WO2023090643A1 - Ruthenium catalyst for ammonia decomposition reaction, method for producing same, and hydrogen production method using same - Google Patents

Ruthenium catalyst for ammonia decomposition reaction, method for producing same, and hydrogen production method using same Download PDF

Info

Publication number
WO2023090643A1
WO2023090643A1 PCT/KR2022/015237 KR2022015237W WO2023090643A1 WO 2023090643 A1 WO2023090643 A1 WO 2023090643A1 KR 2022015237 W KR2022015237 W KR 2022015237W WO 2023090643 A1 WO2023090643 A1 WO 2023090643A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
catalyst
decomposition reaction
ammonia decomposition
carrier
Prior art date
Application number
PCT/KR2022/015237
Other languages
French (fr)
Korean (ko)
Inventor
박은덕
김한봄
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210157383A external-priority patent/KR102697796B1/en
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2023090643A1 publication Critical patent/WO2023090643A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a ruthenium catalyst for ammonia decomposition reaction capable of producing hydrogen from ammonia, a method for preparing the same, and a method for producing hydrogen using the same.
  • Hydrogen itself is a very clean fuel, and when burned, only water is produced without generating carbon dioxide, and when used as a fuel for a fuel cell, electricity and heat can be produced simultaneously with high efficiency.
  • hydrogen cannot exist alone in nature and exists in nature in a form combined with other elements, hydrogen can be widely used as a fuel only when technology development for extracting, transporting and storing hydrogen from them is accompanied.
  • Ammonia is a hydrogen source that can stably exist by combining hydrogen and nitrogen, and can be industrially produced in large quantities by the Haber-Bosch method, and has advantages in transportation and storage because it is easily liquefied. In addition, it has an eco-friendly advantage because only harmless nitrogen and hydrogen are produced during ammonia decomposition.
  • the ammonia decomposition reaction is an endothermic reaction in which 2 moles of ammonia are produced as 3 moles of hydrogen, as shown in Scheme 1 below.
  • the decomposition reaction of ammonia is thermodynamically capable of converting more than 99% of ammonia at 400 ° C and 1 atm, but in reality, it is known that ammonia is decomposed at 500 to 900 ° C due to a reaction kinetic barrier.
  • ruthenium and nickel show high catalytic activity for the ammonia decomposition reaction.
  • the ruthenium catalyst shows the highest activity for ammonia decomposition when used with a carbon nanotube (CNT) support, but carbon nanotubes (CNT) are expensive to produce and inefficient in large-scale production processes, so ammonia decomposition There are limits to its use in reactions.
  • One object of the present invention is to improve the hydrogen production rate in a relatively low temperature range by supporting a ruthenium active ingredient so that the dispersion degree measured through selective chemical adsorption of carbon monoxide is 1.0 to 20% on an alumina carrier in the kappa crystal phase. It is to provide a ruthenium catalyst that can reduce the amount of use.
  • Another object of the present invention is to provide a method for preparing the ruthenium catalyst.
  • Another object of the present invention is to provide a method for generating hydrogen from ammonia using the ruthenium catalyst.
  • a ruthenium catalyst for ammonia decomposition reaction is a catalyst for promoting hydrogen production through ammonia decomposition reaction, and includes a support and a ruthenium active component supported on the surface of the support, wherein the ruthenium active component
  • the dispersion of ruthenium measured through selective chemisorption of carbon monoxide on the surface of the carrier may be 1.0% to 20%.
  • the carrier may include a kappa alumina material.
  • the ruthenium active ingredient has a dispersion of 1.2% of ruthenium measured through selective chemical adsorption of carbon monoxide on the surface of the carrier. It may be more than 18% or less.
  • the ruthenium active ingredient has a dispersity of 1.35% of ruthenium measured through selective chemisorption of carbon monoxide on the surface of the carrier. more than 16.5% may be below.
  • a method for preparing a ruthenium catalyst for ammonia decomposition reaction includes a first step of impregnating a carrier with a ruthenium precursor compound; A second step of drying the carrier impregnated with the ruthenium precursor compound; and a third step of forming a ruthenium metal phase on the surface of the carrier by reducing the ruthenium precursor compound in the carrier on which the dried ruthenium precursor compound is supported, wherein the ruthenium metal phase forms a selective chemical reaction of carbon monoxide on the surface of the carrier.
  • the dispersion of ruthenium measured through adsorption can be formed from 1.0% to 20%.
  • the carrier may include a kappa alumina material.
  • the ruthenium precursor compound may include one or more compounds selected from the group consisting of a ruthenium carbonyl compound, ruthenium nitride, and ruthenium chloride.
  • the carrier impregnated with the ruthenium precursor compound in the second step, may be dried under a normal pressure or reduced pressure condition less than normal pressure and a temperature condition of 50 to 250°C.
  • the ruthenium metal phase is formed on the surface of the support by heat-treating the support on which the ruthenium precursor compound is supported at a temperature of 100° C. or more and 700° C. or less in a reducing gas atmosphere containing hydrogen. can do.
  • the reducing agent in the third step, after mixing the carrier supported with the ruthenium precursor compound and a reducing agent in a single or mixed solvent selected from the group consisting of water, acetone, cyclohexane, hexane and decane, the reducing agent It is possible to form the ruthenium metal phase on the surface of the support by reducing the ruthenium precursor compound by using.
  • a method for generating hydrogen from ammonia includes a first step of injecting a fuel gas containing ammonia into an inlet of a tubular reactor filled with a ruthenium catalyst for the ammonia decomposition reaction; and selectively recovering hydrogen from gases discharged through an outlet of the tubular reactor.
  • the temperature inside the tubular reactor during the first step may be adjusted to 200 ° C or more and 700 ° C or less.
  • the temperature inside the tubular reactor may be adjusted to 500° C. or more and 600° C. or less.
  • the ammonia decomposition ruthenium catalyst for hydrogen production of the present invention is characterized in that the carrier is formed of kappa alumina and the dispersion of ruthenium measured through selective chemisorption of carbon monoxide is about 1.0% to 20%, and is characterized in that it is relatively low-temperature In a wide temperature range, the ammonia decomposition reaction of Scheme 1 may proceed predominantly.
  • FIG. 1 is a flowchart illustrating a method for preparing a ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention.
  • Figure 2 is a graph showing the results of measuring the ammonia conversion rate (NH 3 Conversion) according to the temperature in the reaction using the ruthenium catalyst of Comparative Examples 1 to 4 and Example 1.
  • the ruthenium catalyst for ammonia decomposition reaction for generating hydrogen is a catalyst that promotes the reaction of Reaction Formula 1 below, and may include a carrier and a ruthenium active component supported on the carrier.
  • the carrier may include kappa alumina ( ⁇ -Al 2 O 3 ).
  • Alumina has a stronger interaction with metal than other carriers, so that the metal can be widely dispersed and supported on the surface of the alumina.
  • metal catalyst it is not easily sintered at a high temperature and may have advantages of high thermal conductivity and low cost.
  • the support is formed of kappa alumina, it can be manufactured to have various surface areas and shapes by controlling the conditions of the manufacturing process.
  • the ruthenium active ingredient may be supported on the surface of the carrier and may include a ruthenium metal phase.
  • the ruthenium active component may be supported on the carrier surface at a degree of dispersion of about 1.0% to 20%, as measured through selective chemical adsorption of carbon monoxide.
  • Catalysts having a dispersion of the ruthenium active component of less than 1.0% may use a large amount of expensive ruthenium to exhibit low-temperature catalytic activity, which may cause a problem in that the cost of the catalyst increases, and the dispersion of the ruthenium active component exceeds 20% In this case, a problem may occur in which the low-temperature activity of the ruthenium catalyst for the ammonia decomposition reaction does not appear.
  • the ruthenium active ingredient may be supported on the surface of the carrier to have a ruthenium dispersion of about 1.3% to about 17%, as measured through selective chemical adsorption of carbon monoxide.
  • the ruthenium active component may be supported on the kappa alumina carrier in an amount of about 0.5 to 3.0 wt% based on the total weight of the ruthenium catalyst.
  • the ruthenium active ingredient may be formed through heat treatment of a ruthenium precursor compound.
  • a ruthenium carbonyl compound, ruthenium nitride, ruthenium chloride, etc. may be used as the ruthenium precursor compound, and a ruthenium metal phase may be formed from the precursor compound through a heat treatment process under a reducing atmosphere. At this time, some of the carbon, nitrogen, and chlorine components of the ruthenium precursor compound may remain in the ruthenium catalyst for the ammonia decomposition reaction.
  • the support is formed of kappa alumina, and the ruthenium active component is supported on the support so that the dispersion of ruthenium measured through selective chemical adsorption of carbon monoxide is about 1.0% to 20%.
  • the ammonia decomposition reaction of Scheme 1 can proceed predominantly in a relatively low temperature range.
  • FIG. 1 is a flowchart illustrating a method for preparing a ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention.
