WO2023090268A1 - 細胞の製造方法 - Google Patents

細胞の製造方法 Download PDF

Info

Publication number
WO2023090268A1
WO2023090268A1 PCT/JP2022/042056 JP2022042056W WO2023090268A1 WO 2023090268 A1 WO2023090268 A1 WO 2023090268A1 JP 2022042056 W JP2022042056 W JP 2022042056W WO 2023090268 A1 WO2023090268 A1 WO 2023090268A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
urine
motor neurons
differentiation
positive
Prior art date
Application number
PCT/JP2022/042056
Other languages
English (en)
French (fr)
Inventor
英久 岩田
宏彰 永井
昌代 齋藤
Original Assignee
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社 filed Critical 武田薬品工業株式会社
Publication of WO2023090268A1 publication Critical patent/WO2023090268A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/861Adenoviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing cells. More specifically, the present invention relates to a method for producing motor neurons by direct reprogramming.
  • Non-Patent Document 1 by using 8 types of transcription factors (Asc1, Brn2, Myt1l, NEUROD1, Lhx3, Hb9, Isl1, Ngn2) and a retroviral vector, embryonic stem cell (ESC)-derived human fetal fibroblasts It is described that HB9-positive motor neurons were obtained from cells (HEF).
  • ESC embryonic stem cell
  • Non-Patent Document 2 Tuj1, ChAT, and HB9-positive motor neurons were obtained from human postnatal/adult fibroblasts using two types of transcription factors (NGN2, Sox11) and a lentiviral vector. is stated. On the other hand, it is also described that expression of ISL1 and LHX3 was not confirmed.
  • Non-Patent Document 3 by using four types of transcription factors (NGN2, Sox11, ISL1, LHX3) and a lentiviral vector, Tuj1, HB9, ChAT, etc. positive motor neurons are obtained from human adult fibroblasts. It is stated that
  • Non-Patent Document 4 by using four types of transcription factors (NGN2, Sox11, ISL1, LHX3) and lentivirus, Tuj1, HB9, ChAT, etc. positive motor neurons are obtained from human adult fibroblasts. It is stated that
  • Non-Patent Document 5 by using two types of miRNA (miR-9/9* and miR-124) and two types of transcription factors (ISL1 and LHX3), from human adult fibroblasts, Tuj1, HB9 , ChAT, and SMI32 positive motor neurons were obtained.
  • miRNA miR-9/9* and miR-124
  • ISL1 and LHX3 transcription factors
  • Non-Patent Document 6 describes that Tuj1-positive neurons were obtained from mouse fibroblasts by using three types of transcription factors (Ascl1, Brn2, Myt1l or Ascl1, Brn2, Ngn2) and an adenovirus vector. (However, the expression of motor neuron markers has not been confirmed, and the neuron type has not been specified).
  • Non-Patent Documents 1 to 6 all report on direct reprogramming from fibroblasts to motor neurons, and do not describe that motor neurons were obtained from urine-derived cells by direct reprogramming.
  • Non-Patent Document 7 describes as a review that several reports have reported that nerve cells were obtained from urine-derived cells by direct reprogramming, but it is not described that motor neurons were obtained.
  • Direct reprogramming from fibroblasts has been generally used as a conventional method for inducing differentiation of motor neurons as described above, but punching when collecting fibroblasts is highly invasive and burdens the donor. was big.
  • An object of the present invention is to provide a method for inducing differentiation of motor neurons that places less burden on the donor.
  • the present inventors used urine-derived cells, which can be collected noninvasively from the urine of a donor, and induced differentiation into motor neurons by direct reprogramming to introduce transcription factors into these cells for induction of differentiation into motor neurons. I found what I can do. Moreover, according to this method, compared to conventional direct reprogramming from fibroblasts, the positive rate of cells expressing motor neuron markers is high, and the length of nerve fibers (differentiation level of motor neurons) increases. A cell population containing motor neurons that are superior in maturity (maturity) and functional to skeletal muscle cells can be obtained.
