WO2023090697A1 - Hybrid driving module - Google Patents

Hybrid driving module Download PDF

Info

Publication number
WO2023090697A1
WO2023090697A1 PCT/KR2022/016957 KR2022016957W WO2023090697A1 WO 2023090697 A1 WO2023090697 A1 WO 2023090697A1 KR 2022016957 W KR2022016957 W KR 2022016957W WO 2023090697 A1 WO2023090697 A1 WO 2023090697A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
driven
cover plate
rotor
disposed
Prior art date
Application number
PCT/KR2022/016957
Other languages
French (fr)
Korean (ko)
Inventor
김정우
Original Assignee
주식회사 카펙발레오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 카펙발레오 filed Critical 주식회사 카펙발레오
Publication of WO2023090697A1 publication Critical patent/WO2023090697A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/09Reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid drive module, and more particularly, to a hybrid drive module having an excellent engine vibration suppression effect and a compact structure in an axial direction.
  • a driving module used in a hybrid vehicle has a structure that transmits power of a motor and an engine to a transmission.
  • the hybrid driving module includes an input member receiving power from the engine, a motor, an engine clutch connecting the input member and the motor, an output member receiving power from the motor and/or engine and transmitting the power to the transmission, and the motor and the output member. It includes a power transmission unit connecting between them.
  • the power transmission unit may have a structure that directly connects a motor and an output member, or includes a torque converter and a lock-up clutch.
  • an engine clutch is provided between the input member and the motor, and a torsional damper (hereinafter referred to as 'damper' for short) that absorbs vibrations generated in the output of the engine is provided between the engine clutch and the input member.
  • 'damper' a torsional damper that absorbs vibrations generated in the output of the engine.
  • DE10246839A1 discloses a structure in which a torsional damper is arranged radially inside the motor.
  • the disclosed torsional damper has springs connected in parallel, making it difficult to design a low-rigidity damper.
  • CN110285188A discloses a structure in which one damper is disposed between the input member and the engine clutch, and an additional damper is disposed between the motor and the output member.
  • the two dampers are manufactured separately, it is difficult to design a compact hybrid driving module.
  • KR10-2238845B1 discloses a structure in which two dampers are connected in series, which is advantageous for low rigidity design. Also, since the two dampers are disposed between the first motor and the second motor in the axial direction and inside the first and second motors in the radial direction, it is advantageous to compactly design the hybrid driving module. However, with the disclosed structure, it is difficult to construct a free angle and a hysteresis device for suppressing idle noise of an engine due to the small diameter of the torsional damper.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a hybrid driving module having a compact structure while being easy to configure a low stiffness damper by connecting torsional dampers in series.
  • Another object of the present invention is to provide a hybrid drive module that maximizes the diameter of the torsional damper even in a space insufficient to secure the diameter of the torsional damper.
  • an object of the present invention is to provide a hybrid driving module having a sufficient free angle while maximally securing the circumferential width of the neck of the driven plate of the torsional damper.
  • Another object of the present invention is to provide a hybrid driving module in which hysteresis devices are configured for both dampers connected in series and a hysteresis torque for minimizing idle noise of an engine is applied to the two dampers.
  • Another object of the present invention is to provide a hybrid drive module in which a hysteresis device is configured in a damper so as not to be affected by whether an engine clutch is operated.
  • the present invention for solving the above problems, the rotor sleeve connected to the engine and rotated by receiving the power of the engine; a rotor hub connected to the rotor sleeve through an engine clutch; and a drive motor installed on the rotor hub.
  • An auxiliary motor may be installed in the rotor sleeve.
  • the auxiliary motor may function to start an engine or convert driving force of an engine into electrical energy.
  • the auxiliary motor (first motor) may include a first rotor disposed outside the rotor sleeve in a radial direction.
  • the driving motor may provide driving force for driving a vehicle equipped with the hybrid driving module.
  • the driving motor (second motor) may include a second rotor disposed outside the rotor hub in a radial direction.
  • the first motor may be disposed ahead of the second motor.
  • the rotor sleeve may include a radial extension portion extending in a radial direction and an axial extension portion extending axially from an end of the radial extension portion.
  • the first rotor may be installed on an outer circumference of the axially extending portion.
  • the rotor sleeve and the rotor hub may be connected or disconnected from each other through an engine clutch.
  • the engine clutch operates and the rotor sleeve is connected to the rotor hub, the driving force of the engine is transmitted to the rotor hub, so that both the driving force of the engine and the driving force of the driving motor can be transmitted to the transmission as output.
  • the engine clutch may be locked up or unlocked by being pressurized or released by a piston plate disposed rearward of the engine clutch. That is, when the piston plate moves forward and presses the friction plates of the engine clutch forward, the lockup is performed, and when the piston plate moves backward and the pressurization is released, the lockup can be released.
  • a torsional damper may be installed between the rotor sleeve and the engine clutch.
  • the torsional damper may include a first damper and a second damper connected in series.
  • the first damper and the second damper may be wet dampers cooled by oil.
  • the first damper may be disposed inside the first rotor in a radial direction.
  • the first damper may be disposed behind the radially extending portion of the rotor sleeve and disposed radially inside the axially extending portion.
  • the second damper may be serially connected to the first damper in an axial direction rearward of the first rotor.
  • the second damper may be disposed inside the second rotor in a radial direction.
  • the second damper may be disposed ahead of the engine clutch.
  • the first damper may include a first cover plate connected to the rotor sleeve; a driven plate connected to the second damper; and a first damper spring that transmits the rotational force of the first cover plate to the driven plate.
  • the second damper may include a second cover plate connected to the first damper and receiving rotational force of the first damper; a driven hub connected to the engine clutch; and a second damper spring that transmits the rotational force of the second cover plate to the driven hub.
  • the first damper spring may be in the form of a coil spring, and a plurality of first damper springs may be arranged at predetermined intervals along a circumferential direction and installed on the first cover plate.
  • the first damper spring may be arranged in at least one of various shapes extending substantially along the circumferential direction, such as an arc shape or a straight line shape.
  • the first damper spring may be supported in axial, circumferential and radial directions by the first cover plate.
  • the driven plate may include a plurality of first neck parts disposed in a space between the plurality of first damper springs spaced apart in a circumferential direction.
  • the first damper spring is pressurized by the driven plate in a compression direction, and may transmit rotational force of the first cover plate to the driven plate.
  • the rotational force of the engine is transmitted to the first cover plate, and the first damper spring supported by the first cover plate presses the first neck portion in a rotational direction so that the driven plate can rotate.
  • the first damper spring can absorb the non-uniform power of the engine and transmit it uniformly to the driven plate.
  • the second cover plate may be connected to the driven plate.
  • the second damper spring may be in the form of a coil spring extending in an arc shape, and a plurality of second damper springs may be disposed at predetermined intervals along a circumferential direction and installed on the second cover plate.
  • the second damper spring may be supported in axial, circumferential and radial directions by the second cover plate.
  • the driven hub may include a plurality of second neck parts disposed in a space between a plurality of second damper springs spaced apart in a circumferential direction.
  • the second damper spring is pressurized by the driven hub in a compression direction, and may transmit rotational force of the second cover plate to the driven hub.
  • the rotational force that is uniformed to some extent through the first damper spring and transmitted to the driven plate is transmitted to the second cover plate, and the second damper spring supported by the second cover plate rotates the second neck in the direction of rotation.
  • Driven hub can rotate by pressurizing.
  • the second damper spring absorbs even the non-uniform output, and it can be transmitted more uniformly to the driven hub.
  • the damping force of the second damper may be designed to be greater than that of the first damper. Then, the first damper can cover all of the small unevenness of the output, and the second damper can cover the unevenness of the output beyond the level covered by the first damper.
  • a first cover plate of the first damper may be connected to an axially extending portion of the rotor sleeve at a radially outer side of the first damper spring.
  • the first damper spring of the first damper may be supported by the first cover plate in a rearward direction and supported by the rotor sleeve in a forward direction.
  • the first damper spring is supported in the axial direction by the radially extending portion of the rotor sleeve, supported in the radial direction by the axially extending portion of the rotor sleeve, and provided in the first circumferential direction of the rotor sleeve. It may be supported in the circumferential direction by the support portion.
  • the second damper and the engine clutch may be connected with splines that are rotationally constrained in a rotational direction and allow relative sliding in an axial direction.
  • the first damper and the second damper may have a first free angle and a second free angle, each of which does not have a damping action. That is, both sides in the circumferential direction of the first neck portion disposed between the two neighboring first damper springs may be spaced apart from circumferential ends of the first damper spring facing each other in the circumferential direction by a first free angle. . Similarly, both sides in the circumferential direction of the second neck portion disposed between the two neighboring second damper springs may be spaced apart from circumferential ends of the second damper spring facing each other in the circumferential direction by a second free angle. .
  • a free angle of the torsional damper installed in the hybrid driving module may be the sum of the first free angle and the second free angle.
  • the first free angle and the second free angle may substantially correspond to each other. Then, the free angle that the torsional damper should have is evenly distributed to the first damper and the second damper, so that the width of the first neck portion and the second neck portion in the circumferential direction can be secured as much as possible.
  • a first hysteresis device for applying a first hysteresis torque to the first damper may be provided in the first damper
  • a second hysteresis device for applying a second hysteresis torque to the second damper may be provided in the second damper.
  • the second hysteresis torque may be equal to or greater than the first hysteresis torque. Then, both the first damper and the second damper do not generate resonance due to the hysteresis torque in the idling state of the engine, so that noise can be reduced more effectively.
  • the first hysteresis device may include a first front friction washer disposed between the rotor sleeve and the driven plate in an axial direction; a first rear friction washer disposed between the driven plate and the first cover plate in an axial direction; and a first elastic body disposed between the driven plate and the first front friction washer or the first rear friction washer in an axial direction.
  • the first elastic body may be a first elastic washer.
  • a first elastic washer may be disposed between the driven plate and the first rear friction washer in a state in which a preload is applied.
  • the first hysteresis torque may be intuitively determined by the preload of the first elastic washer.
  • the second hysteresis device may include a second front friction washer disposed between the second cover plate and the driven hub in an axial direction in front of the driven hub; a second rear friction washer disposed between the driven hub and the second cover plate in an axial direction at a rear of the driven hub; and a second elastic body disposed between the driven hub and the second front friction washer or the second rear friction washer in an axial direction.
  • the second elastic body may be a second elastic washer.
  • a second elastic washer may be disposed between the driven hub and the second rear friction washer in a state in which a preload is applied.
  • the second hysteresis torque may be intuitively determined by the preload of the second elastic washer.
  • the elastic force of the two elastic washers may not affect each other.
  • the first elastic washer and the second elastic washer are not affected by the axial force and the designed preload can continuously act on the driven plate and the driven hub.
  • the first damper is disposed inside the first rotor in the radial direction and the second damper is disposed inside the second rotor in the radial direction, so that the hybrid driving module is considerably moved in the axial direction. It can be designed compactly.
  • a torsional damper is configured by connecting the first damper and the second damper in series, thereby enabling a low rigidity design.
  • the first cover plate of the first damper is connected to the axial extension of the rotor sleeve at a radially outer side than the first damper spring, and the first damper spring is disposed as far away as possible in the radial direction from the center of rotation. can do. Accordingly, even under a design condition in which the radius is not secured as much as possible by being disposed inside the first rotor in the radial direction, the thickness of the driven plate can be reduced by maximizing the width of the first neck in the circumferential direction. This can lead to effects such as cost reduction and weight reduction.
  • the hybrid drive module can be designed more compactly in the axial direction.
  • the free angle that the torsional damper should have is evenly distributed to the first damper and the second damper, so that the width of the first neck portion and the second neck portion in the circumferential direction can be secured as much as possible. Accordingly, even under design conditions where the radius is not secured as much as possible by being disposed inside the radial direction of the first rotor and the second rotor, the circumferential width of the first neck part and the second neck part is secured as much as possible to reduce the thickness of the driven plate and the driven hub. can be made thinner This can lead to effects such as cost reduction and weight reduction.
  • a hysteresis torque is applied to both the first damper and the second damper connected in series to increase the noise reduction effect.
  • the second hysteresis torque acting on the second damper disposed farther from the engine is set to be greater than or equal to the first hysteresis torque acting on the first damper closer to the engine, so that both dampers connected in series have an amplitude of idling output of the engine.
  • the noise reduction effect can be exhibited more reliably by allowing the hysteresis torque to act as designed.
  • the first elastic washer and the second elastic washer respectively imparting hysteresis torque to the first damper and the second damper are respectively applied to the first damper and the second damper according to the designed preload regardless of whether the engine clutch is operated or not.
  • An intended hysteresis torque can be imparted by applying an elastic force.
  • FIG. 1 is an enlarged side cross-sectional view of a torsional damper of a hybrid driving module according to the present invention.
  • FIG. 2 is a front view of a first cover plate, a first damper spring, and a driven plate of a first damper of the torsional damper shown in FIG. 1;
  • FIG. 3 is an enlarged view showing a first neck portion of the driven plate of FIG. 2 in an enlarged manner;
  • FIG. 4 is a front view of a second rear cover plate, a second damper spring, and a driven hub of a second damper of the torsional damper shown in FIG. 1;
  • FIG. 5 is an enlarged view showing a second neck portion of the driven hub of FIG. 4 in an enlarged manner.
  • FIG. 6 is a torque diagram showing hysteresis torque applied to the first damper and the second damper, respectively, with respect to the rotation angle.
  • cover M1 first rotor (first motor, auxiliary motor) 21: rotor shaft 23: rotor sleeve 231: radial extension 233: axial extension 235: first circumferential support G: spring guide 30: th 1 damper (first torsional damper) 31: first cover plate 311: distal side fixing part 313: first spring cover part 315: second circumferential support part 317: first cover body part 319: first stopper 33: first Reference Numerals 1 damper spring 331: first damper large diameter spring 333: first damper small diameter spring 35: driven plate 351: first neck part 353: driven body part 355: first stopper receiving part 357: first fastening part 40: first hysteresis Device 41: first front friction washer 43: first rear friction washer 45: first elastic washer 50: second damper (second torsional damper) 51: second cover plate 53: second front cover plate 531: second Spring cover part 533: Third circumferential support part 535: Second
  • the hybrid driving module of the embodiment is symmetrical about the axis, only half of the axis is shown for convenience of drawing. Also, for convenience of explanation, a direction along the longitudinal direction of an axis forming the center of rotation of the hybrid driving module is referred to as an axial direction. That is, the front-rear direction or the axial direction is a direction parallel to the axis of rotation, and the front (front) means a direction toward the power source, such as the engine, and the rear (rear) means the direction toward the other direction, such as the transmission. . Therefore, the front side (front side) means the side where the surface faces forward, and the rear side (rear side) means the side where the surface looks backward.
  • the radial direction or the radial direction means a direction approaching the center or a direction away from the center along a straight line passing through the center of the rotation axis on a plane perpendicular to the rotation axis.
  • a direction away from the center in a radial direction is referred to as a centrifugal direction, and a direction approaching the center is referred to as a centripetal direction.
  • the circumferential direction or circumferential direction means a direction that surrounds the circumference of the rotating shaft.
  • the outer circumference means an outer circumference
  • the inner circumference means an inner circumference. Therefore, the outer circumferential surface is a surface in a direction facing away from the rotational axis, and the inner circumferential surface means a surface in a direction facing the rotational axis.
  • the circumferential side surface means a surface whose normal line is directed in the circumferential direction.
  • a first motor M1 and a second motor M2 are installed inside the cover 10 .
  • the first motor M1 may function to start the engine or regenerate rotational force of the engine into electrical energy
  • the second motor M2 may provide driving force for movement of the vehicle equipped with the corresponding hybrid drive module.
  • the hybrid drive module includes a rotor shaft 21 disposed at the front center of the cover 10, extending in an axial direction, and connected to an engine.
  • the rotor shaft 21 is connected to the cover 10 by a bearing and is rotatably supported with respect to the cover 10 .
  • the rotor shaft 21 is integrally connected with the rotor sleeve 23. That is, the rotor sleeve 23 can receive rotational force of the engine through the rotor shaft 21 and can be rotatably supported with respect to the cover 10 .
  • the rotor sleeve 23 includes a radial extension 231 extending radially outward from the rotor shaft 21 and an axial extension extending axially from a distal end of the radial extension 231.
  • a section 233 may be included.
  • the radially extending portion 231 may extend in a shape substantially corresponding to a shape of the cover 10 in which a bearing for supporting the rotor shaft 21 is installed.
  • a first rotor M1 of a first motor is fixedly installed on an outer circumference of the axial extension part 233 .
  • the axial extension portion 233 may extend rearward from a distal end of the radial extension portion 231 . Accordingly, a space in which the torsional damper can be accommodated is provided at the rear of the radially extending portion 231 and radially inside of the axially extending portion 233 in which the first rotor M1 is installed.
  • the second motor M2 may be disposed behind the first motor M1.
  • the second motor M2 is provided on the outer circumference of the rotor hub 90 , and the second rotor M2 of the second motor M2 is fixedly installed on the outer circumference of the rotor hub 90 .
  • the rotor hub 90 is connected to the output end of the hybrid drive module. And, the output terminal of the hybrid drive module is connected to a transmission not shown. Therefore, the rotational force of the rotor hub 90 is transmitted to the transmission through the output stage. That is, when the second motor M2 rotates, the rotational force is transmitted to the transmission.
  • the rotor sleeve 23 is connected to the rotor hub 90 through an engine clutch 80. Therefore, if the engine clutch 80 does not connect the rotor sleeve 23 and the rotor hub 90, only the rotational force of the second motor M2 is transmitted to the output end, and if the engine clutch 80 connects them, the second motor ( In addition to the torque of M2), the torque of the engine is transmitted to the output stage.
  • the engine clutch 80 is installed inside the rotor hub 90 in the radial direction. Also, the second rotor M2 and the rotor hub 90 extend more forward than the engine clutch 80 . Accordingly, a space in which the torsional damper can be accommodated is provided in the front of the engine clutch 80 and inside the rotor hub 90 in the radial direction in which the second rotor M2 is installed.
  • the torsional damper may include a first damper 30 and a second damper 50 connected in series. As such, if the first damper 30 and the second damper 50 are connected in series to form a torsional damper, a low rigidity design is possible.
  • the torsional damper is located between the rotor sleeve 23 and the engine clutch 80 in the driving system.
  • the engine clutch 80 may be locked up or unlocked by being pressurized or released by a piston plate (not shown) disposed rearward of the engine clutch 80 . That is, when the piston plate moves forward and presses the friction plates of the engine clutch 80 forward, lockup is performed, and when the piston plate moves rearward and this pressurization is released, lockup can be released.
  • the torsional damper connected to the engine clutch 80 may also be affected by the force that presses the engine clutch 80 forward. Accordingly, the torsional damper and the engine clutch 80 may be spline-connected. Then, although the rotation of the torsional damper and/or the rotation of the engine clutch 80 are mutually restricted, the effect of the axial movement of the engine clutch 80 on the torsional damper can be minimized.
  • first damper 30 and the second damper 50 are disposed inside the cover 10 of the hybrid driving module connected to the automatic transmission, a wet damper cooled by the transmission oil can be configured.
  • the first damper 30 may be disposed inside the first rotor M1 in the radial direction.
  • the second damper 50 may be connected in series to the first damper 30 at an axially rearward side of the first rotor M1 and disposed radially inside the second rotor M2. . Accordingly, the space occupied by the hybrid driving module in the axial direction by the torsional damper can be minimized or almost eliminated.
  • the first damper 30 includes a first cover plate 31 provided on the driving side, a driven plate 35 provided on the driven side, and a first damper spring 33 interposed between the driving side and the driven side.
  • the second damper 50 includes a second cover plate 51 provided on the driving side, a driven hub 59 provided on the driven side, and a second damper spring 57 interposed between the driving side and the driven side.
  • the first damper spring 33 is supported by the rotor sleeve 23 in the front and supported by the first cover plate 31 in the rear.
  • the first damper spring 33 is forwardly supported by the radially extending portion 231 of the rotor sleeve 23, and radially outwardly supported by the axially extending portion 233 of the rotor sleeve 23. ) is supported by
  • a spring guide (G) is interposed between the first damper spring 33 and the axial extension portion 233 so that the first damper spring 33 directly contacts the axial extension portion 233. prevent.
  • a plurality of first damper springs 33 may be disposed in a circumferential direction. Referring to FIG. 2, in the embodiment, a structure in which four first damper springs 33 are arranged at equal intervals along the circumferential direction is illustrated.
  • Each of the first damper springs 33 may include a first damper large-diameter spring 331 and a first damper small-diameter spring 333 concentrically formed.
  • the first damper spring 33 is disposed in an arc shape. Both ends of the first damper spring 33 are supported by the rotor sleeve 23 and also supported by the first cover plate 31 to be described later.
  • the arrangement of the first damper spring 33 does not necessarily have to be in an arc shape, for example, it is also possible to have a straight line shape.
  • the rotor sleeve 23 is provided with a plurality of first circumferential support parts 235 protruding rearward at predetermined positions along the circumferential direction, and they extend both ends of each of the first damper springs 33 in the circumferential direction. support with According to the embodiment, eight first circumferential support portions 235 may be provided.
  • the first circumferential support portion 235 is provided at a connection portion between the radial extension portion 231 and the axial extension portion 233 of the rotor sleeve 23 to reinforce the rigidity of the rotor sleeve 23 and to 1
  • the damper spring 33 is also supported in the circumferential direction.
  • the radially inner surface of the first circumferential support part 235 regulates the radial position of the first front friction washer 41 of the first hysteresis device 40 to be described later.
  • the first cover plate 31 is connected to the rotor sleeve 23 outside the first damper spring 33 in the radial direction.
  • the first cover plate 31 includes a centrifugal fixing part 311 that extends more outward in a radial direction than the first damper spring 33, and the centrifugal fixing part 311 is the rotor It is connected to the rear end of the axially extending portion 233 of the sleeve 23 and behaves integrally.
  • the first cover plate 31 includes a first cover body portion 317 and a plurality of first springs provided on the radially outer side of the first cover body portion 317 to accommodate the first damper springs 33.
  • the first damper spring 33 is supported by the first spring cover part 313 of the first cover plate 31 in a rearward and radial direction. In the embodiment, it is illustrated that four first spring cover parts 313 are provided.
  • Both ends of the four first damper springs 33 are supported by four second circumferential support parts 315 provided between the four first spring cover parts 313 . That is, one second circumferential support part 315 supports end portions facing each other of two first damper springs 33 adjacent to each other in the circumferential direction.
  • the first damper spring 33 is supported by the axial extension 233 of the rotor sleeve 23 radially outward, and the first cover plate 31 is the axial extension 233 Since it is connected to, it is possible to secure the maximum radius from the rotation center axis to the first damper spring 33.
  • the driven plate 35 includes a driven body portion 353 provided with a first stopper accommodating portion 355 for accommodating the first stopper 319, and a second portion extending radially outward from the driven body portion 353. 1 includes a neck portion 351 and a first coupling portion 357 provided at an end of the driven body portion 353 on a centripetal side.
  • the first stopper accommodating portion 355 and the first stopper 319 accommodated here define a range in which the first cover plate 31 can rotate relative to the driven plate 35 .
  • the first stopper accommodating portion 355 may be an arc-shaped long hole. That is, the first cover plate 31 is rotated relative to the driven plate 35 by an allowance obtained by subtracting the circumferential width of the first stopper 319 from the length of the long hole of the first stopper accommodating portion 355. can do. Then, it is possible to prevent the first damper spring 33 from being excessively compressed.
  • the number of first stoppers 319 may be plural, and a corresponding number of first stopper accommodating parts 355 may be provided. Of course, it is also obvious that they are arranged at equal intervals along the circumferential direction.
  • the first stopper accommodating portion 355 is provided in a section in which the driven body portion 353 is inclined in the axial direction and extends in the radial direction. Accordingly, the first stopper 319 can be accommodated in the first stopper accommodating portion 355 simply by stacking the first cover plate 31 and the driven plate 35 in the axial direction.
  • the first neck portion 351 may be disposed between the first circumferential support portion 235 of the rotor sleeve 23 and the second circumferential support portion 315 of the first cover plate 31 in the axial direction.
  • the width of the first neck portion 351 in the circumferential direction may be slightly smaller than the width of the second circumferential support portion 315 in the circumferential direction.
  • the first neck portion 351 is disposed between the ends of the two first damper springs 33 supported in the circumferential direction by the second circumferential support portion 315, and the two 1 has a slight gap with the end of the damper spring 33.
  • This gap becomes a section in which the driven plate 35 can relatively rotate with respect to the first cover plate 31 without compression of the first damper spring 33, and this gap is called a free angle.
  • the first free angle A1 of the first damper 30 may be provided to both sides of the first neck portion 351 in the circumferential direction. That is, the driven plate 35 rotates relative to the first cover plate 31 by a first free angle A1 both in one side and in the other side in the circumferential direction without compression of the first damper spring 33. can do.
  • the driven plate 35 may be spaced apart from the first damper spring 33 by a first free angle A1 in a circumferential direction in a state in which power of the engine is not transmitted.
  • the first fastening part 357 is connected to the second fastening part 537 of the second front cover plate 53 of the second cover plate 51 of the second damper 50 to be described later, and the first damper ( 30) is transmitted to the drive side of the second damper 50.
  • the second damper 50 includes a second cover plate 51 provided on the driving side, a driven hub 59 provided on the driven side, and a second damper spring 57 interposed between the driving side and the driven side.
  • the second cover plate 51 includes a second front cover plate 53 provided at the front and a second rear cover plate 55 provided at the rear with the second damper spring 57 interposed therebetween.
  • the second front cover plate 53 and the second rear cover plate 55 are coupled to each other at outer ends in the radial direction and act as one unit.
  • the second damper spring 57 is supported by the second front cover plate 53 in the front and supported by the second rear cover plate 55 in the rear.
  • the second front cover plate 53 and the second rear cover plate 55 support the second damper spring 57 in a radial direction.
  • a plurality of second damper springs 57 may be disposed in a circumferential direction. Referring to FIG. 4, in the embodiment, a structure in which four second damper springs 57 are arranged at equal intervals along the circumferential direction is exemplified.
  • Each of the second damper springs 57 may include a second damper large-diameter spring 571 and a second damper small-diameter spring 573 concentrically formed.
  • the second damper spring 57 is disposed in an arc shape.
  • the arrangement of the second damper spring 57 does not necessarily have to be in an arc shape, for example, it is also possible to have a straight line shape.
  • the second front cover plate 53 is provided at the inner end of the second cover body portion 535 in the radial direction of the second cover body portion 535 and coupled to the first coupling portion 357.
  • a coupling part 537, a second spring cover part 531 accommodating the first half of the second damper spring 57 to support the second damper spring 57 forward and radially, and the second A third circumferential support part 533 supporting the damper spring 57 in the circumferential direction is included.
  • the second rear cover plate 55 includes a third cover body portion 555, a second stopper 557 provided at a radially inner end of the third cover body portion 555, and the second damper spring ( 57) rearward and the third spring cover portion accommodating the second half of the second damper spring 57 so as to radially support the second damper spring 57 together with the second spring cover portion 531. 551, and a fourth circumferential support part 553 for supporting the second damper spring 57 in the circumferential direction together with the third circumferential support part 533.
  • each of four second spring cover parts 531 and third spring cover parts 551 are provided.
  • each of the four third circumferential support portions 533 and the fourth circumferential support portion 553 is provided.
  • the four third circumferential support portions 533 provided between the four second spring cover portions 531 and the four fourth circumferential support portions 553 provided between the four third spring cover portions 551 are Both ends of the four second damper springs 57 are supported. That is, one third circumferential support part 533 and one fourth circumferential support part 553 facing each other in the axial direction, together end faces of two second damper springs 57 adjacent to each other in the circumferential direction. support
  • the driven hub 59 includes a hub body portion 593 provided with a second stopper accommodating portion 597 accommodating the second stopper 557, and a hub body portion 593 extending outward in the radial direction from the hub body portion 593.
  • 2 includes a neck portion 591 and a damper-side spline 595 provided at a centripetal-side end of the driven body portion 353.
  • the second stopper accommodating portion 597 and the second stopper 557 accommodated here define a range in which the second cover plate 51 can rotate relative to the driven hub 59 .
  • the second stopper accommodating portion 597 may be an arc-shaped groove formed along a circumferential direction of an outer circumferential surface of the hub body portion 593 . That is, the second cover plate 51 is relative to the driven hub 59 by a margin obtained by subtracting the circumferential width of the second stopper 557 from the circumferential length of the groove of the second stopper accommodating portion 597. can be rotated to Then, it is possible to prevent the second damper spring 57 from being excessively compressed.
  • the number of second stoppers 557 may be plural, and a corresponding number of second stopper accommodating parts 597 may be provided. In this case, the plurality of second stoppers 557 and the second stopper accommodating portion 597 may be arranged at equal intervals along the circumferential direction.
  • the second stopper accommodating portion 597 is provided in a rearward open form. Accordingly, the second stopper 557 can be accommodated in the second stopper accommodating portion 597 simply by stacking the second rear cover plate 55 and the driven hub 59 in the axial direction.
  • the second neck portion 591 includes the third circumferential support portion 533 of the second front cover plate 53 and the fourth circumferential support portion 553 of the second rear cover plate 55 in the axial direction. can be placed in between.
  • Circumferential widths of the third circumferential support portion 533 and the fourth circumferential support portion 553 may correspond to each other. Also, the width of the second neck portion 591 in the circumferential direction may be slightly smaller than that of the third and fourth support portions 533 and 553 in the circumferential direction. Referring to FIG. 5, the second neck portion 591 is disposed between the ends of the two second damper springs 57 supported in the circumferential direction by the fourth circumferential support portion 553, and 2 has a slight gap with the end of the damper spring 57. This gap is a section in which the driven hub 59 can relatively rotate with respect to the second cover plate 51 without compression of the second damper spring 57 .
  • the second free angle A2 of the second damper 50 may be provided to both sides of the second neck portion 591 in the circumferential direction. That is, the driven hub 59 rotates relative to the second cover plate 51 by a second free angle A2 both in one side and in the other side in the circumferential direction without compression of the second damper spring 57. can do.
  • the driven hub 59 may be spaced apart from the second damper spring 57 in a circumferential direction by a second free ankle A2 in a state in which power of the engine is not transmitted.
  • the damper-side splines 595 are provided on the inner circumferential surface of the driven body part 353. And it is engaged with the engine clutch-side spline 71 provided on the outer circumferential surface of the inner spline hub 70 connected to the engine clutch 80 described above so as to be rotationally constrained to each other. Accordingly, the second damper 50 and the engine clutch 80 are rotationally constrained in the rotational direction and allow relative sliding in the axial direction.
  • the first damper spring 33 When the rotational force of the engine is transmitted to the first cover plate 31 through the rotor shaft 21 and the rotor sleeve 23, the first damper spring 33 supported by the first cover plate 31 Rotational force is transmitted to the driven plate 35 by pressing the neck portion 351 in the rotational direction. At this time, the first damper spring 33 absorbs the non-uniform rotational force of the engine, equalizes it to some extent, and transmits it to the driven plate 35.
  • the rotational force transmitted to the driven plate 35 is transmitted to the second cover plate 51, and the second damper spring 57 supported by the second cover plate 51 is connected to the second neck portion 591. is pressed in the rotational direction to transmit rotational force to the driven hub 59. At this time, the second damper spring 57 absorbs and equalizes the non-uniform power and transmits it to the driven hub 59.
  • the damping force of the second damper 50 may be designed to be greater than that of the first damper 30 . Accordingly, the first damper mainly covers the small unevenness of the output, and the second damper covers the unevenness of the output exceeding the damping force of the first damper.
  • a first free angle A1 and a second free angle A2 are assigned to the first damper 30 and the second damper 50, respectively. Then, the free angle of the torsional damper installed in the hybrid drive module is the sum of the first free angle A1 and the second free angle A2.
  • the first angle A1 and the second angle A2 may be designed to substantially correspond to each other. For example, if the free angle that the torsional damper should have as a whole is 3 degrees, the first free angle A1 and the second free angle A2 may be set to 1.5 degrees, respectively. In this way, if the free angle that the torsional damper should have is evenly distributed to the first damper 30 and the second damper 50, the width of the first neck portion 351 and the second neck portion 591 in the circumferential direction is secured as much as possible can do.
  • the thickness of the corresponding portion of the driven plate 35 and the driven hub 59 is made thinner or a material of lower stiffness is applied. can do. This leads to effects such as cost reduction and weight reduction.
  • a hysteresis device is provided in each damper. That is, the first damper 30 is provided with a first hysteresis device 40 that applies a first hysteresis torque T1 to the first damper 30, and the second damper 50 has a first hysteresis device 40.
  • a second hysteresis device 60 for applying a second hysteresis torque T2 to 50 is provided. If hysteresis torque is applied to both dampers connected in series as described above, the noise reduction effect can be further enhanced, and in particular, the noise reduction effect can be further enhanced when the engine is idling.
  • the second hysteresis torque T2 is equal to or greater than the first hysteresis torque T1. Then, in the idling state of the engine, the resonance of both the first damper 30 and the second damper 50 is suppressed by the hysteresis torques T1 and T2, so noise can be suppressed.
  • the first hysteresis device 40 is a first front friction washer disposed between the radial extension 231 of the rotor sleeve 23 and the driven body 353 of the driven plate 35 in the axial direction. (41), a first rear friction washer 43 disposed between the driven body portion 353 and the first cover body portion 317 of the first cover plate 31 in the axial direction, and the first rear friction washer 43 in the axial direction.
  • a first elastic washer 45 disposed between the driven body part 353 and the first rear friction washer 43 is included.
  • the first rear friction washer 43 has a hook portion extending forward through the driven body portion 353, and the hook portion may interfere with the front surface of the driven body portion 353.
  • the radial position of the first rear friction washer 43 is regulated by the driven body part 353.
  • the radial position of the first elastic washer 45 is regulated by the outer circumferential surface of the first elastic washer 45 coming into contact with the inner circumferential surface of the hook portion of the first rear friction washer 43 .
  • a first elastic washer 45 is disposed between the driven plate 35 and the first rear friction washer 43 in a state of applying a preload.
  • the first hysteresis torque T1 is intuitively determined by the preload of the first elastic washer 45.
  • the second hysteresis device 60 is disposed between the second cover body 535 of the second front cover plate 53 and the hub body 593 of the driven hub 59 in the axial direction. 2 a front friction washer 61, a second rear friction washer 63 disposed between the hub body part 593 and the third cover body part 555 of the second rear cover plate 55 in the axial direction; and a second elastic washer 65 disposed between the hub body portion 593 and the second rear friction washer 63 in the axial direction.
  • the radial position of the second front friction washer 61 is regulated by the outer circumferential surface of the second front friction washer 61 coming into contact with the step provided on the hub body part 593.
  • the radial position of the second rear friction washer 63 is regulated by the inner circumferential surface of the second rear friction washer 63 abutting against the outer circumferential surface of the hub body portion 593 .
  • the second elastic washer 65 is disposed between the driven hub 59 and the second rear friction washer 63 in a state of applying a preload.
  • the second hysteresis torque T2 is intuitively determined by the preload of the second elastic washer 65.
  • both the first elastic washer 45 and the second elastic washer 65 are disposed behind the driven plate 35 and the driven hub 59, respectively. Accordingly, since the first elastic washer 45 and the second elastic washer 65 press both the driven plate and the driven hub forward, the elastic force of the two elastic washers 45 and 65 does not affect each other, and each damper works fully on
  • the driven plate 35 is disposed most forward with respect to the first cover plate 31 within an allowable range by means of the first elastic washer 45 . Accordingly, the second cover plate 51 coupled to the driven plate 35 is also disposed closest to the first cover plate 31 . Further, the driven hub 59 is disposed most forward with respect to the second cover plate 51 within an allowable range by the second elastic washer 65. That is, the first elastic washer 45 and the second elastic washer 65 are disposed most forward within a permissible range of each component of the first damper 30 and the second damper 50.
  • the engine clutch 80 is pressed forward by the piston plate, so that the driven hub 59 connected to the engine clutch 80 can receive axial force forward.
  • the first damper 30 and the second damper 50 have the first elastic washer 45 and the second elastic washer 45 within an allowable range by the friction washers 41, 43, 61, and 63. Since the washer 65 moves most forwardly, the axial force is not transmitted to the first elastic washer 45 and the second elastic washer 65 at all. Accordingly, the torsional damper installed in the hybrid driving module of the embodiment continuously applies the designed preload to the driven plate 35 and the driven hub 59.
  • the designed hysteresis torque does not change under different operating conditions. That is, according to the embodiment, whether the first elastic washer 45 and the second elastic washer 65, which respectively impart hysteresis torque to the first damper 30 and the second damper 50, operate the engine clutch 80. Regardless of the preload, an intended hysteresis torque may be imparted by applying elastic force to the first damper 30 and the second damper 50, respectively, according to the designed preload.
  • the noise reduction effect of the engine can be increased.
  • the second hysteresis torque T2 acting on the second damper 50 disposed farther from the engine in the drive system is the first hysteresis torque T1 acting on the first damper 30 closer to the engine in the drive system.
  • the hysteresis torque of both dampers connected in series responds to the amplitude of the idling output of the engine to act as designed, so that the noise reduction effect can be exhibited more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Operated Clutches (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention relates to a hybrid driving module comprising: a rotor sleeve (23) which is connected to an engine, and which receives the power of the engine and rotates; a first rotor (M1) disposed at the radial outer side of the rotor sleeve (23); a first damper (30) disposed at the radial inner side of the first rotor (M1) and connected to the rotor sleeve (23); a second damper (50) disposed further toward the rear in the axial direction than the first damper (30) and connected to the first damper (30) in series; a second rotor (M2) disposed at the radial outer side of the second damper (50); and an engine clutch (80) which is disposed further toward the rear in the axial direction than the second damper (50) and which connects or disconnects the second damper (50) and the second rotor (M2) between the second rotor (M2) and the second damper (50). The first damper (30) has a first hysteresis device (40) for applying a first hysteresis torque (T1) to the first damper (30), and the second damper (50) has a second hysteresis device (60) for applying a second hysteresis torque (T2) to the second damper (50).

