WO2014046418A1 - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
WO2014046418A1
WO2014046418A1 PCT/KR2013/008243 KR2013008243W WO2014046418A1 WO 2014046418 A1 WO2014046418 A1 WO 2014046418A1 KR 2013008243 W KR2013008243 W KR 2013008243W WO 2014046418 A1 WO2014046418 A1 WO 2014046418A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input shaft
transmission
shaft
turbine
Prior art date
Application number
PCT/KR2013/008243
Other languages
French (fr)
Korean (ko)
Inventor
나종오
오명수
김영일
Original Assignee
Ra Chong Oh
Oh Myeong Soo
Kim Young Il
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ra Chong Oh, Oh Myeong Soo, Kim Young Il filed Critical Ra Chong Oh
Publication of WO2014046418A1 publication Critical patent/WO2014046418A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion

Definitions

  • the transmission is a device that transmits a rotation generated from a power source such as an engine to a driven body such as a wheel of a vehicle.
  • a power source such as an engine
  • a driven body such as a wheel of a vehicle.
  • all the transmissions are shifted according to a predetermined gear ratio, and when shifting, cumbersome clutch operation is required for separation and replacement of gears.
  • One object of the present invention is to provide a transmission that is automatically shifted without detachment and replacement of gears.
  • the first input shaft gear is provided with a second input shaft gear;
  • a torque converter unit having a turbine which rotates by converting torque of the input shaft;
  • An input carrier coupled to the turbine and installed to revolve around the input shaft, the input carrier including a first transmission gear engaged with the first input shaft gear;
  • a power carrier connected to the power shaft ring gear and having a first differential gear and a second differential gear meshing with the first differential gear;
  • An output shaft provided with an output ring gear meshed with the second differential gear;
  • a fixed carrier fixed to a housing of the torque converter unit and having planetary gears meshing with the second input shaft gear;
  • a first unidirectional bearing the outer side of which is fixedly installed to the fixed carrier and the inner side of which is rotatably provided in one direction;
  • a first adjusting gear fixedly installed inside the first unidirectional bearing and engaged with the first differential gear;
  • first differential gear and the second differential gear is shifted by being constrained by any one of the first unidirectional bearing, the second unidirectional bearing and a third unidirectional bearing according to the rotational speed of the turbine, The restraint by the set number of revolutions is automatically released and another unidirectional bearing is fastened to transfer the rotation shifted to the output shaft.
  • the rotation and idle of the first transmission gear cancel each other so that the power shaft ring gear may be kept in a stopped state.
  • the power shaft ring gear, the first input shaft gear and the first transmission gear may be provided with a ratio of the number of gear teeth 3: 1: 1, the first threshold value may be 0.25.
  • the first differential gear receives the rotational load of the first unidirectional bearing and through the second differential gear
  • the output ring gear can be rotated.
  • the second differential gear may receive the rotational load of the third unidirectional bearing to rotate the output ring gear.
  • the ratio of the number of gear teeth of the second input shaft gear and the transmission gear is provided as 1: 3, the first threshold value is 0.25, the second threshold value is 0.4035, the third threshold value is 0.6154, and the third The four threshold may be one.
  • the shift may be automatically made according to the number of revolutions converted in the torque converter.
  • FIG. 1 is a block diagram of a transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of the input unit of FIG. 2.
  • FIG. 4 is a cross-sectional view of the torque converter unit of FIG. 2.
  • FIG. 5 is a cross-sectional perspective view illustrating main parts of the torque transmission unit, the transmission unit, and the output unit of FIG. 2.
  • FIG. 6 is an exploded perspective view showing an input carrier provided with a first transmission gear and a second transmission gear.
  • 7A and 7B are cross-sectional views taken along the lines A-A and B-B shown in FIG. 2.
  • FIG. 8 is a cross-sectional view taken along line C-C shown in FIG. 2.
  • 9 and 10 are cross-sectional perspective views of main parts for explaining the speed change portion.
  • 11A and 11B are cross-sectional views taken along the lines D-D and E-E of FIG. 2.
  • FIG. 12 is a table relating to an example of the number of gears of the transmission of FIG. 2.
  • FIG. 13 is a table illustrating a shift stage in the shift method using the shift device of FIG. 12.
  • FIG. 14 is a graph illustrating a rotation speed of the first adjusting gear, the second adjusting gear and the third adjusting gear according to the shifting step of FIG. 13.
  • FIG. 15 is a graph of the rotation speed of the output shaft according to the shifting step of FIG. 13.
  • 16 is a diagram relating to a transmission order of rotational force in the neutral state of FIG. 13.
  • FIG. 17 is a table of rotation directions of gears in the neutral state of FIG. 16.
  • FIG. 18 is a diagram relating to a transmission order of rotational force in the low speed state of FIG. 13.
  • FIG. 19 is a table relating to the rotational direction of the gears in the low speed state of FIG. 18.
  • FIG. 20 is a diagram relating to a transmission order of rotational force in the middle speed state of FIG. 13.
  • FIG. 21 is a table of rotational directions of gears in the medium speed state of FIG. 20.
  • FIG. 22 is a diagram relating to a transmission order of rotational force in the high speed state of FIG. 13.
  • FIG. 23 is a table relating to the rotational direction of the gears in the high speed state of FIG.
  • the transmission device 1000 shifts and outputs the rotation when it is input. Specifically, the transmission device 1000 converts an input rotational force, that is, a torque by applying a torque converter, and automatically operates the unidirectional bearings that are constrained for each shift stage, without a separate clutch operation. Shift to output.
  • an input rotational force that is, a torque by applying a torque converter
  • the transmission apparatus 1000 may include an input unit 1100, a torque converter 1200, a torque transmission unit 1300, a transmission unit 1400, and an output unit 1500.
  • the input unit 1100 receives a rotation force from the outside.
  • FIG. 3 is a perspective view of the input unit 1100 of FIG. 2.
  • the input unit 1100 includes an input shaft 1110, an impeller connecting member 1120, a first input shaft gear 1130, a second input shaft gear 1140, and a bearing connecting member 1150. can do.
  • the input shaft 1110 is provided in the form of a rod having a circular cross section.
  • the input shaft 1110 may receive a rotational force from the outside and rotate accordingly.
  • the rotation speed of the input unit 1100 will be referred to as an input rotation speed.
  • the impeller connecting member 1120, the first input shaft gear 1130, the second input shaft gear 1140, and the bearing connecting member 1150 may be sequentially provided on the input shaft 1110.
  • the impeller connecting member 1120 connects the input shaft 1110 and the impeller 1220.
  • the impeller connecting member 1120 may be provided in a disc shape around the input shaft 1110 such that the shaft or plate extending from the impeller 1220 or the impeller 1220 is engaged. Accordingly, the rotational force input to the input shaft 1110 may be transmitted to the torque converter unit 1200.
  • the first input shaft gear 1130 may be provided in the form of a sun gear formed on the input shaft 1110.
  • the first input shaft gear 1130 may be engaged with the first transmission gear 1160 of the torque transmission unit 1300, thereby transmitting the rotational force input to the input shaft 1110 to the torque transmission unit 1300.
  • the second input shaft gear 1140 may be provided between the first input shaft gear 1140 and the bearing connecting member 1150 in the form of a sun gear formed on the input shaft 1110.
  • the second input shaft gear 1140 may be engaged with the planetary gears 1315 of the torque transmission unit 1300, thereby transmitting the rotational force input to the input shaft 1110 to the torque transmission unit 1300.
  • the bearing connecting member 1150 may be formed to protrude in a circular ring shape on the input shaft 1110.
  • the outer circumferential surface of the bearing connecting member 1150 is engaged with the inner bearing of the third unidirectional bearing 1330. Accordingly, the inner bearing of the third unidirectional bearing 1330 may rotate at an input speed.
  • the torque converter 1200 converts torque of the rotational force transmitted from the input unit 1100.
  • FIG. 4 is a cross-sectional view of the torque converter 1200 of FIG. 2.
  • the torque converter unit 1200 includes a housing 1210, an impeller 1220, a turbine 1230, and a turbine shaft 1240.
  • Housing 1210 houses impeller 1220, turbine 1230, and turbine shaft 1240 therein.
  • the housing 1210 may be fixed to the outside to maintain a stop state regardless of the rotation of the input shaft 1110.
  • a fixed gear 1250 is installed in the housing 1210, and the fixed gear 1250 is fastened to the second transmission gear 1161.
  • the impeller 1220 is connected to the impeller connecting member 1120 to rotate integrally with the input shaft 1110.
  • the impeller 1220 may be provided in a wheel shape having a plurality of wings provided to be rotatable about the input shaft 1110.
  • the turbine 1230 may be provided in a wheel shape having a plurality of wings disposed to face the impeller 1220.
  • the turbine 1230 may convert the torque of the rotational force of the impeller 1220.
  • a fluid may be provided between the impeller 1220 and the turbine 1230 inside the housing 1210.
  • kinetic energy is transferred to the fluid, which in turn causes the turbine 1230 to rotate.
  • the torque may be converted while the impeller 1220 rotates the turbine 1230 through the fluid.
  • the rotation speed of the converted turbine 1230 is referred to as turbine rotation speed.
  • a stator (not shown) may be additionally disposed between the impeller 1220 and the turbine 1230 in the torque converter 1200.
  • the stator (not shown) may increase the efficiency with which the torque is converted.
  • the turbine shaft 1240 has one end extending from the turbine 1230 and the other end coupled with the input carrier 1170. Accordingly, the turbine shaft 1240 may rotate together with the turbine 1230 to transmit the rotational force of the turbine 1230 to the input carrier 1170.
  • the torque transmission unit 1300 receives the rotational force from the input unit 1100 and the torque converter 1200 and transfers the rotational force to the transmission unit 1400.
  • FIG. 5 is a cross-sectional perspective view illustrating main parts of the torque transmission unit, the transmission unit, and the output unit of FIG. 2, and
  • FIG. 6 is an exploded perspective view illustrating an input carrier provided with a first transmission gear and a second transmission gear.
  • 7A and 7B are cross-sectional views taken along the lines A-A and B-B shown in FIG. 2.
  • the torque transmission unit 1300 may include an input carrier 1170, a first transmission gear 1160, a second transmission gear 1161, a power shaft ring gear 1180, and a power source.
  • the input carrier 1170 is provided revolved about the input shaft 1110.
  • the input carrier 1170 may be coupled to the turbine shaft 1240 to rotate with the turbine 1230 and the turbine shaft 1240 to revolve around the input shaft 1110.
  • the input carrier 1170 is coupled to a flange 1242 formed outwardly at the rear end of the turbine shaft 1240.
  • the input carrier 1170 has a first fixing pin 1171a and a second fixing pin so that the first transmission gear 1160 and the second transmission gear 1161 rotate and rotate about the input shaft 1110 at the same time. 1171b is provided.
  • the first transmission gear 1160 rotates by the first input shaft gear 1130 while revolving together with the input carrier 1170. 1180 may transmit a rotational force.
  • the second transmission gear 1161 is arranged to be rotatable on the second fixing pin 1171b.
  • the second transmission gear 1161 includes a front end 1161a and a rear end 1161b, and a fixed gear 1250 is fastened to the front end 1161a, and a first control shaft gear (1) at the rear end 1161b. 1312 may be fastened.
  • the second transmission gear 1161 is formed concavely between the front end portion 1161a and the rear end 1161b so that interference with the first transmission gear 1160 does not occur.
  • the fixed gear 1250 and the first control shaft gear 1312 are not configured for power transmission purposes, but are provided for the purpose of fixing the first unidirectional bearing 1310 and fastening the second unidirectional bearing 1320.
  • the fixed gear 1250 integral with the housing 1210 fixes the first control shaft gear 1312 through the second transmission gear 1161.
  • the fixed gear 1250 since the number of teeth of the fixed gear 1250 is 20T, the number of teeth of the first control shaft gear 1312 is 20T, and the number of teeth of the second transmission gear 1161 are connected to 14T, the fixed gear 1250 remains fixed without any rotation. Can be. However, the second transmission gear 1161 will only idle with the input carrier 1170.
  • FIG. 8 is a cross-sectional view taken along line C-C shown in FIG. 2.
  • the fixed carrier 1313 is engaged with the first control shaft gear 1312 and remains stationary.
  • the first control shaft 1311 is coupled to the fixed carrier 1313.
  • the first control shaft 1311 is connected to the first transmission 1310a.
  • the planetary gears 1315 are arranged to be rotatable on the fixing pins 1313a installed in the fixed carrier 1313.
  • One side of the planetary gear 1315 is coupled to the second input shaft gear 1140. Accordingly, the planetary gear 1315 may rotate by receiving rotational force from the second input shaft gear 1140.
  • the other side of the planetary gear 1315 is engaged with the transmission gear 1322. Therefore, the transmission gear 1322 is rotated by receiving a rotation force from the planetary gear 1315.
  • the transmission gear 1322 is connected to the second transmission 1320a through the second control shaft 1321.
  • Power carrier 1182 is provided to be rotatable to input shaft 1110.
  • the power carrier 1182 may be coupled to the power shaft 1181 to revolve around the input shaft 1110 together with the power shaft ring gear 1180 and the power shaft 1181.
  • the power carrier 1182 may include a first fixing pin 1183a and a second fixing pin so that the first differential gear 1410 and the second differential gear 1420 rotate and rotate about the input shaft 1110 at the same time. 1183b) is installed.
  • the first differential gear 1410 includes a front end 1411 and a rear end 1412 having different sizes of gears.
  • the first adjusting gear 1317 is fastened to the front end 1411
  • the second adjusting gear 1324 is fastened to one side of the rear end 1412
  • the second differential gear 1420 is connected to the other end of the rear end 1412. ) Can be fastened.
  • the second differential gear 1420 includes a front end 1421 and a rear end 1422 having the same size of the gears.
  • the rear end portion 1412 of the first differential gear is fastened to the front end portion 1421, and the third adjustment gear 1332 and the output ring gear 1510 are fastened to the rear end 1422.
  • the first differential gear 1410 and the second differential gear 1420 revolve around the input shaft 1110 by the power carrier 1182 and are fastened to each other. Accordingly, the shift is performed by being constrained by the transmissions, and the rotational force transmitted to the output ring gear 1430 may be transmitted.
  • the shifting process will be clearer in the shifting method described below.
  • first differential gear 1410 and the second differential gear 1420 are provided in pairs, respectively, and the first differential gear 1410 and the second differential gear 1420 are provided to transmit stable torque.
  • the input shaft 1110 may be provided to be symmetrical to each other.
  • the first differential gear 1410 and the second differential gear 1420 may be fastened to each other.
  • a first transmission 1310a and a second transmission 1320a are connected to the first differential gear 1410, and a third adjustment gear 1330a is connected to the second differential gear 1420.
  • the second differential gear 1420 is also connected to the output ring gear 1510.
  • the first transmission 1310a includes a first unidirectional bearing 1310, a first adjusting shaft 1316 and a first adjusting gear 1317.
  • the first unidirectional bearing 1310 is a unidirectional bearing centered on the input shaft 1110 and has an inner bearing and an outer bearing.
  • the outer bearing is coupled to the fixed carrier 1313 via the first control shaft 1311, and the inner bearing is coupled to the first adjustment shaft 1316.
  • One end of the first adjustment shaft 1316 is coupled to the inner bearing, and the other end is provided with a first adjustment gear 1317.
  • the first adjusting gear 1317 is engaged with the front end 1411 of the first differential gear 1410.
  • the inner and outer bearings are freely idle without load when the rotational force is applied in the opposite direction, whereas the inner and outer bearings are not rotated when the inner direction and the rotational force are applied. This can act as a rotating load.
  • a direction in which idling is possible is referred to as a free direction, and an opposite direction is referred to as a load direction.
  • the outer bearing since the outer bearing is coupled to the fixed carrier 1313, the outer bearing remains fixed, and the inner bearing is coupled to the first adjustment shaft 1316, so the first adjustment is performed. Rotate with shaft 1316.
  • the inner bearing rotates in the free direction (+) with respect to the outer bearing, rotation is possible without a load, and when the rotational force is applied in the load direction (-), the rotation of the first unidirectional bearing 1310 is impossible. Both the inner bearing and the first adjustment shaft 1316 remain stationary.
  • the first unidirectional bearing 1310 rotates idlingly to the first differential gear 1410.
  • the first unidirectional bearing 1310, the first adjustment shaft 1316, and the first All of the adjusting gears 1317 may stop to apply a load to the first differential gear 1410.
  • the first differential gear 1410 may load the rotation load of the first unidirectional bearing 1310. And rotates the output ring gear 1510 through the second differential gear 1420.
  • the second transmission 1320a includes a second unidirectional bearing 1320, a second adjusting shaft 1323, and a second adjusting gear 1324.
  • the second unidirectional bearing 1320 is a unidirectional bearing centered on the input shaft 1110 and has an inner bearing and an outer bearing.
  • the second unidirectional bearing 1320 is located between the first unidirectional bearing 1310 and the fixed carrier 1313.
  • the outer bearing is connected to the transmission gear 1322 via the second control shaft 1321, and the inner bearing is coupled to the second adjustment shaft 1323.
  • One end of the second adjustment shaft 1323 is coupled to the inner bearing, and the other end of the second adjustment shaft 1324 is provided.
  • the second adjustment gear 1324 is engaged with the rear end 1412 of the first differential gear 1410.
  • the first differential gear 1410 may load the rotation load of the second unidirectional bearing 1320. And rotates the output ring gear 1510 through the second differential gear 1420.
  • the third transmission 1330a includes a third unidirectional bearing 1330, a third adjustment shaft 1331, and a third adjustment gear 1332.
  • the third unidirectional bearing 1330 is provided as a unidirectional bearing about the input shaft 1110, similar to the first unidirectional bearing 1310, and has an inner bearing and an outer bearing.
  • the inner bearing is coupled to the bearing connecting member 1150 and the outer bearing is coupled to the third adjustment shaft 1331.
  • One end of the third adjustment shaft 1331 is coupled to the outer bearing, and the other end is provided with a third adjustment gear 1332.
  • the third adjustment gear 1332 is engaged with the second differential gear 1420.
  • the third unidirectional bearing 1330 since the inner bearing is coupled to the bearing connecting member 1150 formed on the input shaft 1110, the inner bearing rotates at an input speed with the input shaft 1110, and the outer bearing 3 is rotated together with the third adjustment shaft 1331 because it is coupled to the adjustment shaft 1331.
  • the inner bearing rotates at the input rotation speed
  • the outer bearing rotates at a lower rotation speed or in the opposite direction
  • the third bearing 1330 is rotated in the free direction, so that the rotation can be performed without load.
  • the rotation speed is greater than the input rotation speed, the third unidirectional bearing 1330 cannot be rotated, so that the outer bearing and the third adjustment shaft 1432 both rotate at the input rotation speed.
  • the third adjusting gear 1332 coupled to the outer diameter of the third unidirectional bearing 1330 is idle when the third unidirectional bearing 1330 is idling when a rotational force of less than an input rotational speed is applied.
  • the third unidirectional bearing 1330, the third adjusting shaft 1331, the third adjusting gear when the reverse rotational speed is applied to the third unidirectional bearing 1330 in the load direction Since all of the 1133 are fixed and rotated at the input rotation speed, the second differential gear 1420 may be loaded.
  • the transmission apparatus 1000 uses unidirectional bearings that are constrained for each shift stage.
  • the rotational relationship of the unidirectional bearing is engaged when the directions are the same and the rotation of the outer diameter and the inner diameter is the same, and rotates until they are united when the speeds of the outer diameter and the inner diameter are different.
  • the directions are different from each other, they are rotated in an idling state according to the connected relative gears without being fastened, and are fastened as one in the same direction and speed.
  • the output unit 1500 includes an output ring gear 1510 and an output shaft 1520.
  • the output ring gear 1510 is provided in the form of a ring gear about the input shaft 1110.
  • the second differential gear 1420 is fastened inside the output ring gear 1510.
  • the output ring gear 1510 receives rotational force from the second differential gear 1420.
  • One end of the output shaft 1520 extends from the output ring gear 1510 and is bent at one point to extend along the direction of the input shaft 1110 in the form of a shaft.
  • the output shaft 1520 may rotate integrally with the output ring gear 1510 to transmit rotational force to the outside.
  • the shift method here will be described based on the above-described speed change apparatus 1000 having the number of gears in FIG.
  • the number of gears of FIG. 12 is a value determined arbitrarily, and is not limited thereto.
  • the number of gears of the transmission apparatus 1000 may be set differently from the numerical value of FIG. 12.
  • the timing at which the neutral, low speed, middle speed, and high speed are shifted in the shift method may be changed. That is, the number of teeth of the gear in the transmission apparatus 1000 may be appropriately added or reduced in consideration of a desired speed ratio or shift timing.
  • the transmission device 1000 may receive a rotational force from the outside and shift the output to output the rotational force.
  • the transmission apparatus 1000 may perform a shift according to a neutral state, a low speed state, a middle speed state, and a high speed state.
  • FIG. 12 is a table illustrating an example of the number of gears of the transmission device 1000 of FIG. 2
  • FIG. 13 is a table illustrating a shifting step in a shift method using the transmission device 1000 of FIG. 12, and FIG. Is a graph of the rotation speed of the first adjusting gear 1317, the second adjusting gear 1324, and the third adjusting gear 1332 according to the shifting step of FIG. 15, and FIG. 15 is an output shaft 1520 according to the shifting step of FIG. 13. ) Is a graph about the number of revolutions.
  • the number of gear teeth is 16T for the first input shaft gear 1130, 15T for the second input shaft gear 1140, 16T for the first transmission gear 1160, 48T for the power shaft ring gear 1180
  • Planetary gear 1315 is 15T
  • first control shaft gear 1312 is 20T
  • transmission gear 1322 is 45T
  • second transmission gear 1161 is 14T
  • first adjustment gear 1317 is 24T
  • second adjustment Gear 1324 is 15T
  • rear end 1412 of first differential gear 1410 is 23T
  • tip 1411 of first differential gear 1410 is 14T
  • second differential gear 1420 is 14T
  • third adjustment Gear 1332 may be provided such that 24T and output ring gear 1510 have 52T.
  • the torque transmission unit 1300 may include the power shaft ring. Since the rotation force is not transmitted to the gear 1180, the output shaft 1520 is in a neutral state in which the rotation does not rotate.
  • the first adjusting gear 1317 when the turbine rotational speed is 0.25 to 0.4035, the first adjusting gear 1317 generates a rotational load on the first differential gear 1410 by engaging the first unidirectional bearing 1310, and the second adjusting gear 1324. ) And the third adjustment gear 1332 are rotated in an idling state.
  • the rotation of the idling state refers to the idle state irrelevant to the rotation of the output shaft, it is also a state to rotate for fastening.
  • the first differential gear 1410 transmits rotational force to the second differential gear 1420 while rotating and rotating in accordance with the rotational force of the power shaft ring gear 1180 and the rotational load of the first adjustment gear 1317.
  • the second differential gear 1420 rotates the output ring gear 1510 to output rotational force to the output shaft 1520.
  • the second adjustment gear 1324 when the turbine rotational speed is 0.4035 to 0.6154, the second adjustment gear 1324 generates a rotational load on the first differential gear 1410 by engaging the second unidirectional bearing 1320, and the first adjustment gear 1317. ) And the third adjustment gear 1332 are rotated in an idling state. Accordingly, the first differential gear 1410 rotates and rotates according to the rotational force of the power shaft ring gear 1180 and the rotational load of the second adjustment gear 1324, and transmits the rotational force to the second differential gear 1420. The second differential gear 1420 rotates the output ring gear 1510 to output rotational force to the output shaft 1520.
  • the third adjustment gear 1332 when the turbine rotational speed is 0.6154 to 1 (same as the input rotational speed), the third adjustment gear 1332 generates a rotational load on the second differential gear 1420 by engaging the third unidirectional bearing 1330.
  • the first adjustment gear 1317 and the second adjustment gear 1324 are rotated in an idling state. Therefore, the second differential gear 1420 rotates the output ring gear 1510 to output rotational force to the output shaft 1520.
  • the input rotational speed is +1, and other rotational speeds are referred to as a ratio thereof.
  • the sign indicates that + is rotation in the same direction as the input rotation, and-is rotation in the opposite direction to the input rotation.
  • -0.333 it means to rotate at a speed of 1/3 of the input rotation speed in the direction opposite to the input rotation speed.
  • FIG. 16 is a diagram relating to a transmission order of rotational force in the neutral state of FIG. 13, and FIG. 17 is a table of rotation directions of gears in the neutral state of FIG. 16.
  • the rotational force when the rotational force is input to the input shaft 1110, the rotational force is provided separately from the impeller 1220 and the first input shaft gear 1130 integrated with the input shaft 1110.
  • the impeller 1220 and the first input shaft gear 1130 are rotated at the same input speed + 1 as the input shaft 1110.
  • Rotation of the impeller 1220 rotates the input carrier 1170 through the turbine shaft 1240 integrated with the turbine 1230, and rotation of the first input shaft gear 1130 is the first inserted into the input carrier 1170. Transmission to the transmission gear 1160, the rotation of these two paths is joined in the input carrier 1170.
  • the rotation of the turbine 1230 may be caused by the rotational resistance of the power shaft ring gear 1180 and the impeller ( It may appear different depending on the rotational force of 1220.
  • the first transmission gear 1160 is inserted into the input carrier 1170, revolves integrally with the input carrier 1170, and is engaged with the first input shaft gear 1130 to apply rotational force from the first input shaft gear 1130. Take it and rotate it. At this time, since the first transmission gear 1160 is fastened to the inner side of the power shaft ring gear 1180, the first transmission gear 1160 is a rotational force received from the input carrier 1170 and the first input shaft gear 1130 as a result. To the power shaft ring gear 1180.
  • the power shaft ring gear 1180 since the power shaft ring gear 1180 is connected to the power carrier 1182 (external output end), it is in a state of receiving a predetermined rotational load.
  • the rotational load of the power shaft ring gear 1180 is greater and the power shaft ring gear 1180 may not rotate. This is because the turbine 1230 is not in a physically engaged state with the impeller 1220 and is in a relationship in which rotational force is transmitted through the fluid, so that the idle of the input carrier 1170 connected to the turbine 1230 is equal to or less than the first threshold value. This is because it generates little load.
  • the input shaft 1110 is rotated by generating only the minimum power from an external power source (engine, etc.), and the rotation is such that the rotation speed of the turbine 1230 is less than 0.25 by the impeller 1220.
  • Turbine 1230 has a rotation speed of 0.25 is a value set such that the rotation of the input carrier 1170 and the rotation of the first input shaft gear 1130 are detailed with each other when the power shaft ring gear 1180 is stationary. It is called the threshold of.
  • the turbine speed is +0.25, which is the first threshold value. Rotating and idle of the first transmission gear 1160 cancel each other and are not transmitted to the power shaft ring gear 1180 until reaching.
  • the rotation speed of the first transmission gear 1160 is four times the revolution speed, and when viewed from the outside, once rotation is canceled by one revolution, the first transmission gear (viewed from the outside) 1160)
  • the number of revolutions is three times the number of revolutions.
  • the number of teeth of the power shaft ring gear 1180 is three times the number of gears of the first transmission gear 1160 and the first input shaft gear 1130, and as a result, the power shaft ring gear 1180 may maintain a stopped state. .
  • FIG. 18 is a diagram relating to a transmission order of rotational force in the low speed state of FIG. 13, and FIG. 19 is a table relating to the rotation direction of the gears in the low speed state of FIG. 18.
  • the power shaft ring gear 1180 is rotated by increasing the rotation speed of the turbine 1230 until the first threshold value +0.25 is reached in the neutral state in which the power shaft ring gear 1180 is stopped.
  • the output shaft 1520 is rotated through the power carrier 1182 integrated with the power shaft ring gear 1180.
  • the rotational force begins to be transmitted from the first transmission gear 1160 to the power shaft ring gear 1180.
  • the first transmission is performed when the turbine speed is +0.25.
  • the rotation and idle of the gear 1160 cancel each other, so that the input ring gear 1330 does not rotate.
  • the number of gears of the first transmission gear 1160 meshes with the idle and rotation.
  • the rotation of the power shaft ring gear 1180 may be started.
  • the first and second differential gears 1410 and 1420 installed in the power carrier 1182 and the power carrier 1182 may be integrally formed with the power shaft ring gear 1180. Idle.
  • the first unidirectional bearing 1310 is connected to the housing 1210 whose outer bearing is stationary so that the inner side of the first unidirectional bearing 1310 when the power carrier 1182 tries to rotate in the negative direction The bearing generates a load.
  • the first adjusting gear 1317 connected to the inner bearing of the first unidirectional bearing 1310 has a stationary state, and the load is transmitted to the first differential gear 1410 via the first adjusting gear 1317. do. That is, the first differential gear 1410 transmits rotational force to the second differential gear 1420 while receiving the load of the first adjusting gear 1317 due to the fastening of the first unidirectional bearing 1310.
  • the second differential gear 1420 is mounted to the power carrier 1182 and is coupled to the first differential gear 1410 and the output ring gear 1510.
  • the second differential gear 1420 may rotate by the first differential gear 1410 while revolving by the power carrier 1182. Accordingly, the second differential gear 1420 may transmit rotational force to the output ring gear 1510.
  • the transmission unit 1400 transmits the rotational force to the output unit 1500 according to a constraint condition in which the first transmission 1310a maintains the stop state.
  • the second transmission 1320a (second adjusting gear) is held in the first differential gear 1410.
  • the rotation speed of the second transmission 1320a (second adjusting gear) is 0 at turbine speed +0.25. At turbine speed of +0.4035, it reaches -0.333.
  • a third transmission 1330a (third adjustment gear) is held in the second differential gear 1420.
  • the third transmission 1330a (third adjustment gear) has a rotational speed of 0 to 0 at turbine speed of +0.25. Turbine revolutions reach +0.5409 at +0.4035.
  • FIG. 20 is a diagram illustrating a transmission order of rotational force in the medium speed state of FIG. 13, and FIG. 21 is a table relating to a rotation direction of gears in the medium speed state of FIG. 20.
  • the medium speed state increases the rotation of the turbine 1230 to a second threshold value of +0.4035 in the low speed state in which the output ring gear 1510 is rotating at a low speed, and through the power shaft ring gear 1180 and the power carrier 1182.
  • the rotation of the output ring gear 1510 is more than the rotation of the low speed state.
  • the power transmission process is the same as in the low speed state described above, but the first adjustment gear 1317, which is connected to the first differential gear 1410 to generate a rotational load, is idle due to the termination of the first unidirectional bearing 1310 that is engaged. Becomes A second adjustment gear 1324 configured for speed increase is connected to the first differential gear 1410 to generate a rotational load so that the increased speed rotates the output ring gear 1510 through the second differential gear 1420.
  • Rotation of the second regulating gear 1324 causes the second unidirectional bearing 1320 to engage when the turbine 1320 reaches +0.4035 to generate a load on the first differential gear 1410.
  • the outer bearing of the second unidirectional bearing 1320 is coupled to the planetary gear 1315, the fixed carrier 1313 and the transmission gear 1322 connected to the second input shaft gear 1140, and the inner bearing is the second adjusting gear 1324. ) Is combined.
  • the rotation speed is -0.333, and the rotation thereof is adjusted by the second adjustment.
  • a rotation load is generated in the first differential gear 1410 through the gear 1324.
  • the output rotation speed is 0 ⁇ 0.0495 when the first adjustment gear 1317 is in operation
  • the output rotation speed is 0.0495 ⁇ 0.2505 when the second adjustment gear 1324 is in operation and outputs the rotation which is increased from the low speed state. Transmitted to gear 1510.
  • the first adjusting gear 1317 rotates +0.1635 in idle state (idling state), and the second adjusting gear 1324 makes -0.333 turns.
  • FIG. 22 is a diagram illustrating a transmission order of rotational force in the high speed state of FIG. 13, and FIG. 23 is a table relating to a rotation direction of gears in the high speed state of FIG. 22.
  • the power transmission process is the same as the above-described medium speed state, but the second adjusting gear 1324, which is connected to the first differential gear 1410 and generates a rotational load, is idle due to the termination of the second unidirectional bearing 1320. do.
  • the third unidirectional bearing 1330 rotates the output ring gear 1510 at high speed by generating a rotational load on the second differential gear 1420 through the third adjusting gear 1332.
  • Rotation of the third adjustment gear 1332 causes the third unidirectional bearing 1330 to engage when the turbine 1230 reaches +0.6154 to generate a load on the second differential gear 1420.
  • the outer diameter of the third unidirectional bearing 1330 is connected to the third adjusting gear 1332, and the inner diameter of the third unidirectional bearing 1330 is connected to the bearing connecting member 1150 provided at the rear end of the input shaft 1110. That is, the rotation of the third adjustment gear 1332 is rotated in one rotation equal to the rotation of the input shaft 1110.
  • the rotation of the turbine 1230 is gradually increased from 0.6154, which is the highest rotation in the medium speed state, to one rotation.
  • 0.6154 which is the highest rotation in the medium speed state
  • the transmission device 1000 is characterized in that the one-way bearing is used in each step in order to shift in the step of shifting. That is, according to the characteristic of the unidirectional bearing, the shift is performed by being restrained by any one of the first, second, and third bearings, and the restraint by the set rotation speed is automatically canceled, and another bearing is engaged to shift the output ring gear. It can transmit the rotation.
  • the transmission apparatus 1000 may selectively include all or a part of the above-described components.

