WO2023091585A1 - Multi-layer polymer foam film for packaging applications and the method of making the same - Google Patents

Multi-layer polymer foam film for packaging applications and the method of making the same Download PDF

Info

Publication number
WO2023091585A1
WO2023091585A1 PCT/US2022/050276 US2022050276W WO2023091585A1 WO 2023091585 A1 WO2023091585 A1 WO 2023091585A1 US 2022050276 W US2022050276 W US 2022050276W WO 2023091585 A1 WO2023091585 A1 WO 2023091585A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
less
solid
layers
Prior art date
Application number
PCT/US2022/050276
Other languages
French (fr)
Inventor
Mehdi SANIEI
Mark E. LINDENFELZER
Eric V. FREDRICKSON
Original Assignee
Mucell Extrusion, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/530,407 external-priority patent/US11926123B2/en
Application filed by Mucell Extrusion, Llc filed Critical Mucell Extrusion, Llc
Publication of WO2023091585A1 publication Critical patent/WO2023091585A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction

Definitions

  • This invention relates to a multilayer polymer foam film (e.g., comprising high density polyethylene (HDPE)), which may be used for paper replacement applications in the aseptic packaging industry.
  • a multilayer polymer foam film e.g., comprising high density polyethylene (HDPE)
  • HDPE high density polyethylene
  • Paperboards consumption for packaging applications accounts for almost one-third of the total packaging market.
  • paper boards work safely with a barrier coating of some form.
  • the paper boards are paraffin wax coated or laminated with a polymer film, which is usually polyethylene.
  • a polymer film which is usually polyethylene.
  • oxygen barrier property is essential.
  • a multilayer polymer foam film which, for example, may be used for aseptic packaging application is described herein.
  • the multilayer films retain their oxygen transmission rate (OTR) properties after a creasing, folding or scoring step. That is, the creased, folded or scored multilayer film has an OTR similar to that of an identical multilayer film prior creasing, folding or scoring. This can be an advantage over conventional multilayer films that may experience increases in OTR, for example, as a result of physical damage during creasing, folding or scoring.
  • OTR oxygen transmission rate
  • the film can have a very smooth surface resulting in superior printing quality and high enough bending stiffness to replace paper boards.
  • the film may be recyclable and lightweight.
  • a creased, folded or scored multilayer foam film comprises a foam layer including a plurality of cells. At least 10% of the cells are closed cells.
  • the film further comprises two solid skin layers comprising HDPE on each side of the foam layer.
  • the film further comprises a solid layer comprising ethylene vinyl alcohol (EVOH).
  • EVOH ethylene vinyl alcohol
  • the foam layer is between one of the solid skin layers and the solid layer comprising EVOH.
  • the film has an overall thickness equal to or greater than 8 mils.
  • the ratio of the oxygen transmision rate of the creased, folded or scored film in cc/m 2 /24hr, according to ASTM D3985, over that of an identical film prior to creasing, folding or scoring is less than 1.1.
  • a method of making a creased, folded or scored multilayer film comprises co-extruding a foam layer, two solid skin layers comprising HDPE and one solid layer comprising ethylene vinyl alcohol (EVOH) to form a multilayer film.
  • the foam layer includes a plurality of cells, wherein at least 10% of the cells are closed cells.
  • the foam layer is between one of the solid skin layers and the layer comprising EVOH.
  • the film has an overall thickness equal to or greater than 8 mils.
  • the method further comprises creasing, folding or scoring the multilayer film.
  • the oxygen transmission rate value of the creased, folded or scored film in cc/m 2 /day, according to ASTM D3985 does not increase more than 10% of the oxygen transmission rate value of the multi-layer film prior to creasing, folding or scoring in cc/m 2 /day, according to ASTM D3985.
  • the term "lightweight” refers to the bulk density value of the products described herein being less than, or equal to, the density of their solid counterpart made from the associated base virgin resin, or the density of the associated base virgin resin. In a similar context, it refers to the bulk density value of the products described herein being less than, or at least equal to, the density of the paperboards with the same thickness or with the same weight values per unit area in gr/m 2 .
  • bulk density values of the products of this invention can be less than 0.962 gr/cm 3 which is less than the density value of the associated base virgin resin of 0.962 gr/cm 3 , or less than the bulk density value of 0.962 gr/cm 3 of its solid counterpart made from the associated base virgin resin.
  • the present disclosure relates to multilayer lightweight polyethylene foam film suitable to be used in all sorts of aseptic packaging; packaging of all sorts of oxygen-sensitive products, packaging of pasteurized products; packaging of dry food products such as biscuits, cookies, cereals, tea, coffee, sugar, flour, dry food mixes, chocolates, sugar confectionaries, pet food; packaging of frozen foods such as chilled foods and ice creams; packaging of cooked and precooked products and foods; backing board for fresh products such as vegetables, fruits, meat and fishes; packaging of baby foods; packaging of all kinds of desserts; packaging of liquid food and beverages such as broths, soups, juice drinks, milk and all sorts of products derived from milk, concentrates, all kinds of dressing, liquid eggs, tomato products; and packaging of all kinds of laundry detergents, shampoos, and body washes; making all sorts of pouches to include SUP, sachets, and packaging of pet foods.
  • dry food products such as biscuits, cookies, cereals, tea, coffee, sugar, flour, dry food mixes, chocolates, sugar confectionaries, pet food
  • a recyclable lightweight multilayer film which, in some embodiments, comprises no less than five layers, e.g., seven layers, to be a replacement for paper boards that are being used in packaging industries, e.g., for aseptic packaging applications, and for direct and nondirect food contact packaging application.
  • the film comprises high-density polyethylene (HDPE) wherein at least one layer, excluding the solid skin layers, has a cellular structure.
  • HDPE high-density polyethylene
  • at least 10% of the cells are closed-cell; in some embodiments, more than 50% of the cells are closed cells; and, in some embodiments, more than 75% of the cells are closed cells. In some embodiments, 100% of the cells are closed cells.
  • a "closed cell” refers to a cell that has cell walls that completely surround the cell with no openings such that there is no interconnectivity to an adjacent cell.
  • the film comprises at least one solid layer containing EVOH, each of which located somewhere between the foam layer and solid layer, or between two of the solid layers.
  • the film comprises at least one foam layer and two solid skin layers, and one or more solid layers comprising EVOH, wherein the siad foam layer is located between the skin layer and the layer comprisng EVOH.
  • the mass concentration of the EVOH in every unit area of the multilayer film is less than 5 percent of the mass of the unit area of the film. In some embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 10 percent of the mass of the unit area of the film. In some embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 5 percent of the mass of the unit area of the film. In some other embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 2 percent of the mass of the unit area of the film.
  • the bending stiffness of the disclosed multilayer foamed film product could be improved over their solid counterparts to fulfill the property requirement in packaging industries. This could be done first and foremost by the inclusion of one or more cellular layer in the core of the multilayer film or between two solid skin layers, an accurate tune and alteration of the thickness of the cellular layer as well as fine-tuning the thickness of the solid skin layers.
  • a solid film of polyethylene can hardly possess bending stiffness values that paperboards can offer. This is due to the high degree of fiber alignment in paperboard which can significantly enhance the bending stiffness. In addition, it might be due to higher inherent stiffness of the individual fibers in the paperboard compared to the polymer chains in the polymeric film.
  • HDPE owns a relatively low water vapor transmission rate of about 0.3 - 0.5 (g/100 in 2 /24 hr).
  • Embodiments of the multilayer foamed film products described herein can exhibit significantly higher moisture barrier properties compared to its solid counterparts with the same value of mass per unit area (in gram per meter squared). Also, embodiments of the multilayer foamed film products described herein can exhibit an enhanced oxygen barrier property.
  • Embodiments of the multilayer foam films described herein can exhibit an anti-static and low friction behavior by manipulating the skin layer's structure and by the inclusion of appropriate amounts of slip agents, anti-block and anti-static agent into the solid skin layer.
  • one of the steps for making the disclosed product is how the bending stiffness may be controlled and enhanced by the inclusion and controlling the thickness of the core cellular layer, or the cellular layers between the two skin layers, and fine-tuning the solid skins, as well as how the surface smoothness has been enhanced significantly by adding a tiny amount of supercritical blowing agent.
  • how the unique structure and layer combination has resulted in a high barrier property without the inclusion of an aluminum or metalized barrier layer. That is, the film product may be free of any metal (e.g., aluminum) barrier layer.
  • a blown film process may be used where the head pressure of the extruder can go high because of a very narrow gap that benefits the nucleation of cells in the foam layer.
  • all layers of the described multilayer film comprise HDPE and, in some cases, the polymeric material in one or more of these layers consists essentially of HDPE and, in some cases, the polymeric materials in at least one of the solid layers, excluding the solid skin layers, comprises EVOH. In one embodiment, at least one layer of the multilayer film can comprise LDPE.
  • the multilayer film can be comprised of nine layers; in some embodiments, seven layers; and, in some embodiments, five layers.
  • a five-layer film may comprise a foam core layer (e.g., comprising HDPE) and at least two solid layers (e.g., comprising HDPE), each one on respective opposite sides of the core layer, and at least one solid layer (e.g., comprising EVOH), each one between the foam layer and solid skin layer.
  • the five-layer film may comprise a solid core layer (e.g., comprising EVOH) and at least two solid layers (e.g., comprising HDPE), each one on respective opposite sides of the core layer, and at least two foam layers (e.g., comprising HDPE), each one between the foam layer and solid skin layer.
  • a five layer film may have a layer structure ABCBA (i.e., with layers A being the two outermost (skin) layers, layers B being in contact with respective A layers and layer C, and layer C being the middle layer).
  • layers A may be solid skin layers (e.g., comprising HDPE)
  • layers B may be foam layers (e.g., comprising HDPE)
  • layer C may be an EVOH (e.g., solid) layer.
