WO2023090976A1 - Outer membrane vesicles and composition for cancer treatment or prevention including same - Google Patents

Outer membrane vesicles and composition for cancer treatment or prevention including same Download PDF

Info

Publication number
WO2023090976A1
WO2023090976A1 PCT/KR2022/018479 KR2022018479W WO2023090976A1 WO 2023090976 A1 WO2023090976 A1 WO 2023090976A1 KR 2022018479 W KR2022018479 W KR 2022018479W WO 2023090976 A1 WO2023090976 A1 WO 2023090976A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
genus
extracellular vesicles
bacterial
outer membrane
Prior art date
Application number
PCT/KR2022/018479
Other languages
French (fr)
Korean (ko)
Inventor
이태룡
이창진
송성현
이재욱
Original Assignee
(주)로제타엑소좀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)로제타엑소좀 filed Critical (주)로제타엑소좀
Publication of WO2023090976A1 publication Critical patent/WO2023090976A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to bacterial extracellular vesicles having a homogeneous size and composition, and to a composition for treating or preventing cancer comprising the same. Specifically, the present invention provides bacterial extracellular vesicles with higher anticancer activity and properties more suitable for commercial development as pharmaceuticals.
  • Bacterial extracellular vesicles are double-lipid membrane structured nanoparticles naturally secreted by bacteria to communicate with the host or other bacteria.
  • extracellular vesicles secreted by Gram-negative bacteria are also called OMVs (outer membrane vesicles), and are known to have an average diameter of about 20 nm to 200 nm [JH Kim, et al., "Gram-negative and Gram-positive bacterial extracellular vesicles", Semin. Cell. Dev. Biol. 40, 97-104, (2015)].
  • various bacterial extracellular vesicles not only have direct therapeutic efficacy for various diseases including cancer, but can also be used as drug delivery systems for treating these diseases. And it is being used or developed clinically as a vaccine delivery system to prevent or treat various diseases such as meningitis.
  • Bacterial extracellular vesicles contain various immune-inducing substances that can activate the host immune system when injected into an animal host having an immune system, including humans.
  • the extracellular endoplasmic reticulum which is a double lipid membrane structure, has various components such as proteins, lipids, and nucleic acids in the double lipid membrane and lumen. It was presumed to trigger an anti-cancer effect, and this was first revealed in a previous study by the present research team.
  • bacterial extracellular vesicles are specifically accumulated in cancer tissues with enhanced permeability and retention effect (EPR effect) due to their nano-sized characteristics, and anticancer cytokines from natural killer cells and T lymphocytes. It induces a strong anticancer immune response through a mechanism of action that promotes the secretion of IFN- ⁇ (Ibid.).
  • EPR effect enhanced permeability and retention effect
  • the particle size of Escherichia coli extracellular vesicles measured by DLS (dynamic light scattering) corresponds to about 20-200 nm, and the mixture nature of particles having various sizes within this range is mixed.
  • Bacterial extracellular vesicles vary greatly in composition as well as in size, and this diversity is particularly prominent in extracellular vesicles derived from Gram-negative bacteria composed of outer and inner membranes.
  • the extracellular vesicles naturally secreted by Gram-negative bacteria contain a mixture of inner membrane-derived extracellular vesicles and nucleic acid particles in addition to the cell outer membrane-derived extracellular vesicles.
  • the cell membrane-derived extracellular vesicles have lipopolysaccharides (LPS) in the outer cell membrane on the membrane surface, and contain the cell membrane proteins and periplasm proteins.
  • LPS lipopolysaccharides
  • intracellular membrane-derived extracellular vesicles contain intracellular membranes, intracellular proteins, and cytoplasmic proteins.
  • the outer and inner membrane-derived extracellular vesicles are secreted out of the cells and mixed in the culture medium. It is very difficult to separate and purify the outer membrane-derived extracellular vesicles from the inner membrane-derived extracellular vesicles, so the purified Gram-negative bacteria used in previous studies
  • the extracellular cell body included extracellular vesicles derived from the outer and inner membranes of the cell.
  • extracellular vesicles have various sizes as well as components, even if they are derived from a single cell. Therefore, it has been accepted as a natural phenomenon that extracellular vesicles purified by conventional separation or purification methods of naturally secreted extracellular vesicles have various components and size distributions.
  • the present inventors confirmed that they are clearly distinguished from each other in terms of spectroscopic characteristics and constituent proteins as well as size through identification work on each of P1 and P2.
  • P1 is relatively large in size and heterogeneous, and has spectroscopic characteristics with an absorbance value at 280 nm smaller than that at 260 nm (A 280 /A 260 ⁇ 1), and is derived from endomembrane-derived proteins and cytoplasm. Contains a lot of protein.
  • P2 was shown to have a relatively small and homogeneous size, spectroscopic characteristics with an absorbance value at 280 nm greater than that at 260 nm (A 280 /A 260 >1), and a large amount of cell membrane-derived proteins. included.
  • the average particle size of P2 is in the range of about 20-30 nm, and the polydispersity index is about 0.35 or less, or about 0.3 or less, or about 0.25 or less. It has very homogeneous properties.
  • P2 is 90% or more, preferably 95% or more, more preferably 97% or more of the total particles of extracellular vesicles in the above range.
  • Their zeta potential value is about -14 ( ⁇ 3) mV, and they are negatively charged.
  • the bacterial extracellular vesicles according to the present invention are superior in the treatment or prevention of cancer compared to extracellular vesicles naturally secreted and purified from bacteria and having heterogeneous characteristics.
  • the bacterial extracellular vesicles according to the present invention have relatively homogeneous physicochemical properties, so quality control (QC) is easy in terms of drug development, which is more advantageous for the development of anticancer drugs based on bacterial extracellular vesicles.
  • FIG. 1 is an absorption chromatogram according to elution time obtained by fractionating extracellular vesicles purified by a conventional method using size-exclusion chromatography (SEC, size-exclusion chromatography) (FIG. 1a) and the SEC elution time (retention time) It is the transmission electron microscope observation result of each fraction (FIG. 1b).
  • Figure 2 is a result of separating the extracellular vesicles purified by a conventional method into P1 and P2 through centrifugation, and performing proteomics analysis for each.
  • the content of proteins identified in P1 and P2 (Fig. 2a), the top 5% proteins in the content ranking (Fig. 2b), the number of proteins according to subcellular localizations (Fig. 2c) and the content (Fig. 2d) is the result showing
  • Figure 3 is an animal experiment method and design for comparing the anticancer activity of P1 and P2 according to the dose.
  • Figure 4 shows the results of animal experiments comparing the anticancer activity of P1 (a) and P2 (b) according to the dose.
  • the term "about” means to include a commonly accepted error range (standard deviation) depending on a device, instrument, or method used to measure or determine a numerical value defined by the term.
  • the size of extracellular vesicles measured by dynamic light scattering (DLS) may have an error range of ⁇ 5 nm.
  • size means “average diameter” unless otherwise indicated.
  • the terms “separation” or “purification” are used interchangeably without any significant difference in meaning.
  • the term is not limited to the act of fractionating only the desired component excluding other components, but may mean any action for selectively enriching the content of the desired component.
  • extracellular vesicles purified by a conventional method or “extracellular vesicles purified using a conventional separation or purification method” refers to components other than extracellular vesicles obtained from bacterial cell culture prior to the present invention. It refers to extracellular vesicles obtained after a series of processes to remove various biologically active substances derived from bacteria, such as phosphoproteins, lipids, genetic materials (DNA, RNA), and virulence factors. Therefore, it should be understood that the extracellular endoplasmic reticulum has not been subjected to a special separation, purification or concentration process for P1 or P2 discovered in the present invention.
  • P2 or "extracellular vesicles that are relatively small and homogeneous in size” has an average particle size in the range of about 20-30 nm and is less than or equal to about 0.35, or less than or equal to about 0.3, as identified herein. , or polydispersity of about 0.25 or less, meaning extracellular vesicles with highly homogeneous properties.
  • the present invention has revealed that extracellular vesicles (P2) having a very homogeneous size distribution exist among the population of naturally secreted extracellular vesicles or extracellular vesicles purified therefrom by conventional methods.
  • the present invention provides extracellular vesicles having a relatively small size and a high content of homogeneous extracellular vesicles (P2) compared to naturally secreted extracellular vesicles.
  • the content of P2 in the extracellular vesicles according to the present invention is 90% or more, preferably 95% or more, more preferably 97% or more of the total particles.
  • the extracellular vesicles (P2) according to the present invention are cultured with bacteria, removed by centrifugation, and then used in addition to chromatographic methods such as size exclusion chromatography and ion exchange chromatography. It can be separated by various methods known in the art, such as centrifugation, filtration, dialysis, ultrafiltration, immunoaffinity separation, microfluidic separation, aqueous two-phase system, and polymer-based precipitation. Specific conditions and experimental protocols according to each method for selectively purifying the extracellular vesicles (P2) according to the present invention are appropriately selected by those skilled in the art who understand the composition and characteristics of the extracellular vesicles disclosed in the present invention can be used
  • the bacteria include, but are not limited to, Gram-negative bacteria.
  • the gram-negative bacteria are Escherichia genus, Helicobacter genus, Hemophilus genus, Neisseria genus, Cyanobacterium genus, Klebsiella genus, Aceto Genus Acetobacter , Genus Acinetobacter , Genus Enterobacter , Genus Chlamydia , Genus Vibrio , Genus Pseudomonas , Genus Salmonella , Genus Thiobacter Genus , Borrelia , Burkholderia , Serratia, Treponema , Rikenella , Alistipes , Marinillabili Sub ( Marinilabilia ), Proteus ( Proteus ), Enhydrobacter ( Enhydrobacter ) genus, Methylobacterium ( Methylobacterium ) genus, Morganella ( Morganella ) genus, Cupriavidus ( Cupriavidus ) genus, Yersinia ( Yersin
  • centrifugation In the centrifugation method mainly used in the step of treating a substance inducing precipitation of extracellular vesicles and recovering the precipitated extracellular vesicles, centrifugation must be performed for a longer period of time than is sufficient to separate normal extracellular vesicles.
  • P2 can be easily isolated or purified from the naturally secreted extracellular vesicle population or extracellular vesicles purified therefrom by conventional methods.
  • the extracellular vesicles (P2) according to the present invention are subjected to centrifugation for a longer period of time than sufficient to separate normal extracellular vesicles, or in the size-specific fractionation method through size exclusion chromatography, the P2 particles disclosed herein It can be separated with reference to size and elution time, or purified through a filter method and ultrafiltration method having a pore size of 0.1 ⁇ m to 0.05 ⁇ m.
  • differential centrifugation is used to first remove large particles at a low centrifugation speed, and then the supernatant can be separated by centrifugation at high speed for a long time.
  • the extracellular vesicles (P2) according to the present invention have a size range of about 20-30 nm, which is smaller than the size range of about 20-200 nm of the extracellular vesicles separated by conventional methods and is homogeneous.
  • P2 has a relatively large number of outer membrane-derived factors that have been shown to have anticancer effects through stimulation of the immune system, and is small in size, so it is internal (luminal) compared to large extracellular vesicles. ) is expected to be because it is unlikely to contain various substances that do not specifically contribute to immune activation.
  • the present invention provides a pharmaceutical composition comprising the extracellular vesicles (P2) according to the present invention as an active ingredient.
  • the pharmaceutical composition according to the present invention can be used for the treatment and prevention of cancer.
  • the cancer is liver cancer, thyroid cancer, testicular cancer, bone cancer, glioblastoma, oral cancer, ovarian cancer, brain tumor, multiple myeloma, gallbladder cancer, biliary tract cancer, colon cancer, head and neck cancer, lymphoma, bladder cancer, leukemia, esophageal cancer, kidney cancer, and stomach cancer.
  • breast cancer, cervical cancer, prostate cancer, rectal cancer, spinal cord tumor, pancreatic cancer, salivary gland cancer, lung cancer, skin cancer, laryngeal cancer, melanoma, etc. but may be selected from the group, but is not limited thereto.
  • the administration route of the pharmaceutical composition according to the present invention may be administered through any general route as long as it can reach the target tissue.
  • Parenteral administration for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, or intradermal administration may be administered, but is not limited thereto.
  • the pharmaceutical composition according to the present invention may be formulated in a suitable form together with a pharmaceutically acceptable carrier commonly used for anticancer treatment.
  • a pharmaceutically acceptable carrier commonly used for anticancer treatment.
  • Pharmaceutically acceptable carriers include, for example, parenteral administration carriers such as sterile water, physiological saline, suitable oil, aqueous glucose and glycol, and the like, and may further contain a stabilizer and a preservative.
  • Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid, sucrose, albumin, and the like.
  • Suitable preservatives include dimethylsulfoxide (DMSO), glycerol, ethylene glycol, sucrose, trehalose, dextrose, polyvinylpyrrolidone, etc. there is
  • a cancer prevention or treatment method comprising the step of administering to a subject the cell therapy composition for anticancer comprising the extracellular vesicles according to the present invention.
  • the subject means a mammal, preferably a human.
  • a culture solution from which cells were removed was prepared by centrifugation at 6,000 ⁇ g for 20 minutes. After filtering the culture solution with a 0.2 ⁇ m pore-sized filter, a 10-fold concentrated culture solution was produced through tangential flow filtration (TFF) using a 100 kDa molecular weight cut-off (MWCO) membrane filter.
  • FFF tangential flow filtration
  • MWCO molecular weight cut-off
  • a buffer solution pH 7.2
  • 25 mM CaCl 2 25 mM CaCl 2 was added to the concentrated culture medium, and the reaction was refrigerated and shaken for 1 hour to precipitate the extracellular vesicles selectively. After recovering the precipitate by centrifugation, it was dissolved in a buffer solution, and 1 mM MgSO 4 and Benzonase (2.5 U/mL) were added, followed by shaking at room temperature for 1 hour to remove nucleic acid impurities.
  • the sample was placed in a 100 kDa MWCO dialysis membrane, and the dialysis solution was changed 5 times for a total of 18 hours at 4° C. to purify the bacterial extracellular vesicles.
  • the extracellular vesicles purified by the method in 1 above were injected into a column (10 x 200 mm) filled with S500, developed with HEPES buffer at a flow rate of 1.0 mL/min, and the absorbance at 260 nm, 280 nm, and 450 nm was measured. measured.
  • Specific SEC fractionation conditions are as follows:
  • the extracellular vesicles purified by the method of Example 1-1 were centrifuged at 13,000 ⁇ g for 40 minutes. After centrifugation, the pellet was referred to as P1 and the supernatant as P2. After extracting proteins from P1 and P2, they were digested into peptides by treatment with trypsin, and proteomics analysis was performed by LC-ESI-MS/MS (Fig. 2 and Table 1).
  • Figure 2b shows the protein types belonging to the top 5% of the content ranking among the proteins of P1 and P2.
  • both the number and content of cytoplasmic proteins were higher than those of P2.
  • both the number and content of outer membrane proteins were higher than those of P1, and the number of periplasmic proteins was higher than that of P1 (FIGS. 2c and 2d).
  • P2 can be said to be closer to the extracellular vesicles of Gram-negative bacteria.
  • the fraction (P1 - pellet, large extracellular vesicles; P2 - supernatants, small extracellular vesicles) were compared according to the dose.
  • the animal experiment method and design were performed as shown in FIG. 3 .
  • the mouse colorectal cancer cell line CT26 (1 ⁇ 10 6 cells/head) was injected into the right dorsal side of BALB/c female mice, and after 1 week, cancer tissues were identified and the experimental groups were divided. A buffer solution was injected into the control group, and 2, 5, or 10 ⁇ g/head of P1 and P2 were injected into the cancer tissues at 8, 11, 14, and 17 days after colon cancer cell line injection, depending on the experimental group. Direct injection (intratumoral administration) was performed. In addition, the size of cancer tissue was measured up to 22 days after colon cancer cell line injection.
  • extracellular vesicles of Gram-negative bacteria separated by a conventional method could be further purified to obtain extracellular vesicles that were relatively small and homogeneous in size and had improved anticancer efficacy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides bacterial outer membrane vesicles that are homogenous in size and components, and a composition for cancer treatment or prevention including same. More particularly, the present invention provides bacterial outer membrane vesicles having higher anticancer activity and more suitable properties for commercial development as pharmaceuticals.

