WO2023090545A1 - Device and method for monitoring wind turbine blade - Google Patents

Device and method for monitoring wind turbine blade Download PDF

Info

Publication number
WO2023090545A1
WO2023090545A1 PCT/KR2022/004643 KR2022004643W WO2023090545A1 WO 2023090545 A1 WO2023090545 A1 WO 2023090545A1 KR 2022004643 W KR2022004643 W KR 2022004643W WO 2023090545 A1 WO2023090545 A1 WO 2023090545A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing line
blade
line network
damage
detection unit
Prior art date
Application number
PCT/KR2022/004643
Other languages
French (fr)
Korean (ko)
Inventor
김현실
김봉기
김상렬
이성현
서윤호
마평식
우정한
김동준
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2023090545A1 publication Critical patent/WO2023090545A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an apparatus and method for monitoring blades of a wind turbine, and more particularly, to an apparatus and method for monitoring damage to blades of a wind turbine in real time.
  • a wind turbine refers to a device that generates electricity through a generator connected to a rotating shaft as blades receiving wind rotate.
  • Wind turbines are configured to continuously receive wind whose wind speed and direction change from time to time, and it is obvious that failure of the wind turbine occurs due to factors such as vibration, shock, and load deflection caused by the wind.
  • the wind speed and wind direction values are predictable to some extent from a macroscopic point of view, they are values that change very randomly from a microscopic point of view, and have a change pattern that is almost impossible to predict or find a pattern for. Therefore, it is not easy to properly monitor and diagnose failures occurring in wind turbines.
  • a machine learning model is built by using defect data of wind power generators accumulated for a long time, and through training
  • a method for diagnosing a wind turbine that performs fault diagnosis of a wind turbine while upgrading a fault recognition pattern by itself. More specifically, in Prior Document 1, vibration, temperature, voltage, current, number of revolutions, noise and wind speed, wind direction, etc. input to the wind generator measured from a plurality of sensors independently installed according to the parts and positions of the wind turbine are used. It has the effect of allowing the user to examine the state of the wind power generator in more detail and closely by deriving detailed diagnosis results, such as occurrence of abnormalities, abnormal parts, abnormal locations, and abnormal types.
  • the part that directly receives the wind in the wind turbine is the blade.
  • Wind turbine blades are made quite large in order to receive as much wind as possible.
  • the interior is made in the form of an empty structure to reduce the weight as much as possible so that it can respond sensitively to small air volumes.
  • foreign substances such as stones are mixed in the wind flowing into the blade, so that the blade is impacted, or the bird sometimes bumps into it.
  • due to the characteristics of blades made of a composite (glass or carbon fiber) laminated structure unexpected defects may occur in the manufacturing process, which may lead to fatal accidents such as blade breakage. That is, as described above, the blade may be greatly damaged by colliding with an object having a significant impact or by growing a fine defect.
  • Prior Document 2 System and method for safety management of wind turbine blades using safety inspection criteria and defect data by classification
  • images of wind turbine blades to be inspected using drones is acquired, and damage is inspected and detected using this image.
  • the occurrence of damage itself has no choice but to be detected by indirect means (abnormal vibration, abnormal sound, visual inspection using a telescope, etc.), and after the abnormality is detected, the drone is launched to acquire the image Since the process of determining the degree of damage is carried out, it is unavoidable that considerable delay time occurs.
  • power generation loss may occur due to the stop of the wind power generator during that period, and if damage occurs during the time between drone flight cycles, the damage may not be discovered until the next cycle.
  • the present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to monitor blades of a wind turbine capable of immediately detecting damage occurring to the blades of the wind turbine, particularly serious damage, in real time. It is to provide an apparatus and method.
  • a blade monitoring device for achieving the above object is a blade monitoring device provided on a blade of a wind turbine to detect damage, extending along the blade and sensing provided on the blade. line network; and a disconnection detection unit that is connected to the sensing line network and detects whether or not the sensing line network is disconnected.
  • the sensing line network may be formed of wires, and the disconnection detection unit may measure resistance of the sensing line network.
  • the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in total resistance of the sensing line network.
  • the sensing line network is formed of an FBG optical fiber sensor, and the disconnection detection unit may measure an optical signal of the sensing line network.
  • the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in the optical signal response of the sensing line network. can do.
  • the sensing line network may include at least one main sensing line provided in the blade and sequentially extending along the leading edge-end edge- trailing edge of the blade.
  • the sensing line network extends sequentially along a path selected from among front-end-rear, front-leading-rear, front-rearing-rear, and at least one sub provided in the blade.
  • a sensing line may be included.
  • the sensing line network may include at least one additional sensing line provided in the blade and sequentially extending along a leading edge - front side - trailing edge - rear side of the blade.
  • the sensing line network may be provided on an inner surface of the blade or embedded inside the blade.
  • the sensing line network may extend beyond a hub end facing the end end of the blade and be connected to the disconnection detection unit.
  • the disconnection detection unit may be connected to a diagnosis system to deliver in real time whether or not disconnection of the sensing line network is detected.
  • the above in order to detect whether or not the sensing line network formed of wires or FBG optical fiber sensors is disconnected, the above a constant measurement step of measuring resistance or an optical signal of the sensing line network at a predetermined cycle by a disconnection detection unit; a damage generation step of changing a total resistance or an optical signal response of the sensing line network beyond a predetermined standard as damage occurs to the blade and the sensing line network at the damaged location is damaged; and a damage detection step in which the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in total resistance or an optical signal response of the sensing line network.
  • the disconnection detection unit transmits in real time whether or not the disconnection of the sensing line network is detected to a diagnosis system, thereby announcing damage to the blade in the diagnosis system; further comprising a damage announcement step. can do.
  • the present invention there is an effect that can be immediately detected in real time when damage to the wind turbine blades, in particular, serious damage such as broken or end loss occurs. More specifically, in the prior art, when damage occurs to the blade, it is detected that the damage has occurred to the blade due to a change in a signal such as vibration or sound, which has been continuously measured for monitoring. That is, in the prior art, blade damage detection was performed indirectly. However, in the present invention, the sensing line network circuit is formed over the entire blade, and when damage occurs to the blade, the entire resistance or optical signal response is immediately changed as the sensing line network at the damaged location is also damaged, from which damage detection is directly performed. and can be made immediately.
  • the present invention there is an effect of realizing real-time monitoring of the blade directly and immediately without introducing a complicated device configuration or control method.
  • the monitoring device of the present invention since the monitoring device of the present invention is not very complicated, it has high compatibility so that it is very easy to additionally connect to other systems. Therefore, by connecting the monitoring device of the present invention to the wind turbine diagnosis system for monitoring and diagnosing the overall condition of the wind turbine as described above, the system can be easily configured and the user convenience of the wind turbine monitoring mission can be greatly improved. It works.
  • FIG. 1 is a perspective view showing a wind turbine blade
  • Figure 2 is a cross-sectional view A-A' of Figure 1;
  • FIG. 3 is a perspective view showing an embodiment of the blade monitoring device of the present invention.
  • FIG. 4 is a cross-sectional view A-A' of FIG. 3;
  • FIG. 5 is a perspective view showing another embodiment of the blade monitoring device of the present invention.
  • FIG. 6 is a cross-sectional view A-A' of FIG. 5;
  • FIG. 7 is a perspective view showing another embodiment of the blade monitoring device of the present invention.
  • FIG. 8 is a cross-sectional view taken along line A-A' of FIG. 7;
  • 9 and 10 are cross-sectional views illustrating an installation example of a sensing line network.
  • FIG. 1 is a perspective view showing a wind turbine blade
  • FIG. 2 is a cross-sectional view taken along line AA' of FIG. 1 .
  • the blades of the wind turbine are made in a fairly large size in order to receive as much wind as possible, while in the form of an empty structure as shown in FIG. is made of
  • a composite material such as a carbon fiber composite material is often applied as a material of the blade in terms of material.
  • the blade 500 is made in a similar shape to an aircraft wing, and generally refers to the front end of the blade 500 as a leading edge (leading edge, 510) and the rear end as a trailing edge (trailing edge, 520).
  • the end portion of the blade 500 in the extending direction is referred to as an end portion 530, and an end portion facing the end portion 530 and connected to a hub (not shown) is referred to as a hub end 540.
  • the width of the blade 500 tends to increase from the end 530 to the hub end 540.
  • a surface disposed at the front of the blade 500 is referred to as a front surface 550 and a surface disposed at the rear is referred to as a rear surface 560 .
  • the blade monitoring device 100 of the present invention is a blade monitoring device 100 provided on the blade 500 of the wind turbine to detect damage, extending along the blade 500 and It includes a sensing line network 140 and a disconnection detection unit 150 connected to the sensing line network 140 and detecting whether or not the sensing line network 140 is disconnected.
  • the sensing line network 140 may be formed of wires, and the disconnection detection unit 150 may measure resistance of the sensing line network 140 .
  • the disconnection detection unit 150 can detect whether the sensing line network 140 is disconnected by using the change in the total resistance of the sensing line network 140 .
  • the sensing line network 140 may be formed of an FBG optical fiber sensor, and the disconnection detection unit 150 may measure an optical signal of the sensing line network 140 .
  • the disconnection detection unit 150 can detect whether or not the sensing line network 140 is disconnected by using a change in the optical signal response of the sensing line network 140 .
  • FIG. 3 is a perspective view showing an embodiment of the blade monitoring device of the present invention
  • FIG. 4 is a cross-sectional view taken along line AA' of FIG.
  • the main sensing line 110 sequentially extends along the leading edge 510 - the end 530 - the trailing edge 520 of the blade 500 . Since the parts of the blade where damage occurs substantially are the leading edge 510, the trailing edge 520, and the tip 530, the main sensing line 110 is formed to pass through all of these parts with a high possibility of occurrence of damage.
  • FIGS. 5 and 6 are perspective views showing another embodiment of the blade monitoring device of the present invention
  • Figure 6 is a sectional view AA 'of FIG. Since the main sensing line 110 is the same as described above, only the sub sensing line 120 will be described.
  • the sub-sensing line 120 is the front side 550 - the end 530 - the back side 560 of the blade 500, the front side 550 - the leading edge 510 - the rear side 560, the front side 550 - the trailing edge ( 520) - It is sequentially extended along a selected path among the rear surfaces 560.
  • 5 shows an embodiment in which the sub-sensing line 120 extends along the front surface 550 - the end 530 - the rear surface 560 of the blade 500 .
  • one sub-sensing line 120 is shown in FIG. 5 , it goes without saying that the number of sub-sensing lines 120 may be increased to more densely surround the surface of the blade 500 .
  • the width of the blade 500 at the end 530 is narrower than the width of the blade 500 at the hub end 540, it may be difficult to place the sub-sensing line 120 past the end 530. , In this case, it may be appropriately arranged to pass the leading edge 510 or the trailing edge 520.
  • FIGS. 7 and 8 an embodiment in which the sensing line network 140 further includes the additional sensing line 130 in addition to the main sensing line 110 and the sub sensing line 120 will be described.
  • Figure 7 is a perspective view showing another embodiment of the blade monitoring device of the present invention
  • Figure 8 is a cross-sectional view AA 'of FIG. Since the main sensing line 110 and the sub sensing line 120 are the same as those described above, only the additional sensing line 130 will be described.
  • the additional sensing line 130 is disposed to cross the main sensing line 110 or the sub sensing line 120 . That is, as shown in FIG. 7 , the additional sensing line 130 sequentially extends along the leading edge 510 - the front side 550 - the trailing edge 520 - the rear side 560 of the blade 500 . In this way, when all of the main sensing line 110, the sub sensing line 120, and the additional sensing line 130 are provided, damage detection on the entire surface of the blade 500 can be performed much more smoothly.
  • FIGS. 9 and 10 are cross-sectional views illustrating an installation example of a sensing line network.
  • 9 shows an embodiment in which the sensing line network 140 is provided on the inner surface of the blade 500.
  • 9 shows a case where the sub-sensing line 120 is provided in close contact with the inner surface of the front surface 550 of the blade.
  • FIG. 10 shows an embodiment in which the sensing line network 140 is embedded inside the blade 500.
  • the blade 500 is often made of a composite material, and the composite material is usually made by laminating a thermoplastic or thermosetting plastic material on a structure in which fibers such as carbon fibers are arranged or woven. During this lamination process, the sensing line network 140 may be arranged like fibers included in the composite material.
  • 10 shows a case where the sub-sensing line 120 is embedded inside the front surface 550 of the blade.
  • the sensing line network 140 may be connected to the disconnection detection unit 150 by extending beyond the hub end 540 facing the end 530 of the blade.
  • the sensing line network 140 further includes the sub sensing line 120 in addition to the main sensing line 110, the main sensing line 110 and the sub sensing line 120 ) may extend beyond the hub end 540 of each blade.
  • the additional sensing line 130 may also extend beyond the hub end 540 of the blade and be connected to the disconnection detection unit 150, of course.
  • the disconnection detection unit 150 may be directly disposed on the hub to which the blade 500 is connected.
  • the disconnection detection unit 150 is appropriately provided inside the wind turbine and electrically connected through a hub. At this time, since the hub receives wind and rotates in a random direction, when connecting with a general wire, there is a risk of damage due to twisting of the wire. desirable. Since these wireless power connection means are disclosed in various configurations in general rotating electric devices, it is okay to appropriately apply among known configurations.
  • the disconnection detection unit 150 is connected to the external diagnosis system 160 and can transmit whether or not the disconnection of the sensing line network 140 is detected in real time. That is, when the disconnection detection unit 150 detects a change in the total resistance or the optical signal response of the sensing line network 140 beyond a predetermined standard, it may transmit the change to the diagnosis system 160 in real time. Of course, since an alarm device is provided directly in the disconnection detection unit 150, an alarm signal may be immediately generated when the total resistance or the optical signal response of the sensing line network 140 changes beyond a predetermined standard. However, since most wind turbines are installed in a remote location, it is not at all an environment where manpower to manage the wind turbine itself is always working.
  • the blade monitoring method of the present invention includes a regular measurement step, a damage occurrence step, and a damage detection step.
  • a damage announcement step may be further included.
  • the disconnection detection unit 150 measures the resistance or optical signal of the sensing line network 140 at a predetermined cycle in order to detect whether or not the sensing line network 140 formed by the wire or the FBG fiber optic sensor is disconnected. do.
  • the predetermined period is a daily level, and may be, for example, about 1 Hz.
  • the total resistance or optical signal response of the sensing line network 140 changes beyond a predetermined standard.
  • a predetermined standard for example, when the sensing line network 140 is composed of electric wires, an equivalent resistance may be calculated by analyzing a general resistance network, and a value may be determined based thereon. As another example, empirical determination is possible, such as 90% of the original total resistance value. Even when the sensing line network 140 is composed of FBG fiber optic sensors, an appropriate standard may be determined and applied by comparing the normal optical signal response in a similar manner to the configuration of the electric wire.
  • the disconnection detection unit 150 detects the disconnection of the sensing line network 140 using the change in the total resistance or the optical signal response of the sensing line network 140, thereby preventing damage to the blade 500. It is detected. Substantially, it can be seen that the operation itself performed by the disconnection detection unit 150 to detect disconnection of the sensing line network 140 in the regular measurement step and the damage detection step is the same.
  • the sensing operation is continuously performed in a state in which no damage occurs, and the damage sensing step may be divided into that the sensing operation is performed after damage to the blade 500 occurs. At this time, as described above, if the measurement cycle of the continuous measurement step is, for example, about 1 Hz, damage to the blade 500 can be detected within a maximum of 1 second after damage occurs, enabling substantially immediate damage detection. will do
  • the disconnection detection unit 150 informs the diagnosis system 160 whether or not the sensing line network 140 is disconnected in real time, so that the diagnosis system 160 announces the damage to the blade 500. do. That is, the fact that the blade 500 is damaged becomes known to the remote manager.
  • a remote administrator can also directly (not through an indirect vibration signal change, etc.) Through the change of the optical signal response, it is possible to immediately know the occurrence of damage in real time.
  • the present invention relates to an apparatus and method for monitoring blades of a wind turbine, and more particularly, to an apparatus and method for monitoring damage to blades of a wind turbine in real time.

