WO2023090375A1 - Valve - Google Patents
Valve Download PDFInfo
- Publication number
- WO2023090375A1 WO2023090375A1 PCT/JP2022/042620 JP2022042620W WO2023090375A1 WO 2023090375 A1 WO2023090375 A1 WO 2023090375A1 JP 2022042620 W JP2022042620 W JP 2022042620W WO 2023090375 A1 WO2023090375 A1 WO 2023090375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- valve
- groove
- spring
- case
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 12
- 239000012530 fluid Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000007769 metal material Substances 0.000 description 5
- 239000010720 hydraulic oil Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/04—Wound springs
- F16F1/12—Attachments or mountings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K17/00—Safety valves; Equalising valves, e.g. pressure relief valves
- F16K17/02—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
- F16K17/04—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
- F16K17/06—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure
Definitions
- the present invention relates to valves, particularly valves that control working fluid.
- Valves used to control working fluid in various industrial fields have a valve seat and a valve element that can be separated from and attached to the valve seat. Pressure and flow rate can be controlled.
- Such valves include a spool valve in which a spool, which is a valve body, moves parallel to an opening, which is a valve seat, a butterfly valve, in which a valve body has a pivot shaft, and a valve body, which is a valve seat.
- a typical valve form is a lift valve that moves perpendicularly to the valve.
- the solenoid valve of Patent Document 1 includes a cylindrical sleeve, a cylindrical spool housed in the sleeve, a solenoid portion that drives the spool, a spring that urges the spool to return, and a tip of the sleeve that abuts on the spring. and a screw member fixed by screwing into.
- JP 2021-148253 A (page 6, FIG. 1) JP 2015-28370 A (page 6, FIG. 3)
- the threaded member may loosen from the sleeve over time. Therefore, as in the solenoid valve of Patent Document 2, the thin portion provided at the tip of the sleeve is crimped from the outside toward the inside to fix the screw member to the sleeve so that it cannot move relative to the sleeve in the axial direction and the circumferential direction.
- a screw member has been developed that can prevent the loosening of the screw member, since the sleeve and the screw member are screw-fixed, there is a possibility that the screw member may be axially displaced from the sleeve when the thin-walled portion is crimped. was there.
- the present invention has been made with a focus on such problems, and an object of the present invention is to provide a valve that can adjust the biasing force of a spring without using screws.
- the valve of the present invention is A valve in which a valve body that moves in the axial direction and a spring that applies a biasing force to the valve body are accommodated in a case, having a spring receiver axially movable with respect to the case;
- One of the case and the spring receiver is provided with a plurality of recesses having different bottom positions in the axial direction, and the other of the case and the spring receiver is provided with protrusions that can be selectively engaged with the recesses. is provided.
- the spring receiver may be rotatable, and a plurality of the recesses having different bottom positions in the axial direction may be arranged in the circumferential direction. According to this, the concave portion to be engaged can be easily selected by rotating the spring receiver.
- the spring receiver may be accessible from outside the case. According to this, the biasing force of the spring can be adjusted by operating the spring receiver from the outside of the case.
- a through hole may be formed in the case, and an operating portion exposed to the through hole may be provided in the spring receiver. According to this, it is possible to appropriately change the position of the spring receiver in the axial direction by operating the operating portion from the outside of the case.
- the operating portion may be a groove. According to this, the axial position of the spring receiver can be appropriately changed by engaging the jig with the groove.
- the case may be provided with guide means for guiding axial movement of the spring receiver. According to this, the concave portion and the convex portion can be engaged with each other with high accuracy.
- a plurality of the convex portions may be formed extending in the radial direction. According to this, since the protrusion and the recess extend in the radial direction, the rotation of the spring receiver is restricted, and the protrusion is less likely to separate from the recess during use.
- One of said recesses may be axially through. According to this, the case can be formed thin.
- FIG. 1 is a side sectional view showing a valve in Example 1 of the present invention
- FIG. (a) is a side sectional view of a retainer
- (b) is a view on arrow A of (a)
- (c) is a view on arrow B of (a).
- (a) is a sectional view taken along line CC of FIG. 2
- (b) is a sectional view taken along line DD
- (c) is a sectional view taken along line EE.
- (a) is a side sectional view of a plate
- (b) is a view in the direction of arrow F of (a). It is the schematic which shows the state by which the plate was set to the 1st position.
- (a) is an axial view of a retainer according to Embodiment 2 of the present invention
- (b) is a cross-sectional view along GG in (a)
- (c) is a cross-sectional view along HH in (a).
- a form for implementing the valve according to the present invention will be described below based on an embodiment. Although the embodiment will be described with an example of a solenoid valve used in a hydraulically controlled device such as an automatic transmission of a vehicle, the present invention can also be applied to other uses.
- FIG. 1 A solenoid valve according to Embodiment 1 will be described with reference to FIGS. 1 to 7.
- FIG. Hereinafter, the right side of the paper surface of FIG. 1 is defined as one axial end side of the solenoid valve, and the left side of the paper surface of FIG. 1 is defined as the other axial end side of the solenoid valve.
- the valve of this embodiment is a spool-type solenoid valve 1, which is used in a hydraulically controlled device such as an automatic transmission of a vehicle.
- the solenoid valve 1 is used as a so-called oil-immersed solenoid valve that is mounted horizontally in a mounting hole of a valve housing on the device side and immersed in hydraulic oil, which is a liquid in the valve housing.
- a solenoid valve 1 is constructed by integrally attaching a valve portion 2 to a solenoid portion 3 for adjusting the flow rate of a control fluid such as hydraulic oil. 1 shows an OFF state of the solenoid valve 1 in which the coil 36 of the solenoid molded body 31 is not energized.
- the valve portion 2 mainly comprises a sleeve 21, a spool 22 as a valve body, a spring 29, a retainer 23, and a plate 20 as a spring receiver.
- the sleeve 21 is provided with openings for various ports such as an input port 24, an output port 25, a discharge port 26, a drain port 27, a feedback port 28, etc., which are connected to flow paths provided in the mounting holes of the valve housing.
- the spool 22 is liquid-tightly accommodated in a through hole 21a formed in the inner diameter side of the sleeve 21 in the axial direction.
- the spool 22 can be reciprocated in the axial direction, and by reciprocating the spool 22 in the axial direction, the communication state of various ports is changed to control the pressure and flow rate of hydraulic oil. .
- the spring 29 biases the spool 22 toward the other axial end.
- the retainer 23 is attached to one axial end of the sleeve 21 .
- the plate 20 is arranged inside the bottom wall portion 23 b (see FIG. 2 ) of the retainer 23 and abuts one end of the spring 29 .
- the case 2A in the present invention consists of a sleeve 21 and a retainer 23, and accommodates a spool 22, a spring 29 and a plate 20.
- the sleeve 21, spool 22, retainer 23, and plate 20 are made of materials such as aluminum, iron, stainless steel, and resin. The structures of the retainer 23 and the plate 20 will be detailed later.
- the solenoid portion 3 is mainly composed of a solenoid case 30, a stator 32, a side ring 33, a tubular body 7, a bush 9, an end plate 34, and a plunger 35. It is
- the solenoid case 30 is a cylindrical body made of a magnetic metal material such as iron, and has one end connected to the other end of the sleeve 21 .
- the solenoid molded body 31 is formed by molding the coil 36 with resin.
- the stator 32 is made of a magnetic metal material such as iron, and is arranged inside the solenoid molded body 31 at one end in the axial direction.
- the side ring 33 is made of a magnetic metal material such as iron, and is arranged inside the solenoid molded body 31 on the other axial end side.
- the cylindrical body 7 is made of a non-magnetic material and arranged between the stator 32 and the side ring 33 spaced apart in the axial direction.
- the bushing 9 is made of a non-magnetic material, and is arranged axially inside the tubular body 7 and the side ring 33 .
- the end plate 34 is made of a magnetic metal material such as iron, and functions as a lid member that closes the opening at the other axial end of the solenoid case 30 .
- the plunger 35 is formed in a columnar shape from a magnetic metal material such as iron, and moves axially in a space surrounded by the stator 32, the cylindrical body 7, the side ring 33, the bush 9, and the end plate 34. It is a movable iron core arranged in a possible state. The plunger 35 is slidable inside the bush 9 .
- a magnetic circuit is formed by the solenoid case 30, the end plate 34, the side ring 33, the plunger 35, and the stator 32 by energizing the coil 36 of the solenoid molded body 31.
- a magnetic force is generated between the plunger 32 and the plunger 35 to axially move the plunger 35 and the rod 5 toward the stator 32 side.
- the retainer 23 includes a cylindrical side wall portion 23a and a bottom wall portion 23b that closes an opening at one end of the side wall portion 23a. It has a tubular shape. The other end of the side wall portion 23a is formed with a flange portion 23c that is bent radially outward. A sleeve 21 is connected (see FIG. 1).
- a circular through hole 23d is formed in the center of the bottom wall portion 23b so as to extend therethrough in the axial direction.
- a plurality of first grooves 232 as recesses, and a plurality of second grooves 233 as recesses are equally arranged.
- the first grooves 232 are shown with dark dots
- the second grooves 233 are shown with light dots for easy understanding.
- the through groove 231 penetrates in the axial direction.
- the axial dimension L1 of the through groove 231 is the same dimension as the thickness of the bottom wall portion 23b.
- the axial dimension L1 of the through groove 231 is larger than the axial dimension L10 (see FIG. 4) of the projection 20c of the plate 20 (L1>L10).