Description

하이브리드 구동 모듈hybrid drive module
본 출원은 2021년 11월 16일자 대한민국 특허출원 제10-2021-0158051호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2021-0158051 dated November 16, 2021, and all contents disclosed in the literature of the Korean patent application are included as part of this specification.
본 발명은 하이브리드 구동 모듈에 관한 것으로, 보다 상세하게는 엔진 진동 억제 효과가 뛰어나면서도 축방향으로 컴팩트한 구조를 가지는 하이브리드 구동모듈에 관한 것이다.The present invention relates to a hybrid drive module, and more particularly, to a hybrid drive module having an excellent engine vibration suppression effect and a compact structure in an axial direction.
하이브리드 차량에 사용되는 구동 모듈은 모터와 엔진의 힘을 변속기로 전달하는 구조를 가진다. 하이브리드 구동 모듈은, 엔진의 힘을 전달받는 입력부재, 모터, 상기 입력부재와 모터 사이를 연결하는 엔진클러치, 모터 및/또는 엔진의 힘을 전달받아 변속기에 전달하는 출력부재, 상기 모터와 출력부재 사이를 연결하는 동력전달부를 포함한다. 상기 동력전달부는, 모터와 출력부재를 직결하거나, 토크컨버터와 락업클러치를 포함하는 구조일 수 있다.A driving module used in a hybrid vehicle has a structure that transmits power of a motor and an engine to a transmission. The hybrid driving module includes an input member receiving power from the engine, a motor, an engine clutch connecting the input member and the motor, an output member receiving power from the motor and/or engine and transmitting the power to the transmission, and the motor and the output member. It includes a power transmission unit connecting between them. The power transmission unit may have a structure that directly connects a motor and an output member, or includes a torque converter and a lock-up clutch.
CN107989963A에 개시된 바와 같이, 입력부재와 모터 사이에는 엔진클러치가 마련되고, 엔진클러치와 입력부재 사이에는 엔진의 출력에 발생하는 진동을 흡수하는 토셔널 댐퍼(이하 '댐퍼'라고 약칭으로 기재하기도 함)가 마련된다. 이와 같이 댐퍼가 직렬로 구성되어 있으면 저강성 댐퍼를 설계하기 용이하다. 그러나 CN107989963A에 개시된 바와 같이 토셔널 댐퍼를 구성하면, 토셔널 댐퍼에서 엔진의 아이들 소음을 억제하기 어렵다.As disclosed in CN107989963A, an engine clutch is provided between the input member and the motor, and a torsional damper (hereinafter referred to as 'damper' for short) that absorbs vibrations generated in the output of the engine is provided between the engine clutch and the input member. is provided In this way, when the dampers are configured in series, it is easy to design a low-rigidity damper. However, if the torsional damper is configured as disclosed in CN107989963A, it is difficult to suppress idle noise of the engine in the torsional damper.
DE10246839A1에는, 모터의 반경방향 내측에 토셔널 댐퍼가 배열된 구조가 개시되어 있다. 그러나 개시된 토셔널 댐퍼는 스프링이 병렬로 연결되어 있어 저강성 댐퍼를 설계하기 어렵다.DE10246839A1 discloses a structure in which a torsional damper is arranged radially inside the motor. However, the disclosed torsional damper has springs connected in parallel, making it difficult to design a low-rigidity damper.
CN110285188A에는, 하나의 댐퍼가 입력부재와 엔진클러치 사이에 배치되고, 추가적인 댐퍼가 모터와 출력부재 사이에 배열된 구조가 개시되어 있다. 그러나 이렇게 2개의 댐퍼를 분리하여 제작하면, 하이브리드 구동 모듈의 컴팩트한 설계가 어렵다.CN110285188A discloses a structure in which one damper is disposed between the input member and the engine clutch, and an additional damper is disposed between the motor and the output member. However, if the two dampers are manufactured separately, it is difficult to design a compact hybrid driving module.
KR10-2238845B1에는, 두 댐퍼가 직렬로 연결되어 있어 저강성 설계에 유리한 구조가 개시되어 있다. 그리고 두 댐퍼가 축방향으로 제1모터와 제2모터 사이에 배치되고 반경방향으로 제1모터와 제2모터의 내측에 배치되어 하이브리드 구동 모듈을 컴팩트하게 설계하기에 유리하다. 그러나, 개시된 구조로는 토셔널 댐퍼의 직경이 작아 엔진의 아이들 소음을 억제하기 위한 프리앵글(free angle)과 히스테리시스 장치 구성이 어렵다.KR10-2238845B1 discloses a structure in which two dampers are connected in series, which is advantageous for low rigidity design. Also, since the two dampers are disposed between the first motor and the second motor in the axial direction and inside the first and second motors in the radial direction, it is advantageous to compactly design the hybrid driving module. However, with the disclosed structure, it is difficult to construct a free angle and a hysteresis device for suppressing idle noise of an engine due to the small diameter of the torsional damper.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 토셔널 댐퍼를 직렬로 연결하여 저강성 댐퍼를 구성하기 용이하면서도 컴팩트한 구조의 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a hybrid driving module having a compact structure while being easy to configure a low stiffness damper by connecting torsional dampers in series.
또한 본 발명은, 토셔널 댐퍼의 직경을 확보하기 부족한 공간에서도 토셔널 댐퍼의 직경을 최대한 확보한 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a hybrid drive module that maximizes the diameter of the torsional damper even in a space insufficient to secure the diameter of the torsional damper.
또한 본 발명은, 토셔널 댐퍼의 드리븐플레이트의 네크부의 원주방향 폭을 최대한 확보하면서도 충분한 프리앵글을 가지는 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a hybrid driving module having a sufficient free angle while maximally securing the circumferential width of the neck of the driven plate of the torsional damper.
또한 본 발명은, 직렬로 연결된 두 댐퍼에 모두 히스테리시스 장치를 구성하고, 두 댐퍼에 엔진의 아이들 소음을 최소화하는 히스테리시스 토크를 부여한 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a hybrid driving module in which hysteresis devices are configured for both dampers connected in series and a hysteresis torque for minimizing idle noise of an engine is applied to the two dampers.
또한 본 발명은, 엔진클러치의 작동 여부에 영향을 받지 않도록 댐퍼에 히스테리시스 장치를 구성한 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a hybrid drive module in which a hysteresis device is configured in a damper so as not to be affected by whether an engine clutch is operated.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned above can be understood by the following description and will be more clearly understood by the examples of the present invention. It will also be readily apparent that the objects and advantages of the present invention may be realized by means of the instrumentalities and combinations indicated in the claims.
상술한 과제를 해결하기 위한 본 발명은, 엔진과 연결되어 엔진의 동력을 전달받아 회전하는 로터 슬리브; 상기 로터 슬리브와 엔진클러치를 통해 연결되는 로터 허브; 및 상기 로터 허브에 설치된 구동모터;를 포함하는 하이브리드 구동 모듈에 적용될 수 있다.The present invention for solving the above problems, the rotor sleeve connected to the engine and rotated by receiving the power of the engine; a rotor hub connected to the rotor sleeve through an engine clutch; and a drive motor installed on the rotor hub.
상기 로터 슬리브에는 보조모터가 설치될 수 있다. 상기 보조모터는 엔진을 시동하거나 엔진의 구동력을 전기 에너지로 변환하는 기능을 할 수 있다. 상기 보조모터(제1모터)는 상기 로터 슬리브의 반경방향 외측에 배치되는 제1로터를 포함할 수 있다.An auxiliary motor may be installed in the rotor sleeve. The auxiliary motor may function to start an engine or convert driving force of an engine into electrical energy. The auxiliary motor (first motor) may include a first rotor disposed outside the rotor sleeve in a radial direction.
상기 구동모터는 상기 하이브리드 구동 모듈이 탑재된 차량의 구동을 위한 구동력을 제공할 수 있다. 상기 구동모터(제2모터)는 상기 로터 허브의 반경방향 외측에 배치되는 제2로터를 포함할 수 있다.The driving motor may provide driving force for driving a vehicle equipped with the hybrid driving module. The driving motor (second motor) may include a second rotor disposed outside the rotor hub in a radial direction.
상기 제1모터는 제2모터보다 전방에 배치될 수 있다.The first motor may be disposed ahead of the second motor.
상기 로터 슬리브는 반경방향으로 연장되는 반경방향 연장부와, 상기 반경방향 연장부의 단부에서 축방향으로 연장되는 축방향 연장부를 포함할 수 있다. The rotor sleeve may include a radial extension portion extending in a radial direction and an axial extension portion extending axially from an end of the radial extension portion.
상기 제1로터는 상기 축방향 연장부의 외주에 설치될 수 있다.The first rotor may be installed on an outer circumference of the axially extending portion.
상기 로터 슬리브와 상기 로터 허브는 엔진클러치를 통해 서로 연결되거나 연결 해제될 수 있다. 엔진클러치가 작동하여 로터 슬리브가 로터 허브에 연결되면, 엔진의 구동력이 로터 허브에 전달되어 엔진의 구동력과 구동모터의 구동력이 모두 출력으로서 변속기에 전달될 수 있다.The rotor sleeve and the rotor hub may be connected or disconnected from each other through an engine clutch. When the engine clutch operates and the rotor sleeve is connected to the rotor hub, the driving force of the engine is transmitted to the rotor hub, so that both the driving force of the engine and the driving force of the driving motor can be transmitted to the transmission as output.
엔진클러치는 엔진클러치보다 후방에 배치된 피스톤플레이트에 의해 가압되거나 가압 해제되어 록업 되거나 록업 해제될 수 있다. 즉 피스톤플레이트가 전방으로 이동하며 엔진클러치의 마찰판들을 전방으로 가압하면 록업이 이루어지고, 피스톤플레이트가 후방으로 이동하여 가압이 해제되면 록업이 해제될 수 있다.The engine clutch may be locked up or unlocked by being pressurized or released by a piston plate disposed rearward of the engine clutch. That is, when the piston plate moves forward and presses the friction plates of the engine clutch forward, the lockup is performed, and when the piston plate moves backward and the pressurization is released, the lockup can be released.
상기 로터 슬리브와 엔진클러치 사이에는 토셔널 댐퍼가 설치될 수 있다. 상기 토셔널 댐퍼는 직렬로 연결된 제1댐퍼와 제2댐퍼를 포함할 수 있다.A torsional damper may be installed between the rotor sleeve and the engine clutch. The torsional damper may include a first damper and a second damper connected in series.
상기 제1댐퍼와 제2댐퍼는 오일에 의해 냉각되는 습식 댐퍼일 수 있다.The first damper and the second damper may be wet dampers cooled by oil.
상기 제1댐퍼는 상기 제1로터의 반경방향 내측에 배치될 수 있다.The first damper may be disposed inside the first rotor in a radial direction.
상기 제1댐퍼는 상기 로터 슬리브의 반경방향 연장부의 후방에 배치되고 상기 축방향 연장부의 반경방향 내측에 배치될 수 있다.The first damper may be disposed behind the radially extending portion of the rotor sleeve and disposed radially inside the axially extending portion.
상기 제2댐퍼는 상기 제1로터보다 축방향 후방에서 상기 제1댐퍼에 직렬로 연결될 수 있다.The second damper may be serially connected to the first damper in an axial direction rearward of the first rotor.
상기 제2댐퍼는 상기 제2로터의 반경방향 내측에 배치될 수 있다.The second damper may be disposed inside the second rotor in a radial direction.
상기 제2댐퍼는 상기 엔진클러치보다 전방에 배치될 수 있다.The second damper may be disposed ahead of the engine clutch.
상기 제1댐퍼는, 상기 로터 슬리브에 연결되는 제1커버플레이트; 상기 제2댐퍼에 연결되는 드리븐플레이트; 및 상기 제1커버플레이트의 회전력을 상기 드리븐플레이트에 전달하는 제1댐퍼스프링;을 포함할 수 있다.The first damper may include a first cover plate connected to the rotor sleeve; a driven plate connected to the second damper; and a first damper spring that transmits the rotational force of the first cover plate to the driven plate.
상기 제2댐퍼는, 상기 제1댐퍼와 연결되어 상기 제1댐퍼의 회전력을 전달받는 제2커버플레이트; 상기 엔진클러치와 연결되는 드리븐허브; 및 상기 제2커버플레이트의 회전력을 상기 드리븐허브에 전달하는 제2댐퍼스프링;을 포함할 수 있다.The second damper may include a second cover plate connected to the first damper and receiving rotational force of the first damper; a driven hub connected to the engine clutch; and a second damper spring that transmits the rotational force of the second cover plate to the driven hub.
상기 제1댐퍼스프링은 코일스프링 형태일 수 있으며, 복수 개의 제1댐퍼스프링이 원주방향을 따라 소정의 간격을 두고 배치되며 상기 제1커버플레이트에 설치될 수 있다. 상기 제1댐퍼스프링은 호 형상 또는 직선 형상 등 원주방향을 따라 실질적으로 연장되는 여러가지 형태 중 적어도 어느 하나의 형태로 배열될 수 있다. 상기 제1댐퍼스프링은 상기 제1커버플레이트에 의해 축방향과 원주방향과 반경방향으로 지지될 수 있다.The first damper spring may be in the form of a coil spring, and a plurality of first damper springs may be arranged at predetermined intervals along a circumferential direction and installed on the first cover plate. The first damper spring may be arranged in at least one of various shapes extending substantially along the circumferential direction, such as an arc shape or a straight line shape. The first damper spring may be supported in axial, circumferential and radial directions by the first cover plate.
상기 드리븐플레이트는 원주방향으로 이격 배치되는 복수 개의 상기 제1댐퍼스프링들 사이의 공간에 배치되는 제1네크부를 복수 개 구비할 수 있다.The driven plate may include a plurality of first neck parts disposed in a space between the plurality of first damper springs spaced apart in a circumferential direction.
상기 제1댐퍼스프링은 상기 드리븐플레이트에 의해 압축방향으로 가압되며 상기 제1커버플레이트의 회전력을 상기 드리븐플레이트에 전달할 수 있다. The first damper spring is pressurized by the driven plate in a compression direction, and may transmit rotational force of the first cover plate to the driven plate.
구체적으로, 엔진의 회전력은 제1커버플레이트에 전달되고, 제1커버플레이트에 의해 지지되는 제1댐퍼스프링이 상기 제1네크부를 회전 방향으로 가압하여 드리븐플레이트가 회전할 수 있다. 이때 제1댐퍼스프링이 엔진의 불균일한 출력을 흡수하며 이를 드리븐플레이트에 균일하게 전달할 수 있다.Specifically, the rotational force of the engine is transmitted to the first cover plate, and the first damper spring supported by the first cover plate presses the first neck portion in a rotational direction so that the driven plate can rotate. At this time, the first damper spring can absorb the non-uniform power of the engine and transmit it uniformly to the driven plate.
상기 제2커버플레이트는 상기 드리븐플레이트에 연결될 수 있다.The second cover plate may be connected to the driven plate.
상기 제2댐퍼스프링은 호 형상으로 연장되는 코일스프링 형태일 수 있으며, 복수 개의 제2댐퍼스프링이 원주방향을 따라 소정의 간격을 두고 배치되며 상기 제2커버플레이트에 설치될 수 있다. 상기 제2댐퍼스프링은 상기 제2커버플레이트에 의해 축방향과 원주방향과 반경방향으로 지지될 수 있다.The second damper spring may be in the form of a coil spring extending in an arc shape, and a plurality of second damper springs may be disposed at predetermined intervals along a circumferential direction and installed on the second cover plate. The second damper spring may be supported in axial, circumferential and radial directions by the second cover plate.
상기 드리븐허브는 원주방향으로 이격 배치되는 복수 개의 상기 제2댐퍼스프링들 사이의 공간에 배치되는 제2네크부를 복수 개 구비할 수 있다.The driven hub may include a plurality of second neck parts disposed in a space between a plurality of second damper springs spaced apart in a circumferential direction.
상기 제2댐퍼스프링은 상기 드리븐허브에 의해 압축방향으로 가압되며 상기 제2커버플레이트의 회전력을 상기 드리븐허브에 전달할 수 있다. The second damper spring is pressurized by the driven hub in a compression direction, and may transmit rotational force of the second cover plate to the driven hub.
구체적으로, 제1댐퍼스프링을 통해 어느 정도 균일화되며 드리븐플레이트에 전달된 회전력은 상기 제2커버플레이트에 전달되고, 제2커버플레이트에 의해 지지되는 제2댐퍼스프링이 상기 제2네크부를 회전 방향으로 가압하여 드리븐허브가 회전할 수 있다. 이때 제2댐퍼스프링이 불균일한 출력을 마저 흡수하며 이를 드리븐허브에 더욱 균일하게 전달할 수 있다.Specifically, the rotational force that is uniformed to some extent through the first damper spring and transmitted to the driven plate is transmitted to the second cover plate, and the second damper spring supported by the second cover plate rotates the second neck in the direction of rotation. Driven hub can rotate by pressurizing. At this time, the second damper spring absorbs even the non-uniform output, and it can be transmitted more uniformly to the driven hub.
상기 제2댐퍼의 댐핑력이 상기 제1댐퍼보다 더 크도록 설계할 수 있다. 그러면, 출력의 작은 불균일은 제1댐퍼가 모두 커버할 수 있고, 제1댐퍼가 커버하는 수준을 넘어서는 불균일한 출력을 제2댐퍼가 커버할 수 있다.The damping force of the second damper may be designed to be greater than that of the first damper. Then, the first damper can cover all of the small unevenness of the output, and the second damper can cover the unevenness of the output beyond the level covered by the first damper.
상기 제1댐퍼의 제1커버플레이트는 상기 제1댐퍼스프링보다 반경방향 외측에서 상기 로터 슬리브의 축방향 연장부에 연결될 수 있다.A first cover plate of the first damper may be connected to an axially extending portion of the rotor sleeve at a radially outer side of the first damper spring.
상기 제1댐퍼의 제1댐퍼스프링은 후방으로는 상기 제1커버플레이트에 의해 지지될 수 있고, 전방으로는 상기 로터 슬리브에 의해 지지될 수 있다. 구체적으로, 상기 제1댐퍼스프링은, 상기 로터 슬리브의 반경방향 연장부에 의해 축방향으로 지지되고 상기 로터 슬리브의 축방향 연장부에 의해 반경방향으로 지지되며 상기 로터 슬리브에 구비된 제1둘레방향 지지부에 의해 원주방향으로 지지될 수 있다.The first damper spring of the first damper may be supported by the first cover plate in a rearward direction and supported by the rotor sleeve in a forward direction. Specifically, the first damper spring is supported in the axial direction by the radially extending portion of the rotor sleeve, supported in the radial direction by the axially extending portion of the rotor sleeve, and provided in the first circumferential direction of the rotor sleeve. It may be supported in the circumferential direction by the support portion.
상기 제2댐퍼와 상기 엔진클러치는 회전방향으로 회전 구속되고 축방향으로는 상대적인 슬라이딩을 허용하는 스플라인 연결될 수 있다.The second damper and the engine clutch may be connected with splines that are rotationally constrained in a rotational direction and allow relative sliding in an axial direction.