Abstract

The present invention relates to a device and a method for monitoring a wind turbine blade. The purpose of the present invention is to provide a device and a method for monitoring a wind turbine blade, which can immediately detect damage, particularly critical damage, occurring in a wind turbine blade in real time.

Description

풍력발전기의 블레이드 감시장치 및 방법Wind turbine blade monitoring device and method
본 발명은 풍력발전기의 블레이드 감시장치 및 방법에 관한 것으로, 보다 상세하게는 풍력발전기의 블레이드의 손상을 실시간으로 감시할 수 있도록 하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for monitoring blades of a wind turbine, and more particularly, to an apparatus and method for monitoring damage to blades of a wind turbine in real time.
풍력발전기란 바람을 받는 블레이드가 회전함으로써 회전축에 연결된 발전기를 통해 발전을 하는 장치를 가리킨다. 풍력발전기는 수시로 풍속 및 풍향이 변화하는 바람을 계속 받도록 이루어져 있으며, 이러한 바람에 의한 진동, 충격, 하중 편향 등의 요인에 의하여 풍력발전기의 고장이 발생하는 것은 자명하다. 그런데 풍속 및 풍향 값은, 거시적인 관점에서는 어느 정도 예측이 가능하다 할지라도 미시적인 관점에서는 실질적으로 매우 무작위적으로 변화하는 값으로서 거의 예측이나 패턴을 찾는 것이 불가능한 변화 양상을 가지는 값이다. 따라서 풍력발전기에서 발생하는 고장을 제대로 감시하고 진단하는 것은 쉽지 않다.A wind turbine refers to a device that generates electricity through a generator connected to a rotating shaft as blades receiving wind rotate. Wind turbines are configured to continuously receive wind whose wind speed and direction change from time to time, and it is obvious that failure of the wind turbine occurs due to factors such as vibration, shock, and load deflection caused by the wind. However, although the wind speed and wind direction values are predictable to some extent from a macroscopic point of view, they are values that change very randomly from a microscopic point of view, and have a change pattern that is almost impossible to predict or find a pattern for. Therefore, it is not easy to properly monitor and diagnose failures occurring in wind turbines.
이러한 문제를 해소하기 위하여 한국등록특허 제2097595호("풍력발전기 진단방법", 이하 '선행문헌 1')에서는, 장시간 축적된 풍력발전기의 결함 데이터를 활용하여 기계학습 모델을 구축하고, 훈련을 통해 결함 인식 패턴을 스스로 업그레이드하면서 풍력발전기의 결함 진단을 수행하는, 풍력발전기 진단방법을 제공한다. 보다 구체적으로, 선행문헌 1에서는 풍력발전기의 부품 및 위치에 따라 독립적으로 설치된 복수 개의 센서로부터 측정된 진동, 온도, 전압, 전류, 회전수, 소음 및 풍력발전기에 입력되는 풍속, 풍향 등을 이용하여, 이상발생, 이상부품, 이상위치, 이상종류 등으로 분화 및 상세화된 진단결과를 도출하여 사용자가 풍력발전기의 상태를 보다 상세하고 면밀하게 살펴볼 수 있게 하는 효과를 가진다.In order to solve this problem, in Korea Patent Registration No. 2097595 ("Wind Turbine Diagnosis Method", hereinafter referred to as 'Prior Document 1'), a machine learning model is built by using defect data of wind power generators accumulated for a long time, and through training Provided is a method for diagnosing a wind turbine that performs fault diagnosis of a wind turbine while upgrading a fault recognition pattern by itself. More specifically, in Prior Document 1, vibration, temperature, voltage, current, number of revolutions, noise and wind speed, wind direction, etc. input to the wind generator measured from a plurality of sensors independently installed according to the parts and positions of the wind turbine are used. It has the effect of allowing the user to examine the state of the wind power generator in more detail and closely by deriving detailed diagnosis results, such as occurrence of abnormalities, abnormal parts, abnormal locations, and abnormal types.
선행문헌 1과 같은 풍력발전기 진단방법을 이용한 진단시스템을 보다 잘 활용하기 위해서는 상태 감시를 위한 센서나 장치를 적재적소에 구비시켜야 함은 당연하다. 물론 종래에도 풍력발전기의 각부에 진동센서, 온도센서 등 다양한 장치가 이미 구비되어 있으나, 보다 효과적으로 신속하게 풍력발전기 상태를 살펴볼 수 있도록 하기 위해 다양한 새로운 감시장치가 지속적으로 연구 개발되고 있다.In order to better utilize the diagnosis system using the wind power generator diagnosis method such as in Prior Document 1, it is natural to have a sensor or device for monitoring the condition in the right place. Of course, various devices such as vibration sensors and temperature sensors are already provided in each part of the wind turbine in the prior art, but various new monitoring devices are continuously being researched and developed in order to more effectively and quickly check the state of the wind turbine.
한편 풍력발전기에서 직접적으로 바람을 받아들이는 부분은 블레이드이다. 풍력발전기 블레이드는 최대한 많은 바람을 받아들일 수 있도록 하기 위해 상당히 거대한 크기로 만들어진다. 또한 작은 풍량에도 민감하게 반응할 수 있도록 중량을 최대한 줄이기 위해 내부가 빈 구조체 형태로 만들어진다. 이 때 블레이드로 흘러들어오는 바람에 돌멩이 등의 이물질이 섞여있어 블레이드에 충격을 가하기도 하고, 또는 새가 부딪치는 경우가 종종 발생하기도 한다. 또한, 복합재(유리 또는 탄소섬유) 적층 구조로 만들어지는 블레이드 특성상 제조 공정에서 예기치 않은 결함이 발생될 수 있으며, 이는 블레이드의 파손이라는 치명적인 사고로 이어지기도 한다. 즉, 상술한 바와 같이 상당한 임팩트를 가지는 물체와 부딪치거나, 미세한 결함이 성장하여 블레이드가 크게 손상될 수 있다. 이처럼 중대손상이 발생하면 당연히 올바른 동작이 일어날 수 없을 뿐더러, 손상된 부분이 다른 부분을 건드리거나 떨어져나가 다른 풍력발전기 등에 부딪침으로써 2차 손상을 일으킬 우려도 있다. 이러한 중대손상이 발생하면 불안정한 구조에 의해 이상진동이나 이상음향이 발생하므로 기존의 감시장치들로도 손상을 감지할 수 있다. 그러나 이러한 간접적인 방식으로 손상을 감지하는 것은, 손상을 감지하고 조치를 취할 때까지의 시간이 지체될 우려가 있으며, 이러한 지체시간 동안 2차 손상이 발생될 위험성도 큰 것이 사실이다.On the other hand, the part that directly receives the wind in the wind turbine is the blade. Wind turbine blades are made quite large in order to receive as much wind as possible. In addition, the interior is made in the form of an empty structure to reduce the weight as much as possible so that it can respond sensitively to small air volumes. At this time, foreign substances such as stones are mixed in the wind flowing into the blade, so that the blade is impacted, or the bird sometimes bumps into it. In addition, due to the characteristics of blades made of a composite (glass or carbon fiber) laminated structure, unexpected defects may occur in the manufacturing process, which may lead to fatal accidents such as blade breakage. That is, as described above, the blade may be greatly damaged by colliding with an object having a significant impact or by growing a fine defect. In this way, when serious damage occurs, correct operation cannot occur, and the damaged part may touch other parts or fall off and cause secondary damage by colliding with other wind power generators. When such serious damage occurs, abnormal vibration or abnormal sound is generated due to the unstable structure, so even existing monitoring devices can detect the damage. However, it is true that detecting damage in this indirect manner may delay the time from detecting damage to taking action, and the risk of secondary damage occurring during this delay time is also high.
종래에도 블레이드의 손상을 효과적으로 감시하기 위해 다양한 연구 및 개발이 이루어져 온 바 있다. 일 예로 한국등록특허 제2166654호("안전점검 기준표와 분류별 결함 데이터를 활용한 풍력 발전기 블레이드 안전 관리 시스템 및 방법", 이하 '선행문헌 2')에서는, 드론을 이용하여 검사대상 풍력발전기 블레이드의 이미지를 취득하고, 이 이미지를 이용하여 손상을 점검하고 감지하는 방식을 사용한다. 그러나 선행문헌 2의 기술이라 하여도 결국 손상 발생 자체는 간접적인 수단(이상진동, 이상음향, 망원경을 이용한 육안 검사 등)으로 감지할 수밖에 없으며, 이상이 감지된 이후에 드론을 띄워 이미지를 취득하고 손상 정도를 파악하는 등의 과정을 거치므로 상당한 지체시간이 발생하는 것을 피할 수 없다. 또한 주기적으로 드론을 띄워 이미지를 취득한다 하여도, 그 기간 풍력발전기 정지에 따른 발전 손실이 발생할 수 있으며, 드론 비행주기 사이의 시간에 손상이 발생하는 경우 다음 주기까지 손상을 발견하지 못할 수도 있다.In the past, various researches and developments have been made to effectively monitor blade damage. For example, in Korea Patent Registration No. 2166654 (“System and method for safety management of wind turbine blades using safety inspection criteria and defect data by classification”, hereinafter ‘Prior Document 2’), images of wind turbine blades to be inspected using drones is acquired, and damage is inspected and detected using this image. However, even with the technology of Prior Document 2, eventually, the occurrence of damage itself has no choice but to be detected by indirect means (abnormal vibration, abnormal sound, visual inspection using a telescope, etc.), and after the abnormality is detected, the drone is launched to acquire the image Since the process of determining the degree of damage is carried out, it is unavoidable that considerable delay time occurs. In addition, even if the drone is periodically launched to acquire images, power generation loss may occur due to the stop of the wind power generator during that period, and if damage occurs during the time between drone flight cycles, the damage may not be discovered until the next cycle.