  • a method for preparing a ruthenium catalyst for ammonia decomposition reaction includes a first step (S110) of impregnating a carrier with a ruthenium precursor compound; A second step (S120) of drying the carrier impregnated with the ruthenium precursor compound; and a third step ( S130 ) of forming a ruthenium metal phase on the surface of the carrier by reducing the ruthenium precursor compound in the carrier on which the dried ruthenium precursor compound is supported.
  • the ruthenium precursor compound may be dissolved in a solvent and then the kappa alumina carrier may be mixed with the ruthenium precursor compound to impregnate the carrier with the ruthenium precursor compound.
  • deionized water, ethanol, etc. may be used as the solvent, and at least one selected from a ruthenium carbonyl compound, ruthenium nitride, ruthenium chloride, and the like may be used as the ruthenium precursor compound.
  • the ruthenium precursor compound and the kappa alumina may be supported on the surface of the carrier so that the ruthenium dispersion degree measured through selective chemical adsorption of carbon monoxide is about 1.0% to 20%.
  • the mixing ratio of the carrier can be adjusted.
  • the drying temperature, pressure, drying atmosphere, etc. of the carrier impregnated with the ruthenium precursor compound are not particularly limited.
  • the carrier impregnated with the ruthenium precursor compound may be dried at a temperature of about 50 to 250° C. under normal pressure or reduced pressure below normal pressure.
  • the drying process may be performed in an oxidizing atmosphere containing oxygen or the like or in a reducing atmosphere containing hydrogen.
  • a reduction treatment may be performed on the support carrying the ruthenium precursor compound to form a ruthenium metal phase, which is a catalytically active component, on the surface of the support.
  • the catalyst of the present invention can have more improved catalytic activity for the ammonia decomposition reaction.
  • a method of forming the ruthenium metal phase by reducing the ruthenium precursor compound on the surface of the carrier is not particularly limited.
  • the ruthenium precursor compound may be reduced through a vapor phase reduction method or a liquid phase reduction method to form the ruthenium metal phase.
  • the ruthenium metal phase is formed from the ruthenium precursor compound using the vapor phase reduction method
  • the ruthenium metal phase is formed on the surface of the carrier by heat-treating the carrier supported with the ruthenium precursor compound in a reducing gas atmosphere containing hydrogen or the like. can do.
  • the heat treatment may be performed at 100° C. or higher, which is the minimum temperature capable of reducing ruthenium, and 700° C. or lower, which is the sublimation temperature of ruthenium.
  • the heat treatment temperature exceeds 700° C., a problem in which ruthenium is lost may occur, and when the temperature is less than 100° C., a significant amount of ruthenium is not reduced, resulting in a decrease in the content of the ruthenium metal phase.
  • the heat treatment may be performed at a temperature of about 150 to 400 °C under a reducing atmosphere.
  • the ruthenium metal phase is formed from the ruthenium precursor compound using the liquid phase reduction method, after adding a carrier carrying the ruthenium precursor compound and a reducing agent in a solvent, the ruthenium precursor compound is reduced using the reducing agent to form the ruthenium precursor compound.
  • a metal phase can be formed.
  • the solvent is not particularly limited, and water, acetone, cyclohexane, hexane, decane, and the like may be used.
  • the reducing agent is not particularly limited as long as it is a compound capable of generating hydrogen.
  • alcohol compounds such as sodium borohydride (NaBH4) and ethylene glycol, aldehyde compounds such as formaldehyde, and the like may be used.
  • the reduction temperature, pressure, etc. can be variously controlled under the condition that the liquid phase is maintained.
  • the reduction temperature may be set to about 0 to 100 °C.
  • the method for manufacturing a ruthenium catalyst according to an embodiment of the present invention includes a fourth step of performing heat treatment in an oxidizing atmosphere containing oxygen after the second step (S120) or the third step (S130) ( (not shown) may further include, and when the heat treatment is performed in the oxidizing atmosphere after the third step (S130), the step of activating the ruthenium catalyst through the step of heat treatment in a reducing atmosphere after the fourth step is additionally performed can do.
  • a method for generating hydrogen from ammonia includes injecting a fuel gas containing ammonia into an inlet of a tubular reactor filled with a ruthenium catalyst for the ammonia decomposition reaction; and selectively recovering hydrogen from a reaction gas discharged through an outlet of the tubular reactor.
  • the temperature inside the tubular reactor may be adjusted to about 200° C. or higher and 700° C. or lower through a heater disposed outside the tubular reactor.
  • a ruthenium catalyst was prepared by activating the ruthenium precursor catalyst through a vapor phase reduction method in which heat treatment was performed at about 350° C. under a hydrogen atmosphere.
  • a ruthenium catalyst was prepared in the same manner as in Example 1, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 700 °C.
  • Example 1 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) Example 1, except that an aqueous solution of 12 ml was used and the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 300 ° C. A ruthenium catalyst was prepared in the same manner as in
  • a ruthenium catalyst was prepared in the same manner as in Example 3, except that 9.0 ml of a 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was used.
  • a ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 18 ml.
  • a ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 12 ml.
  • a ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 15 ml.
  • a ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 9.0 ml.
  • a ruthenium catalyst was prepared in the same manner as in Example 3, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 5.9 ml.
  • a ruthenium catalyst was prepared in the same manner as in Example 3, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 4.1 ml.
  • a ruthenium catalyst was prepared in the same manner as in Example 3, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 3.0 ml.
  • Ru(NO)(NO 3 ) 3 ruthenium nitrosyl nitrate
  • a ruthenium catalyst was prepared in the same manner as in Example 5, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 550 °C.
  • a ruthenium catalyst was prepared in the same manner as in Example 10, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 100 °C.
  • a ruthenium catalyst was prepared in the same manner as in Example 11, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 100 °C.
  • the ruthenium catalysts of Examples 1 to 11 and Comparative Examples 1 to 7 were powdered and charged into a fixed bed tubular reactor.
  • a mixed gas having a composition of 25% ammonia (NH 3 ), 70% helium (He), and 5% methane (CH 4 ) based on the number of moles flows at normal pressure, and then the temperature is increased at a rate of 0.33 °C / min while The composition of the gas stream at the outlet was analyzed.
  • the total flow rate of the mixed gas was fixed at 100 ml per minute, and the amount of catalyst used was fixed at 0.1 g.
  • the ruthenium catalysts of Examples 1 to 11 and Comparative Examples 1 to 7 were powdered, filled with 0.1 g in an adsorption tube (U-shaped quartz tube), and activated through a vapor phase reduction method in which heat treatment was performed at about 350 ° C. under a hydrogen atmosphere, and then the temperature was lowered and pulsed a mixed gas mixed with 10 mol% of carbon monoxide and 90 mol% of helium at 35° C., and the measurement was performed until the ruthenium catalyst was saturated with the mixed gas.
  • One molecule of adsorbed carbon monoxide is regarded as having formed a chemical bond with one atom on the ruthenium surface, and the degree of dispersion is calculated.
  • a chemical adsorption analyzer Autochem 2920, Micromeritics
  • TCD thermal conductivity detector
  • Tables 1 and 2 show the results of measuring the range of hydrogen production rates at a reaction temperature of 400° C. according to the degree of dispersion of the ruthenium catalysts of Examples 1 to 11 and Comparative Examples 1 to 7.
  • Figure 2 is a graph showing the results of measuring the ammonia conversion rate according to temperature in the reaction using the ruthenium catalyst of Comparative Examples 1 to 4 and Example 1.
  • Example 2 1.0 1.3 3.8 0.39
  • Example 3 2.0 3.3 6.6 0.33
  • Example 4 1.5 3.5 6.4 0.42
  • Example 5 3.0 4.3 6.2 0.21
  • Example 6 2.0 8.0 6.1 0.31
  • Example 7 2.5 9.2 5.9 0.23
  • Example 8 1.5 11 5.0 0.34
  • Example 9 1.0 14 7.0 0.70
  • Example 10 0.7 15 4.2 0.60
  • Example 11 0.5 15 3.4 0.69
  • Example 1 1.0 17 2.3 0.23 Comparative Example 5 3.0 0.71 5.2 0.17 Comparative Example 6 0.7 26 0.75 0.11 Comparative Example 7 0.5 35 0.42 0.084
  • the hydrogen generation rate is highest when the catalyst of Example 1 is applied. That is, it can be confirmed that, among alumina supports having various crystalline phases, when kappa alumina is used as a support, the ruthenium dispersion is the lowest or the highest hydrogen production rate can be achieved.
  • Examples 2 to 11 It can be seen that the hydrogen production rate (mol / g Ru / min) is high when using the catalyst of . This means that the catalysts of Examples 2 to 11 are excellent in ammonia decomposition ability. In particular, in the case of the catalyst of Example 9, it can be seen that the ability to decompose ammonia is better than that of the catalysts of the other Examples.
  • the dispersity of the ruthenium catalyst supported on the kappa alumina support is 1.0% or more and 20% or less, preferably 1.2% or more and 18% or less, more preferably 1.35% or more and 16.5% or less, or 3.0% or more 16 % or less, it can be seen that it has excellent ammonia decomposition ability in a low temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a ruthenium catalyst for catalyzing ammonia decomposition reaction for hydrogen production. The ruthenium catalyst comprises: a kappa alumina support; and a ruthenium active component supported on the surface of the support, wherein the ruthenium active component has a degree of ruthenium dispersion of 1.0-20%, as measured through the selective chemisorption of carbon monoxide on the surface of the support.

