WO2023090424A1 - 回転電機、無方向性電磁鋼板、及び積層コア、並びに、回転電機の製造方法、及び積層コアの製造方法 - Google Patents
回転電機、無方向性電磁鋼板、及び積層コア、並びに、回転電機の製造方法、及び積層コアの製造方法 Download PDFInfo
- Publication number
- WO2023090424A1 WO2023090424A1 PCT/JP2022/042866 JP2022042866W WO2023090424A1 WO 2023090424 A1 WO2023090424 A1 WO 2023090424A1 JP 2022042866 W JP2022042866 W JP 2022042866W WO 2023090424 A1 WO2023090424 A1 WO 2023090424A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- oriented electrical
- content
- electrical steel
- stator
- Prior art date
Links
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 title claims abstract description 133
- 238000004519 manufacturing process Methods 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 35
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 217
- 239000010959 steel Substances 0.000 claims abstract description 217
- 239000000463 material Substances 0.000 claims description 77
- 239000000203 mixture Substances 0.000 claims description 36
- 239000000126 substance Substances 0.000 claims description 36
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 238000010030 laminating Methods 0.000 claims description 11
- 229910052745 lead Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims 1
- 239000011162 core material Substances 0.000 description 154
- 238000000137 annealing Methods 0.000 description 79
- 239000002585 base Substances 0.000 description 77
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 55
- 238000005096 rolling process Methods 0.000 description 47
- 230000000052 comparative effect Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 24
- 230000035882 stress Effects 0.000 description 23
- 238000005097 cold rolling Methods 0.000 description 22
- 239000013078 crystal Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- 230000009467 reduction Effects 0.000 description 17
- 229910052758 niobium Inorganic materials 0.000 description 15
- 238000001953 recrystallisation Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 238000004080 punching Methods 0.000 description 14
- 230000004907 flux Effects 0.000 description 13
- 229910000976 Electrical steel Inorganic materials 0.000 description 10
- 229910052787 antimony Inorganic materials 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000005098 hot rolling Methods 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 229910052718 tin Inorganic materials 0.000 description 9
- 229910052720 vanadium Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 239000002436 steel type Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000030361 Girellinae Species 0.000 description 1
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
- H01F1/14783—Fe-Si based alloys in the form of sheets with insulating coating
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/024—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present invention relates to a rotating electric machine, a non-oriented electrical steel sheet, a laminated core, a method for manufacturing a rotating electric machine, and a method for manufacturing a laminated core.
- stator core material the non-oriented magnetic steel sheets before lamination that constitute the stator core
- rotor core material the non-oriented magnetic steel sheets that constitute the rotor core
- a combination of an iron core and a rotor core is sometimes called a motor core.
- Magnetic steel sheets are used as core materials for rotating electric machines.
- rotating electrical machines are used as drive motors mounted on hybrid vehicles, fuel cell vehicles, electric vehicles, and the like. Both low noise and high torque are required for motors for driving automobiles in the future.
- the noise of the motor is mainly caused by non-uniform magnetic attraction force. Further, if the gap between the stator and the rotor becomes uneven due to eccentricity of the rotor, etc., the magnetic attractive force becomes uneven, which causes an increase in motor noise.
- Patent Document 1 proposes a non-oriented electrical steel sheet with small magnetic anisotropy and high magnetic flux density, which is effective for improving the efficiency of an actual motor and reducing noise during rotation.
- magnetic flux flows through the air gap between the stator and rotor sections, and the interaction of this magnetic flux produces torque in the rotor.
- the present invention provides a rotating electrical machine that achieves both low noise and high torque required for a motor for driving an automobile, a non-oriented electrical steel sheet suitable as a material for the rotor and stator of such a rotating electrical machine, and a rotating electrical machine. It is an object of the present invention to provide a laminated core formed by laminating non-oriented electrical steel sheets and suitable for use in a stator or rotor, and a method for manufacturing the same.
- Motor noise is mainly caused by uneven magnetic attraction between the stator and rotor.
- the gap between the stator and the rotor becomes uneven due to eccentricity of the rotor or the like, the magnetic attractive force also becomes uneven, resulting in increased noise.
- the ⁇ 111 ⁇ ⁇ uvw> orientation of a non-oriented electrical steel sheet has a small anisotropy of the Young's modulus (proportional coefficient of elongation and stress in the elastic deformation region) in the sheet in-plane direction.
- Young's modulus proportional coefficient of elongation and stress in the elastic deformation region
- the inventors of the present invention conducted further studies and found that magnetic steel sheets enriched in the ⁇ 111 ⁇ 211> orientation (non-oriented magnetic steel sheets) were used as core materials for rotors of PM (Permanent Magnet) motors.
- the present inventors have decided to use an electromagnetic steel sheet (non-oriented electromagnetic steel sheet) enriched in the ⁇ 411 ⁇ 011> orientation, which has excellent magnetic properties, as the core material of the stator.
- an electromagnetic steel sheet non-oriented electromagnetic steel sheet
- ⁇ lmn ⁇ uvw> represents the crystal orientation.
- ⁇ lmn ⁇ indicates the Miller index in the direction parallel to the normal direction of the rolled surface
- ⁇ uvw> indicates the Miller index in the direction parallel to the rolling direction in the manufacturing process of the electrical steel sheet.
- the present invention is intended to control rotational torque fluctuations caused by the in-plane anisotropy of the properties of an electrical steel sheet, the integrated azimuthal strength in the rolling direction is also included in the specification.
- a rotating electrical machine has a stator, a rotor, and a housing that houses the stator and the rotor, and the base material steel plate of the non-oriented electrical steel plate included in the stator is ⁇ 111 ⁇ ⁇ 211> orientation strength A is less than 15, and ⁇ 111 ⁇ ⁇ 211> orientation strength B of the base steel sheet of the non-oriented electrical steel sheet included in the rotor is 2 to 30 , and the A and the B satisfy the relationship of B/A>1.0, and the ⁇ 411 ⁇ ⁇ 011> orientation strength of the base steel plate of the non-oriented electrical steel plate included in the stator is C , 2 to 50, and D, which is the ⁇ 411 ⁇ ⁇ 011> orientation strength of the base material steel sheet of the non-oriented electrical steel sheet included in the rotor, is 1 to 40, and the C and the D satisfies the relationship of C / D >
- Al 0.0001 to 1.0000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu, and one selected from the group consisting of Au or Multiple types: 0.1000 to 5.0000% in total, Cr: 0 to 2.0000%, Sn: 0 to 0.4000%, Sb: 0 to 0.4000%, P: 0 to 0.4000%, It has a chemical composition containing Ti: 0 to 0.1000%, Nb: 0 to 0.1000%, Zr: 0 to 0.1000%, V: 0 to 0.1000%, and the balance being Fe and impurities. .
- the difference in the total Al content is within 0.20% by mass, and the average grain size of the non-oriented electrical steel sheets included in the stator is greater than the average grain size of the non-oriented electrical steel sheets included in the rotor. can also be large.
- a non-oriented electrical steel sheet includes a base steel sheet and an insulating coating formed on the surface of the base steel sheet, wherein the base steel sheet contains, by mass%, C: 0.0100% or less, Si: 0.5000 to 4.0000%, sol.
- the base material steel sheet has a ⁇ 111 ⁇ 211> orientation strength of less than 15 and a ⁇ 411 ⁇ 011> orientation strength of 2 to 50.
- a non-oriented electrical steel sheet includes a base material steel sheet and an insulating coating formed on the surface of the base material steel sheet, and the base material steel sheet contains, by mass%, C: 0.0100% or less, Si: 0.5000 to 4.0000%, sol.
- the base steel sheet has a ⁇ 111 ⁇ 211> orientation strength of 2 to 30 and a ⁇ 411 ⁇ 011> orientation strength of 1 to 40.
- a laminated core according to another aspect of the present invention is formed by laminating the non-oriented electrical steel sheets according to [8] above.
- a laminated core according to another aspect of the present invention is formed by laminating the non-oriented electrical steel sheets according to [9] above.
- a method of manufacturing a laminated core according to another aspect of the present invention comprises the steps of processing and laminating the non-oriented electrical steel sheets according to [8] above.
- a method of manufacturing a laminated core according to another aspect of the present invention comprises the steps of processing and laminating the non-oriented electrical steel sheets according to [9] above.
- a method of manufacturing a rotating electrical machine according to another aspect of the present invention includes the step of assembling the laminated core described in [10] above and the laminated core described in [11] above.
- a non-oriented electrical steel sheet suitable as a material for a rotating electrical machine that achieves both low noise and high torque required for motors for driving automobiles, and rotors and stators of such rotating electrical machines.
- a laminated core formed by laminating non-oriented electrical steel sheets which is suitably used for stators or rotors of rotary electric machines.
- the rotary electric machine according to the above aspect of the present invention uses an electromagnetic steel sheet with enriched ⁇ 111 ⁇ 211> orientation as a rotor core material to reduce the anisotropy of the Young's modulus in the plate in-plane direction, and By suppressing the anisotropic deformation of the rotor core material in the radial direction due to the centrifugal force generated when the rotor rotates, the gap between the stator and the rotor can be kept constant, thereby suppressing motor noise.
- an electromagnetic steel sheet with enriched ⁇ 411 ⁇ 011> orientation as the core material of the stator, the torque of the motor can be increased. Therefore, the rotary electric machine according to the aspect of the present invention can achieve both low noise and high torque.
- a rotating electric machine according to an embodiment of the present invention rotating electric machine according to the present embodiment
- a non-oriented electrical steel sheet according to an embodiment of the present invention non-oriented electrical steel sheet according to the present embodiment
- the present invention will be described below.
- a laminated core according to one embodiment of the invention (laminated core according to the present embodiment) and a method for manufacturing the same will be described.
- the notation "a to b" for numerical values a and b means "a or more and b or less". In such notation, when a unit is attached only to the numerical value b, the unit is applied to the numerical value a as well.
- a rotary electric machine has the following configuration. having a stator, a rotor, and a housing housing the stator and the rotor; A, which is the ⁇ 111 ⁇ 211> orientation strength of the base material steel sheet of the non-oriented electrical steel sheet included in the stator, is less than 15, and the ⁇ 111 ⁇ 211> base material steel sheet of the non-oriented electrical steel sheet included in the rotor 211> B, which is the azimuthal strength, is 2 to 30, and the A and the B satisfy the relationship of B/A>1.0, C, which is the ⁇ 411 ⁇ ⁇ 011> orientation strength of the base material steel sheet of the non-oriented electrical steel sheet included in the stator, is 2 to 50, and the base material steel sheet of the non-oriented electrical steel sheet included in the rotor has ⁇ 411 ⁇ ⁇ 011> D, which is the azimuthal intensity, is 1 to 40, and the C and the D satisfy the relationship of C/D
- the non-oriented electromagnetic steel sheets included in the rotor (rotor core material) and the non-oriented electromagnetic steel sheets included in the stator (stator core material) are respectively the non-oriented electromagnetic steel sheets according to the present embodiment.
- a rotating electrical machine has at least a stator, a rotor, and a housing that houses the stator and the rotor.
- the stator, rotor, and housing are not particularly limited in terms of their shapes and configurations, and have ordinary shapes and configurations.
- a non-oriented electrical steel sheet according to this embodiment includes a base material steel sheet and an insulating coating formed on the surface of the base material steel sheet.
- the non-oriented electrical steel sheet according to the present embodiment is particularly characterized by the chemical composition and texture (orientation strength in each direction) of the base material steel sheet.
- the ⁇ 111 ⁇ 211> orientation strength of the base material steel sheet of the non-oriented electrical steel sheet mainly represents the integrated strength in the ⁇ 111 ⁇ orientation where the anisotropy of the Young's modulus in the sheet in-plane direction is relatively small. Considering the reduction of the anisotropy in the in-plane direction of the plate due to the crystal orientation, ideally, it is considered preferable to have a completely random texture.
- the accumulation in the plate in-plane orientation related to that plane orientation is randomized, for example, ⁇ 100 ⁇ ⁇ 0vw>, and the accumulation intensity for v and w It is considered preferable to make the change in the integrated intensity in the plane of the plate uniform and random even in the ⁇ 111 ⁇ orientation.
- an electrical steel sheet manufactured through general casting, rolling, and annealing (heat treatment) it is unavoidable that the base material steel sheet has a considerable amount of accumulation in a specific orientation, and the ideal randomization as described above is achieved.
- the ⁇ 111 ⁇ ⁇ 211> orientation of the base steel sheet Strength is an orientation that should be reliably controlled as intended in general electrical steel sheets, and is considered to be a very effective index for achieving suppression of anisotropy of Young's modulus in the sheet in-plane direction. It's becoming Furthermore, the ⁇ 111 ⁇ 211> direction intensity is an effective index for evaluating the magnetic properties of the core material of the stator, and this embodiment uses this direction as one rule for obtaining the effect.
- the ⁇ 411 ⁇ ⁇ 011> orientation strength of the base steel sheet of the electrical steel sheet mainly indicates that the axis of easy magnetization is close to the in-plane direction, and therefore the magnetic properties are excellent.
- the axis of easy magnetization is the direction in which magnetization is easiest among the magnetic anisotropy of the crystal. direction). Therefore, in this embodiment, this orientation is also used as one rule for obtaining an effect.
- the azimuth strength of the base material steel sheet of the electromagnetic steel sheet may be simply expressed as the azimuth strength of the electromagnetic steel sheet (non-oriented electromagnetic steel sheet), but even in this case, it means the azimuth strength of the base material steel sheet.
- the term "orientation intensity" indicates how many times the diffraction intensity is compared to when the crystal orientation is random. That is, for example, the ⁇ 111 ⁇ ⁇ 211> orientation intensity indicates how many times the diffraction intensity of the ⁇ 111 ⁇ ⁇ 211> orientation when measured by EBSD is compared to when the crystal orientation is random. is.
- the strength of ⁇ 111 ⁇ 211>direction and the strength of ⁇ 411 ⁇ 011>direction are first measured using non-directional electromagnetic waves, which are the core materials of the stator and the rotor.