- the first groove 232 has a bottom surface 232a whose axial dimension L2 is equal to the axial dimension L1 of the through groove 231. (L1>L2).
- the axial dimension L2 of the first groove 232 is smaller than the axial dimension L10 of the projection 20c of the plate 20 (L2 ⁇ L10).
- the second groove 233 has a bottom surface 233a whose axial dimension L3 is It is smaller than the dimension L2 (L2>L3).
- the plate 20 is It has a disk-shaped base portion 20a, a projecting portion 20b projecting in a columnar shape from the center portion of the base portion 20a, and a plurality of (three in the embodiment) projecting portions 20c radially extending from the projecting portion 20b. .
- the base portion 20a is provided with a slightly smaller diameter than the inner diameter of the side wall portion 23a.
- the projecting portion 20b is provided with a slightly smaller diameter than the through hole 23d.
- an operation groove 20d is formed as an operation portion penetrating in the axial direction in the projecting portion 20b.
- the operation groove 20d has a rectangular shape when viewed in the axial direction.
- the convex portions 20c are evenly distributed around the protruding portion 20b, and one convex portion 20c is orthogonal to the extending direction of the operation groove 20d.
- the convex portion 20c has an axial dimension L10.
- FIG. 5 shows the first position of the plate 20.
- the protrusions 20b of the plate 20 are inserted into the through holes 23d of the retainer 23
- the protrusions 20c of the plate 20 are engaged with the through grooves 231 of the retainer 23
- the base 20a of the plate 20 is inserted into the retainer 23. is in contact with the bottom wall portion 23b.
- the supporting surface 20e of the spring 29 on the plate 20 and the supporting surface 22a of the spring 29 on the spool 22 are separated in the axial direction by a distance D1.
- each convex portion 20c of the plate 20 is kept engaged with each through groove 231 of the retainer 23 by pressing the base portion 20a against the bottom wall portion 23b by the biasing force of the spring 29. As shown in FIG.
- FIG. 6 shows the second position of the plate 20.
- the protrusions 20b of the plate 20 are inserted into the through holes 23d of the retainer 23
- the protrusions 20c of the plate 20 are engaged with the first grooves 232 of the retainer 23
- the base 20a of the plate 20 is inserted into the retainer 23. is slightly spaced from the bottom wall portion 23b of the other side.
- the supporting surface 20e of the spring 29 on the plate 20 and the supporting surface 22a of the spring 29 on the spool 22 are axially separated by a distance D2 shorter than the distance D1 (D1 >D2).
- Each projection 20c of the plate 20 is pressed against the bottom surface 232a of each first groove 232 of the retainer 23 by the biasing force of the spring 29 so that the state of engagement with each first groove 232 is maintained. It's becoming
- FIG. 7 shows the third position of the plate 20.
- the protrusions 20b of the plate 20 are inserted into the through holes 23d of the retainer 23, the protrusions 20c of the plate 20 are engaged with the second grooves 233 of the retainer 23, and the base 20a of the plate 20 is as shown in FIG. It is further separated from the bottom wall portion 23b of the retainer 23 to the other side than in the state of .
- the supporting surface 20e of the spring 29 on the plate 20 and the supporting surface 22a of the spring 29 on the spool 22 are axially separated by a distance D3 shorter than the distance D2 (D2 >D3).
- Each projection 20c of the plate 20 is pressed against the bottom surface 233a of each second groove 233 of the retainer 23 by the biasing force of the spring 29 so that the state of engagement with each second groove 233 is maintained. It's becoming
- the separation distance between the support surface 20e of the spring 29 and the support surface 22a of the spring 29 on the spool 22 is D1>D2>D3.
- the urging force of the spring 29 is small, the urging force of the spring 29 is larger at the second position of the plate 20 than at the first position, and the largest at the third position of the plate 20.
- a jig (not shown) is engaged with the operating groove 20d through the through hole 23d of the retainer 23 from the outside, and is moved in the axial direction and then rotated around the axis, thereby moving each convex portion 20c into the through groove 231 and the first concave portion.
- Either the groove 232 or the second concave groove 233 is selectively engaged. In this manner, the axial position of the plate 20 can be changed.
- the plate 20 when changing the plate 20 from the first position to the second position, the plate 20 is moved to the other side in the axial direction against the biasing force of the spring 29 from the outside, and is rotated around the axis (clockwise in this embodiment). 40 degrees), and then the plate 20 is returned to one side in the axial direction by the biasing force of the spring 29, so that the positions where the protrusions 20c of the plate 20 are engaged are shifted from the through grooves 231 of the retainer 23. Each first concave groove 232 is changed.
- the outer peripheral surface of the projecting portion 20b of the plate 20 always slides along the inner peripheral surface of the through hole 23d when the plate 20 moves from the first position to the third position.
- the outer peripheral surface of the base portion 20a of the plate 20 always slides along the inner peripheral surface of the side wall portion 23a of the retainer 23 when the plate 20 moves from the first position to the third position. That is, the inner peripheral surface of the through hole 23d and the inner peripheral surface of the side wall portion 23a of the retainer 23 function as guide means G for guiding the movement of the plate 20 in the axial direction.
- the axial position of the plate 20 in the sleeve 21 can be appropriately changed, and the spring 29 can be adjusted.
- the convex portion 20c is kept engaged with any one of the through groove 231, the first concave groove 232, and the second concave groove 233 by the biasing force of the spring 29.
- the urging force of the acting spring 29 can be stably exerted.
- the plate 20 is rotatable around the axis, and the plurality of through grooves 231, the first grooves 232, and the second grooves 233 are arranged in the circumferential direction of the base 20a of the plate 20, so that the plate 20 can be rotated around the axis. 231, the first recessed groove 232, and the second recessed groove 233 to be engaged with the convex portion 20c can be easily selected.
- the plate 20 can be accessed from the outside of the sleeve 21 and the retainer 23, and the biasing force of the spring 29 can be adjusted by operating the plate 20 from the outside.
- the retainer 23 is formed with a through hole 23d, and the plate 20 is provided with an operation groove 20d exposed to the through hole 23d.
- the position of the direction can be changed as appropriate. Further, since a jig can be engaged with the operation groove 20d, the work of changing the position of the plate 20 in the axial direction from the outside can be easily performed.
- the operation groove 20d penetrates in the axial direction.
- the operation groove 20d can be used as a breathing hole that communicates the space defined by the spool 22, the sleeve 21, the retainer 23, and the plate 20 and housing the spring 29 with the external space. It is possible to avoid pressure build-up in the space where
- one convex portion 20c of the plate 20 is perpendicular to the extending direction of the operation groove 20d, the position of the one convex portion 20c can be grasped from the outside with reference to the operation groove 20d. , the work of engaging the convex portion 20c with any one of the through groove 231, the first concave groove 232, and the second concave groove 233 is simple.
- the retainer 23 has an inner peripheral surface of a through hole 23d on which the outer peripheral surface of the projecting portion 20b of the plate 20 slides, and an inner peripheral surface of the side wall portion 23a on which the outer peripheral surface of the base portion 20a of the plate 20 slides. is provided. According to this, the movement of the plate 20 in the axial direction is guided by the inner peripheral surface of the through hole 23d and the inner peripheral surface of the side wall portion 23a. 2 concave groove 233 can be engaged precisely.
- the configuration in which two guide means G are provided was exemplified, but as long as at least one is provided, the other structure may be omitted.
- the outer diameter of the base portion 20a of the plate 20 may be smaller than the inner circumference of the side wall portion 23a of the retainer 23 .
- the engaging portions 20c are evenly distributed in the circumferential direction, the engaging portions can be arranged in a well-balanced manner in the circumferential direction of the plate 20, and the plate 20 can be prevented from tilting.
- one of the concave portions is the through groove 231 penetrating in the axial direction
- the thickness of the bottom wall portion 23b of the retainer 23 can be made thin.
- the position of the projection 20c of the plate 20 can be confirmed from the outside through the through groove 231.
- the plate 20 is thin in the axial direction, the axial dimension of the solenoid valve 1 can be reduced.
- the shape of the spring receiver is not limited to a plate shape, and may be freely changed to, for example, a cylindrical shape elongated in the axial direction.
- the axial dimension of the protruding portion 20b is larger than the axial dimension L10 of the protruding portion 20c, when changing the axial position of the plate 20, by inserting the protruding portion 20b into the through hole 23d, It is possible to align the protrusion 20c in the radial direction.
- the end surface of the projecting portion 20b and the end surface of the bottom wall portion 23b are flush with each other outward (one end in the axial direction). According to this, the end surface of the projecting portion 20b and the end surface of the bottom wall portion 23b are flush with each other, so that it is possible to recognize from the outside that the plate 20 is arranged at the first position.
- the bottom wall portion 300a of the retainer 300 of the second embodiment has a first concave groove 301 as a concave portion, a second concave groove 302 as a concave portion, and a third concave groove as a concave portion.
- 303 and a through hole 304 are formed.
- the first groove 301, the second groove 302, and the third groove 303 are formed to extend radially outward from a through hole 304 provided in the center of the bottom wall portion 300a.
- the bottom surface 301a of the first groove 301 is positioned closer to one end than the bottom surface 302a of the second groove 302. Also, the bottom surface 302a of the second groove 302 is located closer to one end than the bottom surface 303a of the third groove 303. As shown in FIG.
- the axial dimension L1′ of the first groove 301 is greater than the axial dimension L2′ of the second groove 302, and the axial dimension L2′ of the second groove 302 is greater than that of the third groove 303. greater than the axial dimension L3' (L1'>L2'>L3').