Description

세포밖 소포체 및 이를 포함하는 암 치료 또는 예방용 조성물Extracellular vesicles and compositions for treating or preventing cancer containing the same
본 발명은 크기 및 구성 인자가 균질한 박테리아 세포밖 소포체 및 이를 포함하는 암 치료 또는 예방용 조성물에 관한 것이다. 구체적으로는 본 발명은 항암 활성이 더 높으면서 의약품으로 상업적 개발에 더욱 적합한 특성을 갖는 박테리아 세포밖 소포체를 제공한다.The present invention relates to bacterial extracellular vesicles having a homogeneous size and composition, and to a composition for treating or preventing cancer comprising the same. Specifically, the present invention provides bacterial extracellular vesicles with higher anticancer activity and properties more suitable for commercial development as pharmaceuticals.
박테리아 세포밖 소포체(extracellular vesicles, EVs)는 박테리아가 숙주 또는 다른 박테리아와의 커뮤니케이션을 위해 자연적으로 분비하는 이중 지질막 구조의 나노 입자들이다. 특히, 그람 음성 박테리아가 분비하는 세포밖 소포체는 OMV(outer membrane vesicles)라고도 하며, 평균 직경 크기는 약 20 nm 내지 200 nm으로 알려져 있다[J.H. Kim, et al., "Gram-negative and Gram-positive bacterial extracellular vesicles", Semin. Cell. Dev. Biol. 40, 97-104, (2015)]. Bacterial extracellular vesicles (EVs) are double-lipid membrane structured nanoparticles naturally secreted by bacteria to communicate with the host or other bacteria. In particular, extracellular vesicles secreted by Gram-negative bacteria are also called OMVs (outer membrane vesicles), and are known to have an average diameter of about 20 nm to 200 nm [JH Kim, et al., "Gram-negative and Gram-positive bacterial extracellular vesicles", Semin. Cell. Dev. Biol. 40, 97-104, (2015)].
최근 연구 결과에 의하면, 다양한 박테리아 세포밖 소포체가 암을 비롯한 여러 질병에 대한 직접적인 치료 효능이 있을 뿐만 아니라, 이들 질병을 치료하기 위한 약물 전달체로 사용 가능하다. 그리고 뇌수막염 등 다양한 질병을 예방하거나 치료하기 위한 백신 전달체로 임상에 사용되거나 개발되고 있다.According to recent research results, various bacterial extracellular vesicles not only have direct therapeutic efficacy for various diseases including cancer, but can also be used as drug delivery systems for treating these diseases. And it is being used or developed clinically as a vaccine delivery system to prevent or treat various diseases such as meningitis.
박테리아 세포밖 소포체는 인간을 비롯한 면역 시스템을 갖는 동물 숙주에 주입할 경우 숙주 면역 체계를 활성화시킬 수 있는 다양한 면역 유발 물질들을 가지고 있다. 이중 지질막 구조인 세포밖 소포체는 단백질, 지질, 핵산 등 다양한 구성 성분들을 이중 지질막과 내강 등에 가지고 있으며 이들 성분은 숙주 면역 세포의 다양한 TLRs(Toll like receptors)을 다양한 강도로 자극하여 복합적으로 활성화시킴으로써 강력한 항암 효과를 촉발하는 것으로 추정되었고, 이는 본 연구진의 선행 연구로 최초로 밝혀졌다. 정제한 다양한 박테리아 세포밖 소포체를 암을 가진 마우스의 정맥을 통해 주입할 경우, 암 조직을 효과적으로 제거하고 장기 항암 면역 반응을 유도하는 것을 보고하였다[O.Y. Kim, et al., "Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response", Nature Communications. 8:626, (2017)]. Bacterial extracellular vesicles contain various immune-inducing substances that can activate the host immune system when injected into an animal host having an immune system, including humans. The extracellular endoplasmic reticulum, which is a double lipid membrane structure, has various components such as proteins, lipids, and nucleic acids in the double lipid membrane and lumen. It was presumed to trigger an anti-cancer effect, and this was first revealed in a previous study by the present research team. It has been reported that when a variety of purified bacterial extracellular vesicles are intravenously injected into mice with cancer, they effectively remove cancer tissue and induce long-term anticancer immune responses [OY Kim, et al., "Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response", Nature Communications . 8:626, (2017)].
더 나아가, 박테리아 세포밖 소포체는 나노 크기라는 특성 때문에 증진된 투과 및 유지 효과(enhanced permeability and retention effect: EPR 효과)로 암 조직에 특이적으로 누적되고, 자연살해세포와 T림프구로부터 항암 사이토카인인 IFN-γ의 분비를 촉진하는 작용 기전(mechanism of action)을 통하여 강력한 항암 면역 반응을 유도한다(Ibid.). 상기 선행 연구에 따르면, DLS(dynamic light scattering)로 측정한 대장균(Escherichia coli) 세포밖 소포체의 입자 크기는 약 20-200 nm에 해당하며, 이러한 범위 내의 다양한 크기를 갖는 입자들이 혼합되어 있는 혼합물 성격을 가진다. 박테리아 세포밖 소포체는 크기뿐만 아니라 구성 인자 또한 매우 다양하며, 이러한 다양성은 외막과 내막으로 구성된 그람 음성 박테리아에서 유래하는 세포밖 소포체에서 특히 두드러진다. 그람 음성 박테리아가 자연 분비하는 세포밖 소포체에는 세포 외막 유래 세포밖 소포체 외에도 세포 내막 유래 세포밖 소포체와 핵산 입자 등이 섞여 있다. Furthermore, bacterial extracellular vesicles are specifically accumulated in cancer tissues with enhanced permeability and retention effect (EPR effect) due to their nano-sized characteristics, and anticancer cytokines from natural killer cells and T lymphocytes. It induces a strong anticancer immune response through a mechanism of action that promotes the secretion of IFN-γ (Ibid.). According to the preceding study, the particle size of Escherichia coli extracellular vesicles measured by DLS (dynamic light scattering) corresponds to about 20-200 nm, and the mixture nature of particles having various sizes within this range is mixed. have Bacterial extracellular vesicles vary greatly in composition as well as in size, and this diversity is particularly prominent in extracellular vesicles derived from Gram-negative bacteria composed of outer and inner membranes. The extracellular vesicles naturally secreted by Gram-negative bacteria contain a mixture of inner membrane-derived extracellular vesicles and nucleic acid particles in addition to the cell outer membrane-derived extracellular vesicles.
세포 외막 유래 세포밖 소포체는 세포 외막에 있는 지질다당류(LPS, lipopolysaccharies)를 막 표면에 가지고 있고, 세포 외막 단백질 및 주변 세포질(periplasm) 단백질을 포함하고 있다. 반면 세포 내막 유래 세포밖 소포체는 세포 내막, 세포 내막 단백질 및 세포질 단백질을 포함하고 있다. 세포 외막 및 내막 유래 세포밖 소포체는 세포 밖으로 분비되어 배양액에 혼재되는데, 세포 외막 유래 세포밖 소포체를 세포 내막 유래 세포밖 소포체로부터 구분하여 정제하기가 매우 어렵기에 종래 연구에 사용된 정제된 그람 음성 박테리아 세포밖 세포체는 세포 외막 및 내막 유래 세포밖 소포체가 포함된 것이었다.The cell membrane-derived extracellular vesicles have lipopolysaccharides (LPS) in the outer cell membrane on the membrane surface, and contain the cell membrane proteins and periplasm proteins. On the other hand, intracellular membrane-derived extracellular vesicles contain intracellular membranes, intracellular proteins, and cytoplasmic proteins. The outer and inner membrane-derived extracellular vesicles are secreted out of the cells and mixed in the culture medium. It is very difficult to separate and purify the outer membrane-derived extracellular vesicles from the inner membrane-derived extracellular vesicles, so the purified Gram-negative bacteria used in previous studies The extracellular cell body included extracellular vesicles derived from the outer and inner membranes of the cell.
이와 같이, 박테리아 세포밖 소포체의 크기와 구성 인자가 다양하고, 세포 내막 유래 세포밖 소포체가 혼재되어 있다는 것은 박테리아 세포밖 소포체 기반 의약품 개발에 있어서 약물의 일관적인 제조, CMC (Chemistry, Manufacturing, Control), 및 효능 측면에 있어 주요한 걸림돌로 작용한다.As such, the fact that the sizes and components of bacterial extracellular vesicles are diverse and that the intracellular membrane-derived extracellular vesicles are mixed is consistent with the development of bacterial extracellular vesicle-based drugs, CMC (Chemistry, Manufacturing, Control) , and acts as a major stumbling block in terms of efficacy.
따라서 박테리아 세포밖 소포체를 면역 항암제로 상업적으로 개발함에 있어서 일관성 있는 품질과 효능을 확보할 필요가 있다. 이를 위하여 그람 음성 박테리아로부터 분비되는 다양한 종류의 세포밖 소포체 군의 특성을 확인하는 것은 매우 유용한 기술이 될 것이다.Therefore, it is necessary to ensure consistent quality and efficacy in the commercial development of bacterial extracellular vesicles as immunocancer agents. To this end, it would be a very useful technique to identify the characteristics of various types of extracellular vesicles secreted from Gram-negative bacteria.
지금까지 누적된 많은 연구결과에 따르면 세포밖 소포체는 단일세포로부터 유래된 것이라 할지라도 구성 요소뿐 아니라 크기 또한 다양한 것으로 통상적으로 이해되고 있다. 따라서 자연 분비되는 세포밖 소포체를 통상의 분리 또는 정제 방법을 이용하여 정제된 세포밖 소포체는 구성 요소 및 크기 분포가 다양하다는 점을 자연적인 현상으로 수용해왔다.According to many studies accumulated so far, it is commonly understood that extracellular vesicles have various sizes as well as components, even if they are derived from a single cell. Therefore, it has been accepted as a natural phenomenon that extracellular vesicles purified by conventional separation or purification methods of naturally secreted extracellular vesicles have various components and size distributions.