- the rolled surface is polished so that the center of the plate thickness of the base steel plate of the steel plate is exposed, and the polished surface is observed with EBSD (Electron Back Scattering Diffraction) for an area of 960000 ⁇ m 2 or more. conduct. Observation may be performed in a total area of 960000 ⁇ m 2 or more, for example, in a range of 800 ⁇ m ⁇ 1200 ⁇ m or more. If the range does not fit within the field of view of the measurement magnification, observation may be performed at several locations divided into several small sections, for example, an area of 200 ⁇ m ⁇ 600 ⁇ m or more may be observed at 8 locations or more. . It is preferable to set the step interval at the time of measurement to 1 ⁇ m. The upper limit of the step interval is 1/10 of the average grain size. ⁇ 111 ⁇ 211> azimuth intensity and ⁇ 411 ⁇ 011> azimuth intensity are obtained from EBSD observation data.
- Observation data is analyzed using OIM Analysis software (manufactured by TSL) to create an ODF (Orientation Distribution Function), and from the values thereof ⁇ 111 ⁇ ⁇ 211> azimuth intensity and ⁇ 411 ⁇ ⁇ 011> azimuth intensity Ask for
- the ⁇ 111 ⁇ 211> orientation strength (A) of the base steel plate of the non-oriented electrical steel plate, which is the iron core material of the stator is in the range of less than 15. If the ⁇ 111 ⁇ 211> azimuthal strength (A) exceeds 15, the magnetic properties deteriorate.
- the range of ⁇ 111 ⁇ 211> azimuthal intensity (A) is preferably 1-3.
- the ⁇ 111 ⁇ 211> orientation strength (B) of the base steel plate of the non-oriented electrical steel plate, which is the iron core material of the rotor is in the range of 2-30.
- the ⁇ 111 ⁇ 211> orientation strength (B) is less than 2, the in-plane anisotropy of the Young's modulus increases, resulting in increased noise during rotation.
- the ⁇ 111 ⁇ 211> azimuth intensity (B) exceeds 30, the magnetic permeability will decrease and the motor efficiency will decrease.
- the range of azimuthal strength (B) is preferably 10-30.
- the non-oriented magnetic steel sheets that are the iron core material of the stator and the non-oriented magnetic steel sheets that are the iron core material of the rotor each have the ⁇ 111 ⁇ 211> orientation strength of the base steel sheet. It is necessary that the respective azimuth intensities A and B satisfy the relationship of B/A>1.0 while having the above range.
- a and B have a relationship of B/A>1.0, the loss generated in the stator core, which is susceptible to the magnetic properties of the core material, can be reduced, and the effects of deformation due to centrifugal force accompanying rotation can be reduced. It is possible to simultaneously reduce the noise generated in the iron core of the rotor, which is susceptible to noise, and improve the motor characteristics.
- the rotor core material is an electromagnetic steel sheet that is disadvantageous in terms of deformation against centrifugal force, and an electromagnetic steel sheet that is disadvantageous in terms of magnetic properties. is applied as the stator core material, motor loss increases.
- the ⁇ 411 ⁇ ⁇ 011> orientation strength (C) of the base steel plate of the non-oriented electrical steel plate, which is the iron core material of the stator is in the range of 2-50. If the azimuth strength (C) is less than 2, the magnetic properties deteriorate and the motor properties deteriorate. On the other hand, if the ⁇ 411 ⁇ 011> orientation strength (C) exceeds 50, production becomes difficult.
- the range of azimuthal strength (C) is preferably 5-30.
- the ⁇ 411 ⁇ 011> orientation strength (D) of the base material steel plate of the non-oriented electrical steel plate, which is the iron core material of the rotor is 1-40.
- the ⁇ 411 ⁇ 011> azimuthal strength (D) exceeds 40, the in-plane anisotropy of the Young's modulus increases and noise increases.
- the azimuth strength (D) is less than 1, heat is likely to be generated inside the rotor, demagnetizing the permanent magnets, and possibly deteriorating the characteristics of the motor.
- the range of ⁇ 411 ⁇ 011> azimuthal intensity (D) is preferably 3-20.
- the core material of the stator and the core material of the rotor each have the above-described ⁇ 411 ⁇ 011> azimuth strength range, and at the same time, each It is necessary that C and D, which are azimuth intensities, satisfy the relationship of C/D>1.0. If C and D have a relationship of C/D > 1.0, the magnetic characteristics of the stator core are likely to be affected by the magnetic characteristics of the core material, and deformation due to centrifugal force accompanying rotation is likely to be affected. It is possible to simultaneously reduce the noise generated in the iron core of the rotor.
- the azimuth strength of the base material steel sheets of the stator, the rotor, and the respective core materials (non-oriented electrical steel sheets) will be described.
- the ⁇ 111 ⁇ 211> orientation intensity and the ⁇ 411 ⁇ 011> orientation intensity defined in this embodiment are roughly in a trade-off relationship.
- the ⁇ 111 ⁇ 211> orientation is an unfavorable orientation for magnetic properties
- the ⁇ 411 ⁇ 011> orientation is a favorable orientation. Therefore, in the present embodiment, the non-oriented electrical steel sheet, which is the iron core material of the stator, is controlled to weaken the strength in the ⁇ 111 ⁇ 211> orientation and at the same time strengthen the strength in the ⁇ 411 ⁇ 011> orientation.
- changes in the texture during the steel sheet manufacturing process due to cold rolling and annealing are such that ⁇ 111 ⁇ A situation where an increase in the 211> orientation is accompanied by a decrease in the ⁇ 411 ⁇ 011> orientation and a situation where an increase in the ⁇ 411 ⁇ 011> orientation is accompanied by a decrease in the ⁇ 111 ⁇ 211> orientation is observed.
- the ⁇ 111 ⁇ ⁇ 211> orientation strength (A) of the base steel sheet is weakened, and the ⁇ 411 ⁇ ⁇ 011> orientation strength
- A/C ⁇ 1.0 is likely to be established for the core material of the stator.
- the iron core material of the stator preferably satisfies A/C ⁇ 1.0. More preferably A/C ⁇ 0.8, still more preferably A/C ⁇ 0.6.
- the non-oriented electrical steel sheet that is the iron core material of the rotor control is performed so that the ⁇ 111 ⁇ ⁇ 211> orientation strength (B) of the base steel sheet is strengthened and the ⁇ 411 ⁇ ⁇ 011> orientation strength (D) is weakened.
- B/D>1.0 is likely to hold for the iron core material of the rotor.
- the iron core material of the rotor satisfies B/D>1.0. More preferably B/D>1.5, still more preferably B/D>2.0.
- the in-plane anisotropy of the Young's modulus is large in this orientation, if an electromagnetic steel sheet with high strength in the ⁇ 411 ⁇ 011> orientation is used as the core material for the rotor, the anisotropic deformation, vibration occurs and noise increases.
- the non-oriented electrical steel sheet with high ⁇ 411 ⁇ ⁇ 011> orientation strength is used only as the core material of the stator, and the ⁇ 411 ⁇ ⁇ 011> orientation strength is used as the core material of the rotor. is relatively low and the in-plane anisotropy of Young's modulus is small. As a result, vibration is suppressed and noise is reduced.
- the non-oriented electrical steel sheet which is the iron core material of the rotor of the rotary electric machine according to the present embodiment, further has ⁇ 111 ⁇ 211> azimuth strength (B) and ⁇ 111 ⁇ 011> azimuth strength (E) of B/ It preferably satisfies the relationship of E>1.0.
- the ⁇ 411 ⁇ 011> orientation with large in-plane anisotropy and the ⁇ 111 ⁇ 211> orientation with small in-plane anisotropy are controlled.
- the ⁇ 111 ⁇ ⁇ 011> orientation tends to develop.
- the ⁇ 111 ⁇ orientation has the same in-plane orientation ⁇ 011> as the ⁇ 410 ⁇ ⁇ 011> orientation.
- the 011> orientation is more disadvantageous than the ⁇ 111 ⁇ 211> orientation for overall reduction of in-plane anisotropy.
- B/E>1.0 in the non-oriented electrical steel sheets included in the rotor More preferably B/E>1.5, still more preferably B/E>2.0.
- the non-oriented electrical steel sheet which is the iron core material of the stator, further includes ⁇ 411 ⁇ 011> directional strength (C) of the base material steel sheet and ⁇ 100 ⁇ 011> of the base material steel sheet.
- the azimuthal strength (F) preferably satisfies the relationship of C/F>1.0.
- the ⁇ 100 ⁇ 011> orientation has a large increase in core loss with respect to compressive stress.
- There are several methods for fixing the stator but most of them apply compressive stress to the iron core of the stator. Therefore, it is better to increase ⁇ 411 ⁇ 011>, which has low sensitivity to compressive stress. More preferably C/F>1.5, still more preferably C/F>2.0.
- the chemical composition of the base material steel sheet of the non-oriented electrical steel sheet that is the core material of the stator and the non-oriented electrical steel sheet that is the core material of the rotor of the rotating electric machine according to the present embodiment is determined from the manufactured non-oriented electrical steel sheet. Assuming that a stator core material and a rotor core material that satisfy each azimuth strength requirement can be obtained, it is preferable to have the following chemical compositions, respectively. "%" in the chemical composition description means "% by mass".
- the non-oriented electrical steel sheet that is the core material of the stator and the non-oriented electrical steel sheet that is the core material of the rotor may have the same chemical composition of the base steel sheet. , may be different, as described below.
- C (C: 0.0100% or less) C is an element that increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.0100%. Therefore, the C content should be 0.0100% or less. A reduction in the C content also contributes to the uniform improvement of the magnetic properties in all directions within the plate surface.
- the lower limit of the C content is not particularly limited, it is preferably 0.0005% or more in consideration of the cost of decarburization treatment during refining.
- Si 0.5000 to 4.0000%
- Si is an element that increases electrical resistance, reduces eddy current loss, reduces iron loss, and increases the yield ratio to improve the punching workability of the iron core. If the Si content is less than 0.5000%, these effects cannot be sufficiently obtained. Therefore, the Si content should be 0.5000% or more.
- the Si content is preferably 0.9000% or more, more preferably 1.5000% or more.
- the Si content exceeds 4.0000%, the magnetic flux density is lowered, the punching workability is lowered due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content should be 4.0000% or less.
- Si is an element contained in a relatively large amount in an electrical steel sheet. have a large impact.
- the Si content of the base steel sheet of the non-oriented electrical steel sheet used as the core material of the stator is higher than that of the non-oriented electrical steel sheet used as the core material of the rotor.
- the presence or absence of transformation due to the Si content in the steel plate manufacturing process can be used to control the above-mentioned texture. It is more preferable to use a transformation chemical composition of Si.
- Al is an element that increases electrical resistance, reduces eddy current loss, and reduces iron loss. Al also contributes to improving the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density. sol. If the Al (acid-soluble Al) content is less than 0.0001%, these functions and effects cannot be sufficiently obtained. Al also has the effect of promoting desulfurization in steelmaking. Therefore, sol. Al content shall be 0.0001% or more. On the other hand, sol. If the Al content exceeds 1.0000%, the magnetic flux density is lowered, the yield ratio is lowered, and the punching workability is lowered. Therefore, sol. Al content is 1.0000% or less.
- the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A/m.
- S is not an essential element but an element contained as an impurity in steel, for example. S inhibits recrystallization and grain growth during annealing by precipitating as fine MnS. Therefore, the lower the S content, the better. The increase in iron loss and the decrease in magnetic flux density due to such inhibition of recrystallization and grain growth are remarkable when the S content exceeds 0.0100%. Therefore, the S content is set to 0.0100% or less.
- the lower limit of the S content is not particularly limited, it is preferably 0.0003% or more in consideration of the cost of desulfurization treatment during refining.
- N 0.0100% or less
- N is an element that degrades magnetic properties. Therefore, the lower the N content, the better. If the N content exceeds 0.0100%, the adverse effect becomes remarkable, so the N content is made 0.0100% or less.
- the lower limit of the N content is not particularly limited, it is preferably 0.0010% or more in consideration of the cost of denitrification treatment during refining.
- Mn, Ni, Co, Pt, Pb, Cu, and Au must contain at least one or more of these elements in a total amount of 0.1000% or more.
- the content of at least one or more of these elements is more preferably 0.2000% or more in total. More preferably, the total is 1.0000% or more.
- the total content of these elements exceeds 5.0000%, the cost increases and the magnetic flux density may decrease. Therefore, at least one of these elements should be 5.0000% or less in total. Preferably, it is 4.0000% or less.
- Cr is an element that improves corrosion resistance, high-frequency characteristics, and texture. Cr does not need to be contained and the lower limit of the Cr content is 0%. Although the effect of containing Cr can be obtained even in a very small amount, the content is preferably 0.0010% or more, more preferably 0.0020% or more, in order to reliably obtain the effect of containing Cr. , more preferably 0.0200% or more, more preferably 0.1000% or more. On the other hand, when the Cr content exceeds 2.0000%, Cr forms carbonitrides, and the carbonitrides refine the crystal grain size, increasing iron loss. Therefore, the Cr content is set to 2.0000% or less.
- Sn and Sb are elements that improve the texture after cold rolling and recrystallization and improve the magnetic flux density. Therefore, these elements can be contained as needed. 1 selected from the group consisting of 0.0200 to 0.4000% Sn, 0.0200 to 0.4000% Sb, and 0.0200 to 0.4000% P for improving magnetic properties It is preferred to contain a species or species. On the other hand, excessive Sn and Sb embrittle the steel. Therefore, both the Sn content and the Sb content should be 0.4000% or less. Also, P can be contained in order to ensure the hardness of the steel sheet after recrystallization, but when contained excessively, it causes embrittlement of the steel. Therefore, the P content should be 0.4000% or less.
- Ti and Nb are elements that fix and reduce solute C and solute N as precipitates, thereby changing the texture after cold rolling and recrystallization.
- the inclusion acts to increase ⁇ 111 ⁇ 211> orientation intensity and decrease ⁇ 411 ⁇ 011> orientation intensity.
- it is preferable to contain at least the equivalent amount of C content and N content and generally Ti and Nb are each 0.0200% or more, more preferably 0.0400% or more. contain. However, both the Ti content and the Nb content should be 0.1000% or less.