  • a seven-layer foam film comprises a foam core layer (e.g., comprising HDPE) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one solid layer (e.g., comprising EVOH), each one between the foam layer and solid skin layer.
  • a seven-layer foam film comprises a solid core layer (e.g., comprising EVOH) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one foam layer (e.g., comprising HDPE), each one between the solid core layer and the solid skin layer.
  • a seven layer film may have a layer structure ABCDCBA (i.e., with layers A being the two outermost (skin) layers, layers B being in contact with respective A layers and respective C layers, layers C being in contact with respective layers B and layer D and layer D being the middle layer).
  • layers A may be solid skin layers (e.g., comprising HDPE)
  • layers B may be foam layers (e.g., comprising HDPE)
  • layer C may be a solid tie layer (e.g., comprising HDPE)
  • layer D may be an EVOH (e.g., solid) layer.
  • a nine-layer foam film comprises a foam core layer (e.g., comprising HDPE) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one solid layer (e.g., comprising EVOH), each one between the foam layer and solid skin layer.
  • a nine-layer foam film comprises a solid core layer (e.g., comprising EVOH) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one foam layer (e.g., comprising HDPE), each one between the solid core layer and solid skin layer.
  • a nine layer film may have a layer structure ABCDEDCBA (i.e., with layers A being the two outermost (skin) layers, layers B being in contact with respective A layers and respective C layers, layers C being in contact with respective layers B and respective layers D, layers D being in contact with respective layers C and layer E, and layer E being the middle layer).
  • layers A may be solid skin layers (e.g., comprising HDPE)
  • layers B may be solid tie layers (e.g., comprising HDPE)
  • layers C may be (e.g., solid) EVOH layers
  • layers D may be solid tie layers (e.g., comprising HDPE)
  • layer E may be a foam layer (e.g., comprising HDPE).
  • the multilayer film which can be five, seven, or nine layers, comprises at least one foam layer and two solid skin layers, and at least one solid layer (e.g., comprising EVOH).
  • the multilayer film which can be five, seven, or nine layers, comprises at least one solid layer, comprising EVOH, each of which located between the foam layer and solid layer, or between the two solid layers.
  • the multilayer film described herein comprises multiple layers, e.g., from 3 layers to 19 layers, comprising at least one foam layer and one or more solid layers containing EVOH. In some other embodiments, the multilayer film described herein comprises multiple layers, e.g., from 3 layers to 19 layers, comprising at least one solid layer containing EVOH.
  • the process to produce the described multilayer films may utilize a very small and precise amount of supercritical gas, for example, below 0.1 wt%, as a processing aid and blowing agent.
  • supercritical gas may be injected into the molten polymer at a high pressure, for example, greater than 34 bar, inside an efficient and effectual mixer, e.g., cavity transfer mixer, as an extension to the extruder's barrel.
  • the supercritical blowing agent used in the process can be either nitrogen, carbon dioxide, or a mixture of nitrogen and carbon dioxide.
  • the supercritical blowing agent can be introduced inside the mixing section of the extruder at the injection pressure greater than or equal to 34 bar; in some cases, greater than or equal to 70 bar; in some cases, greater than or equal to 240 bar, and, in some cases, greater than or equal to 380 bar.
  • the temperature of the mixer could be accurately controlled within ⁇ 1°C.
  • the inclusion of a tiny amount of gas can offer a few important advantages in the process and, for example, blown film extrusion processes.
  • the gas can reduce the back pressure which allows processing at higher throughput and can delay any bubble instability. Therefore, melt fracture could be reduced significantly.
  • the gas can enhance the processing ability of the HDPE, and to serve as a physical blowing agent with the presence of a nucleating agent in the layer that has a cellular structure.
  • the addition of the physical blowing agent can depress the development of melt fracture due to the viscosity manipulation of the melt which may result in high surface smoothness. Hence the printing quality on the film can be improved significantly.
  • the film can be produced by the blown film process using an annular die with a die gap from 0.45 to 1.3 mm and a blow-up ratio ranging from 1.5:1 to 3.5:1. Higher blow-up ratios might result in a more balanced MD/TD (machine direction/transverse direction) orientation, which improves overall film toughness.
  • the die geometry and specification may be manufactured according to, for example, the patent application US 2012/0228793 Al, which is incorporated by reference herein in its entirety.
  • a supercritical gas may be injected into the melt at a precisely controlled rate, inside a transfer mixer, before entering the annular die. This unit could be controlled as a separate temperature zone with an accuracy of ⁇ 1 °C and a gas injection pressure variation below 1%.
  • the plasticization effect of the gas can result in a viscosity change of the molten resin which would enhance the processing ability of the resin inside the annular die at a lower temperature compared to the processing temperature which is being used conventionally.
  • a relatively stable bubble can be made inside the pocket.
  • the transverse stretch of the bubble can be delayed until the film becomes cooler, which may further enhance the bubble stability and the frost line height.
  • This also might be beneficial in manipulating the crystallization kinetics of the skin layers to improve a few other physio-mechanical properties. The higher degree of crystallization in the skin might lower the coefficient of friction on the skin layers.
  • the multilayer foam films described herein can be produced by the blown film process, cast film process, or other suitable methods.
  • the polymer composition of each layer comprises some apt amounts of other additives, such as pigments, slip agents, antistatic agents, UV stabilizers, antioxidants, nucleating agents, clarifying agents, or maleic anhydride.
  • the foam layer optionally may contain 0.05 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 0.05 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent.
  • the foam layer optionally may contain 1 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 2.5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent.
  • the foam layer optionally may contain 7.5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 10 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 12.5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. For example, the foam layer may contain up to about 15% by weight of talc as a nucleating agent.
  • At least one layer may include a clarifying agent at less than 1 percent by weight, such as less than 0.5 percent by weight, such as less than 0.1 percent by weight, such as less than 0.05 percent by weight.
  • at least one layer of the film may contain up to about 35 wt% of calcium carbonates.
  • at least one layer of the film may contain up to about 30 wt% of calcium carbonates.
  • at least one layer of the film may contain up to about 25 wt% of calcium carbonates.
  • at least one layer of the film may contain up to about 20 wt% of calcium carbonates.
  • at least one layer of the film may contain up to about 15 wt% of calcium carbonates.
  • At least one layer of the film described herein comprise less than 5 percent by weight maleic anhydride, for example, less than about 4 percent by weight, for example, less than about 3 percent by weight, for example, less than about 2.5 percent by weight, for example, less than about 2 percent by weight, for example, less than about 1 percent by weight.
  • multilayer foam film can be comprised of two solid skin layers wherein one of the skin layers contains an apt amount of black pigments, for example, less than 1 percent by weight, for example, less than 0.75 percent by weight, for example, less than 0.5 percent by weight, and the other solid skin layer contains apt amounts of white pigments, for example, less than 1 percent by weight, for example, less than 0.75 percent by weight, for example, less than 0.5 percent by weight.
  • both solid skin layers comprise an apt amount of white pigments.
  • the solid skin layers of the multilayer foam film comprise less than 0.5 percent by weight of an anti-blocking agent and/or less than 0.2 percent by weight of an anti-static agent.
  • the multilayer foamed film has at least one solid skin layer with a static coefficient of friction value of less than 0.4, such as less than 0.38. In another embodiment, the film has at least one solid skin layer with a dynamic coefficient of friction value of less than 0.3.
  • the described multilayer film comprising at least one foam layer, may have sets of significantly improved physiomechanical properties compared to known foamed film articles as in particular the bending stiffness value of greater than 18, in some cases greater than 20, and in some cases, greater than 25, all in Taber stiffness unit configuration, according to TAPPI/ANSI T 489 om-15, wherein the ratio of the mass per unit area (the mass of a unit area of the film in gram per meter- squared (gr/m 2 )) over the stiffness value in Taber unit configuration is equal to or less than 13; in some cases, less than 11, and, in some cases, less than 10.
  • the film can have a Taber bending stiffness value of less than 280, according to TAPPI/ANSI T 489 om-15.
  • the described films can have a surface with an average Sheffield smoothness, according to TAPPI T 538, of less than 100.
  • the film may have an average Sheffield smoothness of less than 50; in some cases, less than 40; in some cases, less than 30; and, in some cases, less than 15.
  • the multilayer foam film can have an overall thickness of greater than 8 mils, in some cases, greater than 10 mils, in some cases, greater than 13 mils, and in some cases greater than 15 mils.
  • the lightweight film described herein has a bulk density less than 1 gr/cm 3 ; in some cases, less than 0.962 gr/cm 3 ; in some cases, less than 0.94 gr/cm 3 ; in some cases, less than 0.9 gr/cm 3 ; in some cases, less than 0.85 gr/cm 3 ; and in some cases, less than 0.8 gr/cm 3 .
  • the foam layer of the disclosed film has a far better cellular morphology compared to the known films.
  • the foam layers of the disclosed films can have uniformly distributed cells, for example with a closed-cell morphology, an average cell size of about 10 - 250 pm, for example, 50 - 250 pm, for example, 150 - 250 pm, for example, 200 - 250 pm; an average cell density with respect to the un-foamed polymer volume of about 10 2 - 10 9 cells/cm 3 , and an expansion ratio of the foamed layer from 1 to 9, for example an expansion ratio of the foamed layer from 1 to 8, for example an expansion ratio of the foamed layer from 1 to 7, for example an expansion ratio of the foamed layer from 1 to 6, for example an expansion ratio of the foamed layer from 1 to 5, for example an expansion ratio of the foamed layer from 1 to 4, for example an expansion ratio of the foamed layer from 1 to 3, for example an expansion ratio of the foamed layer from 1 to 2.
  • the foam layer comprises at least 10% closed cells and, in some cases, more than 50% closed cells.
  • the foam layer has a substantially