  • a method for producing motor neurons from urine-derived cells comprising: A method comprising the step of introducing a transcription factor for inducing differentiation into motor neurons into urine-derived cells. [2] The method of [1], wherein the transcription factor is introduced into the urine-derived cell by an adenoviral vector. [3] Furthermore, a step of culturing the urine-derived cells into which the transcription factor has been introduced to obtain cells positive for at least one selected from the group consisting of (X) ISL1, LHX3, HB9, ChAT, SMI32, and VAChT, [ 1] or [2].
  • the urine-derived cells into which the transcription factor has been introduced are cultured, and (X) at least one selected from the group consisting of ISL1, LHX3, HB9, ChAT, SMI32, and VAChT is positive, and (Y) Tuj1, MAP2, and NeuN , neurofilament, synapsin, and PSD-95.
  • the urine-derived cells into which the transcription factor has been introduced are cultured, and (I) at least one selected from the group consisting of Tuj1 and ISL1 is positive, and (II) at least one selected from the group consisting of HB9, ChAT and SMI32.
  • [6] The method according to any one of [3] to [5], wherein the step is a step of obtaining at least SMI32-positive cells.
  • [6a] The method of any one of [1] to [6], wherein the transcription factors include neural differentiation factors and motor neuron differentiation factors.
  • the transcription factor is (i) at least one neural differentiation factor selected from the group consisting of NGN2, ASCL1, BRN2, MYT1L, NEUROD1 and miR-9/9*-124 and (ii) the group consisting of ISL1, LHX3 and HB9
  • the transcription factor further comprises SOX11.
  • urine-derived cells obtained from a donor can be used to induce differentiation into motor neurons without imposing a burden on the donor.
  • the positivity rate of certain motor neuron markers is high, the nerve fiber length is excellent, and it tends to be functional for skeletal muscle cells.
  • motor neurons induced to differentiate from the urine-derived cells are also unique to the patient. Since it contains the genetic information of the gene, the motor neuron can be used to more accurately perform drug efficacy evaluation, biomarker search, etc. for the treatment of ALS in the patient.
  • FIG. 2 shows induction of motor neuron differentiation by lentivirus and adenovirus vectors.
  • the experimental procedure for generating motor neurons (MNs) from human fibroblasts or UDCs by introducing four transcription factors (4 TFs) of hNGN2, mSox11, hISL1 and hLHX3 is illustrated.
  • FIG. 4 shows expression of neuron markers and motor neuron markers in motoneurons differentiated from human UDCs using lentivirus.
  • the cells were infected with two lentiviruses and induced to differentiate into motor neurons.
  • Human fibroblasts (C-12302) were used for comparison. Quantification results of each marker expression rate on the 0th day, 7th day, and 14th day of differentiation induction are shown.
  • FIG. 3 shows expression of neuron markers and motor neuron markers in motor neurons differentiated from human UDCs using adenovirus.
  • the cells were infected with two adenoviruses and induced to differentiate into motor neurons.
  • Human fibroblasts (C-12302) were used for comparison.
  • FIG. 3 shows expression of neuron markers and motor neuron markers in motor neurons differentiated from human UDCs using adenovirus. According to the procedure shown in FIG. 1, the cells were infected with two adenoviruses and induced to differentiate into motor neurons. Human fibroblasts (C-12302) were used for comparison. Quantification results of each marker expression rate on the 0th day, 7th day, and 14th day of differentiation induction are shown.
  • FIG. 1 shows expression of motor neuron markers and motor neuron markers in motor neurons differentiated from human UDCs using adenovirus. According to the procedure shown in FIG. 1, the cells were infected with two adenoviruses and induced to differentiate into motor neurons. Human fibroblasts (C-12302) were used for comparison. Quantification results of each marker expression rate on the 0th day, 7th day, and 14th day of differentiation induction are shown.
  • FIG. 2 shows nerve fiber lengths of neuron marker TUJ1 and motor neuron marker SMI32 in motor neurons differentiated from human UDC using lentivirus or adenovirus.