Description

암모니아 분해 반응용 루테늄 촉매, 이의 제조 방법 및 이를 이용하여 수소를 생산하는 방법Ruthenium catalyst for ammonia decomposition, method for producing the same, and method for producing hydrogen using the same
본 발명은 암모니아로부터 수소를 생산할 수 있는 암모니아 분해 반응용 루테늄 촉매, 이의 제조방법 및 이를 이용한 수소 생산 방법에 관한 것이다.The present invention relates to a ruthenium catalyst for ammonia decomposition reaction capable of producing hydrogen from ammonia, a method for preparing the same, and a method for producing hydrogen using the same.
수소는 그 자체로 매우 청정한 연료로서 이의 연소시에 이산화탄소의 발생 없이 물만이 생성되며, 연료전지의 연료로서 활용시에는 전기와 열을 고효율로 동시에 생산할 수 있다. 하지만 수소는 자연에서 단독으로 존재할 수 없고 다른 원소와 결합한 형태로 자연계에 존재하므로 이들로부터 수소를 추출하고 운반 및 저장하는 기술개발이 수반되어야 수소를 연료로서 광범위하게 사용할 수 있게 된다. Hydrogen itself is a very clean fuel, and when burned, only water is produced without generating carbon dioxide, and when used as a fuel for a fuel cell, electricity and heat can be produced simultaneously with high efficiency. However, since hydrogen cannot exist alone in nature and exists in nature in a form combined with other elements, hydrogen can be widely used as a fuel only when technology development for extracting, transporting and storing hydrogen from them is accompanied.
암모니아는 수소와 질소와의 결합에 의하여 안정적으로 존재할 수 있는 수소원으로서, 공업적으로 하버-보슈법에 의하여 대량으로 생산할 수 있으며, 쉽게 액화되기 때문에 운송 및 저장에 유리한 장점을 가지고 있다. 또한 암모니아 분해 시 무해한 질소와 수소만 생산되기 때문에 친환경적인 이점을 갖고 있다. 암모니아 분해반응은 하기 반응식 1에 기재된 바와 같이 2몰의 암모니아가 3몰의 수소로 생성되는 흡열반응이다.Ammonia is a hydrogen source that can stably exist by combining hydrogen and nitrogen, and can be industrially produced in large quantities by the Haber-Bosch method, and has advantages in transportation and storage because it is easily liquefied. In addition, it has an eco-friendly advantage because only harmless nitrogen and hydrogen are produced during ammonia decomposition. The ammonia decomposition reaction is an endothermic reaction in which 2 moles of ammonia are produced as 3 moles of hydrogen, as shown in Scheme 1 below.
[반응식 1][Scheme 1]
2NH 3 <-> N 2 + 3H 2 2 NH 3 <-> N 2 + 3 H 2
암모니아의 분해반응은 열역학적으로는 400℃, 1기압 조건에서 99% 이상의 암모니아 전환이 가능하지만, 실제로는 반응 속도론적인 장벽으로 인하여 암모니아의 분해는 500~900℃에서 이루어지는 것으로 알려져 있다. The decomposition reaction of ammonia is thermodynamically capable of converting more than 99% of ammonia at 400 ° C and 1 atm, but in reality, it is known that ammonia is decomposed at 500 to 900 ° C due to a reaction kinetic barrier.
암모니아 분해 반응에 대해 루테늄, 니켈 등의 금속이 높은 촉매 활성도를 보이는 것으로 알려져 있다. 루테늄 촉매는 탄소나노튜브(CNT) 지지체와 함께 사용되는 경우에 암모니아 분해 반응에 대해 가장 높은 활성을 나타내지만, 탄소나노튜브(CNT)는 생산 비용이 높고, 대규모의 생산 공정에서 비효율적이기 때문에 암모니아 분해 반응에 활용하기에 한계가 있다. It is known that metals such as ruthenium and nickel show high catalytic activity for the ammonia decomposition reaction. The ruthenium catalyst shows the highest activity for ammonia decomposition when used with a carbon nanotube (CNT) support, but carbon nanotubes (CNT) are expensive to produce and inefficient in large-scale production processes, so ammonia decomposition There are limits to its use in reactions.
본 발명의 일 목적은 카파 결정상의 알루미나 담체에 일산화탄소의 선택적 화학흡착을 통하여 측정된 분산도가 1.0 내지 20 %가 되도록 루테늄 활성 성분이 담지되어 상대적으로 저온의 온도 범위에서 수소 생성속도를 향상시키면서 루테늄의 사용량을 절감할 수 있는 루테늄 촉매를 제공하는 것이다. One object of the present invention is to improve the hydrogen production rate in a relatively low temperature range by supporting a ruthenium active ingredient so that the dispersion degree measured through selective chemical adsorption of carbon monoxide is 1.0 to 20% on an alumina carrier in the kappa crystal phase. It is to provide a ruthenium catalyst that can reduce the amount of use.
본 발명의 다른 목적은 상기 루테늄 촉매를 제조하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing the ruthenium catalyst.
본 발명의 또 다른 목적은 상기 루테늄 촉매를 이용하여 암모니아로부터 수소를 생성하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for generating hydrogen from ammonia using the ruthenium catalyst.
본 발명의 실시예에 따른 암모니아 분해 반응용 루테늄 촉매는 암모니아 분해 반응을 통해 수소를 생산을 촉진하는 촉매로서, 담체 및 상기 담체의 표면 상에 담지된 루테늄 활성성분을 포함하고, 상기 루테늄 활성성분은 상기 담체 표면 상에서 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.0 % 내지 20 %일 수 있다. A ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention is a catalyst for promoting hydrogen production through ammonia decomposition reaction, and includes a support and a ruthenium active component supported on the surface of the support, wherein the ruthenium active component The dispersion of ruthenium measured through selective chemisorption of carbon monoxide on the surface of the carrier may be 1.0% to 20%.
일 실시예에 있어서, 상기 담체는 카파 알루미나 소재를 포함할 수 있다.In one embodiment, the carrier may include a kappa alumina material.
일 실시예에 있어서, 상기 루테늄 활성성분은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.2 % 이상 18 % 이하일 수 있다. 예를 들면, 상기 루테늄 활성성분은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.35 % 이상 16.5 % 이하일 수 있다. In one embodiment, the ruthenium active ingredient has a dispersion of 1.2% of ruthenium measured through selective chemical adsorption of carbon monoxide on the surface of the carrier. It may be more than 18% or less. For example, the ruthenium active ingredient has a dispersity of 1.35% of ruthenium measured through selective chemisorption of carbon monoxide on the surface of the carrier. more than 16.5% may be below.
본 발명의 실시예에 따른 암모니아 분해 반응용 루테늄 촉매의 제조방법은, 담체에 루테늄 전구체 화합물을 함침시키는 제1 단계; 상기 루테늄 전구체 화합물이 함침된 담체를 건조하는 제2 단계; 및 상기 건조된 루테늄 전구체 화합물이 담지된 담체 중 상기 루테늄 전구체 화합물을 환원시켜 상기 담체 표면 상에 루테늄 금속상을 형성하는 제3 단계를 포함하고, 상기 루테늄 금속상은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.0 % 20 %로 형성될 수 있다. A method for preparing a ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention includes a first step of impregnating a carrier with a ruthenium precursor compound; A second step of drying the carrier impregnated with the ruthenium precursor compound; and a third step of forming a ruthenium metal phase on the surface of the carrier by reducing the ruthenium precursor compound in the carrier on which the dried ruthenium precursor compound is supported, wherein the ruthenium metal phase forms a selective chemical reaction of carbon monoxide on the surface of the carrier. The dispersion of ruthenium measured through adsorption can be formed from 1.0% to 20%.
일 실시예에 있어서, 상기 담체는 카파 알루미나 소재를 포함할 수 있다.In one embodiment, the carrier may include a kappa alumina material.
일 실시예에 있어서, 상기 루테늄 전구체 화합물은 루테늄 카르보닐 화합물, 루테늄 질화물 및 루테늄 염화물로 이루어진 그룹에서 선택된 하나 이상의 화합물을 포함할 수 있다. In one embodiment, the ruthenium precursor compound may include one or more compounds selected from the group consisting of a ruthenium carbonyl compound, ruthenium nitride, and ruthenium chloride.
일 실시예에 있어서, 상기 제2 단계에서, 상기 루테늄 전구체 화합물이 함침된 담체는 상압 또는 상압 미만의 감압 조건 및 50 내지 250℃의 온도 조건에서 건조될 수 있다. In one embodiment, in the second step, the carrier impregnated with the ruthenium precursor compound may be dried under a normal pressure or reduced pressure condition less than normal pressure and a temperature condition of 50 to 250°C.
일 실시예에 있어서, 상기 제3 단계에서, 수소를 포함하는 환원가스 분위기에서 상기 루테늄 전구체 화합물이 담지된 담체를 100℃ 이상 700℃ 이하의 온도에서 열처리함으로써 상기 담체 표면에 상기 루테늄 금속상을 형성할 수 있다. In one embodiment, in the third step, the ruthenium metal phase is formed on the surface of the support by heat-treating the support on which the ruthenium precursor compound is supported at a temperature of 100° C. or more and 700° C. or less in a reducing gas atmosphere containing hydrogen. can do.
일 실시예에 있어서, 상기 제3 단계에서, 물, 아세톤, 사이클로 헥산, 헥산 및 데칸으로 이루어진 그룹에서 선택된 단일 또는 혼합 용매 내에서 상기 루테늄 전구체 화합물이 담지된 담체와 환원제를 혼합한 후 상기 환원제를 이용하여 상기 루테늄 전구체 화합물을 환원시켜 상기 담체 표면에 상기 루테늄 금속상을 형성할 수 있다. In one embodiment, in the third step, after mixing the carrier supported with the ruthenium precursor compound and a reducing agent in a single or mixed solvent selected from the group consisting of water, acetone, cyclohexane, hexane and decane, the reducing agent It is possible to form the ruthenium metal phase on the surface of the support by reducing the ruthenium precursor compound by using.
본 발명의 실시예에 따른 암모니아로부터 수소를 생성하는 방법은, 상기 암모니아 분해 반응용 루테늄 촉매가 충진된 관형 반응기의 주입구에 암모니아를 포함하는 연료 가스를 주입하는 제1 단계; 및 상기 관형 반응기의 배출구로 배출되는 가스 중 수소를 선택적으로 회수하는 단계를 포함한다. A method for generating hydrogen from ammonia according to an embodiment of the present invention includes a first step of injecting a fuel gas containing ammonia into an inlet of a tubular reactor filled with a ruthenium catalyst for the ammonia decomposition reaction; and selectively recovering hydrogen from gases discharged through an outlet of the tubular reactor.
일 실시예에 있어서, 상기 제1 단계 동안 상기 관형 반응기 내부의 온도는 200℃ 이상 700℃ 이하로 조절될 수 있다. 예를 들면, 상기 제1 단계 동안 상기 관형 반응기 내부의 온도는 500℃ 이상 600℃ 이하로 조절될 수 있다.In one embodiment, the temperature inside the tubular reactor during the first step may be adjusted to 200 ° C or more and 700 ° C or less. For example, during the first step, the temperature inside the tubular reactor may be adjusted to 500° C. or more and 600° C. or less.