- the inclusion increases the ⁇ 111 ⁇ 211> orientation intensity and decreases the ⁇ 411 ⁇ 011> orientation intensity.
- Ti and Nb are preferably contained more in the non-oriented electrical steel sheet used as the core material of the rotor.
- the heating rate of the finish annealing is increased to 100° C./sec or more when performing the finish annealing step. I can't get it. Without such a heating rate, the ⁇ 411 ⁇ 011> orientation is not developed, which is not preferable. That is, when Ti and/or Nb are included, manufacturability is lowered. Therefore, from this point, it is preferable that the Ti content is less than 0.0100% and the Nb content is less than 0.0100%. More preferably, the total of Ti content, Nb content, V content described later, and Zr content is less than 0.0100%.
- the chemical composition of the base material steel sheet of the non-oriented electrical steel sheet according to the present embodiment may further contain V and/or Zr as selective elements in addition to the above elements.
- Both Zr and V are elements having the effect of suppressing recrystallization, increasing ⁇ 111 ⁇ 211> orientation strength, and decreasing ⁇ 411 ⁇ 011> orientation strength.
- the Zr content and the V content are preferably 0.0100% or more.
- both the Zr content and the V content should be 0.1000% or less. It is preferably 0.0500% or less, more preferably less than 0.0100%.
- the Nb content, Zr content, Ti content, V content, C content, and N content in mass % of the base material steel plate of the non-oriented electrical steel plate included in the stator is Nb s , Zr s , Ti s , V s , C s , N s , satisfying 0 ⁇ Nb s /93 + Zr s /91 + Ti s /48 + V s /51-(C s /12 + N s /14) preferably.
- the effect of increasing the ⁇ 411 ⁇ 011> orientation intensity is obtained.
- the lower limit is not particularly limited, but may be, for example, Nb s /93+Zr s /91+Ti s /48+V s /51 ⁇ (C s /12+N s /14) ⁇ 1.55 ⁇ 10 ⁇ 3 .
- the Nb content, Zr content, Ti content, V content, C content, and N content in mass% of the base material steel plate of the non-oriented electrical steel plate included in the rotor are respectively Nb r and Zr r , Ti r , V r , Cr , N r , It is preferable to satisfy 0 ⁇ Nb r /93+Zr r /91+T r /48+V r /51 ⁇ (C r /12+N r /14) ⁇ 5.0 ⁇ 10 ⁇ 3 . In this case, the effect of increasing the ⁇ 111 ⁇ 211> orientation strength is obtained.
- impurities refer to elements that are mixed from raw materials or during the manufacturing process and do not clearly affect the characteristics of the rotating electric machine according to the present embodiment.
- impurities include B, O, Mg, Ca, Nd, Bi, W, Mo, Nb, and Y, in addition to the elements described above.
- the content of these elements is preferably, for example, 0.10% or less.
- the total amount of impurities is preferably 5.00% or less, more preferably 1.00% or less.
- the chemical composition of the base material steel plate of the non-oriented electromagnetic steel sheet included in the stator and the chemical composition of the base material steel sheet of the non-oriented electrical steel sheet included in the rotor may be the same.
- Si, Ti, and Nb are Si content, Ti content, and Nb content of the base material steel plate of the non-oriented electrical steel plate included in the stator, respectively, in mass % .
- Si r , Ti r , and Nb r are Si r , Ti r , and Nb r, respectively, Si s /Si It is preferable to satisfy any one of r >1.0, Ti r /Ti s >1.0, and Nb r /Nb s >1.0. When any one of Si s / Sir >1.0, T r /Ti s >1.0, and Nb r /Nb s >1.0 is satisfied, the effect of further reducing the motor loss is obtained.
- the difference in total Al content is preferably within 0.20% by mass (the absolute value of the difference is 0.20% by mass or less). In this case, including the case where the stator and rotor are manufactured from the same material, there is an advantage that work efficiency and cost can be reduced.
- the chemical composition of the base steel sheet is obtained by the following method. Grind the entire surface of the test material with a grinder or the like, wash it with acetone, and cut it with a nibbler or the like to prepare a sample. C and S are measured by the combustion-infrared absorption method. N is measured by the inert gas fusion-thermal conductivity method. sol. Al is measured by acid dissolution-ICP emission spectroscopy. O is measured by an inert gas fusion-nondispersive infrared absorption method. Other elements are measured by ICP emission spectrometry.
- the insulating film on the surface may be removed by mechanical processing such as polishing as described above, or may be removed chemically using hot alkali.
- the non-oriented electrical steel sheets are removed from the stator or rotor by dismantling the rotating electrical machine. After taking it out, the chemical composition may be measured as described above.
- the detailed method of dismantling the rotating electric machine differs depending on the actual rotating electric machine, but as an example, first, the rotating electric machine is taken out from the machine in which the rotating electric machine is installed. After that, a part of the housing (case) of the rotary electric machine is removed by machining. Then, the stator and rotor are separated.
- the rotor has a permanent magnet, a magnetic attractive force is generated, so it is desirable to insert a spacer such as a plastic sheet between the stator and the rotor. Then remove the stator from the housing. Since the stator has windings, remove the windings or cut a part of them. Samples are taken from the top of the stator laminations or from the rest of the steel plate that was damaged when the windings were cut. In many cases, lamination is fastened by caulking or welding. In the case of caulking, it is possible to separate the lamination by inserting a cutter blade into the gap between the laminated steel plates.
- the lamination can be peeled off by cutting the welded portion with a hand grinder or the like.
- Rotors often have coil ends made of materials other than electromagnetic steel sheets. Therefore, the rotor is separated into two parts by machining using a non-magnetic blade near the longitudinal center of the rotor. The laminations are then stripped in the same manner as the stator described above. In doing so, it is desirable to exclude areas affected by machining.
- the average grain size of the base material steel plate of the non-oriented electromagnetic steel sheets included in the stator is larger than the average grain size of the base material steel plate of the non-oriented electrical steel sheets included in the rotor. is preferred.
- the rotor has a greater ⁇ 111 ⁇ 211> azimuth intensity
- the stator has a greater ⁇ 411 ⁇ 011> azimuth intensity.
- the average crystal grain size can be obtained by the following method.
- As the average grain size an average value of grain sizes measured by a cutting method in the sheet thickness direction and the rolling direction in a vertical cross-sectional structure photograph may be used.
- An optical microscopic photograph can be used as the longitudinal section structure photograph, and for example, a photograph taken at a magnification of 50 times may be used.
- In the plate thickness direction it is preferable to count by subtracting 20 or more line segments for the entire plate thickness.
- As for the rolling direction it is preferable to draw 2 mm long line segments parallel to 1/4, 1/2 and 3/4 of the plate thickness.
- the calculation should be performed by the above method targeting only the recrystallized region.
- the non-oriented electrical steel sheet included in the stator is a steel sheet obtained by further heat-treating the non-oriented electrical steel sheet included in the rotor at 600° C. or higher. preferable.
- the magnetic characteristics are improved by removing the strain introduced by machining, and the motor characteristics are improved by improving the magnetic characteristics of the stator, which is easily affected by the magnetic characteristics of the iron core material.
- the thickness of the base material steel sheet of the non-oriented electrical steel sheet according to this embodiment is not necessarily limited, it is preferably 0.50 mm or less. If the thickness exceeds 0.50 mm, it is difficult to obtain excellent high-frequency iron loss. From the viewpoint of iron loss, a thinner plate thickness is more advantageous, so the thickness is preferably 0.35 mm or less, more preferably 0.20 mm or less, and even more preferably 0.15 mm or less. On the other hand, from the viewpoint of facilitating manufacturing, the thickness of the base material steel sheet of the non-oriented electrical steel sheet according to this embodiment is preferably 0.10 mm or more.
- an insulating coating is formed on the surface of the base material steel sheet.
- This insulating coating may be a known coating.
- a coating made of Al 2 O 3 is exemplified.
- the laminated core according to the present embodiment includes a base steel plate and an insulating coating formed on the surface of the base steel plate. ⁇ 4.0000%, sol. Al: 0.0001 to 1.0000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu, and one selected from the group consisting of Au or Multiple types: 0.1000 to 5.0000% in total, Cr: 0 to 2.0000%, Sn: 0 to 0.4000%, Sb: 0 to 0.4000%, P: 0 to 0.4000%, It has a chemical composition containing Ti: 0 to 0.1000%, Nb: 0 to 0.1000%, Zr: 0 to 0.1000%, V: 0 to 0.1000%, and the balance being Fe and impurities.
- non-oriented electrical steel sheet (non-oriented electrical steel sheet according to the present embodiment)
- a laminated core formed by lamination, or including a base steel plate and an insulating coating formed on the surface of the base steel plate, in the base steel plate, in mass%, C: 0.0100% or less, Si: 0.5000 to 4.0000%, sol.
- Al 0.0001 to 1.0000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu, and one selected from the group consisting of Au or Multiple types: 0.1000 to 5.0000% in total, Cr: 0 to 2.0000%, Sn: 0 to 0.4000%, Sb: 0 to 0.4000%, P: 0 to 0.4000%, It has a chemical composition containing Ti: 0 to 0.1000%, Nb: 0 to 0.1000%, Zr: 0 to 0.1000%, V: 0 to 0.1000%, and the balance being Fe and impurities.
- non-oriented electrical steel sheet (non-oriented electrical steel sheet according to the present embodiment ) is a laminated core (rotor core) that is not laminated.
- the laminated core is manufactured by punching the non-oriented electrical steel sheets according to the present embodiment, laminating and bonding them. Chemical composition and texture do not change in this process. Therefore, the non-oriented electrical steel sheet included in the laminated core has the same chemical composition and texture as the non-oriented electrical steel sheet according to the present embodiment described above.
- the chemical composition and texture of the laminated core described above are the chemical composition and texture of the portion that was the base steel plate of the non-oriented electrical steel sheet.
- Non-oriented electrical steel sheets having predetermined ⁇ 111 ⁇ ⁇ 211> orientation strength and ⁇ 411 ⁇ ⁇ 011> orientation strength has a different range of preferred azimuthal strength can be obtained by controlling various conditions in the manufacturing process.
- non-oriented electrical steel sheet suitable for the stator core material and a non-oriented
- An example of a manufacturing method for separately producing an electromagnetic steel sheet will be described.
- the non-oriented electrical steel sheet according to the present embodiment is subjected to hot rolling, cold rolling, and if necessary, intermediate annealing, skin pass rolling, finish annealing, and stress relief annealing to produce a base steel sheet.
- it is manufactured by forming an insulating coating on the surface of the base steel plate after any of the steps described above.
- a non-oriented electrical steel sheet having predetermined ⁇ 111 ⁇ ⁇ 211> orientation strength and ⁇ 411 ⁇ ⁇ 011> orientation strength can be obtained by controlling various conditions in the manufacturing process, and is used as a stator core material.
- the preferred non-oriented magnetic steel sheet and the non-oriented magnetic steel sheet preferred as the core material of the rotor can be produced separately by the presence or absence of intermediate annealing, skin-pass rolling, finish annealing, and the like.
- intermediate annealing refers to annealing performed between cold rolling and skin pass rolling
- finish annealing refers to annealing performed after skin pass rolling. This finish annealing may be performed by a steel plate manufacturer or may be performed by a motor manufacturer (processing manufacturer) after the iron core is punched out.
- a steel material having the chemical composition described above is heated and hot rolled.
- the steel material is, for example, a slab produced by normal continuous casting.
- the heating temperature of the steel material is not limited, but standard conditions of 1000 to 1350° C., for example, can be adopted.
- Rough rolling and finish rolling of hot rolling are performed at a temperature of A r1 or higher. In other words, it is preferable to perform hot rolling so that the temperature (finishing temperature) when passing through the final pass of finish rolling is equal to or higher than the A r1 temperature.
- subsequent cooling transforms austenite ( ⁇ -iron) to ferrite ( ⁇ -iron), thereby refining the crystal structure.
- the A r1 temperature is obtained from the change in thermal expansion of the steel material (base material steel sheet) during cooling at an average cooling rate of 1° C./sec after heating to the A c3 temperature.
- the Ac1 temperature (the temperature at which the steel sheet transforms into the ⁇ phase) in the steel sheet used in the present invention is obtained from the change in thermal expansion of the steel material (steel sheet) during heating at an average heating rate of 1°C/sec.
- the finishing temperature is desirably 850° C. or higher. The reason for this is that if the finishing temperature is less than 850°C, it becomes difficult to control the shape of the steel sheet during hot rolling.
- the hot-rolled sheet is wound up without annealing.
- the ⁇ 411 ⁇ 011> orientation cannot be enriched in the subsequent steps.
- the temperature during winding is not limited, it is preferably more than 250° C. and 700° C. or less. By coiling the hot-rolled steel sheet after hot rolling at more than 250 ° C. and 700 ° C. or less, the crystal structure before cold rolling can be refined, and ⁇ 411 ⁇ with excellent magnetic properties during recrystallization. An effect that the ⁇ 011> orientation can be enriched can be obtained.
- the temperature during winding is more preferably 400 to 600°C, more preferably 400 to 480°C.
- the hot-rolled steel sheet is cold-rolled.
- cold rolling it is preferable to set the rolling reduction to 80.0 to 92.0%.
- the higher the rolling reduction the easier it is for ⁇ 411 ⁇ 011> oriented crystal grains to grow by subsequent recrystallization.
- the rolling reduction exceeds 92.0%, the load in cold rolling becomes high, resulting in an increase in cost.
- the rolling reduction in cold rolling is determined in consideration of skin-pass rolling, which will be described later, so as to achieve the required product plate thickness after skin-pass rolling.
- intermediate annealing is subsequently performed. No intermediate annealing is required.
- the recrystallization rate is 1 to 99%, preferably 50 to 99%, by controlling the temperature of the intermediate annealing below the A c1 temperature. If the intermediate annealing temperature is too low, sufficient bulging will not occur and ⁇ 411 ⁇ 011> oriented crystal grains will not grow sufficiently. preferable.
- the intermediate annealing temperature exceeds the A c1 temperature, austenite transformation occurs during annealing, and the frequency of occurrence of grains having a crystal orientation other than the ⁇ 411 ⁇ 011> orientation increases, and there is a concern that the effects of the invention will be impaired.