  • the multilayer foam film comprises at least one layer containing the PE/EVOH blend.
  • the multilayer foam film described herein comprises at least one layer, excluding the solid skin layers, containing from about 30 to 50 percent by weight of EVOH, for example, from about 35 to 49 percent by weight of EVOH, for example, from about 40 to 49 percent by weight of EVOH, for example, from about 45 to 49 percent by weight of EVOH, and less than 5 percent by weight maleic anhydride, e.g., 2 percent by weight.
  • the overall mass concentration of the EVOH in a unit area of the film does not exceed 10 percent of the mass of the unit area of the film.
  • the overall mass concentration of the EVOH in a unit area of the film does not exceed 7.5 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 5 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 4 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 3 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 2.5 percent of the mass of the unit area of the film.
  • the films described herein can have a water vapor transmission rate of less than 0.05 gr/100 in 2 /24hr, according to ASTM E398-13. In one case, the water vapor transmission rate of the film is less than 0.1 gr/100 in 2 /24hr. In some embodiments, the water vapor transmission rate of the film is less than 1 gr/m 2 /day. In some embodiments, the described film can have an oxygen transmission rate of less than 0.65 cc/100 in 2 /24hr, or 10 cc/m 2 /24hr, according to ASTM D3985.
  • the described film can have an oxygen transmission rate of less than 0.32 cc/100 in 2 /24hr, or 5 cc/m 2 /24hr, according to ASTM D3985. In some embodiments, the described film can have an oxygen transmission rate of less than 0.13 cc/100 in 2 /24hr, or 2 cc/m 2 /24hr, according to ASTM D3985.
  • the described film comprises at least one layer containing a resin with an oxygen transmission rate value of less than 0.65 cc/100 in 2 /24hr, according to ASTM D3985.
  • the described film comprises at least one layer, excluding the solid skin layers, containing ethylene vinyl alcohol (EVOH).
  • EVOH ethylene vinyl alcohol
  • the multilayer foam film e.g., five-layer foam film
  • the film e.g., five-layer foam film
  • thermoplastics can be used in at least one layer of the multilayer foam film and in the blown film process such as polyethylene (PE), polypropylene (PP), polyethylene terphthalate (PET), ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), polyvinyl chloride (PVC), Polyvinylidene chloride (PVDC), polyamide (PA), LLDPE copolymer which include an a- olefin co-monomer such as butene, hexene, or octene; any of the resins known as TPE family such as, but not limited to, propylene-ethylene copolymer, thermoplastic olefin (TPO), and thermoplastic polyurethane (TPU).
  • TPE polyethylene
  • PP polypropylene
  • PET polyethylene terphthalate
  • EVA ethylene vinyl acetate
  • EVOH ethylene vinyl alcohol
  • PVDC Polyvinylidene chloride
  • PA polyamide
  • LLDPE copolymer
  • HDPE layers some or all of the HDPE layers are replaced by PP layers in the multilayer structure. In some embodiments described herein which include HDPE layers, some or all of the HDPE layers are replaced by PET layers in the multilayer structure.
  • At least one layer, (e.g., excluding the outer skin layers), of the film may comprise LDPE, PP, PA, EVOH, EVA, or PVOH.
  • any oxygen barrier layer e.g., EVOH layer
  • any oxygen barrier layer is supported by at least one foam layer adjacent to the oxygen barrier layer, on one side or both sides.
  • any oxygen barrier layer is supported by at least one foam layer close to the oxygen barrier layer.
  • any oxygen barrier layer is protected by the inclusion of one foam layer adjacent to any or both of the skin layers.
  • the oxygen barrier layer comprises EVOH.
  • a method of making a creased, folded or scored multilayer film comprising co-extruding of at least one foam layer including a plurality of cells, wherein at least 10% of the cells are closed cells, and two solid skin layers comprising HDPE, and one or more solid layers, comprising ethylene vinyl alcohol (EVOH), wherein the said foam layer is being coextruded between the skin layer and the layer comprising EVOH, and the film has an overall thickness equal to or greater than 8 mils; craesing, scoring or folding the siad film, wherein the oxygen tranmision rate value of the creased, scored or folded in cc/m 2 /day, according to ASTM D3985, does not increase more than 30% of the OTR value of an identical non-creased, non-scored or unfolded multi-layer film (i.e., before creasing, scoring or folding).
  • EVOH ethylene vinyl alcohol
  • the oxygen tranmision rate valueof the creased, scored or folded film does not increase more than 20%, or more than 10%, or more than 5%, of the OTR value an identical non-creased, non-scored or unfolded multilayer film (i.e., before crfeasing scoring or folding).
  • the ratio of the OTR (in cc/m 2 /24hr, according to ASTM D3985) over that of an identical film prior to creasing, folding or scoring is less than 1.1, in some cases, less than 1.075, in some cases, less than 1.05 and, in some cases less than 1.025.
  • Example 1 Samples of multilayer HDPE film (seven layers) were produced using a 7 layer blown film line from Reifenhauser Extrusion System equipped with internal bubble cooling system, gauge control, mass throughput control, and layer thickness control, consisting seven extruders including two 55 mm Extruders denoted as “A” and “G", for the skins, two 65 mm Extruders denoted as “B” and “F”, and three 35 mm extruders denoted as “C”, “D”, and “E. Both 65 mm extruders were equipped with supercritical gas injection unit, capable of injecting nitrogen, carbon dioxide, or a mixture of both, as well as two 65 mm MuCell Transfer Mixer (MTM), all from MuCell Extrusion LLC.
  • MTM MuCell Transfer Mixer
  • All the films were produced by the blown film process using an annular die with a die gap ranging from 0.7 to 1.2 mm and a blow-up ratio ranging from 2.8:1 to 3.5:1.
  • the lip of the annular die was boron nitride coated.
  • Table 1 contains the processing data, as well as the characterization results of the products, which were made, as non-limiting examples to elucidate this invention.
  • the samples were produced with high-density polyethylene ELITE 5960 from Dow Chemical Company, having the melt index of 0.85 dg/min and the density of 0.962 gr/cm 3 .
  • the additives e.g., color pigments
  • Table 1 contains the processing data, as well as the characterization results of the products, which were made, as non-limiting examples to elucidate this invention.
  • the samples were produced with high-density polyethylene ELITE 5960 from Dow Chemical Company, having the melt index of 0.85 dg/min and the density of 0.962 gr/cm 3 .
  • the additives e.g., color pigments
  • the additives can be compounded in an HDPE carrier.
  • the calcium carbonate and talc were prepared and introduced as a highly filled masterbatch of, respectively, 80 wt% filled calcium carbonate and 70 wt% filled talc within the HDPE as the base carrier resin.
  • All of the tie layers comprise ADMER adhesive resin, which is anhydride grafted polyolefin.
  • the middle layer comprises Ethylene vinyl alcohol (EVOH) with an ethylene content of 32%.
  • Sample 2 and 3 are the foam versions of the solid sample 1 with the same basic weight of 342 gr/m 2 , which have 40% and 45% less density compared to the solid sample 1, respectively.
  • sample 3 shows 190% higher bending stiffness value compared to its solid counterpart.
  • Sample 5 and 6 are the foam versions of sample 4 with the same basic weight of about 390 gr/m 2 , which have 37% and 39% less density compared to the solid sample 4. Samples 5 and 6 show 140% and 160% higher bending stiffness values compared to their solid counterpart, respectively. Sample 6 possesses the surface smoothness value of about 17.5, in Sheffield, which is comparable to sample 4. Both samples 5 and 6 show an oxygen transmission rate below 1.5 cc/m 2 /day.
  • Samples 8, 9, 10, and 11 are the foam version of sample 7 with a similar basic weight of about 240 g/m 2 , which has about 20% to 30% less density. Samples 9 and 10 possess 140% and 190% higher bending stiffness compared to their solid counterpart. Although samples 8 and 9 have much thinner (almost half) middle layer compared to sample 10, they show an oxygen transmission rate in the same range all less than 3 cc/m 2 /day. Also, samples 8 and 9 have a surface smoothness value of below 10, in Sheffield, and comparable to their solid counterpart.
  • Example 2 Samples of multilayer HDPE film (three layers) were produced using a blown film line from Windmoeller & Hoelscher Corporation comprising one 105 mm main extruder and two identical 75 mm co-extruders.
  • the core extruder was equipped with a supercritical gas injection unit, capable of injecting nitrogen or carbon dioxide, and a 120 mm MuCell Transfer Mixer, both from MuCell Extrusion LLC. All the films were produced by the blown film process using an annular die with a die gap ranging from 0.45 to 1.3 mm and a blow-up ratio ranging from 2.8:1 to 3.5:1.
  • the lip of the annular die was boron nitride coated.
  • Table 2 contains the characterization results of the products (samples 12 to 15) were made, as non-limiting examples to elucidate on some embodiments of this invention.
  • the samples were produced with high-density polyethylene ELITE 5960 from Dow Chemical Company, having the melt index of 0.85 dg/min and the density of 0.962 gr/cm 3 .
  • the calcium carbonate and talc were prepared and introduced as a highly filled masterbatch of, respectively, 80 wt% filled calcium carbonate and 70 wt% filled talc within the HDPE as the base carrier resin.
  • the foamed core layer of all samples contains talc as the cell nucleating agent.
  • Sample 15 is the solid counterpart of samples 12, 13, and 14 which have about 18% to 25% less density compared to sample 15.
  • Sample 15 showed an oxygen transmission rate of less than 1.4 cc/m 2 /day. All the samples exhibit a water vapor transmission rate of less than 1, as well as a surface smoothness value of less than 10, in Sheffield.
  • Example 3 Creased samples of the sample 11 in Table 1 were prepared, according to TAPPI/ANSI T512 sp-12, and the oxygen transmission rate (OTR) before and after creasing and folding was tested.
  • OTR oxygen transmission rate
  • the OTR values in cc/m 2 /24hr were measured according to ASTM D3985 at a standard temperature of 73°F (23°C) and 0% relative humidity (RH). All of the tested samples were identical.
  • the average measured OTR value of sample 11 before creasing and after creasing were 1.56 cc/m 2 /24hr and 1.6 cc/m 2 /24hr respectively.
  • the creased sample of the solid counterpart to the sample 11 in Table 1 were prepared and the OTR values were measured according to the aforementioned methods.
  • the thickness of the samples was 260 pm
  • the average measured OTR values before creasing and after creasing were 0.95 cc/m 2 /24hr and 1.17 cc/m 2 /24hr respectively.
  • Example 4 The creased samples of the packaging tube of AVENO daily moisturizing lotion was prepared, according to TAPPI/ANSI T512 sp-12, and the oxygen transmission rate (OTR) before and after creasing and folding was tested.
  • the total thickness of the sample was 480 pm comprising one EVOH layer with the thickness of 60 pm.
  • OTR values in cc/m 2 /24hr were measured according to ASTM D3985 at a standard temperature of 73°F (23°C) and 0% relative humidity (RH). The average measured OTR before creasing and after creasing were 0.29 cc/m 2 /24hr and 0.41 cc/m 2 /24hr respectively.