상기 제1댐퍼와 제2댐퍼에는 각각 댐핑 작용이 이루어지지 않는 제1프리앵글과 제2프리앵글이 존재할 수 있다. 즉, 상기 이웃하는 두 제1댐퍼스프링 사이에 배치된 제1네크부의 원주방향 양측은, 각각 이와 원주방향으로 마주하는 상기 제1댐퍼스프링의 원주방향 단부들과 제1프리앵글만큼 이격될 수 있다. 마찬가지로, 상기 이웃하는 두 제2댐퍼스프링 사이에 배치된 제2네크부의 원주방향 양측은, 각각 이와 원주방향으로 마주하는 상기 제2댐퍼스프링의 원주방향 단부들과 제2프리앵글만큼 이격될 수 있다.The first damper and the second damper may have a first free angle and a second free angle, each of which does not have a damping action. That is, both sides in the circumferential direction of the first neck portion disposed between the two neighboring first damper springs may be spaced apart from circumferential ends of the first damper spring facing each other in the circumferential direction by a first free angle. . Similarly, both sides in the circumferential direction of the second neck portion disposed between the two neighboring second damper springs may be spaced apart from circumferential ends of the second damper spring facing each other in the circumferential direction by a second free angle. .
상기 하이브리드 구동 모듈에 설치된 토셔널 댐퍼의 프리앵글은 상기 제1프리앵글과 제2프리앵글의 합일 수 있다.A free angle of the torsional damper installed in the hybrid driving module may be the sum of the first free angle and the second free angle.
상기 제1프리앵글과 상기 제2프리앵글은 실질적으로 대응할 수 있다. 그러면 토셔널 댐퍼가 가져야 하는 프리앵글을 제1댐퍼와 제2댐퍼에 고루 분배하여, 제1네크부와 제2네크부의 원주방향 폭을 최대한 확보할 수 있다.The first free angle and the second free angle may substantially correspond to each other. Then, the free angle that the torsional damper should have is evenly distributed to the first damper and the second damper, so that the width of the first neck portion and the second neck portion in the circumferential direction can be secured as much as possible.
상기 제1댐퍼에는 상기 제1댐퍼에 제1 히스테리시스 토크를 부여하는 제1히스테리시스 장치가 마련되고, 상기 제2댐퍼에는 상기 제2댐퍼에 제2 히스테리시스 토크를 부여하는 제2히스테리시스 장치가 마련될 수 있다. 즉 직렬로 연결된 두 댐퍼에 모두 히스테리시스 토크를 부여하여, 엔진의 아이들 시 소음 저감 효과를 더 높일 수 있다.A first hysteresis device for applying a first hysteresis torque to the first damper may be provided in the first damper, and a second hysteresis device for applying a second hysteresis torque to the second damper may be provided in the second damper. there is. That is, by applying hysteresis torque to both dampers connected in series, the effect of reducing noise when the engine is idling can be further increased.
상기 제2히스테리시스 토크는 상기 제1히스테리시스 토크와 같거나 그보다 더 클 수 있다. 그러면, 엔진의 아이들링 상태에서 제1댐퍼와 제2댐퍼가 모두 히스테리시스 토크에 의해 공진을 일으키지 않아 소음 저감을 보다 효과적으로 이룰 수 있다.The second hysteresis torque may be equal to or greater than the first hysteresis torque. Then, both the first damper and the second damper do not generate resonance due to the hysteresis torque in the idling state of the engine, so that noise can be reduced more effectively.
상기 제1히스테리시스 장치는, 축방향으로 상기 로터 슬리브와 상기 드리븐플레이트 사이에 배치되는 제1전방마찰와셔; 축방향으로 상기 드리븐플레이트와 상기 제1커버플레이트 사이에 배치되는 제1후방마찰와셔; 및 축방향으로 상기 드리븐플레이트와 상기 제1전방마찰와셔 또는 제1후방마찰와셔 사이에 배치되는 제1탄성체;를 포함할 수 있다. The first hysteresis device may include a first front friction washer disposed between the rotor sleeve and the driven plate in an axial direction; a first rear friction washer disposed between the driven plate and the first cover plate in an axial direction; and a first elastic body disposed between the driven plate and the first front friction washer or the first rear friction washer in an axial direction.
상기 제1탄성체는 제1탄성와셔일 수 있다.The first elastic body may be a first elastic washer.
제1탄성와셔는 예압을 가하는 상태로 상기 드리븐플레이트와 상기 제1후방마찰와셔 사이에 배치될 수 있다. 상기 제1히스테리시스 토크는 상기 제1탄성와셔의 예압에 의해 직관적으로 결정될 수 있다.A first elastic washer may be disposed between the driven plate and the first rear friction washer in a state in which a preload is applied. The first hysteresis torque may be intuitively determined by the preload of the first elastic washer.
상기 제2히스테리시스 장치는, 상기 드리븐허브의 전방에서, 축방향으로 상기 제2커버플레이트와 상기 드리븐허브 사이에 배치되는 제2전방마찰와셔; 상기 드리븐허브의 후방에서, 축방향으로 상기 드리븐허브와 상기 제2커버플레이트 사이에 배치되는 제2후방마찰와셔; 및 축방향으로 상기 드리븐허브와 상기 제2전방마찰와셔 또는 제2후방마찰와셔 사이에 배치되는 제2탄성체;를 포함할 수 있다. The second hysteresis device may include a second front friction washer disposed between the second cover plate and the driven hub in an axial direction in front of the driven hub; a second rear friction washer disposed between the driven hub and the second cover plate in an axial direction at a rear of the driven hub; and a second elastic body disposed between the driven hub and the second front friction washer or the second rear friction washer in an axial direction.
상기 제2탄성체는 제2탄성와셔일 수 있다.The second elastic body may be a second elastic washer.
제2탄성와셔는 예압을 가하는 상태로 상기 드리븐허브와 상기 제2후방마찰와셔 사이에 배치될 수 있다. 상기 제2히스테리시스 토크는 상기 제2탄성와셔의 예압에 의해 직관적으로 결정될 수 있다.A second elastic washer may be disposed between the driven hub and the second rear friction washer in a state in which a preload is applied. The second hysteresis torque may be intuitively determined by the preload of the second elastic washer.
여기서, 상기 제1탄성와셔와 상기 제2탄성와셔가 축방향으로 동일한 방향으로 상기 드리븐플레이트와 드리븐허브를 가압하므로, 두 탄성와셔의 탄성력이 서로 영향을 미치지 않을 수 있다.Here, since the first elastic washer and the second elastic washer press the driven plate and the driven hub in the same axial direction, the elastic force of the two elastic washers may not affect each other.
그리고, 상기 엔진클러치가 작동하여 이와 연결된 드리븐허브가 전방으로 축력을 받더라도, 제1탄성와셔와 제2탄성와셔는 상기 축력에 영향을 받지 않고 설계된 예압을 지속적으로 드리븐플레이트와 드리븐허브에 작용할 수 있다.In addition, even when the engine clutch operates and the driven hub connected thereto receives an axial force forward, the first elastic washer and the second elastic washer are not affected by the axial force and the designed preload can continuously act on the driven plate and the driven hub. .
본 발명의 하이브리드 구동 모듈에 따르면, 상기 제1댐퍼는 상기 제1로터의 반경방향 내측에 배치되고 제2댐퍼는 상기 제2로터의 반경방향 내측에 배치되어, 축방향으로 상기 하이브리드 구동 모듈을 상당히 컴팩트하게 설계할 수 있다.According to the hybrid driving module of the present invention, the first damper is disposed inside the first rotor in the radial direction and the second damper is disposed inside the second rotor in the radial direction, so that the hybrid driving module is considerably moved in the axial direction. It can be designed compactly.
본 발명에 따르면, 제1댐퍼와 제2댐퍼를 직렬로 연결하여 토셔널 댐퍼를 구성함으로써 저강성 설계가 가능하다.According to the present invention, a torsional damper is configured by connecting the first damper and the second damper in series, thereby enabling a low rigidity design.
본 발명에 따르면, 제1댐퍼의 제1커버플레이트를 상기 제1댐퍼스프링보다 반경방향 외측에서 상기 로터 슬리브의 축방향 연장부에 연결하여, 회전중심으로부터 제1댐퍼스프링을 반경방향으로 최대한 멀리 배치할 수 있다. 이에 따라, 제1로터의 반경방향 내측에 배치되어 반경을 최대한 확보하지 못한 설계 조건에서도, 제1네크부의 원주방향 폭을 최대한 확보하여 드리븐플레이트의 두께를 더 얇게 할 수 있다. 이는 생산단가 절감, 무게 절감 등의 효과로 이어질 수 있다.According to the present invention, the first cover plate of the first damper is connected to the axial extension of the rotor sleeve at a radially outer side than the first damper spring, and the first damper spring is disposed as far away as possible in the radial direction from the center of rotation. can do. Accordingly, even under a design condition in which the radius is not secured as much as possible by being disposed inside the first rotor in the radial direction, the thickness of the driven plate can be reduced by maximizing the width of the first neck in the circumferential direction. This can lead to effects such as cost reduction and weight reduction.
본 발명에 따르면, 로터 슬리브가 제1댐퍼의 커버플레이트의 기능을 함께 함으로써, 하이브리드 구동 모듈을 축방향으로 더 컴팩트하게 설계할 수 있다.According to the present invention, since the rotor sleeve serves as the cover plate of the first damper, the hybrid drive module can be designed more compactly in the axial direction.
본 발명에 따르면, 토셔널 댐퍼가 가져야 하는 프리앵글을 제1댐퍼와 제2댐퍼에 고루 분배하여, 제1네크부와 제2네크부의 원주방향 폭을 최대한 확보할 수 있다. 이에 따라 제1로터와 제2로터의 반경방향 내측에 배치되어 반경을 최대한 확보하지 못한 설계 조건에서도, 제1네크부와 제2네크부의 원주방향 폭을 최대한 확보하여 드리븐플레이트와 드리븐허브의 두께를 더 얇게 할 수 있다. 이는 생산단가 절감, 무게 절감 등의 효과로 이어질 수 있다.According to the present invention, the free angle that the torsional damper should have is evenly distributed to the first damper and the second damper, so that the width of the first neck portion and the second neck portion in the circumferential direction can be secured as much as possible. Accordingly, even under design conditions where the radius is not secured as much as possible by being disposed inside the radial direction of the first rotor and the second rotor, the circumferential width of the first neck part and the second neck part is secured as much as possible to reduce the thickness of the driven plate and the driven hub. can be made thinner This can lead to effects such as cost reduction and weight reduction.
본 발명에 따르면, 직렬로 연결된 제1댐퍼와 제2댐퍼에 모두 각각 히스테리시스 토크가 적용되어 소음 저감 효과를 높일 수 있다. 또한 엔진으로부터 더 멀리 배치된 제2댐퍼에 작용하는 제2히스테리시스 토크가 엔진과 보다 가까운 제1댐퍼에 작용하는 제1히스테리시스 토크 이상이 되도록 설정되어, 직렬로 연결된 두 댐퍼 모두 엔진의 아이들링 출력의 진폭에 대응하여 히스테리시스 토크가 설계 의도대로 작용하도록 함으로써, 소음 저감 효과를 더욱 확실히 발휘할 수 있다.According to the present invention, a hysteresis torque is applied to both the first damper and the second damper connected in series to increase the noise reduction effect. In addition, the second hysteresis torque acting on the second damper disposed farther from the engine is set to be greater than or equal to the first hysteresis torque acting on the first damper closer to the engine, so that both dampers connected in series have an amplitude of idling output of the engine. Correspondingly, the noise reduction effect can be exhibited more reliably by allowing the hysteresis torque to act as designed.
또한 본 발명에 따르면, 제1댐퍼와 제2댐퍼에 각각 히스테리시스 토크를 부여하는 제1탄성와셔와 제2탄성와셔가 엔진클러치의 작동 여부와 관계없이 설계된 예압대로 제1댐퍼와 제2댐퍼에 각각 탄성력을 가하여, 의도된 히스테리시스 토크를 부여할 수 있다.In addition, according to the present invention, the first elastic washer and the second elastic washer respectively imparting hysteresis torque to the first damper and the second damper are respectively applied to the first damper and the second damper according to the designed preload regardless of whether the engine clutch is operated or not. An intended hysteresis torque can be imparted by applying an elastic force.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the effects described above, specific effects of the present invention will be described together while explaining specific details for carrying out the present invention.
도 1은 본 발명에 따른 하이브리드 구동 모듈의 토셔널 댐퍼를 확대하여 나타낸 측면 단면도이다.1 is an enlarged side cross-sectional view of a torsional damper of a hybrid driving module according to the present invention.
도 2는 도 1에 도시된 토셔널 댐퍼의 제1댐퍼의 제1커버플레이트와 제1댐퍼스프링과 드리븐플레이트를 정면에서 바라본 도면이다.2 is a front view of a first cover plate, a first damper spring, and a driven plate of a first damper of the torsional damper shown in FIG. 1;
도 3은 도 2의 드리븐플레이트의 제1네크부 부위를 확대하여 나타낸 확대도이다.3 is an enlarged view showing a first neck portion of the driven plate of FIG. 2 in an enlarged manner;
도 4는 도 1에 도시된 토셔널 댐퍼의 제2댐퍼의 제2리어커버플레이트와 제2댐퍼스프링과 드리븐 허브를 정면에서 바라본 도면이다.4 is a front view of a second rear cover plate, a second damper spring, and a driven hub of a second damper of the torsional damper shown in FIG. 1;
도 5는 도 4의 드리븐허브의 제2네크부 부위를 확대하여 나타낸 확대도이다.5 is an enlarged view showing a second neck portion of the driven hub of FIG. 4 in an enlarged manner.
도 6은 제1댐퍼와 제2댐퍼에 각각 적용된 히스테리시스 토크를 회전각도에 대한 토크 선도로 나타낸 것이다.6 is a torque diagram showing hysteresis torque applied to the first damper and the second damper, respectively, with respect to the rotation angle.
[부호의 설명][Description of code]
10: 커버 M1: 제1로터(제1모터, 보조모터) 21: 로터 샤프트 23: 로터 슬리브 231: 반경방향 연장부 233: 축방향 연장부 235: 제1둘레방향 지지부 G: 스프링 가이드 30: 제1댐퍼(제1토셔널댐퍼) 31: 제1커버플레이트 311: 원심측 고정부 313: 제1스프링 커버부 315: 제2둘레방향 지지부 317: 제1커버바디부 319: 제1스토퍼 33: 제1댐퍼스프링 331: 제1댐퍼대경스프링 333: 제1댐퍼소경스프링 35: 드리븐플레이트 351: 제1네크부 353: 드리븐바디부 355: 제1스토퍼수용부 357: 제1결착부 40: 제1히스테리시스 장치 41: 제1전방마찰와셔 43: 제1후방마찰와셔 45: 제1탄성와셔 50: 제2댐퍼(제2토셔널댐퍼) 51: 제2커버플레이트 53: 제2프론트커버플레이트 531: 제2스프링 커버부 533: 제3둘레방향 지지부 535: 제2커버바디부 537: 제2결착부 55: 제2리어커버플레이트 551: 제3스프링 커버부 553: 제4둘레방향 지지부 555: 제3커버바디부 557: 제2스토퍼 57: 제2댐퍼스프링 571: 제2댐퍼대경스프링 573: 제2댐퍼소경스프링 59: 드리븐허브 591: 제2네크부 593: 허브바디부 595: 댐퍼측 스플라인 597: 제2스토퍼수용부 60: 제2히스테리시스 장치 61: 제2전방마찰와셔 63: 제2후방마찰와셔 65: 제2탄성와셔 70: 이너 스플라인허브 71: 엔진클러치측 스플라인 80: 엔진클러치 M2: 제2로터(제2모터, 구동모터) 90: 로터 허브 A1: 제1프리앵글 A2: 제2프리앵글 T1: 제1 히스테리시스 토크 T2: 제2 히스테리시스 토크Reference Numerals 10: cover M1: first rotor (first motor, auxiliary motor) 21: rotor shaft 23: rotor sleeve 231: radial extension 233: axial extension 235: first circumferential support G: spring guide 30: th 1 damper (first torsional damper) 31: first cover plate 311: distal side fixing part 313: first spring cover part 315: second circumferential support part 317: first cover body part 319: first stopper 33: first Reference Numerals 1 damper spring 331: first damper large diameter spring 333: first damper small diameter spring 35: driven plate 351: first neck part 353: driven body part 355: first stopper receiving part 357: first fastening part 40: first hysteresis Device 41: first front friction washer 43: first rear friction washer 45: first elastic washer 50: second damper (second torsional damper) 51: second cover plate 53: second front cover plate 531: second Spring cover part 533: Third circumferential support part 535: Second cover body part 537: Second fastening part 55: Second rear cover plate 551: Third spring cover part 553: Fourth circumferential support part 555: Third cover body Part 557: second stopper 57: second damper spring 571: second damper large diameter spring 573: second damper small diameter spring 59: driven hub 591: second neck part 593: hub body part 595: damper side spline 597: second Stopper receiving portion 60: second hysteresis device 61: second front friction washer 63: second rear friction washer 65: second elastic washer 70: inner spline hub 71: engine clutch side spline 80: engine clutch M2: second rotor ( 2nd motor, driving motor) 90: Rotor hub A1: 1st free angle A2: 2nd free angle T1: 1st hysteresis torque T2: 2nd hysteresis torque
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 다양한 변경을 가할 수 있고 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 따라서 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 어느 하나의 실시예의 구성과 다른 실시예의 구성을 서로 치환하거나 부가하는 것은 물론 본 발명의 기술적 사상과 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The present invention is not limited to the embodiments disclosed below, and various changes may be applied and may be implemented in various different forms. Only this embodiment is provided to complete the disclosure of the present invention and to fully inform those skilled in the art of the scope of the invention. Therefore, the present invention is not limited to the embodiments disclosed below, but all changes and equivalents included in the technical spirit and scope of the present invention as well as substitution or addition of the configuration of one embodiment and the configuration of another embodiment each other to substitutes.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께가 과장되게 크거나 작게 표현될 수 있으나, 이로 인해 본 발명의 보호범위가 제한적으로 해석되어서는 아니 될 것이다.The accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the accompanying drawings, and all changes and equivalents included in the spirit and technical scope of the present invention are included. It should be understood to include water or substitutes. In the drawings, components may be exaggeratedly large or small in size or thickness in consideration of convenience of understanding, etc., but due to this, the scope of protection of the present invention should not be construed as being limited.
본 명세서에서 사용한 용어는 단지 특정한 구현예나 실시예를 설명하기 위해 사용되는 것으로, 본 발명을 한정하려는 의도가 아니다. 그리고 단수의 표현은, 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 명세서에서 ~포함하다, ~이루어진다 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이다. 즉 명세서에서 ~포함하다, ~이루어진다 등의 용어는. 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들이 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this specification are only used to describe specific implementations or examples, and are not intended to limit the present invention. And expressions in the singular include plural expressions unless the context clearly dictates otherwise. In the specification, terms such as "comprise" and "consist of" are intended to designate that features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist. That is, in the specification, terms such as ~ include, ~ consist of, etc. It should be understood that it does not preclude the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers, such as first and second, may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.