  • the cells were infected with lentivirus or two types of adenovirus, and induced to differentiate into motor neurons.
  • Human fibroblasts C-12302 were used for comparison.
  • B shows the quantitative results of nerve fiber lengths of TUJ1 and SMI32 on days 0, 7, and 14 of differentiation induction using lentivirus.
  • FIG. 2 shows the functionality of motoneurons differentiated from human UDCs using adenovirus. According to the procedure shown in FIG. 1, the cells were infected with two adenoviruses and induced to differentiate into motor neurons.
  • B Immunofluorescent staining image of neuromuscular junction (NMJ) formation when motor neurons and skeletal muscle cells were co-cultured for 7 days after 14 days of differentiation induction using UDC or adenovirus.
  • NMJ neuromuscular junction
  • the term “marker” refers to a “marker protein” or “marker gene” that is specifically expressed on the cell surface, in the cytoplasm and/or in the nucleus of a given cell type, or a protein or gene thereof.
  • a marker can be a positive selectable marker or a negative selectable marker.
  • the marker is a cell surface marker, in particular a cell surface positive selectable marker allows enrichment, isolation and/or detection of viable cells.
  • Marker proteins can be detected using immunological assays using antibodies specific to the marker proteins, such as ELISA, immunostaining, and flow cytometry.
  • a marker protein-specific antibody an antibody that binds to a specific amino acid sequence in the marker protein or a specific sugar chain or the like bound to the marker protein can be used.
  • Techniques such as intracellular fluorescent staining using an antibody specific to the marker protein, and expression of a reporter protein together with the marker protein can be used. This approach is preferably used when no suitable cell surface marker is found.
  • marker genes can be detected using nucleic acid amplification methods and/or nucleic acid detection methods known in the art, such as RT-PCR (including quantitative PCR), microarrays, biochips and RNAseq. can.
  • a marker or the like is "positive” (positive) means that the expression level of a protein or gene such as a marker (measured value or signal reflecting it) is determined by a method known in the art as described above. means exceeding (or exceeding) a detectable amount or a predetermined reference value by As used herein, a marker or the like is "negative” (negative) means that the expression level of a protein or gene such as a marker is a detectable amount or It means that it is less than (or less than) a predetermined reference value. Detectable amounts and reference levels of protein or gene expression may vary depending on the technique employed and the purpose of the analysis.
  • the fluorescence signal in flow cytometry typically fluorescence-activated cell sorting: FACS
  • FACS fluorescence-activated cell sorting
  • the "positive rate” or “negative rate” of a predetermined marker or the like in a cell population means that a predetermined marker or the like is “positive” or “negative” among a certain number of cells contained in the cell population. Means the ratio of a certain cell.
  • “Positive rate” or “negative rate” can be measured according to conventional methods, for example, by using fluorescent immunostaining images or by using flow cytometry (FACS).
  • the method of the present invention for producing motor neurons from urine-derived cells comprises introducing a transcription factor for inducing differentiation into motor neurons into urine-derived cells. (hereinafter sometimes referred to as "transcription factor introduction step").
  • Urine-Derived Cells are a mixture of various cells derived from urinary system tissues such as kidney, ureter, bladder, and urethra contained in the urine of a subject (donor). is.
  • Urine-derived cells can be separated and collected from urine by conventional methods (for example, by centrifugation). In the present invention, urine-derived cells thus collected may be used, or cultured cell lines obtained by establishing the collected urine-derived cells, such as commercially available products, may be used.
  • Urine-derived cells may be derived from humans or non-human animals such as mammals such as mice, rats, dogs, pigs, and monkeys, and may be obtained by the present invention. It can be selected according to the intended use of the motor neuron.
  • the motor neurons are the ALS of the patient. It will be suitable for drug efficacy evaluation for treatment, search for biomarkers, etc.
  • Urine-derived cells are called "urine-derived stem cells”, “urine-derived progenitor cells”, “urinary voided cells”, etc. Therefore, those skilled in the art can understand that these cells refer to the same conceptual cell.