Abstract

The present invention relates to a transmission and, more particularly, to a transmission for shifting gears without a clutch. An aspect of the present invention includes: an input shaft where a first input shaft gear and a second input shaft gear are disposed; a torque converter unit that has a turbine which rotates by converting an input shaft torque; an input carrier that is disposed so as to be coupled with the turbine and revolve around the input shaft and has a first transmission gear which is engaged with the first input shaft gear; a drive shaft ring gear that is engaged with the first transmission gear; a drive carrier that is connected with the drive shaft ring gear and has a first differential gear and a second differential gear which is engaged with the first differential gear; an output shaft where an output ring gear that is engaged with the second differential gear is disposed; a fixed carrier that is fixed to a housing of the torque converter unit and has planetary gears which are engaged with the second input shaft gear; a first unilateral bearing the outer side of which is disposed so as to be fixed to the fixed carrier and the inner side of which is provided so as to be capable of rotating only in a single direction; a first adjustment gear that is disposed so as to be fixed to an inner side of the first unilateral bearing and is engaged with the first differential gear; a ring gear-shaped transmission gear that is engaged with the planetary gear; a second unidirectional bearing the outer side of which is disposed so as to be fixed to the transmission gear and the inner side of which is provided so as to be capable of rotating only in a single direction; a second adjustment gear that is disposed so as to be fixed to an inner side of the second unidirectional bearing and is engaged with the first differential gear; a third unidirectional bearing the inner side of which is fixed to the input shaft and the outer side of which is provided so as to be capable of rotating only at or below an input speed of rotation; and a third adjustment gear that is coupled with an outer side of the third unidirectional bearing and is engaged with the second differential gear.

