大于预设的倾斜度安全预警阈值;
若所述姿态倾斜度大于所述倾斜度安全预警阈值,则生成音箱的姿态倾斜度太大的预警提示;
若所述姿态倾斜度小于或等于所述倾斜度安全预警阈值,则执行:所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤。
可选地,校准模块A30,还用于:
控制所述音箱重新从所述音箱的校准起始点旋转至所述音箱的校准终止点,并在所述音箱的旋转过程中,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据,其中,所述实际旋转角度值为从校准起始点起开始计算,所述音箱已旋转的旋转角度值;
依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准。
可选地,校准模块A30,还用于:
根据所述映射IMU数据,确定所述实际旋转角度值对应的监测旋转角度值;
依据所述实际旋转角度值和所述监测旋转角度值,计算得到所述IMU模块的角度监测误差;
根据所述角度监测误差,对所述IMU模块进行校准。
其中,校准控制装置的各个功能模块实现的步骤可参照本申请音箱的校准控制方法的各个实施例,此处不再赘述。
此外,本申请还提供一种音箱的校准控制设备,所述校准控制设备包括:存储器、处理器及存储在所述存储器上的校准控制程序;所述处理器用于执行所述校准控制程序,以实现上述音箱的校准控制方法各实施例的步骤。
本申请还提供了一种可读存储介质,所述可读存储介质存储有一个或者一个以上程序,所述一个或者一个以上程序还可被一个或者一个以上的处理器执行以用于实现上述音箱的校准控制方法各实施例的步骤。
本申请可读存储介质具体实施方式与上述音箱的校准控制方法各实施例基本相同,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
本说明书中各个实施例采用并列或者递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开 的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处可参见方法部分说明。
本领域普通技术人员还可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

Claims (10)

  1. 一种音箱的校准控制方法,其特征在于,所述音箱的校准控制方法包括以下步骤:
    获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
    若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
    若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。
  2. 如权利要求1所述音箱的校准控制方法,其特征在于,所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤之后,还包括:
    若所述力度值小于或等于所述预设力度阈值,则在所述外力干扰消除时,控制所述音箱继续从所述旋转校准操作的中止点开始,对音箱中的IMU模块进行旋转校准操作。
  3. 如权利要求1所述音箱的校准控制方法,其特征在于,所述控制所述音箱中止所述旋转校准操作的步骤之后包括:
    确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰;
    若所述外力干扰为所述干涉物干扰,则输出音箱在旋转路径上存在干涉物的提示信息;
    若所述外力干扰为非干涉物干扰,则执行:所述检测所述外力干扰对应的力度值是否大于预设力度阈值的步骤。
  4. 如权利要求3所述音箱的校准控制方法,其特征在于,所述确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰的步骤包括:
    在所述音箱受到所述外力干扰时,检测所述外力干扰对应的外力矢量方向;
    判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反;
    基于所述判断是否连续存在预设次数的所述外力矢量方向,均与所述音箱的旋转方向相反的判断结果,确定所述外力干扰是否为所述音箱在旋转路径上的干涉物干扰。
  5. 如权利要求1所述音箱的校准控制方法,其特征在于,所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤包括:
    在所述外力干扰消除时,检测所述音箱的姿态倾斜度,并判断所述姿态倾斜度是否大于预设的倾斜度安全预警阈值;
    若所述姿态倾斜度大于所述倾斜度安全预警阈值,则生成音箱的姿态倾斜度太大的预警提示;
    若所述姿态倾斜度小于或等于所述倾斜度安全预警阈值,则执行:所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤。
  6. 如权利要求1至5任一项所述音箱的校准控制方法,其特征在于,所述控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作的步骤包括:
    控制所述音箱重新从所述音箱的校准起始点旋转至所述音箱的校准终止点,并在所述音箱的旋转过程中,采集所述音箱的实际旋转角度值,以及所述实际旋转角度值对应的映射IMU数据,其中,所述实际旋转角度值为从校准起始点起开始计算,所述音箱已旋转的旋转角度值;
    依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准。
  7. 如权利要求6所述音箱的校准控制方法,其特征在于,所述依据所述实际旋转角度值和所述映射IMU数据,对音箱中的IMU模块进行校准的步骤包括:
    根据所述映射IMU数据,确定所述实际旋转角度值对应的监测旋转角度值;
    依据所述实际旋转角度值和所述监测旋转角度值,计算得到所述IMU模块的角度监测误差;
    根据所述角度监测误差,对所述IMU模块进行校准。
  8. 一种音箱的校准控制装置,其特征在于,所述音箱的校准控制装置包括:
    采集模块,用于获取所述音箱在旋转校准过程中的实时IMU数据,根据所述实时IMU数据判断所述音箱是否受到外力干扰;
    分析模块,用于若确定所述音箱受到外力干扰,则控制所述音箱中止所述旋转校准操作,并检测所述外力干扰对应的力度值是否大于预设力度阈值;
    校准模块,用于若所述力度值大于所述预设力度阈值,则控制所述音箱重新从所述音箱的校准起始点开始,对音箱中的IMU模块进行旋转校准操作。
  9. 一种音箱的校准控制设备,其特征在于,所述音箱的校准控制设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的校准控制程序,所述校准控制程序被所述处理器执行时实现如权利要求1至7中任一项所述的音箱的校准控制方法的步骤。
  10. 一种可读存储介质,其特征在于,所述可读存储介质上存储有校准控制程序,所述校准控制程序被处理器执行时实现如权利要求1至7中任一项所述的音箱的校准控制方法的步骤。
PCT/CN2021/139413 2021-11-23 2021-12-18 音箱的校准控制方法、装置、设备及可读存储介质 WO2023092766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111398507.3 2021-11-23
CN202111398507.3A CN114034318A (zh) 2021-11-23 2021-11-23 音箱的校准控制方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023092766A1 true WO2023092766A1 (zh) 2023-06-01