따라서 블레이드에 중대손상이 발생하는 경우 즉각적으로 실시간 정확하게 이를 감지해 낼 수 있는 감시장치에 대한 요구가 당업자 사이에 꾸준히 있어 왔다.Therefore, there has been a steady demand among those skilled in the art for a monitoring device capable of immediately and accurately detecting serious damage to the blade in real time.
본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 풍력발전기의 블레이드에 발생되는 손상, 특히 중대손상을 즉각적으로 실시간 감지해 낼 수 있는 풍력발전기의 블레이드 감시장치 및 방법을 제공함에 있다.The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to monitor blades of a wind turbine capable of immediately detecting damage occurring to the blades of the wind turbine, particularly serious damage, in real time. It is to provide an apparatus and method.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 블레이드 감시장치는, 풍력발전기의 블레이드에 구비되어 손상을 감지하는 블레이드 감시장치로서, 상기 블레이드를 따라 연장되며 상기 블레이드에 구비되는 센싱라인네트워크; 및 상기 센싱라인네트워크에 연결되어 상기 센싱라인네트워크의 단선여부를 감지하는 단선감지부;를 포함할 수 있다. A blade monitoring device according to an embodiment of the present invention for achieving the above object is a blade monitoring device provided on a blade of a wind turbine to detect damage, extending along the blade and sensing provided on the blade. line network; and a disconnection detection unit that is connected to the sensing line network and detects whether or not the sensing line network is disconnected.
실시예에 따라, 상기 센싱라인네트워크가 전선으로 형성되고, 상기 단선감지부는 상기 센싱라인네트워크의 저항을 측정할 수 있다. Depending on the embodiment, the sensing line network may be formed of wires, and the disconnection detection unit may measure resistance of the sensing line network.
실시예에 따라, 상기 블레이드에 손상이 발생하면 손상위치의 상기 센싱라인네트워크가 손상되고, 상기 단선감지부는 상기 센싱라인네트워크의 전체저항이 변화하는 것을 이용하여 상기 센싱라인네트워크의 단선여부를 감지할 수 있다. According to the embodiment, when damage occurs to the blade, the sensing line network at the damaged location is damaged, and the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in total resistance of the sensing line network. can
실시예에 따라, 상기 센싱라인네트워크가 FBG광섬유센서로 형성되고, 상기 단선감지부는 상기 센싱라인네트워크의 광신호를 측정할 수 있다. According to an embodiment, the sensing line network is formed of an FBG optical fiber sensor, and the disconnection detection unit may measure an optical signal of the sensing line network.
실시예에 따라, 상기 블레이드에 손상이 발생하면 손상위치의 상기 센싱라인네트워크가 손상되고, 상기 단선감지부는 상기 센싱라인네트워크의 광신호응답이 변화하는 것을 이용하여 상기 센싱라인네트워크의 단선여부를 감지할 수 있다. According to an embodiment, when damage occurs to the blade, the sensing line network at the damaged location is damaged, and the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in the optical signal response of the sensing line network. can do.
실시예에 따라, 상기 센싱라인네트워크는, 상기 블레이드의 앞전 - 끝단 - 뒷전을 순차적으로 따라 연장되며 상기 블레이드에 구비되는 적어도 하나의 메인센싱라인을 포함할 수 있다. Depending on the embodiment, the sensing line network may include at least one main sensing line provided in the blade and sequentially extending along the leading edge-end edge- trailing edge of the blade.
실시예에 따라, 상기 센싱라인네트워크는, 상기 블레이드의 전면 - 끝단 - 후면, 전면 - 앞전 - 후면, 전면 - 뒷전 - 후면 중 선택되는 경로를 순차적으로 따라 연장되며 상기 블레이드에 구비되는 적어도 하나의 서브센싱라인을 포함할 수 있다. According to the embodiment, the sensing line network extends sequentially along a path selected from among front-end-rear, front-leading-rear, front-rearing-rear, and at least one sub provided in the blade. A sensing line may be included.
실시예에 따라, 상기 센싱라인네트워크는, 상기 블레이드의 앞전 - 전면 - 뒷전 - 후면을 순차적으로 따라 연장되며 상기 블레이드에 구비되는 적어도 하나의 추가센싱라인을 포함할 수 있다. Depending on the embodiment, the sensing line network may include at least one additional sensing line provided in the blade and sequentially extending along a leading edge - front side - trailing edge - rear side of the blade.
실시예에 따라, 상기 센싱라인네트워크는, 상기 블레이드의 내측면 상에 구비되거나, 또는 상기 블레이드의 내부에 내장될 수 있다. Depending on the embodiment, the sensing line network may be provided on an inner surface of the blade or embedded inside the blade.
실시예에 따라, 상기 센싱라인네트워크는 상기 블레이드의 끝단과 마주보는 허브단 너머로 연장되어 상기 단선감지부와 연결될 수 있다. Depending on the embodiment, the sensing line network may extend beyond a hub end facing the end end of the blade and be connected to the disconnection detection unit.
실시예에 따라, 상기 단선감지부는 진단시스템에 연결되어 상기 센싱라인네트워크의 단선감지여부를 실시간으로 전달할 수 있다. Depending on the embodiment, the disconnection detection unit may be connected to a diagnosis system to deliver in real time whether or not disconnection of the sensing line network is detected.
또한, 본 발명의 일 실시예에 따른 블레이드 감시방법은, 상술한 바와 같은 블레이드 감시장치를 이용한 블레이드 감시방법에 있어서, 전선 또는 FBG광섬유센서로 형성되는 상기 센싱라인네트워크의 단선여부를 감지하기 위해 상기 단선감지부가 기결정된 주기로 상기 센싱라인네트워크의 저항 또는 광신호를 측정하는 상시측정단계; 상기 블레이드에 손상이 발생하여 손상위치의 상기 센싱라인네트워크가 손상됨에 따라 상기 센싱라인네트워크의 전체저항 또는 광신호응답이 기결정된 기준 이상으로 변화하는 손상발생단계; 및 상기 단선감지부가 상기 센싱라인네트워크의 전체저항 또는 광신호응답이 변화하는 것을 이용하여 상기 센싱라인네트워크의 단선여부를 감지하는 손상감지단계;를 포함할 수 있다. In addition, in the blade monitoring method according to an embodiment of the present invention, in the blade monitoring method using the blade monitoring device as described above, in order to detect whether or not the sensing line network formed of wires or FBG optical fiber sensors is disconnected, the above a constant measurement step of measuring resistance or an optical signal of the sensing line network at a predetermined cycle by a disconnection detection unit; a damage generation step of changing a total resistance or an optical signal response of the sensing line network beyond a predetermined standard as damage occurs to the blade and the sensing line network at the damaged location is damaged; and a damage detection step in which the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in total resistance or an optical signal response of the sensing line network.
실시예에 따라, 상기 손상감지단계 이후에, 상기 단선감지부가 상기 센싱라인네트워크의 단선감지여부를 진단시스템에 실시간으로 전달함으로써 상기 진단시스템에서 상기 블레이드의 손상이 공표되는 손상공표단계;를 더 포함할 수 있다. According to an embodiment, after the damage detection step, the disconnection detection unit transmits in real time whether or not the disconnection of the sensing line network is detected to a diagnosis system, thereby announcing damage to the blade in the diagnosis system; further comprising a damage announcement step. can do.
본 발명에 의하면, 풍력발전기 블레이드에 손상, 특히 부러지거나 끝단손실 등의 중대손상이 발생하였을 때 즉각적으로 실시간 감지해 낼 수 있는 효과가 있다. 보다 구체적으로, 종래에는 블레이드에 손상이 발생하면, 원래 감시를 위해 계속 측정해 오던 진동이나 음향 등의 신호에 변화가 일어나는 것으로부터 블레이드에 손상이 발생했음을 감지하였다. 즉 종래에는 블레이드 손상감지가 간접적으로 이루어졌다. 그러나 본 발명에서는, 블레이드 전체에 걸쳐 센싱라인네트워크 회로가 형성되며, 블레이드 손상이 발생하면 손상위치의 센싱라인네트워크 또한 손상됨에 따라 즉각적으로 전체저항 또는 광신호응답이 변화하고, 이로부터 손상감지가 직접적 및 즉각적으로 이루어질 수 있게 된다.According to the present invention, there is an effect that can be immediately detected in real time when damage to the wind turbine blades, in particular, serious damage such as broken or end loss occurs. More specifically, in the prior art, when damage occurs to the blade, it is detected that the damage has occurred to the blade due to a change in a signal such as vibration or sound, which has been continuously measured for monitoring. That is, in the prior art, blade damage detection was performed indirectly. However, in the present invention, the sensing line network circuit is formed over the entire blade, and when damage occurs to the blade, the entire resistance or optical signal response is immediately changed as the sensing line network at the damaged location is also damaged, from which damage detection is directly performed. and can be made immediately.