Description

변속 장치gearbox
본 발명은 변속 장치에 관한 것으로, 보다 상세하게는 클러치 없이 자동으로 변속되는 변속 장치에 관한 것이다.The present invention relates to a transmission, and more particularly to a transmission that automatically shifts without a clutch.
변속 장치는 엔진 등의 동력원에서 발생한 회전을 변속하여 자동차의 바퀴와 같은 피동체로 전달하는 장치이다. 일반적으로 변속 장치는 모두 정해진 기어비에 따른 변속을 하게 되며, 변속 시에는 기어의 이탈 및 교체를 위하여 번거로운 클러치 조작이 요구된다. The transmission is a device that transmits a rotation generated from a power source such as an engine to a driven body such as a wheel of a vehicle. In general, all the transmissions are shifted according to a predetermined gear ratio, and when shifting, cumbersome clutch operation is required for separation and replacement of gears.
최근에는 이를 보완하기 위하여 자동으로 변속을 수행하는 자동변속 장치에 관한 연구가 활발히 진행 중이다. 그러나 현재까지 개발된 벨트식 자동변속 장치 등은 구조적으로 매우 복잡하여 제작 시 많은 비용이 소요되며 아울러 벨트의 마모, 소음 및 슬립현상으로 인하여 광범위하게 사용되지 못하고 있는 실정이다.Recently, researches on an automatic transmission that automatically shifts to compensate for this are being actively conducted. However, the belt-type automatic transmission developed so far is very complicated in structure and costs a lot in manufacturing, and is not widely used due to wear, noise and slip of the belt.
본 발명의 일 과제는, 기어의 이탈 및 교체없이 자동으로 변속되는 변속 장치를 제공하는 것이다.One object of the present invention is to provide a transmission that is automatically shifted without detachment and replacement of gears.
본 발명이 해결하고자 하는 과제가 상술한 과제들로 한정되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-described problem, and the objects not mentioned may be clearly understood by those skilled in the art from the present specification and the accompanying drawings. will be.
본 발명의 일 양상에 따르면, 제 1 입력 축 기어, 제 2 입력 축 기어가 설치된 입력 축; 상기 입력 축의 토크를 변환하여 회전하는 터빈을 갖는 토크 컨버터부; 상기 터빈에 결합되어 상기 입력 축을 중심으로 공전하도록 설치되고, 상기 제 1 입력 축 기어와 치합되는 제 1 전달 기어를 포함하는 입력 캐리어; 상기 제 1 전달 기어와 치합되는 동력축 링기어; 상기 동력축 링기어와 연결되고, 제 1 차동 기어와, 상기 제 1 차동 기어와 치합되는 제 2 차동 기어를 갖는 동력 캐리어; 상기 제 2 차동 기어와 치합되는 출력링 기어가 설치된 출력축; 상기 토크 컨버터부의 하우징에 고정되며, 상기 제 2 입력축 기어와 치합되는 유성 기어들을 갖는 고정 캐리어; 외측은 상기 고정 캐리어에 고정 설치되고 내측은 단방향으로만 회전 가능하도록 제공되는 제 1 단방향 베어링; 상기 제 1 단방향 베어링의 내측에 고정 설치되고 상기 제 1 차동 기어와 치합되는 제 1 조정 기어; 상기 유성 기어와 치합되는 링기어 형태의 변속 기어; 외측은 상기 변속 기어에 고정 설치되고, 내측은 단방향으로만 회전 가능하도록 제공되는 제 2 단방향 베어링; 상기 제 2 단방향 베어링의 내측에 고정 설치되고, 상기 제 1 차동 기어와 치합되는 제 2 조정 기어; 내측은 상기 입력축에 결합되고, 외측은 입력 회전수 이하로만 회전 가능하도록 제공되는 제 3 단방향 베어링; 및 상기 제 3 단방향 베어링의 외측에 결합되고, 상기 제 2 차동 기어와 치합되는 제 3 조정 기어를 포함하는 변속 장치가 제공될 수 있다. According to an aspect of the invention, the first input shaft gear, the input shaft is provided with a second input shaft gear; A torque converter unit having a turbine which rotates by converting torque of the input shaft; An input carrier coupled to the turbine and installed to revolve around the input shaft, the input carrier including a first transmission gear engaged with the first input shaft gear; A power shaft ring gear meshing with the first transmission gear; A power carrier connected to the power shaft ring gear and having a first differential gear and a second differential gear meshing with the first differential gear; An output shaft provided with an output ring gear meshed with the second differential gear; A fixed carrier fixed to a housing of the torque converter unit and having planetary gears meshing with the second input shaft gear; A first unidirectional bearing, the outer side of which is fixedly installed to the fixed carrier and the inner side of which is rotatably provided in one direction; A first adjusting gear fixedly installed inside the first unidirectional bearing and engaged with the first differential gear; A shift gear in the form of a ring gear engaged with the planetary gear; A second unidirectional bearing fixed to the transmission gear and having an outer side rotatably provided in one direction; A second adjusting gear fixedly installed inside the second unidirectional bearing and engaged with the first differential gear; A third unidirectional bearing having an inner side coupled to the input shaft and the outer side being rotatable only at an input rotational speed lower; And a third adjusting gear coupled to the outside of the third unidirectional bearing and engaged with the second differential gear.
또한, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제1임계값 이하인 경우 상기 제 1 전달 기어의 자전과 공전이 서로 상쇄되어 상기 동력축 링기어가 정지 상태로 유지되고, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제1임계값 이상 제2임계값 이하인 경우, 상기 제 1 단방향 베어링이 회전 부하로 작용하여 상기 출력축이 상기 입력축의 회전수에 대하여 제1변속비로 회전되고, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제2임계값 이상 제3임계값 이하인 경우, 상기 제 2 단방향 베어링이 회전 부하로 작용하여 상기 출력축이 상기 입력축의 회전수에 대하여 제2변속비로 회전되며, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제3임계값 이상 제4임계값 이하인 경우, 상기 제 3 단방향 베어링이 회전 부하로 작용하여 상기 출력축이 상기 입력축의 회전수에 대하여 제3변속비로 회전될 수 있다.In addition, when the rotational speed of the turbine relative to the rotational speed of the input shaft is less than the first threshold value, the rotation and idle of the first transmission gear cancel each other so that the power shaft ring gear is kept stationary, the rotational speed of the input shaft When the rotational speed of the turbine with respect to is less than the first threshold value or less than the second threshold value, the first unidirectional bearing acts as a rotating load such that the output shaft is rotated at a first transmission ratio with respect to the rotational speed of the input shaft, When the rotational speed of the turbine with respect to the rotational speed is less than the second threshold value or less than the third threshold value, the second unidirectional bearing acts as a rotational load so that the output shaft is rotated at a second speed ratio with respect to the rotational speed of the input shaft, When the rotational speed of the turbine with respect to the rotational speed of the input shaft is greater than or equal to the third threshold and less than or equal to the fourth threshold, the third unidirectional bearing acts as a rotational load to The output shaft may be rotated by the third gear ratio with respect to the number of revolutions of the input shaft.
또한, 상기 제 1 차동 기어와 상기 제 2 차동 기어는 상기 터빈의 회전수에 따라 상기 제 1 단방향 베어링, 상기 제 2 단방향 베어링 그리고 제 3 단방향 베어링 중 어느 하나의 구속을 받음으로서 변속을 수행하고, 설정된 회전수에 의한 구속이 자동적으로 해지되고 또 다른 단방향 베어링이 체결되어 상기 출력축으로 변속된 회전을 전달할 수 있다.In addition, the first differential gear and the second differential gear is shifted by being constrained by any one of the first unidirectional bearing, the second unidirectional bearing and a third unidirectional bearing according to the rotational speed of the turbine, The restraint by the set number of revolutions is automatically released and another unidirectional bearing is fastened to transfer the rotation shifted to the output shaft.
또한, 상기 터빈의 회전수가 제1임계값 이하인 경우에는 상기 제 1 전달 기어의 자전과 공전이 서로 상쇄되어 상기 동력축 링기어가 정지 상태로 유지될 수 있다.In addition, when the rotation speed of the turbine is less than or equal to the first threshold value, the rotation and idle of the first transmission gear cancel each other so that the power shaft ring gear may be kept in a stopped state.
또한, 상기 동력축 링기어, 상기 제 1 입력축 기어 그리고 상기 제 1 전달 기어는 그 기어 잇수의 비가 3:1:1로 제공되고, 상기 제1임계값은 0.25일 수 있다.In addition, the power shaft ring gear, the first input shaft gear and the first transmission gear may be provided with a ratio of the number of gear teeth 3: 1: 1, the first threshold value may be 0.25.
또한, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제1임계값 이상 제2임계값 이하인 경우, 상기 제 1 차동 기어가 상기 제 1 단방향 베어링의 회전 부하를 받아 상기 제 2 차동 기어를 통해 상기 출력링 기어를 회전시킬 수 있다.In addition, when the rotational speed of the turbine relative to the rotational speed of the input shaft is less than the first threshold value or less than the second threshold value, the first differential gear receives the rotational load of the first unidirectional bearing and through the second differential gear The output ring gear can be rotated.
또한, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제2임계값 이상 제3임계값 이하인 경우, 상기 제 1 차동 기어가 상기 제 2 단방향 베어링의 회전 부하를 받아 상기 제 2 차동 기어를 통해 상기 출력링 기어를 회전시킬 수 있다.Further, when the rotational speed of the turbine relative to the rotational speed of the input shaft is greater than or equal to the second threshold value and less than or equal to the third threshold value, the first differential gear receives the rotational load of the second unidirectional bearing and the second differential gear receives the rotational load. The output ring gear can be rotated.
또한, 상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제3임계값 이상 제4임계값 이하인 경우, 상기 제 2 차동 기어가 상기 제 3 단방향 베어링의 회전 부하를 받아 상기 출력링 기어를 회전시킬 수 있다.In addition, when the rotational speed of the turbine relative to the rotational speed of the input shaft is greater than or equal to a third threshold value and less than or equal to a fourth threshold value, the second differential gear may receive the rotational load of the third unidirectional bearing to rotate the output ring gear. have.
또한, 상기 제 2 입력축 기어와 상기 변속기어는 그 기어 잇수의 비가 1:3으로 제공되고, 상기 제1임계값은 0.25, 상기 제2임계값은 0.4035, 상기 제3임계값은 0.6154, 그리고 상기 제4임계값은 1일 수 있다. In addition, the ratio of the number of gear teeth of the second input shaft gear and the transmission gear is provided as 1: 3, the first threshold value is 0.25, the second threshold value is 0.4035, the third threshold value is 0.6154, and the third The four threshold may be one.
본 발명에 의하면, 토크 컨버터에서 변환된 회전수에 따라 변속이 자동으로 이루어질 수 있다. According to the present invention, the shift may be automatically made according to the number of revolutions converted in the torque converter.
본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-described effects, and effects that are not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 변속 장치의 블록도이다.1 is a block diagram of a transmission apparatus according to an embodiment of the present invention.
도 2는 도 1의 변속 장치의 단면도이다.2 is a cross-sectional view of the transmission of FIG. 1.
도 3은 도 2의 입력부의 사시도이다. 3 is a perspective view of the input unit of FIG. 2.
도 4는 도 2의 토크 컨버터부의 단면도이다.4 is a cross-sectional view of the torque converter unit of FIG. 2.
도 5는 도 2의 토크 전달부와 변속부 그리고 출력부를 보여주는 요부 단면 사시도이다.5 is a cross-sectional perspective view illustrating main parts of the torque transmission unit, the transmission unit, and the output unit of FIG. 2.
도 6은 제 1 전달 기어와 제 2 전달기어가 설치된 입력 캐리어를 보여주는 분해 사시도이다. 6 is an exploded perspective view showing an input carrier provided with a first transmission gear and a second transmission gear.
도 7a 및 도 7b는 도 2에 표시된 A-A선 및 B-B선을 따라 절취한 단면도들이다. 7A and 7B are cross-sectional views taken along the lines A-A and B-B shown in FIG. 2.
도 8은 도 2에 표시된 C-C선을 따라 절취한 단면도이다. FIG. 8 is a cross-sectional view taken along line C-C shown in FIG. 2.
도 9 및 도 10은 변속부를 설명하기 위한 요부 단면 사시도들이다.9 and 10 are cross-sectional perspective views of main parts for explaining the speed change portion.
도 11a 및 도 11b는 도 2에 표시된 D-D선과 E-E선을 따라 절취한 단면도들이다. 11A and 11B are cross-sectional views taken along the lines D-D and E-E of FIG. 2.
도 12는 도 2의 변속 장치의 기어수의 일 예에 관한 표이다.12 is a table relating to an example of the number of gears of the transmission of FIG. 2.
도 13은 도 12의 변속 장치를 이용하는 변속 방법에서 변속 단계에 관한 표이다.FIG. 13 is a table illustrating a shift stage in the shift method using the shift device of FIG. 12.
도 14는 도 13의 변속 단계에 따른 제1 조정 기어와 제2 조정 기어 그리고 제3 조정기어의 회전수에 관한 그래프이다.FIG. 14 is a graph illustrating a rotation speed of the first adjusting gear, the second adjusting gear and the third adjusting gear according to the shifting step of FIG. 13.
도 15는 도 13의 변속 단계에 따른 출력 축의 회전수에 관한 그래프이다.FIG. 15 is a graph of the rotation speed of the output shaft according to the shifting step of FIG. 13.
도 16은 도 13의 중립 상태에서의 회전력의 전달 순서에 관한 도면이다.16 is a diagram relating to a transmission order of rotational force in the neutral state of FIG. 13.
도 17은 도 16의 중립 상태에서 기어들의 회전 방향에 관한 표이다.FIG. 17 is a table of rotation directions of gears in the neutral state of FIG. 16.
도 18은 도 13의 저속 상태에서의 회전력의 전달 순서에 관한 도면이다.18 is a diagram relating to a transmission order of rotational force in the low speed state of FIG. 13.
도 19는 도 18의 저속 상태에서 기어들의 회전 방향에 관한 표이다.19 is a table relating to the rotational direction of the gears in the low speed state of FIG. 18.
도 20은 도 13의 중속 상태에서의 회전력의 전달 순서에 관한 도면이다.20 is a diagram relating to a transmission order of rotational force in the middle speed state of FIG. 13.
도 21은 도 20의 중속 상태에서 기어들의 회전 방향에 관한 표이다. FIG. 21 is a table of rotational directions of gears in the medium speed state of FIG. 20.
도 22는 도 13의 고속 상태에서의 회전력의 전달 순서에 관한 도면이다.22 is a diagram relating to a transmission order of rotational force in the high speed state of FIG. 13.
도 23은 도 22의 고속 상태에서 기어들의 회전 방향에 관한 표이다.FIG. 23 is a table relating to the rotational direction of the gears in the high speed state of FIG.
본 명세서에 기재된 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 명확히 설명하기 위한 것이므로, 본 발명이 본 명세서에 기재된 실시예에 의해 한정되는 것은 아니며, 본 발명의 범위는 본 발명의 사상을 벗어나지 아니하는 수정예 또는 변형예를 포함하는 것으로 해석되어야 한다.Since the embodiments described herein are intended to clearly explain the spirit of the present invention to those skilled in the art to which the present invention pertains, the present invention is not limited to the embodiments described herein, and the present invention. The scope of should be construed to include modifications or variations without departing from the spirit of the invention.
또한, 본 명세서에서 사용되는 용어와 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것이므로, 본 발명이 본 명세서에서 사용되는 용어와 첨부된 도면에 의해 한정되는 것은 아니다.In addition, the terms used in the present specification and the accompanying drawings are for easily explaining the present invention, and thus, the present invention is not limited to the terms used in the present specification and the accompanying drawings.
또한, 본 발명을 설명함에 있어서, 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그에 관한 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명에 따른 변속 장치(1000)는 회전이 입력되면 이를 변속하여 출력한다. 구체적으로, 변속 장치(1000)는 토크 컨버터(torque converter)를 응용하여 입력된 회전력, 즉 토크(torque)를 변환하고, 변속단계별로 구속되는 단방향 베어링들을 이용하여 별도의 클러치(clutch) 조작 없이 자동으로 변속하여 출력한다.The transmission device 1000 according to the present invention shifts and outputs the rotation when it is input. Specifically, the transmission device 1000 converts an input rotational force, that is, a torque by applying a torque converter, and automatically operates the unidirectional bearings that are constrained for each shift stage, without a separate clutch operation. Shift to output.
이하에서는 본 발명에 따른 변속 장치(1000)의 일 실시예의 구성에 관하여 설명한다. Hereinafter, the configuration of an embodiment of the transmission apparatus 1000 according to the present invention will be described.
도 1은 본 발명의 일 실시예에 따른 변속 장치(1000)의 블록도이고, 도 2는 도 1의 변속 장치(1000)의 단면도이다.1 is a block diagram of a transmission apparatus 1000 according to an exemplary embodiment of the present invention, and FIG. 2 is a cross-sectional view of the transmission apparatus 1000 of FIG. 1.
도 1 및 도 2를 참조하면, 변속 장치(1000)는, 입력부(1100), 토크 컨버터부(1200), 토크 전달부(1300), 변속부(1400) 및 출력부(1500)를 포함한다. 1 and 2, the transmission apparatus 1000 may include an input unit 1100, a torque converter 1200, a torque transmission unit 1300, a transmission unit 1400, and an output unit 1500.
입력부(1100)에는 회전력이 입력되고, 토크 컨버터부(1200)는 입력된 회전력의 토크를 변환한다. 토크 전달부(1300)는 복합 유성 기어와 고정된 유성기어 구조를 이용하여 입력부(1100)의 회전력과 토크 컨버터부(1200)의 회전력을 변속부(1400)로 전달한다. 변속부(1400)는 단방향 베어링(1310,1320,1330)들 및 차동 기어 구조를 이용하여 전달된 회전력을 변속하여 출력부(1500)로 출력한다. The rotational force is input to the input unit 1100, and the torque converter 1200 converts the torque of the input rotational force. The torque transmission unit 1300 transmits the rotational force of the input unit 1100 and the rotational force of the torque converter unit 1200 to the transmission unit 1400 using the composite planetary gear and the fixed planetary gear structure. The transmission unit 1400 shifts the rotational force transmitted by using the unidirectional bearings 1310, 1320 and 1330 and the differential gear structure and outputs the output to the output unit 1500.
이하에서는 변속 장치(1000)의 각 구성요소에 관하여 설명한다.Hereinafter, each component of the transmission apparatus 1000 will be described.
입력부(1100)는 외부로부터 회전력을 입력받는다.The input unit 1100 receives a rotation force from the outside.
도 3은 도 2의 입력부(1100)의 사시도이다. 3 is a perspective view of the input unit 1100 of FIG. 2.
도 3을 참조하면, 입력부(1100)는 입력 축(1110), 임펠러 연결 부재(1120), 제 1 입력 축 기어(1130), 제 2 입력 축 기어(1140) 및 베어링 연결 부재(1150)를 포함할 수 있다. Referring to FIG. 3, the input unit 1100 includes an input shaft 1110, an impeller connecting member 1120, a first input shaft gear 1130, a second input shaft gear 1140, and a bearing connecting member 1150. can do.
입력 축(1110)은 단면이 원형인 로드 형태로 제공된다. 입력 축(1110)은 외부로부터 회전력을 입력받아 이에 따라 회전할 수 있다. 이하에서는 입력부(1100)의 회전수를 입력 회전수로 지칭한다. The input shaft 1110 is provided in the form of a rod having a circular cross section. The input shaft 1110 may receive a rotational force from the outside and rotate accordingly. Hereinafter, the rotation speed of the input unit 1100 will be referred to as an input rotation speed.
입력 축(1110) 상에는 임펠러 연결 부재(1120), 제 1 입력 축 기어(1130), 제 2 입력 축 기어(1140) 그리고 베어링 연결 부재(1150)가 순서대로 제공될 수 있다. The impeller connecting member 1120, the first input shaft gear 1130, the second input shaft gear 1140, and the bearing connecting member 1150 may be sequentially provided on the input shaft 1110.
임펠러 연결 부재(1120)는 입력 축(1110)과 임펠러(1220)를 연결한다. 예를 들어, 임펠러 연결 부재(1120)는 임펠러(1220) 또는 임펠러(1220)로부터 연장되는 축이나 플레이트가 결합되도록 입력 축(1110)을 중심으로 하는 원판 형상으로 제공될 수 있다. 이에 따라 입력 축(1110)으로 입력된 회전력이 토크 컨버터부(1200)로 전달될 수 있다. The impeller connecting member 1120 connects the input shaft 1110 and the impeller 1220. For example, the impeller connecting member 1120 may be provided in a disc shape around the input shaft 1110 such that the shaft or plate extending from the impeller 1220 or the impeller 1220 is engaged. Accordingly, the rotational force input to the input shaft 1110 may be transmitted to the torque converter unit 1200.
제 1 입력 축 기어(1130)는 입력 축(1110)에 형성되는 태양 기어의 형태로 제공될 수 있다. 제 1 입력 축 기어(1130)는 토크 전달부(1300)의 제 1 전달기어(1160)와 체결되고, 이에 따라 입력 축(1110)으로 입력된 회전력을 토크 전달부(1300)로 전달할 수 있다. The first input shaft gear 1130 may be provided in the form of a sun gear formed on the input shaft 1110. The first input shaft gear 1130 may be engaged with the first transmission gear 1160 of the torque transmission unit 1300, thereby transmitting the rotational force input to the input shaft 1110 to the torque transmission unit 1300.