어떤 구성요소가 다른 구성요소의 "상부에 있다"거나 "하부에 있다"고 언급된 때에는, 그 다른 구성요소의 바로 위에 배치되어 있는 것뿐만 아니라 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When an element is referred to as being “on top” or “under” another element, it should be understood that other elements may exist in the middle as well as being directly above the other element. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
실시예의 하이브리드 구동 모듈은 축을 기준으로 대칭을 이루므로, 작도의 편의 상, 축을 기준으로 반만 도시한다. 또한 설명의 편의 상, 하이브리드 구동 모듈의 회전의 중심을 이루는 축의 길이방향을 따르는 방향을 축방향이라 한다. 즉 전후 방향 또는 축방향은 회전축과 나란한 방향으로서, 전방(앞쪽)은 동력원인 어느 일 방향, 가령 엔진 쪽으로 향하는 방향을 의미하고, 후방(뒤쪽)은 다른 일 방향, 가령 변속기 쪽으로 향하는 방향을 의미한다. 따라서 전면(앞면)이란 그 표면이 전방을 바라보는 면을 의미하고, 후면(뒷면)이란 그 표면이 후방을 바라보는 면을 의미한다.Since the hybrid driving module of the embodiment is symmetrical about the axis, only half of the axis is shown for convenience of drawing. Also, for convenience of explanation, a direction along the longitudinal direction of an axis forming the center of rotation of the hybrid driving module is referred to as an axial direction. That is, the front-rear direction or the axial direction is a direction parallel to the axis of rotation, and the front (front) means a direction toward the power source, such as the engine, and the rear (rear) means the direction toward the other direction, such as the transmission. . Therefore, the front side (front side) means the side where the surface faces forward, and the rear side (rear side) means the side where the surface looks backward.
반경방향 또는 방사 방향이라 함은 상기 회전축과 수직한 평면 상에서 상기 회전축의 중심을 지나는 직선을 따라 상기 중심에 가까워지는 방향 또는 상기 중심으로부터 멀어지는 방향을 의미한다. 상기 중심으로부터 반경방향으로 멀어지는 방향을 원심방향이라 하고, 상기 중심에 가까워지는 방향을 구심방향이라 한다.The radial direction or the radial direction means a direction approaching the center or a direction away from the center along a straight line passing through the center of the rotation axis on a plane perpendicular to the rotation axis. A direction away from the center in a radial direction is referred to as a centrifugal direction, and a direction approaching the center is referred to as a centripetal direction.
둘레방향 또는 원주방향이라 함은 상기 회전축의 주위를 둘러싸는 방향을 의미한다. 외주라 함은 외측 둘레, 내주라 함은 내측 둘레를 의미한다. 따라서 외주면은 상기 회전축을 등지는 방향의 면이고, 내주면은 상기 회전축을 바라보는 방향의 면을 의미한다.The circumferential direction or circumferential direction means a direction that surrounds the circumference of the rotating shaft. The outer circumference means an outer circumference, and the inner circumference means an inner circumference. Therefore, the outer circumferential surface is a surface in a direction facing away from the rotational axis, and the inner circumferential surface means a surface in a direction facing the rotational axis.
둘레방향 측면이라 함은 그 면의 법선이 둘레방향을 향하는 면을 의미한다.The circumferential side surface means a surface whose normal line is directed in the circumferential direction.
본 발명에 따른 일 실시예로서 도 1에 도시된 하이브리드 구동 모듈은, 커버(10) 내부에 제1모터(M1)와 제2모터(M2)가 설치된다. 제1모터(M1)는 엔진을 시동하거나 엔진의 회전력을 전기에너지로 회생하는 기능을 할 수 있고, 제2모터(M2)는 해당 하이브리드 구동 모듈이 탑재된 차량의 이동을 위한 구동력을 제공할 수 있다.In the hybrid drive module shown in FIG. 1 as an embodiment according to the present invention, a first motor M1 and a second motor M2 are installed inside the cover 10 . The first motor M1 may function to start the engine or regenerate rotational force of the engine into electrical energy, and the second motor M2 may provide driving force for movement of the vehicle equipped with the corresponding hybrid drive module. there is.
상기 하이브리드 구동 모듈은, 커버(10)의 전방 중앙에 배치되고 축방향으로 연장되며, 엔진과 연결되는 로터 샤프트(21)를 포함한다.The hybrid drive module includes a rotor shaft 21 disposed at the front center of the cover 10, extending in an axial direction, and connected to an engine.
상기 로터 샤프트(21)는 상기 커버(10)와 베어링으로 연결되어, 상기 커버(10)에 대해 회전 가능하게 지지된다.The rotor shaft 21 is connected to the cover 10 by a bearing and is rotatably supported with respect to the cover 10 .
상기 로터 샤프트(21)는 로터 슬리브(23)와 일체로 연결된다. 즉 상기 로터 슬리브(23)는, 상기 로터 샤프트(21)를 통해, 엔진의 회전력을 전달받을 수 있고, 상기 커버(10)에 대해 회전 가능하게 지지될 수 있다.The rotor shaft 21 is integrally connected with the rotor sleeve 23. That is, the rotor sleeve 23 can receive rotational force of the engine through the rotor shaft 21 and can be rotatably supported with respect to the cover 10 .
상기 로터 슬리브(23)는, 상기 로터 샤프트(21)로부터 반경방향 외측으로 연장되는 반경방향 연장부(231)와, 상기 반경방향 연장부(231)의 원심 단부에서 축방향으로 연장되는 축방향 연장부(233)를 포함할 수 있다.The rotor sleeve 23 includes a radial extension 231 extending radially outward from the rotor shaft 21 and an axial extension extending axially from a distal end of the radial extension 231. A section 233 may be included.
상기 반경방향 연장부(231)는 상기 로터 샤프트(21)를 지지하기 위한 베어링이 설치되는 커버(10)의 형상과 실질적으로 대응하는 형태로 연장될 수 있다.The radially extending portion 231 may extend in a shape substantially corresponding to a shape of the cover 10 in which a bearing for supporting the rotor shaft 21 is installed.
상기 축방향 연장부(233)의 외측 둘레에는 제1모터의 제1로터(M1)가 고정 설치된다.A first rotor M1 of a first motor is fixedly installed on an outer circumference of the axial extension part 233 .
상기 축방향 연장부(233)는 상기 반경방향 연장부(231)의 원심 단부로부터 후방으로 연장될 수 있다. 이에 따라 상기 반경방향 연장부(231)의 후방이면서 제1로터(M1)가 설치된 축방향 연장부(233)의 반경방향 내측에는 토셔널 댐퍼가 수용될 수 있는 공간이 마련된다.The axial extension portion 233 may extend rearward from a distal end of the radial extension portion 231 . Accordingly, a space in which the torsional damper can be accommodated is provided at the rear of the radially extending portion 231 and radially inside of the axially extending portion 233 in which the first rotor M1 is installed.
제2모터(M2)는 상기 제1모터(M1)보다 후방에 배치될 수 있다. 상기 제2모터(M2)는 로터 허브(90)의 외측 둘레에 마련되고, 상기 제2모터(M2)의 제2로터(M2)는 상기 로터 허브(90)의 외주에 고정 설치된다.The second motor M2 may be disposed behind the first motor M1. The second motor M2 is provided on the outer circumference of the rotor hub 90 , and the second rotor M2 of the second motor M2 is fixedly installed on the outer circumference of the rotor hub 90 .
상기 로터 허브(90)는 상기 하이브리드 구동 모듈의 출력단에 연결된다. 그리고 상기 하이브리드 구동 모듈의 출력단은 미도시된 변속기에 연결된다. 따라서 상기 로터 허브(90)의 회전력은 출력단을 통해 변속기에 전달된다. 즉 제2모터(M2)가 회전하면, 그 회전력은 변속기에 전달된다. The rotor hub 90 is connected to the output end of the hybrid drive module. And, the output terminal of the hybrid drive module is connected to a transmission not shown. Therefore, the rotational force of the rotor hub 90 is transmitted to the transmission through the output stage. That is, when the second motor M2 rotates, the rotational force is transmitted to the transmission.
로터 슬리브(23)는 엔진클러치(80)를 통해 상기 로터 허브(90)에 연결된다. 따라서 엔진클러치(80)가 로터 슬리브(23)와 로터 허브(90)를 연결하지 않으면 제2모터(M2)의 회전력만이 출력단에 전달되고, 엔진클러치(80)가 이들을 연결하면 제2모터(M2)의 회전력에 더하여 엔진의 회전력까지 출력단에 전달된다.The rotor sleeve 23 is connected to the rotor hub 90 through an engine clutch 80. Therefore, if the engine clutch 80 does not connect the rotor sleeve 23 and the rotor hub 90, only the rotational force of the second motor M2 is transmitted to the output end, and if the engine clutch 80 connects them, the second motor ( In addition to the torque of M2), the torque of the engine is transmitted to the output stage.
상기 엔진클러치(80)는 상기 로터 허브(90)의 반경방향 내측에 설치된다. 그리고 상기 제2로터(M2) 및 로터 허브(90)는, 상기 엔진클러치(80)보다 더 전방으로 연장된다. 이에 따라, 상기 엔진클러치(80)의 전방이면서 제2로터(M2)가 설치된 로터 허브(90)의 반경방향 내측에는 토셔널 댐퍼가 수용될 수 있는 공간이 마련된다.The engine clutch 80 is installed inside the rotor hub 90 in the radial direction. Also, the second rotor M2 and the rotor hub 90 extend more forward than the engine clutch 80 . Accordingly, a space in which the torsional damper can be accommodated is provided in the front of the engine clutch 80 and inside the rotor hub 90 in the radial direction in which the second rotor M2 is installed.
상기 토셔널 댐퍼는 직렬로 연결된 제1댐퍼(30)와 제2댐퍼(50)를 포함할 수 있다. 이처럼 제1댐퍼(30)와 제2댐퍼(50)를 직렬로 연결하여 토셔널 댐퍼를 구성하면 저강성 설계가 가능하다.The torsional damper may include a first damper 30 and a second damper 50 connected in series. As such, if the first damper 30 and the second damper 50 are connected in series to form a torsional damper, a low rigidity design is possible.
상기 토셔널 댐퍼는 구동 계통에서 상기 로터 슬리브(23)와 상기 엔진클러치(80) 사이에 위치한다.The torsional damper is located between the rotor sleeve 23 and the engine clutch 80 in the driving system.
상기 엔진클러치(80)는 엔진클러치(80)보다 후방에 배치된 피스톤플레이트(미도시)에 의해 가압되거나 가압 해제되어 록업 되거나 록업 해제될 수 있다. 즉 피스톤플레이트가 전방으로 이동하며 엔진클러치(80)의 마찰판들을 전방으로 가압하면 록업이 이루어지고, 피스톤플레이트가 후방으로 이동하여 이러한 가압이 해제되면 록업이 해제될 수 있다.The engine clutch 80 may be locked up or unlocked by being pressurized or released by a piston plate (not shown) disposed rearward of the engine clutch 80 . That is, when the piston plate moves forward and presses the friction plates of the engine clutch 80 forward, lockup is performed, and when the piston plate moves rearward and this pressurization is released, lockup can be released.
상기 피스톤플레이트가 상기 엔진클러치(80)를 가압함에 따라, 상기 엔진클러치(80)에 연결된 토셔널 댐퍼도 상기 엔진클러치(80)가 전방으로 가압되는 힘의 영향을 받을 수 있다. 이에 따라 상기 토셔널 댐퍼와 상기 엔진클러치(80)는 스플라인 연결될 수 있다. 그러면 토셔널 댐퍼의 회전 및/또는 엔진클러치(80)의 회전은 상호 구속되지만, 엔진클러치(80)의 축방향 이동이 토셔널 댐퍼에 전하여 지는 영향을 최소화할 수 있다.As the piston plate presses the engine clutch 80, the torsional damper connected to the engine clutch 80 may also be affected by the force that presses the engine clutch 80 forward. Accordingly, the torsional damper and the engine clutch 80 may be spline-connected. Then, although the rotation of the torsional damper and/or the rotation of the engine clutch 80 are mutually restricted, the effect of the axial movement of the engine clutch 80 on the torsional damper can be minimized.
상기 제1댐퍼(30)와 제2댐퍼(50)는 자동변속기와 연결되는 하이브리드 구동 모듈의 커버(10) 내부에 배치되므로, 상기 변속기 오일에 의해 냉각되는 습식 댐퍼를 구성할 수 있다.Since the first damper 30 and the second damper 50 are disposed inside the cover 10 of the hybrid driving module connected to the automatic transmission, a wet damper cooled by the transmission oil can be configured.
상기 제1댐퍼(30)는 상기 제1로터(M1)의 반경방향 내측에 배치될 수 있다. 그리고 상기 제2댐퍼(50)는 상기 제1로터(M1)보다 축방향 후방에서 상기 제1댐퍼(30)에 직렬로 연결되고, 상기 제2로터(M2)의 반경방향 내측에 배치될 수 있다. 이에 따라 토셔널 댐퍼에 의해 하이브리드 구동 모듈이 축방향으로 차지하는 공간을 최소화하거나 거의 없게 할 수 있다.The first damper 30 may be disposed inside the first rotor M1 in the radial direction. In addition, the second damper 50 may be connected in series to the first damper 30 at an axially rearward side of the first rotor M1 and disposed radially inside the second rotor M2. . Accordingly, the space occupied by the hybrid driving module in the axial direction by the torsional damper can be minimized or almost eliminated.
상기 제1댐퍼(30)는, 구동 측에 마련된 제1커버플레이트(31), 피동 측에 마련된 드리븐플레이트(35), 그리고 상기 구동 측과 피동 측 사이에 개재된 제1댐퍼스프링(33)을 포함한다.The first damper 30 includes a first cover plate 31 provided on the driving side, a driven plate 35 provided on the driven side, and a first damper spring 33 interposed between the driving side and the driven side. include
상기 제2댐퍼(50)는, 구동 측에 마련된 제2커버플레이트(51), 피동 측에 마련된 드리븐허브(59), 그리고 상기 구동 측과 피동 측 사이에 개재된 제2댐퍼스프링(57)을 포함한다.The second damper 50 includes a second cover plate 51 provided on the driving side, a driven hub 59 provided on the driven side, and a second damper spring 57 interposed between the driving side and the driven side. include
상기 제1댐퍼스프링(33)은 전방으로는 상기 로터 슬리브(23)에 의해 지지되고 후방으로는 상기 제1커버플레이트(31)에 의해 지지된다.The first damper spring 33 is supported by the rotor sleeve 23 in the front and supported by the first cover plate 31 in the rear.
상기 제1댐퍼스프링(33)은, 전방으로는 상기 로터 슬리브(23)의 반경방향 연장부(231)에 의해 지지되고, 반경방향 외측으로는 상기 로터 슬리브(23)의 축방향 연장부(233)에 의해 지지된다.The first damper spring 33 is forwardly supported by the radially extending portion 231 of the rotor sleeve 23, and radially outwardly supported by the axially extending portion 233 of the rotor sleeve 23. ) is supported by
상기 제1댐퍼스프링(33)과 상기 축방향 연장부(233) 사이에는 스프링 가이드(G)가 개재되어 상기 제1댐퍼스프링(33)이 상기 축방향 연장부(233)와 직접적으로 접촉하는 것을 방지한다.A spring guide (G) is interposed between the first damper spring 33 and the axial extension portion 233 so that the first damper spring 33 directly contacts the axial extension portion 233. prevent.
상기 제1댐퍼스프링(33)은 원주 방향으로 복수 개가 배치될 수 있다. 도 2를 참조하면, 실시예에서는 4개의 제1댐퍼스프링(33)들이 원주방향을 따라 등간격으로 배치된 구조가 예시된다.A plurality of first damper springs 33 may be disposed in a circumferential direction. Referring to FIG. 2, in the embodiment, a structure in which four first damper springs 33 are arranged at equal intervals along the circumferential direction is illustrated.
각각의 상기 제1댐퍼스프링(33)은 동심을 이루는 제1댐퍼대경스프링(331)과 제1댐퍼소경스프링(333)을 포함할 수 있다.Each of the first damper springs 33 may include a first damper large-diameter spring 331 and a first damper small-diameter spring 333 concentrically formed.
실시예에 따르면, 상기 제1댐퍼스프링(33)은 호 형상으로 배치된다. 이러한 제1댐퍼스프링(33)의 양단은 상기 로터 슬리브(23)에 의해 지지되고 또한 후술할 상기 제1커버플레이트(31)에 의해서도 지지된다. 다만, 제1댐퍼스프링(33)의 배치가 반드시 호 형상일 필요는 없으며, 가령 직선 형태인 것도 가능함은 물론이다.According to the embodiment, the first damper spring 33 is disposed in an arc shape. Both ends of the first damper spring 33 are supported by the rotor sleeve 23 and also supported by the first cover plate 31 to be described later. However, the arrangement of the first damper spring 33 does not necessarily have to be in an arc shape, for example, it is also possible to have a straight line shape.
상기 로터 슬리브(23)에는 후방으로 돌출된 리브 형상의 제1둘레방향 지지부(235)가 원주방향으로 따라 소정 위치에 복수 개 마련되며, 이들은 각각의 제1댐퍼스프링(33)들의 양단부를 둘레방향으로 지지한다. 실시예에 따르면 8개의 제1둘레방향 지지부(235)가 마련될 수 있다. The rotor sleeve 23 is provided with a plurality of first circumferential support parts 235 protruding rearward at predetermined positions along the circumferential direction, and they extend both ends of each of the first damper springs 33 in the circumferential direction. support with According to the embodiment, eight first circumferential support portions 235 may be provided.
상기 제1둘레방향 지지부(235)는 로터 슬리브(23)의 반경방향 연장부(231)와 축방향 연장부(233)의 연결 부위에 마련되어 로터 슬리브(23)의 강성을 보강할 뿐만 아니라, 제1댐퍼스프링(33)을 둘레방향으로도 지지한다. 또한 상기 제1둘레방향 지지부(235)의 반경방향 내측 면은 후술할 제1히스테리시스 장치(40)의 제1전방마찰와셔(41)의 반경방향 위치를 규제해준다.The first circumferential support portion 235 is provided at a connection portion between the radial extension portion 231 and the axial extension portion 233 of the rotor sleeve 23 to reinforce the rigidity of the rotor sleeve 23 and to 1 The damper spring 33 is also supported in the circumferential direction. In addition, the radially inner surface of the first circumferential support part 235 regulates the radial position of the first front friction washer 41 of the first hysteresis device 40 to be described later.
상기 제1커버플레이트(31)는 제1댐퍼스프링(33)보다 반경방향 외측에서 상기 로터 슬리브(23)에 연결된다. 구체적으로, 상기 제1커버플레이트(31)는 상기 제1댐퍼스프링(33)보다 반경방향으로 더 외향 연장되는 원심측 고정부(311)를 포함하고, 상기 원심측 고정부(311)가 상기 로터 슬리브(23)의 축방향 연장부(233)의 후방 단부에 연결되어 일체로 거동한다.The first cover plate 31 is connected to the rotor sleeve 23 outside the first damper spring 33 in the radial direction. Specifically, the first cover plate 31 includes a centrifugal fixing part 311 that extends more outward in a radial direction than the first damper spring 33, and the centrifugal fixing part 311 is the rotor It is connected to the rear end of the axially extending portion 233 of the sleeve 23 and behaves integrally.
상기 제1커버플레이트(31)는, 제1커버바디부(317), 상기 제1커버바디부(317)의 반경방향 외측에 마련되어 상기 제1댐퍼스프링(33)을 수용하는 복수 개의 제1스프링 커버부(313), 상기 제1스프링 커버부(313)들 사이에 배치되어 상기 제1댐퍼스프링(33)을 둘레방향으로 지지하는 제2둘레방향 지지부(315), 상기 제1스프링 커버부(313)로부터 반경방향 외측으로 연장되는 상기 원심측 고정부(311), 및 상기 제1커버바디부(317)로부터 반경방향 내측으로 연장되는 제1스토퍼(319)를 구비한다.The first cover plate 31 includes a first cover body portion 317 and a plurality of first springs provided on the radially outer side of the first cover body portion 317 to accommodate the first damper springs 33. The cover part 313, the second circumferential support part 315 disposed between the first spring cover parts 313 to support the first damper spring 33 in the circumferential direction, the first spring cover part ( 313) and the centrifugal fixing part 311 extending radially outwardly, and a first stopper 319 extending radially inwardly from the first cover body 317.