이처럼 본 발명에 의하면, 복잡한 장치구성이나 제어방법을 도입하지 않고도 직접적이고 즉각적으로 블레이드의 실시간 감시를 실현할 수 있는 효과가 있다. 특히 이처럼 본 발명의 감시장치는 대단히 복잡하지 않기 때문에 다른 시스템에 추가 연결하는 것이 매우 용이한 높은 호환성을 가진다. 따라서 앞서 설명한 바와 같은 풍력발전기의 전반적인 상태를 감시 및 진단하는 풍력발전기 진단시스템에 본 발명의 감시장치를 연결함으로써, 용이하게 시스템을 구성할 수 있으면서도 풍력발전기 감시임무의 사용자 편의성을 크게 향상시킬 수 있는 효과가 있다.As such, according to the present invention, there is an effect of realizing real-time monitoring of the blade directly and immediately without introducing a complicated device configuration or control method. In particular, since the monitoring device of the present invention is not very complicated, it has high compatibility so that it is very easy to additionally connect to other systems. Therefore, by connecting the monitoring device of the present invention to the wind turbine diagnosis system for monitoring and diagnosing the overall condition of the wind turbine as described above, the system can be easily configured and the user convenience of the wind turbine monitoring mission can be greatly improved. It works.
도 1은 풍력발전기 블레이드를 도시한 사시도,1 is a perspective view showing a wind turbine blade;
도 2는 도 1의 A-A' 단면도, Figure 2 is a cross-sectional view A-A' of Figure 1;
도 3은 본 발명의 블레이드 감시장치의 일 실시예를 도시한 사시도,Figure 3 is a perspective view showing an embodiment of the blade monitoring device of the present invention;
도 4는 도 3의 A-A' 단면도, 4 is a cross-sectional view A-A' of FIG. 3;
도 5는 본 발명의 블레이드 감시장치의 다른 실시예를 도시한 사시도,5 is a perspective view showing another embodiment of the blade monitoring device of the present invention;
도 6은 도 5의 A-A' 단면도, 6 is a cross-sectional view A-A' of FIG. 5;
도 7은 본 발명의 블레이드 감시장치의 또 다른 실시예를 도시한 사시도,Figure 7 is a perspective view showing another embodiment of the blade monitoring device of the present invention;
도 8은 도 7의 A-A' 단면도, 8 is a cross-sectional view taken along line A-A' of FIG. 7;
도 9 및 10은 센싱라인네트워크의 설치예를 도시한 단면도이다. 9 and 10 are cross-sectional views illustrating an installation example of a sensing line network.
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 풍력발전기의 블레이드 감시장치 및 방법을 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, an apparatus and method for monitoring blades of a wind power generator according to the present invention having the configuration as described above will be described in detail with reference to the accompanying drawings.
도 1은 풍력발전기 블레이드를 도시한 사시도, 도 2는 도 1의 A-A' 단면도이다. 앞서 설명한 바와 같이 풍력발전기의 블레이드는 최대한 많은 바람을 받아들일 수 있도록 하기 위해 상당히 거대한 크기로 만들어지는 한편, 작은 풍량에도 민감하게 반응할 수 있도록 중량을 최대한 줄이기 위해 도 2와 같이 내부가 빈 구조체 형태로 만들어진다. 다른 관점에서, 블레이드의 강성 확보 및 중량 저감을 동시에 달성하기 위해, 재질적인 측면에서 블레이드의 재질로서 탄소섬유복합재 등과 같은 복합재가 적용되는 경우가 많다. 블레이드(500)는 항공기 날개 등과 비슷한 형태로 만들어지며, 일반적으로 블레이드(500)의 앞부분 끝을 앞전(leading edge, 전연, 510), 뒷부분 끝을 뒷전(trailing edge, 후연, 520)라 칭한다. 또한, 블레이드(500)의 연장방향 끝부분을 끝단(530), 끝단(530)과 마주보며 허브(미도시)에 연결되는 끝부분을 허브단(540)이라 칭한다. 끝단(530)에서 허브단(540)으로 갈수록 블레이드(500)의 폭이 넓어지는 경향을 갖는다. 또한, 블레이드(500)의 전방에 배치된 면을 전면(550), 후방에 배치된 면을 후면(560)이라 칭한다. 1 is a perspective view showing a wind turbine blade, and FIG. 2 is a cross-sectional view taken along line AA' of FIG. 1 . As described above, the blades of the wind turbine are made in a fairly large size in order to receive as much wind as possible, while in the form of an empty structure as shown in FIG. is made of From another point of view, in order to simultaneously achieve rigidity and weight reduction of the blade, a composite material such as a carbon fiber composite material is often applied as a material of the blade in terms of material. The blade 500 is made in a similar shape to an aircraft wing, and generally refers to the front end of the blade 500 as a leading edge (leading edge, 510) and the rear end as a trailing edge (trailing edge, 520). In addition, the end portion of the blade 500 in the extending direction is referred to as an end portion 530, and an end portion facing the end portion 530 and connected to a hub (not shown) is referred to as a hub end 540. The width of the blade 500 tends to increase from the end 530 to the hub end 540. In addition, a surface disposed at the front of the blade 500 is referred to as a front surface 550 and a surface disposed at the rear is referred to as a rear surface 560 .
도 3 내지 8은 본 발명의 블레이드 감시장치의 여러 실시예를 도시한 것이다. 도시된 바와 같이 본 발명의 블레이드 감시장치(100)는, 풍력발전기의 블레이드(500)에 구비되어 손상을 감지하는 블레이드 감시장치(100)로서, 블레이드(500)를 따라 연장되며 블레이드(500)에 구비되는 센싱라인네트워크(140) 및 센싱라인네트워크(140)에 연결되어 센싱라인네트워크(140)의 단선여부를 감지하는 단선감지부(150)를 포함한다.3 to 8 show several embodiments of the blade monitoring device of the present invention. As shown, the blade monitoring device 100 of the present invention is a blade monitoring device 100 provided on the blade 500 of the wind turbine to detect damage, extending along the blade 500 and It includes a sensing line network 140 and a disconnection detection unit 150 connected to the sensing line network 140 and detecting whether or not the sensing line network 140 is disconnected.
본 발명에서는, 블레이드(500)에 손상이 발생하면 손상위치의 센싱라인네트워크(140)가 함께 손상됨에 따라, 단선감지부(150)에서 측정되는 센싱라인네트워크(140)의 특성에 변화가 발생하는 것을 이용하여 블레이드(500)의 손상을 감지하도록 이루어진다. In the present invention, when damage occurs to the blade 500, as the sensing line network 140 at the damaged location is damaged together, a change occurs in the characteristics of the sensing line network 140 measured by the disconnection detection unit 150 It is made to detect damage to the blade 500 by using it.
보다 구체적으로는, 일 실시예로서 센싱라인네트워크(140)가 전선으로 형성되고, 단선감지부(150)가 센싱라인네트워크(140)의 저항을 측정할 수 있다. 이 경우 블레이드(500)에 손상이 발생하면 손상위치의 센싱라인네트워크(140)가 함께 손상됨에 따라 센싱라인네트워크(140)의 전체저항이 기결정된 기준 이상으로 변화하게 되며, 단선감지부(150)는 센싱라인네트워크(140)의 전체저항이 변화하는 것을 이용하여 센싱라인네트워크(140)의 단선여부를 감지할 수 있다. More specifically, as an embodiment, the sensing line network 140 may be formed of wires, and the disconnection detection unit 150 may measure resistance of the sensing line network 140 . In this case, when damage occurs to the blade 500, as the sensing line network 140 at the damaged location is damaged together, the total resistance of the sensing line network 140 changes beyond a predetermined standard, and the disconnection detection unit 150 can detect whether the sensing line network 140 is disconnected by using the change in the total resistance of the sensing line network 140 .
다른 실시예로서 센싱라인네트워크(140)가 FBG광섬유센서로 형성되고, 단선감지부(150)가 센싱라인네트워크(140)의 광신호를 측정할 수 있다. 이 경우 블레이드(500)에 손상이 발생하면 손상위치의 센싱라인네트워크(140)가 함께 손상됨에 따라 센싱라인네트워크(140)의 광신호응답이 기결정된 기준 이상으로 변화하게 되며, 단선감지부(150)는 센싱라인네트워크(140)의 광신호응답이 변화하는 것을 이용하여 센싱라인네트워크(140)의 단선여부를 감지할 수 있다. As another embodiment, the sensing line network 140 may be formed of an FBG optical fiber sensor, and the disconnection detection unit 150 may measure an optical signal of the sensing line network 140 . In this case, when damage occurs to the blade 500, the optical signal response of the sensing line network 140 changes beyond a predetermined standard as the sensing line network 140 at the damaged location is also damaged, and the disconnection detection unit 150 ) can detect whether or not the sensing line network 140 is disconnected by using a change in the optical signal response of the sensing line network 140 .
이와 같이 블레이드(500)의 손상은 직접적으로 센싱라인네트워크(140)의 손상으로 이어지며, 이러한 손상은 역시 직접적으로 센싱라인네트워크(140)의 전체저항 또는 광신호응답 변화로 나타나므로, 구성 자체는 매우 간소함에도 불구하고 즉각적인 손상 감지가 가능하게 되는 것이다.In this way, damage to the blade 500 directly leads to damage to the sensing line network 140, and since this damage directly appears as a change in the total resistance or optical signal response of the sensing line network 140, the configuration itself Despite its simplicity, immediate damage detection is possible.
우선, 도 3 및 4를 참고하여 센싱라인네트워크(140)가 메인센싱라인(110)만을 포함하는 실시예를 살펴보도록 한다. 도 3은 본 발명의 블레이드 감시장치의 일 실시예를 도시한 사시도, 도 4는 도 3의 A-A' 단면도이다. First, an embodiment in which the sensing line network 140 includes only the main sensing line 110 will be described with reference to FIGS. 3 and 4 . 3 is a perspective view showing an embodiment of the blade monitoring device of the present invention, and FIG. 4 is a cross-sectional view taken along line AA' of FIG.