제 2 입력 축 기어(1140)는 입력 축(1110)에 형성되는 태양 기어의 형태로 제1 입력 축 기어(1140)와 베어링 연결 부재(1150) 사이에 제공될 수 있다. 제 2 입력 축 기어(1140)는 토크 전달부(1300)의 유성 기어(1315)들과 체결되고, 이에 따라 입력 축(1110)으로 입력된 회전력을 토크 전달부(1300)로 전달할 수 있다. The second input shaft gear 1140 may be provided between the first input shaft gear 1140 and the bearing connecting member 1150 in the form of a sun gear formed on the input shaft 1110. The second input shaft gear 1140 may be engaged with the planetary gears 1315 of the torque transmission unit 1300, thereby transmitting the rotational force input to the input shaft 1110 to the torque transmission unit 1300.
베어링 연결 부재(1150)는 입력 축(1110)에 원형 링 형태로 돌출되어 형성될 수 있다. 베어링 연결 부재(1150)의 외주면은 제 3 단방향 베어링(1330)의 내측 베어링과 결합된다. 이에 따라 제 3 단방향 베어링(1330)의 내측 베어링은 입력 회전수로 회전할 수 있다. The bearing connecting member 1150 may be formed to protrude in a circular ring shape on the input shaft 1110. The outer circumferential surface of the bearing connecting member 1150 is engaged with the inner bearing of the third unidirectional bearing 1330. Accordingly, the inner bearing of the third unidirectional bearing 1330 may rotate at an input speed.
토크 컨버터부(1200)는 입력부(1100)로부터 전달된 회전력의 토크를 변환한다. The torque converter 1200 converts torque of the rotational force transmitted from the input unit 1100.
도 4는 도 2의 토크 컨버터부(1200)의 단면도이다.4 is a cross-sectional view of the torque converter 1200 of FIG. 2.
도 4를 참조하면, 토크 컨버터부(1200)는 하우징(1210), 임펠러(1220), 터빈(1230) 및 터빈 축(1240)을 포함한다. Referring to FIG. 4, the torque converter unit 1200 includes a housing 1210, an impeller 1220, a turbine 1230, and a turbine shaft 1240.
하우징(1210)은 임펠러(1220), 터빈(1230) 및 터빈 축(1240)을 내부에 수용한다. 하우징(1210)은 외부에 고정 설치되어 입력 축(1110)의 회전과 무관하게 정지 상태를 유지할 수 있다. 하우징(1210)에는 고정기어(1250)가 설치되며, 고정기어(1250)는 제2전달기어(1161)와 체결된다. Housing 1210 houses impeller 1220, turbine 1230, and turbine shaft 1240 therein. The housing 1210 may be fixed to the outside to maintain a stop state regardless of the rotation of the input shaft 1110. A fixed gear 1250 is installed in the housing 1210, and the fixed gear 1250 is fastened to the second transmission gear 1161.
임펠러(1220)는 임펠러 연결 부재(1120)와 연결되어 입력 축(1110)과 일체로 회전된다. 임펠러(1220)는 입력 축(1110)을 중심으로 회전 가능하도록 제공되는 복수의 날개를 가지는 바퀴 형상으로 제공될 수 있다. The impeller 1220 is connected to the impeller connecting member 1120 to rotate integrally with the input shaft 1110. The impeller 1220 may be provided in a wheel shape having a plurality of wings provided to be rotatable about the input shaft 1110.
터빈(1230)은 임펠러(1220)와 마주보도록 배치되는 복수의 날개를 가지는 바퀴 형상으로 제공될 수 있다. 터빈(1230)은 임펠러(1220)의 회전력의 토크를 변환할 수 있다. The turbine 1230 may be provided in a wheel shape having a plurality of wings disposed to face the impeller 1220. The turbine 1230 may convert the torque of the rotational force of the impeller 1220.
구체적으로 하우징(1210) 내부의 임펠러(1220)와 터빈(1230) 사이에는 유체가 제공될 수 있다. 유체가 회전하면 유체로 운동 에너지가 전달되고, 다시 유체의 운동 에너지가 터빈(1230)을 회전시킨다. 이처럼 유체를 통해 임펠러(1220)가 터빈(1230)을 회전시키는 과정에서 토크가 변환될 수 있다. 이하에서는 변환된 터빈(1230)의 회전수를 터빈 회전수로 지칭한다. Specifically, a fluid may be provided between the impeller 1220 and the turbine 1230 inside the housing 1210. As the fluid rotates, kinetic energy is transferred to the fluid, which in turn causes the turbine 1230 to rotate. As such, the torque may be converted while the impeller 1220 rotates the turbine 1230 through the fluid. Hereinafter, the rotation speed of the converted turbine 1230 is referred to as turbine rotation speed.
한편, 토크 컨버터부(1200)에서 임펠러(1220)와 터빈(1230) 사이에는 추가로 스테이터(stator, 미도시)가 배치될 수 있다. 스테이터(미도시)는 토크가 변환되는 효율을 증대시킬 수 있다. Meanwhile, a stator (not shown) may be additionally disposed between the impeller 1220 and the turbine 1230 in the torque converter 1200. The stator (not shown) may increase the efficiency with which the torque is converted.
터빈 축(1240)은 일단이 터빈(1230)으로부터 연장되고, 타단은 입력 캐리어(1170)와 결합된다. 이에 따라 터빈 축(1240)은 터빈(1230)과 함께 회전하여 터빈(1230)의 회전력을 입력 캐리어(1170)로 전달할 수 있다. The turbine shaft 1240 has one end extending from the turbine 1230 and the other end coupled with the input carrier 1170. Accordingly, the turbine shaft 1240 may rotate together with the turbine 1230 to transmit the rotational force of the turbine 1230 to the input carrier 1170.
토크 전달부(1300)는 입력부(1100)와 토크 컨버터부(1200)로부터 회전력을 입력받아 변속부(1400)로 회전력을 전달한다.The torque transmission unit 1300 receives the rotational force from the input unit 1100 and the torque converter 1200 and transfers the rotational force to the transmission unit 1400.
도 5는 도 2의 토크 전달부와 변속부 그리고 출력부를 보여주는 요부 단면 사시도이고, 도 6은 제 1 전달 기어와 제 2 전달기어가 설치된 입력 캐리어를 보여주는 분해 사시도이다. 도 7a 및 도 7b는 도 2에 표시된 A-A선 및 B-B선을 따라 절취한 단면도이다. 5 is a cross-sectional perspective view illustrating main parts of the torque transmission unit, the transmission unit, and the output unit of FIG. 2, and FIG. 6 is an exploded perspective view illustrating an input carrier provided with a first transmission gear and a second transmission gear. 7A and 7B are cross-sectional views taken along the lines A-A and B-B shown in FIG. 2.
도 2 그리고 도 5 내지 도 7b를 참조하면, 토크 전달부(1300)는 입력 캐리어(1170), 제 1 전달 기어(1160), 제 2 전달기어(1161), 동력 축 링기어(1180), 동력축(1181), 제 1 제어축 기어(1312), 제 1 제어축(1311), 고정 캐리어(1313), 유성 기어(1315), 변속 기어(1322) 그리고 제 2 제어축(1321)을 포함할 수 있다. 2 and 5 to 7b, the torque transmission unit 1300 may include an input carrier 1170, a first transmission gear 1160, a second transmission gear 1161, a power shaft ring gear 1180, and a power source. A shaft 1181, a first control shaft gear 1312, a first control shaft 1311, a fixed carrier 1313, a planetary gear 1315, a transmission gear 1322, and a second control shaft 1321. Can be.
입력 캐리어(1170)는 입력 축(1110)을 중심으로 공전 가능하게 제공된다. 입력 캐리어(1170)는 터빈 축(1240)에 결합되어 터빈(1230) 및 터빈 축(1240)과 함께 회전하여 입력 축(1110)을 중심으로 공전할 수 있다. 입력 캐리어(1170)는 터빈 축(1240)의 후단에 외측으로 형성된 플랜지(1242)와 결합된다. The input carrier 1170 is provided revolved about the input shaft 1110. The input carrier 1170 may be coupled to the turbine shaft 1240 to rotate with the turbine 1230 and the turbine shaft 1240 to revolve around the input shaft 1110. The input carrier 1170 is coupled to a flange 1242 formed outwardly at the rear end of the turbine shaft 1240.
입력 캐리어(1170)는 제 1 전달 기어(1160)와 제 2 전달 기어(1161)가 자전함과 동시에 입력 축(1110)을 중심으로 공전할 수 있도록 제 1 고정핀(1171a) 및 제 2 고정핀(1171b)이 설치된다. The input carrier 1170 has a first fixing pin 1171a and a second fixing pin so that the first transmission gear 1160 and the second transmission gear 1161 rotate and rotate about the input shaft 1110 at the same time. 1171b is provided.
제 1 전달 기어(1160)는 제 1 고정핀(1171a)에 회전가능하도록 축설된다. 제 1 전달 기어(1160)는 일측이 제 1 입력축 기어(1130)와 체결된다. 이에 따라 제 1 전달 기어(1160)는 제 1 입력축 기어(1130)로부터 회전력을 받아 자전을 할 수 있다. 또, 제 1 전달 기어(1160)는 타측이 동력축 링기어(1180)와 체결된다. The first transmission gear 1160 is arranged to be rotatable to the first fixing pin 1171a. One side of the first transmission gear 1160 is coupled to the first input shaft gear 1130. Accordingly, the first transmission gear 1160 may rotate by receiving rotational force from the first input shaft gear 1130. In addition, the other side of the first transmission gear 1160 is coupled to the power shaft ring gear 1180.
상술한 바와 같이 제 1 전달 기어(1160)는 입력 캐리어(1170)와 함께 공전을 하면서 제 1 입력 축 기어(1130)에 의해 자전을 수행하는데, 이러한 공전과 자전의 조합에 따라 동력축 링기어(1180)에 회전력을 전달할 수 있다. As described above, the first transmission gear 1160 rotates by the first input shaft gear 1130 while revolving together with the input carrier 1170. 1180 may transmit a rotational force.
제 2 전달 기어(1161)는 제 2 고정핀(1171b)에 회전가능하도록 축설된다. 제 2 전달 기어(1161)는 전단부(1161a)와 후단부(1161b)로 구성되며, 전단부(1161a)에 고정기어(1250)가 체결되고, 후단부(1161b)에 제 1 제어축 기어(1312)가 체결될 수 있다. 제 2 전달 기어(1161)는 제 1 전달 기어(1160)와 간섭이 발생되지 않도록 전단부(1161a)와 후단부(1161b) 사이가 오목하게 형성된다. The second transmission gear 1161 is arranged to be rotatable on the second fixing pin 1171b. The second transmission gear 1161 includes a front end 1161a and a rear end 1161b, and a fixed gear 1250 is fastened to the front end 1161a, and a first control shaft gear (1) at the rear end 1161b. 1312 may be fastened. The second transmission gear 1161 is formed concavely between the front end portion 1161a and the rear end 1161b so that interference with the first transmission gear 1160 does not occur.
동력축 링기어(1180)는 그 내부에 제 1 전달 기어(1160)가 체결되는 링 기어 형태로 제공된다. 동력축 링기어(1180)는 제 1 전달 기어(1160)의 공전과 자전의 조합에 따라 제 1 전달 기어(1160)로부터 회전력을 전달받아 회전할 수 있다. The power shaft ring gear 1180 is provided in the form of a ring gear to which the first transmission gear 1160 is fastened therein. The power shaft ring gear 1180 may rotate by receiving rotational force from the first transmission gear 1160 according to a combination of revolution and rotation of the first transmission gear 1160.
동력 축(1181)은 일단이 동력축 링기어(1180)로부터 연장되고, 타단이 동력 캐리어(1182)에 결합된다. 따라서, 동력 축(1181)은 동력축 링기어(1180)의 회전력을 동력 캐리어(1182)에 전달하고, 이에 따라 동력축 링기어(1180), 동력 축(1181) 그리고, 동력 캐리어(1182)는 일체로 회전할 수 있다.One end of the power shaft 1181 extends from the power shaft ring gear 1180, and the other end is coupled to the power carrier 1182. Accordingly, the power shaft 1181 transmits the rotational force of the power shaft ring gear 1180 to the power carrier 1182, whereby the power shaft ring gear 1180, the power shaft 1181, and the power carrier 1182 are It can be rotated integrally.
여기서, 고정 기어(1250)와 제 1 제어 축 기어(1312)는 동력 전달 목적으로 구성된 것이 아니라, 다만 제 1 단방향 베어링(1310)의 고정과 제 2 단방향 베어링(1320)의 체결 목적으로 제공된다. 좀 더 세부적으로 설명하면, 하우징(1210)과 일체인 고정 기어(1250)는 제 2 전달 기어(1161)를 통하여 제 1 제어축 기어(1312)를 고정시킨다. Here, the fixed gear 1250 and the first control shaft gear 1312 are not configured for power transmission purposes, but are provided for the purpose of fixing the first unidirectional bearing 1310 and fastening the second unidirectional bearing 1320. In more detail, the fixed gear 1250 integral with the housing 1210 fixes the first control shaft gear 1312 through the second transmission gear 1161.
일 예로, 고정기어(1250)의 잇수는 20T, 제 1 제어축 기어(1312)의 잇수는 20T, 그리고 제 2 전달 기어(1161)의 잇수는 14T로 연결되기 때문에 어떠한 회전도 없이 고정 상태를 유지할 수 있다. 다만, 제 2 전달 기어(1161)는 입력 캐리어(1170)와 함께 공전만 하게 된다. For example, since the number of teeth of the fixed gear 1250 is 20T, the number of teeth of the first control shaft gear 1312 is 20T, and the number of teeth of the second transmission gear 1161 are connected to 14T, the fixed gear 1250 remains fixed without any rotation. Can be. However, the second transmission gear 1161 will only idle with the input carrier 1170.
도 8은 도 2에 표시된 C-C선을 따라 절취한 단면도이다. FIG. 8 is a cross-sectional view taken along line C-C shown in FIG. 2.
도 2 및 도 8을 참조하면, 고정식 유성기어 부재는 입력 캐리어(1170)와 동력 캐리어(1182) 사이에 위치되며, 고정 캐리어(1313)와 유성 기어(1315)들을 포함한다. 2 and 8, the fixed planetary gear member is positioned between the input carrier 1170 and the power carrier 1182 and includes the fixed carrier 1313 and the planetary gears 1315.
고정 캐리어(1313)는 제 1 제어축 기어(1312)와 결합되어 정지된 상태를 유지한다. 고정 캐리어(1313)에는 제 1 제어축(1311)이 결합된다. 제 1 제어축(1311)은 제 1 변속기(1310a)와 연결된다. The fixed carrier 1313 is engaged with the first control shaft gear 1312 and remains stationary. The first control shaft 1311 is coupled to the fixed carrier 1313. The first control shaft 1311 is connected to the first transmission 1310a.
유성 기어(1315)들은 고정 캐리어(1313)에 설치된 고정핀(1313a) 상에서 회전가능하도록 축설된다. 유성기어(1315)는 일측이 제 2 입력축 기어(1140)와 체결된다. 이에 따라 유성기어(1315)는 제 2 입력축 기어(1140)로부터 회전력을 받아 자전을 할 수 있다. 또, 유성 기어(1315)는 타측이 변속 기어(1322)와 체결된다. 따라서, 변속 기어(1322)는 유성 기어(1315)로부터 회전력을 전달받아 회전된다. 변속 기어(1322)는 제 2 제어축(1321)을 통해 제 2 변속기(1320a)와 연결된다. The planetary gears 1315 are arranged to be rotatable on the fixing pins 1313a installed in the fixed carrier 1313. One side of the planetary gear 1315 is coupled to the second input shaft gear 1140. Accordingly, the planetary gear 1315 may rotate by receiving rotational force from the second input shaft gear 1140. The other side of the planetary gear 1315 is engaged with the transmission gear 1322. Therefore, the transmission gear 1322 is rotated by receiving a rotation force from the planetary gear 1315. The transmission gear 1322 is connected to the second transmission 1320a through the second control shaft 1321.
변속부(1400)는 토크 전달부(1300)로부터 전달된 회전력을 변속하여 출력부(1500)로 출력한다. The transmission unit 1400 shifts the rotational force transmitted from the torque transmission unit 1300 and outputs the output to the output unit 1500.
도 9 및 도 10은 변속부를 설명하기 위한 요부 단면 사시도들이고, 도 11a 및 도 11b는 도 2에 표시된 D-D선과 E-E선을 따라 절취한 단면도들이다. 9 and 10 are cross-sectional perspective views of main parts for explaining the speed change unit, and FIGS. 11A and 11B are cross-sectional views taken along the lines D-D and E-E shown in FIG. 2.
도 2 및 도 9 내지 도 11b를 참조하면, 변속부는 동력 캐리어(1182), 제 1 차동 기어(1410), 제 2 차동 기어(1420), 제 1 변속기(1310a), 제 2 변속기(1320a), 제 3 변속기(1330a)를 포함한다.2 and 9 to 11B, the transmission unit includes a power carrier 1182, a first differential gear 1410, a second differential gear 1420, a first transmission 1310a, a second transmission 1320a, The third transmission 1330a is included.
동력 캐리어(1182)는 입력 축(1110)에 회전가능하도록 제공된다. 동력 캐리어(1182)는 동력축(1181)에 결합되어 동력축 링기어(1180) 및 동력축(1181)과 함께 입력 축(1110)을 중심으로 공전할 수 있다. Power carrier 1182 is provided to be rotatable to input shaft 1110. The power carrier 1182 may be coupled to the power shaft 1181 to revolve around the input shaft 1110 together with the power shaft ring gear 1180 and the power shaft 1181.
동력 캐리어(1182)는 제 1 차동 기어(1410)와 제 2 차동 기어(1420)가 자전함과 동시에 입력축(1110)을 중심으로 공전할 수 있도록 제1고정핀(1183a) 및 제2고정핀(1183b)이 설치된다. The power carrier 1182 may include a first fixing pin 1183a and a second fixing pin so that the first differential gear 1410 and the second differential gear 1420 rotate and rotate about the input shaft 1110 at the same time. 1183b) is installed.
제1 차동 기어(1410)는 기어의 크기가 서로 상이한 전단부(1411)와 후단부(1412)로 구성된다. 전단부(1411)에는 제1 조정 기어(1317)가 체결되고, 후단부(1412)의 일측에는 제 2 조정기어(1324)가 체결되며, 후단부(1412)의 타측에는 제 2 차동 기어(1420)가 체결될 수 있다.The first differential gear 1410 includes a front end 1411 and a rear end 1412 having different sizes of gears. The first adjusting gear 1317 is fastened to the front end 1411, the second adjusting gear 1324 is fastened to one side of the rear end 1412, and the second differential gear 1420 is connected to the other end of the rear end 1412. ) Can be fastened.
제 2 차동 기어(1420)는 기어의 크기가 동일한 전단부(1421)와 후단부(1422)를 포함한다. 전단부(1421)에는 제 1 차동기어의 후단부(1412)가 체결되며, 후단부(1422)에는 제 3 조정 기어(1332)와 출력링 기어(1510)가 체결된다. The second differential gear 1420 includes a front end 1421 and a rear end 1422 having the same size of the gears. The rear end portion 1412 of the first differential gear is fastened to the front end portion 1421, and the third adjustment gear 1332 and the output ring gear 1510 are fastened to the rear end 1422.
이러한 구조에 의해 제1 차동 기어(1410)와 제2 차동 기어(1420)가 동력 캐리어(1182)에 의해 입력 축(1110)을 중심으로 공전하며 서로 체결된 상태로 인하여 상술한 단방향 베어링의 특징에 따라 변속기들의 구속을 받음으로써 변속을 수행하고, 출력 링 기어(1430)로 변속된 회전력을 전달할 수 있다. 변속이 되는 과정에 대해서는 후술되는 변속 방법에서 보다 명확해 질 것이다.Due to this structure, the first differential gear 1410 and the second differential gear 1420 revolve around the input shaft 1110 by the power carrier 1182 and are fastened to each other. Accordingly, the shift is performed by being constrained by the transmissions, and the rotational force transmitted to the output ring gear 1430 may be transmitted. The shifting process will be clearer in the shifting method described below.
토크의 균형을 위하여 제1 차동 기어(1410)와 제2 차동 기어(1420)는 각각 한 쌍으로 제공되고, 제1 차동 기어(1410)와 제2 차동 기어(1420)는 안정적인 회전력을 전달하기 위해 입력축(1110)을 기준으로 서로 대칭되도록 제공될 수 있다. In order to balance torque, the first differential gear 1410 and the second differential gear 1420 are provided in pairs, respectively, and the first differential gear 1410 and the second differential gear 1420 are provided to transmit stable torque. The input shaft 1110 may be provided to be symmetrical to each other.
이러한 제1 차동 기어(1410)와 제2 차동 기어(1420)는 서로 체결될 수 있다. 또한, 제1 차동 기어(1410)에는 제1 변속기(1310a) 및 제2변속기(1320a)가 연결되고, 제2 차동 기어(1420)에는 제3 조정 기어(1330a)가 연결된다. 또 제2 차동 기어(1420)는 출력 링 기어(1510)에 연결된다. The first differential gear 1410 and the second differential gear 1420 may be fastened to each other. In addition, a first transmission 1310a and a second transmission 1320a are connected to the first differential gear 1410, and a third adjustment gear 1330a is connected to the second differential gear 1420. The second differential gear 1420 is also connected to the output ring gear 1510.
제1 변속기(1310a)는 제1 단방향 베어링(1310), 제1 조정 축(1316) 및 제1 조정 기어(1317)를 포함한다. The first transmission 1310a includes a first unidirectional bearing 1310, a first adjusting shaft 1316 and a first adjusting gear 1317.
제1 단방향 베어링(1310)은 입력 축(1110)을 중심으로 하는 단방향 베어링으로 내측 베어링과 외측 베어링을 가진다. 외측 베어링은 제 1 제어축(1311)을 통해 고정 캐리어(1313)에 결합되고, 내측 베어링은 제1 조정 축(1316)에 결합된다. 제1 조정 축(1316)은 일단이 내측 베어링에 결합되고, 타단에는 제1 조정 기어(1317)가 제공된다. 제1 조정 기어(1317)는 제1 차동 기어(1410)의 전단부(1411)와 체결된다. The first unidirectional bearing 1310 is a unidirectional bearing centered on the input shaft 1110 and has an inner bearing and an outer bearing. The outer bearing is coupled to the fixed carrier 1313 via the first control shaft 1311, and the inner bearing is coupled to the first adjustment shaft 1316. One end of the first adjustment shaft 1316 is coupled to the inner bearing, and the other end is provided with a first adjustment gear 1317. The first adjusting gear 1317 is engaged with the front end 1411 of the first differential gear 1410.
단방향 베어링에서 내측 베어링과 외측 베어링은 상대적으로 반대 방향의 회전력이 가해지면 부하 없이 자유로운 공회전(idle rotation)이 가능한 반면, 동일한 방향의 회전력이 가해지면 내측 베어링과 외측 베어링이 서로 체결되어 회전이 불가능하며 이에 따라 회전 부하로 작용할 수 있다. 이하에서는 공회전이 가능한 방향을 자유 방향으로 지칭하고, 그 반대 방향을 부하 방향으로 지칭한다. In the unidirectional bearings, the inner and outer bearings are freely idle without load when the rotational force is applied in the opposite direction, whereas the inner and outer bearings are not rotated when the inner direction and the rotational force are applied. This can act as a rotating load. Hereinafter, a direction in which idling is possible is referred to as a free direction, and an opposite direction is referred to as a load direction.
제1 단방향 베어링(1310)에서는 외측 베어링이 고정된 고정 캐리어(1313)에 결합된 상태이므로 외측 베어링은 고정 상태를 유지하고, 내측 베어링은 제1 조정 축(1316)에 결합된 상태이므로 제1 조정 축(1316)과 함께 회전한다. 여기서, 내측 베어링이 외측 베어링에 대해 자유 방향(+)으로 회전하는 경우에는 부하 없이 회전이 가능하고, 부하 방향(-)으로 회전력이 가해지는 경우에는 제1 단방향 베어링(1310)의 회전이 불가능하여 내측 베어링, 제1 조정 축(1316)이 모두 정지 상태를 유지하게 된다.In the first unidirectional bearing 1310, since the outer bearing is coupled to the fixed carrier 1313, the outer bearing remains fixed, and the inner bearing is coupled to the first adjustment shaft 1316, so the first adjustment is performed. Rotate with shaft 1316. Here, when the inner bearing rotates in the free direction (+) with respect to the outer bearing, rotation is possible without a load, and when the rotational force is applied in the load direction (-), the rotation of the first unidirectional bearing 1310 is impossible. Both the inner bearing and the first adjustment shaft 1316 remain stationary.