본 발명의 수소 생성을 위한 암모니아 분해 루테늄 촉매는 담체가 카파 알루미나로 형성되고, 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 약 1.0 % 내지 20 %인 것을 특징으로 하여, 상대적으로 저온의 넓은 온도 범위에서 상기 반응식 1의 암모니아 분해 반응을 우세하게 진행시킬 수 있다.The ammonia decomposition ruthenium catalyst for hydrogen production of the present invention is characterized in that the carrier is formed of kappa alumina and the dispersion of ruthenium measured through selective chemisorption of carbon monoxide is about 1.0% to 20%, and is characterized in that it is relatively low-temperature In a wide temperature range, the ammonia decomposition reaction of Scheme 1 may proceed predominantly.
도 1은 본 발명의 실시예에 따른 암모니아 분해 반응용 루테늄 촉매의 제조방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method for preparing a ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention.
도 2는 비교예 1 내지 4 그리고 실시예 1의 루테늄 촉매를 이용한 반응에서 온도에 따른 암모니아 전환율(NH3 Conversion)을 측정한 결과를 나타내는 그래프이다.Figure 2 is a graph showing the results of measuring the ammonia conversion rate (NH 3 Conversion) according to the temperature in the reaction using the ruthenium catalyst of Comparative Examples 1 to 4 and Example 1.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific form disclosed, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure. In the accompanying drawings, the dimensions of the structures are shown enlarged than actual for clarity of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as "comprise" or "have" are intended to designate that there is a feature, number, step, operation, component, or combination thereof described in the specification, but one or more other features or numbers However, it should be understood that it does not preclude the presence or addition of steps, operations, components, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
본 발명의 실시예에 따른 수소를 생성시키기 위한 암모니아 분해 반응용 루테늄 촉매는 하기 반응식 1의 반응을 촉진하는 촉매로서, 담체 및 상기 담체에 담지된 루테늄 활성 성분을 포함할 수 있다. The ruthenium catalyst for ammonia decomposition reaction for generating hydrogen according to an embodiment of the present invention is a catalyst that promotes the reaction of Reaction Formula 1 below, and may include a carrier and a ruthenium active component supported on the carrier.
[반응식 1][Scheme 1]
2NH 3 <-> N 2 + 3H 2 2 NH 3 <-> N 2 + 3 H 2
상기 담체는 카파 알루미나(κ-Al2O3)를 포함할 수 있다. 알루미나는 다른 담체들에 비해 금속과의 상호작용이 강하여, 상기 알루미나의 표면에서는 금속이 넓게 분산 담지될 수 있다. 금속 촉매의 경우, 고온에서 쉽게 소결되지 않으며 높은 열전도율과 저렴한 비용의 장점을 가질 수 있다. 또한, 상기 담체가 카파 알루미나로 형성되는 경우, 제조 공정의 조건 등을 제어함으로써 다양한 표면적과 형상을 가지도록 제조할 수 있다. The carrier may include kappa alumina (κ-Al 2 O 3 ). Alumina has a stronger interaction with metal than other carriers, so that the metal can be widely dispersed and supported on the surface of the alumina. In the case of a metal catalyst, it is not easily sintered at a high temperature and may have advantages of high thermal conductivity and low cost. In addition, when the support is formed of kappa alumina, it can be manufactured to have various surface areas and shapes by controlling the conditions of the manufacturing process.
상기 루테늄 활성 성분은 상기 담체의 표면에 담지될 수 있고, 루테늄 금속 상을 포함할 수 있다. 일 실시예에 있어서, 상기 암모니아 분해 반응용 루테늄 촉매에 있어서, 상기 루테늄 활성 성분은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 분산도가 약 1.0 % 내지 20 %로 담지될 수 있다. 상기 루테늄 활성 성분의 분산도가 1.0 % 미만인 촉매는 저온 촉매 활성을 나타내기 위하여 고가의 루테늄을 다량 사용하여 촉매 가격이 높아지는 문제점이 발생할 수 있고, 상기 루테늄 활성 성분의 분산도가 20 %을 초과하는 경우에는 상기 암모니아 분해 반응용 루테늄 촉매의 저온 활성이 나타나지 않는 문제점이 발생할 수 있다. 일 실시예로, 상기 루테늄 활성 성분은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 약 1.3 % 내지 17 %로 담지될 수 있다.The ruthenium active ingredient may be supported on the surface of the carrier and may include a ruthenium metal phase. In one embodiment, in the ruthenium catalyst for the ammonia decomposition reaction, the ruthenium active component may be supported on the carrier surface at a degree of dispersion of about 1.0% to 20%, as measured through selective chemical adsorption of carbon monoxide. Catalysts having a dispersion of the ruthenium active component of less than 1.0% may use a large amount of expensive ruthenium to exhibit low-temperature catalytic activity, which may cause a problem in that the cost of the catalyst increases, and the dispersion of the ruthenium active component exceeds 20% In this case, a problem may occur in which the low-temperature activity of the ruthenium catalyst for the ammonia decomposition reaction does not appear. In one embodiment, the ruthenium active ingredient may be supported on the surface of the carrier to have a ruthenium dispersion of about 1.3% to about 17%, as measured through selective chemical adsorption of carbon monoxide.
일 실시예로, 상기 루테늄 활성 성분은 루테늄 촉매 전체 중량을 기준으로 약 0.5 내지 3.0 wt%로 상기 카파 알루미나 담체에 담지될 수 있다. In one embodiment, the ruthenium active component may be supported on the kappa alumina carrier in an amount of about 0.5 to 3.0 wt% based on the total weight of the ruthenium catalyst.
한편, 상기 루테늄 활성 성분은 루테늄 전구체 화합물의 열처리를 통해 형성될 수 있다. 일 실시예에 있어서, 상기 루테늄 전구체 화합물로는 루테늄 카르보닐 화합물, 루테늄 질화물, 루테늄 염화물 등이 사용될 수 있고, 환원 분위기 하에서의 열처리 공정을 통해 상기 전구체 화합물로부터 루테늄 금속 상을 형성할 수 있다. 이 때, 상기 루테늄 전구체 화합물의 탄소, 질소, 염소 성분들이 일부 상기 암모니아 분해 반응용 루테늄 촉매에 잔류할 수 있다. Meanwhile, the ruthenium active ingredient may be formed through heat treatment of a ruthenium precursor compound. In one embodiment, a ruthenium carbonyl compound, ruthenium nitride, ruthenium chloride, etc. may be used as the ruthenium precursor compound, and a ruthenium metal phase may be formed from the precursor compound through a heat treatment process under a reducing atmosphere. At this time, some of the carbon, nitrogen, and chlorine components of the ruthenium precursor compound may remain in the ruthenium catalyst for the ammonia decomposition reaction.
본 발명의 암모니아 분해 반응용 루테늄 촉매는 담체가 카파 알루미나로 형성되고, 상기 루테늄 활성 성분이 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 약 1.0 % 내지 20 %가 되도록 상기 담체에 담지되므로, 상대적으로 저온의 온도 범위에서 상기 반응식 1의 암모니아 분해 반응을 우세하게 진행시킬 수 있다.In the ruthenium catalyst for ammonia decomposition of the present invention, the support is formed of kappa alumina, and the ruthenium active component is supported on the support so that the dispersion of ruthenium measured through selective chemical adsorption of carbon monoxide is about 1.0% to 20%. , The ammonia decomposition reaction of Scheme 1 can proceed predominantly in a relatively low temperature range.
도 1은 본 발명의 실시예에 따른 암모니아 분해 반응용 루테늄 촉매의 제조방법을 설명하기 위한 순서도이다. 1 is a flowchart illustrating a method for preparing a ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 암모니아 분해 반응용 루테늄 촉매의 제조방법은 담체에 루테늄 전구체 화합물을 함침시키는 제1 단계(S110); 상기 루테늄 전구체 화합물이 함침된 담체를 건조하는 제2 단계(S120); 및 상기 건조된 루테늄 전구체 화합물이 담지된 담체 중 상기 루테늄 전구체 화합물을 환원시켜 상기 담체 표면 상에 루테늄 금속상을 형성하는 제3 단계(S130)를 포함할 수 있다. Referring to FIG. 1 , a method for preparing a ruthenium catalyst for ammonia decomposition reaction according to an embodiment of the present invention includes a first step (S110) of impregnating a carrier with a ruthenium precursor compound; A second step (S120) of drying the carrier impregnated with the ruthenium precursor compound; and a third step ( S130 ) of forming a ruthenium metal phase on the surface of the carrier by reducing the ruthenium precursor compound in the carrier on which the dried ruthenium precursor compound is supported.
상기 제1 단계(S110)에 있어서, 용매에 상기 루테늄 전구체 화합물을 용해시킨 후 이에 카파 알루미나 담체를 혼합함으로써 상기 담체에 루테늄 전구체 화합물을 함침시킬 수 있다. In the first step (S110), the ruthenium precursor compound may be dissolved in a solvent and then the kappa alumina carrier may be mixed with the ruthenium precursor compound to impregnate the carrier with the ruthenium precursor compound.
이 경우, 상기 용매로는 탈이온수, 에탄올 등이 사용될 수 있고, 상기 루테늄 전구체 화합물로는 루테늄 카르보닐 화합물, 루테늄 질화물, 루테늄 염화물 등으로부터 선택된 하나 이상이 사용될 수 있다. In this case, deionized water, ethanol, etc. may be used as the solvent, and at least one selected from a ruthenium carbonyl compound, ruthenium nitride, ruthenium chloride, and the like may be used as the ruthenium precursor compound.
일 실시예에 있어서, 상기 루테늄 활성 성분이 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 약 1.0 % 내지 20 %로 담지될 수 있도록, 상기 루테늄 전구체 화합물 및 상기 카파 알루미나 담체의 혼합 비율을 조절할 수 있다. In one embodiment, the ruthenium precursor compound and the kappa alumina may be supported on the surface of the carrier so that the ruthenium dispersion degree measured through selective chemical adsorption of carbon monoxide is about 1.0% to 20%. The mixing ratio of the carrier can be adjusted.
상기 제2 단계(S120)에 있어서, 상기 루테늄 전구체 화합물이 함침된 담체의 건조 온도, 압력, 건조 분위기 등은 특별히 제한되지 않는다. 예를 들면, 상기 루테늄 전구체 화합물이 함침된 담체는 상압 또는 상압 미만의 감압 조건에서 약 50 내지 250℃의 온도에서 건조될 수 있다. 이 경우, 상기 건조 공정은 산소 등이 포함된 산화 분위기에서 수행되거나 수소 등이 포함된 환원 분위기에서 수행될 수 있다. In the second step (S120), the drying temperature, pressure, drying atmosphere, etc. of the carrier impregnated with the ruthenium precursor compound are not particularly limited. For example, the carrier impregnated with the ruthenium precursor compound may be dried at a temperature of about 50 to 250° C. under normal pressure or reduced pressure below normal pressure. In this case, the drying process may be performed in an oxidizing atmosphere containing oxygen or the like or in a reducing atmosphere containing hydrogen.