상기 제1댐퍼스프링(33)은, 후방으로, 그리고 반경방향으로는 상기 제1커버플레이트(31)의 제1스프링 커버부(313)에 의해 지지된다. 실시예에서는 4개의 제1스프링 커버부(313)가 마련됨이 예시된다.The first damper spring 33 is supported by the first spring cover part 313 of the first cover plate 31 in a rearward and radial direction. In the embodiment, it is illustrated that four first spring cover parts 313 are provided.
상기 4개의 제1댐퍼스프링(33)의 양단부는, 상기 4개의 제1스프링 커버부(313) 사이에 마련된 4개의 제2둘레방향 지지부(315)에 의해 지지된다. 즉 하나의 제2둘레방향 지지부(315)는, 둘레방향으로 이웃하는 두 제1댐퍼스프링(33)의 서로 마주하는 단부를 지지한다.Both ends of the four first damper springs 33 are supported by four second circumferential support parts 315 provided between the four first spring cover parts 313 . That is, one second circumferential support part 315 supports end portions facing each other of two first damper springs 33 adjacent to each other in the circumferential direction.
실시예에 따르면, 제1댐퍼스프링(33)이 반경방향 외측으로 로터 슬리브(23)의 축방향 연장부(233)에 의해 지지되고, 제1커버플레이트(31)는 축방향 연장부(233)에 연결되므로, 회전 중심축으로부터 제1댐퍼스프링(33)까지의 반경을 최대한 확보할 수 있다.According to the embodiment, the first damper spring 33 is supported by the axial extension 233 of the rotor sleeve 23 radially outward, and the first cover plate 31 is the axial extension 233 Since it is connected to, it is possible to secure the maximum radius from the rotation center axis to the first damper spring 33.
상기 드리븐플레이트(35)는, 상기 제1스토퍼(319)를 수용하는 제1스토퍼수용부(355)가 마련된 드리븐바디부(353), 상기 드리븐바디부(353)로부터 반경방향 외측으로 연장되는 제1네크부(351), 및 상기 드리븐바디부(353)의 구심측 단부에 마련된 제1결착부(357)를 포함한다.The driven plate 35 includes a driven body portion 353 provided with a first stopper accommodating portion 355 for accommodating the first stopper 319, and a second portion extending radially outward from the driven body portion 353. 1 includes a neck portion 351 and a first coupling portion 357 provided at an end of the driven body portion 353 on a centripetal side.
상기 제1스토퍼수용부(355) 및 여기 수용된 상기 제1스토퍼(319)는, 상기 제1커버플레이트(31)가 상기 드리븐플레이트(35)에 대해 상대적으로 회전할 수 있는 범위를 규정한다. 상기 제1스토퍼수용부(355)는 호형 장공일 수 있다. 즉 상기 제1스토퍼수용부(355)의 장공의 길이에서 제1스토퍼(319)의 원주방향 폭을 뺀 여유분만큼, 상기 제1커버플레이트(31)는 상기 드리븐플레이트(35)에 대해 상대적으로 회전할 수 있다. 그러면, 상기 제1댐퍼스프링(33)이 지나치게 압축되는 것을 방지할 수 있다. 상기 제1스토퍼(319)는 복수 개일 수 있고, 상기 제1스토퍼수용부(355)도 이에 대응하는 개수만큼 제공될 수 있다. 물론 이들이 원주방향을 따라 등간격 배치됨도 자명하다.The first stopper accommodating portion 355 and the first stopper 319 accommodated here define a range in which the first cover plate 31 can rotate relative to the driven plate 35 . The first stopper accommodating portion 355 may be an arc-shaped long hole. That is, the first cover plate 31 is rotated relative to the driven plate 35 by an allowance obtained by subtracting the circumferential width of the first stopper 319 from the length of the long hole of the first stopper accommodating portion 355. can do. Then, it is possible to prevent the first damper spring 33 from being excessively compressed. The number of first stoppers 319 may be plural, and a corresponding number of first stopper accommodating parts 355 may be provided. Of course, it is also obvious that they are arranged at equal intervals along the circumferential direction.
상기 제1스토퍼수용부(355)는 상기 드리븐바디부(353)가 축방향으로 기울어진 형태로 반경방향으로 연장되는 구간에 마련된다. 이에 따라, 단순히 제1커버플레이트(31)와 드리븐플레이트(35)를 축방향으로 적층하는 것만으로, 상기 제1스토퍼(319)가 상기 제1스토퍼수용부(355)에 수용될 수 있다.The first stopper accommodating portion 355 is provided in a section in which the driven body portion 353 is inclined in the axial direction and extends in the radial direction. Accordingly, the first stopper 319 can be accommodated in the first stopper accommodating portion 355 simply by stacking the first cover plate 31 and the driven plate 35 in the axial direction.
상기 제1네크부(351)는, 축방향으로 상기 로터 슬리브(23)의 제1둘레방향 지지부(235)와 상기 제1커버플레이트(31)의 제2둘레방향 지지부(315) 사이에 배치될 수 있다.The first neck portion 351 may be disposed between the first circumferential support portion 235 of the rotor sleeve 23 and the second circumferential support portion 315 of the first cover plate 31 in the axial direction. can
그리고 상기 제1네크부(351)의 원주방향 폭은 상기 제2둘레방향 지지부(315)의 원주방향 폭보다 약간 작을 수 있다. 도 3을 참조하면, 상기 제1네크부(351)는 상기 제2둘레방향 지지부(315)에 의해 둘레방향으로 지지되고 있는 두 제1댐퍼스프링(33)의 단부 사이에 배치되되, 상기 두 제1댐퍼스프링(33)의 단부와 약간의 간극을 가진다. 이러한 간극은 제1댐퍼스프링(33)의 압축 없이 상기 제1커버플레이트(31)에 대해 상기 드리븐플레이트(35)가 상대적으로 회전할 수 있는 구간이 되며, 이를 프리앵글이라 한다.Also, the width of the first neck portion 351 in the circumferential direction may be slightly smaller than the width of the second circumferential support portion 315 in the circumferential direction. Referring to FIG. 3, the first neck portion 351 is disposed between the ends of the two first damper springs 33 supported in the circumferential direction by the second circumferential support portion 315, and the two 1 has a slight gap with the end of the damper spring 33. This gap becomes a section in which the driven plate 35 can relatively rotate with respect to the first cover plate 31 without compression of the first damper spring 33, and this gap is called a free angle.
상기 제1댐퍼(30)의 제1프리앵글(A1)은 상기 제1네크부(351)의 원주방향 양측에 모두 부여될 수 있다. 즉 상기 드리븐플레이트(35)는, 원주방향 일측으로 그리고 타측으로 모두, 제1댐퍼스프링(33)의 압축 없이, 제1프리앵글(A1)만큼 상기 제1커버플레이트(31)에 대해 상대적으로 회전할 수 있다. 상기 드리븐플레이트(35)는, 상기 엔진의 동력이 전달되지 않는 상태에서, 상기 제1댐퍼스프링(33)과 원주방향으로 제1프리앵글(A1) 만큼 이격될 수 있다.The first free angle A1 of the first damper 30 may be provided to both sides of the first neck portion 351 in the circumferential direction. That is, the driven plate 35 rotates relative to the first cover plate 31 by a first free angle A1 both in one side and in the other side in the circumferential direction without compression of the first damper spring 33. can do. The driven plate 35 may be spaced apart from the first damper spring 33 by a first free angle A1 in a circumferential direction in a state in which power of the engine is not transmitted.
상기 제1결착부(357)는 후술할 제2댐퍼(50)의 제2커버플레이트(51)의 제2프론트커버플레이트(53)의 제2결착부(537)와 연결되어, 제1댐퍼(30)의 피동 측 회전력을 제2댐퍼(50)의 구동 측에 전달한다.The first fastening part 357 is connected to the second fastening part 537 of the second front cover plate 53 of the second cover plate 51 of the second damper 50 to be described later, and the first damper ( 30) is transmitted to the drive side of the second damper 50.
상기 제2댐퍼(50)는, 구동 측에 마련된 제2커버플레이트(51), 피동 측에 마련된 드리븐허브(59), 그리고 상기 구동 측과 피동 측 사이에 개재된 제2댐퍼스프링(57)을 포함한다.The second damper 50 includes a second cover plate 51 provided on the driving side, a driven hub 59 provided on the driven side, and a second damper spring 57 interposed between the driving side and the driven side. include
상기 제2커버플레이트(51)는 제2댐퍼스프링(57)을 사이에 두고 전방에 마련된 제2프론트커버플레이트(53)와 후방에 마련된 제2리어커버플레이트(55)를 포함한다. 상기 제2프론트커버플레이트(53)와 제2리어커버플레이트(55)는 반경방향 외측 단부에서 상호 체결되어 일체로 거동한다.The second cover plate 51 includes a second front cover plate 53 provided at the front and a second rear cover plate 55 provided at the rear with the second damper spring 57 interposed therebetween. The second front cover plate 53 and the second rear cover plate 55 are coupled to each other at outer ends in the radial direction and act as one unit.
상기 제2댐퍼스프링(57)은 전방으로는 상기 제2프론트커버플레이트(53)에 의해 지지되고 후방으로는 상기 제2리어커버플레이트(55)에 의해 지지된다. 또한 상기 제2프론트커버플레이트(53)와 제2리어커버플레이트(55)는 상기 제2댐퍼스프링(57)을 반경방향으로 지지한다.The second damper spring 57 is supported by the second front cover plate 53 in the front and supported by the second rear cover plate 55 in the rear. In addition, the second front cover plate 53 and the second rear cover plate 55 support the second damper spring 57 in a radial direction.
상기 제2댐퍼스프링(57)은 원주 방향으로 복수 개가 배치될 수 있다. 도 4를 참조하면, 실시예에서는 4개의 제2댐퍼스프링(57)들이 원주방향을 따라 등간격으로 배치된 구조가 예시된다.A plurality of second damper springs 57 may be disposed in a circumferential direction. Referring to FIG. 4, in the embodiment, a structure in which four second damper springs 57 are arranged at equal intervals along the circumferential direction is exemplified.
각각의 상기 제2댐퍼스프링(57)은 동심을 이루는 제2댐퍼대경스프링(571)과 제2댐퍼소경스프링(573)을 포함할 수 있다.Each of the second damper springs 57 may include a second damper large-diameter spring 571 and a second damper small-diameter spring 573 concentrically formed.
실시예에 따르면, 상기 제2댐퍼스프링(57)은 호 형상으로 배치된다. 다만, 제2댐퍼스프링(57)의 배치는 반드시 호 형상일 필요는 없으며, 가령 직선 형태인 것도 가능함은 물론이다.According to the embodiment, the second damper spring 57 is disposed in an arc shape. However, the arrangement of the second damper spring 57 does not necessarily have to be in an arc shape, for example, it is also possible to have a straight line shape.
상기 제2프론트커버플레이트(53)는, 제2커버바디부(535), 상기 제2커버바디부(535)의 반경방향 내측 단부에 마련되고 상기 제1결착부(357)와 결착되는 제2결착부(537), 상기 제2댐퍼스프링(57)을 전방으로 지지하고 반경방향으로 지지하도록 상기 제2댐퍼스프링(57)의 전반부를 수용하는 제2스프링 커버부(531), 및 상기 제2댐퍼스프링(57)을 둘레방향으로 지지하는 제3둘레방향 지지부(533)를 포함한다.The second front cover plate 53 is provided at the inner end of the second cover body portion 535 in the radial direction of the second cover body portion 535 and coupled to the first coupling portion 357. A coupling part 537, a second spring cover part 531 accommodating the first half of the second damper spring 57 to support the second damper spring 57 forward and radially, and the second A third circumferential support part 533 supporting the damper spring 57 in the circumferential direction is included.
상기 제2리어커버플레이트(55)는, 제3커버바디부(555), 상기 제3커버바디부(555)의 반경방향 내측 단부에 마련되는 제2스토퍼(557), 상기 제2댐퍼스프링(57)을 후방으로 지지하고 상기 제2스프링 커버부(531)와 함께 상기 제2댐퍼스프링(57)을 반경방향으로 지지하도록 상기 제2댐퍼스프링(57)의 후반부를 수용하는 제3스프링 커버부(551), 상기 제3둘레방향 지지부(533)와 함께 상기 제2댐퍼스프링(57)을 둘레방향으로 지지하는 제4둘레방향 지지부(553)를 포함한다.The second rear cover plate 55 includes a third cover body portion 555, a second stopper 557 provided at a radially inner end of the third cover body portion 555, and the second damper spring ( 57) rearward and the third spring cover portion accommodating the second half of the second damper spring 57 so as to radially support the second damper spring 57 together with the second spring cover portion 531. 551, and a fourth circumferential support part 553 for supporting the second damper spring 57 in the circumferential direction together with the third circumferential support part 533.
실시예에서는 각각 4개의 제2스프링 커버부(531)와 제3스프링 커버부(551)가 마련됨이 예시된다.In the embodiment, it is illustrated that each of four second spring cover parts 531 and third spring cover parts 551 are provided.
또한 실시예에서는 각각 4개의 제3둘레방향 지지부(533)와 제4둘레방향 지지부(553)가 마련됨이 예시된다.In addition, in the embodiment, it is exemplified that each of the four third circumferential support portions 533 and the fourth circumferential support portion 553 is provided.
상기 4개의 제2스프링 커버부(531) 사이에 마련된 4개의 제3둘레방향 지지부(533)와 상기 4개의 제3스프링 커버부(551) 사이에 마련된 4개의 제4둘레방향 지지부(553)는 상기 4개의 제2댐퍼스프링(57)의 양단부를 지지한다. 즉 축방향으로 서로 마주하는 하나의 제3둘레방향 지지부(533)와 하나의 제4둘레방향 지지부(553)는, 둘레방향으로 이웃하는 두 제2댐퍼스프링(57)의 서로 마주하는 단부를 함께 지지한다.The four third circumferential support portions 533 provided between the four second spring cover portions 531 and the four fourth circumferential support portions 553 provided between the four third spring cover portions 551 are Both ends of the four second damper springs 57 are supported. That is, one third circumferential support part 533 and one fourth circumferential support part 553 facing each other in the axial direction, together end faces of two second damper springs 57 adjacent to each other in the circumferential direction. support
상기 드리븐허브(59)는, 상기 제2스토퍼(557)를 수용하는 제2스토퍼수용부(597)가 마련된 허브바디부(593), 상기 허브바디부(593)로부터 반경방향 외측으로 연장되는 제2네크부(591), 및 상기 드리븐바디부(353)의 구심측 단부에 마련된 댐퍼측 스플라인(595)을 포함한다.The driven hub 59 includes a hub body portion 593 provided with a second stopper accommodating portion 597 accommodating the second stopper 557, and a hub body portion 593 extending outward in the radial direction from the hub body portion 593. 2 includes a neck portion 591 and a damper-side spline 595 provided at a centripetal-side end of the driven body portion 353.
상기 제2스토퍼수용부(597) 및 여기 수용된 상기 제2스토퍼(557)는, 상기 제2커버플레이트(51)가 상기 드리븐허브(59)에 대해 상대적으로 회전할 수 있는 범위를 규정한다. 상기 제2스토퍼수용부(597)는 상기 허브바디부(593)의 외주면의 둘레방향을 따라 형성된 호형 홈일 수 있다. 즉 상기 제2스토퍼수용부(597)의 홈의 둘레방향 길이에서 제2스토퍼(557)의 원주방향 폭을 뺀 여유분만큼, 상기 제2커버플레이트(51)는 상기 드리븐허브(59)에 대해 상대적으로 회전할 수 있다. 그러면, 상기 제2댐퍼스프링(57)이 지나치게 압축되는 것을 방지할 수 있다. 상기 제2스토퍼(557)는 복수 개일 수 있고, 상기 제2스토퍼수용부(597)도 이에 대응하는 개수만큼 제공될 수 있다. 이 경우, 복수 개의 제2스토퍼(557) 및 제2스토퍼수용부(597)는 원주방향을 따라 등간격으로 배치될 수 있다.The second stopper accommodating portion 597 and the second stopper 557 accommodated here define a range in which the second cover plate 51 can rotate relative to the driven hub 59 . The second stopper accommodating portion 597 may be an arc-shaped groove formed along a circumferential direction of an outer circumferential surface of the hub body portion 593 . That is, the second cover plate 51 is relative to the driven hub 59 by a margin obtained by subtracting the circumferential width of the second stopper 557 from the circumferential length of the groove of the second stopper accommodating portion 597. can be rotated to Then, it is possible to prevent the second damper spring 57 from being excessively compressed. The number of second stoppers 557 may be plural, and a corresponding number of second stopper accommodating parts 597 may be provided. In this case, the plurality of second stoppers 557 and the second stopper accommodating portion 597 may be arranged at equal intervals along the circumferential direction.
상기 제2스토퍼수용부(597)는 후방으로 개방된 형태로 마련된다. 이에 따라, 단순히 제2리어커버플레이트(55)와 드리븐허브(59)를 축방향으로 적층하는 것만으로, 상기 제2스토퍼(557)가 상기 제2스토퍼수용부(597)에 수용될 수 있다.The second stopper accommodating portion 597 is provided in a rearward open form. Accordingly, the second stopper 557 can be accommodated in the second stopper accommodating portion 597 simply by stacking the second rear cover plate 55 and the driven hub 59 in the axial direction.
상기 제2네크부(591)는, 축방향으로 상기 제2프론트커버플레이트(53)의 제3둘레방향 지지부(533)와 상기 제2리어커버플레이트(55)의 제4둘레방향 지지부(553) 사이에 배치될 수 있다.The second neck portion 591 includes the third circumferential support portion 533 of the second front cover plate 53 and the fourth circumferential support portion 553 of the second rear cover plate 55 in the axial direction. can be placed in between.
상기 제3둘레방향 지지부(533)와 상기 제4둘레방향 지지부(553)의 원주방향 폭은 서로 대응할 수 있다. 그리고 상기 제2네크부(591)의 원주방향 폭은 상기 제3 및 제4둘레방향 지지부(533, 553)의 원주방향 폭보다 약간 작을 수 있다. 도 5를 참조하면, 상기 제2네크부(591)는 상기 제4둘레방향 지지부(553)에 의해 둘레방향으로 지지되고 있는 두 제2댐퍼스프링(57)의 단부 사이에 배치되되, 상기 두 제2댐퍼스프링(57)의 단부와 약간의 간극을 가진다. 이러한 간극은 제2댐퍼스프링(57)의 압축 없이 상기 제2커버플레이트(51)에 대해 상기 드리븐허브(59)가 상대적으로 회전할 수 있는 구간이다.Circumferential widths of the third circumferential support portion 533 and the fourth circumferential support portion 553 may correspond to each other. Also, the width of the second neck portion 591 in the circumferential direction may be slightly smaller than that of the third and fourth support portions 533 and 553 in the circumferential direction. Referring to FIG. 5, the second neck portion 591 is disposed between the ends of the two second damper springs 57 supported in the circumferential direction by the fourth circumferential support portion 553, and 2 has a slight gap with the end of the damper spring 57. This gap is a section in which the driven hub 59 can relatively rotate with respect to the second cover plate 51 without compression of the second damper spring 57 .