이러한 구조에 따라 제1 차동 기어(1410)로부터 제1 단방향 베어링(1310)에 자유 방향(+)의 회전력이 가해지는 경우에는 제1 단방향 베어링(1310)이 공회전하여 제1 차동 기어(1410)에 부하를 가하지 않고, 반대로 제1 차동 기어(1410)로부터 제1 단방향 베어링(1310)에 부하 방향의 회전력이 가해지려는 경우에는 제1 단방향 베어링(1310), 제1 조정 축(1316), 제1 조정 기어(1317)가 모두 정지하여 제1 차동 기어(1410)에 부하를 가할 수 있다.According to this structure, when a rotational force in the free direction (+) is applied to the first unidirectional bearing 1310 from the first differential gear 1410, the first unidirectional bearing 1310 rotates idlingly to the first differential gear 1410. When no load is applied and rotational force in the load direction is applied to the first unidirectional bearing 1310 from the first differential gear 1410, the first unidirectional bearing 1310, the first adjustment shaft 1316, and the first All of the adjusting gears 1317 may stop to apply a load to the first differential gear 1410.
일 예로, 입력축(1110)의 회전수에 대한 터빈(1230)의 회전수가 제1임계값 이상 제2임계값 이하인 경우, 제 1 차동 기어(1410)가 제 1 단방향 베어링(1310)의 회전 부하를 받아 제 2 차동 기어(1420)를 통해 출력링 기어(1510)를 회전시킨다. For example, when the rotation speed of the turbine 1230 with respect to the rotation speed of the input shaft 1110 is less than the first threshold value or less than the second threshold value, the first differential gear 1410 may load the rotation load of the first unidirectional bearing 1310. And rotates the output ring gear 1510 through the second differential gear 1420.
제 2 변속기(1320a)는 제2 단방향 베어링(1320), 제2 조정 축(1323) 및 제2 조정 기어(1324)를 포함한다. The second transmission 1320a includes a second unidirectional bearing 1320, a second adjusting shaft 1323, and a second adjusting gear 1324.
제2 단방향 베어링(1320)은 입력 축(1110)을 중심으로 하는 단방향 베어링으로 내측 베어링과 외측 베어링을 가진다. 제 2 단방향 베어링(1320)은 제1 단방향 베어링(1310)과 고정 캐리어(1313) 사이에 위치된다. 외측 베어링은 제 2 제어축(1321)을 통해 변속 기어(1322)와 연결되고, 내측 베어링은 제2 조정 축(1323)에 결합된다. 제2 조정 축(1323)은 일단이 내측 베어링에 결합되고, 타단에는 제2 조정 기어(1324)가 제공된다. 제2 조정 기어(1324)는 제1 차동 기어(1410)의 후단부(1412)와 체결된다. The second unidirectional bearing 1320 is a unidirectional bearing centered on the input shaft 1110 and has an inner bearing and an outer bearing. The second unidirectional bearing 1320 is located between the first unidirectional bearing 1310 and the fixed carrier 1313. The outer bearing is connected to the transmission gear 1322 via the second control shaft 1321, and the inner bearing is coupled to the second adjustment shaft 1323. One end of the second adjustment shaft 1323 is coupled to the inner bearing, and the other end of the second adjustment shaft 1324 is provided. The second adjustment gear 1324 is engaged with the rear end 1412 of the first differential gear 1410.
일 예로, 입력축(1110)의 회전수에 대한 터빈(1230)의 회전수가 제2임계값 이상 제3임계값 이하인 경우, 제 1 차동 기어(1410)가 제 2 단방향 베어링(1320)의 회전 부하를 받아 제 2 차동 기어(1420)를 통해 출력링 기어(1510)를 회전시킨다. For example, when the rotation speed of the turbine 1230 with respect to the rotation speed of the input shaft 1110 is greater than or equal to the second threshold value and less than or equal to the third threshold value, the first differential gear 1410 may load the rotation load of the second unidirectional bearing 1320. And rotates the output ring gear 1510 through the second differential gear 1420.
제3 변속기(1330a)는 제3 단방향 베어링(1330), 제3 조정 축(1331) 및 제3 조정 기어(1332)를 포함한다. The third transmission 1330a includes a third unidirectional bearing 1330, a third adjustment shaft 1331, and a third adjustment gear 1332.
제 3 단방향 베어링(1330)은 제1 단방향 베어링(1310)과 유사하게 입력 축(1110)을 중심으로 하는 단방향 베어링으로 제공되며, 내측 베어링과 외측 베어링을 가진다. 내측 베어링은 베어링 연결 부재(1150)에 결합되고, 외측 베어링은 제3 조정 축(1331)에 결합된다. 제3 조정 축(1331)은 일단이 외측 베어링에 결합되고, 타단에는 제3 조정 기어(1332)가 제공된다. 제3 조정 기어(1332)는 제2 차동 기어(1420)와 체결된다. The third unidirectional bearing 1330 is provided as a unidirectional bearing about the input shaft 1110, similar to the first unidirectional bearing 1310, and has an inner bearing and an outer bearing. The inner bearing is coupled to the bearing connecting member 1150 and the outer bearing is coupled to the third adjustment shaft 1331. One end of the third adjustment shaft 1331 is coupled to the outer bearing, and the other end is provided with a third adjustment gear 1332. The third adjustment gear 1332 is engaged with the second differential gear 1420.
제3 단방향 베어링(1330)에서는 내측 베어링이 입력 축(1110)에 형성된 베어링 연결 부재(1150)에 결합된 상태이므로 내측 베어링은 입력 축(1110)과 함께 입력 회전수로 회전하고, 외측 베어링은 제3 조정 축(1331)에 결합된 상태이므로 제3 조정 축(1331)과 함께 회전한다. 여기서, 내측 베어링이 입력 회전수로 회전하므로, 외측 베어링이 그 이하의 회전수나 반대 방향으로 회전하는 경우에는 제3 베어링(1330)이 자유 방향으로 회전하는 것이 되어 부하 없이 회전이 가능하고, 외측 베어링이 입력 회전수보다 빠르게 회전하려는 경우에는 제3 단방향 베어링(1330)의 회전이 불가능하여 외측 베어링, 제3 조정 축(1432)이 모두 입력 회전수로 회전하는 상태를 유지하게 된다.In the third unidirectional bearing 1330, since the inner bearing is coupled to the bearing connecting member 1150 formed on the input shaft 1110, the inner bearing rotates at an input speed with the input shaft 1110, and the outer bearing 3 is rotated together with the third adjustment shaft 1331 because it is coupled to the adjustment shaft 1331. Here, since the inner bearing rotates at the input rotation speed, when the outer bearing rotates at a lower rotation speed or in the opposite direction, the third bearing 1330 is rotated in the free direction, so that the rotation can be performed without load. When the rotation speed is greater than the input rotation speed, the third unidirectional bearing 1330 cannot be rotated, so that the outer bearing and the third adjustment shaft 1432 both rotate at the input rotation speed.
이러한 구조에서, 제3 단방향 베어링(1330)의 외경에 결합된 제 3 조정 기어(1332)는 입력 회전수 이하의 회전력이 가해지는 경우에는 제3 단방향 베어링(1330)이 공회전하여 제2 차동 기어(1420)에 부하를 가하지 않고, 반대로 제3 단방향 베어링(1330)에 부하 방향으로 입력 회전수 이상이 가해지려는 경우에는 제3 단방향 베어링(1330), 제3 조정 축(1331), 제3 조정 기어(1332)가 모두 입력 회전수로 고정되어 회전함으로써 제2 차동 기어(1420)에 부하를 가할 수 있다.In this structure, the third adjusting gear 1332 coupled to the outer diameter of the third unidirectional bearing 1330 is idle when the third unidirectional bearing 1330 is idling when a rotational force of less than an input rotational speed is applied. 1420, the third unidirectional bearing 1330, the third adjusting shaft 1331, the third adjusting gear when the reverse rotational speed is applied to the third unidirectional bearing 1330 in the load direction Since all of the 1133 are fixed and rotated at the input rotation speed, the second differential gear 1420 may be loaded.
상술한 바와 같이, 본 실시예에 따른 변속 장치(1000)는 변속단계별로 구속되는 단방향 베어링들을 이용한 것이다. 단방향 베어링의 회전 관계는 방향이 동일하고 외경과 내경의 회전이 동일할 때에는 체결되고, 외경과 내경의 속도가 상이할 때에는 일체가 될때 까지 서로 회전한다. 그리고, 방향이 서로 상이할 때에는 체결되지 않고 연결된 상대 기어에 따라 아이들링 상태로 회전하다가 동일한 방향과 속도에서는 하나로 체결되는 것이 특징이다. As described above, the transmission apparatus 1000 according to the present embodiment uses unidirectional bearings that are constrained for each shift stage. The rotational relationship of the unidirectional bearing is engaged when the directions are the same and the rotation of the outer diameter and the inner diameter is the same, and rotates until they are united when the speeds of the outer diameter and the inner diameter are different. In addition, when the directions are different from each other, they are rotated in an idling state according to the connected relative gears without being fastened, and are fastened as one in the same direction and speed.
도 2 및 도 10을 참조하면, 출력부(1500)는 출력 링 기어(1510) 및 출력 축(1520)을 포함한다. 2 and 10, the output unit 1500 includes an output ring gear 1510 and an output shaft 1520.
출력 링 기어(1510)는 입력 축(1110)을 중심으로 하는 링 기어 형태로 제공된다. 출력 링 기어(1510)의 내부에는 제 2 차동 기어(1420)가 체결된다. 출력 링 기어(1510)는 제 2 차동 기어(1420)로부터 회전력을 전달받는다. The output ring gear 1510 is provided in the form of a ring gear about the input shaft 1110. The second differential gear 1420 is fastened inside the output ring gear 1510. The output ring gear 1510 receives rotational force from the second differential gear 1420.
출력 축(1520)은 일단이 출력 링 기어(1510)로부터 연장되고, 일 지점에서 절곡되어 샤프트 형태로 입력 축(1110) 방향에 따라 연장된다. 출력 축(1520)은 출력 링 기어(1510)와 일체로 회전하여 외부로 회전력을 전달할 수 있다. One end of the output shaft 1520 extends from the output ring gear 1510 and is bent at one point to extend along the direction of the input shaft 1110 in the form of a shaft. The output shaft 1520 may rotate integrally with the output ring gear 1510 to transmit rotational force to the outside.
이하에서는 본 발명의 일 실시예에 따른 변속 방법에 관하여 설명한다. Hereinafter, a shift method according to an embodiment of the present invention will be described.
한편, 여기서 변속 방법에 관해서는 상술한 변속 장치(1000)가 도 12의 기어수를 가지는 것을 기준으로 설명한다. 다만, 이는 설명의 편의를 위한 것에 불과한 것으로, 도 12의 기어수는 임의적으로 정한 수치이며 변속 장치(1000)나 변속 방법에 이에 한정되는 것은 아니다. 다시 말해, 변속 장치(1000)의 기어수가 도 12의 수치와 상이하게 설정되는 것도 가능하며 이 경우에는 변속 방법에서 중립, 저속, 중속, 고속이 변속되는 시점이 변화될 수 있다. 즉, 변속 장치(1000)에서 기어의 잇수는 원하는 변속비나 변속 시점 등을 고려하여 적절하게 가감될 수 있다. On the other hand, the shift method here will be described based on the above-described speed change apparatus 1000 having the number of gears in FIG. However, this is merely for convenience of description, and the number of gears of FIG. 12 is a value determined arbitrarily, and is not limited thereto. In other words, the number of gears of the transmission apparatus 1000 may be set differently from the numerical value of FIG. 12. In this case, the timing at which the neutral, low speed, middle speed, and high speed are shifted in the shift method may be changed. That is, the number of teeth of the gear in the transmission apparatus 1000 may be appropriately added or reduced in consideration of a desired speed ratio or shift timing.
변속 장치(1000)는 외부로부터 회전력을 입력받아 이를 변속하여 출력할 수 있다. 변속 장치(1000)는 중립 상태, 저속 상태, 중속 상태, 고속 상태에 따라 변속을 수행할 수 있다. The transmission device 1000 may receive a rotational force from the outside and shift the output to output the rotational force. The transmission apparatus 1000 may perform a shift according to a neutral state, a low speed state, a middle speed state, and a high speed state.
도 12는 도 2의 변속 장치(1000)의 기어수의 일 예에 관한 표이고, 도 13은 도 12의 변속 장치(1000)를 이용하는 변속 방법에서 변속 단계에 관한 표이고, 도 14는 도 13의 변속 단계에 따른 제1 조정 기어(1317)와 제2 조정 기어(1324) 그리고 제3 조정기어(1332)의 회전수에 관한 그래프이고, 도 15는 도 13의 변속 단계에 따른 출력 축(1520)의 회전수에 관한 그래프이다.FIG. 12 is a table illustrating an example of the number of gears of the transmission device 1000 of FIG. 2, and FIG. 13 is a table illustrating a shifting step in a shift method using the transmission device 1000 of FIG. 12, and FIG. Is a graph of the rotation speed of the first adjusting gear 1317, the second adjusting gear 1324, and the third adjusting gear 1332 according to the shifting step of FIG. 15, and FIG. 15 is an output shaft 1520 according to the shifting step of FIG. 13. ) Is a graph about the number of revolutions.
도 12에 따르면, 기어 잇수는 제1 입력 축 기어(1130)가 16T, 제2 입력 축 기어(1140)가 15T, 제1 전달 기어(1160)가 16T, 동력축 링기어(1180)가 48T, 유성기어(1315)가 15T, 제 1 제어축 기어(1312)가 20T, 변속기어(1322)가 45T, 제2 전달기어(1161)가 14T, 제 1 조정 기어(1317)가 24T, 제2 조정기어(1324)가 15T, 제1 차동기어(1410)의 후단(1412)이 23T, 제1 차동기어(1410)의 선단(1411)이 14T, 제2 차동기어(1420)가 14T, 제3 조정기어(1332)가 24T 그리고 출력 링기어(1510)가 52T를 가지도록 제공될 수 있다. According to FIG. 12, the number of gear teeth is 16T for the first input shaft gear 1130, 15T for the second input shaft gear 1140, 16T for the first transmission gear 1160, 48T for the power shaft ring gear 1180, Planetary gear 1315 is 15T, first control shaft gear 1312 is 20T, transmission gear 1322 is 45T, second transmission gear 1161 is 14T, first adjustment gear 1317 is 24T, second adjustment Gear 1324 is 15T, rear end 1412 of first differential gear 1410 is 23T, tip 1411 of first differential gear 1410 is 14T, second differential gear 1420 is 14T, third adjustment Gear 1332 may be provided such that 24T and output ring gear 1510 have 52T.
도 13, 도 14 및 도 15를 참조하면, 상술한 잇수를 가지는 변속 장치(1000)는 입력 회전수가 1인 경우에 대한 터빈 회전수가 0~0.25인 경우에는 토크 전달부(1300)가 동력축 링 기어(1180)로 회전력을 전달하지 않아 출력 축(1520)이 회전하지 않는 중립 상태가 된다. Referring to FIGS. 13, 14 and 15, in the transmission apparatus 1000 having the aforementioned number of teeth, when the turbine rotational speed is 0 to 0.25 when the input rotational speed is 1, the torque transmission unit 1300 may include the power shaft ring. Since the rotation force is not transmitted to the gear 1180, the output shaft 1520 is in a neutral state in which the rotation does not rotate.
또, 터빈 회전수가 0.25~0.4035인 경우, 제1 조정 기어(1317)는 제1단방향 베어링(1310)의 체결에 의해 제1 차동 기어(1410)에 회전 부하를 발생시키고, 제2 조정 기어(1324)와 제3 조정 기어(1332)는 아이들링 상태의 회전이 이루어진다. 여기서, 아이들링 상태의 회전이란 출력축의 회전과는 무관한 공회전 상태를 말하며, 또한 체결을 위하여 회전하는 상태이다. 따라서, 제1 차동 기어(1410)는 동력축 링 기어(1180)의 회전력과 제1 조정 기어(1317)의 회전부하에 따라 공전 및 자전을 하면서, 제2 차동 기어(1420)로 회전력을 전달하고, 제2 차동 기어(1420)가 출력 링 기어(1510)를 회전시켜 출력 축(1520)으로 회전력이 출력된다. In addition, when the turbine rotational speed is 0.25 to 0.4035, the first adjusting gear 1317 generates a rotational load on the first differential gear 1410 by engaging the first unidirectional bearing 1310, and the second adjusting gear 1324. ) And the third adjustment gear 1332 are rotated in an idling state. Here, the rotation of the idling state refers to the idle state irrelevant to the rotation of the output shaft, it is also a state to rotate for fastening. Accordingly, the first differential gear 1410 transmits rotational force to the second differential gear 1420 while rotating and rotating in accordance with the rotational force of the power shaft ring gear 1180 and the rotational load of the first adjustment gear 1317. The second differential gear 1420 rotates the output ring gear 1510 to output rotational force to the output shaft 1520.
또, 터빈 회전수가 0.4035~0.6154인 경우, 제2 조정 기어(1324)는 제2단방향 베어링(1320)의 체결에 의해 제1 차동 기어(1410)에 회전 부하를 발생시키고, 제1 조정 기어(1317)와 제3 조정 기어(1332)는 아이들링 상태의 회전이 이루어진다. 따라서, 제1 차동 기어(1410)는 동력축 링 기어(1180)의 회전력과 제2 조정 기어(1324)의 회전부하에 따라 공전 및 자전을 하면서, 제2 차동 기어(1420)로 회전력을 전달하고, 제2 차동 기어(1420)가 출력 링 기어(1510)를 회전시켜 출력 축(1520)으로 회전력이 출력된다. In addition, when the turbine rotational speed is 0.4035 to 0.6154, the second adjustment gear 1324 generates a rotational load on the first differential gear 1410 by engaging the second unidirectional bearing 1320, and the first adjustment gear 1317. ) And the third adjustment gear 1332 are rotated in an idling state. Accordingly, the first differential gear 1410 rotates and rotates according to the rotational force of the power shaft ring gear 1180 and the rotational load of the second adjustment gear 1324, and transmits the rotational force to the second differential gear 1420. The second differential gear 1420 rotates the output ring gear 1510 to output rotational force to the output shaft 1520.
최종적으로 터빈 회전수가 0.6154~1(입력 회전수와 동일)인 경우, 제 3 조정 기어(1332)는 제3 단방향 베어링(1330)의 체결에 의해 제2차동 기어(1420)에 회전 부하를 발생시키고, 제1 조정 기어(1317)와 제2 조정 기어(1324)는 아이들링 상태의 회전이 이루어진다. 따라서, 제2 차동 기어(1420)는 출력 링 기어(1510)를 회전시켜 출력 축(1520)으로 회전력이 출력된다. Finally, when the turbine rotational speed is 0.6154 to 1 (same as the input rotational speed), the third adjustment gear 1332 generates a rotational load on the second differential gear 1420 by engaging the third unidirectional bearing 1330. The first adjustment gear 1317 and the second adjustment gear 1324 are rotated in an idling state. Therefore, the second differential gear 1420 rotates the output ring gear 1510 to output rotational force to the output shaft 1520.
이하에서는 각 변속 상태에 관하여 보다 구체적으로 설명한다. 이하에서는 입력 회전수를 +1로 가정하고, 다른 회전수는 이에 대한 비율로 지칭한다. 여기서, 부호는 +가 입력 회전과 동일한 방향의 회전을 의미하고, -가 입력 회전과 반대 방향의 회전을 의미한다. 예를 들어, -0.333인 경우에는 입력 회전수와 반대 방향으로 입력 회전수의 1/3의 속도로 회전하는 것을 의미한다. Hereinafter, each shift state will be described in more detail. Hereinafter, it is assumed that the input rotational speed is +1, and other rotational speeds are referred to as a ratio thereof. Here, the sign indicates that + is rotation in the same direction as the input rotation, and-is rotation in the opposite direction to the input rotation. For example, in the case of -0.333, it means to rotate at a speed of 1/3 of the input rotation speed in the direction opposite to the input rotation speed.
먼저 중립 상태에 관하여 설명한다. First, the neutral state will be described.
도 16은 도 13의 중립 상태에서의 회전력의 전달 순서에 관한 도면이고, 도 17은 도 16의 중립 상태에서 기어들의 회전 방향에 관한 표이다.FIG. 16 is a diagram relating to a transmission order of rotational force in the neutral state of FIG. 13, and FIG. 17 is a table of rotation directions of gears in the neutral state of FIG. 16.
중립 상태는 일정 회전 이하로 입력되는 회전이 동력축 링기어(1180)와 출력 축(1520)을 회전시키지 못하고 동력축 링기어(1180)내에서 공회전만 하는 상태이다. The neutral state is a state in which a rotation input below a predetermined rotation does not rotate the power shaft ring gear 1180 and the output shaft 1520 and only idles in the power shaft ring gear 1180.
구체적으로, 입력 축(1110)으로 회전력이 입력되면, 회전력은 입력 축(1110)과 일체인 임펠러(1220)와 제1입력축 기어(1130)로 분리되어 제공된다. 임펠러(1220)와 제1 입력축 기어(1130)는 입력 축(1110)과 동일한 입력 회전수 +1로 회전된다. Specifically, when the rotational force is input to the input shaft 1110, the rotational force is provided separately from the impeller 1220 and the first input shaft gear 1130 integrated with the input shaft 1110. The impeller 1220 and the first input shaft gear 1130 are rotated at the same input speed + 1 as the input shaft 1110.
임펠러(1220)의 회전은 터빈(1230)과 일체인 터빈 축(1240)을 통하여 입력 캐리어(1170)를 회전시키고, 제 1 입력축 기어(1130)의 회전은 입력 캐리어(1170)에 삽입된 제 1 전달 기어(1160)으로 전달되고, 이 두 경로의 회전이 입력 캐리어(1170)에서 합류된다. Rotation of the impeller 1220 rotates the input carrier 1170 through the turbine shaft 1240 integrated with the turbine 1230, and rotation of the first input shaft gear 1130 is the first inserted into the input carrier 1170. Transmission to the transmission gear 1160, the rotation of these two paths is joined in the input carrier 1170.
여기서, 터빈(1230)과 임펠러(1220)는 물리적으로 체결된 상태가 이니고 유체를 통하여 회전력을 전달하는 구성이므로, 터빈(1230)의 회전은 동력축 링기어(1180)의 회전 저항과 임펠러(1220)의 회전력에 따라 상이하게 나타날 수 있다.Here, since the turbine 1230 and the impeller 1220 are not physically fastened and are configured to transmit rotational force through the fluid, the rotation of the turbine 1230 may be caused by the rotational resistance of the power shaft ring gear 1180 and the impeller ( It may appear different depending on the rotational force of 1220.
제 1 전달 기어(1160)는 입력 캐리어(1170)에 삽입되어 입력 캐리어(1170)와 일체로 공전함과 동시에 제1입력 축 기어(1130)와 체결되어 제1입력 축 기어(1130)로부터 회전력을 받아 자전한다. 이때 제 1 전달 기어(1160)는 동력축 링기어(1180)의 내측에 체결되어 있으므로, 결과적으로 제 1 전달 기어(1160)는 입력 캐리어(1170) 및 제1입력 축 기어(1130)로부터 받는 회전력을 동력축 링기어(1180)로 전달하는 것이다. The first transmission gear 1160 is inserted into the input carrier 1170, revolves integrally with the input carrier 1170, and is engaged with the first input shaft gear 1130 to apply rotational force from the first input shaft gear 1130. Take it and rotate it. At this time, since the first transmission gear 1160 is fastened to the inner side of the power shaft ring gear 1180, the first transmission gear 1160 is a rotational force received from the input carrier 1170 and the first input shaft gear 1130 as a result. To the power shaft ring gear 1180.