메인센싱라인(110)은, 도 3에 도시된 바와 같이 블레이드(500)의 앞전(510) - 끝단(530) - 뒷전(520)을 순차적으로 따라 연장된다. 실질적으로 손상이 많이 발생하는 블레이드의 부위가 앞전(510), 뒷전(520), 끝단(530)이기 때문에, 메인센싱라인(110)이 이러한 손상 발생 가능성이 높은 부위를 모두 통과하도록 형성하는 것이다.As shown in FIG. 3 , the main sensing line 110 sequentially extends along the leading edge 510 - the end 530 - the trailing edge 520 of the blade 500 . Since the parts of the blade where damage occurs substantially are the leading edge 510, the trailing edge 520, and the tip 530, the main sensing line 110 is formed to pass through all of these parts with a high possibility of occurrence of damage.
다음으로, 도 5 및 6을 참고하여 센싱라인네트워크(140)가 메인센싱라인(110)에 더하여 서브센싱라인(120)을 더 포함하는 실시예를 살펴보도록 한다. 도 5는 본 발명의 블레이드 감시장치의 다른 실시예를 도시한 사시도, 도 6은 도 5의 A-A' 단면도이다. 메인센싱라인(110)은 상기에서 살펴본 내용과 동일하므로 서브센싱라인(120)에 대해서만 설명한다. Next, an embodiment in which the sensing line network 140 further includes the sub sensing line 120 in addition to the main sensing line 110 will be described with reference to FIGS. 5 and 6 . Figure 5 is a perspective view showing another embodiment of the blade monitoring device of the present invention, Figure 6 is a sectional view AA 'of FIG. Since the main sensing line 110 is the same as described above, only the sub sensing line 120 will be described.
서브센싱라인(120)은, 블레이드(500)의 전면(550) - 끝단(530) - 후면(560), 전면(550) - 앞전(510) - 후면(560), 전면(550) - 뒷전(520) - 후면(560) 중 선택되는 경로를 순차적으로 따라 연장된다. 도 5에는 서브센싱라인(120)이 블레이드(500)의 전면(550) - 끝단(530)- 후면(560)을 따라 연장되는 실시예가 도시되어 있다. 도 5에는 하나의 서브센싱라인(120)이 도시되고 있으나, 서브센싱라인(120)의 개수를 늘여서 보다 촘촘하게 블레이드(500)의 표면을 둘러싸도록 형성할 수 있음은 물론이다. 이 때 끝단(530)에서의 블레이드(500)의 폭이 허브단(540)에서의 블레이드(500)의 폭보다 좁기 때문에, 서브센싱라인(120)이 끝단(530)을 지나게 배치하기 어려울 수도 있으며, 이 경우 적절하게 앞전(510)이나 뒷전(520)을 지나게 배치하여도 무방하다. The sub-sensing line 120 is the front side 550 - the end 530 - the back side 560 of the blade 500, the front side 550 - the leading edge 510 - the rear side 560, the front side 550 - the trailing edge ( 520) - It is sequentially extended along a selected path among the rear surfaces 560. 5 shows an embodiment in which the sub-sensing line 120 extends along the front surface 550 - the end 530 - the rear surface 560 of the blade 500 . Although one sub-sensing line 120 is shown in FIG. 5 , it goes without saying that the number of sub-sensing lines 120 may be increased to more densely surround the surface of the blade 500 . At this time, since the width of the blade 500 at the end 530 is narrower than the width of the blade 500 at the hub end 540, it may be difficult to place the sub-sensing line 120 past the end 530. , In this case, it may be appropriately arranged to pass the leading edge 510 or the trailing edge 520.
다음으로, 도 7 및 8을 참고하여 센싱라인네트워크(140)가 메인센싱라인(110)과 서브센싱라인(120)에 더하여 추가센싱라인(130)을 더 포함하는 실시예를 살펴보도록 한다. 도 7은 본 발명의 블레이드 감시장치의 또 다른 실시예를 도시한 사시도, 도 8은 도 7의 A-A' 단면도이다. 메인센싱라인(110)과 서브센싱라인(120)은 상기에서 살펴본 내용과 동일하므로 추가센싱라인(130)에 대해서만 설명한다. Next, referring to FIGS. 7 and 8 , an embodiment in which the sensing line network 140 further includes the additional sensing line 130 in addition to the main sensing line 110 and the sub sensing line 120 will be described. Figure 7 is a perspective view showing another embodiment of the blade monitoring device of the present invention, Figure 8 is a cross-sectional view AA 'of FIG. Since the main sensing line 110 and the sub sensing line 120 are the same as those described above, only the additional sensing line 130 will be described.
추가센싱라인(130)은, 메인센싱라인(110) 또는 서브센싱라인(120)과 교차되게 배치된다. 즉 추가센싱라인(130)은, 도 7에 도시된 바와 같이 블레이드(500)의 앞전(510) - 전면(550) - 뒷전(520) - 후면(560)을 순차적으로 따라 연장된다. 이와 같이 메인센싱라인(110), 서브센싱라인(120) 및 추가센싱라인(130)이 모두 구비되는 경우 블레이드(500)의 전체 표면에 대한 손상감지가 훨씬 원활하게 이루어질 수 있다.The additional sensing line 130 is disposed to cross the main sensing line 110 or the sub sensing line 120 . That is, as shown in FIG. 7 , the additional sensing line 130 sequentially extends along the leading edge 510 - the front side 550 - the trailing edge 520 - the rear side 560 of the blade 500 . In this way, when all of the main sensing line 110, the sub sensing line 120, and the additional sensing line 130 are provided, damage detection on the entire surface of the blade 500 can be performed much more smoothly.
하지만 앞서 설명한 바와 같이 손상이 많이 발생하는 블레이드의 부위에 따라, 서브센싱라인(120)과 추가센싱라인(130)만 구비시키거나, 또는 메인센싱라인(110)과 추가센싱라인(130)만 구비시키는 등 적절하게 다양한 선택적 배치구성을 도입할 수 있다.However, as described above, only the sub-sensing line 120 and the additional sensing line 130 are provided, or only the main sensing line 110 and the additional sensing line 130 are provided, depending on the part of the blade where a lot of damage occurs. Various optional arrangements can be introduced as appropriate.
도 9 및 10은 센싱라인네트워크의 설치예를 도시한 단면도이다. 도 9는 센싱라인네트워크(140)가 블레이드(500)의 내측면 상에 구비되는 실시예를 도시한다. 도 9에는 서브센싱라인(120)이 블레이드의 전면(550)의 내측면에 밀착하여 구비되는 경우가 도시되고 있다. 한편 도 10은 센싱라인네트워크(140)가 블레이드(500)의 내부에 내장되는 실시예를 도시한다. 앞서 설명한 바와 같이 블레이드(500)는 복합재로 만들어지는 경우가 많은데, 복합재란 대개 탄소섬유와 같은 섬유가 배열 또는 직조되어 있는 구조체에 열가소성 또는 열경화성 플라스틱 소재를 적층하여 만들어진다. 이 적층 과정에서 센싱라인네트워크(140)가 복합재에 포함되는 섬유와 같이 배치되도록 할 수 있다. 도 10에는 서브센싱라인(120)이 블레이드의 전면(550)의 내부에 내장되는 경우가 도시되고 있다. 9 and 10 are cross-sectional views illustrating an installation example of a sensing line network. 9 shows an embodiment in which the sensing line network 140 is provided on the inner surface of the blade 500. 9 shows a case where the sub-sensing line 120 is provided in close contact with the inner surface of the front surface 550 of the blade. Meanwhile, FIG. 10 shows an embodiment in which the sensing line network 140 is embedded inside the blade 500. As described above, the blade 500 is often made of a composite material, and the composite material is usually made by laminating a thermoplastic or thermosetting plastic material on a structure in which fibers such as carbon fibers are arranged or woven. During this lamination process, the sensing line network 140 may be arranged like fibers included in the composite material. 10 shows a case where the sub-sensing line 120 is embedded inside the front surface 550 of the blade.
도 3, 5 및 7에 도시된 바와 같이, 센싱라인네트워크(140)는 블레이드의 끝단(530)과 마주보는 허브단(540) 너머로 연장되어 단선감지부(150)와 연결될 수 있다. 일 예로, 도 5에 도시된 바와 같이 센싱라인네트워크(140)가 메인센싱라인(110)에 더하여 서브센싱라인(120)을 더 포함하는 경우에는, 메인센싱라인(110)과 서브센싱라인(120)이 각각 블레이드의 허브단(540) 너머로 연장될 수 있다. 만약 추가센싱라인(130)을 더 포함하는 경우 추가센싱라인(130)도 블레이드의 허브단(540) 너머로 연장되어 단선감지부(150)와 연결될 수 있음은 물론이다. 단선감지부(150)의 구성이 간소하고 부피가 작을 경우에는 단선감지부(150)를 블레이드(500)가 연결된 허브에 직접 배치할 수도 있다. 그러나 굳이 풍력발전기의 구동부품에 중량을 추가할 필요가 없으므로, 단선감지부(150)는 풍력발전기 내부에 적절히 구비되고, 허브를 통해 전기적 연결이 이루어지게 하는 것이 바람직하다. 이 때 허브는 바람을 받아 무작위적인 방향으로 회전하기 때문에, 일반적인 전선으로 연결하는 경우 전선이 꼬여서 손상될 우려가 있으므로, 코일 등의 여러 부품을 이용하여 무선으로 전력을 공급하고 저항을 측정하도록 이루어지는 것이 바람직하다. 이러한 무선전력연결수단은 일반적인 회전하는 전기장치에 다양한 구성으로 개시되어 있으므로, 공지된 구성 중 적절하게 적용하여도 무방하다.3, 5 and 7, the sensing line network 140 may be connected to the disconnection detection unit 150 by extending beyond the hub end 540 facing the end 530 of the blade. For example, as shown in FIG. 5 , when the sensing line network 140 further includes the sub sensing line 120 in addition to the main sensing line 110, the main sensing line 110 and the sub sensing line 120 ) may extend beyond the hub end 540 of each blade. If the additional sensing line 130 is further included, the additional sensing line 130 may also extend beyond the hub end 540 of the blade and be connected to the disconnection detection unit 150, of course. When the configuration of the disconnection detection unit 150 is simple and the volume is small, the disconnection detection unit 150 may be directly disposed on the hub to which the blade 500 is connected. However, since there is no need to add weight to the drive parts of the wind turbine, it is preferable that the disconnection detection unit 150 is appropriately provided inside the wind turbine and electrically connected through a hub. At this time, since the hub receives wind and rotates in a random direction, when connecting with a general wire, there is a risk of damage due to twisting of the wire. desirable. Since these wireless power connection means are disclosed in various configurations in general rotating electric devices, it is okay to appropriately apply among known configurations.