- the intermediate annealing is performed below the A c1 temperature. If the chemical composition is a non-transformation system, the intermediate annealing temperature should be 800° C. or lower. The duration of such intermediate annealing is preferably 5 to 60 seconds.
- a recrystallization rate of 50% or more after intermediate annealing is preferable from the viewpoint that ⁇ 411 ⁇ ⁇ 011> oriented grains grow more easily after finish annealing and stress relief annealing.
- the recrystallization rate of the steel sheet after intermediate annealing can be specified by the following procedure.
- a grain that satisfies either one of the following conditions (a) and (b) is determined as a non-recrystallized portion, and the ratio of non-recrystallized portion is calculated as the area of the non-recrystallized portion/the area of the entire observation field.
- the grain size of crystal grains exceeds 300 ⁇ m.
- the aspect ratio of grains is greater than 2, that is, (length in the rolling direction)/(length in the direction 90 degrees from the rolling direction)>2.
- skin pass rolling is performed next. Skin pass rolling may not be performed. Moreover, when intermediate annealing is not performed, skin pass rolling is performed after cold rolling. By performing skin-pass rolling, the ⁇ 111 ⁇ 211> orientation strength is increased, and the non-oriented electrical steel sheet is suitable as a core material for rotors.
- a preferable range of the rolling reduction of skin-pass rolling can be determined on the assumption that a steel sheet obtained by further performing finish annealing on a steel sheet subjected to skin-pass rolling as described later is used as a core material for a stator.
- a steel sheet in which bulging has occurred is lightly rolled and further annealed, ⁇ 411 ⁇ ⁇ 011> oriented crystal grains caused by bulging grow further.
- This is an example of a phenomenon commonly known as strain-induced grain boundary migration (hereinafter sometimes referred to as SIBM).
- SIBM strain-induced grain boundary migration
- the rolling reduction of skin pass rolling is less than 5%, the amount of strain accumulated in the steel sheet is small, so SIBM does not occur.
- the rolling reduction of skin pass rolling is more than 25%, the strain is too large, so recrystallization nucleation occurs instead of SIBM. Since ⁇ 111 ⁇ 211> crystal grains are generated more frequently in Nucleation, if this steel plate is used as a core material for a stator, the magnetic properties of the stator will deteriorate. From the viewpoint of sufficiently obtaining the effect from this point of view, it is more preferable to set the rolling reduction of skin pass rolling to 5 to 15%.
- the skin pass reduction ratio is 86 ⁇ Rm+0.2 ⁇ Rs ⁇ 92 and 5 ⁇ Rs ⁇ , where Rm is the reduction ratio (%) of cold rolling and Rs is the reduction ratio (%) during skin pass rolling. It is preferable to adjust the rolling reduction of cold rolling and skin pass rolling so as to satisfy 20.
- finish annealing After the skin pass rolling, the steel sheet is then subjected to finish annealing. Finish annealing may not be performed. When intermediate annealing and skin-pass rolling are not performed, finish annealing is performed on the steel sheet after cold rolling or after intermediate annealing. In order to obtain the effect of finish annealing, it is preferable to perform finish annealing on the steel sheet after skin pass rolling. In this case, finish annealing can be performed at a temperature and time at which strain imparted by skin pass rolling is released and recrystallization by SIBM occurs. The higher the annealing temperature, the shorter the processing time. However, the ⁇ transformation should be avoided, and the upper limit of the temperature is preferably less than the A c1 temperature.
- the temperature is 600 to less than A c1 ° C.
- the time is more than 0 seconds and 100 hours or less.
- the temperature is 600 to less than A c1 ° C.
- the time is more than 0 seconds and 100 hours or less.
- the temperature is 600 to less than A c1 ° C.
- the time is more than 0 seconds and 100 hours or less.
- the temperature is 600 to less than A c1 ° C.
- the time is more than 0 seconds and 100 hours or less.
- the time is 700 to less than Ac1 °C for 1 to 300 seconds
- a batch annealing furnace it is 600 to less than Ac1 °C for 20 to 1200 minutes.
- the steel sheet after finish annealing has an increased strength in the ⁇ 411 ⁇ 011> orientation, so it becomes a non-oriented electrical steel sheet suitable as a core material for stators.
- the heating rate in the final annealing is preferably 30° C./second or more in order to increase the ⁇ 411 ⁇ 011> orientation strength. More preferably, it is 100° C./second or higher, or 200° C./second or higher. Also, it may be 300° C./second or higher, 400° C./second or higher, or 500° C./second or higher.
- the base material steel sheet contains 0.010% or more of Ti, Nb, V, or Zr in total, if the heating rate in the finish annealing is less than 100°C/sec, the ⁇ 411 ⁇ ⁇ 011> orientation
- the heating rate is preferably 100° C./second or more because the effect of decreasing the strength is remarkable.
- the ⁇ 111 ⁇ ⁇ 211> azimuthal strength (A) of the stator core material and the ⁇ 111 ⁇ ⁇ 211> azimuth strength (B) of the rotor core material are B/A>1.0, and ⁇ 411 of the stator core material ⁇ ⁇ 011> orientation strength (C) and ⁇ 411 ⁇ ⁇ 011> orientation strength (D) of the core material of the rotor, it is difficult to satisfy the relationship of C/D>1.0.
- the ⁇ 411 ⁇ ⁇ 011> orientation grows by eating the ⁇ 111 ⁇ ⁇ 211> orientation, so the target B/A >1.0 and C/D>1.0.
- the non-oriented electrical steel sheet according to the present embodiment is subjected to molding and the like (for example, punching) in order to obtain a desired core member shape. Then, in some cases, stress relief annealing is performed to remove strain and the like caused by forming and the like.
- the finish annealing may be performed as stress relief annealing of the stator core. It is preferable to set the temperature of the stress relief annealing to about 800° C. and the time of the stress relief annealing to about 2 hours.
- the non-oriented electrical steel sheet according to the present embodiment after the last step of cold rolling, intermediate annealing, skin pass rolling, and finish annealing, before stress relief annealing, or after stress relief annealing, Form an insulating coating on the surface.
- the conditions for forming the insulating coating the same conditions as those for forming the insulating coating on conventional non-oriented electrical steel sheets may be adopted.
- non-oriented magnetic steel sheets which are the core material of the rotor
- hot-rolled non-oriented magnetic steel sheets which are the core material of the stator
- slabs with the same chemical composition are rolled under the same conditions (as the same plate).
- the steel plate that has undergone the skin pass process is manufactured and shipped by the steel plate manufacturer, and then the rotor core material and the stator core material are punched from the same steel plate by the motor manufacturer (processing manufacturer) (generally, integrated punching, etc.)
- the rotating electric machine of the present invention can be manufactured by using the rotor core without stress relief annealing and the stator core with stress relief annealing. Since the rotor core material and the stator core material are made separately in the stress relief annealing, which is the final stage of manufacturing the motor core, it is convenient in terms of distribution, steel sheet handling, and steel sheet yield, and is a very favorable method from an industrial point of view.
- the non-oriented electrical steel sheet included in the stator may be a steel sheet obtained by further subjecting the non-oriented electrical steel sheet included in the rotor to heat treatment (finish annealing or stress relief annealing) at 600 ° C. or higher. .
- heat treatment finish annealing or stress relief annealing
- the non-oriented magnetic steel sheet that is the core material of the rotor of the rotary electric machine according to the present embodiment and the non-oriented magnetic steel sheet hot-rolled that is the core material of the stator may be separately produced and obtained by a method other than the above.
- steel materials with different chemical compositions may be used for manufacture, and it is also possible to produce different products depending on hot rolling conditions, cold rolling conditions, and the like.
- the electromagnetic steel sheet (non-oriented electromagnetic steel sheet) manufactured in this manner is suitable as an iron core material for the stator or the rotor of the rotary electric machine according to the present embodiment.
- a steel sheet manufactured in such a manner that the accumulation in the ⁇ 111 ⁇ 211> orientation is suppressed and the accumulation in the ⁇ 411 ⁇ 011> orientation is promoted is an electromagnetic steel sheet suitable as a material for the core of a stator. , ⁇ 111 ⁇ and ⁇ 211> orientations.
- a steel sheet can be applied in consideration of the change in crystal orientation due to stress relief annealing.
- this embodiment A rotary electric machine according to the embodiment can be obtained.
- the steel plate yield may be disadvantageous compared to the method of punching the core material of the stator and the core material of the rotor from the above-mentioned one type of steel plate in that it is not a so-called integral punching.
- the texture of each steel sheet can be controlled completely independently, selecting an appropriate steel sheet is advantageous in terms of the magnitude of the effect.
- the laminated core according to the present embodiment has a ⁇ 111 ⁇ ⁇ 211> orientation strength of less than 15 and a ⁇ 411 ⁇ ⁇ 011> orientation strength of 2.
- a non-oriented electrical steel sheet as a material for the stator core, which is ⁇ 50, or ⁇ 111 ⁇ ⁇ 211> orientation strength is 2 to 30, and ⁇ 411 ⁇ ⁇ 011> orientation strength is 1 to 40
- non-oriented electrical steel sheets are used as the material for the rotor core.
- separate non-oriented electrical steel sheets are prepared for the stator and the rotor, and each of them is processed by punching and laminated.
- the same magnetic steel sheet for the stator and the rotor may be processed by punching, stacked, and subjected to strain relief annealing only for the stator.
- Known methods may be used for punching and lamination.
- the rotating electric machine according to the present embodiment is manufactured by winding the laminated core by a known method and putting it in a housing for assembly. At this time, the order of inserting the windings and the case may be reversed.
- Molten steel is cast to produce an ingot, hot rolled, pickled, and cold rolled.In some cases, one or more steps of intermediate annealing, skin pass rolling, and finish annealing are performed, and an electromagnetic steel sheet ( A non-oriented electrical steel sheet) was produced.
- Table 1 shows the chemical composition of each steel type of the obtained electrical steel sheet and the transformation temperature of the steel sheet. In the chemical composition, the content of impurities not explicitly shown in the table was 0.0010% or less for each, and 0.10% or less in total.
- a r1 (° C.) is the temperature at which ⁇ phase is transformed
- a c1 (° C.) is the temperature at which ⁇ phase is transformed.
- stator core and a rotor core for use in the evaluation motor were manufactured.
- some iron cores were subjected to stress relief annealing at 800° C. for 2 hours. Then, these iron cores were combined to manufacture a motor for evaluation, and the motor loss and noise were measured.
- FIG. 1 is a partial plan view of the motor.
- Motor 300 is an IPM motor based on the D model of the Institute of Electrical Engineers of Japan.
- the number of slots is 24 slots.
- the stator core 3 is fixed to the housing 301 by shrink fitting.
- the inner diameter of the stator core 3 is 55 mm ⁇ , and the gap between the rotor 302 and the stator core 3 is 0.5 mm.
- the stator core has 24 slots, the copper wire wound around the teeth of the stator core has 35 turns per turn, and the rotor magnet has a magnetic flux density Br of 1.25T.
- the loss (motor loss) (noise) In this example, the loss (motor loss (W)) and noise generated in the motor when it was driven at 1500 RPM for 60 minutes with a winding current having a peak value of 3 A and a phase angle of 30 degrees was determined.
- the loss of the motor was obtained by obtaining the electric power (W) required under the above operating conditions and the work (W) of the motor, and calculating the electric power - work. Power was measured using a wattmeter.
- the amount of work was obtained by attaching a torque meter to the end of the motor and calculating the amount of torque by the number of revolutions.
- Noise was measured in an anechoic room with a background noise of 16 dBA, with a sound level meter installed at a position 0.3 m from the iron core surface, and using A characteristics as auditory correction.
- Test No. 1 16, 21, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, and 61 based on the noise during operation of the motors of the same steel grade was evaluated for the difference against the reference using Tables 3-1 to 3-8 show the azimuth strength of each iron core material together with motor loss and noise (relative values).
- the azimuthal strength shown here is a measured value of the core material after the stress relief annealing when the stress relief annealing is performed after making the core.
- the effect of the present invention is evaluated by relative values for motor loss and noise in a motor in which the same steel plate is used for the stator core material and the rotor core material.
- a case in which a stator core material and a rotor core material are made of different steel sheets and whose motor loss and noise are smaller than those made of the same steel sheet (steel sheets of the same steel type and manufacturing conditions) is an example of the invention. Become.
- Test No. in Tables 3-1 to 3-8. 1, 16, 21, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, and 61 have the same steel grade for the iron core material of the stator and rotor.
- These are examples using steel sheets with the same strain relief annealing conditions, and these are comparative examples (reference A), comparative examples (reference B), comparative examples (reference D), comparative examples (reference F), and comparative examples.
- Test no. 1 to 15 are examples using steel type A listed in Table 1. No. 1, which is an example of the invention. 2 to 7, 10, 11, and 15 are lower in motor loss and noise than in the reference comparative example (reference A). Test no. 16-18 are examples using component B listed in Table 1. No.
- No. 17 is a cold rolling reduction ratio
- an invention example. 18 is an example in which the ⁇ 111 ⁇ 211> orientation strength of the stator core material is weakened and the ⁇ 411 ⁇ 011> orientation strength is increased by changing the heating rate.
- test no. Reference numeral 19 is an example in which a steel plate with increased strength in the ⁇ 111 ⁇ 211> orientation by containing Nb is applied as the core material of the rotor.
- Test no. 21-25 are examples using component D listed in Table 1.
- No. 1 which is an example of the invention.
- Test Nos. 22 to 25 used as standards. It can be seen that both the motor loss and the noise are lower than in No. 21 (comparative example (standard D)).
- Test no. 26 is a combination of a stator (D1) and a rotor (E1) made of steel plates.
- a steel plate with increased strength in the ⁇ 111 ⁇ 211> orientation by containing Ti was used as the core material of the rotor.
- Inventive Example No. 21 Comparative Example (Standard D)
- both motor loss and noise are lower than that of Example No. 21 (Comparative Example (Standard D)).
- 28, 29, 30 are rotors (D1), rotors (V1) or combinations of rotors (W1) for stators (A1).
- a metamorphic material low Si steel
- Both the motor loss and the noise are lower than in No. 21 (comparative example (reference D)).