- the recess may be composed only of a recess that does not penetrate in the axial direction.
- each projection 20c of the plate 20 (see FIG. 4) is aligned with the bottom surface 301a of each first groove 301 at the first position of the plate 20, and the bottom surface 302a of each second groove 302 at the second position of the plate 20. , contact the bottom surface 303a of each third groove 303 at the third position of the plate 20, respectively. That is, at any position on the plate 20, the end face of each projection 20c of the plate 20 similarly abuts on one of the bottom faces, so that the state in which the plate 20 is arranged is stable.
- the convex portion is provided on the spring receiving side and the concave portion is provided on the case side, but the concave portion may be provided on the spring receiving side and the convex portion on the case side.
- the concave portion and the convex portion are provided between the bottom wall portion of the case and the opposing surface of the spring receiver that faces the bottom wall portion.
- a concave portion and a convex portion may be provided between the side portion of the spring receiver.
- the case is composed of a sleeve and a retainer, but the case may be composed of a single member.
- the spring receiver is rotated around the axis to selectively change the concave portion with which the convex portion engages.
- the recesses and protrusions extend radially, but the recesses and protrusions do not have to extend radially.
- they may have a square shape when viewed in the axial direction, and may be scattered in the circumferential direction of the spring receiver and the case.
- the spool type solenoid valve using a spool as the valve body has been described, but the present invention is not limited to this, and may be a solenoid valve using a globe valve, a gate valve, or the like.
- valve 1 Solenoid valve (valve) 2A case 20 plate (spring receiver) 20c convex portion 20d operating groove (operating portion) 21 sleeve (case) 22 spool (valve) 23 retainer (case) 23a side wall (guide means) 23d through hole (guide means) 29 spring 35 plunger 231 through groove (recess) 232 first groove (recess) 233 Second groove (recess) 300 retainer (case) 301 first groove (recess) 302 second groove (recess) 303 Third groove (recess) G guide means
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
Provided is a valve capable of adjusting the biasing force of a spring without using a screw. In a valve 1, a valve body 22 that moves in the axial direction and a spring 29 that applies a biasing force to the valve body 22 are contained in a case 2A. The valve 1 has a spring receiver 20 movable in the axial direction with respect to the case 2A. One of the case 2A and the spring receiver 20 is provided with a plurality of recessed portions 231-233 that are different in bottom position in the axial direction, and the other one of the case 2A and the spring receiver 20 is provided with a protruding portion 20c that can selectively engage with the recessed portions 231-233.
Description
本発明は、弁、特に作動流体を制御する弁に関する。
The present invention relates to valves, particularly valves that control working fluid.
様々な産業分野で作動流体の制御を行うために利用されている弁は、弁座と、弁座に対して離接可能な弁体を備え、弁開度が調節されることで作動流体の圧力や流量が制御可能となっている。
Valves used to control working fluid in various industrial fields have a valve seat and a valve element that can be separated from and attached to the valve seat. Pressure and flow rate can be controlled.
このような弁には、弁座である開口に対して平行に弁体であるスプールが移動するスプール弁、弁体が回動軸を有するバタフライ弁、さらには弁体が弁座である開口に対して直交するように移動するリフト弁が代表的な弁形態として挙げられる。これらの弁の中でもスプール弁は、スプールの移動方向と作動流体が流れる方向が交差しており、スプールの移動方向に作動流体の流体圧が作用し難いため、駆動力に対するスプールの応答性が高くなっている。
Such valves include a spool valve in which a spool, which is a valve body, moves parallel to an opening, which is a valve seat, a butterfly valve, in which a valve body has a pivot shaft, and a valve body, which is a valve seat. A typical valve form is a lift valve that moves perpendicularly to the valve. Among these valves, in the spool valve, the direction of movement of the spool and the direction of flow of the working fluid intersect, and the fluid pressure of the working fluid is less likely to act in the direction of movement of the spool, so the responsiveness of the spool to the driving force is high. It's becoming
スプール弁として、例えば、特許文献1のソレノイドバルブが知られている。特許文献1のソレノイドバルブは、筒状のスリーブと、スリーブに収納された円柱状のスプールと、スプールを駆動するソレノイド部と、スプールを復帰付勢するスプリングと、スプリングに当接するとともにスリーブの先端に螺入により固定されるネジ部材と、を備えている。ネジ部材の螺入位置を変更することで、スプリングがスプールに与える付勢力が調整され、ソレノイド部の駆動力とスプリングの付勢力とを適正なバランスに調整することができるようになっている。
As a spool valve, for example, the solenoid valve of Patent Document 1 is known. The solenoid valve of Patent Document 1 includes a cylindrical sleeve, a cylindrical spool housed in the sleeve, a solenoid portion that drives the spool, a spring that urges the spool to return, and a tip of the sleeve that abuts on the spring. and a screw member fixed by screwing into. By changing the threaded position of the screw member, the biasing force applied by the spring to the spool can be adjusted, and the driving force of the solenoid portion and the biasing force of the spring can be adjusted to an appropriate balance.
しかしながら、特許文献1のようなソレノイドバルブにあっては、経年によりネジ部材がスリーブに対して緩むことがあった。そこで、特許文献2のソレノイドバルブのように、スリーブの先端に設けられた薄肉部を外側から内側に向けてカシメることでネジ部材をスリーブに対し軸方向および周方向に相対移動不能に固定し、ネジ部材が緩みを防止できるものが開発されているが、スリーブとネジ部材とはネジ固定であるため、薄肉部をカシメたときに、前記スリーブに対するネジ部材の軸方向の位置ずれが生じる虞があった。
However, in the solenoid valve as disclosed in Patent Document 1, the threaded member may loosen from the sleeve over time. Therefore, as in the solenoid valve of Patent Document 2, the thin portion provided at the tip of the sleeve is crimped from the outside toward the inside to fix the screw member to the sleeve so that it cannot move relative to the sleeve in the axial direction and the circumferential direction. Although a screw member has been developed that can prevent the loosening of the screw member, since the sleeve and the screw member are screw-fixed, there is a possibility that the screw member may be axially displaced from the sleeve when the thin-walled portion is crimped. was there.
本発明は、このような問題点に着目してなされたもので、ネジを利用せずにスプリングの付勢力を調整できる弁を提供することを目的とする。
The present invention has been made with a focus on such problems, and an object of the present invention is to provide a valve that can adjust the biasing force of a spring without using screws.
前記課題を解決するために、本発明の弁は、
軸方向に移動する弁体と、前記弁体に対して付勢力を与えるスプリングと、がケース内に収容された弁であって、
前記ケースに対して軸方向に移動可能なスプリング受けを有し、
前記ケースまたは前記スプリング受けの一方には、軸方向の底の位置が異なる凹部が複数設けられ、前記ケースまたは前記スプリング受けの他方には、前記凹部に対し選択的に係合可能な凸部が設けられている。
これによれば、凸部が係合する凹部を選択することによりケースにおけるスプリング受けの軸方向の位置を適宜変更してスプリングの付勢力を調整できるとともに、凸部はスプリングの付勢力により凹部に係合した状態が維持されるため、弁体に作用するスプリングの付勢力を安定的に発揮させることができる。 In order to solve the above problems, the valve of the present invention is
A valve in which a valve body that moves in the axial direction and a spring that applies a biasing force to the valve body are accommodated in a case,
having a spring receiver axially movable with respect to the case;
One of the case and the spring receiver is provided with a plurality of recesses having different bottom positions in the axial direction, and the other of the case and the spring receiver is provided with protrusions that can be selectively engaged with the recesses. is provided.
According to this, by selecting the concave portion with which the convex portion engages, the axial position of the spring receiver in the case can be appropriately changed to adjust the biasing force of the spring. Since the engaged state is maintained, the urging force of the spring acting on the valve body can be stably exerted.
軸方向に移動する弁体と、前記弁体に対して付勢力を与えるスプリングと、がケース内に収容された弁であって、
前記ケースに対して軸方向に移動可能なスプリング受けを有し、
前記ケースまたは前記スプリング受けの一方には、軸方向の底の位置が異なる凹部が複数設けられ、前記ケースまたは前記スプリング受けの他方には、前記凹部に対し選択的に係合可能な凸部が設けられている。
これによれば、凸部が係合する凹部を選択することによりケースにおけるスプリング受けの軸方向の位置を適宜変更してスプリングの付勢力を調整できるとともに、凸部はスプリングの付勢力により凹部に係合した状態が維持されるため、弁体に作用するスプリングの付勢力を安定的に発揮させることができる。 In order to solve the above problems, the valve of the present invention is
A valve in which a valve body that moves in the axial direction and a spring that applies a biasing force to the valve body are accommodated in a case,
having a spring receiver axially movable with respect to the case;
One of the case and the spring receiver is provided with a plurality of recesses having different bottom positions in the axial direction, and the other of the case and the spring receiver is provided with protrusions that can be selectively engaged with the recesses. is provided.
According to this, by selecting the concave portion with which the convex portion engages, the axial position of the spring receiver in the case can be appropriately changed to adjust the biasing force of the spring. Since the engaged state is maintained, the urging force of the spring acting on the valve body can be stably exerted.
前記スプリング受けは回転可能であり、軸方向の底の位置が異なる前記凹部は周方向に複数配置されていてもよい。
これによれば、スプリング受けを回転させることで、係合する凹部を簡便に選択することができる。 The spring receiver may be rotatable, and a plurality of the recesses having different bottom positions in the axial direction may be arranged in the circumferential direction.