또한, 단선감지부(150)는 외부의 진단시스템(160)에 연결되어 센싱라인네트워크(140)의 단선감지여부를 실시간으로 전달할 수 있다. 즉, 단선감지부(150)가 센싱라인네트워크(140)의 전체저항 또는 광신호응답이 기결정된 기준 이상으로 변화하는 것을 감지한 경우 이를 진단시스템(160)에 실시간으로 전달할 수 있다. 물론 단선감지부(150)에 직접 알람장치가 구비됨으로써, 센싱라인네트워크(140)의 전체저항 또는 광신호응답이 기결정된 기준 이상으로 변화하는 경우 바로 알람신호가 발생되도록 할 수도 있다. 그러나 풍력발전기는 대부분 외진 곳에 복수 개가 설치되어 있어, 관리하는 인력이 풍력발전기 자체에 상시 근무하는 환경이 전혀 아니다. 한편 앞서 선행문헌 1로 설명된 진단시스템의 경우, 풍력발전기의 각부에 진동센서, 음향센서 등 다양한 센서들이 이미 통신가능하도록 구비되어 있다. 따라서 단선감지부(150) 역시 이러한 센서들과 마찬가지로 외부의 진단시스템(160)에 연결되게 함으로써, 원격의 관리자가 쉽게 즉각적으로 손상을 감지할 수 있게 된다.In addition, the disconnection detection unit 150 is connected to the external diagnosis system 160 and can transmit whether or not the disconnection of the sensing line network 140 is detected in real time. That is, when the disconnection detection unit 150 detects a change in the total resistance or the optical signal response of the sensing line network 140 beyond a predetermined standard, it may transmit the change to the diagnosis system 160 in real time. Of course, since an alarm device is provided directly in the disconnection detection unit 150, an alarm signal may be immediately generated when the total resistance or the optical signal response of the sensing line network 140 changes beyond a predetermined standard. However, since most wind turbines are installed in a remote location, it is not at all an environment where manpower to manage the wind turbine itself is always working. On the other hand, in the case of the diagnosis system described in Prior Document 1 above, various sensors such as vibration sensors and sound sensors are already provided to communicate with each part of the wind turbine. Therefore, the disconnection detection unit 150 is also connected to the external diagnosis system 160 like these sensors, so that a remote manager can easily and immediately detect damage.
다음으로는, 상기의 블레이드 감시장치(100)를 이용한 블레이드 감시방법에 관하여 구체적으로 설명하도록 한다. 본 발명의 블레이드 감시방법은, 상시측정단계, 손상발생단계 및 손상감지단계를 포함한다. 여기에 더불어 단선감지부(150)가 외부의 진단시스템과 연결되는 경우 손상공표단계를 더 포함할 수 있다.Next, the blade monitoring method using the blade monitoring device 100 will be described in detail. The blade monitoring method of the present invention includes a regular measurement step, a damage occurrence step, and a damage detection step. In addition to this, when the disconnection detection unit 150 is connected to an external diagnosis system, a damage announcement step may be further included.
상시측정단계에서는, 전선 또는 FBG광섬유센서로 형성되는 센싱라인네트워크(140)의 단선여부를 감지하기 위해, 단선감지부(150)가 기결정된 주기로 센싱라인네트워크(140)의 저항 또는 광신호를 측정한다. 이 때 기결정된 주기는 일상적인 수준으로서, 예를 들어 1Hz 정도일 수 있다.In the regular measurement step, the disconnection detection unit 150 measures the resistance or optical signal of the sensing line network 140 at a predetermined cycle in order to detect whether or not the sensing line network 140 formed by the wire or the FBG fiber optic sensor is disconnected. do. At this time, the predetermined period is a daily level, and may be, for example, about 1 Hz.
손상발생단계에서는, 블레이드(500) 일부에 손상이 발생하여 손상위치의 센싱라인네트워크(140)가 손상됨에 따라 센싱라인네트워크(140)의 전체저항 또는 광신호응답이 기결정된 기준 이상으로 변화한다. 이 때의 기준은, 예를 들어 센싱라인네트워크(140)가 전선으로 구성된 경우, 일반적인 저항 네트워크를 분석하여 등가저항을 계산하고, 이를 기반으로 값을 결정할 수 있다. 다른 예로서 원래의 전체저항 값의 90% 정도 등과 같이 경험적인 결정도 가능하다. 센싱라인네트워크(140)가 FBG광섬유센서로 구성된 경우에도 전선 구성시와 유사한 방식으로 평상시의 광신호응답과 비교하여 적절한 기준을 결정하여 적용하면 된다.In the damage occurrence step, as damage occurs to a portion of the blade 500 and the sensing line network 140 at the damaged location is damaged, the total resistance or optical signal response of the sensing line network 140 changes beyond a predetermined standard. As a criterion at this time, for example, when the sensing line network 140 is composed of electric wires, an equivalent resistance may be calculated by analyzing a general resistance network, and a value may be determined based thereon. As another example, empirical determination is possible, such as 90% of the original total resistance value. Even when the sensing line network 140 is composed of FBG fiber optic sensors, an appropriate standard may be determined and applied by comparing the normal optical signal response in a similar manner to the configuration of the electric wire.
손상감지단계에서는, 단선감지부(150)가 센싱라인네트워크(140)의 전체저항 또는 광신호응답이 변화하는 것을 이용하여 센싱라인네트워크(140)의 단선여부를 감지함으로써 블레이드(500)의 손상이 감지된다. 실질적으로 상시측정단계 및 손상감지단계에서 단선감지부(150)가 센싱라인네트워크(140)의 단선여부를 감지하고자 수행하는 동작 자체는 동일하다고 볼 수 있는데, 다만 상시측정단계는 블레이드(500)의 손상이 발생하지 않은 상태에서 감지동작이 계속 이루어지는 것이고, 손상감지단계는 블레이드(500)의 손상이 발생한 이후 감지동작이 이루어지는 것이라고 구분하면 된다. 이 때 앞서 설명한 바와 같이, 상시측정단계의 측정주기가 예를 들어 1Hz 정도라고 한다면, 블레이드(500)의 손상이 발생하고 나서 최대 1초 안에 손상이 감지될 수 있어, 실질적으로 즉각적인 손상 감지가 가능하게 된다.In the damage detection step, the disconnection detection unit 150 detects the disconnection of the sensing line network 140 using the change in the total resistance or the optical signal response of the sensing line network 140, thereby preventing damage to the blade 500. It is detected. Substantially, it can be seen that the operation itself performed by the disconnection detection unit 150 to detect disconnection of the sensing line network 140 in the regular measurement step and the damage detection step is the same. The sensing operation is continuously performed in a state in which no damage occurs, and the damage sensing step may be divided into that the sensing operation is performed after damage to the blade 500 occurs. At this time, as described above, if the measurement cycle of the continuous measurement step is, for example, about 1 Hz, damage to the blade 500 can be detected within a maximum of 1 second after damage occurs, enabling substantially immediate damage detection. will do
손상감지단계 이후 손상공표단계에서는, 단선감지부(150)가 센싱라인네트워크(140)의 단선여부를 진단시스템(160)에 실시간으로 전달함으로써 진단시스템(160)에서 블레이드(500)의 손상이 공표된다. 즉 원격의 관리자에게 블레이드(500)가 손상되었다는 사실이 알려지게 되는 것이다. 상술한 바와 같이 본 발명의 블레이드 감시장치(100)는 블레이드(500)의 손상을 즉각적으로 실시간 감지할 수 있기 때문에, 원격의 관리자 역시 (간접적인 진동신호 변화 등을 통해서가 아니라) 직접적인 전체저항 또는 광신호응답 변화를 통해 손상발생 사태를 즉각적으로 실시간 알 수 있게 된다.In the damage announcement step after the damage detection step, the disconnection detection unit 150 informs the diagnosis system 160 whether or not the sensing line network 140 is disconnected in real time, so that the diagnosis system 160 announces the damage to the blade 500. do. That is, the fact that the blade 500 is damaged becomes known to the remote manager. As described above, since the blade monitoring device 100 of the present invention can immediately detect damage to the blade 500 in real time, a remote administrator can also directly (not through an indirect vibration signal change, etc.) Through the change of the optical signal response, it is possible to immediately know the occurrence of damage in real time.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above embodiments, and the scope of application is diverse, and anyone with ordinary knowledge in the field to which the present invention belongs without departing from the gist of the present invention claimed in the claims Of course, various modifications are possible.
본 발명은 풍력발전기의 블레이드 감시장치 및 방법에 관한 것으로, 보다 상세하게는 풍력발전기의 블레이드의 손상을 실시간으로 감시할 수 있도록 하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for monitoring blades of a wind turbine, and more particularly, to an apparatus and method for monitoring damage to blades of a wind turbine in real time.