- Test no. 31 to 32 are examples using steel type F listed in Table 1.
- Test No. which is an invention example. 32 is the reference test number. It can be seen that both the motor loss and the noise are lower than those of No. 31 (comparative example (standard F)).
- Test no. 33-34 are examples using the steel type G listed in Table 1.
- Test No. which is an invention example. 34 is the reference number. It can be seen that both the motor loss and the noise are lower than those of No. 33 (comparative example (reference G)).
- test no. 36 to 62 are examples using steel grades H to U listed in Table 1.
- Test no. Test Nos. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, and 62 are standards using similar steel grades, respectively. 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, and 61, both motor loss and noise are lower.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
本願は、2021年11月18日に、日本に出願された特願2021-187952号に基づき優先権を主張し、その内容をここに援用する。
この知見を基に、本発明者らがさらに検討した結果、{111}<211>方位に富化した電磁鋼板(無方向性電磁鋼板)をPM(Permanent Magnet)モータのロータの鉄心素材として用いることで、ロータの回転中の遠心力に対するロータの鉄心素材の鋼板の伸び変形の異方性が抑制され、騒音を低減できることが判明した。一般的に、{111}<211>方位は磁化しにくいためモータの鉄心素材としての利用は避けられるが、永久磁石で磁化を担保しているPMモータのロータの鉄心素材については、{111}<211>方位に富化した電磁鋼板の適用は大きな不利とはならない。
一方で、モータトルクを生じさせる磁化を鉄心素材の磁化により担保するステータの鉄心素材としては、{111}<211>方位に富化した電磁鋼板を用いるには不利である。そこで、本発明者らは、ステータの鉄心素材には磁気特性の優れた{411}<011>方位に富化した電磁鋼板(無方向性電磁鋼板)を用いることとし、ロータの鉄心素材とステータの鉄心素材とに関してそれぞれ異なる方位に富化した電磁鋼板を用いることで、これらを素材として用いて得られた回転電機において、低騒音化と高トルク化の両立が可能となることを見出した。
ここで、{lmn}<uvw>は結晶の方位を表す。{lmn}は圧延面の法線方向に平行な方向のミラー指数を指し、<uvw>は電磁鋼板製造工程での圧延方向に平行な方向のミラー指数を指す。また、本発明は電磁鋼板の特性の板面内異方性に起因する回転トルク変動を制御するものであるため、圧延方向への集積方位強度も含めて規定した。
[1]本発明の一態様に係る回転電機は、ステータと、ロータと、前記ステータおよび前記ロータを収容する筐体とを有し、前記ステータが含む無方向性電磁鋼板の母材鋼板の{111}<211>方位強度であるAが、15未満であり、前記ロータが含む無方向性電磁鋼板の母材鋼板の{111}<211>方位強度であるBが、2~30であって、且つ前記Aと前記Bとが、B/A>1.0の関係を満たし、前記ステータが含む前記無方向性電磁鋼板の前記母材鋼板の{411}<011>方位強度であるCが、2~50であり、前記ロータが含む前記無方向性電磁鋼板の前記母材鋼板の{411}<011>方位強度であるDが、1~40であって、且つ前記Cと前記Dとが、C/D>1.0の関係を満たし、前記ロータが含む前記無方向性電磁鋼板および前記ステータが含む前記無方向性電磁鋼板の、前記母材鋼板が、それぞれ、質量%で、C:0.0100%以下、Si:0.5000~4.0000%、sol.Al:0.0001~1.0000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、Cr:0~2.0000%、Sn:0~0.4000%、Sb:0~0.4000%、P:0~0.4000%、Ti:0~0.1000%、Nb:0~0.1000%、Zr:0~0.1000%、V:0~0.1000%、を含み、残部がFeおよび不純物からなる化学組成を有する。
[2]上記[1]に記載の回転電機は、前記ロータが含む前記無方向性電磁鋼板において、前記Bと{111}<011>方位強度であるEとが、B/E>1.0の関係を満たしてもよい。
[3]上記[1]または[2]に記載の回転電機は、前記ステータが含む前記無方向性電磁鋼板において、前記Cと{100}<011>方位強度であるFとが、C/F>1.0の関係を満たしてもよい。
[4]上記[1]~[3]のいずれか1項に記載の回転電機は、前記ステータが含む前記無方向性電磁鋼板と前記ロータが含む前記無方向性電磁鋼板との、前記母材鋼板におけるSi含有量、Mn含有量及びsol.Al含有量の合計の差が0.20質量%以内であり、前記ステータが含む前記無方向性電磁鋼板の平均結晶粒径が、前記ロータが含む前記無方向性電磁鋼板の平均結晶粒径よりも大きくてもよい。
[5]上記[1]~[4]のいずれか1項に記載の回転電機は、前記ステータが含む前記無方向性電磁鋼板の前記母材鋼板のSi含有量、Ti含有量、Nb含有量を、質量%で、それぞれSis、Tis、Nbsとし、前記ロータが含む前記無方向性電磁鋼板の前記母材鋼板のSi含有量、Ti含有量、Nb含有量を、それぞれSir、Tir、Nbrとしたとき、Sis/Sir>1.0、Tir/Tis>1.0、Nbr/Nbs>1.0のいずれかを満足してもよい。
[6]上記[1]~[5]のいずれか1項に記載の回転電機は、前記ステータが含む前記無方向性電磁鋼板の前記母材鋼板のNb含有量、Zr含有量、Ti含有量、V含有量、C含有量、N含有量を、質量%で、それぞれNbs、Zrs、Tis、Vs、Cs、Nsとしたとき、0≧Nbs/93+Zrs/91+Tis/48+Vs/51-(Cs/12+Ns/14)を満足してもよい。
[7]上記[1]~[6]のいずれか1項に記載の回転電機は、前記ロータが含む前記無方向性電磁鋼板の前記母材鋼板のNb含有量、Zr含有量、Ti含有量、V含有量、C含有量、N含有量を、質量%で、それぞれNbr、Zrr、Tir、Vr、Cr、Nrとしたとき、0<Nbr/93+Zrr/91+Tir/48+Vr/51-(Cr/12+Nr/14)<5.0×10-3を満足してもよい。
[8]本発明の別の態様に係る無方向性電磁鋼板は、母材鋼板と前記母材鋼板の表面に形成された絶縁被膜とを含み、前記母材鋼板が、質量%で、C:0.0100%以下、Si:0.5000~4.0000%、sol.Al:0.0001~1.0000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、Cr:0~2.0000%、Sn:0~0.4000%、Sb:0~0.4000%、P:0~0.4000%、Ti:0~0.1000%、Nb:0~0.1000%、Zr:0~0.1000%、V:0~0.1000%、を含み、残部がFeおよび不純物からなる化学組成を有し、前記母材鋼板において、{111}<211>方位強度が、15未満であり、{411}<011>方位強度が、2~50である。
[9]本発明の別の態様に係る無方向性電磁鋼板は、母材鋼板と前記母材鋼板の表面に形成された絶縁被膜とを含み、前記母材鋼板が、質量%で、C:0.0100%以下、Si:0.5000~4.0000%、sol.Al:0.0001~1.0000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、Cr:0~2.0000%、Sn:0~0.4000%、Sb:0~0.4000%、P:0~0.4000%、Ti:0~0.1000%、Nb:0~0.1000%、Zr:0~0.1000%、V:0~0.1000%、を含み、残部がFeおよび不純物からなる化学組成を有し、前記母材鋼板において、{111}<211>方位強度が、2~30であって、{411}<011>方位強度が、1~40である。
[10]本発明の別の態様に係る積層コアは、上記[8]に記載の無方向性電磁鋼板が積層されてなる。
[11]本発明の別の態様に係る積層コアは、上記[9]に記載の無方向性電磁鋼板が積層されてなる。
[12]上記[1]~[7]のいずれか1項に記載の回転電機は、前記ステータが含む前記無方向性電磁鋼板が、前記ロータが含む前記無方向性電磁鋼板に対し、さらに600℃以上で熱処理を行って得られた鋼板であってもよい。
[13]本発明の別の態様に係る積層コアの製造方法は、上記[8]に記載の無方向性電磁鋼板を加工し、積層する工程を有する。
[14]本発明の別の態様に係る積層コアの製造方法は、上記[9]に記載の無方向性電磁鋼板を加工し、積層する工程を有する。
[15]本発明の別の態様に係る回転電機の製造方法は、上記[10]に記載の前記積層コアと、上記[11]に記載の前記積層コアとを組み立てる工程を有する。
すなわち、本発明の上記態様に係る回転電機は、ロータ鉄心素材として{111}<211>方位を富化した電磁鋼板を用いることで板面内方向のヤング率の異方性を低減し、かつロータ回転時の遠心力によるロータ鉄心素材の径方向への変形の異方性を抑制することで、ステータとロータ間のギャップを一定にすることでモータ騒音を抑制できる。また、ステータの鉄心素材として{411}<011>方位を富化した電磁鋼板を用いることで、モータのトルクを上げることができる。そのため、本発明の上記態様に係る回転電機は、低騒音化と高トルク化とが両立できる。
特に断らない限り、数値aおよびbについて「a~b」という表記は「a以上b以下」を意味するものとする。かかる表記において数値bのみに単位を付した場合には、当該単位が数値aにも適用されるものとする。
[無方向性電磁鋼板]
本実施形態に係る回転電機は、以下の構成を備える。
ステータと、ロータと、ステータおよびロータを収容する筐体とを有し、
前記ステータが含む無方向性電磁鋼板の母材鋼板の{111}<211>方位強度であるAが、15未満であり、前記ロータが含む無方向性電磁鋼板の母材鋼板の{111}<211>方位強度であるBが、2~30であって、且つ前記Aと前記Bとが、B/A>1.0の関係を満たし、
前記ステータが含む前記無方向性電磁鋼板の母材鋼板の{411}<011>方位強度であるCが、2~50であり、前記ロータが含む前記無方向性電磁鋼板の母材鋼板の{411}<011>方位強度であるDが、1~40であって、且つ前記Cと前記Dとが、C/D>1.0の関係を満たし、
前記ロータが含む前記無方向性電磁鋼板および前記ステータが含む前記無方向性電磁鋼板の、母材鋼板が、それぞれ、
質量%で、C:0.0100%以下、Si:0.5000~4.0000%、sol.Al:0.0001~1.0000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、Cr:0~2.0000%、Sn:0~0.4000%、Sb:0~0.4000%、P:0~0.4000%、Ti:0~0.1000%、Nb:0~0.1000%、Zr:0~0.1000%、V:0~0.1000%を含み、残部がFeおよび不純物からなる化学組成を有する。
また、このうち、ロータが含む(ロータ鉄心素材である)無方向性電磁鋼板、及びステータが含む(ステータ鉄心素材である)無方向性電磁鋼板が、それぞれ、本実施形態に係る無方向性電磁鋼板である。
本実施形態に係る無方向性電磁鋼板は、母材鋼板と母材鋼板の表面に形成された絶縁被膜とを含む。
このうち、本実施形態に係る無方向性電磁鋼板では、特に母材鋼板の化学組成及び集合組織(各方位の方位強度)に大きな特徴がある。
無方向性電磁鋼板の母材鋼板の{111}<211>方位強度は、主に、板面内方向のヤング率の異方性が相対的に小さい{111}方位の集積強度を表す。結晶方位に起因する板面内方向の異方性の低減を考えるのであれば、理想的には完全にランダムな集合組織とすることが好ましいと考えられる。または、完全にランダムではなくとも、特定の面方位に強く集積させ、その面方位に関する板面内方位への集積をランダムにする、例えば{100}<0vw>で、v、wについての集積強度を均一にする、{111}方位であっても板面内の集積強度の変化を小さくランダムにすることが好ましいと考えられる。しかしながら、一般的な鋳造、圧延、焼鈍(熱処理)を経て製造される電磁鋼板においては、母材鋼板において特定方位への少なからざる集積は避けられず、上記のような理想的なランダム化を達成することは困難である。このような背景もあり、本実施形態に係る回転電機のロータ及びステータが含む無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)において、母材鋼板の{111}<211>方位強度は、一般的な電磁鋼板において意図するよう確実に制御すべき方位であり、かつ板面内方向のヤング率の異方性の抑制を達成するための一つの指標として非常に有効なものとなっている。さらに{111}<211>方位強度は、ステータの鉄心素材における磁気特性の評価にも有効な指標となっており、本実施形態ではこの方位を、効果を得るための一つの規定として用いる。
また、電磁鋼板の母材鋼板の{411}<011>方位強度は、主に、磁化容易軸が面内方向に近く、そのため、磁気特性に優れることを表す。ここで、磁化容易軸とは、結晶の持つ磁気異方性の中で、最も磁化が容易である方向であり、bcc構造の結晶においては稜線方向([100]、[010]、[001]方向)を指す。そのため、本実施形態ではこの方位も、効果を得るための一つの規定として用いる。
本明細書において電磁鋼板の母材鋼板の方位強度について、単に電磁鋼板(無方向性電磁鋼板)の方位強度と表現する場合もあるが、その場合でも、母材鋼板の方位強度を意味する。
結晶方位強度の測定は種々の方法があるが、{111}<211>方位強度、{411}<011>方位強度の測定は、まずステータの鉄心素材、ロータの鉄心素材である無方向性電磁鋼板の母材鋼板の板厚の中心が表出するように圧延面を研磨し、その研磨面をEBSD(電子線後方散乱回折法:Electron Back Scattering Diffraction)にて960000μm2以上の領域について観察を行う。観察は合計面積が960000μm2以上であればよく、例えば、800μm×1200μm以上の範囲で観察すればよい。その範囲では測定倍率の視野に入りきらない場合には、いくつかの小区画に分けた数か所で行っても良く、例えば、200μm×600μm以上の領域を、8ヶ所以上観察してもよい。
測定時のstep間隔は1μmとするのが好ましい。step間隔の上限は平均結晶粒径の1/10である。
EBSDの観察データから{111}<211>方位強度、{411}<011>方位強度を求める。
上述のように面積960000μm2以上の範囲を観察し、結晶粒数は少なくとも100個は観察をする。
観察データを、OIM Analysisのソフト(TSL社製)を用いて解析を行い、ODF(Orientation Distribution Function)を作成し、その値から{111}<211>方位強度、{411}<011>方位強度を求める。
逆に、A、Bが、B/A≦1.0の関係にある場合は、遠心力に対する変形の点で不利となる電磁鋼板をロータ鉄心素材とし、磁気特性の点で不利となる電磁鋼板をステータ鉄心素材として適用していることとなり、モータ損失が大きくなる。