According to this, the concave portion to be engaged can be easily selected by rotating the spring receiver.
これによれば、スプリング受けを回転させることで、係合する凹部を簡便に選択することができる。 The spring receiver may be rotatable, and a plurality of the recesses having different bottom positions in the axial direction may be arranged in the circumferential direction.
According to this, the concave portion to be engaged can be easily selected by rotating the spring receiver.
前記スプリング受けには、前記ケースの外部からアクセス可能となっていてもよい。
これによれば、ケースの外部からスプリング受けを操作してスプリングの付勢力を調整できる。 The spring receiver may be accessible from outside the case.
According to this, the biasing force of the spring can be adjusted by operating the spring receiver from the outside of the case.
これによれば、ケースの外部からスプリング受けを操作してスプリングの付勢力を調整できる。 The spring receiver may be accessible from outside the case.
According to this, the biasing force of the spring can be adjusted by operating the spring receiver from the outside of the case.
前記ケースには貫通孔が形成されており、前記スプリング受けには前記貫通孔に露出する操作部が設けられていてもよい。
これによれば、ケースの外部から操作部を操作してスプリング受けの軸方向の位置を適宜変更できる。 A through hole may be formed in the case, and an operating portion exposed to the through hole may be provided in the spring receiver.
According to this, it is possible to appropriately change the position of the spring receiver in the axial direction by operating the operating portion from the outside of the case.
これによれば、ケースの外部から操作部を操作してスプリング受けの軸方向の位置を適宜変更できる。 A through hole may be formed in the case, and an operating portion exposed to the through hole may be provided in the spring receiver.
According to this, it is possible to appropriately change the position of the spring receiver in the axial direction by operating the operating portion from the outside of the case.
前記操作部は溝であってもよい。
これによれば、溝に治具を係合させてスプリング受けの軸方向の位置を適宜変更できる。 The operating portion may be a groove.
According to this, the axial position of the spring receiver can be appropriately changed by engaging the jig with the groove.
これによれば、溝に治具を係合させてスプリング受けの軸方向の位置を適宜変更できる。 The operating portion may be a groove.
According to this, the axial position of the spring receiver can be appropriately changed by engaging the jig with the groove.
前記ケースには、前記スプリング受けの軸方向の移動をガイドするガイド手段が設けられていてもよい。
これによれば、凹部と凸部を精度よく係合させることができる。 The case may be provided with guide means for guiding axial movement of the spring receiver.
According to this, the concave portion and the convex portion can be engaged with each other with high accuracy.
これによれば、凹部と凸部を精度よく係合させることができる。 The case may be provided with guide means for guiding axial movement of the spring receiver.
According to this, the concave portion and the convex portion can be engaged with each other with high accuracy.
前記凸部は放射方向に延びて複数形成されていてもよい。
これによれば、凸部および凹部は放射方向に延びているため、スプリング受けの回転が規制され、使用時に凹部から凸部が離脱しにくい。 A plurality of the convex portions may be formed extending in the radial direction.
According to this, since the protrusion and the recess extend in the radial direction, the rotation of the spring receiver is restricted, and the protrusion is less likely to separate from the recess during use.
これによれば、凸部および凹部は放射方向に延びているため、スプリング受けの回転が規制され、使用時に凹部から凸部が離脱しにくい。 A plurality of the convex portions may be formed extending in the radial direction.
According to this, since the protrusion and the recess extend in the radial direction, the rotation of the spring receiver is restricted, and the protrusion is less likely to separate from the recess during use.
前記凹部の1つは軸方向に貫通してしてもよい。
これによれば、ケースを薄く形成できる。 One of said recesses may be axially through.
According to this, the case can be formed thin.
これによれば、ケースを薄く形成できる。 One of said recesses may be axially through.
According to this, the case can be formed thin.
本発明に係る弁を実施するための形態を実施例に基づいて以下に説明する。尚、実施例は車両の自動変速機等の油圧により制御される装置に用いられるソレノイドバルブを例にして説明するが、その他の用途にも適用可能である。
A form for implementing the valve according to the present invention will be described below based on an embodiment. Although the embodiment will be described with an example of a solenoid valve used in a hydraulically controlled device such as an automatic transmission of a vehicle, the present invention can also be applied to other uses.
実施例1に係るソレノイドバルブにつき、図1~図7を参照して説明する。以下、図1の紙面右側をソレノイドバルブの軸方向一端側とし、図1の紙面左側をソレノイドバルブの軸方向他端側として説明する。
A solenoid valve according to Embodiment 1 will be described with reference to FIGS. 1 to 7. FIG. Hereinafter, the right side of the paper surface of FIG. 1 is defined as one axial end side of the solenoid valve, and the left side of the paper surface of FIG. 1 is defined as the other axial end side of the solenoid valve.
図1に示されるように、本実施例の弁は、スプールタイプのソレノイドバルブ1であって、例えば車両の自動変速機等の油圧により制御される装置に用いられるものである。尚、ソレノイドバルブ1は、装置側のバルブハウジングの装着穴に水平方向に取付けられ、バルブハウジング内の液体である作動油に浸漬される、いわゆる油浸形のソレノイドバルブとして使用される。
As shown in FIG. 1, the valve of this embodiment is a spool-type solenoid valve 1, which is used in a hydraulically controlled device such as an automatic transmission of a vehicle. The solenoid valve 1 is used as a so-called oil-immersed solenoid valve that is mounted horizontally in a mounting hole of a valve housing on the device side and immersed in hydraulic oil, which is a liquid in the valve housing.
ソレノイドバルブ1は、流体、すなわち作動油等の制御流体の流量を調整するバルブ部2がソレノイド部3に一体に取付けられて構成されている。尚、図1は、ソレノイド成形体31のコイル36に通電されていないソレノイドバルブ1のオフ状態を示すものである。
A solenoid valve 1 is constructed by integrally attaching a valve portion 2 to a solenoid portion 3 for adjusting the flow rate of a control fluid such as hydraulic oil. 1 shows an OFF state of the solenoid valve 1 in which the coil 36 of the solenoid molded body 31 is not energized.
先ず、バルブ部2の構造について説明する。図1に示されるように、バルブ部2は、スリーブ21と、弁体としてのスプール22と、スプリング29と、リテーナ23と、スプリング受けとしてのプレート20と、から主に構成されている。
First, the structure of the valve portion 2 will be explained. As shown in FIG. 1, the valve portion 2 mainly comprises a sleeve 21, a spool 22 as a valve body, a spring 29, a retainer 23, and a plate 20 as a spring receiver.
スリーブ21は、バルブハウジングの装着穴内に設けられた流路と接続される入力ポート24、出力ポート25、排出ポート26、ドレンポート27、フィードバックポート28等の各種ポートの開口が設けられている。
The sleeve 21 is provided with openings for various ports such as an input port 24, an output port 25, a discharge port 26, a drain port 27, a feedback port 28, etc., which are connected to flow paths provided in the mounting holes of the valve housing.
スプール22は、スリーブ21の内径側において軸方向に形成される貫通孔21aに液密に収容されている。スプール22は、軸方向に往復移動可能となっており、スプール22を軸方向に往復移動させることにより、各種ポートの連通状態を変化させ、作動油の圧力や流量を制御するようになっている。
The spool 22 is liquid-tightly accommodated in a through hole 21a formed in the inner diameter side of the sleeve 21 in the axial direction. The spool 22 can be reciprocated in the axial direction, and by reciprocating the spool 22 in the axial direction, the communication state of various ports is changed to control the pressure and flow rate of hydraulic oil. .
スプリング29は、スプール22を軸方向他端側に付勢している。リテーナ23は、スリーブ21の軸方向一端に取付けられている。プレート20は、リテーナ23の底壁部23b(図2参照)に内側から配置されており、スプリング29の一端に当接している。
The spring 29 biases the spool 22 toward the other axial end. The retainer 23 is attached to one axial end of the sleeve 21 . The plate 20 is arranged inside the bottom wall portion 23 b (see FIG. 2 ) of the retainer 23 and abuts one end of the spring 29 .
尚、本発明におけるケース2Aは、スリーブ21とリテーナ23からなっており、スプール22、スプリング29、プレート20を収容している。
The case 2A in the present invention consists of a sleeve 21 and a retainer 23, and accommodates a spool 22, a spring 29 and a plate 20.
これらスリーブ21、スプール22、リテーナ23、プレート20は、アルミ、鉄、ステンレス、樹脂等の材料により形成されている。尚、リテーナ23及びプレート20の構造は後に詳述する。
The sleeve 21, spool 22, retainer 23, and plate 20 are made of materials such as aluminum, iron, stainless steel, and resin. The structures of the retainer 23 and the plate 20 will be detailed later.
次に、ソレノイド部3の構造について説明する。図1に示されるように、ソレノイド部3は、ソレノイドケース30と、ステータ32と、サイドリング33と、筒状体7と、ブッシュ9と、エンドプレート34と、プランジャ35と、から主に構成されている。
Next, the structure of the solenoid portion 3 will be described. As shown in FIG. 1, the solenoid portion 3 is mainly composed of a solenoid case 30, a stator 32, a side ring 33, a tubular body 7, a bush 9, an end plate 34, and a plunger 35. It is
ソレノイドケース30は、鉄等の磁性を有する金属材料から形成される筒状体であり、一端がスリーブ21の他端に接続されている。ソレノイド成形体31は、コイル36を樹脂によりモールド成形することにより形成されている。ステータ32は鉄等の磁性を有する金属材料から形成されソレノイド成形体31の内側の軸方向一端側に配置されている。サイドリング33は、鉄等の磁性を有する金属材料から形成されソレノイド成形体31の内側の軸方向他端側に配置されている。
The solenoid case 30 is a cylindrical body made of a magnetic metal material such as iron, and has one end connected to the other end of the sleeve 21 . The solenoid molded body 31 is formed by molding the coil 36 with resin. The stator 32 is made of a magnetic metal material such as iron, and is arranged inside the solenoid molded body 31 at one end in the axial direction. The side ring 33 is made of a magnetic metal material such as iron, and is arranged inside the solenoid molded body 31 on the other axial end side.