상기 제2댐퍼(50)의 제2프리앵글(A2)은 상기 제2네크부(591)의 원주방향 양측에 모두 부여될 수 있다. 즉 상기 드리븐허브(59)는, 원주방향 일측으로 그리고 타측으로 모두, 제2댐퍼스프링(57)의 압축 없이, 제2프리앵글(A2)만큼 상기 제2커버플레이트(51)에 대해 상대적으로 회전할 수 있다. 상기 드리븐허브(59)는, 상기 엔진의 동력이 전달되지 않은 상태에서, 상기 제2댐퍼스프링(57)과 원주방향으로 제2프리앵클(A2) 만큼 이격될 수 있다.The second free angle A2 of the second damper 50 may be provided to both sides of the second neck portion 591 in the circumferential direction. That is, the driven hub 59 rotates relative to the second cover plate 51 by a second free angle A2 both in one side and in the other side in the circumferential direction without compression of the second damper spring 57. can do. The driven hub 59 may be spaced apart from the second damper spring 57 in a circumferential direction by a second free ankle A2 in a state in which power of the engine is not transmitted.
상기 댐퍼측 스플라인(595)은 상기 드리븐바디부(353)의 내주면에 마련된다. 그리고 이는 앞서 설명한 엔진클러치(80)에 연결된 이너 스플라인허브(70)의 외주면에 마련된 엔진클러치측 스플라인(71)과 상호 회전 구속되도록 맞물린다. 이에 따라 상기 제2댐퍼(50)와 상기 엔진클러치(80)는 회전방향으로 회전 구속되고 축방향으로는 상대적인 슬라이딩을 허용한다.The damper-side splines 595 are provided on the inner circumferential surface of the driven body part 353. And it is engaged with the engine clutch-side spline 71 provided on the outer circumferential surface of the inner spline hub 70 connected to the engine clutch 80 described above so as to be rotationally constrained to each other. Accordingly, the second damper 50 and the engine clutch 80 are rotationally constrained in the rotational direction and allow relative sliding in the axial direction.
엔진의 회전력이 로터 샤프트(21)와 로터 슬리브(23)를 통해 제1커버플레이트(31)에 전달되면, 제1커버플레이트(31)에 의해 지지되는 제1댐퍼스프링(33)이 상기 제1네크부(351)를 회전 방향으로 가압하여 드리븐플레이트(35)에 회전력을 전달한다. 이때 제1댐퍼스프링(33)이 엔진의 불균일한 회전력을 흡수하며 어느 정도 균일화한 뒤 이를 드리븐플레이트(35)에 전달하게 된다.When the rotational force of the engine is transmitted to the first cover plate 31 through the rotor shaft 21 and the rotor sleeve 23, the first damper spring 33 supported by the first cover plate 31 Rotational force is transmitted to the driven plate 35 by pressing the neck portion 351 in the rotational direction. At this time, the first damper spring 33 absorbs the non-uniform rotational force of the engine, equalizes it to some extent, and transmits it to the driven plate 35.
그리고 드리븐플레이트(35)에 전달된 회전력은 상기 제2커버플레이트(51)에 전달되고, 제2커버플레이트(51)에 의해 지지되는 제2댐퍼스프링(57)이 상기 제2네크부(591)를 회전 방향으로 가압하여 드리븐허브(59)에 회전력을 전달한다. 이때 제2댐퍼스프링(57)이 불균일한 출력을 마저 흡수하며 균일화한 뒤 이를 드리븐허브(59)에 전달한다.Further, the rotational force transmitted to the driven plate 35 is transmitted to the second cover plate 51, and the second damper spring 57 supported by the second cover plate 51 is connected to the second neck portion 591. is pressed in the rotational direction to transmit rotational force to the driven hub 59. At this time, the second damper spring 57 absorbs and equalizes the non-uniform power and transmits it to the driven hub 59.
그러면, 엔진의 출력은 평탄화되어 엔진클러치(80)를 통해 로터 허브(90)에 전달된다.Then, the output of the engine is flattened and transmitted to the rotor hub 90 through the engine clutch 80.
여기서, 상기 제2댐퍼(50)의 댐핑력이 상기 제1댐퍼(30)의 댐핑력보다 더 크도록 설계할 수 있다. 이에 따라, 출력의 작은 불균일은 제1댐퍼가 주로 커버하고, 제1댐퍼의 댐핑력을 넘어서는 불균일한 출력은 제2댐퍼가 커버하게 된다.Here, the damping force of the second damper 50 may be designed to be greater than that of the first damper 30 . Accordingly, the first damper mainly covers the small unevenness of the output, and the second damper covers the unevenness of the output exceeding the damping force of the first damper.
실시예에 따르면, 상기 제1댐퍼(30)와 제2댐퍼(50)에는 각각 제1프리앵글(A1)과 제2프리앵글(A2)이 부여된다. 그러면 상기 하이브리드 구동 모듈에 설치된 토셔널 댐퍼의 프리앵글은 상기 제1프리앵글(A1)과 제2프리앵글(A2)의 합이 된다.According to the embodiment, a first free angle A1 and a second free angle A2 are assigned to the first damper 30 and the second damper 50, respectively. Then, the free angle of the torsional damper installed in the hybrid drive module is the sum of the first free angle A1 and the second free angle A2.
그러면 엔진의 회전력이 토셔널 댐퍼에 전해질 때, 제1프리앵글(A1)이 먼저 소진되고 이어서 제2프리앵글(A2)이 소진되며 엔진의 회전력이 로터 허브(90)에 전달될 수 있다.Then, when the rotational force of the engine is transmitted to the torsional damper, the first free angle A1 is first exhausted and then the second free angle A2 is exhausted, and the rotational force of the engine can be transmitted to the rotor hub 90 .
상기 제1프리앵글(A1)과 상기 제2프리앵글(A2)은 실질적으로 대응하도록 설계될 수 있다. 가령 토셔널 댐퍼가 전체적으로 가져야 하는 프리앵글이 3도라면, 상기 제1프리앵글(A1)과 상기 제2프리앵글(A2)은 각각 1.5도씩 설정될 수 있다. 이처럼 토셔널 댐퍼가 가져야 하는 프리앵글을 제1댐퍼(30)와 제2댐퍼(50)에 고루 분배하면, 제1네크부(351)와 제2네크부(591)의 원주방향 폭을 최대한 확보할 수 있다.The first angle A1 and the second angle A2 may be designed to substantially correspond to each other. For example, if the free angle that the torsional damper should have as a whole is 3 degrees, the first free angle A1 and the second free angle A2 may be set to 1.5 degrees, respectively. In this way, if the free angle that the torsional damper should have is evenly distributed to the first damper 30 and the second damper 50, the width of the first neck portion 351 and the second neck portion 591 in the circumferential direction is secured as much as possible can do.
그러면 제1로터(M1)와 제2로터(M2)의 반경방향 내측에 제1댐퍼(30)와 제2댐퍼(50)를 배치하여 토셔널 댐퍼의 반경을 최대한 확보하지 못한 설계 조건에서도, 제1네크부(351)와 제2네크부(591)의 원주방향 폭을 최대한 확보함으로써, 드리븐플레이트(35)와 드리븐허브(59)의 해당 부위의 두께를 더 얇게 하거나 보다 저강성의 소재를 적용할 수 있다. 이는 생산단가 절감, 무게 절감 등의 효과로 이어진다.Then, even under design conditions in which the radius of the torsional damper is not secured as much as possible by disposing the first damper 30 and the second damper 50 inside the radial direction of the first rotor M1 and the second rotor M2, By securing the maximum width of the first neck portion 351 and the second neck portion 591 in the circumferential direction, the thickness of the corresponding portion of the driven plate 35 and the driven hub 59 is made thinner or a material of lower stiffness is applied. can do. This leads to effects such as cost reduction and weight reduction.
도 1을 참조하면, 실시예의 토셔널 댐퍼는, 각각의 댐퍼에 모두 히스테리시스 장치가 마련된다. 즉 상기 제1댐퍼(30)에는 상기 제1댐퍼(30)에 제1 히스테리시스 토크(T1)를 부여하는 제1히스테리시스 장치(40)가 마련되고, 상기 제2댐퍼(50)에는 상기 제2댐퍼(50)에 제2 히스테리시스 토크(T2)를 부여하는 제2히스테리시스 장치(60)가 마련된다. 이처럼 직렬로 연결된 두 댐퍼에 모두 히스테리시스 토크를 부여하면, 소음 저감 효과를 더욱 높일 수 있으며, 특히 엔진의 아이들 시 소음 저감 효과를 더욱 높일 수 있다.Referring to FIG. 1, in the torsional damper of the embodiment, a hysteresis device is provided in each damper. That is, the first damper 30 is provided with a first hysteresis device 40 that applies a first hysteresis torque T1 to the first damper 30, and the second damper 50 has a first hysteresis device 40. A second hysteresis device 60 for applying a second hysteresis torque T2 to 50 is provided. If hysteresis torque is applied to both dampers connected in series as described above, the noise reduction effect can be further enhanced, and in particular, the noise reduction effect can be further enhanced when the engine is idling.
도 6을 참조하면, 상기 제2 히스테리시스 토크(T2)는 상기 제1 히스테리시스 토크(T1)와 같거나 그보다 더 크다. 그러면, 엔진의 아이들링 상태에서 제1댐퍼(30)와 제2댐퍼(50)가 모두 히스테리시스 토크(T1, T2)에 의해 공진이 억제되어 소음을 억제할 수 있다.Referring to FIG. 6 , the second hysteresis torque T2 is equal to or greater than the first hysteresis torque T1. Then, in the idling state of the engine, the resonance of both the first damper 30 and the second damper 50 is suppressed by the hysteresis torques T1 and T2, so noise can be suppressed.
상기 제1히스테리시스 장치(40)는, 축방향으로 상기 로터 슬리브(23)의 반경방향 연장부(231)와 상기 드리븐플레이트(35)의 드리븐바디부(353) 사이에 배치되는 제1전방마찰와셔(41), 축방향으로 상기 드리븐바디부(353)와 상기 제1커버플레이트(31)의 제1커버바디부(317) 사이에 배치되는 제1후방마찰와셔(43), 및 축방향으로 상기 드리븐바디부(353)와 상기 제1후방마찰와셔(43) 사이에 배치되는 제1탄성와셔(45)를 포함한다.The first hysteresis device 40 is a first front friction washer disposed between the radial extension 231 of the rotor sleeve 23 and the driven body 353 of the driven plate 35 in the axial direction. (41), a first rear friction washer 43 disposed between the driven body portion 353 and the first cover body portion 317 of the first cover plate 31 in the axial direction, and the first rear friction washer 43 in the axial direction. A first elastic washer 45 disposed between the driven body part 353 and the first rear friction washer 43 is included.
상기 제1후방마찰와셔(43)는 상기 드리븐바디부(353)를 관통하여 전방으로 연장되는 후크부를 구비하고, 상기 후크 부위는 상기 드리븐바디부(353)의 전면과 간섭될 수 있다. 상기 제1후방마찰와셔(43)는 상기 드리븐바디부(353)에 의해 반경방향 위치가 규제된다.The first rear friction washer 43 has a hook portion extending forward through the driven body portion 353, and the hook portion may interfere with the front surface of the driven body portion 353. The radial position of the first rear friction washer 43 is regulated by the driven body part 353.
상기 제1탄성와셔(45)의 반경방향 위치는, 상기 제1탄성와셔(45)의 외주면이 상기 제1후방마찰와셔(43)의 후크부의 내주면과 맞닿아 규제된다.The radial position of the first elastic washer 45 is regulated by the outer circumferential surface of the first elastic washer 45 coming into contact with the inner circumferential surface of the hook portion of the first rear friction washer 43 .
제1탄성와셔(45)는 예압을 가하는 상태로 상기 드리븐플레이트(35)와 상기 제1후방마찰와셔(43) 사이에 배치된다. 그리고 상기 제1 히스테리시스 토크(T1)는 상기 제1탄성와셔(45)의 예압에 의해 직관적으로 결정된다.A first elastic washer 45 is disposed between the driven plate 35 and the first rear friction washer 43 in a state of applying a preload. The first hysteresis torque T1 is intuitively determined by the preload of the first elastic washer 45.
상기 제2히스테리시스 장치(60)는, 축방향으로 상기 제2프론트커버플레이트(53)의 제2커버바디부(535)와 상기 드리븐허브(59)의 허브바디부(593) 사이에 배치되는 제2전방마찰와셔(61), 축방향으로 상기 허브바디부(593)와 상기 제2리어커버플레이트(55)의 제3커버바디부(555) 사이에 배치되는 제2후방마찰와셔(63), 및 축방향으로 상기 허브바디부(593)와 상기 제2후방마찰와셔(63) 사이에 배치되는 제2탄성와셔(65)를 포함한다.The second hysteresis device 60 is disposed between the second cover body 535 of the second front cover plate 53 and the hub body 593 of the driven hub 59 in the axial direction. 2 a front friction washer 61, a second rear friction washer 63 disposed between the hub body part 593 and the third cover body part 555 of the second rear cover plate 55 in the axial direction; and a second elastic washer 65 disposed between the hub body portion 593 and the second rear friction washer 63 in the axial direction.
상기 제2전방마찰와셔(61)의 반경방향 위치는, 상기 제2전방마찰와셔(61)의 외주면이 상기 허브바디부(593)에 마련된 단턱에 맞닿아 규제된다.The radial position of the second front friction washer 61 is regulated by the outer circumferential surface of the second front friction washer 61 coming into contact with the step provided on the hub body part 593.
상기 제2후방마찰와셔(63)의 반경방향 위치는, 상기 제2후방마찰와셔(63)의 내주면이 상기 허브바디부(593)의 외주면에 맞닿아 규제된다.The radial position of the second rear friction washer 63 is regulated by the inner circumferential surface of the second rear friction washer 63 abutting against the outer circumferential surface of the hub body portion 593 .
제2탄성와셔(65)는 예압을 가하는 상태로 상기 드리븐허브(59)와 상기 제2후방마찰와셔(63) 사이에 배치된다. 그리고 상기 제2 히스테리시스 토크(T2)는 상기 제2탄성와셔(65)의 예압에 의해 직관적으로 결정된다.The second elastic washer 65 is disposed between the driven hub 59 and the second rear friction washer 63 in a state of applying a preload. The second hysteresis torque T2 is intuitively determined by the preload of the second elastic washer 65.
여기서, 상기 제1탄성와셔(45)와 상기 제2탄성와셔(65)는 각각 모두 상기 드리븐플레이트(35)와 드리븐허브(59)의 후방에 배치된다. 이에 따라 상기 제1탄성와셔(45)와 제2탄성와셔(65)는 상기 드리븐플레이트와 드리븐허브를 모두 전방으로 가압하므로, 두 탄성와셔(45, 65)의 탄성력이 서로 영향을 미치지 않으며 각 댐퍼에 온전히 작용한다.Here, both the first elastic washer 45 and the second elastic washer 65 are disposed behind the driven plate 35 and the driven hub 59, respectively. Accordingly, since the first elastic washer 45 and the second elastic washer 65 press both the driven plate and the driven hub forward, the elastic force of the two elastic washers 45 and 65 does not affect each other, and each damper works fully on
도 1을 참조하면, 제1탄성와셔(45)에 의해 상기 드리븐플레이트(35)는 허용되는 범위 내에서 제1커버플레이트(31)에 대해 가장 전방에 배치된다. 이에 따라 상기 드리븐플레이트(35)와 결착된 제2커버플레이트(51) 역시 제1커버플레이트(31)에 가장 가깝게 배치된다. 그리고 제2탄성와셔(65)에 의해 상기 드리븐허브(59)는 허용되는 범위 내에서 제2커버플레이트(51)에 대해 가장 전방에 배치된다. 즉 상기 제1탄성와셔(45)와 제2탄성와셔(65)는 상기 제1댐퍼(30)와 제2댐퍼(50)의 각 구성을 허용되는 범위 내에서 가장 전방으로 배치시킨다.Referring to FIG. 1 , the driven plate 35 is disposed most forward with respect to the first cover plate 31 within an allowable range by means of the first elastic washer 45 . Accordingly, the second cover plate 51 coupled to the driven plate 35 is also disposed closest to the first cover plate 31 . Further, the driven hub 59 is disposed most forward with respect to the second cover plate 51 within an allowable range by the second elastic washer 65. That is, the first elastic washer 45 and the second elastic washer 65 are disposed most forward within a permissible range of each component of the first damper 30 and the second damper 50.
한편, 비록 스플라인 연결되어 있다 하더라도, 상기 엔진클러치(80)가 피스톤플레이트에 의해 전방으로 가압되어, 상기 엔진클러치(80)와 연결된 드리븐허브(59)가 전방으로 축력을 받을 수 있다. 그러나, 앞서 설명한 바와 같이 이미 제1댐퍼(30)와 제2댐퍼(50)는 마찰와셔들(41, 43, 61, 63)에 의해 허용 범위 내에서 제1탄성와셔(45)와 제2탄성와셔(65)에 의해 가장 전방으로 이동 배치되어 있는 상태이기 때문에, 제1탄성와셔(45)와 제2탄성와셔(65)에 상기 축력이 전혀 전달되지 않는다. 이에 따라 실시예의 하이브리드 구동 모듈에 설치된 토셔널 댐퍼는 설계된 예압을 지속적으로 드리븐플레이트(35)와 드리븐허브(59)에 가하게 된다. On the other hand, even though it is spline-connected, the engine clutch 80 is pressed forward by the piston plate, so that the driven hub 59 connected to the engine clutch 80 can receive axial force forward. However, as described above, the first damper 30 and the second damper 50 have the first elastic washer 45 and the second elastic washer 45 within an allowable range by the friction washers 41, 43, 61, and 63. Since the washer 65 moves most forwardly, the axial force is not transmitted to the first elastic washer 45 and the second elastic washer 65 at all. Accordingly, the torsional damper installed in the hybrid driving module of the embodiment continuously applies the designed preload to the driven plate 35 and the driven hub 59.
이는 설계된 히스테리시스 토크가 달라지는 운전 조건에서도 변하지 않는다는 것을 의미한다. 즉 실시예에 따르면, 제1댐퍼(30)와 제2댐퍼(50)에 각각 히스테리시스 토크를 부여하는 제1탄성와셔(45)와 제2탄성와셔(65)가 엔진클러치(80)의 작동 여부와 관계없이 설계된 예압대로 제1댐퍼(30)와 제2댐퍼(50)에 각각 탄성력을 가하여, 의도된 히스테리시스 토크를 부여할 수 있다.This means that the designed hysteresis torque does not change under different operating conditions. That is, according to the embodiment, whether the first elastic washer 45 and the second elastic washer 65, which respectively impart hysteresis torque to the first damper 30 and the second damper 50, operate the engine clutch 80. Regardless of the preload, an intended hysteresis torque may be imparted by applying elastic force to the first damper 30 and the second damper 50, respectively, according to the designed preload.
실시예와 같이 직렬로 연결된 제1댐퍼(30)와 제2댐퍼(50)에 모두 각각 히스테리시스 토크가 작용하도록 하면, 엔진의 소음 저감 효과를 높일 수 있다. 또한 구동계통에서 엔진으로부터 더 멀리 배치된 제2댐퍼(50)에 작용하는 제2 히스테리시스 토크(T2)가, 구동계통에서 엔진과 보다 가까운 제1댐퍼(30)에 작용하는 제1 히스테리시스 토크(T1)와 같거나 그보다 더 크게 설정됨으로 인해, 직렬로 연결된 두 댐퍼 모두 엔진의 아이들링 출력의 진폭에 대응하여 히스테리시스 토크가 설계 의도대로 작용하도록 함으로써, 소음 저감 효과를 더욱 확실히 발휘할 수 있다.As in the embodiment, if the hysteresis torque acts on both the first damper 30 and the second damper 50 connected in series, respectively, the noise reduction effect of the engine can be increased. In addition, the second hysteresis torque T2 acting on the second damper 50 disposed farther from the engine in the drive system is the first hysteresis torque T1 acting on the first damper 30 closer to the engine in the drive system. ), the hysteresis torque of both dampers connected in series responds to the amplitude of the idling output of the engine to act as designed, so that the noise reduction effect can be exhibited more reliably.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the drawings illustrated, but the present invention is not limited by the embodiments and drawings disclosed herein, and various modifications are made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that variations can be made. In addition, although the operation and effect according to the configuration of the present invention have not been explicitly described and described while describing the embodiments of the present invention above, it is natural that the effects predictable by the corresponding configuration should also be recognized.