Abstract

A multilayer foam film suitable for direct and non-direct food contact and aseptic packaging application and a method of making said film are disclosed. The multilayer foam film comprises: a foam layer including a plurality of cells, wherein at least 10% of the cells are closed cells, and two solid skin layers comprising HDPE on each side of the foam layer, and a solid layer comprising ethylene vinyl alcohol (EVOH), wherein the said foam layer is between one of the solid skin layers and the solid layer comprising EVOH, and the film has an overall thickness equal to or greater than 8 mils,, and the ratio of the oxygen transmission rate of the creased, folded or scored film in cc/m 2 /24hr, according to ASTM D3985, over that of an identical film prior to creasing, folding or scoring is less than 1.1.

Description

Multi-Layer Polymer Foam Film for Packaging Applications and The Method of Making the Same
This invention relates to a multilayer polymer foam film (e.g., comprising high density polyethylene (HDPE)), which may be used for paper replacement applications in the aseptic packaging industry.
Figure imgf000002_0001
Paperboards consumption for packaging applications accounts for almost one-third of the total packaging market. For the direct food contact packaging, paper boards work safely with a barrier coating of some form. Conventionally, for the food packaging applications where the barrier properties are essential, the paper boards are paraffin wax coated or laminated with a polymer film, which is usually polyethylene. For the shelf-stable products that are stored at room temperature, and the packaging is done aseptically followed by hermetic sealing, oxygen barrier property is essential. The advent of paper-foil-plastic laminated containers, e.g., Tetrahedron in 1959, was an inflection point in packaging industries where it could be replaced with metal cans and glass containers. So, typically a layer of a metalized polymer film or aluminum film is incorporated in the structure of the paperboard. This can cause a significant recycling issue because the vast majority of the recycling sites are deficient in infrastructure that can provide a certain recycling technology. There has been cumulative popularity and interest for the sterilized and pasteurized products that are being packaged aseptically which eliminates refrigeration and prevents spoilage without using preservatives, for example, milk, baby foods, tomato products, broths, soups, vegetables, desserts, liquid egg, yogurt, dressings, etc. So, with the vast demand growth in food packaging in emerging markets, it would be desirable to produce in a lightweight recyclable polymeric film with improved oxygen and moisture barrier properties that possesses surface quality for printing and preprinting shelf life, bending stiffness values comparable to the paperboards used in packaging, and sufficient barrier properties, all of which may be essential attributes for a product to replace the kinds of paperboard currently being used in packaging industries. Moreover, the mentioned product can address the wicking issues of coated paperboards.
One of the foremost issues during the production of flexible aseptically packaged products, made of a multilayer sheet or film, is the defects in the packages due to the occurrence of physical damages of any form to the sheet and specifically the oxygen barrier layers, for example, in the form of micro-cracks that might be initiated and then propagate during the creasing, scoring, piercing, punching, or folding process. For instance, these cracks happen typically in the aluminum layer, metalized layer, or even Ethylene vinyl alcohol (EVOH) layers that are conventionally included in the structure of the multilayer sheet and film that are currently being used in the packaging industry. These defects can deteriorate the integrity of the oxygen barrier properties of the whole package resulting in the decline in the shelf life time of the product. So, it would be beneficial to innovate a method to protect the barrier layer in the multilayer sheet or film from getting physical damages when it undergoes the forsaid processes.
Su mrnarv
A multilayer polymer foam film which, for example, may be used for aseptic packaging application is described herein.
As described further below, in some embodiments, the multilayer films retain their oxygen transmission rate (OTR) properties after a creasing, folding or scoring step. That is, the creased, folded or scored multilayer film has an OTR similar to that of an identical multilayer film prior creasing, folding or scoring. This can be an advantage over conventional multilayer films that may experience increases in OTR, for example, as a result of physical damage during creasing, folding or scoring.
In some embodiments, the film can have a very smooth surface resulting in superior printing quality and high enough bending stiffness to replace paper boards. The film may be recyclable and lightweight.
In one aspect, a creased, folded or scored multilayer foam film is provided. The film comprises a foam layer including a plurality of cells. At least 10% of the cells are closed cells. The film further comprises two solid skin layers comprising HDPE on each side of the foam layer. The film further comprises a solid layer comprising ethylene vinyl alcohol (EVOH). The foam layer is between one of the solid skin layers and the solid layer comprising EVOH. The film has an overall thickness equal to or greater than 8 mils. The ratio of the oxygen transmision rate of the creased, folded or scored film in cc/m2/24hr, according to ASTM D3985, over that of an identical film prior to creasing, folding or scoring is less than 1.1.
In another aspect, a method of making a creased, folded or scored multilayer film is provided. The method comprises co-extruding a foam layer, two solid skin layers comprising HDPE and one solid layer comprising ethylene vinyl alcohol (EVOH) to form a multilayer film. The foam layer includes a plurality of cells, wherein at least 10% of the cells are closed cells. The foam layer is between one of the solid skin layers and the layer comprising EVOH. The film has an overall thickness equal to or greater than 8 mils. The method further comprises creasing, folding or scoring the multilayer film. The oxygen transmission rate value of the creased, folded or scored film in cc/m2/day, according to ASTM D3985 does not increase more than 10% of the oxygen transmission rate value of the multi-layer film prior to creasing, folding or scoring in cc/m2/day, according to ASTM D3985.
Other aspects, embodiments, advantages, and features will become apparent from the following detailed description.
Figure imgf000004_0001
The singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise.
All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of the bending stiffness in Taber unit configuration from 18 to 100 " is inclusive of the endpoints, 18 and 100, and all the intermediate values. In the same context, for example, the overall thickness of greater than 8 mils is inclusive of the endpoint, 8 mils.)
As used herein, approximating language may be applied to modify any quantitative representation that may vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as "about" and "substantially," may not be limited to the precise value specified. The modifier "about" should also be considered as disclosing the range defined by the absolute value of the two endpoints. For example, the expression "from about 0.05 to about 15" also discloses the range "from 0.05 to 15".
As used herein, the term "lightweight" refers to the bulk density value of the products described herein being less than, or equal to, the density of their solid counterpart made from the associated base virgin resin, or the density of the associated base virgin resin. In a similar context, it refers to the bulk density value of the products described herein being less than, or at least equal to, the density of the paperboards with the same thickness or with the same weight values per unit area in gr/m2. For example, bulk density values of the products of this invention can be less than 0.962 gr/cm3 which is less than the density value of the associated base virgin resin of 0.962 gr/cm3, or less than the bulk density value of 0.962 gr/cm3 of its solid counterpart made from the associated base virgin resin.
The present disclosure relates to multilayer lightweight polyethylene foam film suitable to be used in all sorts of aseptic packaging; packaging of all sorts of oxygen-sensitive products, packaging of pasteurized products; packaging of dry food products such as biscuits, cookies, cereals, tea, coffee, sugar, flour, dry food mixes, chocolates, sugar confectionaries, pet food; packaging of frozen foods such as chilled foods and ice creams; packaging of cooked and precooked products and foods; backing board for fresh products such as vegetables, fruits, meat and fishes; packaging of baby foods; packaging of all kinds of desserts; packaging of liquid food and beverages such as broths, soups, juice drinks, milk and all sorts of products derived from milk, concentrates, all kinds of dressing, liquid eggs, tomato products; and packaging of all kinds of laundry detergents, shampoos, and body washes; making all sorts of pouches to include SUP, sachets, and packaging of pet foods.
The abovementioned examples do not put any limitation on the application of the products of this disclosure, and other applications may be possible.
One of the rationales behind the production of the synthetic lightweight films described herein and material selection for paperboard replacement is to address the recyclability, and to avoid the drawbacks of using the wax-coated paper boards, metalized films, and the films and sheets with an aluminum layer all of which are either not recyclable or cannot be recycled easily; although in reality the vast majority of the consumers intuitively believe that the above-mentioned products, such as aseptically-packaged milk boxes or long-shelf life beverage boxes, are recyclable.
Herein a recyclable lightweight multilayer film is disclosed which, in some embodiments, comprises no less than five layers, e.g., seven layers, to be a replacement for paper boards that are being used in packaging industries, e.g., for aseptic packaging applications, and for direct and nondirect food contact packaging application. The film comprises high-density polyethylene (HDPE) wherein at least one layer, excluding the solid skin layers, has a cellular structure. In some embodiments, at least 10% of the cells are closed-cell; in some embodiments, more than 50% of the cells are closed cells; and, in some embodiments, more than 75% of the cells are closed cells. In some embodiments, 100% of the cells are closed cells. As used herein, a "closed cell" refers to a cell that has cell walls that completely surround the cell with no openings such that there is no interconnectivity to an adjacent cell. In some embodiments, the film comprises at least one solid layer containing EVOH, each of which located somewhere between the foam layer and solid layer, or between two of the solid layers. In some embodiments, the film comprises at least one foam layer and two solid skin layers, and one or more solid layers comprising EVOH, wherein the siad foam layer is located between the skin layer and the layer comprisng EVOH.