그러나, 이러한 일반적인 이해와 달리 본 발명자들은 통상의 방법으로 정제한 박테리아 세포밖 소포체의 특성에 대한 추가 연구를 통하여 이들이 두 가지의 구별되는 세포밖 소포체 군들을 포함하고 있으며, 이들을 추가로 분리 또는 정제할 수 있다는 사실을 밝혀냈다.However, contrary to this general understanding, the present inventors, through further studies on the properties of bacterial extracellular vesicles purified by conventional methods, found that they contained two distinct groups of extracellular vesicles, and could not further isolate or purify them. discovered that it can be
상기 두 가지의 구별되는 세포밖 소포체 군을 분리·정제하여 특성을 확인한 결과, 이들은 크기가 상대적으로 큰 세포밖 소포체와 크기가 상대적으로 작고 균질한 세포밖 소포체들로 각각 이루어진 것을 발견하였다. 크기가 상대적으로 큰 세포밖 소포체를 P1, 크기가 작고 균질한 세포밖 소포체를 P2 로 명명하였다. P1의 세포밖 소포체들의 크기 범위는 약 30-200 nm인 반면, P2의 세포밖 소포체들의 크기 범위는 약 20-30 nm이다.As a result of isolating and purifying the above two distinct groups of extracellular vesicles and confirming their characteristics, it was found that they were composed of relatively large extracellular vesicles and relatively small and homogeneous extracellular vesicles, respectively. Relatively large extracellular vesicles were designated as P1, and small and homogeneous extracellular vesicles were designated as P2. The size range of the extracellular vesicles of P1 is about 30-200 nm, whereas the size of the extracellular vesicles of P2 is about 20-30 nm.
본 발명자들은 P1 및 P2 각각에 대한 규명 작업을 통해, 이들이 크기뿐 아니라 분광학적 특성 및 구성 단백질 측면에서 서로 명확히 구별되는 것을 확인하였다.The present inventors confirmed that they are clearly distinguished from each other in terms of spectroscopic characteristics and constituent proteins as well as size through identification work on each of P1 and P2.
P1은 크기가 상대적으로 크고 비균질하며, 280 nm에서의 흡광도 값이 260 nm에서의 흡광도 값보다 작은(A280/A260<1) 분광학적 특성을 갖는 것으로 나타났고, 세포 내막 유래 단백질 및 세포질 유래 단백질을 다량 포함하였다. P1 is relatively large in size and heterogeneous, and has spectroscopic characteristics with an absorbance value at 280 nm smaller than that at 260 nm (A 280 /A 260 <1), and is derived from endomembrane-derived proteins and cytoplasm. Contains a lot of protein.
반면 P2는 크기가 상대적으로 작고 균질하며, 280 nm에서의 흡광도 값이 260 nm에서의 흡광도 값보다 큰(A280/A260 >1) 분광학적 특성을 갖는 것으로 나타났고, 세포 외막 유래 단백질을 다량 포함하였다.On the other hand, P2 was shown to have a relatively small and homogeneous size, spectroscopic characteristics with an absorbance value at 280 nm greater than that at 260 nm (A 280 /A 260 >1), and a large amount of cell membrane-derived proteins. included.
동적 광산란법(Dynamic Light Scattering: DLS) 분석에 기초한 P2의 평균 입자 크기는 약 20-30 nm 범위이며, 다분산도(polydispersity index)는 약 0.35 이하, 또는 약 0.3 이하, 또는 약 0.25 이하 수준으로 매우 균질한 특성을 가진다. 전자현미경 분석을 통하여 확인한 바 P2는 상기 범위의 세포밖 소포체가 전체 입자의 90% 이상, 바람직하게는 95% 이상, 더욱 바람직하게는 97% 이상이다. 이들의 제타 전위(Zeta potential) 값은 약 -14 (±3) mV로 음전하를 띄고 있다.Based on Dynamic Light Scattering (DLS) analysis, the average particle size of P2 is in the range of about 20-30 nm, and the polydispersity index is about 0.35 or less, or about 0.3 or less, or about 0.25 or less. It has very homogeneous properties. As confirmed through electron microscopic analysis, P2 is 90% or more, preferably 95% or more, more preferably 97% or more of the total particles of extracellular vesicles in the above range. Their zeta potential value is about -14 (±3) mV, and they are negatively charged.
또한 동물 모델에서 P1과 P2의 항암 효능을 비교하였는데, 동일 용량에서 P2가 P1에 비해 높은 항암 효능을 갖는 것을 확인하였다. 따라서 박테리아 세포밖 소포체의 주된 항암 효능이 P2에서 유래함을 확인하였다.In addition, the anticancer efficacy of P1 and P2 was compared in an animal model, and it was confirmed that P2 had higher anticancer efficacy than P1 at the same dose. Therefore, it was confirmed that the main anticancer effect of bacterial extracellular vesicles was derived from P2.
본 발명에 따른 박테리아 세포밖 소포체는 박테리아로부터 자연적으로 분비되고 정제된, 비균질한 특성을 갖는 세포밖 소포체와 비교하여 암 치료 또는 예방 효과가 우수하다. 또한 본 발명에 따른 박테리아 세포밖 소포체는 상대적으로 균질한 물리화학적 성질을 가져서 약물 개발 측면에서 품질 관리(Quality control, QC)가 용이하여 박테리아 세포밖 소포체 기반 항암제 개발에 더욱 유리하다.The bacterial extracellular vesicles according to the present invention are superior in the treatment or prevention of cancer compared to extracellular vesicles naturally secreted and purified from bacteria and having heterogeneous characteristics. In addition, the bacterial extracellular vesicles according to the present invention have relatively homogeneous physicochemical properties, so quality control (QC) is easy in terms of drug development, which is more advantageous for the development of anticancer drugs based on bacterial extracellular vesicles.
도 1은 통상의 방법으로 정제된 세포밖 소포체를 크기 배제 크로마토그래피(SEC, size-exclusion chromatography)를 이용해 분획한 용출 시간에 따른 흡광 크로마토그램(도 1a) 및 상기 SEC 용출 시간(retention time)에 따른 각 분획의 투과 전자현미경 관찰 결과(도 1b)이다.1 is an absorption chromatogram according to elution time obtained by fractionating extracellular vesicles purified by a conventional method using size-exclusion chromatography (SEC, size-exclusion chromatography) (FIG. 1a) and the SEC elution time (retention time) It is the transmission electron microscope observation result of each fraction (FIG. 1b).
도 2는 통상의 방법으로 정제된 세포밖 소포체를 원심 분리를 통해 P1과 P2로 분리하고, 각각에 대한 프로테오믹스 분석을 수행한 결과이다. P1과 P2에서 확인된 단백질의 함량(도 2a), 함량 순위가 상위 5%인 단백질들(도 2b), 세포 내 위치(subcellular localizations)에 따른 단백질의 숫자(도 2c)와 함량(도 2d)을 나타낸 결과이다.Figure 2 is a result of separating the extracellular vesicles purified by a conventional method into P1 and P2 through centrifugation, and performing proteomics analysis for each. The content of proteins identified in P1 and P2 (Fig. 2a), the top 5% proteins in the content ranking (Fig. 2b), the number of proteins according to subcellular localizations (Fig. 2c) and the content (Fig. 2d) is the result showing
도 3은 P1과 P2의 항암 활성을 용량에 따라 비교하기 위한 동물 실험 방법 및 디자인이다.Figure 3 is an animal experiment method and design for comparing the anticancer activity of P1 and P2 according to the dose.
도 4는 P1(a)과 P2(b)의 항암 활성을 용량에 따라 비교한 동물 실험 결과이다.Figure 4 shows the results of animal experiments comparing the anticancer activity of P1 (a) and P2 (b) according to the dose.
본 명세서에서 사용된 용어 "약"은 상기 용어로 한정하는 수치를 측정 또는 결정하는데 사용되는 장치, 기구 또는 방법 등에 따라 통상적으로 허용되는 오차 범위(표준편차)를 포함하는 것을 의미한다. 예컨대, 동적 광산란법(DLS)으로 측정한 세포밖 소포체의 크기는 ±5 nm의 오차 범위를 가질 수 있다.As used herein, the term "about" means to include a commonly accepted error range (standard deviation) depending on a device, instrument, or method used to measure or determine a numerical value defined by the term. For example, the size of extracellular vesicles measured by dynamic light scattering (DLS) may have an error range of ±5 nm.
본 명세서에서 사용된 용어 "크기"는 달리 언급하지 않는 한 "평균 직경"을 의미한다.As used herein, the term "size" means "average diameter" unless otherwise indicated.
본 명세서에서 사용된 용어 "분리" 또는 "정제"는 특별한 의미상의 차이 없이 상호 호환적으로 사용된다. 상기 용어는 기타의 성분들을 제외하고 목적하는 성분만을 분획하는 행위에 한정되는 것이 아니라 목적하는 성분의 함량을 높이기 위한, 즉 선택적으로 농축(enrichment)하기 위한 모든 행위를 의미할 수 있다.As used herein, the terms "separation" or "purification" are used interchangeably without any significant difference in meaning. The term is not limited to the act of fractionating only the desired component excluding other components, but may mean any action for selectively enriching the content of the desired component.
본 명세서에서 사용된 용어 "통상의 방법으로 정제한 세포밖 소포체" 또는 "통상의 분리 또는 정제 방법을 이용하여 정제된 세포밖 소포체"는 본 발명 이전에 박테리아 세포 배양물로부터 세포밖 소포체 이외의 성분인 단백질, 지질, 유전 물질(DNA, RNA), 병독성 인자(virulence factor) 등 박테리아에서 유래하는 다양한 생물학적 활성 물질들을 제거하기 위한 일련의 과정을 거친 후 얻어진 세포밖 소포체를 의미한다. 따라서 상기 세포밖 소포체는 본 발명에 이르러 발견된 P1 또는 P2에 대해 특별한 분리, 정제 또는 농축 과정을 거치지 않은 상태로 이해해야 한다.As used herein, the term "extracellular vesicles purified by a conventional method" or "extracellular vesicles purified using a conventional separation or purification method" refers to components other than extracellular vesicles obtained from bacterial cell culture prior to the present invention. It refers to extracellular vesicles obtained after a series of processes to remove various biologically active substances derived from bacteria, such as phosphoproteins, lipids, genetic materials (DNA, RNA), and virulence factors. Therefore, it should be understood that the extracellular endoplasmic reticulum has not been subjected to a special separation, purification or concentration process for P1 or P2 discovered in the present invention.