여기서, 동력축 링기어(1180)는 동력 캐리어(1182)(외부 출력단)에 연결되어 있으므로 소정의 회전 부하를 받고 있는 상태가 된다. 입력 회전수에 대한 터빈 회전수가 제1 임계값 미만인 경우에는 동력축 링기어(1180)의 회전 부하가 더 커 동력축 링기어(1180)가 회전하지 않을 수 있다. 이는 터빈(1230)이 임펠러(1220)와 물리적으로 체결된 상태가 아니고, 유체를 통해 회전력을 전달받는 관계에 있기 때문에 터빈(1230)에 연결된 입력 캐리어(1170)의 공전이 제1 임계값 이하에서는 부하를 거의 발생시키지 않기 때문이다.Here, since the power shaft ring gear 1180 is connected to the power carrier 1182 (external output end), it is in a state of receiving a predetermined rotational load. When the turbine rotational speed with respect to the input rotational speed is less than the first threshold value, the rotational load of the power shaft ring gear 1180 is greater and the power shaft ring gear 1180 may not rotate. This is because the turbine 1230 is not in a physically engaged state with the impeller 1220 and is in a relationship in which rotational force is transmitted through the fluid, so that the idle of the input carrier 1170 connected to the turbine 1230 is equal to or less than the first threshold value. This is because it generates little load.
다시 말해, 외부의 동력원(엔진 등)에서 최소의 동력만 발생시켜 입력축(1110)을 회전시키고, 그 회전은 임펠러(1220)에 의하여 터빈(1230)의 회전수가0.25 이하가 되도록 한다. 터빈(1230) 회전수 0.25는 동력축 링기어(1180)가 정지상태에서 입력 캐리어(1170)의 회전과 제 1 입력축 기어(1130)의 회전이 서로 상세되도록 설정된 수치이며, 구성설명시에는 중립상태의 임계값이라고 한다. In other words, the input shaft 1110 is rotated by generating only the minimum power from an external power source (engine, etc.), and the rotation is such that the rotation speed of the turbine 1230 is less than 0.25 by the impeller 1220. Turbine 1230 has a rotation speed of 0.25 is a value set such that the rotation of the input carrier 1170 and the rotation of the first input shaft gear 1130 are detailed with each other when the power shaft ring gear 1180 is stationary. It is called the threshold of.
예를 들어, 동력축 링기어(1180)의 잇수가 48T, 제 1 입력축 기어(1130)의 잇수 및 제 1 전달 기어(1160) 잇수가 16T인 경우에는, 터빈 회전수가 제1 임계값인 +0.25에 도달할 때까지 제 1 전달 기어(1160)의 자전과 공전이 서로를 상쇄하여 동력축 링기어(1180)로 전달되지 않는다.For example, when the number of teeth of the power shaft ring gear 1180 is 48T, the number of teeth of the first input shaft gear 1130 and the number of teeth of the first transmission gear 1160 is 16T, the turbine speed is +0.25, which is the first threshold value. Rotating and idle of the first transmission gear 1160 cancel each other and are not transmitted to the power shaft ring gear 1180 until reaching.
구체적으로 터빈 회전수가 0.25 이하인 경우에는 제 1 전달 기어(1160)의 자전 속도는 공전 속도의 4배가 되고, 외부에서 볼 때는 1회 공전에 의해 1회 자전이 상쇄되므로 외부에서 보는 제 1 전달 기어(1160) 자전수는 공전수의 3배가 된다. Specifically, when the turbine rotational speed is 0.25 or less, the rotation speed of the first transmission gear 1160 is four times the revolution speed, and when viewed from the outside, once rotation is canceled by one revolution, the first transmission gear (viewed from the outside) 1160) The number of revolutions is three times the number of revolutions.
이때 동력축 링기어(1180)의 잇수는 제 1 전달 기어(1160) 및 제 1 입력축 기어(1130)의 기어수의 3배이므로, 결과적으로 동력축 링기어(1180)는 정지 상태를 유지할 수 있다. In this case, the number of teeth of the power shaft ring gear 1180 is three times the number of gears of the first transmission gear 1160 and the first input shaft gear 1130, and as a result, the power shaft ring gear 1180 may maintain a stopped state. .
따라서, 터빈 회전수가 0 ~ +0.25인 중립 상태에서는 출력이 발생하지 않는다. Therefore, no output occurs in the neutral state where the turbine rotational speed is 0 to +0.25.
다음으로 저속 상태에 관하여 설명한다. Next, the low speed state will be described.
도 18은 도 13의 저속 상태에서의 회전력의 전달 순서에 관한 도면이고, 도 19은 도 18의 저속 상태에서 기어들의 회전 방향에 관한 표이다.FIG. 18 is a diagram relating to a transmission order of rotational force in the low speed state of FIG. 13, and FIG. 19 is a table relating to the rotation direction of the gears in the low speed state of FIG. 18.
저속 상태는 동력축 링기어(1180)가 정지하고 있는 중립 상태에서 터빈(1230)의 회전수를 제1임계값인 +0.25에 도달할 때까지 증가시켜 동력축 링기어(1180)를 회전시키고, 동력축 링기어(1180)와 일체인 동력 캐리어(1182)를 통하여 출력축(1520)을 회전시키는 상태이다.In the low speed state, the power shaft ring gear 1180 is rotated by increasing the rotation speed of the turbine 1230 until the first threshold value +0.25 is reached in the neutral state in which the power shaft ring gear 1180 is stopped. The output shaft 1520 is rotated through the power carrier 1182 integrated with the power shaft ring gear 1180.
터빈(1230)의 회전수가 제1 임계값에 도달하면, 제 1 전달 기어(1160)로부터 동력축 링기어(1180)로 회전력이 전달되기 시작한다. When the rotational speed of the turbine 1230 reaches the first threshold value, the rotational force begins to be transmitted from the first transmission gear 1160 to the power shaft ring gear 1180.
예를 들어, 동력축 링기어(1180), 제1입력 축 기어(1130), 제 1 전달 기어(1160)의 기어수가 48T, 16T, 16T인 경우에는 터빈 회전수가 +0.25인 경우에 제 1 전달 기어(1160)의 자전과 공전이 서로 상쇄하여 입력 링 기어(1330)가 회전하지 않는 상태를 유지하는데 여기서 터빈 회전수가 증가하면 공전과 자전에 따라 제1전달기어(1160)의 기어수가 맞물리는 동력축 링기어(1180)의 기어수보다 커져 동력축 링기어(1180)의 회전이 시작될 수 있다. For example, when the number of gears of the power shaft ring gear 1180, the first input shaft gear 1130, and the first transmission gear 1160 is 48T, 16T, or 16T, the first transmission is performed when the turbine speed is +0.25. The rotation and idle of the gear 1160 cancel each other, so that the input ring gear 1330 does not rotate. In this case, when the turbine rotation speed increases, the number of gears of the first transmission gear 1160 meshes with the idle and rotation. As the number of gears of the shaft ring gear 1180 is greater, the rotation of the power shaft ring gear 1180 may be started.
동력축 링기어(1180)가 회전하면, 동력 캐리어(1182)와 동력 캐리어(1182)에 설치된 제 1 차동 기어(1410) 및 제 2 차동 기어(1420)가 동력축 링기어(1180)와 일체로 공전한다. When the power shaft ring gear 1180 rotates, the first and second differential gears 1410 and 1420 installed in the power carrier 1182 and the power carrier 1182 may be integrally formed with the power shaft ring gear 1180. Idle.
이때, 제 1 차동 기어(1410)는 제1 변속기(1310a)의 제1조정 기어(1317)와, 제 2 변속기(1320a)의 제 2 조정 기어(1324)에 연결되어 있다. 제 1 조정 기어(1317)는 제 1 조정축(1316)을 거쳐 제1 단방향 베어링(1310)의 내측 베어링으로 연결되어 있지만, 회전은 공회전 상태이다. 제 2 조정 기어(1324)는 제 2 조정축(1323)을 거쳐 제 2 단방향 베어링(1320)의 내측 베어링으로 연결되어 있다.In this case, the first differential gear 1410 is connected to the first adjustment gear 1317 of the first transmission 1310a and the second adjustment gear 1324 of the second transmission 1320a. The first adjusting gear 1317 is connected to the inner bearing of the first unidirectional bearing 1310 via the first adjusting shaft 1316, but the rotation is idle. The second adjusting gear 1324 is connected to the inner bearing of the second unidirectional bearing 1320 via the second adjusting shaft 1323.
여기서, 제1 단방향 베어링(1310)은 그 외측 베어링이 정지 상태를 가지는 하우징(1210)에 연결되어 있어 동력 캐리어(1182)가 (-)방향으로 회전하려 할 때 제1 단방향 베어링(1310)의 내측베어링이 부하를 발생시킨다. Here, the first unidirectional bearing 1310 is connected to the housing 1210 whose outer bearing is stationary so that the inner side of the first unidirectional bearing 1310 when the power carrier 1182 tries to rotate in the negative direction The bearing generates a load.
이에 따라, 제1 단방향 베어링(1310)의 내측 베어링과 연결된 제 1 조정 기어(1317)는 정지 상태를 가지게 되고, 그 부하는 제 1 조정 기어(1317)를 거쳐 제 1 차동 기어(1410)로 전달된다. 즉, 제 1 차동 기어(1410)는 제 1 단방향 베어링(1310)의 체결로 인하여 제 1 조정 기어(1317)의 부하를 받으면서 제 2 차동 기어(1420)에 회전력을 전달한다. Accordingly, the first adjusting gear 1317 connected to the inner bearing of the first unidirectional bearing 1310 has a stationary state, and the load is transmitted to the first differential gear 1410 via the first adjusting gear 1317. do. That is, the first differential gear 1410 transmits rotational force to the second differential gear 1420 while receiving the load of the first adjusting gear 1317 due to the fastening of the first unidirectional bearing 1310.
제 2 차동 기어(1420)는 동력 캐리어(1182)에 설치됨과 동시에 제 1 차동 기어(1410)와 출력링 기어(1510)에 체결되어 있다. 제 2 차동 기어(1420)는 동력 캐리어(1182)에 의해 공전하면서 제 1 차동 기어(1410)에 의해 자전을 할 수 있다. 이에 따라, 제 2 차동 기어(1420)는 출력 링 기어(1510)로 회전력을 전달할 수 있다.The second differential gear 1420 is mounted to the power carrier 1182 and is coupled to the first differential gear 1410 and the output ring gear 1510. The second differential gear 1420 may rotate by the first differential gear 1410 while revolving by the power carrier 1182. Accordingly, the second differential gear 1420 may transmit rotational force to the output ring gear 1510.
따라서, 저속 상태에서는 제1 변속기(1310a)가 정지 상태를 유지하는 구속 조건에 따라 변속부(1400)가 출력부(1500)로 회전력을 전달하게 된다. Therefore, in the low speed state, the transmission unit 1400 transmits the rotational force to the output unit 1500 according to a constraint condition in which the first transmission 1310a maintains the stop state.
도 13 내지 도 15를 참조하면, 도 12의 기어수를 가지는 변속 장치(1000)의 경우에는 터빈 회전수가 +0.25에서 출력 링 기어(1510)가 회전을 시작하여 터빈 회전수가 +0.4035에 도달하면 출력 링 기어(1510)의 회전수가 +0.0495에 이르게 된다. 물론, 이 동안 제1 변속기(1310a)(제 1 조정 기어)의 회전수는 0으로 유지된다. 13 to 15, in the case of the transmission 1000 having the number of gears of FIG. 12, when the turbine ring speed is +0.25, the output ring gear 1510 starts to rotate and the turbine speed reaches +0.4035. The rotation speed of the ring gear 1510 reaches +0.0495. Of course, the rotation speed of the first transmission 1310a (first adjusting gear) is maintained at zero during this time.
한편, 제1 차동 기어(1410)에는 제2 변속기(1320a)(제2조정기어)가 물려있는데, 제2 변속기(1320a)(제2조정기어)의 회전수는 터빈 회전수 +0.25에서는 0, 터빈 회전수 +0.4035에서는 -0.333에 도달한다. On the other hand, the second transmission 1320a (second adjusting gear) is held in the first differential gear 1410. The rotation speed of the second transmission 1320a (second adjusting gear) is 0 at turbine speed +0.25. At turbine speed of +0.4035, it reaches -0.333.
그리고, 제2 차동 기어(1420)에는 제3 변속기(1330a)(제3조정기어)가 물려있는데, 제3 변속기(1330a)(제3조정기어)는 그 회전수가 터빈 회전수 +0.25에서 0, 터빈 회전수 +0.4035에서 +0.5409에 도달한다.A third transmission 1330a (third adjustment gear) is held in the second differential gear 1420. The third transmission 1330a (third adjustment gear) has a rotational speed of 0 to 0 at turbine speed of +0.25. Turbine revolutions reach +0.5409 at +0.4035.
다음으로 중속 상태에 관하여 설명한다. Next, the medium speed state will be described.
도 20은 도 13의 중속 상태에서의 회전력의 전달 순서에 관한 도면이고, 도 21은 도 20의 중속 상태에서 기어들의 회전 방향에 관한 표이다. FIG. 20 is a diagram illustrating a transmission order of rotational force in the medium speed state of FIG. 13, and FIG. 21 is a table relating to a rotation direction of gears in the medium speed state of FIG. 20.
중속 상태는 출력링 기어(1510)가 저속으로 회전하고 있는 저속 상태에서 터빈(1230)의 회전을 제2임계값인 +0.4035까지 증가시켜 동력축 링기어(1180)와 동력 캐리어(1182)를 통하여 출력링 기어(1510)의 회전을 저속상태의 회전보다 증가시키는 상태이다.The medium speed state increases the rotation of the turbine 1230 to a second threshold value of +0.4035 in the low speed state in which the output ring gear 1510 is rotating at a low speed, and through the power shaft ring gear 1180 and the power carrier 1182. The rotation of the output ring gear 1510 is more than the rotation of the low speed state.
동력 전달 과정은 전술한 저속 상태와 동일하지만, 제1차동 기어(1410)에 연결하여 회전부하를 발생시키는 제 1 조정 기어(1317)는 체결된 제 1 단방향 베어링(1310)의 해지로 인하여 공회전 상태가 된다. 제 1 차동 기어(1410)에는 증속을 위하여 구성된 제 2 조정 기어(1324)가 연결되어 회전부하를 발생시켜 증속된 회전이 제 2 차동 기어(1420)을 통하여 출력링 기어(1510)를 회전시킨다.The power transmission process is the same as in the low speed state described above, but the first adjustment gear 1317, which is connected to the first differential gear 1410 to generate a rotational load, is idle due to the termination of the first unidirectional bearing 1310 that is engaged. Becomes A second adjustment gear 1324 configured for speed increase is connected to the first differential gear 1410 to generate a rotational load so that the increased speed rotates the output ring gear 1510 through the second differential gear 1420.
제 2 조정 기어(1324)의 회전은 터빈(1320)의 회전이 +0.4035에 도달하면 제 2 단방향 베어링(1320)이 체결되어 제 1 차동 기어(1410)에 부하를 발생시킨다. 제 2 단방향 베어링(1320)의 외측 베어링은 제 2 입력축 기어(1140)에 연결된 유성기어(1315)와 고정 캐리어(1313) 그리고 변속기어(1322)에 결합되고, 내측 베어링은 제 2 조정 기어(1324)와 결합되어 있다. Rotation of the second regulating gear 1324 causes the second unidirectional bearing 1320 to engage when the turbine 1320 reaches +0.4035 to generate a load on the first differential gear 1410. The outer bearing of the second unidirectional bearing 1320 is coupled to the planetary gear 1315, the fixed carrier 1313 and the transmission gear 1322 connected to the second input shaft gear 1140, and the inner bearing is the second adjusting gear 1324. ) Is combined.
제 2 단방향 베어링(1320)의 체결되는 회전수는 제 2 입력축 기어(1140)의 기어수 15, 변속기어(1322)의 기어수 45로 설정되었으므로, -0.333으로 회전되고, 그 회전은 제 2 조정 기어(1324)를 통하여 제 1 차동 기어(1410)에 회전 부하를 발생시키게 된다.Since the number of rotations of the second unidirectional bearing 1320 is set to the number of gears 15 of the second input shaft gear 1140 and the number of gears 45 of the transmission gear 1322, the rotation speed is -0.333, and the rotation thereof is adjusted by the second adjustment. A rotation load is generated in the first differential gear 1410 through the gear 1324.
구체적으로, 도 12의 기어수를 가지는 변속 장치(1000)의 경우에는 터빈 회전수가 0.4035에서 0.6154에 도달하면 출력링 기어(1510)의 회전수는 0.0495에서 0.2505 회전까지 증가된다.Specifically, in the case of the transmission apparatus 1000 having the number of gears in FIG. 12, when the turbine rotational speed reaches 0.4035 to 0.6154, the rotation speed of the output ring gear 1510 increases from 0.0495 to 0.2505 rotation.
여기서, 제 1 조정 기어(1317)가 작동시에 출력 회전수는 0~0.0495이고, 제 2 조정 기어(1324)가 작동시에 출력 회전수는 0.0495~0.2505로 저속상태보다 증속된 회전을 출력링 기어(1510)에 전달된다. Here, the output rotation speed is 0 ~ 0.0495 when the first adjustment gear 1317 is in operation, the output rotation speed is 0.0495 ~ 0.2505 when the second adjustment gear 1324 is in operation and outputs the rotation which is increased from the low speed state. Transmitted to gear 1510.
이때, 제 1 조정 기어(1317)는 정지상태에서 +0.1635회전(아이들링 상태)하게 되고, 제 2 조정 기어(1324)는 -0.333 회전을 하게 된다. At this time, the first adjusting gear 1317 rotates +0.1635 in idle state (idling state), and the second adjusting gear 1324 makes -0.333 turns.
다음으로 고속 상태에 관하여 설명한다. Next, the high speed state will be described.
도 22는 도 13의 고속 상태에서의 회전력의 전달 순서에 관한 도면이고, 도 23은 도 22의 고속 상태에서 기어들의 회전 방향에 관한 표이다.FIG. 22 is a diagram illustrating a transmission order of rotational force in the high speed state of FIG. 13, and FIG. 23 is a table relating to a rotation direction of gears in the high speed state of FIG. 22.
고속 상태는 출력링 기어(1510)가 중속으로 회전하고 있는 상태에서 터빈(1230)의 회전을 제3임계값인 0.6154부터 시작하여 1까지 증가시켜 동력축 링기어(1180)와 동력 캐리어(1182)를 통하여 출력링 기어(1510)의 회전을 중속상태의 회전보다 증가시켜 1회전까지 도달하는 상태이다.The high speed state increases the rotation of the turbine 1230 at a state in which the output ring gear 1510 is rotating at medium speed, starting from 0.6154, the third threshold value, and increasing to 1, such as the power shaft ring gear 1180 and the power carrier 1182. By increasing the rotation of the output ring gear 1510 than the rotation of the medium speed state through the state to reach one revolution.
여기서, 동력 전달 과정은 전술한 중속 상태와 동일하지만, 제 1 차동 기어(1410)에 연결되어 회전부하를 발생시키는 제 2 조정 기어(1324)는 제 2 단방향 베어링(1320)의 해지로 인하여 공회전하게 된다. 그리고, 제 3 단방향 베어링(1330)은 제 3 조정 기어(1332)를 통하여 제 2 차동 기어(1420)에 회전부하를 발생시켜 출력링 기어(1510)를 고속으로 회전시킨다.Here, the power transmission process is the same as the above-described medium speed state, but the second adjusting gear 1324, which is connected to the first differential gear 1410 and generates a rotational load, is idle due to the termination of the second unidirectional bearing 1320. do. The third unidirectional bearing 1330 rotates the output ring gear 1510 at high speed by generating a rotational load on the second differential gear 1420 through the third adjusting gear 1332.
제 3 조정 기어(1332)의 회전은 터빈(1230)의 회전이 +0.6154에 도달하면 제 3 단방향 베어링(1330)이 체결되어 제 2 차동 기어(1420)에 부하를 발생시킨다. 제 3 단방향 베어링(1330)의 외경은 제 3 조정 기어(1332)에 연결되고, 제 3 단방향 베어링(1330)의 내경은 입력축(1110)의 후단에 설치된 베어링 연결 부재(1150)에 연결된다. 즉, 제 3 조정 기어(1332)의 회전은 입력축(1110)의 회전과 동일한 1회전으로 회전하게 된다.Rotation of the third adjustment gear 1332 causes the third unidirectional bearing 1330 to engage when the turbine 1230 reaches +0.6154 to generate a load on the second differential gear 1420. The outer diameter of the third unidirectional bearing 1330 is connected to the third adjusting gear 1332, and the inner diameter of the third unidirectional bearing 1330 is connected to the bearing connecting member 1150 provided at the rear end of the input shaft 1110. That is, the rotation of the third adjustment gear 1332 is rotated in one rotation equal to the rotation of the input shaft 1110.
이때, 터빈(1230)의 회전은 중속상태의 최고회전인 0.6154에서 점진적으로 증가하여 1회전까지 하게 된다. 다시 말해, 종적으로 터빈 회전수가 입력 회전수와 동일한 상태에서는 상기 기어들도 자전을 할 수 없으므로 모든 기어들이 입력축(1110)을 중심으로 하여 하나의 고정된 축의 형태로 공전만 하게 된다.At this time, the rotation of the turbine 1230 is gradually increased from 0.6154, which is the highest rotation in the medium speed state, to one rotation. In other words, since the gears cannot rotate even when the turbine rotational speed is equal to the input rotational speed, all the gears revolve only in the form of one fixed shaft about the input shaft 1110.
이때, 고정된 제 1 제어축 기어(1312)는 정지상태이고, 모든 기어들은 +방향으로 공전하게 된다.At this time, the fixed first control shaft gear 1312 is stationary, and all the gears are idle in the + direction.
본 실시예에 따른 변속 장치(1000)는 변속 단계별로 변속하기 위하여 단방향 베어링을 각 단계별로 응용하여 사용하였다는데 그 특징이 있다. 즉, 단방향 베어링의 특성에 따라 제1,2,3 베어링 중 어느 하나의 구속을 받음으로서 변속을 수행하고 설정된 회전수에 의한 구속이 자동적으로 해지되고 또 다른 베어링이 체결되어 출력링 기어로 변속된 회전을 전달할 수 있다. The transmission device 1000 according to the present embodiment is characterized in that the one-way bearing is used in each step in order to shift in the step of shifting. That is, according to the characteristic of the unidirectional bearing, the shift is performed by being restrained by any one of the first, second, and third bearings, and the restraint by the set rotation speed is automatically canceled, and another bearing is engaged to shift the output ring gear. It can transmit the rotation.
상술한 본 발명에 따른 변속 장치(1000)의 구성요소는 모두 필수적인 것은 아니므로, 변속 장치(1000)는 상술한 구성요소의 전부 또는 일부를 선택적으로 포함할 수 있다.Since all of the components of the transmission apparatus 1000 according to the present invention are not essential, the transmission apparatus 1000 may selectively include all or a part of the above-described components.
또한, 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 수정, 치환 및 변형이 가능하므로 상술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니며, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합될 수 있다.In addition, the present invention, various modifications, substitutions and modifications can be made to those skilled in the art without departing from the spirit of the present invention as described above and the accompanying drawings The present invention is not limited thereto, and all or some of the embodiments may be selectively combined to enable various modifications.