In some embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 5 percent of the mass of the unit area of the film. In some embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 10 percent of the mass of the unit area of the film. In some embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 5 percent of the mass of the unit area of the film. In some other embodiments, the mass concentration of the EVOH in every unit area of the multilayer film is less than 2 percent of the mass of the unit area of the film.
Furthermore, in some embodiments, the bending stiffness of the disclosed multilayer foamed film product could be improved over their solid counterparts to fulfill the property requirement in packaging industries. This could be done first and foremost by the inclusion of one or more cellular layer in the core of the multilayer film or between two solid skin layers, an accurate tune and alteration of the thickness of the cellular layer as well as fine-tuning the thickness of the solid skin layers. Generally, at the same thickness, a solid film of polyethylene can hardly possess bending stiffness values that paperboards can offer. This is due to the high degree of fiber alignment in paperboard which can significantly enhance the bending stiffness. In addition, it might be due to higher inherent stiffness of the individual fibers in the paperboard compared to the polymer chains in the polymeric film.
In general, HDPE owns a relatively low water vapor transmission rate of about 0.3 - 0.5 (g/100 in2/24 hr). Embodiments of the multilayer foamed film products described herein can exhibit significantly higher moisture barrier properties compared to its solid counterparts with the same value of mass per unit area (in gram per meter squared). Also, embodiments of the multilayer foamed film products described herein can exhibit an enhanced oxygen barrier property.
Also, one of the issues in industrial-scale use of the polymeric packages, which can be a crucial factor in the efficient and cost-effective packaging process, is the ability of them to be de-nested quickly and freely. De-nesting problems are typically due to the friction and static charge. Embodiments of the multilayer foam films described herein can exhibit an anti-static and low friction behavior by manipulating the skin layer's structure and by the inclusion of appropriate amounts of slip agents, anti-block and anti-static agent into the solid skin layer.
In some embodiments, one of the steps for making the disclosed product is how the bending stiffness may be controlled and enhanced by the inclusion and controlling the thickness of the core cellular layer, or the cellular layers between the two skin layers, and fine-tuning the solid skins, as well as how the surface smoothness has been enhanced significantly by adding a tiny amount of supercritical blowing agent. Moreover, how the unique structure and layer combination has resulted in a high barrier property without the inclusion of an aluminum or metalized barrier layer. That is, the film product may be free of any metal (e.g., aluminum) barrier layer. In some embodiments, a blown film process may be used where the head pressure of the extruder can go high because of a very narrow gap that benefits the nucleation of cells in the foam layer. Using such a technique, the melt fracture should be avoided, and the resin should have excellent thermal stability and high enough melt strength. Typically, film manufacturers capitalize on a blend of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE), while the blend is an immiscible blend in many cases, wherein LDPE can improve the processing ability and ductility while the LLDPE can enhance the modulus and strength. In some embodiments, all layers of the described multilayer film comprise HDPE and, in some cases, the polymeric material in one or more of these layers consists essentially of HDPE and, in some cases, the polymeric materials in at least one of the solid layers, excluding the solid skin layers, comprises EVOH. In one embodiment, at least one layer of the multilayer film can comprise LDPE.
In some embodiments, the multilayer film can be comprised of nine layers; in some embodiments, seven layers; and, in some embodiments, five layers.
For example, a five-layer film may comprise a foam core layer (e.g., comprising HDPE) and at least two solid layers (e.g., comprising HDPE), each one on respective opposite sides of the core layer, and at least one solid layer (e.g., comprising EVOH), each one between the foam layer and solid skin layer. In one embodiment, the five-layer film may comprise a solid core layer (e.g., comprising EVOH) and at least two solid layers (e.g., comprising HDPE), each one on respective opposite sides of the core layer, and at least two foam layers (e.g., comprising HDPE), each one between the foam layer and solid skin layer. In some embodiments, a five layer film may have a layer structure ABCBA (i.e., with layers A being the two outermost (skin) layers, layers B being in contact with respective A layers and layer C, and layer C being the middle layer). For example, layers A may be solid skin layers (e.g., comprising HDPE), layers B may be foam layers (e.g., comprising HDPE) and layer C may be an EVOH (e.g., solid) layer.
In one case, a seven-layer foam film comprises a foam core layer (e.g., comprising HDPE) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one solid layer (e.g., comprising EVOH), each one between the foam layer and solid skin layer. In another case, a seven-layer foam film comprises a solid core layer (e.g., comprising EVOH) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one foam layer (e.g., comprising HDPE), each one between the solid core layer and the solid skin layer. In some embodiments, a seven layer film may have a layer structure ABCDCBA (i.e., with layers A being the two outermost (skin) layers, layers B being in contact with respective A layers and respective C layers, layers C being in contact with respective layers B and layer D and layer D being the middle layer). For example, layers A may be solid skin layers (e.g., comprising HDPE), layers B may be foam layers (e.g., comprising HDPE), layer C may be a solid tie layer (e.g., comprising HDPE) and layer D may be an EVOH (e.g., solid) layer.
In another embodiment, a nine-layer foam film comprises a foam core layer (e.g., comprising HDPE) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one solid layer (e.g., comprising EVOH), each one between the foam layer and solid skin layer. In another embodiment, a nine-layer foam film comprises a solid core layer (e.g., comprising EVOH) in the middle with two solid skin layers (e.g., comprising HDPE) on each opposite side of the core layer, and at least one foam layer (e.g., comprising HDPE), each one between the solid core layer and solid skin layer. In some embodiments, a nine layer film may have a layer structure ABCDEDCBA (i.e., with layers A being the two outermost (skin) layers, layers B being in contact with respective A layers and respective C layers, layers C being in contact with respective layers B and respective layers D, layers D being in contact with respective layers C and layer E, and layer E being the middle layer). For example, layers A may be solid skin layers (e.g., comprising HDPE), layers B may be solid tie layers (e.g., comprising HDPE), layers C may be (e.g., solid) EVOH layers, layers D may be solid tie layers (e.g., comprising HDPE) and layer E may be a foam layer (e.g., comprising HDPE).
In another embodiment, the multilayer film, which can be five, seven, or nine layers, comprises at least one foam layer and two solid skin layers, and at least one solid layer (e.g., comprising EVOH). In another embodiment, the multilayer film, which can be five, seven, or nine layers, comprises at least one solid layer, comprising EVOH, each of which located between the foam layer and solid layer, or between the two solid layers.
In some embodiments, the multilayer film described herein comprises multiple layers, e.g., from 3 layers to 19 layers, comprising at least one foam layer and one or more solid layers containing EVOH. In some other embodiments, the multilayer film described herein comprises multiple layers, e.g., from 3 layers to 19 layers, comprising at least one solid layer containing EVOH.
It should be understood that other layer configurations may be possible.
In one embodiment, the process to produce the described multilayer films may utilize a very small and precise amount of supercritical gas, for example, below 0.1 wt%, as a processing aid and blowing agent. In some embodiments, other gas concentrations, e.g., more than 0.1 percent by weight maybe possible. Such supercritical gas may be injected into the molten polymer at a high pressure, for example, greater than 34 bar, inside an efficient and effectual mixer, e.g., cavity transfer mixer, as an extension to the extruder's barrel. The supercritical blowing agent used in the process can be either nitrogen, carbon dioxide, or a mixture of nitrogen and carbon dioxide. In some embodiments, the supercritical blowing agent can be introduced inside the mixing section of the extruder at the injection pressure greater than or equal to 34 bar; in some cases, greater than or equal to 70 bar; in some cases, greater than or equal to 240 bar, and, in some cases, greater than or equal to 380 bar. The temperature of the mixer could be accurately controlled within ±1°C. The inclusion of a tiny amount of gas can offer a few important advantages in the process and, for example, blown film extrusion processes. For example, the gas can reduce the back pressure which allows processing at higher throughput and can delay any bubble instability. Therefore, melt fracture could be reduced significantly. Also, the gas can enhance the processing ability of the HDPE, and to serve as a physical blowing agent with the presence of a nucleating agent in the layer that has a cellular structure. The addition of the physical blowing agent can depress the development of melt fracture due to the viscosity manipulation of the melt which may result in high surface smoothness. Hence the printing quality on the film can be improved significantly.
In general, conventional polymer processing equipment may be used to produce the films described herein. In some cases, for example, the film can be produced by the blown film process using an annular die with a die gap from 0.45 to 1.3 mm and a blow-up ratio ranging from 1.5:1 to 3.5:1. Higher blow-up ratios might result in a more balanced MD/TD (machine direction/transverse direction) orientation, which improves overall film toughness. The die geometry and specification may be manufactured according to, for example, the patent application US 2012/0228793 Al, which is incorporated by reference herein in its entirety.