본 명세서에서 사용된 용어 "P2" 또는 "크기가 상대적으로 작고 균질한 세포밖 소포체"는 본원 발명에 이르러 확인된, 약 20-30 nm 범위의 평균 입자 크기를 갖고 약 0.35 이하, 또는 약 0.3 이하, 또는 약 0.25 이하의 다분산도를 갖는, 매우 균질한 특성을 갖는 세포밖 소포체를 의미한다.As used herein, the term "P2" or "extracellular vesicles that are relatively small and homogeneous in size" has an average particle size in the range of about 20-30 nm and is less than or equal to about 0.35, or less than or equal to about 0.3, as identified herein. , or polydispersity of about 0.25 or less, meaning extracellular vesicles with highly homogeneous properties.
본 발명은 자연 분비 세포밖 소포체 군집 또는 그로부터 통상의 방법으로 정제된 세포밖 소포체 중 크기 분포가 매우 균질한 세포밖 소포체(P2)가 존재함을 밝힌 것이다.The present invention has revealed that extracellular vesicles (P2) having a very homogeneous size distribution exist among the population of naturally secreted extracellular vesicles or extracellular vesicles purified therefrom by conventional methods.
따라서, 본 발명은 자연적으로 분비된 세포밖 소포체와 대비할 때 크기가 상대적으로 작고 균질한 세포밖 소포체(P2)의 함량이 높은 세포밖 소포체를 제공한다.Accordingly, the present invention provides extracellular vesicles having a relatively small size and a high content of homogeneous extracellular vesicles (P2) compared to naturally secreted extracellular vesicles.
본 발명에 따른 세포밖 소포체 중 P2의 함량은 전체 입자의 90% 이상, 바람직하게는 95% 이상, 더욱 바람직하게는 97% 이상이다.The content of P2 in the extracellular vesicles according to the present invention is 90% or more, preferably 95% or more, more preferably 97% or more of the total particles.
본 발명에 따른 세포밖 소포체(P2)는 통상의 기술자에게 공지된 바와 같이 박테리아를 배양한 후, 박테리아 세포를 원심분리로 제거한 다음, 크기 배제 크로마토그래피 및 이온교환크로마토그래피와 같은 크로마토그래피 방법 이외에 통상의 원심분리, 여과, 투석, 한외 여과, 면역친화성 분리법, 미세유체기술 분리법, 수성 2상 시스템 및 폴리머 기반 침전법 등 해당 기술분야에 공지된 다양한 방법으로 분리할 수 있다. 본 발명에 따른 세포밖 소포체(P2)를 선택적으로 정제해 내기 위한 각 방법에 따른 구체적인 조건 및 실험 프로토콜은 본 발명에서 개시한 세포밖 소포체의 구성 및 특성을 이해한 통상의 기술자들이 적절하게 선택하여 사용할 수 있다.As known to those skilled in the art, the extracellular vesicles (P2) according to the present invention are cultured with bacteria, removed by centrifugation, and then used in addition to chromatographic methods such as size exclusion chromatography and ion exchange chromatography. It can be separated by various methods known in the art, such as centrifugation, filtration, dialysis, ultrafiltration, immunoaffinity separation, microfluidic separation, aqueous two-phase system, and polymer-based precipitation. Specific conditions and experimental protocols according to each method for selectively purifying the extracellular vesicles (P2) according to the present invention are appropriately selected by those skilled in the art who understand the composition and characteristics of the extracellular vesicles disclosed in the present invention can be used
상기 박테리아는 그람 음성 박테리아를 포함하나, 이로 제한되지 않는다.The bacteria include, but are not limited to, Gram-negative bacteria.
상기 그람 음성 박테리아는 이스체리치아(Escherichia) 속, 헬리코박터(Helicobacter) 속, 헤모필루스(Hemophilus) 속, 나이세리아(Neisseria) 속, 시아노박테리움(Cyanobacterium) 속, 크렙시엘라(Klebsiella) 속, 아세토박터(Acetobacter) 속, 아시네토박터(Acinetobacter) 속, 엔테로박터(Enterobacter) 속, 클라미디아(Chlamydia) 속, 비브리오(Vibrio) 속, 슈도모나스(Pseudomonas) 속, 살모넬라(Salmonella) 속, 티오박터(Thiobacter) 속, 보렐리아(Borrelia) 속, 부르크홀데리아(Burkholderia) 속, 세라티아(Serratia) 속, 트레포네마(Treponema) 속, 리케넬라(Rikenella) 속, 알리스티페스(Alistipes) 속, 마리닐라빌리아(Marinilabilia) 속, 프로테우스(Proteus) 속, 엔히드로박터(Enhydrobacter) 속, 메틸로박테리움(Methylobacterium) 속, 모르가넬라(Morganella) 속, 큐프리아비더스(Cupriavidus) 속, 예르시니아(Yersinia) 속, 시겔라(Shigella) 속, 레지오넬라(Legionella) 속, 스테노트로포모나스(Stenotrophomonas) 속, 및 모락셀라(Moraxella) 속 박테리아 등을 포함하는 군에서 선택될 수 있으나, 이에 한정되지는 않는다.The gram-negative bacteria are Escherichia genus, Helicobacter genus, Hemophilus genus, Neisseria genus, Cyanobacterium genus, Klebsiella genus, Aceto Genus Acetobacter , Genus Acinetobacter , Genus Enterobacter , Genus Chlamydia , Genus Vibrio , Genus Pseudomonas , Genus Salmonella , Genus Thiobacter Genus , Borrelia , Burkholderia , Serratia, Treponema , Rikenella , Alistipes , Marinillabili Sub ( Marinilabilia ), Proteus ( Proteus ), Enhydrobacter ( Enhydrobacter ) genus, Methylobacterium ( Methylobacterium ) genus, Morganella ( Morganella ) genus, Cupriavidus ( Cupriavidus ) genus, Yersinia ( Yersinia ) ) genus, Shigella genus, Legionella genus, Stenotrophomonas genus, and Moraxella genus bacteria, etc., but is not limited thereto. .
본 발명자들이 확인한 바에 따르면, 통상의 세포밖 소포체 분리 정제에 활용되는 원심 분리 기술 및 크기배제 크로마토그래피 기술을 활용하여 박테리아 배양액으로부터 세포밖 소포체를 분리하는 경우 P2의 존재를 확인하기 어려웠다. 예컨대, 세포밖 소포체의 침전을 유도하는 물질을 처리하고 침전된 세포밖 소포체를 회수하는 단계에서 주로 활용되는 원심 분리법에서 통상의 세포밖 소포체를 분리하기에 충분한 시간보다 더 장시간 원심분리를 진행해야 비로소 분리될 수 있거나, 크기배제 크로마토그래피를 통한 크기별 분획 기술을 활용한 정제 방법에서도 통상적으로 세포밖 소포체가 용출되는 시점보다 늦게 용출되어 핵산 입자 및 비교적 큰 단백질로 오인될 만큼 P2의 존재를 확인하기 어려운 사정이 존재하였다.As confirmed by the present inventors, it was difficult to confirm the presence of P2 when extracellular vesicles were isolated from a bacterial culture medium using centrifugation and size exclusion chromatography techniques used for conventional separation and purification of extracellular vesicles. For example, in the centrifugation method mainly used in the step of treating a substance inducing precipitation of extracellular vesicles and recovering the precipitated extracellular vesicles, centrifugation must be performed for a longer period of time than is sufficient to separate normal extracellular vesicles. It is difficult to confirm the presence of P2 enough to be mistaken for nucleic acid particles and relatively large proteins because it can be separated, or it is eluted later than the point at which extracellular vesicles are eluted even in a purification method using size fractionation technology through size exclusion chromatography. circumstances existed.
따라서 본 발명에 따른 P2의 존재 확인은 예기치 못한 발견이었다. 본 기술의 발명자들은, 이와 같이 세포밖 소포체의 통상적인 정제 방법에서 사용되는 분리 또는 정제 파라미터를 벗어나 독특한 특성을 가지는 해당 물질(P2)을 정제하여, 이들이 상대적으로 균질한 입자성을 가질 뿐 아니라, 세포밖 소포체의 핵심적인 특징인 분명한 단백질-지질 이중막 구조를 가지는 것을 확인하였다.Therefore, confirmation of the existence of P2 according to the present invention was an unexpected finding. The inventors of the present technology thus deviate from the separation or purification parameters used in conventional purification methods of extracellular vesicles and purify the corresponding substances (P2) having unique properties, so that they not only have relatively homogeneous particulate properties, It was confirmed to have a clear protein-lipid bilayer structure, which is a key feature of the extracellular endoplasmic reticulum.
본 발명이 개시한 P2의 특성을 이해하게 되면 자연 분비 세포밖 소포체 군집 또는 그로부터 통상의 방법으로 정제된 세포밖 소포체로부터 P2를 쉽게 분리 또는 정제할 수 있다.If the characteristics of P2 disclosed in the present invention are understood, P2 can be easily isolated or purified from the naturally secreted extracellular vesicle population or extracellular vesicles purified therefrom by conventional methods.
예컨대, 본 발명에 따른 세포밖 소포체(P2)는 통상의 세포밖 소포체를 분리하기에 충분한 시간보다 더 장시간 원심분리를 진행하거나, 크기배제 크로마토그래피를 통한 크기별 분획 방법에서 본 명세서에 개시된 P2의 입자 크기 및 용출 시간을 참고하여 분리하거나, 0.1 μm 내지 0.05 μm의 공극 크기(pore size)를 가지는 필터법 및 한외여과법을 통하여 정제할 수 있다. 또한, 세포 배양액의 농축 후 침전 단계에서 편차 원심분리법(differential centrifugation)을 활용하여 낮은 원심분리 속도에서 큰 입자를 우선 제거한 후 상등액을 긴 시간 높은 속도의 원심분리를 통하여 분리 가능하다.For example, the extracellular vesicles (P2) according to the present invention are subjected to centrifugation for a longer period of time than sufficient to separate normal extracellular vesicles, or in the size-specific fractionation method through size exclusion chromatography, the P2 particles disclosed herein It can be separated with reference to size and elution time, or purified through a filter method and ultrafiltration method having a pore size of 0.1 μm to 0.05 μm. In addition, in the precipitation step after concentration of the cell culture solution, differential centrifugation is used to first remove large particles at a low centrifugation speed, and then the supernatant can be separated by centrifugation at high speed for a long time.