Claims (14)

  1. 엔진과 연결되어 엔진의 동력을 전달받아 회전하는 로터 슬리브(23);Rotor sleeve 23 connected to the engine and rotated by receiving the power of the engine;
    상기 로터 슬리브(23)의 반경방향 외측에 배치되는 제1로터(M1);a first rotor (M1) disposed outside the rotor sleeve (23) in a radial direction;
    상기 제1로터(M1)의 반경방향 내측에 배치되고 상기 로터 슬리브(23)에 연결되는 제1댐퍼(30);a first damper 30 disposed radially inside the first rotor M1 and connected to the rotor sleeve 23;
    상기 제1댐퍼(30)보다 축방향 후방에 배치되고 상기 제1댐퍼(30)에 직렬로 연결되는 제2댐퍼(50);a second damper (50) disposed axially rearward of the first damper (30) and connected in series to the first damper (30);
    상기 제2댐퍼(50)보다 반경방향 외측에 배치되는 제2로터(M2); 및a second rotor (M2) disposed radially outside the second damper (50); and
    상기 제2댐퍼(50)보다 축방향 후방에 배치되고, 상기 제2로터(M2)와 상기 제2댐퍼(50) 사이에서 상기 제2댐퍼(50)와 상기 제2로터(M2)를 연결하거나 연결 해제하는 엔진클러치(80);를 포함하고,It is disposed axially rearward than the second damper 50 and connects the second damper 50 and the second rotor M2 between the second rotor M2 and the second damper 50, or Including; engine clutch 80 for disconnection;
    상기 제1댐퍼(30)에는 상기 제1댐퍼(30)에 제1 히스테리시스 토크(T1)를 부여하는 제1히스테리시스 장치(40)가 마련되고,The first damper 30 is provided with a first hysteresis device 40 that applies a first hysteresis torque T1 to the first damper 30,
    상기 제2댐퍼(50)에는 상기 제2댐퍼(50)에 제2 히스테리시스 토크(T2)를 부여하는 제2히스테리시스 장치(60)가 마련된, 하이브리드 구동 모듈.The hybrid drive module, wherein the second damper (50) is provided with a second hysteresis device (60) for applying a second hysteresis torque (T2) to the second damper (50).
  2. 청구항 1에 있어서,The method of claim 1,
    상기 제2히스테리시스 토크는 상기 제1히스테리시스 토크와 같거나 그보다 더 큰, 하이브리드 구동 모듈.The second hysteresis torque is equal to or greater than the first hysteresis torque, the hybrid driving module.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 제1댐퍼(30)에는 댐핑 작용이 이루어지지 않는 제1프리앵글(A1)이 존재하고,The first damper 30 has a first free angle A1 that does not have a damping action,
    상기 제2댐퍼(50)에는 댐핑 작용이 이루어지지 않는 제2프리앵글(A2)이 존재하는, 하이브리드 구동 모듈.The hybrid driving module, wherein the second damper (50) has a second free angle (A2) in which a damping action is not performed.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 제1프리앵글(A1)과 상기 제2프리앵글(A2)은 실질적으로 대응하는, 하이브리드 구동 모듈.The hybrid drive module, wherein the first angle A1 and the second angle A2 substantially correspond to each other.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 로터 슬리브(23)는:The rotor sleeve 23 is:
    반경방향으로 연장되는 반경방향 연장부(231); 및a radially extending portion 231 extending in the radial direction; and
    상기 반경방향 연장부(231)의 단부에서 축방향으로 연장되는 축방향 연장부(233);를 포함하고,An axial extension portion 233 extending in an axial direction from an end of the radial extension portion 231; includes,
    상기 제1로터(M1)는 상기 축방향 연장부(233)의 외주에 설치되고,The first rotor (M1) is installed on the outer circumference of the axial extension part 233,
    상기 제1댐퍼(30)는: The first damper 30 is:
    상기 축방향 연장부(233)에 연결되는 제1커버플레이트(31);a first cover plate 31 connected to the axially extending portion 233;
    상기 제2댐퍼(50)에 연결되는 드리븐플레이트(35); 및a driven plate 35 connected to the second damper 50; and
    상기 제1커버플레이트(31)에 의해 축방향과 원주방향과 반경방향으로 지지되고, 상기 드리븐플레이트(35)에 의해 압축방향으로 가압되며 상기 제1커버플레이트(31)의 회전력을 상기 드리븐플레이트(35)에 전달하는 제1댐퍼스프링(33);을 포함하는, 하이브리드 구동 모듈.It is supported in the axial direction, circumferential direction, and radial direction by the first cover plate 31, and is pressed in the compression direction by the driven plate 35, and the rotational force of the first cover plate 31 is applied to the driven plate ( 35), the hybrid driving module including; the first damper spring 33 transmitted to.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 제1댐퍼스프링(33)은, 상기 로터 슬리브(23)의 반경방향 연장부(231)에 의해 축방향으로 지지되고 상기 로터 슬리브(23)의 축방향 연장부(233)에 의해 반경방향으로 지지되며 상기 로터 슬리브(23)에 구비된 제1둘레방향 지지부(235)에 의해 원주방향으로 지지되는, 하이브리드 구동 모듈.The first damper spring 33 is supported in the axial direction by the radially extending portion 231 of the rotor sleeve 23 and is radially supported by the axially extending portion 233 of the rotor sleeve 23. and supported in the circumferential direction by a first circumferential support portion 235 provided on the rotor sleeve 23.
  7. 청구항 5에 있어서,The method of claim 5,
    상기 제2댐퍼(50)는:The second damper 50 is:
    상기 제1댐퍼(30)와 연결되어 상기 제1댐퍼(30)의 회전력을 전달받는 제2커버플레이트(51);a second cover plate 51 connected to the first damper 30 and receiving rotational force of the first damper 30;
    상기 엔진클러치(80)와 연결되는 드리븐허브(59); 및a driven hub 59 connected to the engine clutch 80; and
    상기 제2커버플레이트(51)에 의해 축방향과 원주방향과 반경방향으로 지지되고, 상기 드리븐허브(59)에 의해 압축방향으로 가압되며, 상기 제2커버플레이트(51)의 회전력을 상기 드리븐허브(59)에 전달하는 제2댐퍼스프링(57);을 포함하는, 하이브리드 구동 모듈.It is supported in the axial direction, circumferential direction, and radial direction by the second cover plate 51, and is pressed in the compression direction by the driven hub 59, and the rotational force of the second cover plate 51 is applied to the driven hub A hybrid drive module comprising a; second damper spring 57 passing to (59).
  8. 청구항 7에 있어서,The method of claim 7,
    상기 드리븐플레이트(35)는 상기 엔진의 동력이 전달되지 않는 상태에서, 상기 제1댐퍼스프링(33)과 원주방향으로 제1프리앵글(A1) 만큼 이격되어 있고,The driven plate 35 is spaced apart from the first damper spring 33 in the circumferential direction by a first free angle A1 in a state in which power of the engine is not transmitted,
    상기 드리븐허브(59)는 상기 엔진의 동력이 전달되지 않은 상태에서, 상기 제2댐퍼스프링(57)과 원주방향으로 제2프리앵글(A2) 만큼 이격되어 있는, 하이브리드 구동 모듈.The driven hub (59) is spaced apart from the second damper spring (57) in the circumferential direction by a second free angle (A2) in a state in which power of the engine is not transmitted.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 제1댐퍼(30)는: The first damper 30 is:
    상기 로터 슬리브(23)에 연결되는 제1커버플레이트(31);a first cover plate 31 connected to the rotor sleeve 23;
    상기 제2댐퍼(50)에 연결되는 드리븐플레이트(35); 및a driven plate 35 connected to the second damper 50; and
    상기 제1커버플레이트(31)의 회전력을 상기 드리븐플레이트(35)에 전달하는 제1댐퍼스프링(33);을 포함하고,A first damper spring 33 that transmits the rotational force of the first cover plate 31 to the driven plate 35; includes,
    상기 제1히스테리시스 장치(40)는:The first hysteresis device 40 is:
    축방향으로 상기 로터 슬리브(23)와 상기 드리븐플레이트(35) 사이에 배치되는 제1전방마찰와셔(41);a first front friction washer 41 disposed between the rotor sleeve 23 and the driven plate 35 in the axial direction;
    축방향으로 상기 드리븐플레이트(35)와 상기 제1커버플레이트(31) 사이에 배치되는 제1후방마찰와셔(43); 및a first rear friction washer 43 disposed between the driven plate 35 and the first cover plate 31 in the axial direction; and
    축방향으로 상기 드리븐플레이트(35)와 상기 제1후방마찰와셔(43) 사이 또는 상기 드리븐플레이트(35)와 상기 제1전방마찰와셔(41) 사이에 배치되는 제1탄성와셔(45);를 포함하는, 하이브리드 구동 모듈.A first elastic washer 45 disposed between the driven plate 35 and the first rear friction washer 43 or between the driven plate 35 and the first front friction washer 41 in the axial direction; Including, hybrid driving module.
  10. 청구항 9에 있어서,The method of claim 9,
    상기 제1탄성와셔(45)는 축방향으로 상기 드리븐플레이트(35)와 상기 제1후방마찰와셔(43) 사이에 배치되는, 하이브리드 구동 모듈.The first elastic washer (45) is disposed between the driven plate (35) and the first rear friction washer (43) in an axial direction.
  11. 청구항 1에 있어서,The method of claim 1,
    상기 제2댐퍼(50)는;The second damper 50;
    상기 제1댐퍼(30)와 연결되어 상기 제1댐퍼(30)의 회전력을 전달받는 제2커버플레이트(51);a second cover plate 51 connected to the first damper 30 and receiving rotational force of the first damper 30;
    상기 엔진클러치(80)와 연결되는 드리븐허브(59); 및a driven hub 59 connected to the engine clutch 80; and
    상기 제2커버플레이트(51)의 회전력을 상기 드리븐허브(59)에 전달하는 제2댐퍼스프링(57);을 포함하고,A second damper spring 57 that transmits the rotational force of the second cover plate 51 to the driven hub 59; includes,
    상기 제2히스테리시스 장치(60)는:The second hysteresis device 60 is:
    상기 드리븐허브(59)의 전방에서, 축방향으로 상기 제2커버플레이트(51)와 상기 드리븐허브(59) 사이에 배치되는 제2전방마찰와셔(61);a second front friction washer 61 disposed between the second cover plate 51 and the driven hub 59 in an axial direction in front of the driven hub 59;
    상기 드리븐허브(59)의 후방에서, 축방향으로 상기 드리븐허브(59)와 상기 제2커버플레이트(51) 사이에 배치되는 제2후방마찰와셔(63); 및a second rear friction washer (63) disposed between the driven hub (59) and the second cover plate (51) in the axial direction at the rear of the driven hub (59); and
    축방향으로 상기 드리븐허브(59)와 상기 제2후방마찰와셔(63) 사이 또는 상기 드리븐허브(59)와 상기 제2전방마찰와셔(61) 사이에 배치되는 제2탄성와셔(65);를 포함하는, 하이브리드 구동 모듈.A second elastic washer 65 disposed between the driven hub 59 and the second rear friction washer 63 or between the driven hub 59 and the second front friction washer 61 in the axial direction; Including, hybrid driving module.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 제2탄성와셔(65)는 축방향으로 상기 드리븐허브(59)와 상기 제2후방마찰와셔(63) 사이에 배치되는, 하이브리드 구동 모듈.The second elastic washer (65) is disposed between the driven hub (59) and the second rear friction washer (63) in the axial direction.
  13. 청구항 1에 있어서,The method of claim 1,
    상기 제2댐퍼(50)와 상기 엔진클러치(80)는 회전방향으로 회전 구속되고 축방향으로는 상대적인 슬라이딩을 허용하는 스플라인 연결된, 하이브리드 구동 모듈.The second damper (50) and the engine clutch (80) are spline-connected, which are rotationally restrained in the rotational direction and allow relative sliding in the axial direction.
  14. 청구항 1에 있어서,The method of claim 1,
    상기 제1댐퍼(30)와 제2댐퍼(50)는 오일에 의해 냉각되는 습식 댐퍼인, 하이브리드 구동 모듈.The first damper (30) and the second damper (50) are wet dampers cooled by oil.
PCT/KR2022/016957 2021-11-16 2022-11-02 Hybrid driving module WO2023090697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0158051 2021-11-16
KR1020210158051A KR102662786B1 (en) 2021-11-16 2021-11-16 Hybrid drive module