The majority of the conventional PE blown films are processed using a PE blend comprising LDPE for enhancing bubble stability. Almost all the HDPE films are made in a high stock blown film process; otherwise, the tear strength of the HDPE film deteriorates significantly. As described above, in embodiments of the methods are used for producing the multi-layer films, a supercritical gas may be injected into the melt at a precisely controlled rate, inside a transfer mixer, before entering the annular die. This unit could be controlled as a separate temperature zone with an accuracy of ±1 °C and a gas injection pressure variation below 1%. The plasticization effect of the gas can result in a viscosity change of the molten resin which would enhance the processing ability of the resin inside the annular die at a lower temperature compared to the processing temperature which is being used conventionally. Hence, a relatively stable bubble can be made inside the pocket. Then, because of the overall high specific heat capacity of polyethylene, the transverse stretch of the bubble can be delayed until the film becomes cooler, which may further enhance the bubble stability and the frost line height. This also might be beneficial in manipulating the crystallization kinetics of the skin layers to improve a few other physio-mechanical properties. The higher degree of crystallization in the skin might lower the coefficient of friction on the skin layers.
In some embodiments, the multilayer foam films described herein can be produced by the blown film process, cast film process, or other suitable methods.
In some embodiments, the polymer composition of each layer comprises some apt amounts of other additives, such as pigments, slip agents, antistatic agents, UV stabilizers, antioxidants, nucleating agents, clarifying agents, or maleic anhydride. The foam layer optionally may contain 0.05 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 0.05 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 1 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 2.5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 7.5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 10 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. In some embodiments, the foam layer optionally may contain 12.5 to 15 percent by weight of an inorganic additive, an organic additive or a mixture of an inorganic and an organic additive as a nucleating agent. For example, the foam layer may contain up to about 15% by weight of talc as a nucleating agent. In some embodiments, at least one layer may include a clarifying agent at less than 1 percent by weight, such as less than 0.5 percent by weight, such as less than 0.1 percent by weight, such as less than 0.05 percent by weight. In some cases, at least one layer of the film may contain up to about 35 wt% of calcium carbonates. In some cases, at least one layer of the film may contain up to about 30 wt% of calcium carbonates. In some cases, at least one layer of the film may contain up to about 25 wt% of calcium carbonates. In some cases, at least one layer of the film may contain up to about 20 wt% of calcium carbonates. In some cases, at least one layer of the film may contain up to about 15 wt% of calcium carbonates. In some embodiments, at least one layer of the film described herein comprise less than 5 percent by weight maleic anhydride, for example, less than about 4 percent by weight, for example, less than about 3 percent by weight, for example, less than about 2.5 percent by weight, for example, less than about 2 percent by weight, for example, less than about 1 percent by weight.
In some cases, multilayer foam film can be comprised of two solid skin layers wherein one of the skin layers contains an apt amount of black pigments, for example, less than 1 percent by weight, for example, less than 0.75 percent by weight, for example, less than 0.5 percent by weight, and the other solid skin layer contains apt amounts of white pigments, for example, less than 1 percent by weight, for example, less than 0.75 percent by weight, for example, less than 0.5 percent by weight. In some other embodiments, both solid skin layers comprise an apt amount of white pigments.
In another case, the solid skin layers of the multilayer foam film comprise less than 0.5 percent by weight of an anti-blocking agent and/or less than 0.2 percent by weight of an anti-static agent.
In one embodiment, the multilayer foamed film has at least one solid skin layer with a static coefficient of friction value of less than 0.4, such as less than 0.38. In another embodiment, the film has at least one solid skin layer with a dynamic coefficient of friction value of less than 0.3.
The described multilayer film, comprising at least one foam layer, may have sets of significantly improved physiomechanical properties compared to known foamed film articles as in particular the bending stiffness value of greater than 18, in some cases greater than 20, and in some cases, greater than 25, all in Taber stiffness unit configuration, according to TAPPI/ANSI T 489 om-15, wherein the ratio of the mass per unit area (the mass of a unit area of the film in gram per meter- squared (gr/m2)) over the stiffness value in Taber unit configuration is equal to or less than 13; in some cases, less than 11, and, in some cases, less than 10. In an embodiment, the film can have a Taber bending stiffness value of less than 280, according to TAPPI/ANSI T 489 om-15.
The described films can have a surface with an average Sheffield smoothness, according to TAPPI T 538, of less than 100. In some embodiments, the film may have an average Sheffield smoothness of less than 50; in some cases, less than 40; in some cases, less than 30; and, in some cases, less than 15.
The multilayer foam film can have an overall thickness of greater than 8 mils, in some cases, greater than 10 mils, in some cases, greater than 13 mils, and in some cases greater than 15 mils.
In some embodiments, the lightweight film described herein has a bulk density less than 1 gr/cm3; in some cases, less than 0.962 gr/cm3; in some cases, less than 0.94 gr/cm3; in some cases, less than 0.9 gr/cm3; in some cases, less than 0.85 gr/cm3; and in some cases, less than 0.8 gr/cm3. In some embodiments, the foam layer of the disclosed film has a far better cellular morphology compared to the known films. For example, the foam layers of the disclosed films can have uniformly distributed cells, for example with a closed-cell morphology, an average cell size of about 10 - 250 pm, for example, 50 - 250 pm, for example, 150 - 250 pm, for example, 200 - 250 pm; an average cell density with respect to the un-foamed polymer volume of about 102 - 109 cells/cm3, and an expansion ratio of the foamed layer from 1 to 9, for example an expansion ratio of the foamed layer from 1 to 8, for example an expansion ratio of the foamed layer from 1 to 7, for example an expansion ratio of the foamed layer from 1 to 6, for example an expansion ratio of the foamed layer from 1 to 5, for example an expansion ratio of the foamed layer from 1 to 4, for example an expansion ratio of the foamed layer from 1 to 3, for example an expansion ratio of the foamed layer from 1 to 2. In some cases, the foam layer comprises at least 10% closed cells and, in some cases, more than 50% closed cells. In one embodiment, the foam layer has a substantially entirely closed-cell morphology (e.g., greater than 95% closed cells).
In some embodiments, the multilayer foam film comprises at least one layer containing the PE/EVOH blend. In some embodiments, the multilayer foam film described herein comprises at least one layer, excluding the solid skin layers, containing from about 30 to 50 percent by weight of EVOH, for example, from about 35 to 49 percent by weight of EVOH, for example, from about 40 to 49 percent by weight of EVOH, for example, from about 45 to 49 percent by weight of EVOH, and less than 5 percent by weight maleic anhydride, e.g., 2 percent by weight. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 10 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 7.5 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 5 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 4 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 3 percent of the mass of the unit area of the film. In some embodiments, the overall mass concentration of the EVOH in a unit area of the film does not exceed 2.5 percent of the mass of the unit area of the film.
The films described herein can have a water vapor transmission rate of less than 0.05 gr/100 in2/24hr, according to ASTM E398-13. In one case, the water vapor transmission rate of the film is less than 0.1 gr/100 in2/24hr. In some embodiments, the water vapor transmission rate of the film is less than 1 gr/m2/day. In some embodiments, the described film can have an oxygen transmission rate of less than 0.65 cc/100 in2/24hr, or 10 cc/m2/24hr, according to ASTM D3985. In some case, the described film can have an oxygen transmission rate of less than 0.32 cc/100 in2/24hr, or 5 cc/m2/24hr, according to ASTM D3985. In some embodiments, the described film can have an oxygen transmission rate of less than 0.13 cc/100 in2/24hr, or 2 cc/m2/24hr, according to ASTM D3985.
In some embodiments, the described film comprises at least one layer containing a resin with an oxygen transmission rate value of less than 0.65 cc/100 in2/24hr, according to ASTM D3985. In another embodiment, the described film comprises at least one layer, excluding the solid skin layers, containing ethylene vinyl alcohol (EVOH).
In an exemplary embodiment, the multilayer foam film, e.g., five-layer foam film, has at least one solid skin layer with a static coefficient of friction value of less than 0.4, and/or less than 0.38. In another embodiment, the film, e.g., five-layer foam film, has at least one solid skin layer with a dynamic coefficient of friction value of less than 0.3.
In some embodiments, various thermoplastics can be used in at least one layer of the multilayer foam film and in the blown film process such as polyethylene (PE), polypropylene (PP), polyethylene terphthalate (PET), ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), polyvinyl chloride (PVC), Polyvinylidene chloride (PVDC), polyamide (PA), LLDPE copolymer which include an a- olefin co-monomer such as butene, hexene, or octene; any of the resins known as TPE family such as, but not limited to, propylene-ethylene copolymer, thermoplastic olefin (TPO), and thermoplastic polyurethane (TPU). In some embodiments described herein which include HDPE layers, some or all of the HDPE layers are replaced by PP layers in the multilayer structure. In some embodiments described herein which include HDPE layers, some or all of the HDPE layers are replaced by PET layers in the multilayer structure.
In another embodiment, at least one layer, (e.g., excluding the outer skin layers), of the film may comprise LDPE, PP, PA, EVOH, EVA, or PVOH.The following examples demonstrate the process of the present disclosure. The examples are only demonstrative and are intended to put no limit on the disclosure with regards to the materials, conditions, or the processing parameters set forth herein.