본 발명에 따른 세포밖 소포체(P2)는 크기 범위가 약 20-30 nm으로 통상의 방법으로 분리한 세포밖 소포체의 크기 범위 약 20-200 nm보다 작고 균질하다. 또한 프로테오믹스 정량 분석을 하였을 때 외막 단백질인 OmpF (Outer membrane protein F), LamB (Maltoporin), Lpp (Major outer membrane lipoprotien Lpp) 및 OmpA (Outer membrane protein A)로 이루어진 군에서 선택되는 단백질의 함량 순위가 상위 5% 이내이다.The extracellular vesicles (P2) according to the present invention have a size range of about 20-30 nm, which is smaller than the size range of about 20-200 nm of the extracellular vesicles separated by conventional methods and is homogeneous. In addition, when proteomics quantitative analysis was performed, the content ranking of proteins selected from the group consisting of OmpF (Outer membrane protein F), LamB (Maltoporin), Lpp (Major outer membrane lipoprotien Lpp), and OmpA (Outer membrane protein A) It is within the top 5%.
동물 모델에서의 항암 효능을 비교 실험 결과, 동일 용량에서 P2가 P1에 비해 높은 항암 효능을 갖는 것을 확인하였다. 기존에는 포유류 유래 세포밖 소포체의 경우 크기가 큰 것이 약리 활성 면에서 더 효과적이고 크기가 작은 것들은 불순물로 여겨졌으며, 특히 20-30 nm의 작은 크기를 갖는 입자들은 통상적으로 단백질이나 핵산 덩어리인 것으로 여겨졌다. 박테리아 세포밖 소포체에도 이러한 가설이 공통될 것으로 예상되었으나, 본 발명에서는 이러한 예상과는 달리 크기가 작은 세포밖 소포체가 더욱 높은 항암 효능을 나타낸 것을 확인하였다.As a result of comparative experiments on anticancer efficacy in animal models, it was confirmed that P2 has higher anticancer efficacy than P1 at the same dose. Previously, in the case of mammalian-derived extracellular vesicles, larger ones were more effective in terms of pharmacological activity, and smaller ones were considered impurities. . This hypothesis was expected to be common to bacterial extracellular vesicles, but in the present invention, contrary to this expectation, it was confirmed that small-sized extracellular vesicles exhibited higher anticancer efficacy.
후술하는 이론에 구속되는 것은 아니나, 이러한 결과는 P2가 면역시스템 자극을 통한 항암효과를 갖는 것으로 밝혀진 외막 유래 인자를 상대적으로 많이 가지고 있고, 크기가 작기 때문에 크기가 큰 세포밖 소포체에 비해 내부(내강)에 면역 활성화에 특별한 기여를 하지 못하는 다양한 물질들을 포함할 가능성이 낮기 때문인 것으로 예상된다.Although not bound by the theory described later, these results suggest that P2 has a relatively large number of outer membrane-derived factors that have been shown to have anticancer effects through stimulation of the immune system, and is small in size, so it is internal (luminal) compared to large extracellular vesicles. ) is expected to be because it is unlikely to contain various substances that do not specifically contribute to immune activation.
따라서, 본 발명의 또 다른 일면에 따라, 본 발명은 상기 본 발명에 따른 세포밖 소포체(P2)를 유효성분으로 포함하는 약학적 조성물을 제공한다. Therefore, according to another aspect of the present invention, the present invention provides a pharmaceutical composition comprising the extracellular vesicles (P2) according to the present invention as an active ingredient.
상기 본 발명에 따른 약학적 조성물은 암의 치료 및 예방 용도로 사용할 수 있다.The pharmaceutical composition according to the present invention can be used for the treatment and prevention of cancer.
본 발명에서 상기 암은 간암, 갑상선암, 고환암, 골암, 교모세포종, 구강암, 난소암, 뇌종양, 다발골수종, 담낭암, 담도암, 대장암, 두경부암, 림프종, 방광암, 백혈병, 식도암, 신장암, 위암, 유방암, 자궁경부암, 전립선암, 직장암, 척수종양, 췌장암, 침샘암, 폐암, 피부암, 후두암, 흑색종 등을 포함하는 군에서 선택될 수 있으나, 이에 한정되지는 않는다.In the present invention, the cancer is liver cancer, thyroid cancer, testicular cancer, bone cancer, glioblastoma, oral cancer, ovarian cancer, brain tumor, multiple myeloma, gallbladder cancer, biliary tract cancer, colon cancer, head and neck cancer, lymphoma, bladder cancer, leukemia, esophageal cancer, kidney cancer, and stomach cancer. , breast cancer, cervical cancer, prostate cancer, rectal cancer, spinal cord tumor, pancreatic cancer, salivary gland cancer, lung cancer, skin cancer, laryngeal cancer, melanoma, etc., but may be selected from the group, but is not limited thereto.
본 발명에 따른 약학적 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 비경구 투여, 예를 들어, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여될 수 있으나, 이에 제한되지는 않는다.The administration route of the pharmaceutical composition according to the present invention may be administered through any general route as long as it can reach the target tissue. Parenteral administration, for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, or intradermal administration may be administered, but is not limited thereto.
본 발명에 따른 약학적 조성물은 항암 치료에 일반적으로 사용되는 약학적으로 허용되는 담체 등과 함께 적합한 형태로 제형화될 수 있다. '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 약학적으로 허용되는 담체로는 예를 들면, 멸균수, 생리식염수, 적합한 오일, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제나 수크로오즈, 알부민 등이 있다. 적합한 보존제로는 디메틸설폭사이드(DMSO, dimethylsulfoxide), 글리세롤(glycerol), 에틸렌글리콜(ethylene glycol), 수크로오스(sucrose), 트레할로스(trehalose), 덱스트로스(dextrose), 폴리비닐피롤리돈(polyvinylpyrrolidone) 등이 있다.The pharmaceutical composition according to the present invention may be formulated in a suitable form together with a pharmaceutically acceptable carrier commonly used for anticancer treatment. 'Pharmaceutically acceptable' refers to a composition that is physiologically acceptable and does not cause an allergic reaction such as gastrointestinal disorder, dizziness, or similar reaction when administered to humans. Pharmaceutically acceptable carriers include, for example, parenteral administration carriers such as sterile water, physiological saline, suitable oil, aqueous glucose and glycol, and the like, and may further contain a stabilizer and a preservative. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid, sucrose, albumin, and the like. Suitable preservatives include dimethylsulfoxide (DMSO), glycerol, ethylene glycol, sucrose, trehalose, dextrose, polyvinylpyrrolidone, etc. there is
본 발명의 또다른 일 면에 따르면, 본 발명에 따른 세포밖 소포체를 포함하는 항암용 세포치료제 조성물을 대상체에 투여하는 단계를 포함하는 암 예방 또는 치료 방법을 제공한다. 상기 대상체는 포유동물을 의미하며, 바람직하게는 인간을 나타낸다. According to another aspect of the present invention, there is provided a cancer prevention or treatment method comprising the step of administering to a subject the cell therapy composition for anticancer comprising the extracellular vesicles according to the present invention. The subject means a mammal, preferably a human.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 통하여 상세하게 설명한다. 다만, 이하의 실시예는 본 발명을 예시하기 위한 것으로 어떠한 의미로도 본 발명의 권리 범위가 이들로 한정되는 것은 아니다.Hereinafter, examples will be described in detail to explain the present invention in detail. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto in any sense.
[실시예][Example]
실시예 1. 박테리아 세포밖 소포체의 제조 및 크기 배제 크로마토그래피(size-exclusion chromatography, SEC) 분석Example 1. Preparation of bacterial extracellular vesicles and size-exclusion chromatography (SEC) analysis
1. 균주 배양 및 세포밖 소포체 정제1. Strain culture and extracellular vesicle purification
퍼멘터 시스템(75 L 규모)을 이용하여 E. coli BL21(DE3) ΔmsbB을 호기적 조건에서 16시간 배양한 후 6,000 × g, 20분 간의 원심 분리를 통하여 세포가 제거된 배양액을 준비하였다. 해당 배양액을 0.2 μm pore-sized filter로 여과한 후, 100 kDa MWCO(Molecular weight cut-off)의 멤브레인 필터를 이용한 접선 유도 여과(TFF, tangential flow filtration)를 통하여 10배 농축된 배양액을 생산하였다. 농축된 배양액을 50 μM PMSF(phenylmethylsulfonyl fluoride)를 첨가하여 30분간 진탕 반응시켜 단백질 분해 효소를 불활성화하였다. 이후 농축 배양액에 25 mM CaCl2을 포함한 완충 용액(pH 7.2)을 첨가하고 1시간 동안 냉장 진탕 반응시켜 세포밖 소포체를 선택적으로 침전시켰다. 원심 분리로 침전물을 회수한 후 완충 용액에 녹인 후 1 mM MgSO4와 Benzonase(2.5 U/mL)를 첨가하여 상온에서 1 시간 진탕 반응하여 핵산 불순물을 제거하였다.After culturing E. coli BL21(DE3) ΔmsbB in aerobic conditions for 16 hours using a fermentor system (75 L scale), a culture solution from which cells were removed was prepared by centrifugation at 6,000 × g for 20 minutes. After filtering the culture solution with a 0.2 μm pore-sized filter, a 10-fold concentrated culture solution was produced through tangential flow filtration (TFF) using a 100 kDa molecular weight cut-off (MWCO) membrane filter. Proteolytic enzymes were inactivated by adding 50 μM phenylmethylsulfonyl fluoride (PMSF) to the concentrated culture solution and shaking for 30 minutes. Thereafter, a buffer solution (pH 7.2) containing 25 mM CaCl 2 was added to the concentrated culture medium, and the reaction was refrigerated and shaken for 1 hour to precipitate the extracellular vesicles selectively. After recovering the precipitate by centrifugation, it was dissolved in a buffer solution, and 1 mM MgSO 4 and Benzonase (2.5 U/mL) were added, followed by shaking at room temperature for 1 hour to remove nucleic acid impurities.