Publications (1)

Publication Number Publication Date
WO2023090697A1 true WO2023090697A1 (en) 2023-05-25

Family

ID=86397416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016957 WO2023090697A1 (en) 2021-11-16 2022-11-02 Hybrid driving module

Country Status (2)

Country Link
KR (1) KR102662786B1 (en)
WO (1) WO2023090697A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304008A (en) * 2007-06-08 2008-12-18 Aisin Seiki Co Ltd Torque fluctuation absorbing device
JP2010038312A (en) * 2008-08-07 2010-02-18 Aisin Seiki Co Ltd Damper device
KR101195945B1 (en) * 2010-10-15 2012-10-29 한국파워트레인 주식회사 Torsional vibration damper having the feature of nonlinear
KR20130065419A (en) * 2011-12-09 2013-06-19 현대자동차주식회사 Torque limiter for hybrid vehicle
KR102238845B1 (en) * 2020-02-11 2021-04-12 현대트랜시스 주식회사 Power transmission apparatus for hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246839A1 (en) 2002-10-08 2004-04-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Power transmission for hybrid road vehicle can operate as parallel or series hybrid and incorporates two electrical machines and double- plate automatic clutch
KR101491194B1 (en) * 2007-08-02 2015-02-06 섀플러 테크놀로지스 게엠베하 운트 코. 카게 Device for damping vibrations, in particular a multi-step torsional vibration damper
CN107989963A (en) 2016-10-26 2018-05-04 舍弗勒技术股份两合公司 Power assembly, P2 hybrid dynamic systems, the torsional vibration damper of hybrid vehicle
DE102018106287A1 (en) 2018-03-19 2019-09-19 Schaeffler Technologies AG & Co. KG Hybrid module with two-part secondary torsional vibration damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304008A (en) * 2007-06-08 2008-12-18 Aisin Seiki Co Ltd Torque fluctuation absorbing device
JP2010038312A (en) * 2008-08-07 2010-02-18 Aisin Seiki Co Ltd Damper device
KR101195945B1 (en) * 2010-10-15 2012-10-29 한국파워트레인 주식회사 Torsional vibration damper having the feature of nonlinear
KR20130065419A (en) * 2011-12-09 2013-06-19 현대자동차주식회사 Torque limiter for hybrid vehicle
KR102238845B1 (en) * 2020-02-11 2021-04-12 현대트랜시스 주식회사 Power transmission apparatus for hybrid vehicle

Also Published As

Publication number Publication date
KR102662786B1 (en) 2024-05-03
KR20230071638A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2021118054A1 (en) Hybrid drive module
WO2014171576A1 (en) Electronic parking brake actuator assembly
WO2013183960A1 (en) Balancing module and washing machine having the same
WO2021157921A1 (en) Hybrid driving module
WO2016186353A1 (en) Washing machine drive apparatus, and washing machine comprising same
WO2024117503A1 (en) Hybrid driving module
WO2013085288A1 (en) Transmission, in-wheel drive system comprising same, and method for manufacturing transmission
WO2023090697A1 (en) Hybrid driving module
WO2024096340A1 (en) Hybrid driving module
WO2024117504A1 (en) Hybrid driving module
WO2024111859A1 (en) Rotor hub and hybrid drive module equipped with same
WO2024096341A1 (en) Hybrid driving module
WO2024117505A1 (en) Hybrid driving module
WO2016122170A1 (en) Drum driving apparatus, drum washing machine having same, and method for operating same
WO2021101110A1 (en) Torque converter for vehicle
WO2021112410A1 (en) Pendulum damper assembly for torque converter
WO2016122171A1 (en) Drum driving apparatus, drum washing machine having same, and method for operating same
WO2023128213A1 (en) Torsional damper and hybrid driving module having same
WO2021157919A1 (en) Hybrid driving module
WO2023096198A1 (en) Torsional damper and hybrid drive module comprising same
WO2023096200A1 (en) Torsional damper and hybrid driving module having same
WO2020204296A1 (en) Dry torque converter for electric vehicle and method for controlling same
WO2020085753A1 (en) Electric vehicle dry torque converter and control method therefor
WO2014046418A1 (en) Transmission
WO2022108214A1 (en) Power transmission apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895904

Country of ref document: EP

Kind code of ref document: A1