Claims (13)

  1. 풍력발전기의 블레이드에 구비되어 손상을 감지하는 블레이드 감시장치로서,As a blade monitoring device provided on the blades of a wind turbine to detect damage,
    상기 블레이드를 따라 연장되며 상기 블레이드에 구비되는 센싱라인네트워크; 및a sensing line network extending along the blade and provided in the blade; and
    상기 센싱라인네트워크에 연결되어 상기 센싱라인네트워크의 단선여부를 감지하는 단선감지부;를 포함하는, 블레이드 감시장치.A blade monitoring device comprising a; disconnection detection unit connected to the sensing line network and detecting whether or not the sensing line network is disconnected.
  2. 제1항에 있어서, According to claim 1,
    상기 센싱라인네트워크가 전선으로 형성되고, 상기 단선감지부는 상기 센싱라인네트워크의 저항을 측정하는 것을 특징으로 하는, 블레이드 감시장치.The blade monitoring device, characterized in that the sensing line network is formed of wires, and the disconnection detection unit measures resistance of the sensing line network.
  3. 제2항에 있어서, According to claim 2,
    상기 블레이드에 손상이 발생하면 손상위치의 상기 센싱라인네트워크가 손상되고, 상기 단선감지부는 상기 센싱라인네트워크의 전체저항이 변화하는 것을 이용하여 상기 센싱라인네트워크의 단선여부를 감지하는 것을 특징으로 하는, 블레이드 감시장치.Characterized in that when damage occurs to the blade, the sensing line network at the damaged location is damaged, and the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in total resistance of the sensing line network. blade monitor.
  4. 제1항에 있어서, According to claim 1,
    상기 센싱라인네트워크가 FBG광섬유센서로 형성되고, 상기 단선감지부는 상기 센싱라인네트워크의 광신호를 측정하는 것을 특징으로 하는, 블레이드 감시장치.The blade monitoring device, characterized in that the sensing line network is formed of an FBG optical fiber sensor, and the disconnection detection unit measures an optical signal of the sensing line network.
  5. 제4항에 있어서, According to claim 4,
    상기 블레이드에 손상이 발생하면 손상위치의 상기 센싱라인네트워크가 손상되고, 상기 단선감지부는 상기 센싱라인네트워크의 광신호응답이 변화하는 것을 이용하여 상기 센싱라인네트워크의 단선여부를 감지하는 것을 특징으로 하는, 블레이드 감시장치.When damage occurs to the blade, the sensing line network at the damaged location is damaged, and the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in the optical signal response of the sensing line network , blade supervisor.
  6. 제1항에 있어서, According to claim 1,
    상기 센싱라인네트워크는, 상기 블레이드의 앞전 - 끝단 - 뒷전을 순차적으로 따라 연장되며 상기 블레이드에 구비되는 적어도 하나의 메인센싱라인을 포함하는 것을 특징으로 하는, 블레이드 감시장치.The sensing line network may include at least one main sensing line provided in the blade and sequentially extending along a leading edge - an end edge - a trailing edge of the blade.
  7. 제1항에 있어서, According to claim 1,
    상기 센싱라인네트워크는, 상기 블레이드의 전면 - 끝단 - 후면, 전면 - 앞전 - 후면, 전면 - 뒷전 - 후면 중 선택되는 경로를 순차적으로 따라 연장되며 상기 블레이드에 구비되는 적어도 하나의 서브센싱라인을 포함하는 것을 특징으로 하는, 블레이드 감시장치.The sensing line network extends sequentially along a path selected from among front-end-rear, front-front-rear, front-rear-rear, and front-rear-rear of the blade and includes at least one sub-sensing line provided on the blade. Characterized in that, the blade monitoring device.
  8. 제1항에 있어서, According to claim 1,
    상기 센싱라인네트워크는, 상기 블레이드의 앞전 - 전면 - 뒷전 - 후면을 순차적으로 따라 연장되며 상기 블레이드에 구비되는 적어도 하나의 추가센싱라인을 포함하는 것을 특징으로 하는, 블레이드 감시장치.The sensing line network may include at least one additional sensing line provided in the blade and sequentially extending along a leading edge - front side - trailing edge - rear surface of the blade.
  9. 제1항에 있어서, According to claim 1,
    상기 센싱라인네트워크는, 상기 블레이드의 내측면 상에 구비되거나, 또는 상기 블레이드의 내부에 내장되는 것을 특징으로 하는, 블레이드 감시장치.The sensing line network is provided on the inner surface of the blade, or embedded in the blade, the blade monitoring device.
  10. 제1항에 있어서,According to claim 1,
    상기 센싱라인네트워크는 상기 블레이드의 끝단과 마주보는 허브단 너머로 연장되어 상기 단선감지부와 연결되는 것을 특징으로 하는, 블레이드 감시장치. Characterized in that the sensing line network extends beyond the end of the hub facing the end of the blade and is connected to the disconnection detection unit.
  11. 제1항에 있어서, According to claim 1,
    상기 단선감지부는 진단시스템에 연결되어 상기 센싱라인네트워크의 단선감지여부를 실시간으로 전달하는 것을 특징으로 하는, 블레이드 감시장치.The blade monitoring device, characterized in that the disconnection detection unit is connected to the diagnosis system and transmits in real time whether or not the disconnection of the sensing line network is detected.
  12. 제1항에 의한 블레이드 감시장치를 이용한 블레이드 감시방법에 있어서,In the blade monitoring method using the blade monitoring device according to claim 1,
    전선 또는 FBG광섬유센서로 형성되는 상기 센싱라인네트워크의 단선여부를 감지하기 위해 상기 단선감지부가 기결정된 주기로 상기 센싱라인네트워크의 저항 또는 광신호를 측정하는 상시측정단계;a constant measurement step of measuring resistance or an optical signal of the sensing line network by the disconnection detecting unit at a predetermined cycle to detect disconnection of the sensing line network formed of wires or FBG optical fiber sensors;
    상기 블레이드에 손상이 발생하여 손상위치의 상기 센싱라인네트워크가 손상됨에 따라 상기 센싱라인네트워크의 전체저항 또는 광신호응답이 기결정된 기준 이상으로 변화하는 손상발생단계; 및a damage generation step of changing a total resistance or an optical signal response of the sensing line network beyond a predetermined standard as damage occurs to the blade and the sensing line network at the damaged location is damaged; and
    상기 단선감지부가 상기 센싱라인네트워크의 전체저항 또는 광신호응답이 변화하는 것을 이용하여 상기 센싱라인네트워크의 단선여부를 감지하는 손상감지단계;를 포함하는, 블레이드 감시방법.and a damage detection step in which the disconnection detection unit detects whether or not the sensing line network is disconnected by using a change in total resistance or an optical signal response of the sensing line network.
  13. 제12항에 있어서,According to claim 12,
    상기 손상감지단계 이후에, 상기 단선감지부가 상기 센싱라인네트워크의 단선감지여부를 진단시스템에 실시간으로 전달함으로써 상기 진단시스템에서 상기 블레이드의 손상이 공표되는 손상공표단계;를 더 포함하는 것을 특징으로 하는, 블레이드 감시방법.After the damage detection step, a damage announcement step in which the damage of the blade is announced in the diagnosis system by transmitting to the diagnosis system whether or not the disconnection detection unit detects disconnection of the sensing line network in real time; characterized in that it further comprises , Blade monitoring method.
PCT/KR2022/004643 2021-11-22 2022-03-31 Device and method for monitoring wind turbine blade WO2023090545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0161151 2021-11-22
KR1020210161151A KR102422918B1 (en) 2021-11-22 2021-11-22 Monitoring device and method for blades of wind generator