이후 박테리아 세포밖 소포체보다 분자량이 작은 비입자성 오염체를 제거하기 위해 100 kDa MWCO 투석막에 해당 샘플을 담고 4℃에서 총 18시간 동안 5회 투석액을 교체하며 박테리아 세포밖 소포체를 정제하였다.Thereafter, in order to remove non-particulate contaminants having a molecular weight smaller than that of bacterial extracellular vesicles, the sample was placed in a 100 kDa MWCO dialysis membrane, and the dialysis solution was changed 5 times for a total of 18 hours at 4° C. to purify the bacterial extracellular vesicles.
2. 정제된 세포밖 소포체의 SEC 분획 결과2. Results of SEC fractionation of purified extracellular vesicles
위 1의 방법에 의해 정제된 세포밖 소포체를 S500을 채운 컬럼(10 x 200 mm)에 주입하여 1.0 mL/min의 유속으로 HEPES 완충용액으로 전개하면서 260 nm, 280 nm, 450 nm에서의 흡광도를 측정하였다. 구체적인 SEC 분획 조건은 하기와 같다:The extracellular vesicles purified by the method in 1 above were injected into a column (10 x 200 mm) filled with S500, developed with HEPES buffer at a flow rate of 1.0 mL/min, and the absorbance at 260 nm, 280 nm, and 450 nm was measured. measured. Specific SEC fractionation conditions are as follows:
컬럼: S500 (10 × 200 mm)Column: S500 (10 × 200 mm)
이동상: 20 mM HEPES, 500 mM NaCl (pH 7.2)Mobile phase: 20 mM HEPES, 500 mM NaCl (pH 7.2)
유속: 1.0 mL/minFlow Rate: 1.0 mL/min
주입된 샘플 부피: 0.1 mL in 20 mM HEPES, 1 M NaCl (pH 7.2)Sample volume injected: 0.1 mL in 20 mM HEPES, 1 M NaCl (pH 7.2)
도 1a에 나타난 바와 같이, 260 nm, 280 nm, 450 nm 흡광 크로마토그램에서 뚜렷하게 구분되는 두 개의 피크를 발견하였다. 용출 시간(retention time)에 따른 각 분획의 투과 전자 현미경(TEM, transmission electron microscopy)을 이용하여 관찰한 결과, 분획에 따라 관찰되는 입자의 크기가 뚜렷하게 구분되는 것을 확인하였다(도 1b, P1 및 P2).As shown in FIG. 1a, two distinct peaks were found in the absorption chromatograms at 260 nm, 280 nm, and 450 nm. As a result of observation using transmission electron microscopy (TEM) of each fraction according to the retention time, it was confirmed that the size of the observed particles was clearly distinguished according to the fraction (Fig. 1b, P1 and P2). ).
실시예 2. P1 및 P2 분리 및 프로테오믹스 분석Example 2. P1 and P2 isolation and proteomics analysis
실시예 1-1의 방법에 의해 정제된 세포밖 소포체를 13,000 × g에서 40분 간 원심 분리하였다. 원심 분리 후 펠렛(pellet)을 P1, 상층액(supernatant)을 P2로 지칭하였다. P1 및 P2로부터 단백질 추출 후 트립신(trypsin)을 처리하여 펩타이드(peptides)로 분해하고 LC-ESI-MS/MS로 프로테오믹스 분석을 수행하였다(도 2 및 표 1).The extracellular vesicles purified by the method of Example 1-1 were centrifuged at 13,000 × g for 40 minutes. After centrifugation, the pellet was referred to as P1 and the supernatant as P2. After extracting proteins from P1 and P2, they were digested into peptides by treatment with trypsin, and proteomics analysis was performed by LC-ESI-MS/MS (Fig. 2 and Table 1).
[표 1][Table 1]
Figure PCTKR2022018479-appb-img-000001
Figure PCTKR2022018479-appb-img-000001
상기 표 1에 나타난 바와 같이, P1과 P2에서 각각 567개, 506개의 단백질이 확인되었다. P1에서 P2에 비해 함량이 풍부한 단백질(P1-enriched proteins)은 357개였고, 이 중 P1에서만 발견된 단백질은 198개, P2에 비해 1.5배 이상 함량이 풍부한 단백질은 159개였다. P2에서 P1에 비해 함량이 풍부한 단백질(P2-enriched proteins)은 297개였고, 이 중 P2에서만 발견된 단백질은 137개, P1에 비해 1.5배 이상 함량이 풍부한 단백질은 160개였다. 한편 P1 및 P2에서 모두 발견되고 함량이 1.5배 미만 차이 나는 단백질은 50개였다.As shown in Table 1 above, 567 and 506 proteins were identified in P1 and P2, respectively. There were 357 P1-enriched proteins in P1 compared to P2, and among them, 198 proteins were found only in P1 and 159 proteins were more than 1.5 times more abundant than P2. There were 297 P2-enriched proteins in P2 compared to P1, and among them, 137 proteins were found only in P2 and 160 proteins were more than 1.5 times more abundant than P1. On the other hand, 50 proteins were found in both P1 and P2 and differed by less than 1.5 times in content.
도 2a 및 표 1에 나타난 바와 같이, P1-enriched proteins 중 함량이 높은 단백질은 세포질 단백질(cytoplasmic proteins)이 많았는데, 대표적으로 Tuf (Elongation factor Tu), RplB(50S ribosomal protein L2)가 있었다. P2-enriched proteins 중 함량이 높은 단백질은 외막 단백질(outer membrane proteins)가 많았는데, 대표적으로 OmpF (Outer membrane protein F), LamB (Maltoporin), Lpp (Major outer membrane lipoprotien Lpp), OmpA (Outer membrane protein A)가 있었다.As shown in FIG. 2a and Table 1, among the P1-enriched proteins, cytoplasmic proteins were high in content, and representatively, there were Tuf (Elongation factor Tu) and RplB (50S ribosomal protein L2). Among the P2-enriched proteins, outer membrane proteins with a high content were mostly outer membrane proteins. Representatively, OmpF (Outer membrane protein F), LamB (Maltoporin), Lpp (Major outer membrane lipoprotein Lpp), OmpA (Outer membrane protein) A) was
도 2b에는 P1 및 P2의 단백질 중 함량 순위가 상위 5%에 속하는 단백질 종류를 나타내었다.Figure 2b shows the protein types belonging to the top 5% of the content ranking among the proteins of P1 and P2.
한편, P1의 경우 세포질 단백질이 개수나 함량 모두 P2에 비해 많았다. P2의 경우 외막 단백질이 개수나 함량 모두 P1에 비해 많았고, 주변 세포질 단백질(periplasmic proteins)의 개수가 P1에 비해 많았다(도 2c, 2d).On the other hand, in the case of P1, both the number and content of cytoplasmic proteins were higher than those of P2. In the case of P2, both the number and content of outer membrane proteins were higher than those of P1, and the number of periplasmic proteins was higher than that of P1 (FIGS. 2c and 2d).
그람 음성 박테리아 세포밖 소포체에는 외막 유래 단백질이 농축(enrichment)되고, 세포질 단백질이 비농축(de-enrichment)됨을 고려할 때, P2는 그람 음성 박테리아 세포밖 소포체에 보다 가깝다고 할 수 있다.Considering that outer membrane-derived proteins are enriched and cytoplasmic proteins are de-enriched in the extracellular vesicles of Gram-negative bacteria, P2 can be said to be closer to the extracellular vesicles of Gram-negative bacteria.
실시예 3. P1 및 P2의 Example 3. P1 and P2 in vivoin vivo 항암 활성 확인 Confirmation of anticancer activity
실시예 1-1의 방법에 의해 분리한 E. coli BL21 (DE3) ΔmsbB 세포밖 소포체를 실시예 2에서와 같이 13,000 × g에서 40분 간 원심 분리해서 분리한 분획(P1 - pellet, large extracellular vesicles; P2 - supernatants, small extracellular vesicles)의 항암 활성을 용량에 따라 비교하였다. 동물 실험 방법 및 디자인은 도 3에 나타난 바와 같이 수행하였다. The fraction (P1 - pellet, large extracellular vesicles; P2 - supernatants, small extracellular vesicles) were compared according to the dose. The animal experiment method and design were performed as shown in FIG. 3 .
BALB/c 암컷 마우스의 우측 등쪽에 마우스 대장암 세포주 CT26(1×106 cells/head)를 주입하고, 1주일 뒤 암 조직을 확인하여 실험군을 나누었다. 대조군에는 완충 용액(buffer)을 주입하였고, 실험군에 따라 P1 및 P2를 2, 5, 10 μg/head로 대장암 세포주 주입 후 8일, 11일, 14일, 17일이 되는 시점에 암 조직에 직접 주입(intratumoral administration)하였다. 그리고 대장암 세포주 주입 후 22일이 되는 시점까지 암 조직의 크기를 측정하였다.The mouse colorectal cancer cell line CT26 (1×10 6 cells/head) was injected into the right dorsal side of BALB/c female mice, and after 1 week, cancer tissues were identified and the experimental groups were divided. A buffer solution was injected into the control group, and 2, 5, or 10 μg/head of P1 and P2 were injected into the cancer tissues at 8, 11, 14, and 17 days after colon cancer cell line injection, depending on the experimental group. Direct injection (intratumoral administration) was performed. In addition, the size of cancer tissue was measured up to 22 days after colon cancer cell line injection.
P1 및 P2 모두 용량 의존적으로 항암 효과는 증가하나, 동일 용량에서 P2의 항암 효과가 P1의 항암 효과보다 더 큰 것을 확인하였다(도 4).Both P1 and P2 increased the anticancer effect in a dose-dependent manner, but it was confirmed that the anticancer effect of P2 was greater than that of P1 at the same dose (FIG. 4).
즉, 통상의 방법으로 분리된 그람 음성 박테리아 세포밖 소포체를 추가로 정제하여 크기가 상대적으로 작고 균질하고, 항암 효능이 향상된 세포밖 소포체를 수득할 수 있었다.That is, the extracellular vesicles of Gram-negative bacteria separated by a conventional method could be further purified to obtain extracellular vesicles that were relatively small and homogeneous in size and had improved anticancer efficacy.