筒状体7は、非磁性体から構成され、軸方向に離間するステータ32とサイドリング33との間に配置されている。ブッシュ9は非磁性体から構成され、筒状体7とサイドリング33の内側に軸方向に亘って配設されている。エンドプレート34は、鉄等の磁性を有する金属材料から形成されており、ソレノイドケース30の軸方向他端の開口を閉塞する蓋部材として機能している。
The cylindrical body 7 is made of a non-magnetic material and arranged between the stator 32 and the side ring 33 spaced apart in the axial direction. The bushing 9 is made of a non-magnetic material, and is arranged axially inside the tubular body 7 and the side ring 33 . The end plate 34 is made of a magnetic metal material such as iron, and functions as a lid member that closes the opening at the other axial end of the solenoid case 30 .
プランジャ35は、鉄等の磁性を有する金属材料により円柱状に形成されており、ステータ32、筒状体7、サイドリング33、ブッシュ9、エンドプレート34により囲まれた空間内に軸方向に移動可能な状態で配置される可動鉄心である。このプランジャ35は、ブッシュ9の内側に摺接可能となっている。
The plunger 35 is formed in a columnar shape from a magnetic metal material such as iron, and moves axially in a space surrounded by the stator 32, the cylindrical body 7, the side ring 33, the bush 9, and the end plate 34. It is a movable iron core arranged in a possible state. The plunger 35 is slidable inside the bush 9 .
ソレノイドバルブ1のオフ状態において、スプリング29の付勢力によりスプール22が軸方向他端側に付勢され、これに伴いプランジャ35およびステータ32の孔部32cに摺動可能に挿通されるロッド5が軸方向他端側に移動している。
When the solenoid valve 1 is in the OFF state, the spool 22 is urged toward the other end in the axial direction by the urging force of the spring 29. Accordingly, the rod 5 slidably inserted through the hole 32c of the plunger 35 and the stator 32 is displaced. It has moved to the other end in the axial direction.
また、図示しないが、ソレノイドバルブ1のオン状態において、ソレノイド成形体31のコイル36への通電によりソレノイドケース30、エンドプレート34、サイドリング33、プランジャ35、ステータ32により磁気回路が形成され、ステータ32とプランジャ35との間に磁力が発生することにより、プランジャ35およびロッド5はステータ32側に向けて軸方向に移動する。
Further, although not shown, when the solenoid valve 1 is in the ON state, a magnetic circuit is formed by the solenoid case 30, the end plate 34, the side ring 33, the plunger 35, and the stator 32 by energizing the coil 36 of the solenoid molded body 31. A magnetic force is generated between the plunger 32 and the plunger 35 to axially move the plunger 35 and the rod 5 toward the stator 32 side.
このように、スプール22を軸方向に移動させることで、スリーブ21の入力ポート24から出力ポート25へ流れる制御流体の量を変化させることができるようになっている。
By moving the spool 22 in the axial direction in this manner, the amount of control fluid flowing from the input port 24 to the output port 25 of the sleeve 21 can be varied.
次に、リテーナ23の構造について説明する。図2に示されるように、リテーナ23は、円筒状の側壁部23aと、側壁部23aの一端側の開口を閉塞する底壁部23bと、を備えており、他端側に開口する略有底筒状を成している。側壁部23aの他端部には、外径側に折り曲げられた鍔部23cが形成されており、鍔部23cがスリーブ21の一端部に設けられた凹部21bに係合することでリテーナ23とスリーブ21が接続されている(図1参照)。
Next, the structure of the retainer 23 will be explained. As shown in FIG. 2, the retainer 23 includes a cylindrical side wall portion 23a and a bottom wall portion 23b that closes an opening at one end of the side wall portion 23a. It has a tubular shape. The other end of the side wall portion 23a is formed with a flange portion 23c that is bent radially outward. A sleeve 21 is connected (see FIG. 1).
底壁部23bには、その中心部に軸方向に貫通する円形状の貫通孔23dが形成されているとともに、貫通孔23dの周囲には、該貫通孔23dから放射状に延びる凹部としての貫通溝231、凹部としての第1凹溝232、凹部としての第2凹溝233が複数個ずつ(本実施例では3つずつ)等配されている。尚、図2(c)では、わかりやすく説明するために、第1凹溝232を濃いドット、第2凹溝233を薄いドットで図示している。
A circular through hole 23d is formed in the center of the bottom wall portion 23b so as to extend therethrough in the axial direction. 231, a plurality of first grooves 232 as recesses, and a plurality of second grooves 233 as recesses (three each in this embodiment) are equally arranged. In FIG. 2(c), the first grooves 232 are shown with dark dots, and the second grooves 233 are shown with light dots for easy understanding.
図2(b)(c)、図3(a)に示されるように、貫通溝231は、軸方向に貫通している。言い換えれば、貫通溝231の軸方向の寸法L1は、底壁部23bの厚みと同じ寸法となっている。尚、貫通溝231の軸方向の寸法L1は、後述するプレート20の凸部20cの軸方向の寸法L10(図4参照。)よりも大きくなっている(L1>L10)。
As shown in FIGS. 2(b), 2(c) and 3(a), the through groove 231 penetrates in the axial direction. In other words, the axial dimension L1 of the through groove 231 is the same dimension as the thickness of the bottom wall portion 23b. The axial dimension L1 of the through groove 231 is larger than the axial dimension L10 (see FIG. 4) of the projection 20c of the plate 20 (L1>L10).
また、図2(c)、図3(b)に示されるように、第1凹溝232は底面232aを有しており、その軸方向の寸法L2は、貫通溝231の軸方向の寸法L1よりも小さくなっている(L1>L2)。尚、第1凹溝232の軸方向の寸法L2は、後述するプレート20の凸部20cの軸方向の寸法L10よりも小さくなっている(L2<L10)。
2(c) and 3(b), the first groove 232 has a bottom surface 232a whose axial dimension L2 is equal to the axial dimension L1 of the through groove 231. (L1>L2). The axial dimension L2 of the first groove 232 is smaller than the axial dimension L10 of the projection 20c of the plate 20 (L2<L10).
また、図2(c)、図3(c)に示されるように、第2凹溝233は底面233aを有しており、その軸方向の寸法L3は、第1凹溝232の軸方向の寸法L2よりも小さくなっている(L2>L3)。
2(c) and 3(c), the second groove 233 has a bottom surface 233a whose axial dimension L3 is It is smaller than the dimension L2 (L2>L3).
次に、プレート20の構造について説明する。図4に示されるように、プレート20は、
円板状の基部20aと、基部20aの中央部から円柱状に突出する突出部20bと、突出部20bから放射状に延びる複数(実施例では3つ)の凸部20cと、を有している。 Next, the structure of theplate 20 will be explained. As shown in FIG. 4, the plate 20 is
It has a disk-shapedbase portion 20a, a projecting portion 20b projecting in a columnar shape from the center portion of the base portion 20a, and a plurality of (three in the embodiment) projecting portions 20c radially extending from the projecting portion 20b. .
円板状の基部20aと、基部20aの中央部から円柱状に突出する突出部20bと、突出部20bから放射状に延びる複数(実施例では3つ)の凸部20cと、を有している。 Next, the structure of the
It has a disk-shaped
基部20aは、側壁部23aの内径よりも若干小径に設けられている。また、突出部20bは、貫通孔23dよりも若干小径に設けられている。またこの突出部20bには、軸方向に貫通する操作部としての操作溝20dが形成されている。操作溝20dは軸方向視長方形状を成している。
The base portion 20a is provided with a slightly smaller diameter than the inner diameter of the side wall portion 23a. Moreover, the projecting portion 20b is provided with a slightly smaller diameter than the through hole 23d. Further, an operation groove 20d is formed as an operation portion penetrating in the axial direction in the projecting portion 20b. The operation groove 20d has a rectangular shape when viewed in the axial direction.
凸部20cは、突出部20bの周囲に等配されており、一の凸部20cは、操作溝20dの延設方向に対して直交している。凸部20cは、軸方向の寸法L10を有している。
The convex portions 20c are evenly distributed around the protruding portion 20b, and one convex portion 20c is orthogonal to the extending direction of the operation groove 20d. The convex portion 20c has an axial dimension L10.
次に、プレート20の第1位置、第2位置、第3位置である軸方向位置について説明する。尚、軸方向の位置を変更する手順については後述する。
Next, the first, second and third axial positions of the plate 20 will be described. A procedure for changing the position in the axial direction will be described later.
図5は、プレート20の第1位置を示している。このとき、プレート20の突出部20bはリテーナ23の貫通孔23dに挿入され、プレート20の各凸部20cはリテーナ23の各貫通溝231に係合されており、プレート20の基部20aはリテーナ23の底壁部23bに当接している。
5 shows the first position of the plate 20. FIG. At this time, the protrusions 20b of the plate 20 are inserted into the through holes 23d of the retainer 23, the protrusions 20c of the plate 20 are engaged with the through grooves 231 of the retainer 23, and the base 20a of the plate 20 is inserted into the retainer 23. is in contact with the bottom wall portion 23b.