  • Motor neurons are nerve cells that innervate skeletal muscles, upper motor neurons in the cerebral cortical motor area and lower motor neurons in the brainstem and spinal cord. is included. Degeneration of upper and/or lower motor neurons leads to motor disorders such as amyotrophic lateral sclerosis, primary lateral sclerosis, progressive pseudobulbar palsy, progressive muscular atrophy, progressive bulbar palsy, and post-polio syndrome Neuronal disease is caused. Whether or not a cell is a motor neuron can be determined by whether or not it is positive (or negative) for a predetermined marker as described below.
  • motor neurons obtained by inducing differentiation from urine-derived cells according to the production method of the present invention contain at least one motor neuron marker (herein sometimes referred to as "MN marker").
  • MN marker eg, ISL1, LHX3, HB9, ChAT, SMI32, VAChT
  • motor neurons obtained by inducing differentiation from urine-derived cells according to the production method of the present invention contain at least one neural marker (e.g., Tuj1, MAP2, NeuN, neurofilament, Synapsin, PSD-95)-positive and at least one MN marker-positive cell.
  • motor neurons obtained by inducing differentiation from urine-derived cells according to the production method of the present invention are positive for at least one neural marker selected from the group consisting of Tuj1 and ISL1, and Cells positive for at least one of the MN markers selected from the group consisting of HB9, ChAT and SMI32.
  • motor neurons obtained by inducing differentiation from urine-derived cells according to the production method of the present invention are positive for at least SMI32 among the predetermined markers.
  • transcription factor for MN The “transcription factor for inducing differentiation into motor neurons” (herein sometimes referred to as “transcription factor for MN”) in the present invention is a factor for inducing the differentiation of cells into nerve cells, which is a “nerve “differentiation factor” and “motor neuron differentiation factor” which is a factor for inducing the differentiation of nerve cells into motor neurons, and auxiliary factors used as necessary (for example, improving conversion efficiency to nerve cells) It is a generic term for "additional factor”.
  • transcription factors for MN are known, for example, NGN2, ASCL1, BRN2, MYT1L, NEUROD1, miR-9/9*, miR-124, etc., described in Non-Patent Documents 1 to 6, supra.
  • miRNAs correspond to "neural differentiation factors”
  • ISL1, LHX3, HB9 and the like correspond to “motor neuron differentiation factors”
  • SOX11 corresponds to "additional factors”.
  • the transcription factor for MN may be a homologue of the above gene (protein) in animal species other than human (eg, mouse). Homologs of transcription factors for MN can be searched using databases such as the DNA Data Bank of Japan (DDBJ), NCBI GenBank, and EMBL. Multiple types of transcription factors for MN are usually used in combination, and a person skilled in the art can select an appropriate combination of transcription factors for MN.
  • transcription factors for MN include at least neural differentiation factor and motor neuron differentiation factor. In one preferred embodiment of the invention, transcription factors for MN comprise neural differentiation factors, motor neuron differentiation factors and additional factors.
  • the MN transcription factor comprises (i) at least one neural differentiation factor selected from the group consisting of NGN2, ASCL1, BRN2, MYT1L, NEUROD1 and miR-9/9*-124; ii) contains at least one motor neuron differentiation factor selected from the group consisting of ISL1, LHX3 and HB9, and (iii) may contain SOX11 as an additional factor.
  • the MN transcription factor comprises (i) a neural differentiation factor NGN2, and (ii) at least one motor neuron differentiation factor selected from the group consisting of ISL1 and LHX3, and further ( iii) SOX11 may be included as an additional factor.
  • the transcription factors for MN comprise (i) NGN2 as a neural differentiation factor, (ii) both ISL1 and LHX3 as motor neuron differentiation factors, and (iii) SOX11 as an additional factor.
  • NGN2 as a neural differentiation factor
  • ISL1 and LHX3 as motor neuron differentiation factors
  • SOX11 as an additional factor.
  • the MN transcription factor may be introduced into urine-derived cells in the form of a gene (nucleic acid) or in the form of a protein that is the product of the gene.