Claims (9)

  1. 제 1 입력 축 기어, 제 2 입력 축 기어가 설치된 입력 축;An input shaft provided with a first input shaft gear and a second input shaft gear;
    상기 입력 축의 토크를 변환하여 회전하는 터빈을 갖는 토크 컨버터부;A torque converter unit having a turbine which rotates by converting torque of the input shaft;
    상기 터빈에 결합되어 상기 입력 축을 중심으로 공전하도록 설치되고, 상기 제 1 입력 축 기어와 치합되는 제 1 전달 기어를 포함하는 입력 캐리어;An input carrier coupled to the turbine and installed to revolve around the input shaft, the input carrier including a first transmission gear engaged with the first input shaft gear;
    상기 제 1 전달 기어와 치합되는 동력축 링기어;A power shaft ring gear meshing with the first transmission gear;
    상기 동력축 링기어와 연결되고, 제 1 차동 기어와, 상기 제 1 차동 기어와 치합되는 제 2 차동 기어를 갖는 동력 캐리어; A power carrier connected to the power shaft ring gear and having a first differential gear and a second differential gear meshing with the first differential gear;
    상기 제 2 차동 기어와 치합되는 출력링 기어가 설치된 출력축;An output shaft provided with an output ring gear meshed with the second differential gear;
    상기 토크 컨버터부의 하우징에 고정되며, 상기 제 2 입력축 기어와 치합되는 유성 기어들을 갖는 고정 캐리어;A fixed carrier fixed to a housing of the torque converter unit and having planetary gears meshing with the second input shaft gear;
    외측은 상기 고정 캐리어에 고정 설치되고 내측은 단방향으로만 회전 가능하도록 제공되는 제 1 단방향 베어링;A first unidirectional bearing, the outer side of which is fixedly installed to the fixed carrier and the inner side of which is rotatably provided in one direction;
    상기 제 1 단방향 베어링의 내측에 고정 설치되고 상기 제 1 차동 기어와 치합되는 제 1 조정 기어;A first adjusting gear fixedly installed inside the first unidirectional bearing and engaged with the first differential gear;
    상기 유성 기어와 치합되는 링기어 형태의 변속 기어;A shift gear in the form of a ring gear engaged with the planetary gear;
    외측은 상기 변속 기어에 고정 설치되고, 내측은 단방향으로만 회전 가능하도록 제공되는 제 2 단방향 베어링;A second unidirectional bearing fixed to the transmission gear and having an outer side rotatably provided in one direction;
    상기 제 2 단방향 베어링의 내측에 고정 설치되고, 상기 제 1 차동 기어와 치합되는 제 2 조정 기어;A second adjusting gear fixedly installed inside the second unidirectional bearing and engaged with the first differential gear;
    내측은 상기 입력축에 결합되고, 외측은 입력 회전수 이하로만 회전 가능하도록 제공되는 제 3 단방향 베어링; 및A third unidirectional bearing having an inner side coupled to the input shaft and the outer side being rotatable only at an input rotational speed lower; And
    상기 제 3 단방향 베어링의 외측에 결합되고, 상기 제 2 차동 기어와 치합되는 제 3 조정 기어를 포함하는 변속 장치.And a third adjustment gear coupled to the outside of the third unidirectional bearing and engaged with the second differential gear.
  2. 제1 항에 있어서,The method of claim 1,
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제1임계값 이하인 경우 상기 제 1 전달 기어의 자전과 공전이 서로 상쇄되어 상기 동력축 링기어가 정지 상태로 유지되고,When the rotational speed of the turbine relative to the rotational speed of the input shaft is less than or equal to the first threshold value, the rotation and idle of the first transmission gear cancel each other so that the power shaft ring gear is kept at a stop state.
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제1임계값 이상 제2임계값 이하인 경우, 상기 제 1 단방향 베어링이 회전 부하로 작용하여 상기 출력축이 상기 입력축의 회전수에 대하여 제1변속비로 회전되고,When the rotational speed of the turbine with respect to the rotational speed of the input shaft is less than the first threshold value or less than the second threshold value, the first unidirectional bearing acts as a rotating load so that the output shaft rotates at a first speed ratio relative to the rotational speed of the input shaft. Become,
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제2임계값 이상 제3임계값 이하인 경우, 상기 제 2 단방향 베어링이 회전 부하로 작용하여 상기 출력축이 상기 입력축의 회전수에 대하여 제2변속비로 회전되며,When the rotational speed of the turbine relative to the rotational speed of the input shaft is greater than or equal to the second threshold value and less than or equal to the third threshold value, the second unidirectional bearing acts as a rotational load such that the output shaft rotates at a second speed ratio relative to the rotational speed of the input shaft. ,
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제3임계값 이상 제4임계값 이하인 경우, 상기 제 3 단방향 베어링이 회전 부하로 작용하여 상기 출력축이 상기 입력축의 회전수에 대하여 제3변속비로 회전되는 변속 장치.When the rotational speed of the turbine relative to the rotational speed of the input shaft is greater than or equal to a third threshold and less than or equal to a fourth threshold, the third unidirectional bearing acts as a rotational load such that the output shaft rotates at a third speed ratio relative to the rotational speed of the input shaft. Gearshift.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 차동 기어와 상기 제 2 차동 기어는 상기 터빈의 회전수에 따라 상기 제 1 단방향 베어링, 상기 제 2 단방향 베어링 그리고 제 3 단방향 베어링 중 어느 하나의 구속을 받음으로서 변속을 수행하고, 설정된 회전수에 의한 구속이 자동적으로 해지되고 또 다른 단방향 베어링이 체결되어 상기 출력축으로 변속된 회전을 전달하는 변속 장치.The first differential gear and the second differential gear are shifted by being restrained by any one of the first unidirectional bearing, the second unidirectional bearing, and the third unidirectional bearing according to the rotational speed of the turbine, and set rotation. A transmission device in which the restraint by the number is automatically released and another unidirectional bearing is engaged to transmit the rotation shifted to the output shaft.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 터빈의 회전수가 제1임계값 이하인 경우에는 상기 제 1 전달 기어의 자전과 공전이 서로 상쇄되어 상기 동력축 링기어가 정지 상태로 유지되는 변속 장치.And when the rotation speed of the turbine is equal to or less than the first threshold value, rotation and idle of the first transmission gear cancel each other to maintain the power shaft ring gear in a stopped state.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 동력축 링기어, 상기 제 1 입력축 기어 그리고 상기 제 1 전달 기어는 그 기어 잇수의 비가 3:1:1로 제공되고,The power shaft ring gear, the first input shaft gear and the first transmission gear are provided with a ratio of the number of gear teeth 3: 1: 1,
    상기 제1임계값은 0.25인 변속 장치.And the first threshold is 0.25.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제1임계값 이상 제2임계값 이하인 경우, 상기 제 1 차동 기어가 상기 제 1 단방향 베어링의 회전 부하를 받아 상기 제 2 차동 기어를 통해 상기 출력링 기어를 회전시키는 변속 장치.When the rotational speed of the turbine with respect to the rotational speed of the input shaft is less than the first threshold value or less than the second threshold value, the first differential gear receives the rotational load of the first unidirectional bearing and the output ring through the second differential gear. Transmission to rotate gears.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제2임계값 이상 제3임계값 이하인 경우, 상기 제 1 차동 기어가 상기 제 2 단방향 베어링의 회전 부하를 받아 상기 제 2 차동 기어를 통해 상기 출력링 기어를 회전시키는 변속 장치.When the rotational speed of the turbine with respect to the rotational speed of the input shaft is greater than or equal to a second threshold value and less than or equal to a third threshold value, the first differential gear receives the rotational load of the second unidirectional bearing and the output ring through the second differential gear. Transmission to rotate gears.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 입력축의 회전수에 대한 상기 터빈의 회전수가 제3임계값 이상 제4임계값 이하인 경우, 상기 제 2 차동 기어가 상기 제 3 단방향 베어링의 회전 부하를 받아 상기 출력링 기어를 회전시키는 변속 장치.And the second differential gear receives the rotational load of the third unidirectional bearing and rotates the output ring gear when the rotation speed of the turbine with respect to the rotation speed of the input shaft is equal to or greater than a third threshold value or less than a fourth threshold value.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제 2 입력축 기어와 상기 변속기어는 그 기어 잇수의 비가 1:3으로 제공되고,The ratio of the number of gear teeth to the second input shaft gear and the transmission gear is 1: 3,
    상기 제1임계값은 0.25, 상기 제2임계값은 0.4035, 상기 제3임계값은 0.6154, 그리고 상기 제4임계값은 1인 변속 장치.The first threshold value is 0.25, the second threshold value is 0.4035, the third threshold value is 0.6154, and the fourth threshold value is 1.
PCT/KR2013/008243 2012-09-18 2013-09-12 Transmission WO2014046418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120103394A KR101487816B1 (en) 2012-09-18 2012-09-18 Transmission apparatus
KR10-2012-0103394 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014046418A1 true WO2014046418A1 (en) 2014-03-27