プレート20の第1位置にあっては、プレート20におけるスプリング29の支持面20eと、スプール22におけるスプリング29の支持面22aとは距離D1分軸方向に離間している。
At the first position of the plate 20, the supporting surface 20e of the spring 29 on the plate 20 and the supporting surface 22a of the spring 29 on the spool 22 are separated in the axial direction by a distance D1.
プレート20とリテーナ23とは、各凸部20cが各貫通溝231に係合されることでこれらの相対回転が規制されている。またプレート20の各凸部20cは、スプリング29の付勢力により基部20aが底壁部23bに押し付けられることでリテーナ23の各貫通溝231に係合した状態が維持されるようになっている。
The relative rotation between the plate 20 and the retainer 23 is restricted by engaging the protrusions 20c with the through grooves 231. Further, each convex portion 20c of the plate 20 is kept engaged with each through groove 231 of the retainer 23 by pressing the base portion 20a against the bottom wall portion 23b by the biasing force of the spring 29. As shown in FIG.
図6は、プレート20の第2位置を示している。このとき、プレート20の突出部20bはリテーナ23の貫通孔23dに挿入され、プレート20の各凸部20cはリテーナ23の各第1凹溝232に係合され、プレート20の基部20aはリテーナ23の底壁部23bから他方側に若干離間している。
6 shows the second position of the plate 20. FIG. At this time, the protrusions 20b of the plate 20 are inserted into the through holes 23d of the retainer 23, the protrusions 20c of the plate 20 are engaged with the first grooves 232 of the retainer 23, and the base 20a of the plate 20 is inserted into the retainer 23. is slightly spaced from the bottom wall portion 23b of the other side.
プレート20の第2位置にあっては、プレート20におけるスプリング29の支持面20eと、スプール22におけるスプリング29の支持面22aとは距離D1よりも短い距離D2分軸方向に離間している(D1>D2)。
At the second position of the plate 20, the supporting surface 20e of the spring 29 on the plate 20 and the supporting surface 22a of the spring 29 on the spool 22 are axially separated by a distance D2 shorter than the distance D1 (D1 >D2).
またプレート20の各凸部20cは、スプリング29の付勢力によりリテーナ23の各第1凹溝232の底面232aに押し付けられることで各第1凹溝232に係合した状態が維持されるようになっている。
Each projection 20c of the plate 20 is pressed against the bottom surface 232a of each first groove 232 of the retainer 23 by the biasing force of the spring 29 so that the state of engagement with each first groove 232 is maintained. It's becoming
図7は、プレート20の第3位置を示している。このとき、プレート20の突出部20bはリテーナ23の貫通孔23dに挿入され、プレート20の各凸部20cはリテーナ23の各第2凹溝233に係合され、プレート20の基部20aは図6の状態よりもリテーナ23の底壁部23bから他方側にさらに離間している。
7 shows the third position of the plate 20. FIG. At this time, the protrusions 20b of the plate 20 are inserted into the through holes 23d of the retainer 23, the protrusions 20c of the plate 20 are engaged with the second grooves 233 of the retainer 23, and the base 20a of the plate 20 is as shown in FIG. It is further separated from the bottom wall portion 23b of the retainer 23 to the other side than in the state of .
プレート20の第3位置にあっては、プレート20におけるスプリング29の支持面20eと、スプール22におけるスプリング29の支持面22aとは距離D2よりも短い距離D3分軸方向に離間している(D2>D3)。
At the third position of the plate 20, the supporting surface 20e of the spring 29 on the plate 20 and the supporting surface 22a of the spring 29 on the spool 22 are axially separated by a distance D3 shorter than the distance D2 (D2 >D3).
またプレート20の各凸部20cは、スプリング29の付勢力によりリテーナ23の各第2凹溝233の底面233aに押し付けられることで各第2凹溝233に係合した状態が維持されるようになっている。
Each projection 20c of the plate 20 is pressed against the bottom surface 233a of each second groove 233 of the retainer 23 by the biasing force of the spring 29 so that the state of engagement with each second groove 233 is maintained. It's becoming
上記のように、スプリング29の支持面20eとスプール22におけるスプリング29の支持面22aとの離間距離は、D1>D2>D3となっているので、プレート20の第1位置にあっては最もスプリング29の付勢力が小さく、プレート20の第2位置にあっては第1位置に比べてスプリング29の付勢力が大きく、プレート20の第3位置にあっては最もスプリング29の付勢力を大きくなるように設定できるようになっている。
As described above, the separation distance between the support surface 20e of the spring 29 and the support surface 22a of the spring 29 on the spool 22 is D1>D2>D3. The urging force of the spring 29 is small, the urging force of the spring 29 is larger at the second position of the plate 20 than at the first position, and the largest at the third position of the plate 20. can be set to
次に、プレート20の軸方向の位置を変更する手順について説明する。外部からリテーナ23の貫通孔23dを通じて操作溝20dに図示しない治具を係合させ、軸方向に移動させた状態で軸回りに回転させることで、各凸部20cを貫通溝231、第1凹溝232、第2凹溝233のいずれかに選択的に係合させる。このようにして、プレート20の軸方向の位置を変更することができるようになっている。
Next, a procedure for changing the axial position of the plate 20 will be described. A jig (not shown) is engaged with the operating groove 20d through the through hole 23d of the retainer 23 from the outside, and is moved in the axial direction and then rotated around the axis, thereby moving each convex portion 20c into the through groove 231 and the first concave portion. Either the groove 232 or the second concave groove 233 is selectively engaged. In this manner, the axial position of the plate 20 can be changed.
例えば、プレート20を第1位置から第2位置に変更するときには、外部からスプリング29の付勢力に抗してプレート20を軸方向他方側へ移動させるとともに、軸回りに回転(本実施例では時計回りに略40度回転)させた後、スプリング29の付勢力によりプレート20を軸方向一方側に戻すことにより、プレート20の各凸部20cが係合する位置がリテーナ23の各貫通溝231から各第1凹溝232に変更される。
For example, when changing the plate 20 from the first position to the second position, the plate 20 is moved to the other side in the axial direction against the biasing force of the spring 29 from the outside, and is rotated around the axis (clockwise in this embodiment). 40 degrees), and then the plate 20 is returned to one side in the axial direction by the biasing force of the spring 29, so that the positions where the protrusions 20c of the plate 20 are engaged are shifted from the through grooves 231 of the retainer 23. Each first concave groove 232 is changed.
また、プレート20の突出部20bの外周面は、プレート20が第1位置~第3位置に移動するときに常に貫通孔23dの内周面に沿って摺動するようになっている。また、プレート20の基部20aの外周面は、プレート20が第1位置~第3位置に移動するときに常にリテーナ23の側壁部23aの内周面に沿って摺動するようになっている。すなわち、貫通孔23dの内周面およびリテーナ23の側壁部23aの内周面は、プレート20の軸方向の移動をガイドするガイド手段Gとして機能している。
In addition, the outer peripheral surface of the projecting portion 20b of the plate 20 always slides along the inner peripheral surface of the through hole 23d when the plate 20 moves from the first position to the third position. The outer peripheral surface of the base portion 20a of the plate 20 always slides along the inner peripheral surface of the side wall portion 23a of the retainer 23 when the plate 20 moves from the first position to the third position. That is, the inner peripheral surface of the through hole 23d and the inner peripheral surface of the side wall portion 23a of the retainer 23 function as guide means G for guiding the movement of the plate 20 in the axial direction.
以上説明したように、凸部20cが係合する貫通溝231、第1凹溝232、第2凹溝233を選択することによりスリーブ21におけるプレート20の軸方向の位置を適宜変更してスプリング29の付勢力を調整できるとともに、凸部20cはスプリング29の付勢力により貫通溝231、第1凹溝232、第2凹溝233のいずれかに係合した状態が維持されるため、スプール22に作用するスプリング29の付勢力を安定的に発揮させることができる。
As described above, by selecting the through groove 231, the first groove 232, and the second groove 233 with which the projection 20c engages, the axial position of the plate 20 in the sleeve 21 can be appropriately changed, and the spring 29 can be adjusted. In addition, the convex portion 20c is kept engaged with any one of the through groove 231, the first concave groove 232, and the second concave groove 233 by the biasing force of the spring 29. The urging force of the acting spring 29 can be stably exerted.
また、プレート20は軸回りに回転可能であり、貫通溝231、第1凹溝232、第2凹溝233はプレート20の基部20aの周方向に複数配置されているため、プレート20を軸回りに回転させることで、凸部20cが係合する貫通溝231、第1凹溝232、第2凹溝233を簡便に選択することができる。
Further, the plate 20 is rotatable around the axis, and the plurality of through grooves 231, the first grooves 232, and the second grooves 233 are arranged in the circumferential direction of the base 20a of the plate 20, so that the plate 20 can be rotated around the axis. 231, the first recessed groove 232, and the second recessed groove 233 to be engaged with the convex portion 20c can be easily selected.
また、プレート20には、スリーブ21及びリテーナ23の外部からアクセス可能となっており、外部からプレート20を操作してスプリング29の付勢力を調整できる。
Also, the plate 20 can be accessed from the outside of the sleeve 21 and the retainer 23, and the biasing force of the spring 29 can be adjusted by operating the plate 20 from the outside.