  • Means for introducing genes (nucleic acids) or proteins into cells are known to those skilled in the art, and appropriate means and corresponding conditions can be used in the present invention.
  • the gene (nucleic acid) of the MN transcription factor may be, for example, in the form of DNA such as a plasmid or an expression vector, or may be in the form of RNA such as mRNA. It can be introduced into urine-derived cells by known methods such as method, lipofection method, microinjection method, and electroporation method. Alternatively, the MN transcription factor protein can be introduced into urine-derived cells by, for example, conjugating a cell-permeable peptide.
  • the MN transcription factor may be introduced into urine-derived cells in the form of an expression vector (viral vector plasmid, expression plasmid, etc.) into which a gene encoding the MN transcription factor is inserted.
  • Expression vectors can be double-stranded or single-stranded, and can be DNA or RNA.
  • Expression vectors may be embodiments in which they exist transiently or permanently in the nucleus or cytoplasm while being replicated, or embodiments in which they exist permanently by being integrated into genomic DNA.
  • a plurality of types of MN transcription factors may be expressed in one expression vector, or one expression vector may contain one or a part of the MN transcription factors and A plurality of such expression vectors may be combined for expression. Expression of all predetermined transcription factor genes for MN in urine-derived cells produces proteins of transcription factors for MN, and as a direct or indirect result thereof, urine-derived cells are induced to differentiate into motor neurons. be done.
  • the MN transcription factor is preferably introduced into urine-derived cells in the form of an expression vector by a viral infection method.
  • a viral infection method for example, using commercially available kits for retroviral vectors, lentiviral vectors, adenoviral vectors, and adeno-associated viral vectors, the expression vector and the packaging vector (plasmid) of each virus are transfected into host cells. After preparing a recombinant virus, a method of infecting urine-derived cells with the obtained recombinant virus can be mentioned.
  • transcription factors for MN are introduced into urine-derived cells by adenoviral vectors.
  • an adenoviral vector for example, has a high positive rate of a given MN marker (e.g., higher than when using a lentiviral vector), and a cell population of morphologically mature motor neurons such as the length of neurites. is obtained, and the difference in the positive rate of the predetermined MN marker of motor neurons between donors of urine-derived cells is small and all of them tend to be high.
  • the step of culturing the transcription factor-introduced urine-derived cells to obtain cells (i.e., motor neurons) positive for a predetermined marker as described above this specification Sometimes referred to as “differentiation induction step” in the literature.
  • the culture period in the differentiation induction step can be, for example, 1 day or longer, preferably 1 week or longer, more preferably 2 weeks or longer, and even more preferably 3 weeks or longer.
  • the upper limit of the culture period in the differentiation induction step is not particularly limited. Specifically, for example, 1 to 12 weeks, preferably 1 to 8 weeks, more preferably 1 to 4 weeks, still more preferably 1 to 3 weeks, particularly preferably 2 to 3 weeks.
  • urine-derived cells and transcription factors for MN to be used, media and other cultures are used so as to obtain a cell population having a desired cell composition (e.g., having a predetermined marker expression profile and positive rate)
  • the culture period can be appropriately adjusted within the above range.
  • the medium for inducing the differentiation of urine-derived cells into motor neurons can be appropriately selected from among various known media, and can be used by adding components as necessary at appropriate concentrations.
  • the basal medium and additional components can be changed according to the steps of the production method of the present invention (transcription factor introduction step, differentiation induction step, etc.) or with the passage of culture days.
  • a mixture of a basal medium for renal epithelial cells and additive components can be used as the medium in the transcription factor introduction step
  • a mixture of the basal medium and additive components for nerve cells can be used as the medium in the differentiation induction step. can be done.
  • Basal media include, for example, AIM V, X-VIVO-15, NeuroBasal, EGM2, TeSR, BME, BGJb, CMRL 1066, Glasgow MEM, Modified MEM Zinc Option, IMDM, 199 medium, Eagle MEM, ⁇ MEM, DMEM, Ham, RPMI-1640, F12, and Fisher's medium. Any one of these media may be used alone, or two or more may be used in combination.