Publications (1)

Publication Number Publication Date
WO2023090545A1 true WO2023090545A1 (en) 2023-05-25

Family

ID=82610184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004643 WO2023090545A1 (en) 2021-11-22 2022-03-31 Device and method for monitoring wind turbine blade

Country Status (2)

Country Link
KR (1) KR102422918B1 (en)
WO (1) WO2023090545A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261135A (en) * 1995-03-28 1996-10-08 Mitsubishi Heavy Ind Ltd Destruction predictable type gfrp-made windmill blade
US20070098551A1 (en) * 2005-10-31 2007-05-03 Viertl John Ruediger M Wind turbine systems, monitoring systems and processes for monitoring stress in a wind turbine blade
KR20090083429A (en) * 2002-12-18 2009-08-03 알로이즈 워벤 Rotor blade of a wind power plant
KR20150076500A (en) * 2013-12-27 2015-07-07 두산중공업 주식회사 a wind farm, a control method thereof and a wind turbine
JP2019183806A (en) * 2018-04-17 2019-10-24 株式会社日立製作所 Windmill blade and wind generator system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166654B1 (en) 2018-09-17 2020-10-19 윈디텍 주식회사 System and method for managing safety of blade for wind power generator
KR102097595B1 (en) 2019-05-29 2020-05-26 한국기계연구원 Diagnosis method for wind generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261135A (en) * 1995-03-28 1996-10-08 Mitsubishi Heavy Ind Ltd Destruction predictable type gfrp-made windmill blade
KR20090083429A (en) * 2002-12-18 2009-08-03 알로이즈 워벤 Rotor blade of a wind power plant
US20070098551A1 (en) * 2005-10-31 2007-05-03 Viertl John Ruediger M Wind turbine systems, monitoring systems and processes for monitoring stress in a wind turbine blade
KR20150076500A (en) * 2013-12-27 2015-07-07 두산중공업 주식회사 a wind farm, a control method thereof and a wind turbine
JP2019183806A (en) * 2018-04-17 2019-10-24 株式会社日立製作所 Windmill blade and wind generator system

Also Published As

Publication number Publication date
KR102422918B1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
CA2169431C (en) Equipment for recognising when synthetic fibre cables are ripe for being discarded
CN102448864B (en) Method for monitoring damage to wire rope for elevator and device for monitoring damage to wire rope for elevator
BR0202574B1 (en) WEAR DETECTOR FOR A LIFT SUSPENSION CABLE AND LIFT SUSPENSION CABLE
CN108924496A (en) A kind of cable laying condition monitoring system
CN106093679A (en) A kind of cable on-line checking and fault diagnosis system
WO2018012741A1 (en) System for observing resistance and current of ground line
CN207636656U (en) A kind of cable sheath grounding circulation on-line monitoring equipment
WO2016085010A1 (en) System and method for effectively diagnosing whether abnormality exists in each solar module
CN106706241B (en) Active self-checking device and method for damage of wind turbine blade
US20180208222A1 (en) Train Pantograph Structural Health Monitoring System
WO2023090545A1 (en) Device and method for monitoring wind turbine blade
CN208420054U (en) A kind of cable laying condition monitoring system
CN109617234A (en) A kind of wind power generating set condition monitoring system based on multidimensional data
CN105895244B (en) Remote monitoring early warning Through ground wire
CN206223916U (en) A kind of insulator breakdown patrols and examines aircraft
CN116819394A (en) Power cable aging diagnosis monitoring method and system
CN108122367A (en) A kind of protective door dropping-alarming system
CN104458294B (en) A kind of fault monitoring method of train detection equipment and system
AU2015352498B2 (en) Elevator system
CN206192371U (en) A on -line monitoring system for transmission cable based on optical fiber sensing
CN215865487U (en) Vibration monitoring system
CN210954200U (en) Online monitoring and diagnosing system for field suppression resistor
CN108675075A (en) A kind of elevator comprehensive performance TT&C system
KR100927050B1 (en) Line monitoring diagnosis device with transmission line shift measurement module
KR102522703B1 (en) System for Monitoring Transmission Tower Using Optical Fiber Composite Overhead Ground Wire as Communication Line and Power Source by Medium of Jumper Cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895757

Country of ref document: EP

Kind code of ref document: A1