상기 제3 단계(S130)에 있어서, 상기 건조 공정 이후 상기 루테늄 전구체 화합물이 담지된 담체에 대해 환원 처리를 수행하여 상기 담체 표면에 촉매 활성 성분인 루테늄 금속상을 형성할 수 있다. 이와 같은 환원 처리를 통해 본 발명이 촉매는 암모니아 분해 반응에 대해 보다 향상된 촉매 활성을 가질 수 있다. In the third step (S130), after the drying process, a reduction treatment may be performed on the support carrying the ruthenium precursor compound to form a ruthenium metal phase, which is a catalytically active component, on the surface of the support. Through this reduction treatment, the catalyst of the present invention can have more improved catalytic activity for the ammonia decomposition reaction.
상기 담체 표면 상에서 상기 루테늄 전구체 화합물을 환원시켜 상기 루테늄 금속상을 형성하는 방법은 특별히 제한되지 않는다. 일 실시예로, 상기 루테늄 전구체 화합물은 기상환원법 또는 액상환원법을 통해 환원되어 상기 루테늄 금속상을 형성할 수 있다. A method of forming the ruthenium metal phase by reducing the ruthenium precursor compound on the surface of the carrier is not particularly limited. In one embodiment, the ruthenium precursor compound may be reduced through a vapor phase reduction method or a liquid phase reduction method to form the ruthenium metal phase.
상기 기상환원법을 이용하여 상기 루테늄 전구체 화합물로부터 상기 루테늄 금속상을 형성하는 경우, 수소 등을 포함하는 환원가스 분위기에서 상기 루테늄 전구체 화합물이 담지된 담체를 열처리함으로써 상기 담체 표면에 상기 루테늄 금속상을 형성할 수 있다. 이 경우, 상기 열처리는 루테늄의 환원 가능 최소온도인 100 ℃ 이상이고 루테늄의 승화 온도인 700℃ 이하에서 수행될 수 있다. 상기 열처리 온도가 700℃를 초과하는 경우에는 루테늄의 소실이 일어나는 문제점이 발생할 수 있고, 100℃ 미만인 경우에는 루테늄의 상당량이 미환원되어 루테늄 금속상의 함량이 낮아지는 문제점이 발생할 수 있다. 일 실시예로, 상기 열처리는 환원 분위기 하에서 약 150 내지 400℃의 온도에서 수행될 수 있다. When the ruthenium metal phase is formed from the ruthenium precursor compound using the vapor phase reduction method, the ruthenium metal phase is formed on the surface of the carrier by heat-treating the carrier supported with the ruthenium precursor compound in a reducing gas atmosphere containing hydrogen or the like. can do. In this case, the heat treatment may be performed at 100° C. or higher, which is the minimum temperature capable of reducing ruthenium, and 700° C. or lower, which is the sublimation temperature of ruthenium. When the heat treatment temperature exceeds 700° C., a problem in which ruthenium is lost may occur, and when the temperature is less than 100° C., a significant amount of ruthenium is not reduced, resulting in a decrease in the content of the ruthenium metal phase. In one embodiment, the heat treatment may be performed at a temperature of about 150 to 400 °C under a reducing atmosphere.
상기 액상환원법을 이용하여 상기 루테늄 전구체 화합물로부터 상기 루테늄 금속상을 형성하는 경우, 용매 내에 상기 루테늄 전구체 화합물이 담지된 담체와 환원제를 첨가한 후 상기 환원제를 이용하여 상기 루테늄 전구체 화합물을 환원시켜 상기 루테늄 금속상을 형성할 수 있다. When the ruthenium metal phase is formed from the ruthenium precursor compound using the liquid phase reduction method, after adding a carrier carrying the ruthenium precursor compound and a reducing agent in a solvent, the ruthenium precursor compound is reduced using the reducing agent to form the ruthenium precursor compound. A metal phase can be formed.
상기 용매는 특별히 제한되지 않으며, 물, 아세톤, 사이클로 헥산, 헥산, 데칸 등을 사용할 수 있다. The solvent is not particularly limited, and water, acetone, cyclohexane, hexane, decane, and the like may be used.
상기 환원제로는 수소를 발생시킬 수 있는 화합물라면 특별히 제한되지 않는다. 예를 들면, 상기 환원제로는 나트륨 보로하이드라이드(NaBH4), 에틸렌 글리콜 등과 같은 알코올류 화합물, 포름알데히드 등과 같은 알데히드류 화합물 등이 사용될 수 있다. The reducing agent is not particularly limited as long as it is a compound capable of generating hydrogen. For example, as the reducing agent, alcohol compounds such as sodium borohydride (NaBH4) and ethylene glycol, aldehyde compounds such as formaldehyde, and the like may be used.
한편, 상기 액상환원법에서 환원 온도, 압력 등은 액상이 유지되는 조건 하에서 다양하게 조절이 가능하다. 예를 들면, 상기 환원 온도는 약 0 내지 100℃로 설정될 수 있다. On the other hand, in the liquid phase reduction method, the reduction temperature, pressure, etc. can be variously controlled under the condition that the liquid phase is maintained. For example, the reduction temperature may be set to about 0 to 100 °C.
일 실시예에 있어서, 본 발명의 실시예에 따른 루테늄 촉매의 제조방법은 상기 제2 단계(S120) 또는 상기 제3 단계(S130) 이후에 산소가 포함된 산화 분위기에서 열처리를 하는 제4 단계(미도시)를 더 포함할 수 있고, 상기 제3 단계(S130) 이후에 상기 산화 분위기에서 열처리 하는 경우에는 상기 제4 단계 이후 환원 분위기에서 열처리는 단계를 통해 상기 루테늄 촉매를 활성화시키는 단계를 추가적으로 수행할 수 있다.In one embodiment, the method for manufacturing a ruthenium catalyst according to an embodiment of the present invention includes a fourth step of performing heat treatment in an oxidizing atmosphere containing oxygen after the second step (S120) or the third step (S130) ( (not shown) may further include, and when the heat treatment is performed in the oxidizing atmosphere after the third step (S130), the step of activating the ruthenium catalyst through the step of heat treatment in a reducing atmosphere after the fourth step is additionally performed can do.
본 발명의 실시예에 따른 암모니아로부터 수소를 생성하는 방법은 상기 암모니아 분해 반응용 루테늄 촉매가 충진된 관형 반응기의 주입구에 암모니아를 포함하는 연료 가스를 주입하는 단계; 및 상기 관형 반응기의 배출구로 배출되는 반응 가스 중 수소를 선택적으로 회수하는 단계를 포함할 수 있다. A method for generating hydrogen from ammonia according to an embodiment of the present invention includes injecting a fuel gas containing ammonia into an inlet of a tubular reactor filled with a ruthenium catalyst for the ammonia decomposition reaction; and selectively recovering hydrogen from a reaction gas discharged through an outlet of the tubular reactor.
한편, 상기 연료가스를 주입하는 동안, 상기 관형 반응기 외부에 배치된 가열기를 통해 상기 관형 반응기 내부의 온도는 약 200℃ 이상 700℃ 이하로 조절될 수 있다. Meanwhile, while the fuel gas is injected, the temperature inside the tubular reactor may be adjusted to about 200° C. or higher and 700° C. or lower through a heater disposed outside the tubular reactor.
본 발명의 실시예에 따른 암모니아 분해 반응용 루테늄 촉매가 충진된 관형 반응기를 이용하여 수소를 생성하는 경우, 상기 관형 반응기 내부의 온도가 약 200℃ 이상 700℃ 이하로 조절되더라도, 약 0.20 mol/gRu/min 의 속도로 수소를 생성할 수 있다. When hydrogen is generated using a tubular reactor filled with a ruthenium catalyst for ammonia decomposition according to an embodiment of the present invention, even if the temperature inside the tubular reactor is adjusted to about 200 ° C. or more and 700 ° C. or less, about 0.20 mol / g Hydrogen can be produced at a rate of Ru /min.
이하, 본 발명의 구체적인 실시예 및 비교예에 대해 상술한다. 다만, 하기 실시예는 본 발명의 일부 실시형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, specific examples and comparative examples of the present invention will be described in detail. However, the following examples are merely some embodiments of the present invention, and the scope of the present invention is not limited to the following examples.
[실시예 1][Example 1]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 5.9 ml을 증류수 100ml에 넣고 용해한 후 카파 알루미나 담체(BET 표면적: 25 ± 10 m2/g) 약 3 g을 첨가하고, 60℃의 온도에서 혼합하면서 압력을 0.1 bar이하로 낮추어 증류수를 제거하여 루테늄 전구체 촉매를 제조하였다. After dissolving 5.9 ml of a 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution in 100 ml of distilled water, about 3 g of a kappa alumina carrier (BET surface area: 25 ± 10 m 2 /g) was added. And, while mixing at a temperature of 60 ° C., the pressure was lowered to 0.1 bar or less to remove distilled water to prepare a ruthenium precursor catalyst.
상기 루테늄 전구체 촉매를 수소 분위기 하에서 약 350℃로 열처리하는 기상환원법을 통해 활성화시켜 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared by activating the ruthenium precursor catalyst through a vapor phase reduction method in which heat treatment was performed at about 350° C. under a hydrogen atmosphere.
[실시예 2][Example 2]
제조된 루테늄 전구체 촉매를 700℃ 공기 분위기에서 열처리한 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 1, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 700 °C.
[실시예 3][Example 3]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 12 ml인 것을 사용하고, 제조된 루테늄 전구체 촉매를 300℃ 공기 분위기에서 열처리한 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다. 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) Example 1, except that an aqueous solution of 12 ml was used and the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 300 ° C. A ruthenium catalyst was prepared in the same manner as in
[실시예 4][Example 4]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 9.0 ml인 것을 사용한 것을 제외하고는 실시예 3과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 3, except that 9.0 ml of a 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was used.
[실시예 5][Example 5]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 18 ml인 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 18 ml.
[실시예 6][Example 6]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 12 ml인 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 12 ml.
[실시예 7][Example 7]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 15 ml인 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 15 ml.
[실시예 8][Example 8]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 9.0 ml인 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 1, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 9.0 ml.
[실시예 9][Example 9]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 5.9 ml인 것을 제외하고는 실시예 3과 동일하게 루테늄 촉매를 제조하였다.A ruthenium catalyst was prepared in the same manner as in Example 3, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 5.9 ml.
[실시예 10][Example 10]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 4.1 ml인 것을 제외하고는 실시예 3과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 3, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 4.1 ml.