Herein, a method of protecting the oxygen barrier layer (e.g., EVOH layer), in the described multilayer film, from getting any form of physical damages, e.g., micro-cracks, when the multilayer film undergoes a creasing, scoring, piercing, punching, or folding process is disclosed. In the said method, any oxygen barrier layer is supported by at least one foam layer adjacent to the oxygen barrier layer, on one side or both sides. In some embodiments, any oxygen barrier layer is supported by at least one foam layer close to the oxygen barrier layer. In some embodiments, any oxygen barrier layer is protected by the inclusion of one foam layer adjacent to any or both of the skin layers. In some embodiments, the oxygen barrier layer comprises EVOH.
Herein, a method of making a creased, folded or scored multilayer film (and related products) is disclosed, comprising co-extruding of at least one foam layer including a plurality of cells, wherein at least 10% of the cells are closed cells, and two solid skin layers comprising HDPE, and one or more solid layers, comprising ethylene vinyl alcohol (EVOH), wherein the said foam layer is being coextruded between the skin layer and the layer comprising EVOH, and the film has an overall thickness equal to or greater than 8 mils; craesing, scoring or folding the siad film, wherein the oxygen tranmision rate value of the creased, scored or folded in cc/m2/day, according to ASTM D3985, does not increase more than 30% of the OTR value of an identical non-creased, non-scored or unfolded multi-layer film (i.e., before creasing, scoring or folding). In some embodiments, the oxygen tranmision rate valueof the creased, scored or folded film does not increase more than 20%, or more than 10%, or more than 5%, of the OTR value an identical non-creased, non-scored or unfolded multilayer film (i.e., before crfeasing scoring or folding). In some embodiments, the ratio of the OTR (in cc/m2/24hr, according to ASTM D3985) over that of an identical film prior to creasing, folding or scoring is less than 1.1, in some cases, less than 1.075, in some cases, less than 1.05 and, in some cases less than 1.025.
Figure imgf000014_0001
All of the products resulting from the examples below were tested and characterized in terms of bending stiffness, surface smoothness, oxygen transmission rate, water vapor transmission rate, and density. To characterize the bending stiffness of the film, a TABER Stiffness Tester, Model 150-E from Taber Industries, was used. The smoothness of the products was evaluated using a Gurley™ 4340 Automatic Densometer & Smoothness Tester. The Oxygen Transmission Rate (OTR) of the products was measured using OX-TRAN 1/50 tester from AMETEK MOCON, according to ASTM D3985. The Water Vapor Transmission Rate (WVTR) of the samples was measured using a PERMATRAN-W Model 1/50 G+ tester from AMETEK MOCON, according to ASTM E398-13.
Example 1: Samples of multilayer HDPE film (seven layers) were produced using a 7 layer blown film line from Reifenhauser Extrusion System equipped with internal bubble cooling system, gauge control, mass throughput control, and layer thickness control, consisting seven extruders including two 55 mm Extruders denoted as "A" and "G", for the skins, two 65 mm Extruders denoted as "B" and "F", and three 35 mm extruders denoted as "C", "D", and "E. Both 65 mm extruders were equipped with supercritical gas injection unit, capable of injecting nitrogen, carbon dioxide, or a mixture of both, as well as two 65 mm MuCell Transfer Mixer (MTM), all from MuCell Extrusion LLC. All the films were produced by the blown film process using an annular die with a die gap ranging from 0.7 to 1.2 mm and a blow-up ratio ranging from 2.8:1 to 3.5:1. The lip of the annular die was boron nitride coated.
Table 1 contains the processing data, as well as the characterization results of the products, which were made, as non-limiting examples to elucidate this invention. The samples were produced with high-density polyethylene ELITE 5960 from Dow Chemical Company, having the melt index of 0.85 dg/min and the density of 0.962 gr/cm3. In all samples, where required, the additives, e.g., color pigments, were added in the form of a masterbatch with LDPE carrier. Obviously, the additives can be compounded in an HDPE carrier. In a few samples, a minor fraction of the LDPE 1321 from Dow Chemical Company with the melt index of 0.25 dg/min and the density of 0.921 gr/cm3 was used. The calcium carbonate and talc were prepared and introduced as a highly filled masterbatch of, respectively, 80 wt% filled calcium carbonate and 70 wt% filled talc within the HDPE as the base carrier resin. All of the tie layers comprise ADMER adhesive resin, which is anhydride grafted polyolefin. In this example, the middle layer comprises Ethylene vinyl alcohol (EVOH) with an ethylene content of 32%.
All the samples were coextruded with a total throughput of 300 to 340 kg/hr, as it is listed in table 1. The temperature of the mixing section, wherein the supercritical gas was injected, was kept at 184 °C for all the samples. Supercritical nitrogen was used as a physical blowing agent and was injected into the MuCell Transfer Mixer (MTM) at the concentration from 0.01 wt% to 0.07 wt%, very accurately, into the molten polymer. The temperatures of the extruders' zones were set according to the conventional processing suggested in the datasheet of the materials.
Sample 2 and 3 are the foam versions of the solid sample 1 with the same basic weight of 342 gr/m2, which have 40% and 45% less density compared to the solid sample 1, respectively.
As it is listed in table 1, sample 3 shows 190% higher bending stiffness value compared to its solid counterpart. Sample 5 and 6 are the foam versions of sample 4 with the same basic weight of about 390 gr/m2, which have 37% and 39% less density compared to the solid sample 4. Samples 5 and 6 show 140% and 160% higher bending stiffness values compared to their solid counterpart, respectively. Sample 6 possesses the surface smoothness value of about 17.5, in Sheffield, which is comparable to sample 4. Both samples 5 and 6 show an oxygen transmission rate below 1.5 cc/m2/day.
Samples 8, 9, 10, and 11 are the foam version of sample 7 with a similar basic weight of about 240 g/m2, which has about 20% to 30% less density. Samples 9 and 10 possess 140% and 190% higher bending stiffness compared to their solid counterpart. Although samples 8 and 9 have much thinner (almost half) middle layer compared to sample 10, they show an oxygen transmission rate in the same range all less than 3 cc/m2/day. Also, samples 8 and 9 have a surface smoothness value of below 10, in Sheffield, and comparable to their solid counterpart.
Moreover, almost all the samples 1 to 11 possess a water vapor transmission rate of less than 1 gr/m2/day.
Figure imgf000017_0001
Example 2: Samples of multilayer HDPE film (three layers) were produced using a blown film line from Windmoeller & Hoelscher Corporation comprising one 105 mm main extruder and two identical 75 mm co-extruders. The core extruder was equipped with a supercritical gas injection unit, capable of injecting nitrogen or carbon dioxide, and a 120 mm MuCell Transfer Mixer, both from MuCell Extrusion LLC. All the films were produced by the blown film process using an annular die with a die gap ranging from 0.45 to 1.3 mm and a blow-up ratio ranging from 2.8:1 to 3.5:1. The lip of the annular die was boron nitride coated.
Table 2 contains the characterization results of the products (samples 12 to 15) were made, as non-limiting examples to elucidate on some embodiments of this invention. The samples were produced with high-density polyethylene ELITE 5960 from Dow Chemical Company, having the melt index of 0.85 dg/min and the density of 0.962 gr/cm3. The calcium carbonate and talc were prepared and introduced as a highly filled masterbatch of, respectively, 80 wt% filled calcium carbonate and 70 wt% filled talc within the HDPE as the base carrier resin. The foamed core layer of all samples contains talc as the cell nucleating agent.
All the samples were coextruded with the total throughput of about 260 to 290 kg/hr, as it is listed in table 2. The temperature of the mixing section, wherein the supercritical gas was injected, was kept at 190 °C for all the samples 12 to 15. Supercritical nitrogen was used as a physical blowing agent and was injected into the MuCell Transfer Mixer (MTM) at the concentration from 0.011 wt% to 0.02 wt%, very accurately, into the molten polymer.
Sample 15 is the solid counterpart of samples 12, 13, and 14 which have about 18% to 25% less density compared to sample 15. Sample 15 showed an oxygen transmission rate of less than 1.4 cc/m2/day. All the samples exhibit a water vapor transmission rate of less than 1, as well as a surface smoothness value of less than 10, in Sheffield.
Table 2
Sample 12 13 14 15
ID C2-14-1 C2-14-2 C2-14-4 C2-14-5
Density (gr/cm3) 0.9 0.88 0.826 1.104
Thickness (um) 121 125 155 104.5
Basic weight (gr/m2) 110 110 128 110
Total Throughput 287.2 261 261 261
Layers A B C A B C A B C A B C
HDPE (wt%) 68 80 98 68 80 98 68 35 98 68 35 98
64% talc filled PE (wt%) 18 18 18 18
70% talc filled HDPE (wt%) 30 30 30 30
Maleic anhydride (wt%) 2 2 2 2
EVOH (wt%) 45 45
LDPE (wt%) 2 2 2 2 2 2 2 2
SC-N2 (%) 0 001 001 « 0.011
Layer Thickness (um) 31.5 49.1 40.4 24.7 37.2 44.5 29 73.7 52.3 24.9 34.7 44.9
Throughput (kg/hr) 91.5 92.2 104 65.3 92.2 104 65.3 92.2 104 65.3 92.2 104
Smoothness (Sheffield) < 10 < 10 < 10 < 10
OTR (cc/m2/day) 239 276 6.64 1.38
WVTR (gr/m2/day) 0.571 0.581 0.847 0.86
Example 3: Creased samples of the sample 11 in Table 1 were prepared, according to TAPPI/ANSI T512 sp-12, and the oxygen transmission rate (OTR) before and after creasing and folding was tested. As explained, the OTR values in cc/m2/24hr were measured according to ASTM D3985 at a standard temperature of 73°F (23°C) and 0% relative humidity (RH). All of the tested samples were identical. The average measured OTR value of sample 11 before creasing and after creasing were 1.56 cc/m2/24hr and 1.6 cc/m2/24hr respectively.
The creased sample of the solid counterpart to the sample 11 in Table 1 were prepared and the OTR values were measured according to the aforementioned methods. The thickness of the samples was 260 pm The average measured OTR values before creasing and after creasing were 0.95 cc/m2/24hr and 1.17 cc/m2/24hr respectively.
Example 4. The creased samples of the packaging tube of AVENO daily moisturizing lotion was prepared, according to TAPPI/ANSI T512 sp-12, and the oxygen transmission rate (OTR) before and after creasing and folding was tested. The total thickness of the sample was 480 pm comprising one EVOH layer with the thickness of 60 pm. As explained, the OTR values in cc/m2/24hr were measured according to ASTM D3985 at a standard temperature of 73°F (23°C) and 0% relative humidity (RH). The average measured OTR before creasing and after creasing were 0.29 cc/m2/24hr and 0.41 cc/m2/24hr respectively.