具体的には、リテーナ23には貫通孔23dが形成されており、プレート20には貫通孔23dに露出する操作溝20dが設けられており、外部から操作溝20dを操作してプレート20の軸方向の位置を適宜変更できる。また、操作溝20dには治具を係合させることができるため、外部からプレート20の軸方向の位置を変更する作業を簡便に行うことができる。
Specifically, the retainer 23 is formed with a through hole 23d, and the plate 20 is provided with an operation groove 20d exposed to the through hole 23d. The position of the direction can be changed as appropriate. Further, since a jig can be engaged with the operation groove 20d, the work of changing the position of the plate 20 in the axial direction from the outside can be easily performed.
さらに、操作溝20dは軸方向に貫通している。これによれば、操作溝20dは、スプール22、スリーブ21、リテーナ23、プレート20により区画されたスプリング29を収容する空間と、外部空間とを連通する呼吸孔として利用できるため、スプリング29を収容する空間で圧力が高まることを回避できる。
Furthermore, the operation groove 20d penetrates in the axial direction. According to this, the operation groove 20d can be used as a breathing hole that communicates the space defined by the spool 22, the sleeve 21, the retainer 23, and the plate 20 and housing the spring 29 with the external space. It is possible to avoid pressure build-up in the space where
また、プレート20における一の凸部20cは、操作溝20dの延設方向に対して直交しているため、外部からでも操作溝20dを基準として一の凸部20cの位置を把握することができ、凸部20cを貫通溝231、第1凹溝232、第2凹溝233のいずれかに係合させる作業が簡便である。
Further, since one convex portion 20c of the plate 20 is perpendicular to the extending direction of the operation groove 20d, the position of the one convex portion 20c can be grasped from the outside with reference to the operation groove 20d. , the work of engaging the convex portion 20c with any one of the through groove 231, the first concave groove 232, and the second concave groove 233 is simple.
また、リテーナ23には、プレート20の突出部20bの外周面が摺動する貫通孔23dの内周面と、プレート20の基部20aの外周面が摺動する側壁部23aの内周面とが設けられている。これによれば、貫通孔23dの内周面と側壁部23aの内周面とによりプレート20の軸方向の移動がガイドされるので、凸部20cと貫通溝231、第1凹溝232、第2凹溝233とを精度よく係合させることができる。
The retainer 23 has an inner peripheral surface of a through hole 23d on which the outer peripheral surface of the projecting portion 20b of the plate 20 slides, and an inner peripheral surface of the side wall portion 23a on which the outer peripheral surface of the base portion 20a of the plate 20 slides. is provided. According to this, the movement of the plate 20 in the axial direction is guided by the inner peripheral surface of the through hole 23d and the inner peripheral surface of the side wall portion 23a. 2 concave groove 233 can be engaged precisely.
尚、本実施例では、ガイド手段Gが2つ設けられる形態を例示したが、少なくとも一方が設けられていれば、他方の構成を省略してもよく、例えば、貫通孔23dの内周面をガイド手段とした場合には、リテーナ23の側壁部23aの内周よりも、プレート20の基部20aの外径が小さくなっていてもよい。
In this embodiment, the configuration in which two guide means G are provided was exemplified, but as long as at least one is provided, the other structure may be omitted. When used as guide means, the outer diameter of the base portion 20a of the plate 20 may be smaller than the inner circumference of the side wall portion 23a of the retainer 23 .
また、凸部20cは放射方向に延びて複数形成されているため、リテーナ23に対するプレート20の回転が規制され、使用時に、例えばプレート20が若干径方向に移動しても、貫通溝231、第1凹溝232、第2凹溝233から凸部20cが離脱しにくい。
Further, since a plurality of projections 20c are formed extending in the radial direction, the rotation of the plate 20 with respect to the retainer 23 is regulated. The protrusion 20 c is difficult to separate from the first groove 232 and the second groove 233 .
また、凸部20cは周方向に等配されているため、プレート20の周方向にバランスよく係合部を配置でき、プレート20が傾くことを防止できる。
In addition, since the convex portions 20c are evenly distributed in the circumferential direction, the engaging portions can be arranged in a well-balanced manner in the circumferential direction of the plate 20, and the plate 20 can be prevented from tilting.
また、凹部の1つは軸方向に貫通する貫通溝231であることから、リテーナ23の底壁部23bの厚みを薄く形成することができる。また、貫通溝231を通じて外部からプレート20の凸部20cの位置を確認することもできる。
In addition, since one of the concave portions is the through groove 231 penetrating in the axial direction, the thickness of the bottom wall portion 23b of the retainer 23 can be made thin. Also, the position of the projection 20c of the plate 20 can be confirmed from the outside through the through groove 231. FIG.
また、プレート20は軸方向に薄い板状であるため、ソレノイドバルブ1の軸方向寸法を小さくできる。尚、スプリング受けは板状に限られず、例えば軸方向に長い円柱状など、自由に変更することができる。
Also, since the plate 20 is thin in the axial direction, the axial dimension of the solenoid valve 1 can be reduced. The shape of the spring receiver is not limited to a plate shape, and may be freely changed to, for example, a cylindrical shape elongated in the axial direction.
また、突出部20bの軸方向寸法は、凸部20cの軸方向寸法L10よりも大きいため、プレート20の軸方向の位置を変更する際に、突出部20bを貫通孔23dに挿入することで、凸部20cの径方向の位置合わせを行うことができる。
Further, since the axial dimension of the protruding portion 20b is larger than the axial dimension L10 of the protruding portion 20c, when changing the axial position of the plate 20, by inserting the protruding portion 20b into the through hole 23d, It is possible to align the protrusion 20c in the radial direction.
また、プレート20の第1位置(図5参照)において、突出部20bの端面と底壁部23bの端面とが外方(軸方向一端)で面一となっている。これによれば、突出部20bの端面と底壁部23bの端面とが面一となることで、プレート20が第1位置に配置されたことを外部から把握することができる。
In addition, at the first position (see FIG. 5) of the plate 20, the end surface of the projecting portion 20b and the end surface of the bottom wall portion 23b are flush with each other outward (one end in the axial direction). According to this, the end surface of the projecting portion 20b and the end surface of the bottom wall portion 23b are flush with each other, so that it is possible to recognize from the outside that the plate 20 is arranged at the first position.
次に、実施例2に係る弁につき、図8を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。
Next, the valve according to Example 2 will be described with reference to FIG. It should be noted that the description of the configuration that is the same as that of the above-described embodiment and overlaps will be omitted.
図8に示されるように、本実施例2のリテーナ300の底壁部300aには、凹部としての第1凹溝301と、凹部としての第2凹溝302と、凹部としての第3凹溝303と、貫通孔304と、が形成されている。これら第1凹溝301、第2凹溝302、第3凹溝303は、底壁部300aの中央に設けられた貫通孔304から外径側に延びて形成されている。
As shown in FIG. 8, the bottom wall portion 300a of the retainer 300 of the second embodiment has a first concave groove 301 as a concave portion, a second concave groove 302 as a concave portion, and a third concave groove as a concave portion. 303 and a through hole 304 are formed. The first groove 301, the second groove 302, and the third groove 303 are formed to extend radially outward from a through hole 304 provided in the center of the bottom wall portion 300a.
第1凹溝301の底面301aは、第2凹溝302の底面302aよりも一端側に位置している。また、第2凹溝302の底面302aは、第3凹溝303の底面303aよりも一端側に位置している。
The bottom surface 301a of the first groove 301 is positioned closer to one end than the bottom surface 302a of the second groove 302. Also, the bottom surface 302a of the second groove 302 is located closer to one end than the bottom surface 303a of the third groove 303. As shown in FIG.
すなわち、第1凹溝301の軸方向の寸法L1’は第2凹溝302の軸方向の寸法L2’よりも大きく、第2凹溝302の軸方向の寸法L2’は第3凹溝303の軸方向の寸法L3’よりも大きい(L1’>L2’>L3’)。このように、凹部は、軸方向に貫通していない凹溝のみで構成されていてもよい。
That is, the axial dimension L1′ of the first groove 301 is greater than the axial dimension L2′ of the second groove 302, and the axial dimension L2′ of the second groove 302 is greater than that of the third groove 303. greater than the axial dimension L3' (L1'>L2'>L3'). In this way, the recess may be composed only of a recess that does not penetrate in the axial direction.
プレート20の各凸部20cの端面(図4参照)は、プレート20の第1位置において各第1凹溝301の底面301aに、プレート20の第2位置において各第2凹溝302の底面302a、プレート20の第3位置において各第3凹溝303の底面303aにそれぞれ当接する。すなわち、プレート20のいずれの位置においても、プレート20の各凸部20cの端面が同じようにいずれかの底面に当接するため、プレート20が配置された状態が安定する。
The end surface of each projection 20c of the plate 20 (see FIG. 4) is aligned with the bottom surface 301a of each first groove 301 at the first position of the plate 20, and the bottom surface 302a of each second groove 302 at the second position of the plate 20. , contact the bottom surface 303a of each third groove 303 at the third position of the plate 20, respectively. That is, at any position on the plate 20, the end face of each projection 20c of the plate 20 similarly abuts on one of the bottom faces, so that the state in which the plate 20 is arranged is stable.
以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and any changes or additions within the scope of the present invention are included in the present invention. be
例えば、前記実施例では、スプリング受け側に凸部、ケース側に凹部が設けられる形態を例示したが、スプリング受け側に凹部、ケース側に凸部が設けられていてもよい。
For example, in the above embodiment, the convex portion is provided on the spring receiving side and the concave portion is provided on the case side, but the concave portion may be provided on the spring receiving side and the convex portion on the case side.