[실시예 11][Example 11]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 사용량이 3.0 ml인 것을 제외하고는 실시예 3과 동일하게 루테늄 촉매를 제조하였다. A ruthenium catalyst was prepared in the same manner as in Example 3, except that the amount of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was 3.0 ml.
[비교예 1][Comparative Example 1]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 5.9 ml를 증류수 100ml에 넣고 용해한 후 감마 알루미나 약 3 g을 첨가한 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다.5.9 ml of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was dissolved in 100 ml of distilled water, and the ruthenium catalyst was the same as in Example 1, except that about 3 g of gamma alumina was added. was manufactured.
[비교예 2][Comparative Example 2]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 5.9 ml을 증류수 100ml에 넣고 용해한 후 세타 알루미나 약 3 g을 첨가한 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다.5.9 ml of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was dissolved in 100 ml of distilled water, and the ruthenium catalyst was the same as in Example 1, except that about 3 g of theta alumina was added. was manufactured.
[비교예 3][Comparative Example 3]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 5.9 ml을 증류수 100ml에 넣고 용해한 후 에타 알루미나 약 3 g을 첨가한 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다.A ruthenium catalyst in the same manner as in Example 1, except that 5.9 ml of a 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was dissolved in 100 ml of distilled water and then about 3 g of eta alumina was added. was manufactured.
[비교예 4][Comparative Example 4]
1.5 wt% 루테늄 나이트로실 나이트레이트(Ru(NO)(NO3)3) 수용액 5.9 ml을 증류수 100ml에 넣고 용해한 후 델타 알루미나 약 3 g을 첨가한 것을 제외하고는 실시예 1과 동일하게 루테늄 촉매를 제조하였다.5.9 ml of 1.5 wt% ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ) aqueous solution was dissolved in 100 ml of distilled water, and the ruthenium catalyst was the same as in Example 1, except that about 3 g of delta alumina was added. was manufactured.
[비교예 5][Comparative Example 5]
제조된 루테늄 전구체 촉매를 550℃ 공기 분위기에서 열처리한 것을 제외하고는 실시예 5과 동일하게 루테늄 촉매를 제조하였다.A ruthenium catalyst was prepared in the same manner as in Example 5, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 550 °C.
[비교예 6][Comparative Example 6]
제조된 루테늄 전구체 촉매를 100℃ 공기 분위기에서 열처리한 것을 제외하고는 실시예 10과 동일하게 루테늄 촉매를 제조하였다.A ruthenium catalyst was prepared in the same manner as in Example 10, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 100 °C.
[비교예 7][Comparative Example 7]
제조된 루테늄 전구체 촉매를 100℃ 공기 분위기에서 열처리한 것을 제외하고는 실시예 11과 동일하게 루테늄 촉매를 제조하였다.A ruthenium catalyst was prepared in the same manner as in Example 11, except that the prepared ruthenium precursor catalyst was heat-treated in an air atmosphere at 100 °C.
[실험예 1] [암모니아 분해 성능 실험][Experimental Example 1] [Ammonia decomposition performance test]
실시예1 내지 11 그리고 비교예 1 내지 7의 루테늄 촉매를 파우더화하여 고정상 관형 반응기에 충진하였다. 여기에 몰 수 기준으로 암모니아 (NH3) 25%, 헬륨(He) 70%, 메탄(CH4) 5%의 조성을 갖는 혼합기체를 상압에서 흘린 후, 온도를 0.33 ℃/min 의 속도로 증가시키면서 출구에서의 기체 흐름의 조성을 분석하였다. 혼합가스의 총유량은 분당 100 ㎖로 고정하였으며 사용된 촉매량은 0.1g으로 고정하였다.The ruthenium catalysts of Examples 1 to 11 and Comparative Examples 1 to 7 were powdered and charged into a fixed bed tubular reactor. Here, a mixed gas having a composition of 25% ammonia (NH 3 ), 70% helium (He), and 5% methane (CH 4 ) based on the number of moles flows at normal pressure, and then the temperature is increased at a rate of 0.33 ℃ / min while The composition of the gas stream at the outlet was analyzed. The total flow rate of the mixed gas was fixed at 100 ml per minute, and the amount of catalyst used was fixed at 0.1 g.
[실험예 2] [루테늄 촉매의 분산도 측정][Experimental Example 2] [Measurement of Dispersion of Ruthenium Catalyst]
실시예1 내지 11 그리고 비교예 1 내지 7의 루테늄 촉매를 파우더화하여 흡착관 (U자형 쿼츠 튜브)에 0.1g을 충진하고, 수소 분위기 하에서 약 350℃로 열처리하는 기상환원법을 통해 활성화시킨 다음 온도를 내려서 35℃에서 일산화탄소 10 mol% 에 헬륨 90 mol%로 섞여있는 혼합가스를 펄스로 주입시켜 루테늄 촉매에 혼합가스가 포화될 때까지 측정하였다. 흡착된 일산화탄소 한 분자는 루테늄 표면의 한 원자와 화학결합을 형성한 것으로 간주하고 분산도를 계산한다.The ruthenium catalysts of Examples 1 to 11 and Comparative Examples 1 to 7 were powdered, filled with 0.1 g in an adsorption tube (U-shaped quartz tube), and activated through a vapor phase reduction method in which heat treatment was performed at about 350 ° C. under a hydrogen atmosphere, and then the temperature was lowered and pulsed a mixed gas mixed with 10 mol% of carbon monoxide and 90 mol% of helium at 35° C., and the measurement was performed until the ruthenium catalyst was saturated with the mixed gas. One molecule of adsorbed carbon monoxide is regarded as having formed a chemical bond with one atom on the ruthenium surface, and the degree of dispersion is calculated.
이 때, 포화된 피크를 분석하기 위해 열전도 검출기 (TCD, Thermal Conductivity Detector)를 포함하는 화학흡착분석기 (Autochem 2920, Micromeritics)를 사용하였다.At this time, a chemical adsorption analyzer (Autochem 2920, Micromeritics) including a thermal conductivity detector (TCD) was used to analyze the saturated peak.
실시예1 내지 11 그리고 비교예 1 내지 7의 루테늄 촉매의 분산도에 따른 반응온도 400℃에서의 수소 생성 속도 범위의 측정 결과를 하기 표 1과 2에 나타내었다. 또한, 도 2는 비교예 1 내지 4 그리고 실시예 1의 루테늄 촉매를 이용한 반응에서 온도에 따른 암모니아 전환율을 측정한 결과를 나타내는 그래프이다.Tables 1 and 2 show the results of measuring the range of hydrogen production rates at a reaction temperature of 400° C. according to the degree of dispersion of the ruthenium catalysts of Examples 1 to 11 and Comparative Examples 1 to 7. In addition, Figure 2 is a graph showing the results of measuring the ammonia conversion rate according to temperature in the reaction using the ruthenium catalyst of Comparative Examples 1 to 4 and Example 1.
Ru 함량
(wt%)
Ru content
(wt%)
Ru 분산도
(%)
Ru dispersion
(%)
수소 생성 속도
(mmol/gcat/min)
Hydrogen production rate
(mmol/g cat /min)
수소 생성 속도
(mol/gRu/min)
Hydrogen production rate
(mol/g Ru /min)
실시예 1Example 1 1.01.0 1717 2.32.3 0.230.23
비교예 1Comparative Example 1 1.01.0 9090 0.470.47 0.0470.047
비교예 2Comparative Example 2 1.01.0 2424 1.51.5 0.150.15
비교예 3Comparative Example 3 1.01.0 7171 0.170.17 0.0170.017
비교예 4Comparative Example 4 1.01.0 3131 0.330.33 0.0330.033
Ru 함량
(wt%)
Ru content
(wt%)
Ru 분산도
(%)
Ru dispersion
(%)
수소 생성 속도
(mmol/gcat/min)
Hydrogen production rate
(mmol/g cat /min)
수소 생성 속도
(mol/gRu/min)
Hydrogen production rate
(mol/g Ru /min)
실시예 2Example 2 1.01.0 1.31.3 3.83.8 0.390.39
실시예 3Example 3 2.02.0 3.33.3 6.66.6 0.330.33
실시예 4Example 4 1.51.5 3.53.5 6.46.4 0.420.42
실시예 5Example 5 3.03.0 4.34.3 6.26.2 0.210.21
실시예 6Example 6 2.02.0 8.08.0 6.16.1 0.310.31
실시예 7Example 7 2.52.5 9.29.2 5.95.9 0.230.23
실시예 8Example 8 1.51.5 1111 5.05.0 0.340.34
실시예 9Example 9 1.01.0 1414 7.07.0 0.700.70
실시예 10Example 10 0.70.7 1515 4.24.2 0.600.60
실시예 11Example 11 0.50.5 1515 3.43.4 0.690.69
실시예 1Example 1 1.01.0 1717 2.32.3 0.230.23
비교예 5Comparative Example 5 3.03.0 0.710.71 5.25.2 0.170.17
비교예 6Comparative Example 6 0.70.7 2626 0.750.75 0.110.11
비교예 7Comparative Example 7 0.50.5 3535 0.420.42 0.0840.084
표 1을 참조하면, 실시예 1의 촉매가 적용된 경우에 수소 생성 속도가 가장 높은 것을 알 수 있다. 즉 다양한 결정상을 갖는 알루미나 담체 중에서 카파 알루미나를 담체로 사용한 경우가, 루테늄 분산도가 가장 낮고 또는 가장 높은 수소 생성 속도를 달성할 수 있음을 확인할 수 있다.표 2를 참조하면, 실시예 2 내지 11의 촉매를 사용한 경우에 수소 생성 속도(mol/gRu/min)가 높음을 알 수 있다. 이는 실시예 2 내지 11의 촉매가 암모니아 분해 능력이 우수하다는 것을 의미한다. 특히, 실시예 9의 촉매의 경우, 나머지 실시예의 촉매 보다 암모니아 분해 능력이 더 우수함을 알 수 있다. Referring to Table 1, it can be seen that the hydrogen generation rate is highest when the catalyst of Example 1 is applied. That is, it can be confirmed that, among alumina supports having various crystalline phases, when kappa alumina is used as a support, the ruthenium dispersion is the lowest or the highest hydrogen production rate can be achieved. Referring to Table 2, Examples 2 to 11 It can be seen that the hydrogen production rate (mol / g Ru / min) is high when using the catalyst of . This means that the catalysts of Examples 2 to 11 are excellent in ammonia decomposition ability. In particular, in the case of the catalyst of Example 9, it can be seen that the ability to decompose ammonia is better than that of the catalysts of the other Examples.
암모니아의 분해를 통한 수소 생성 속도는 비교예 6과 7처럼 루테늄의 분산도가 증가할수록 증가하는 것이 아니었고, 또한 비교예 5처럼 루테늄의 분산도가 감소가할수록 증가하는 것이 아니었으며, 실시예 1에서부터 11처럼 최적의 범위가 있음을 알 수 있다.The rate of hydrogen production through decomposition of ammonia did not increase as the dispersity of ruthenium increased, as in Comparative Examples 6 and 7, and did not increase as the dispersity of ruthenium decreased, as in Comparative Example 5. Example 1 From , it can be seen that there is an optimal range, such as 11.
이상의 결과를 기초로, 카파 알루미나 담체에 담지된 루테늄 촉매의 분산도가 1.0 % 이상 20% 이하, 바람직하게는 1.2 % 이상 18 % 이하, 보다 바람직하게는 1.35 % 이상 16.5 % 이하 또는 3.0 % 이상 16% 이하인 경우, 저온의 온도 범위에서 우수한 암모니아 분해 능력을 가짐을 알 수 있다.Based on the above results, the dispersity of the ruthenium catalyst supported on the kappa alumina support is 1.0% or more and 20% or less, preferably 1.2% or more and 18% or less, more preferably 1.35% or more and 16.5% or less, or 3.0% or more 16 % or less, it can be seen that it has excellent ammonia decomposition ability in a low temperature range.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. You will understand that you can.