Claims (9)

  1. 자연적으로 분비된 세포밖 소포체와 대비하여 평균 직경이 약 20 내지 30 nm인 세포밖 소포체의 함량이 높은 박테리아 세포밖 소포체.Bacterial extracellular vesicles with a high content of extracellular vesicles with an average diameter of about 20 to 30 nm compared to naturally secreted extracellular vesicles.
  2. 제1항에 있어서, 평균 직경이 약 20 내지 30 nm인 세포밖 소포체의 함량이 90% 이상, 또는 95% 이상, 또는 97% 이상인 박테리아 세포밖 소포체.2. The bacterial extracellular vesicles of claim 1, wherein the content of extracellular vesicles having an average diameter of about 20 to 30 nm is greater than 90%, or greater than 95%, or greater than 97%.
  3. 제2항에 있어서, 상기 세포밖 소포체의 평균 직경의 다분산 지수는 약 0.35 이하, 또는 약 0.3 이하, 또는 약 0.25 이하인, 박테리아 세포밖 소포체.3. The bacterial extracellular vesicle of claim 2, wherein the polydispersity index of the mean diameter of the extracellular vesicle is less than or equal to about 0.35, or less than or equal to about 0.3, or less than or equal to about 0.25.
  4. 제3항에 있어서, 상기 세포밖 소포체의 280 nm에서의 흡광도 값이 260 nm에서의 흡광도 값보다 큰(A280/A260 >1) 것을 특징으로 하는, 박테리아 세포밖 소포체.4. The bacterial extracellular vesicle according to claim 3, characterized in that the absorbance value at 280 nm of the extracellular vesicle is greater than the absorbance value at 260 nm (A 280 /A 260 >1).
  5. 제1항에 있어서, 상기 박테리아는 그람 음성 박테리아인, 박테리아 세포밖 소포체.The bacterial extracellular vesicle according to claim 1 , wherein the bacteria are gram negative bacteria.
  6. 제5항에 있어서, 상기 그람 음성 박테리아는 이스체리치아(Escherichia) 속, 헬리코박터(Helicobacter) 속, 헤모필루스(Hemophilus) 속, 나이세리아(Neisseria) 속, 시아노박테리움(Cyanobacterium) 속, 크렙시엘라(Klebsiella) 속, 아세토박터(Acetobacter) 속, 아시네토박터(Acinetobacter) 속, 엔테로박터(Enterobacter) 속, 클라미디아(Chlamydia) 속, 비브리오(Vibrio) 속, 슈도모나스(Pseudomonas) 속, 살모넬라(Salmonella) 속, 티오박터(Thiobacter) 속, 보렐리아(Borrelia) 속, 부르크홀데리아(Burkholderia) 속, 세라티아(Serratia) 속, 트레포네마(Treponema) 속, 리케넬라(Rikenella) 속, 알리스티페스(Alistipes) 속, 마리닐라빌리아(Marinilabilia) 속, 프로테우스(Proteus) 속, 엔히드로박터(Enhydrobacter) 속, 메틸로박테리움(Methylobacterium) 속, 모르가넬라(Morganella) 속, 큐프리아비더스(Cupriavidus) 속, 예르시니아(Yersinia) 속, 시겔라(Shigella) 속, 레지오넬라(Legionella) 속, 스테노트로포모나스(Stenotrophomonas) 속, 및 모락셀라(Moraxella) 속 박테리아로 이루어진 군에서 선택된 것인, 박테리아 세포밖 소포체.The method of claim 5, wherein the gram-negative bacteria are Escherichia , Helicobacter , Hemophilus , Neisseria , Cyanobacterium , Krebsiella ( Klebsiella ), Acetobacter genus, Acinetobacter genus, Enterobacter genus, Enterobacter genus, Chlamydia genus, Vibrio genus, Pseudomonas genus ( Pseudomonas ) genus, Salmonella genus , Thiobacter genus, Borrelia genus, Burkholderia genus, Burkholderia genus, Serratia genus, Treponema genus, Rikenella genus, Alistipes ) Genus, Marinilabilia Genus, Proteus Genus, Enhydrobacter Genus, Methylobacterium Genus, Morganella Genus, Cupriavidus Genus , a bacterial cell selected from the group consisting of bacteria of the genus Yersinia , Shigella , Legionella , Stenotrophomonas , and Moraxella . outer endoplasmic reticulum.
  7. 제6항에 있어서, OmpF (Outer membrane protein F), LamB (Maltoporin), Lpp (Major outer membrane lipoprotien Lpp) 및 OmpA (Outer membrane protein A)로 이루어진 군에서 선택되는 단백질의 함량 순위가 상위 5% 이내인 박테리아 세포밖 소포체.The method according to claim 6, wherein the content ranking of the protein selected from the group consisting of OmpF (Outer membrane protein F), LamB (Maltoporin), Lpp (Major outer membrane lipoprotein Lpp) and OmpA (Outer membrane protein A) is within the top 5% phosphorus bacterial extracellular vesicles.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 박테리아 세포밖 소포체를 유효성분으로 포함하는, 암 치료 또는 예방을 위한 약학적 조성물.A pharmaceutical composition for treating or preventing cancer, comprising the bacterial extracellular vesicles according to any one of claims 1 to 7 as an active ingredient.
  9. 제8항에 있어서, 상기 암은 간암, 갑상선암, 고환암, 골암, 교모세포종, 구강암, 난소암, 뇌종양, 다발골수종, 담낭암, 담도암, 대장암, 두경부암, 림프종, 방광암, 백혈병, 식도암, 신장암, 위암, 유방암, 자궁경부암, 전립선암, 직장암, 척수종양, 췌장암, 침샘암, 폐암, 피부암, 후두암, 흑색종 등을 포함하는 군에서 선택되는 것인, 암 치료 또는 예방을 위한 약학적 조성물.The method of claim 8, wherein the cancer is liver cancer, thyroid cancer, testicular cancer, bone cancer, glioblastoma, oral cancer, ovarian cancer, brain tumor, multiple myeloma, gallbladder cancer, biliary tract cancer, colon cancer, head and neck cancer, lymphoma, bladder cancer, leukemia, esophageal cancer, kidney A pharmaceutical composition for the treatment or prevention of cancer, which is selected from the group consisting of cancer, stomach cancer, breast cancer, cervical cancer, prostate cancer, rectal cancer, spinal cord tumor, pancreatic cancer, salivary gland cancer, lung cancer, skin cancer, laryngeal cancer, melanoma, and the like .
PCT/KR2022/018479 2021-11-22 2022-11-22 Outer membrane vesicles and composition for cancer treatment or prevention including same WO2023090976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210161068 2021-11-22
KR10-2021-0161068 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023090976A1 true WO2023090976A1 (en) 2023-05-25