また、前記実施例では、ケースの底壁部と、該底壁部と対向するスプリング受けの対向面との間に凹部および凸部が設けられている形態を例示したが、ケースの側壁部とスプリング受けの側面部との間に凹部および凸部が設けられていてもよい。
Further, in the above-described embodiment, the concave portion and the convex portion are provided between the bottom wall portion of the case and the opposing surface of the spring receiver that faces the bottom wall portion. A concave portion and a convex portion may be provided between the side portion of the spring receiver.
また、前記実施例では、ケースがスリーブとリテーナにより構成されている形態を例示したが、ケースは一つの部材から構成されていてもよい。
Also, in the above-described embodiment, the case is composed of a sleeve and a retainer, but the case may be composed of a single member.
また、前記実施例では、スプリング受けを軸回りに回転させることで凸部が係合する凹部を選択的に変更する形態を例示したが、ケースをスプリング受けよりも大径に形成し、スプリング受けを径方向に移動させることで凸部が係合する凹部を選択的に変更するようになっていてもよい。
Further, in the above embodiment, the spring receiver is rotated around the axis to selectively change the concave portion with which the convex portion engages. may be adapted to selectively change the concave portion with which the convex portion engages by moving the in the radial direction.
また、前記実施例では、凹部及び凸部が放射状に延びている形態を例示したが、凹部及び凸部は放射状に延びていなくてもよい。例えば、軸方向視で正方形を成し、スプリング受け及びケースの周方向に点在して設けられていてもよい。
Also, in the above embodiment, the recesses and protrusions extend radially, but the recesses and protrusions do not have to extend radially. For example, they may have a square shape when viewed in the axial direction, and may be scattered in the circumferential direction of the spring receiver and the case.
また、前記実施例では、複数の凸部がスプリング受けに対して周方向に等配されている形態を例示したが、凸部は少なくとも1つ設けられていればよい。
Also, in the above-described embodiment, the form in which a plurality of protrusions are evenly distributed in the circumferential direction with respect to the spring receiver was exemplified, but at least one protrusion may be provided.
また、前記実施例では、弁体にスプールを用いるスプールタイプのソレノイドバルブとして説明したが、これに限られず、グローブ弁やゲート弁等を用いたソレノイドバルブであってもよい。
Also, in the above embodiments, the spool type solenoid valve using a spool as the valve body has been described, but the present invention is not limited to this, and may be a solenoid valve using a globe valve, a gate valve, or the like.
1 ソレノイドバルブ(弁)
2A ケース
20 プレート(スプリング受け)
20c 凸部
20d 操作溝(操作部)
21 スリーブ(ケース)
22 スプール(弁体)
23 リテーナ(ケース)
23a 側壁部(ガイド手段)
23d 貫通孔(ガイド手段)
29 スプリング
35 プランジャ
231 貫通溝(凹部)
232 第1凹溝(凹部)
233 第2凹溝(凹部)
300 リテーナ(ケース)
301 第1凹溝(凹部)
302 第2凹溝(凹部)
303 第3凹溝(凹部)
G ガイド手段 1 Solenoid valve (valve)
2A case 20 plate (spring receiver)
20cconvex portion 20d operating groove (operating portion)
21 sleeve (case)
22 spool (valve)
23 retainer (case)
23a side wall (guide means)
23d through hole (guide means)
29spring 35 plunger 231 through groove (recess)
232 first groove (recess)
233 Second groove (recess)
300 retainer (case)
301 first groove (recess)
302 second groove (recess)
303 Third groove (recess)
G guide means
2A ケース
20 プレート(スプリング受け)
20c 凸部
20d 操作溝(操作部)
21 スリーブ(ケース)
22 スプール(弁体)
23 リテーナ(ケース)
23a 側壁部(ガイド手段)
23d 貫通孔(ガイド手段)
29 スプリング
35 プランジャ
231 貫通溝(凹部)
232 第1凹溝(凹部)
233 第2凹溝(凹部)
300 リテーナ(ケース)
301 第1凹溝(凹部)
302 第2凹溝(凹部)
303 第3凹溝(凹部)
G ガイド手段 1 Solenoid valve (valve)
20c
21 sleeve (case)
22 spool (valve)
23 retainer (case)
23a side wall (guide means)
23d through hole (guide means)
29
232 first groove (recess)
233 Second groove (recess)
300 retainer (case)
301 first groove (recess)
302 second groove (recess)
303 Third groove (recess)
G guide means
Claims (8)
- 軸方向に移動する弁体と、前記弁体に対して付勢力を与えるスプリングと、がケース内に収容された弁であって、
前記ケースに対して軸方向に移動可能なスプリング受けを有し、
前記ケースまたは前記スプリング受けの一方には、軸方向の底の位置が異なる凹部が複数設けられ、前記ケースまたは前記スプリング受けの他方には、前記凹部に対し選択的に係合可能な凸部が設けられていることを特徴とする弁。 A valve in which a valve body that moves in the axial direction and a spring that applies a biasing force to the valve body are accommodated in a case,
having a spring receiver axially movable with respect to the case;
One of the case and the spring receiver is provided with a plurality of recesses having different bottom positions in the axial direction, and the other of the case and the spring receiver is provided with protrusions that can be selectively engaged with the recesses. A valve, characterized in that it is provided with: - 前記スプリング受けは回転可能であり、軸方向の底の位置が異なる前記凹部は周方向に複数配置されている請求項1に記載の弁。 The valve according to claim 1, wherein the spring receiver is rotatable, and a plurality of the recesses having different bottom positions in the axial direction are arranged in the circumferential direction.
- 前記スプリング受けには、前記ケースの外部からアクセス可能となっている請求項1または2に記載の弁。 The valve according to claim 1 or 2, wherein the spring receiver is accessible from the outside of the case.
- 前記ケースには貫通孔が形成されており、前記スプリング受けには前記貫通孔に露出する操作部が設けられている請求項3に記載の弁。 The valve according to claim 3, wherein a through hole is formed in the case, and an operating portion exposed to the through hole is provided in the spring receiver.
- 前記操作部は溝である請求項4に記載の弁。 The valve according to claim 4, wherein the operating portion is a groove.
- 前記ケースには、前記スプリング受けの軸方向の移動をガイドするガイド手段が設けられている請求項1に記載の弁。 The valve according to claim 1, wherein the case is provided with guide means for guiding axial movement of the spring receiver.
- 前記凸部は放射方向に延びて複数形成されている請求項1に記載の弁。 The valve according to claim 1, wherein a plurality of said protrusions are formed extending in a radial direction.
- 前記凹部の1つは軸方向に貫通している請求項1に記載の弁。 The valve according to claim 1, wherein one of said recesses is axially through.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023562391A JPWO2023090375A1 (en) | 2021-11-17 | 2022-11-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-186781 | 2021-11-17 | ||
JP2021186781 | 2021-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090375A1 true WO2023090375A1 (en) | 2023-05-25 |
Family
ID=86397113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042620 WO2023090375A1 (en) | 2021-11-17 | 2022-11-16 | Valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023090375A1 (en) |
WO (1) | WO2023090375A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580545U (en) * | 1978-11-30 | 1980-06-03 | ||
JPH0315708U (en) * | 1989-06-30 | 1991-02-18 | ||
JP2013152015A (en) * | 2011-12-27 | 2013-08-08 | Denso Corp | Spring load adjusting device |
-
2022
- 2022-11-16 WO PCT/JP2022/042620 patent/WO2023090375A1/en active Application Filing
- 2022-11-16 JP JP2023562391A patent/JPWO2023090375A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580545U (en) * | 1978-11-30 | 1980-06-03 | ||
JPH0315708U (en) * | 1989-06-30 | 1991-02-18 | ||
JP2013152015A (en) * | 2011-12-27 | 2013-08-08 | Denso Corp | Spring load adjusting device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023090375A1 (en) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5498945B2 (en) | Solenoid valve | |
US4809749A (en) | Solenoid valve | |
JP5453918B2 (en) | Flow control valve | |
US20170108138A1 (en) | Solenoid valve | |
WO2018105337A1 (en) | Solenoid valve | |
US6732999B2 (en) | Electromagnetic valve device | |
JP6256104B2 (en) | Solenoid valve and method of manufacturing solenoid valve | |
JP2008089080A (en) | Electromagnetic driving device and solenoid valve using the same | |
WO2023090375A1 (en) | Valve | |
JP2004316896A (en) | Shift actuator for transmission | |
JP2008274999A (en) | Regulator valve | |
WO2022176710A1 (en) | Solenoid valve | |
JP2019157901A (en) | Solenoid valve | |
JP7350423B2 (en) | solenoid device | |
JP7463355B2 (en) | Solenoid valve | |
JP7463356B2 (en) | Solenoid valve | |
JP2012021611A (en) | Linear solenoid valve | |
JPH11280935A (en) | Solenoid valve | |
JPH07280123A (en) | Solenoid valve | |
WO2019208047A1 (en) | Cap with electromagnetic proportional valve | |
JP2011009381A (en) | Linear solenoid and valve device using the same | |
WO2024210067A1 (en) | Solenoid | |
KR200359703Y1 (en) | A solenoid | |
WO2023195386A1 (en) | Valve and valve assembly method | |
JP2531194Y2 (en) | Solenoid device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895656 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023562391 Country of ref document: JP |