逆に、C、DがC/D≦1.0の関係にある場合は、遠心力に対する変形の点で不利となる電磁鋼板をロータ鉄心素材とし、磁気特性の点で不利となる電磁鋼板をステータ鉄心素材として適用していることとなり、モータ損失が増加する。
またメタラジー的な面でも、冷間圧延および焼鈍(再結晶)による鋼板製造工程における集合組織の変化においては、例えば冷間圧延の圧下率の変化や焼鈍温度の変化に応じて、{111}<211>方位の増加が{411}<011>方位の減少を伴う状況や、{411}<011>方位の増加が{111}<211>方位の減少を伴う状況が観察される。
このような背景から、本実施形態において、例えばステータ鉄心素材である無方向性電磁鋼板において、母材鋼板の{111}<211>方位強度(A)を弱め、{411}<011>方位強度(C)を高めるように制御する結果、ステータの鉄心素材については、A/C<1.0が成立しやすくなる。逆の見方をすると、ステータの鉄心素材としては、A/C<1.0を満足することが好ましい。より好ましくは、A/C<0.8、さらに好ましくは、A/C<0.6である。
上述のように{411}<011>方位は磁気特性にとって好ましい方位であるため、従来のモータ用電磁鋼板ではこの方位の強度を高めるような制御が行われていた。しかしながら、この方位はヤング率の板面内異方性が大きいため、{411}<011>方位強度が高い電磁鋼板をロータの鉄心素材として用いると、回転中に回転軸に対し非等方的に変形し、振動が発生して騒音が大きくなる。
本実施形態に係る回転電機のように、{411}<011>方位強度が高い無方向性電磁鋼板はステータの鉄心素材としてのみ用い、ロータの鉄心素材には、{411}<011>方位強度が相対的に低く、ヤング率の板面内異方性が小さい{111}<211>方位強度を高めた無方向性電磁鋼板を用いることで、回転中の変形は回転軸に対し等方的なものとなるため、振動が抑制され騒音が小さくなる。
{100}<011>方位は、圧縮応力に対して鉄損の増加代が高い。ステータの固定方法はいくつかあるが、そのほとんどがステータの鉄心に対して圧縮応力がかかる方法である。そのため、圧縮応力感受性の低い{411}<011>を多くした方が良い。より好ましくはC/F>1.5、さらに好ましくは、C/F>2.0である。
本実施形態に係る回転電機のステータの鉄心素材である無方向性電磁鋼板及びロータの鉄心素材である無方向性電磁鋼板の、母材鋼板の化学組成は、製造された無方向性電磁鋼板から、各方位強度要件を満たす、ステータの鉄心素材およびロータの鉄心素材を得ることができるものとして、それぞれ以下の化学組成を有することが好ましい。化学組成の説明の「%」は「質量%」を意味する。
本実施形態に係る回転電機において、ステータの鉄心素材である無方向性電磁鋼板とロータの鉄心素材である無方向性電磁鋼板とは、母材鋼板の化学組成は、同じであってもよいが、後述するように、異なっていてもよい。
Cは、鉄損を高めたり、磁気時効を引き起こしたりする元素である。従って、C含有量は低ければ低いほど好ましい。このような現象は、C含有量が0.0100%超で顕著である。このため、C含有量は0.0100%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上にも寄与する。C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする元素である。Si含有量が0.5000%未満では、これらの作用効果を十分に得られない。従って、Si含有量は0.5000%以上とする。Si含有量は、0.9000%以上が好ましく、1.5000%以上がより好ましい。一方、Si含有量が4.0000%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.0000%以下とする。
また、Siは電磁鋼板において比較的多量に含有する元素であり、本実施形態において主に制御する冷間圧延、再結晶焼鈍後の{111}<211>方位、{411}<011>方位への影響が大きい。低Si鋼では、{111}<211>方位が発達しやすく、{411}<011>方位は抑制されやすい。
そのため、ロータの鉄心素材に用いる無方向性電磁鋼板よりも、ステータの鉄心素材に用いる無方向性電磁鋼板の方が、母材鋼板のSiの含有量が多いことが好ましい。特に鋼板製造工程でのSi含有量による変態の有無を上記集合組織の制御に活用でき、ステータの鉄心素材に用いる鋼板を高Siの非変態系化学組成とし、ロータの鉄心素材に用いる鋼板を低Siの変態系化学組成とすることはさらに好ましい。
Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する元素である。Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。sol.Al(酸可溶性Al)含有量が0.0001%未満では、これらの作用効果を十分に得られない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。一方、sol.Al含有量が1.0000%超では、磁束密度が低下したり、降伏比が低下して、打ち抜き加工性が低下したりする。従って、sol.Al含有量は1.0000%以下とする。
Sは、必須元素ではなく、例えば鋼中に不純物として含有される元素である。Sは、微細なMnSとして析出することにより、焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほど好ましい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.0100%超で顕著である。このため、S含有量は0.0100%以下とする。S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
NはCと同様に、磁気特性を劣化させる元素である。そのため、N含有量は低ければ低いほど好ましい。N含有量が0.0100%超であるとその悪影響が顕著になるので、N含有量は0.0100%以下とする。N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.0010%以上とすることが好ましい。
Mn、Ni、Co、Pt、Pb、Cu、Auは、これらの元素の少なくとも1種又は複数種を総計で0.1000%以上含有させる必要がある。また、これらの元素の含有量は、電気抵抗を上げて鉄損を下げるという観点から、これらの元素の少なくとも1種又は複数種を総計で0.2000%以上とすることがより好ましい。さらに好ましくは総計で1.0000%以上である。
一方で、これらの元素の含有量が総計で5.0000%を超えると、コスト高となり、磁束密度が低下する場合もある。したがって、これらの元素の少なくとも1種を総計で5.0000%以下とする。好ましくは4.0000%以下である。
Crは耐食性や高周波特性、集合組織を向上する元素である。Crは含有される必要はなくCr含有量の下限は0%である。Cr含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、含有量は0.0010%以上とするのが好ましく、0.0020%以上とするのがより好ましく、0.0200%以上とするのがさらに好ましく、0.1000%以上とするのが一層好ましい。
一方、Cr含有量が2.0000%を超えると、Crが炭窒化物を生成し、その炭窒化物が結晶粒径を微細化させ、鉄損が増加する。そのため、Cr含有量は2.0000%以下とする。
SnやSbは冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させる元素である。そのため、これらの元素を必要に応じて含有させることができる。磁気特性等の向上のためには、0.0200~0.4000%のSn、0.0200~0.4000%のSb、及び0.0200~0.4000%のPからなる群から選ばれる1種又は複数種を含有することが好ましい。
一方、Sn、Sbが、過剰に含まれると鋼が脆化する。したがって、Sn含有量、Sb含有量はいずれも0.4000%以下とする。また、Pは再結晶後の鋼板の硬度を確保するために含有させることができるが、過剰に含まれると鋼の脆化を招く。したがって、P含有量は0.4000%以下とする。
TiやNbは、固溶C、固溶Nを析出物として固定し低減させることで、冷間圧延、再結晶後の集合組織を変化させる元素である。含有により{111}<211>方位強度を高め、{411}<011>方位強度を低めるように作用する。この効果を十分に得るには、C含有量、N含有量の当量以上に含有させることが好ましく、一般的にはTi、Nbはそれぞれ、0.0200%以上、さらに好ましくは0.0400%以上含有させる。
但し、Ti含有量、Nb含有量は、いずれも0.1000%以下とする。
上述の通り含有により{111}<211>方位強度が高まり、{411}<011>方位強度が低くなる。そのため、Ti、Nbはロータの鉄心素材とする無方向性電磁鋼板により多く含有させることが好ましい。
ただし、後述するように、Tiおよび/またはNbを0.0100%以上含む場合、仕上げ焼鈍工程を実施する場合において、仕上げ焼鈍の昇温速度を100℃/秒以上に高めなければ十分な特性が得られない。このような昇温速度にしないと、{411}<011>方位が発達しない点で好ましくない。すなわち、Tiおよび/またはNbを含む場合、製造性が低下する。そのため、この点からは、Ti含有量は0.0100%未満、Nb含有量は0.0100%未満であることが好ましい。より好ましくは、Ti含有量、Nb含有量、後述するV含有量、Zr含有量の合計が0.0100%未満である。
V :0~0.1000%
本実施形態に係る無方向性電磁鋼板の母材鋼板の化学組成は、上記の元素に加えて、選択元素として、さらにV及び/又はZrを含有してもよい。
Zr、Vは共に再結晶を抑制し、{111}<211>方位強度を高め、{411}<011>方位強度を低める効果を有する元素である。この効果を得る場合、Zr含有量、V含有量はそれぞれ、0.0100%以上であることが好ましい。
一方、Zr含有量、V含有量が0.1000%超では鋼が脆くなる。そのため、Zr含有量、V含有量はいずれも0.1000%以下とする。好ましくは0.0500%以下、より好ましくは0.0100%未満である。
この場合、{411}<011>方位強度が高まるという効果が得られる。
下限値は特に限定されないが、例えば、Nbs/93+Zrs/91+Tis/48+Vs/51-(Cs/12+Ns/14)≧-1.55×10-3としてもよい。
また、ロータが含む無方向性電磁鋼板の母材鋼板の質量%での、Nb含有量、Zr含有量、Ti含有量、V含有量、C含有量、N含有量を、それぞれNbr、Zrr、Tir、Vr、Cr、Nrとしたとき、
0<Nbr/93+Zrr/91+Tir/48+Vr/51-(Cr/12+Nr/14)<5.0×10-3を満足することが好ましい。
この場合、{111}<211>方位強度が高まるという効果が得られる。
不純物としては、上述した元素の他に、例えば、B、O、Mg、Ca、Nd、Bi、W、Mo、Nb、Yが例示される。これらの元素の含有量は、例えばそれぞれ0.10%以下であることが好ましい。また、不純物全体で合計5.00%以下であることが好ましく、1.00%以下であることがより好ましい。
Sis/Sir>1.0、Tir/Tis>1.0、Nbr/Nbs>1.0のいずれかを満たす場合、モータ損失がより低下するという効果が得られる。
供試材の全面をグラインダー等で研磨し、アセトン洗浄したものをニブラ等で切って試料を作製する。CとSについては燃焼-赤外線吸収法で測定する。Nについては不活性ガス融解-熱伝導度法で測定する。sol.Alについては、酸溶解-ICP発光分光分析法で測定する。Oは不活性ガス融解-非分散型赤外線吸収法で測定する。その他元素についてはICP発光分光分析法で測定する。
ここで、表面の絶縁被膜は前述の様に研磨等の機械加工により除去しても良いし、熱アルカリを使い、化学的に除去しても良い。
また、回転電機において、ステータが含む無方向性電磁鋼板、ロータが含む無方向性電磁鋼板の母材鋼板の化学組成を求める場合、回転電機の解体によって、ステータまたはロータから無方向性電磁鋼板を取り出してから、上記の要領で化学組成を測定すればよい。
回転電機の解体の詳細な方法は、実際の回転電機毎に異なるが、一例を例示すると、まずは回転電機が入っている機械から回転電機を取り出す。その後、回転電機の筐体(ケース)の一部を機械加工により外す。そして、ステータとロータを引き離す。この際にロータに永久磁石がある場合は、磁気吸引力が発生しているため、ステータとロータの間にプラスチックシート等のスペーサーを入れることが望ましい。その後ステータを筐体から外す。
ステータは巻線がしてあるため、巻線を外す、もしくは一部を切断する。ステータの積層の一番上、もしくは巻線を切断した際にダメージを受けた鋼板は除外し、それ以外の箇所からサンプルを採取する。多くの場合、積層の締結をカシメもしくは溶接で行っている。カシメの場合は積層された鋼板間の空隙にカッターの刃を入れる等で積層を剥がすことが可能である。溶接の場合はハンドグラインダー等で溶接部を切削することで、積層を剥がすことが可能である。
ロータはコイルエンドを電磁鋼板以外の材料にしていることが多い。そのため、ロータの長手中央付近に非磁性体の刃を用いて機械加工により二つに分離する。その後、前述のステータと同様に積層を剥がす。その際に、機械加工の影響を受けた箇所は除外することが望ましい。
本実施形態に係る回転電機では、ステータが含む無方向性電磁鋼板の母材鋼板の平均結晶粒径が、前記ロータが含む無方向性電磁鋼板の母材鋼板の平均結晶粒径よりも大きいことが好ましい。
この場合、ロータの方が{111}<211>方位強度が大きく、ステータの方が{411}<011>方位強度が大きくなるという効果が得られる。
平均結晶粒径は、縦断面組織写真において、板厚方向および圧延方向について切断法により測定した結晶粒径の平均値を用いればよい。この縦断面組織写真としては光学顕微鏡写真を用いることができ、例えば50倍の倍率で撮影した写真を用いればよい。板厚方向は板厚の全長分の線分を20本以上引いて数えるのが良い。圧延方向は2mmの長さの線分を板厚の1/4、1/2、3/4に平行に引き数えるのが良い。
ただし、未再結晶の領域を含む場合、再結晶した領域のみを対象として上記方法により算出すればよい。
この場合、加工により導入された歪が除去されることで、磁気特性が改善し、鉄心素材の磁気特性の影響を受けやすいステータの磁気特性の改善によってモータ特性が向上するという効果が得られる。
次に、本実施形態に係る無方向性電磁鋼板の母材鋼板の厚さについて説明する。本実施形態に係る無方向性電磁鋼板の母材鋼板の厚さは、必ずしも限定されないが、0.50mm以下であることが好ましい。厚さが0.50mm超であると、優れた高周波鉄損を得ることが難しい。鉄損の観点から板厚が薄い方が有利であることから、好ましくは0.35mm以下、より好ましくは0.20mm以下、さらに好ましくは0.15mm以下である。
一方、製造を容易にするという観点からは、本実施形態に係る無方向性電磁鋼板の母材鋼板の厚さは、0.10mm以上であることが好ましい。
本実施形態に係る無方向性電磁鋼板は、母材鋼板の表面に絶縁被膜が形成されている。この絶縁被膜は、公知の被膜でよい。例えば、Al2O3からなる被膜が例示される。