Family

ID=50341663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008243 WO2014046418A1 (en) 2012-09-18 2013-09-12 Transmission

Country Status (2)

Country Link
KR (1) KR101487816B1 (en)
WO (1) WO2014046418A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299173A (en) * 2014-07-30 2016-02-03 青州鼎丰机械有限公司 Non-direct connecting structure of hydraulic power gear shifting gearbox torque converter
CN106785451A (en) * 2017-01-26 2017-05-31 京信通信系统(中国)有限公司 Antenna and its angle control that has a down dip
CN106785438A (en) * 2017-01-26 2017-05-31 京信通信系统(中国)有限公司 The control system of transmission device and Downtilt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940011817A (en) * 1992-11-26 1994-06-22 나종오 Stepless automatic transmission
KR970006994A (en) * 1995-07-01 1997-02-21 김태구 Continuously variable mechanism
JP2005325926A (en) * 2004-05-14 2005-11-24 Astack:Kk Total mechanical meshing type continuously variable transmission having clutch function
US7942777B2 (en) * 2007-06-01 2011-05-17 Manuel Meitin Continuously variable automatic transmission for heavy trucks, buses and light automobiles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950006382Y1 (en) * 1993-06-09 1995-08-08 나종오 Stepless automatic transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940011817A (en) * 1992-11-26 1994-06-22 나종오 Stepless automatic transmission
KR970006994A (en) * 1995-07-01 1997-02-21 김태구 Continuously variable mechanism
JP2005325926A (en) * 2004-05-14 2005-11-24 Astack:Kk Total mechanical meshing type continuously variable transmission having clutch function
US7942777B2 (en) * 2007-06-01 2011-05-17 Manuel Meitin Continuously variable automatic transmission for heavy trucks, buses and light automobiles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299173A (en) * 2014-07-30 2016-02-03 青州鼎丰机械有限公司 Non-direct connecting structure of hydraulic power gear shifting gearbox torque converter
CN106785451A (en) * 2017-01-26 2017-05-31 京信通信系统(中国)有限公司 Antenna and its angle control that has a down dip
CN106785438A (en) * 2017-01-26 2017-05-31 京信通信系统(中国)有限公司 The control system of transmission device and Downtilt
CN106785438B (en) * 2017-01-26 2023-08-08 京信通信技术(广州)有限公司 Transmission device and antenna downward inclination angle control system
CN106785451B (en) * 2017-01-26 2023-10-27 京信通信技术(广州)有限公司 Antenna and downtilt angle control device thereof

Also Published As

Publication number Publication date
KR20140037435A (en) 2014-03-27
KR101487816B1 (en) 2015-01-30

Similar Documents

Publication Publication Date Title
WO2012057410A1 (en) Power transmission device
WO2014046418A1 (en) Transmission
WO2017209420A1 (en) Adaptive driving module
WO2020263057A1 (en) Torque converter
WO2012011662A2 (en) Continuously variable transmission
WO2014123312A1 (en) Variable transmission having internal hub
WO2020218749A1 (en) Power transmission device
WO2011122787A2 (en) Transmission for bicycle
WO2014123320A1 (en) Variable transmission having internal hub
WO2014025130A1 (en) Multi-range transmission
WO2013085288A1 (en) Transmission, in-wheel drive system comprising same, and method for manufacturing transmission
WO2016186353A1 (en) Washing machine drive apparatus, and washing machine comprising same
WO2009088232A2 (en) Planetary gear set and power transmitting apparatus and use of the same
WO2017116172A1 (en) Driving apparatus for hybrid vehicle having multiple modes
WO2011102606A2 (en) Transmission for bicycle
WO2021085735A1 (en) Temperature correction valve opening/closing device, dual reduction ratio reducer, and dual reduction ratio temperature correction valve opening/closing device, each having dual material stem nut
WO2020085753A1 (en) Electric vehicle dry torque converter and control method therefor
WO2013058508A2 (en) Transmission device
WO2018043866A2 (en) Two-gear transmission
WO2014025171A1 (en) Transmission
WO2022065584A1 (en) Cycloidal speed reducer
WO2021157921A1 (en) Hybrid driving module
WO2019194390A1 (en) Electric vehicle transmission system
WO2016108299A1 (en) Continuously variable transmission device
WO2022034977A1 (en) Electric motor with built-in transmission unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13839352

Country of ref document: EP

Kind code of ref document: A1