Family

ID=86397502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018479 WO2023090976A1 (en) 2021-11-22 2022-11-22 Outer membrane vesicles and composition for cancer treatment or prevention including same

Country Status (2)

Country Link
KR (1) KR102641906B1 (en)
WO (1) WO2023090976A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003359A (en) * 2017-06-30 2019-01-09 주식회사 엠디헬스케어 Nanovesicles derived from Proteus bacteria and Use thereof
KR20190086351A (en) * 2018-01-12 2019-07-22 주식회사 엠디헬스케어 Nanovesicles derived from Morganella bacteria and Use thereof
KR20190110942A (en) * 2018-03-21 2019-10-01 ㈜로제타엑소좀 Bacterial extracellular vesicles with reduced toxicity and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003359A (en) * 2017-06-30 2019-01-09 주식회사 엠디헬스케어 Nanovesicles derived from Proteus bacteria and Use thereof
KR20190086351A (en) * 2018-01-12 2019-07-22 주식회사 엠디헬스케어 Nanovesicles derived from Morganella bacteria and Use thereof
KR20190110942A (en) * 2018-03-21 2019-10-01 ㈜로제타엑소좀 Bacterial extracellular vesicles with reduced toxicity and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI YOUNGWOO, KWON YONGHOON, KIM DAE-KYUM, JEON JINSEONG, JANG SU CHUL, WANG TAEJUN, BAN MINJEE, KIM MIN-HYE, JEON SEONG GYU, KIM: "Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle", SCIENTIFIC REPORTS, vol. 5, no. 1, XP093067934, DOI: 10.1038/srep15878 *
MEHANNY MINA, KOCH MARCUS, LEHR CLAUS-MICHAEL, FUHRMANN GREGOR: "Streptococcal Extracellular Membrane Vesicles Are Rapidly Internalized by Immune Cells and Alter Their Cytokine Release", FRONTIERS IN IMMUNOLOGY, vol. 11, 1 January 2020 (2020-01-01), pages 80, XP055856175, DOI: 10.3389/fimmu.2020.00080 *

Also Published As

Publication number Publication date
KR20230075376A (en) 2023-05-31
KR102641906B1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
CN101475632B (en) Recombinant Ganoderma lucidum immunoregulation protein with antineoplastic function and medicinal preparation thereof
WO2012165815A2 (en) Nano-vehicle derived from tumor tissue, and cancer vaccine using same
WO2018188730A1 (en) Rna for treatment of autoimmune diseases
FR2522267A1 (en) GLYCOPROTEINS WITH ANTITUMOR ACTIVITY, PROCESS FOR PREPARING THEM AND THEIR THERAPEUTIC APPLICATION
CN102274487B (en) The application in preparation treatment leukopenia disease drug of the recombinant Ganoderma lucidum immune protein
KR101770664B1 (en) Melittin-Polyethylene Glycol Conjugates and Pharmaceutical Composition Comprising the Same
EP3413907B1 (en) Blood treatment with inactivation of circulating nucleic acids
WO2023090976A1 (en) Outer membrane vesicles and composition for cancer treatment or prevention including same
DK164918B (en) LIPOFILE MURAMYLPEPTIDE DERIVATIVES WITH PROPERTIES FOR ACTIVATING MACROPHAGES AND AGENTS CONTAINING THESE MURAMYLPEPTIDE DERIVATIVES
KR20170104024A (en) Nanovesicles derived from Helicobacter pylori and Use thereof
WO2019083201A2 (en) Use of composition comprising adipose stem cell-derived exosome as effective ingredient in improving renal function
WO2017222305A1 (en) Method for producing allergenic component-free purified bee venom using yolk, and allergenic component-free purified bee venom produced thereby
KR20220036429A (en) Composition for preventing or treating inflammatory macrophage-mediated autoimmune disease comprising exosomes derived from stem cells that are surface-modified to target activated macrophages
CN1354187A (en) Hen egg yolk antibody for resisting pyloric helicobacterium cytotoxin, its preparation and application
CN108367042A (en) Antimicrobial fusogenic peptide
US6827940B1 (en) Immune-stimulating bacterial cell wall extracts
RU2412197C2 (en) Polymer fragment of peptidoglican of gram-negative bacteria cell wall, method of its obtaining and its application as immunostimulator
WO2022191673A1 (en) Pharmaceutical composition containing exosomes surface-modified with vitamin a for preventing or treating liver fibrosis
WO2023055081A1 (en) Glycyrrhizin-branched polyethylene glycol conjugate for treating cancer
RU2812805C1 (en) Method of inhibiting pd-1/pd-l1 signaling pathway in bladder cancer cells
CN114681618B (en) Targeted delivery system for treating tumors and construction method and application thereof
WO2022270872A1 (en) Commercial purification method for high-purity bacterial extracellular vesicles
FI77157C (en) FOERFARANDE FOER FRAMSTAELLNING AV GLYKOBUNDEN ANTIGEN OCH FOERFARANDE FOER FRAMSTAELLNING AV FOER KANCERCELLER TOXISKA LYMFOCYTER, SOM AER SPECIFIKA MOT DENNA Antigen.
WO2019172597A1 (en) Nanovesicles derived from methylobacterium sp. bacteria, and use thereof
EP2037889B1 (en) Nanostructured lipid carriers containing riluzole and pharmaceutical formulations containing said particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896173

Country of ref document: EP

Kind code of ref document: A1