本実施形態に係る積層コアは、母材鋼板と母材鋼板の表面に形成された絶縁被膜とを含み、母材鋼板において、質量%で、C:0.0100%以下、Si:0.5000~4.0000%、sol.Al:0.0001~1.0000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、Cr:0~2.0000%、Sn:0~0.4000%、Sb:0~0.4000%、P:0~0.4000%、Ti:0~0.1000%、Nb:0~0.1000%、Zr:0~0.1000%、V:0~0.1000%を含み、残部がFeおよび不純物からなる化学組成を有し、{111}<211>方位強度が、15未満であり、{411}<011>方位強度が、2~50である、無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)が積層されてなる積層コア(ステータコア)であるか、または、母材鋼板と母材鋼板の表面に形成された絶縁被膜とを含み、母材鋼板において、母材鋼板において、質量%で、C:0.0100%以下、Si:0.5000~4.0000%、sol.Al:0.0001~1.0000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、Cr:0~2.0000%、Sn:0~0.4000%、Sb:0~0.4000%、P:0~0.4000%、Ti:0~0.1000%、Nb:0~0.1000%、Zr:0~0.1000%、V:0~0.1000%を含み、残部がFeおよび不純物からなる化学組成を有し、{111}<211>方位強度が、2~30であって、{411}<011>方位強度が、1~40である、無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)が積層されてない積層コア(ロータコア)である。
積層コアは、本実施形態に係る無方向性電磁鋼板を打ち抜き、積層して接着することで製造される。この工程で、化学組成、集合組織は変化しない。そのため、積層コアが含む無方向性電磁鋼板は、上述した本実施形態に係る無方向性電磁鋼板と、同じ化学組成、集合組織を有している。
このことからも分かるように、上述した積層コアの化学組成、集合組織は、無方向性電磁鋼板の母材鋼板であった部分の化学組成、集合組織である。
また、このステータコア、ロータコアを組み合わせることで、モータ鉄心とすることができる。
本実施形態に係る無方向性電磁鋼板、本実施形態に係る積層コア、及び本実施形態に係る回転電機の製造方法について説明する。
まず、本実施形態に係る無方向性電磁鋼板の製造方法として、ロータの鉄心素材である無方向性電磁鋼板およびステータの鉄心素材である無方向性電磁鋼板の製造方法を説明する。
所定の{111}<211>方位強度および{411}<011>方位強度を有する無方向性電磁鋼板(ロータの鉄心素材である無方向性電磁鋼板とステータの鉄心素材である無方向性電磁鋼板とは、好ましい方位強度の範囲が異なる)は、製造工程において、種々の条件を制御することによって得ることができる。
本実施形態に係る無方向性電磁鋼板は、熱間圧延、冷間圧延を実施し、さらに必要に応じて、中間焼鈍、スキンパス圧延、仕上げ焼鈍、歪取焼鈍を実施して母材鋼板を製造するとともに、前述のいずれかの工程の後に母材鋼板の表面に絶縁被膜の形成を実施することで製造される。
所定の{111}<211>方位強度および{411}<011>方位強度を有する無方向性電磁鋼板は、製造工程において、種々の条件を制御することによって得ることができ、ステータの鉄心素材として好ましい無方向性電磁鋼板とロータの鉄心素材として好ましい無方向性電磁鋼板との、造り分けは中間焼鈍、スキンパス圧延、仕上げ焼鈍の実施有無等により実現することができる。ここで、中間焼鈍とは冷間圧延とスキンパス圧延の間に行う焼鈍であり、仕上げ焼鈍とはスキンパス圧延後に行う焼鈍を指す。この仕上げ焼鈍は、鋼板メーカーで行っても、モータメーカー(加工メーカー)にて鉄心打ち抜き後に行っても良い。
鋼材の加熱温度は限定されないが、例えば1000~1350℃の標準的な条件を採用することができる。
熱間圧延の粗圧延および仕上げ圧延はAr1温度以上の温度で行う。つまり、仕上げ圧延の最終パスを通過する際の温度(仕上温度)がAr1温度以上となるように熱間圧延を行うことが好ましい。これにより、その後の冷却によってオーステナイト(γ鉄)からフェライト(α鉄)へ変態することにより結晶組織は微細化する。結晶組織が微細化された状態でその後冷間圧延を施すと、張り出し再結晶(再結晶粒が未再結晶部に対して、張り出すように成長する現象、以降では「バルジング」と表記することがある)が発生しやすく、通常は成長しにくい{411}<011>方位の結晶粒を成長させやすくすることができる。本実施形態に係る無方向性電磁鋼板においてAr1温度は、Ac3温度に加熱した後の、1℃/秒の平均冷却速度で冷却中の鋼材(母材鋼板)の熱膨張変化から求める。また、本発明に用いる鋼板においてAc1温度(γ相に変態する温度)は、1℃/秒の平均加熱速度で加熱中の鋼材(鋼板)の熱膨張変化から求める。
ただし、化学組成が非変態系である場合、仕上げ温度は850℃以上が望ましい。その理由は、仕上げ温度が850℃未満では、熱間圧延時に鋼板の形状の制御が難しくなるためである。
一方、圧下率が92.0%超では、冷間圧延での負荷が高くなり、コスト増加となる。
冷間圧延の圧下率は後述するスキンパス圧延を考慮し、スキンパス圧延後に必要な製品板厚になるように決定される。
中間焼鈍の温度が低過ぎると、バルジングが十分に発生せず{411}<011>方位の結晶粒が十分に成長しないことが懸念されるため、中間焼鈍の温度は600℃以上とすることが好ましい。また、中間焼鈍の温度がAc1温度以上になると、焼鈍中にオーステナイト変態が生じ、{411}<011>方位以外の結晶方位を有する結晶粒の発生頻度が増加し、発明効果が損なわれる懸念があるため、中間焼鈍はAc1温度未満で実施する。化学組成が非変態系である場合、中間焼鈍温度は、800℃以下にする。このような中間焼鈍の時間は、5~60秒とすることが好ましい。
まず、鋼板から採取した試料を、板厚が1/2になるように(板厚の中心が露出するように)表面から研磨し、その研磨面を電子線後方散乱回折(EBSD:Electron Back Scattering Diffraction)法にて観察を行う。そして以下の(a)、(b)のいずれか一つの条件でも満たした粒を未再結晶部として判定し、未再結晶率=未再結晶部の面積/観察視野全体の面積で計算する。
(a)結晶粒の粒径が300μm超のもの。
(b)結晶粒のアスペクト比が2超、すなわち(圧延方向の長さ)/(圧延方向から90度の方向の長さ)>2、を満たすもの。
また、スキンパス圧下率は、冷間圧延の圧下率(%)をRm、スキンパス圧延時の圧下率(%)をRsとした場合に、86<Rm+0.2×Rs<92、かつ5<Rs<20を満たすように冷間圧延およびスキンパス圧延の圧下率を調整することが好ましい。
仕上げ焼鈍の効果を得る場合、スキンパス圧延後の鋼板に仕上げ焼鈍を行うことが好ましい。この場合、仕上げ焼鈍により、スキンパス圧延で付与した歪を解放させ、SIBMによる再結晶を起こす温度と時間で行うことができる。焼鈍温度が高いほど短時間の処理が可能となる。ただし、α→γ変態は避けるべきで、温度の上限はAc1温度未満とすることが好ましい。具体的には温度としては、600~Ac1未満℃、時間としては0秒超、100時間以下を例示できる。一般的な連続焼鈍炉であれば、700~Ac1未満℃、1~300秒、バッチ焼鈍炉であれば、600~Ac1未満℃、20~1200分を例示できる。保持温度と時間を適切に制御することで、スキンパス圧延で導入した歪をSIBMにより十分に解放でき、複雑な形状に打ち抜く際の反りを抑制することができる、同時に、結晶粒が粗大になり過ぎることを回避し、打ち抜き時のダレによる打ち抜き精度の低下を抑制できる、すなわち無方向性電磁鋼板の加工性を向上することができる。
スキンパス圧延を行わない場合は、仕上げ焼鈍により歪を十分解放できるため、加工性はそもそも劣化しない。
仕上げ焼鈍後の鋼板は、{411}<011>方位強度が高まるので、ステータの鉄心素材として好適な無方向性電磁鋼板となる。
仕上げ焼鈍の昇温速度は、{411}<011>方位強度を高める点で、30℃/秒以上であることが好ましい。より好ましくは、100℃/秒以上、または200℃/秒以上である。また、300℃/秒以上、さらに、400℃/秒以上、または、500℃/秒以上としてもよい。
特に、母材鋼板がTi、Nb、V、またはZrを合計で0.010%以上含む場合には、仕上げ焼鈍の昇温速度が100℃/秒未満であると、{411}<011>方位強度が低下する効果が顕著なため、昇温速度は100℃/秒以上が好ましい。
すなわち、例えば、ステータが含む前記無方向性電磁鋼板を、ロータが含む無方向性電磁鋼板に対し、さらに600℃以上で熱処理(仕上げ焼鈍または歪取焼鈍)を行って得られた鋼板としてもよい。
以上のように、本実施形態に係る回転電機に適用可能な鉄心素材を得ることができる。
化学組成、熱間圧延条件、熱延板熱処理条件、冷間圧延条件、仕上げ焼鈍条件などで集合組織を造り分けた2種の鋼板をそれぞれステータの鉄心素材またはロータの鉄心素材として使用する方法は、いわゆる一体打抜きとはならない点で、前述の1種の鋼板からステータの鉄心素材とロータの鉄心素材を打抜く方法と比較すると鋼板歩留の点で不利となる場合があることには配慮する必要がある。ただし、それぞれの鋼板の集合組織を完全に独立に制御することが可能となるため、鋼板を適切に選定すれば、効果の大きさという点では有利にもなる。
本実施形態に係る積層コアは、上述した本実施形態に係る無方向性電磁鋼板のうち、{111}<211>方位強度が、15未満であり、{411}<011>方位強度が、2~50である、無方向性電磁鋼板をステータ鉄心の素材として用いて製造する、または、{111}<211>方位強度が、2~30であって、{411}<011>方位強度が、1~40である、無方向性電磁鋼板をロータ鉄心の素材として用いて製造する。
具体的には、ステータ用、ロータ用に別の無方向性電磁鋼板を用意し、それぞれを打抜きにより加工し、積層させる。また、ステータ用、ロータ用を同じ電磁鋼板を用いて打抜きにより加工し、積層させ、ステータ用のみ歪取り焼鈍を実施しても良い。打抜き、積層については公知の方法でよい。
本実施形態に係る回転電機は、上記の積層コアを製造後、公知の方法で、積層コアに巻線をし、筐体に入れることにより組立てて、製造する。この際、巻線と筐体に入れる順番は逆になっても良い。
実施例に用いた条件はその確認のための一条件例であり、本発明は、この例に限定されるものではなく、本発明を逸脱せず、本発明の目的を達成する限りにおいて種々の条件を採用し得る。
溶鋼を鋳造してインゴットを作製し、熱間圧延、酸洗、冷間圧延を行い、一部の例については、さらに、中間焼鈍、スキンパス圧延、仕上げ焼鈍の一工程以上を行い、電磁鋼板(無方向性電磁鋼板)を作製した。得られた電磁鋼板の各鋼種の化学組成、鋼板の変態温度を表1に示す。化学組成のうち、表に明示のない不純物の含有量は、それぞれ0.0010%以下、合計でも0.10%以下であった。Ar1(℃)は、α相に変態する温度、Ac1(℃)は、γ相に変態する温度を示す。α―γ変態しない(非変態系)化学組成に関しては相変態点温度の欄に「-」と記載した。また、表中の式1)の欄は、Nb、Zr、Ti、V、C、Nの質量%での含有量を用いた、Nb/93+Zr/91+Ti/48+V/51-(C/12+N/14)の計算結果を示す。
また、各種製造条件を表2-1、表2-2に示す。
また、上記の方法で得られた電磁鋼板の表面に、公知のAl2O3からなる絶縁被膜を形成した。絶縁被膜の厚さは0.5μmとした。
表2の最終厚さは、表2の工程を終えた後の、母材鋼板の厚さである。
次に、得られた電磁鋼板を用いて、上記の評価用モータに使用するステータ鉄心およびロータ鉄心を製造した。その際、表3-1~表3-4に示すように、一部の鉄心については800℃で2時間の歪取焼鈍を行った。そして、それら鉄心を組み合わせて、評価用モータを製造し、モータ損失と騒音を測定した。
図1は、モータの部分平面図である。モータ300は、電気学会Dモデルをベースとして作製されたIPMモータである。ステータ鉄心3の外径は112mm(=54mm+0.5mm×2+28.5mm×2)であり、ロータ302の外径は54mmであり、ステータ鉄心3の積み高さは100mmである。スロット数は24スロットである。ステータ鉄心3は、筐体301に焼き嵌めにより固定される。ステータ鉄心3の内径は55mmφであり、ロータ302とステータ鉄心3との間のギャップは0.5mmである。ステータ鉄心は24スロットであり、ステータ鉄心のティース部に巻き回す銅線の1相当たりの巻線数は35ターンであり、ロータ磁石の磁束密度Brは1.25Tである。
(騒音)
本実施例において、波高値3Aの巻線電流を位相角30度で流して、1500RPMの回転数で60分駆動した時のモータで発生する損失(モータ損失(W))と騒音を求めた。
モータの損失は、上記運転条件で必要な電力(W)と、モータの仕事量(W)を求め、電力-仕事量で求めた。電力は電力計を使い、測定した。仕事量はモータの先にトルク計を付け、トルク×回転数から仕事量を求めた。騒音測定は暗騒音が16dBAの無響室内で、騒音計を鉄心表面から0.3mの位置に設置し、聴感補正としてA特性を使用して行った。
騒音については、試験No.1、16、21、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61のモータの運転時の騒音を基準とし、同じ鋼種を用いた基準に対する差分を評価した。
各鉄心の鉄心素材の方位強度をモータ損失、騒音(相対値)とともに表3-1~表3-8に示す。ここで示す方位強度は、鉄心とした後に歪取焼鈍を行った場合は、歪取焼鈍後の鉄心素材についての測定値である。
試験No.1~15は、表1に記載の鋼種Aを用いた実施例である。発明例であるNo.2~7、10、11、15は基準とした比較例(基準A)よりもモータ損失、騒音が共に低下していることがわかる。
試験No.16~18は、表1に記載の成分Bを用いた実施例である。発明例であるNo.17は冷間圧延圧下率、発明例であるNo.18は昇温速度の変化によりステータの鉄心素材の{111}<211>方位強度を弱めるとともに{411}<011>方位強度を高めた例である。
また、試験No.19はロータの鉄心素材としてNb含有により{111}<211>方位強度を高めた鋼板を適用した例である。
発明例17~19は基準とした試験No.16(比較例(基準B))よりもモータ損失、騒音が共に低下していることがわかる。
試験No.21~25は、表1に記載の成分Dを用いた実施例である。発明例であるNo.22~25は基準とした試験No.21(比較例(基準D))よりもモータ損失、騒音が共に低下していることがわかる。
発明例No.28、29、30は、ステータ(A1)に対し、ロータ(D1)、ロータ(V1)、またはロータ(W1)の組み合わせである。これらの例では、ロータの鉄心素材に変態系素材(低Si鋼)を適用し{111}<211>方位強度を高めており、試験No.21(比較例(基準D))よりもモータ損失、騒音が共に低下している。
試験No.33~34は、表1に記載の鋼種Gを用いた実施例である。発明例である試験No.34は基準としたNo.33(比較例(基準G))よりもモータ損失、騒音が共に低下していることがわかる。
試験No.36、38、40、42、44、46、48、50、52、54、56、58、60、62は、それぞれ、同様の鋼種を用いた基準である試験No.35、37、39、41、43、45、47、49、51、53、55、57、59、61よりもモータ損失、騒音が共に低下していることがわかる。
300 モータ
301 筐体
302 ロータ
Claims (15)
- ステータと、
ロータと、
前記ステータおよび前記ロータを収容する筐体と
を有し、
前記ステータが含む無方向性電磁鋼板の母材鋼板の{111}<211>方位強度であるAが、15未満であり、前記ロータが含む無方向性電磁鋼板の母材鋼板の{111}<211>方位強度であるBが、2~30であって、且つ前記Aと前記Bとが、B/A>1.0の関係を満たし、
前記ステータが含む前記無方向性電磁鋼板の前記母材鋼板の{411}<011>方位強度であるCが、2~50であり、前記ロータが含む前記無方向性電磁鋼板の前記母材鋼板の{411}<011>方位強度であるDが、1~40であって、且つ前記Cと前記Dとが、C/D>1.0の関係を満たし、
前記ロータが含む前記無方向性電磁鋼板および前記ステータが含む前記無方向性電磁鋼板の、前記母材鋼板が、それぞれ、
質量%で、
C:0.0100%以下、
Si:0.5000~4.0000%、
sol.Al:0.0001~1.0000%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、
Cr:0~2.0000%、
Sn:0~0.4000%、
Sb:0~0.4000%、
P:0~0.4000%、
Ti:0~0.1000%、
Nb:0~0.1000%、
Zr:0~0.1000%、
V :0~0.1000%、