Claims

A creased, folded or scored multilayer foam film comprising: a foam layer including a plurality of cells, wherein at least 10% of the cells are closed cells, and two solid skin layers comprising HDPE on each side of the foam layer, and a solid layer comprising ethylene vinyl alcohol (EVOH), wherein the said foam layer is between one of the solid skin layers and the solid layer comprising EVOH, and the film has an overall thickness equal to or greater than 8 mils, , and the ratio of the oxygen transmision rate of the creased, folded or scored film in cc/m2/24hr, according to ASTM D3985, over that of an identical film prior to creasing, folding or scoring is less than 1.1. The film of claim 1, wherein the film has an average Sheffield smoothness of less than 40, according to TAPPI T 538. The film of any preceding claim, wherein the film is pieced or punched. The film of any preceding claim, wherein the film has a bulk density value of less than 0.962 gr/cm3. The film of any preceding claim, wherein the film has an average Sheffield smoothness, according to TAPPI T 538, of less than 25. The film of any preceding claim, wherein the film has a Taber bending stiffness value of greater than 18 according to TAPPI/ANSI T 489 om-15, and the ratio of the mass per unit area (the mass of a unit area of the film in gram per meter-squared (gr/m2)) over the Taber stiffness value is equal to or less than 13. The film of any preceding claim, wherein the film has a water vapor transmission rate of less than 1 gr/m2/24hr, according to ASTM E398-13. The film of any preceding claim, wherein the film has an oxygen transmission rate of less than 10 cc/m2/24hr, according to ASTM D3985. The film of any preceding claim, wherein the foam layer comprises an HDPE with a density of 0.94 to 0.962 gr/cm3. The film of any preceding claim, wherein the film has a Taber bending stiffness value of less than 280, according to TAPPI/ANSI T 489 om-15. The film of any preceding claim, wherein at least one layer contains some apt amounts of other additives to include pigments, slip agents, antistatic agents, UV stabilizers, maleic anhydride, and antioxidant. The film of any preceding claim, wherein the film has at least one solid skin layer with a static coefficient of friction value according to ASTM D1894 of less than 0.4. The film of any preceding claim, wherein the film has at least one solid skin layer with a dynamic coefficient of friction value according to ASTM D1894 of less than 0.3. The film of any preceding claim, wherein the film comprises three, five, or seven layers and is produced by the blown film process using an annular extrusion die and a blow-up ratio of 1.5:1 to 3.5:1. The film of any preceding claim, wherein a nucleating agent is used to produce a foamed layer with an average cell size of 10 to 100 pm. The film of any preceding claim, wherein the cell density with respect to the un-foamed volume in the foam layer is 102 to 109 cells/cm3, and the film density is 0.1 to 0.9 g/cm3. The film of any preceding claim, wherein the foam layer comprising more than 50% closed cells. The film of any preceding claim, wherein the foam layer is comprised of a nucleating agent with a content of 0.05 to 15 percent by weight of an inorganic additive, an organic additive, or a mixture of an inorganic and an organic additive. The film of any preceding claim, wherein at least one layer is a solid layer, comprising HDPE with a melt index of 0.02 to 20 dg/min The film of claiml, wherein at least one of the layers, excluding both outer skin layers, comprises LDPE. A method of making a creased, folded or scored multilayer film, comprising: co-extruding a foam layer, two solid skin layers comprising HDPE and one solid layer comprising ethylene vinyl alcohol (EVOH) to form a multilayer film, wherein the foam layer includes a plurality of cells, wherein at least 10% of the cells are closed cells and the foam layer is between one of the solid skin layers and the layer comprising EVOH, and the film has an overall thickness equal to or greater than 8 mils; and creasing, folding or scoring the multi-layer film, wherein the oxygen transmission rate value of the creased, folded or scored film in cc/m2/day, according to ASTM D3985 does not increase more than 10% of the oxygen transmission rate value of the multi-layer film prior to creasing, folding or scoring in cc/m2/day, according to ASTM D3985. A method of any preceding claim, wherein any foam layer is co-extruded directly adjacent to the layer comprising EVOH. A method of any preceding claim, further comprising piercing or punching the said film.
PCT/US2022/050276 2021-11-18 2022-11-17 Multi-layer polymer foam film for packaging applications and the method of making the same WO2023091585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/530,407 2021-11-18
US17/530,407 US11926123B2 (en) 2019-05-17 2021-11-18 Multi-layer polymer foam film for packaging applications and the method of making the same

Publications (1)

Publication Number Publication Date
WO2023091585A1 true WO2023091585A1 (en) 2023-05-25

Family

ID=86397701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/050276 WO2023091585A1 (en) 2021-11-18 2022-11-17 Multi-layer polymer foam film for packaging applications and the method of making the same

Country Status (1)

Country Link
WO (1) WO2023091585A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967074A2 (en) * 1998-06-26 1999-12-29 SINCO RICERCHE S.p.A. Recyclable multi-layer material in polyester resin
US6472035B1 (en) * 1999-05-24 2002-10-29 Sinco Ricerche S.P.A. Stretched polyester foamed sheets and containers obtained therefrom
US20050287345A1 (en) * 1998-08-06 2005-12-29 Sig Combibloc, Inc. Containers prepared from laminate structures having a foamed polymer layer
US20080202075A1 (en) * 2005-07-08 2008-08-28 Kurt Kronawittleithner Layered Film Compositions, Packages Prepared Therefrom, and Methods of Use
US20200361185A1 (en) * 2019-05-17 2020-11-19 Mucell Extrusion, Llc Lightweight polyethylene film for aseptic packaging applications and the product resulting therefrom and the process of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967074A2 (en) * 1998-06-26 1999-12-29 SINCO RICERCHE S.p.A. Recyclable multi-layer material in polyester resin
US20050287345A1 (en) * 1998-08-06 2005-12-29 Sig Combibloc, Inc. Containers prepared from laminate structures having a foamed polymer layer
US6472035B1 (en) * 1999-05-24 2002-10-29 Sinco Ricerche S.P.A. Stretched polyester foamed sheets and containers obtained therefrom
US20080202075A1 (en) * 2005-07-08 2008-08-28 Kurt Kronawittleithner Layered Film Compositions, Packages Prepared Therefrom, and Methods of Use
US20200361185A1 (en) * 2019-05-17 2020-11-19 Mucell Extrusion, Llc Lightweight polyethylene film for aseptic packaging applications and the product resulting therefrom and the process of making the same

Similar Documents

Publication Publication Date Title
US11376823B2 (en) Lightweight polyethylene film for aseptic packaging applications and the product resulting therefrom and the process of making the same
EP2152510B1 (en) Biodegradable multilayer polymeric films and packages produced therefrom
WO2020236604A1 (en) Polyethylene film for packaging applications and the product resulting therefrom and the method of making the same
RU2230694C2 (en) Multi-layer packing structure, packing containers made of packing structure and method of packing structure production
US7070852B1 (en) Packaging material with a foamed polyolefin layer
DK1682343T3 (en) Packaging material with a polyolefin foam layer
US20120003412A1 (en) Easily opened multilayer laminated package
US4460631A (en) Sealable, biaxially stretched polypropylene film having high scratch resistance, and process for its manufacture
WO2021071937A1 (en) Lightweight multilayer foam film with enhanced perceived surface whiteness
US11926123B2 (en) Multi-layer polymer foam film for packaging applications and the method of making the same
US20050137342A1 (en) Polyethylene blend films
JP3718635B2 (en) Laminated foam molded product of polypropylene resin, laminated foam used in the production thereof, and production method thereof
WO2023091585A1 (en) Multi-layer polymer foam film for packaging applications and the method of making the same
US20230330973A1 (en) Lightweight thin polypropylene film for aseptic packaging applications and the product resulting therefrom and the process of making the same
US20230330974A1 (en) Lightweight polypropylene film for aseptic packaging applications and the product resulting therefrom and the process of making the same
EP3530457B1 (en) Heat-shrinkable multi-layer film
JP2023522048A (en) Plastic container for packaging oxygen-sensitive products and method of making same
EP0702052A1 (en) Conical wound polyolefin packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896479

Country of ref document: EP

Kind code of ref document: A1