Family

ID=80138564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139413 WO2023092766A1 (zh) 2021-11-23 2021-12-18 音箱的校准控制方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN114034318A (zh)
WO (1) WO2023092766A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075463A1 (en) * 2010-12-03 2012-06-07 Qualcomm Incorporated Inertial sensor aided heading and positioning for gnss vehicle navigation
US20190056239A1 (en) * 2016-02-12 2019-02-21 Wiworld Co., Ltd. Method for calibration of gyro sensor using tilt sensor
CN109791048A (zh) * 2016-08-01 2019-05-21 无限增强现实以色列有限公司 使用场景捕获数据校准惯性测量单元(imu)的组件的方法和系统
CN109959392A (zh) * 2019-04-04 2019-07-02 上海扩博智能技术有限公司 用于智能冰箱的运动传感器校准方法、系统、设备及介质
CN111712688A (zh) * 2019-06-28 2020-09-25 深圳市大疆创新科技有限公司 标定方法、标定设备、稳定器及计算机可读存储介质
CN111895967A (zh) * 2020-06-24 2020-11-06 青岛合启立智能科技有限公司 一种旋转角度传感器
CN113551690A (zh) * 2021-07-15 2021-10-26 Oppo广东移动通信有限公司 校准参数的获取方法、装置、电子设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080856A1 (ja) * 2010-01-04 2011-07-07 パナソニック株式会社 ロボット、ロボットの制御装置、及び制御方法
CN106527479B (zh) * 2016-11-29 2017-12-12 广州极飞科技有限公司 一种无人机的控制方法及装置
CN211906442U (zh) * 2020-05-22 2020-11-10 中国联合网络通信集团有限公司 智能音箱
CN111964645A (zh) * 2020-08-04 2020-11-20 国网福建省电力有限公司莆田供电公司 一种基于信息融合的电力杆塔失稳监测方法及系统
CN113063385A (zh) * 2021-03-22 2021-07-02 飞天联合(北京)系统技术有限公司 屏幕角度校准方法及设备
CN113465632A (zh) * 2021-09-03 2021-10-01 北京亮亮视野科技有限公司 传感器的校准方法、装置、设备和介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075463A1 (en) * 2010-12-03 2012-06-07 Qualcomm Incorporated Inertial sensor aided heading and positioning for gnss vehicle navigation
US20190056239A1 (en) * 2016-02-12 2019-02-21 Wiworld Co., Ltd. Method for calibration of gyro sensor using tilt sensor
CN109791048A (zh) * 2016-08-01 2019-05-21 无限增强现实以色列有限公司 使用场景捕获数据校准惯性测量单元(imu)的组件的方法和系统
CN109959392A (zh) * 2019-04-04 2019-07-02 上海扩博智能技术有限公司 用于智能冰箱的运动传感器校准方法、系统、设备及介质
CN111712688A (zh) * 2019-06-28 2020-09-25 深圳市大疆创新科技有限公司 标定方法、标定设备、稳定器及计算机可读存储介质
CN111895967A (zh) * 2020-06-24 2020-11-06 青岛合启立智能科技有限公司 一种旋转角度传感器
CN113551690A (zh) * 2021-07-15 2021-10-26 Oppo广东移动通信有限公司 校准参数的获取方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN114034318A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US9316513B2 (en) System and method for calibrating sensors for different operating environments
JP6280967B2 (ja) 方位データを改善するためのシステムおよび方法
KR101851836B1 (ko) 물체의 움직임을 추정하기 위한 시스템 및 방법
JP5225475B2 (ja) 移動状態推定装置、方法およびプログラム
CN110398245B (zh) 基于脚戴式惯性测量单元的室内行人导航姿态估计方法
CN107515011A (zh) 一种陀螺仪的校正方法和装置
WO2010002152A2 (ko) 이동 로봇에서의 자이로 센서 오차를 교정하는 장치 및 방법
CN110017850B (zh) 一种陀螺仪漂移估计方法、装置及定位系统
US10551211B2 (en) Methods and devices with sensor time calibration
WO2015114468A2 (en) Motion tracking with reduced on-body sensors set
CN106228751B (zh) 基于安卓平台mems/磁传感器/gps的跌倒智能报警系统与方法
TWI691731B (zh) 位置追蹤系統及方法
JP5625557B2 (ja) 停止判定方法
TWI428602B (zh) 旋轉測量方法、模組及包含該模組之可攜式裝置
JP2013200156A (ja) 高度計測装置、ナビゲーションシステム、プログラム及び記録媒体
CN111625764B (zh) 移动数据的校准方法、装置、电子设备和存储介质
US20160370188A1 (en) Inertial device, control method and program
CN111683337A (zh) 基于Wifi和传感器的融合定位方法、系统、电子设备及存储介质
CN110456923B (zh) 一种姿态传感数据处理方法及电子设备
WO2023092766A1 (zh) 音箱的校准控制方法、装置、设备及可读存储介质
CN111366170B (zh) 一种状态确定方法及电子设备
WO2023092765A1 (zh) 音箱的校准控制方法、装置、设备及可读存储介质
WO2023092767A1 (zh) 音箱的校准控制方法、装置、设备及可读存储介质
JP6999542B2 (ja) 携帯型電子装置を使用して測定するためのシステム及び方法
CN102183232B (zh) 定向传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965486

Country of ref document: EP

Kind code of ref document: A1