を含み、残部がFeおよび不純物からなる化学組成を有する、
ことを特徴とする回転電機。 - 前記ロータが含む前記無方向性電磁鋼板において、前記Bと{111}<011>方位強度であるEとが、B/E>1.0の関係を満たす
ことを特徴とする請求項1に記載の回転電機。 - 前記ステータが含む前記無方向性電磁鋼板において、前記Cと{100}<011>方位強度であるFとが、C/F>1.0の関係を満たす
ことを特徴とする請求項1に記載の回転電機。 - 前記ステータが含む前記無方向性電磁鋼板と前記ロータが含む前記無方向性電磁鋼板との、前記母材鋼板におけるSi含有量、Mn含有量及びsol.Al含有量の合計の差が0.20質量%以内であり、
前記ステータが含む前記無方向性電磁鋼板の平均結晶粒径が、前記ロータが含む前記無方向性電磁鋼板の平均結晶粒径よりも大きい、
ことを特徴とする請求項1~3のいずれか1項に記載の回転電機。 - 前記ステータが含む前記無方向性電磁鋼板の前記母材鋼板のSi含有量、Ti含有量、Nb含有量を、質量%で、それぞれSis、Tis、Nbsとし、前記ロータが含む前記無方向性電磁鋼板の前記母材鋼板のSi含有量、Ti含有量、Nb含有量を、それぞれSir、Tir、Nbrとしたとき、
Sis/Sir>1.0、Tir/Tis>1.0、Nbr/Nbs>1.0のいずれかを満足する、
ことを特徴とする、請求項1~3のいずれか1項に記載の回転電機。 - 前記ステータが含む前記無方向性電磁鋼板の前記母材鋼板のNb含有量、Zr含有量、Ti含有量、V含有量、C含有量、N含有量を、質量%で、それぞれNbs、Zrs、Tis、Vs、Cs、Nsとしたとき、
0≧Nbs/93+Zrs/91+Tis/48+Vs/51-(Cs/12+Ns/14)を満足する、
ことを特徴とする、請求項1~3のいずれか1項に記載の回転電機。 - 前記ロータが含む前記無方向性電磁鋼板の前記母材鋼板のNb含有量、Zr含有量、Ti含有量、V含有量、C含有量、N含有量を、質量%で、それぞれNbr、Zrr、Tir、Vr、Cr、Nrとしたとき、
0<Nbr/93+Zrr/91+Tir/48+Vr/51-(Cr/12+Nr/14)<5.0×10-3を満足する、
ことを特徴とする、請求項1~3のいずれか1項に記載の回転電機。 - 母材鋼板と
前記母材鋼板の表面に形成された絶縁被膜と
を含み、
前記母材鋼板が、
質量%で、
C:0.0100%以下、
Si:0.5000~4.0000%、
sol.Al:0.0001~1.0000%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、
Cr:0~2.0000%、
Sn:0~0.4000%、
Sb:0~0.4000%、
P:0~0.4000%、
Ti:0~0.1000%、
Nb:0~0.1000%、
Zr:0~0.1000%、
V :0~0.1000%、
を含み、残部がFeおよび不純物からなる化学組成を有し、
前記母材鋼板において、
{111}<211>方位強度が、15未満であり、
{411}<011>方位強度が、2~50である、
無方向性電磁鋼板。 - 母材鋼板と
前記母材鋼板の表面に形成された絶縁被膜と
を含み、
前記母材鋼板が、
質量%で、
C:0.0100%以下、
Si:0.5000~4.0000%、
sol.Al:0.0001~1.0000%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、およびAuからなる群から選ばれる1種または複数種:総計で0.1000~5.0000%、
Cr:0~2.0000%、
Sn:0~0.4000%、
Sb:0~0.4000%、
P:0~0.4000%、
Ti:0~0.1000%、
Nb:0~0.1000%、
Zr:0~0.1000%、
V :0~0.1000%、
を含み、残部がFeおよび不純物からなる化学組成を有し、
前記母材鋼板において、
{111}<211>方位強度が、2~30であって、
{411}<011>方位強度が、1~40である、
無方向性電磁鋼板。 - 請求項8に記載の無方向性電磁鋼板が積層されてなる積層コア。
- 請求項9に記載の無方向性電磁鋼板が積層されてなる積層コア。
- 前記ステータが含む前記無方向性電磁鋼板が、前記ロータが含む前記無方向性電磁鋼板に対し、さらに600℃以上で熱処理を行って得られた鋼板である、
ことを特徴とする請求項1~3のいずれか1項に記載の回転電機。 - 請求項8に記載の無方向性電磁鋼板を加工し、積層する工程を有する、
積層コアの製造方法。 - 請求項9に記載の無方向性電磁鋼板を加工し、積層する工程を有する、
積層コアの製造方法。 - 請求項10に記載の前記積層コアと、請求項11に記載の前記積層コアとを組み立てる工程を有する、
回転電機の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247011869A KR20240065120A (ko) | 2021-11-18 | 2022-11-18 | 회전 전기 기기, 무방향성 전자 강판 및 적층 코어, 그리고, 회전 전기 기기의 제조 방법 및 적층 코어의 제조 방법 |
EP22895705.6A EP4436007A1 (en) | 2021-11-18 | 2022-11-18 | Rotary electric machine, non-oriented electrical steel sheet, laminated core, method for manufacturing rotary electric machine, and method for manufacturing laminated core |
JP2023562419A JPWO2023090424A1 (ja) | 2021-11-18 | 2022-11-18 | |
CN202280069572.8A CN118160189A (zh) | 2021-11-18 | 2022-11-18 | 旋转电机、无取向性电磁钢板、及层叠铁芯、以及旋转电机的制造方法、以及层叠铁芯的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-187952 | 2021-11-18 | ||
JP2021187952 | 2021-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090424A1 true WO2023090424A1 (ja) | 2023-05-25 |
Family
ID=86397055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042866 WO2023090424A1 (ja) | 2021-11-18 | 2022-11-18 | 回転電機、無方向性電磁鋼板、及び積層コア、並びに、回転電機の製造方法、及び積層コアの製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4436007A1 (ja) |
JP (1) | JPWO2023090424A1 (ja) |
KR (1) | KR20240065120A (ja) |
CN (1) | CN118160189A (ja) |
TW (1) | TW202330956A (ja) |
WO (1) | WO2023090424A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61264131A (ja) * | 1985-05-20 | 1986-11-22 | Kawasaki Steel Corp | 磁気的異方性が小さくかつ低磁場特性に優れる電磁鋼板の製造方法 |
JP2001049402A (ja) | 1999-08-02 | 2001-02-20 | Kawasaki Steel Corp | 磁気異方性が小さく磁束密度の高い無方向性電磁鋼板およびその製造方法 |
JP2012001741A (ja) * | 2010-06-14 | 2012-01-05 | Jfe Steel Corp | 方向性電磁鋼板の製造方法 |
JP2012136763A (ja) * | 2010-12-28 | 2012-07-19 | Jfe Steel Corp | 高強度電磁鋼板の製造方法 |
WO2020090160A1 (ja) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法 |
JP2021187952A (ja) | 2020-05-29 | 2021-12-13 | ダイキン工業株式会社 | 表面処理剤 |
-
2022
- 2022-11-18 CN CN202280069572.8A patent/CN118160189A/zh active Pending
- 2022-11-18 JP JP2023562419A patent/JPWO2023090424A1/ja active Pending
- 2022-11-18 TW TW111144186A patent/TW202330956A/zh unknown
- 2022-11-18 KR KR1020247011869A patent/KR20240065120A/ko unknown
- 2022-11-18 WO PCT/JP2022/042866 patent/WO2023090424A1/ja active Application Filing
- 2022-11-18 EP EP22895705.6A patent/EP4436007A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61264131A (ja) * | 1985-05-20 | 1986-11-22 | Kawasaki Steel Corp | 磁気的異方性が小さくかつ低磁場特性に優れる電磁鋼板の製造方法 |
JP2001049402A (ja) | 1999-08-02 | 2001-02-20 | Kawasaki Steel Corp | 磁気異方性が小さく磁束密度の高い無方向性電磁鋼板およびその製造方法 |
JP2012001741A (ja) * | 2010-06-14 | 2012-01-05 | Jfe Steel Corp | 方向性電磁鋼板の製造方法 |
JP2012136763A (ja) * | 2010-12-28 | 2012-07-19 | Jfe Steel Corp | 高強度電磁鋼板の製造方法 |
WO2020090160A1 (ja) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法 |
JP2021187952A (ja) | 2020-05-29 | 2021-12-13 | ダイキン工業株式会社 | 表面処理剤 |
Also Published As
Publication number | Publication date |
---|---|
CN118160189A (zh) | 2024-06-07 |
KR20240065120A (ko) | 2024-05-14 |
JPWO2023090424A1 (ja) | 2023-05-25 |
EP4436007A1 (en) | 2024-09-25 |
TW202330956A (zh) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4779474B2 (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP4586669B2 (ja) | 回転子用無方向性電磁鋼板の製造方法 | |
JP5228379B2 (ja) | 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法 | |
US7922834B2 (en) | Non-oriented electrical steel sheet and production process thereof | |
JP2021036075A (ja) | 無方向性電磁鋼板およびモータコアとその製造方法 | |
JP2010121150A (ja) | 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法 | |
JP2011084761A (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP4389691B2 (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP4710465B2 (ja) | 回転子用無方向性電磁鋼板の製造方法 | |
JP2009299102A (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP2017088968A (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP4696750B2 (ja) | 時効熱処理用無方向性電磁鋼板の製造方法 | |
JPWO2020149405A1 (ja) | 無方向性電磁鋼板、分割型固定子および回転電機 | |
JP4710458B2 (ja) | 回転子用無方向性電磁鋼板の製造方法 | |
JP4349340B2 (ja) | Cu含有無方向性電磁鋼板の製造方法 | |
JP6617857B1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP7119519B2 (ja) | 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法 | |
JP2009007592A (ja) | 回転子用無方向性電磁鋼板の製造方法 | |
WO2023090424A1 (ja) | 回転電機、無方向性電磁鋼板、及び積層コア、並びに、回転電機の製造方法、及び積層コアの製造方法 | |
JP5333415B2 (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP4855221B2 (ja) | 分割コア用無方向性電磁鋼板 | |
JP2007162096A (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP4258859B2 (ja) | 切削性が良好で鉄損の少ない無方向性電磁鋼板 | |
JP4265508B2 (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP2017179484A (ja) | 無方向性電磁鋼板、モータコア、及び無方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895705 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023562419 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247011869 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280069572.8 Country of ref document: CN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024007138 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022895705 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022895705 Country of ref document: EP Effective date: 20240618 |
|
ENP | Entry into the national phase |
Ref document number: 112024007138 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240412 |