Claims (13)

  1. 암모니아 분해 반응을 통해 수소를 생산을 촉진하는 루테늄 촉매에 있어서, In the ruthenium catalyst for promoting hydrogen production through ammonia decomposition reaction,
    담체 및 상기 담체의 표면 상에 담지된 루테늄 활성성분을 포함하고, A carrier and a ruthenium active ingredient supported on the surface of the carrier,
    상기 루테늄 활성성분은 상기 담체 표면 상에서 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.0 % 내지 20 %인 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매.The ruthenium active component is a ruthenium catalyst for ammonia decomposition reaction, characterized in that the degree of dispersion of ruthenium measured through selective chemisorption of carbon monoxide on the surface of the support is 1.0% to 20%.
  2. 제1항에 있어서, According to claim 1,
    상기 담체는 카파 알루미나 소재를 포함하는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매.The support is a ruthenium catalyst for ammonia decomposition reaction, characterized in that it comprises a kappa alumina material.
  3. 제2항에 있어서, According to claim 2,
    상기 루테늄 활성성분은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.2 % 이상 18 % 이하인 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매.The ruthenium active ingredient has a dispersity of 1.2% of ruthenium measured through selective chemisorption of carbon monoxide on the surface of the carrier. A ruthenium catalyst for ammonia decomposition reaction, characterized in that more than 18% or less.
  4. 제2항에 있어서, According to claim 2,
    상기 루테늄 활성성분은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.35 % 이상 16.5 % 이하인 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매.The ruthenium active ingredient has a dispersity of 1.35% of ruthenium measured through selective chemical adsorption of carbon monoxide on the surface of the carrier. more than 16.5% Characterized in the following, a ruthenium catalyst for ammonia decomposition reaction.
  5. 담체에 루테늄 전구체 화합물을 함침시키는 제1 단계; A first step of impregnating a carrier with a ruthenium precursor compound;
    상기 루테늄 전구체 화합물이 함침된 담체를 건조하는 제2 단계; 및A second step of drying the carrier impregnated with the ruthenium precursor compound; and
    상기 건조된 루테늄 전구체 화합물이 담지된 담체 중 상기 루테늄 전구체 화합물을 환원시켜 상기 담체 표면 상에 루테늄 금속상을 형성하는 제3 단계를 포함하고,A third step of forming a ruthenium metal phase on the surface of the support by reducing the ruthenium precursor compound in the support on which the dried ruthenium precursor compound is supported,
    상기 루테늄 금속상은 상기 담체 표면 상에 일산화탄소의 선택적 화학흡착을 통하여 측정된 루테늄의 분산도가 1.0 % 20 %로 형성되는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매의 제조방법.The ruthenium metal phase is characterized in that the dispersion of ruthenium measured through selective chemical adsorption of carbon monoxide on the surface of the support is formed to 1.0% to 20%, a method for producing a ruthenium catalyst for ammonia decomposition reaction.
  6. 제5항에 있어서, According to claim 5,
    상기 담체는 카파 알루미나 소재를 포함하는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매의 제조방법.The method for producing a ruthenium catalyst for ammonia decomposition reaction, characterized in that the support comprises a kappa alumina material.
  7. 제6항에 있어서, According to claim 6,
    상기 루테늄 전구체 화합물은 루테늄 카르보닐 화합물, 루테늄 질화물 및 루테늄 염화물로 이루어진 그룹에서 선택된 하나 이상의 화합물을 포함하는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매의 제조방법.The ruthenium precursor compound is characterized in that it comprises at least one compound selected from the group consisting of ruthenium carbonyl compound, ruthenium nitride and ruthenium chloride, a method for producing a ruthenium catalyst for ammonia decomposition reaction.
  8. 제7항에 있어서, According to claim 7,
    상기 제2 단계에서, 상기 루테늄 전구체 화합물이 함침된 담체는 상압 또는 상압 미만의 감압 조건 및 50 내지 250℃의 온도 조건에서 건조되는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매의 제조방법.In the second step, the support impregnated with the ruthenium precursor compound is characterized in that dried under normal pressure or reduced pressure conditions less than normal pressure and temperature conditions of 50 to 250 ℃, a method for producing a ruthenium catalyst for ammonia decomposition reaction.
  9. 제7항에 있어서,According to claim 7,
    상기 제3 단계에서, 수소를 포함하는 환원가스 분위기에서 상기 루테늄 전구체 화합물이 담지된 담체를 100℃ 이상 700℃ 이하의 온도에서 열처리함으로써 상기 담체 표면에 상기 루테늄 금속상을 형성하는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매의 제조방법.In the third step, the ruthenium metal phase is formed on the surface of the carrier by heat-treating the carrier supported with the ruthenium precursor compound at a temperature of 100 ° C. or more and 700 ° C. or less in a reducing gas atmosphere containing hydrogen. Characterized in that, Manufacturing method of ruthenium catalyst for ammonia decomposition reaction.
  10. 제7항에 있어서, According to claim 7,
    상기 제3 단계에서, 물, 아세톤, 사이클로 헥산, 헥산 및 데칸으로 이루어진 그룹에서 선택된 단일 또는 혼합 용매 내에서 상기 루테늄 전구체 화합물이 담지된 담체와 환원제를 혼합한 후 상기 환원제를 이용하여 상기 루테늄 전구체 화합물을 환원시켜 상기 담체 표면에 상기 루테늄 금속상을 형성하는 것을 특징으로 하는, 암모니아 분해 반응용 루테늄 촉매의 제조방법.In the third step, after mixing the carrier supported with the ruthenium precursor compound and a reducing agent in a single or mixed solvent selected from the group consisting of water, acetone, cyclohexane, hexane, and decane, the reducing agent is used to obtain the ruthenium precursor compound A method for producing a ruthenium catalyst for ammonia decomposition reaction, characterized in that by reducing to form the ruthenium metal phase on the surface of the support.
  11. 암모니아로부터 수소를 생성하는 방법에 있어서,A method for producing hydrogen from ammonia,
    제1항 내지 제4항 중 선택된 어느 한 항의 암모니아 분해 반응용 루테늄 촉매가 충진된 관형 반응기의 주입구에 암모니아를 포함하는 연료 가스를 주입하는 제1 단계; 및 A first step of injecting a fuel gas containing ammonia into an inlet of a tubular reactor filled with the ruthenium catalyst for ammonia decomposition of any one of claims 1 to 4; and
    상기 관형 반응기의 배출구로 배출되는 가스 중 수소를 선택적으로 회수하는 단계를 포함하는, 암모니아로부터 수소를 생성하는 방법.A method for producing hydrogen from ammonia, comprising the step of selectively recovering hydrogen from the gas discharged to the outlet of the tubular reactor.
  12. 제11항에 있어서, According to claim 11,
    상기 제1 단계 동안 상기 관형 반응기 내부의 온도는 200℃ 이상 700℃ 이하로 조절되는 것을 특징으로 하는, 암모니아로부터 수소를 생성하는 방법.During the first step, the temperature inside the tubular reactor is controlled to 200 ° C or more and 700 ° C or less, a method for producing hydrogen from ammonia.
  13. 제12항에 있어서, According to claim 12,
    상기 제1 단계 동안 상기 관형 반응기 내부의 온도는 500℃ 이상 600℃ 이하로 조절되는 것을 특징으로 하는, 암모니아로부터 수소를 생성하는 방법.During the first step, the temperature inside the tubular reactor is controlled to 500 ° C or more and 600 ° C or less, a method for producing hydrogen from ammonia.
PCT/KR2022/015237 2021-11-16 2022-10-11 Ruthenium catalyst for ammonia decomposition reaction, method for producing same, and hydrogen production method using same WO2023090643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0157383 2021-11-16
KR1020210157383A KR102697796B1 (en) 2021-11-16 Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst

Publications (1)

Publication Number Publication Date
WO2023090643A1 true WO2023090643A1 (en) 2023-05-25

Family

ID=86397205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015237 WO2023090643A1 (en) 2021-11-16 2022-10-11 Ruthenium catalyst for ammonia decomposition reaction, method for producing same, and hydrogen production method using same

Country Status (1)

Country Link
WO (1) WO2023090643A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015284A (en) * 2009-08-07 2011-02-15 아주대학교산학협력단 Ruthenium catalyst, manufacturing process thereof, and fuel cell compring the same
JP2012152749A (en) * 2012-04-13 2012-08-16 Hitachi Zosen Corp Method for producing supported ruthenium catalyst
US20200078771A1 (en) * 2017-03-17 2020-03-12 Japan Science And Technology Agency Supported metal material, supported metal catalyst, method of producing ammonia, method of producing hydrogen and method of producing cyanamide compound
US20200164346A1 (en) * 2018-11-22 2020-05-28 National Engineering Research Center Of Chemical Fertilizer Catalyst, Fuzhou University Ruthenium-based catalyst for hydrogen production from ammonia decomposition, preparation method therefor and application thereof
KR102159678B1 (en) * 2012-09-20 2020-09-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Hydrogen generation catalyst and method for producing hydrogen
KR20210007699A (en) * 2019-07-12 2021-01-20 주식회사 아이에코 Catalyst for hydrogen production through direct ammonia decomposition and its preparation method, and hydrogen pr℃ducing method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015284A (en) * 2009-08-07 2011-02-15 아주대학교산학협력단 Ruthenium catalyst, manufacturing process thereof, and fuel cell compring the same
JP2012152749A (en) * 2012-04-13 2012-08-16 Hitachi Zosen Corp Method for producing supported ruthenium catalyst
KR102159678B1 (en) * 2012-09-20 2020-09-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Hydrogen generation catalyst and method for producing hydrogen
US20200078771A1 (en) * 2017-03-17 2020-03-12 Japan Science And Technology Agency Supported metal material, supported metal catalyst, method of producing ammonia, method of producing hydrogen and method of producing cyanamide compound
US20200164346A1 (en) * 2018-11-22 2020-05-28 National Engineering Research Center Of Chemical Fertilizer Catalyst, Fuzhou University Ruthenium-based catalyst for hydrogen production from ammonia decomposition, preparation method therefor and application thereof
KR20210007699A (en) * 2019-07-12 2021-01-20 주식회사 아이에코 Catalyst for hydrogen production through direct ammonia decomposition and its preparation method, and hydrogen pr℃ducing method using the same

Also Published As

Publication number Publication date
KR20230071317A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CN109529865A (en) A kind of ruthenium base ammonia decomposition hydrogen producing catalyst and the preparation method and application thereof
KR20150058219A (en) Hydrogen generation catalyst and method for producing hydrogen
CN108262034B (en) Catalyst, preparation method thereof and application thereof in ammonia synthesis under normal pressure and low temperature
JP6670761B2 (en) Apparatus for producing gas mixture, method for using catalyst, method for producing gas mixture, and method for selectively removing ammonia
CN109647408B (en) Preparation method and application of Co-MOF-based porous composite self-supporting catalyst
WO2023033528A1 (en) Method for preparing catalyst for ammonia decomposition using cation-anion double hydrolysis
WO2022108319A1 (en) Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same
CN114471540B (en) Sub-nanometer Pt selective hydrogenation catalyst, preparation method and application thereof
CN113717382B (en) Porphyrin and pyrimidine based high-density metallized covalent triazine polymer and preparation method and application thereof
KR100751557B1 (en) Preparation of platinum catalyst supported on carbon nanotube by chemical vapor deposition
WO2023090643A1 (en) Ruthenium catalyst for ammonia decomposition reaction, method for producing same, and hydrogen production method using same
WO2023090644A1 (en) Ruthenium catalyst for ammonia decomposition reaction, preparation method therefor, and method for producing hydrogen by using same
WO2021075638A1 (en) Catalyst structure for electrochemical co2 reduction, and method for producing same
CN110038563A (en) A kind of charcoal@alumina load ruthenium-based ammonia synthetic catalyst and preparation method thereof
CN110038611A (en) A kind of Pt nanocomposite of nitrogen-doped graphene confinement and its preparation method and application
KR102697796B1 (en) Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst
WO2011016688A2 (en) Ruthenium catalyst, preparation method thereof, and fuel cell containing same
KR102697807B1 (en) Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst
CN112774662A (en) Monoatomic catalyst, preparation method and application thereof
Zawadzki et al. Carbon films as a model material in catalytic NH3/O2 reaction—in situ FTIR study
CN111185164A (en) Ammonia synthesis catalyst with ruthenium acetate as precursor and preparation method thereof
WO2023090930A1 (en) Pt-mo catalyst for synthesis of hydrogen, and method of preaparing hydrogen using pt-mo catalyst
WO2024128640A1 (en) Catalyst for hydrogenation and dehydrogenation, method for producing same, and hydrogenation and dehydrogenation reaction method using same
WO2022191522A1 (en) Pt-pd catalyst for synthesis of hydrogen and method of preparing hydrogen using same
KR102376109B1 (en) Ruthenium catalyst for prox reaction of carbon monoxide, method of manufacturing the ruthenium catalyst, and fuel cell system including the ruthenium catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895852

Country of ref document: EP

Kind code of ref document: A1