  • An example of a preferred medium includes (high glucose) DMEM, F12.
  • REGM Renal Epithelial Cell Growth Medium Bullet Kit can be used to prepare a medium for urine-derived cells (as a mixed medium with other basal medium) in the transcription factor introduction step
  • Neurobasal Medium can be used to prepare a medium for nerve cells (as a mixed medium with other basal medium) in the differentiation-inducing step.
  • the medium may be a medium containing serum (eg, fetal bovine serum: FBS), a medium containing no serum (serum-free medium: SFM), or a xeno-free medium.
  • serum eg, fetal bovine serum: FBS
  • SFM serum-free medium
  • the serum may be derived from the same animal as the cells being cultured.
  • Serum-free medium refers to a medium without unprocessed or unpurified serum, and thus may include medium with purified blood-derived or animal tissue-derived components, such as growth factors.
  • the medium may or may not contain any substitute for serum.
  • serum alternatives to serum include albumin (such as lipid-rich albumin, bovine albumin, albumin substitutes such as recombinant or humanized albumin, plant starches, dextrans, and protein hydrolysates), transferrin (or other iron transporters), fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thioglycerol ( ⁇ -monothioglycerol, MTG), or equivalents thereof, as appropriate. obtain.
  • Commercially available materials such as knockout Serum Replacement (KSR), Chemically-defined Lipid concentrated (Gibco), and GlutaMAX (Gibco) can also be used.
  • the medium can include B-27® supplement, Xenofree B-27® supplement, N2 supplement, NS21 supplement, GS21TM supplement, or combinations thereof.
  • DL alpha tocopherol acetate DL alpha-tocopherol
  • vitamins such as vitamin A (acetate); BSA (bovine serum albumin) or human albumin, fatty acid-free fraction V; catalase; human recombinant insulin; proteins such as superoxide dismutase; corticosterone; D-galactose; ethanolamine HCl; glutathione (reduced); L-carnitine HCl; triiodo-I-thyronine); PSG (penicillin, streptomycin, and L-glutamine).
  • the medium may contain exogenously added ascorbic acid or a derivative thereof (eg, ascorbic acid 2-phosphate: PAA).
  • the medium contains externally added fatty acids or lipids, amino acids (e.g. non-essential amino acids), vitamins, growth factors (e.g. basic fibroblast growth factor: bFGF, platelet-derived growth factor AB, epidermal growth factor), Neurotrophic factors (e.g., brain-derived neurotrophic factor: BDNF, glial cell line-derived neurotrophic factor: GDNF, neurotrophin 3: NT-3, neurotrophin 4/5, nerve growth factors, etc.) factors), cytokines, antibiotics (e.g., penicillin, streptomycin), antioxidants, 2-mercaptoethanol, pyruvic acid, buffers, and inorganic salts. .
  • amino acids e.g. non-essential amino acids
  • vitamins e.g. basic fibroblast growth factor: bFGF, platelet-derived growth factor AB, epidermal growth factor
  • Neurotrophic factors e.g., brain-derived neurotrophic factor: BDNF, glial cell line-derived
  • the medium may contain externally added cytokines.
  • Cytokines include, for example, FLT3 ligand (FLT3L), interleukin 7 (IL-7), stem cell factor (SCF), thrombopoietin (TPO), IL-2, IL-3, IL-4, IL-6, IL- 12, IL-15, IL-21, TNF-alpha, TGF-beta, interferon-gamma, interferon-lambda, TSLP, thymopentin, pleotrophin, and midkine. Any one of these cytokines may be used alone, or two or more thereof may be used in combination.
  • the medium contains at least one selected from the group consisting of basic fibroblast growth factor (bFGF), forskolin (FSK) and dorsomorphin (DM).
  • bFGF basic fibroblast growth factor
  • FSK forskolin
  • DM dorsomorphin
  • the medium in the differentiation-inducing step preferably contains all of basic fibroblast growth factor, forskolin and dorsomorphin.
  • the transcription factor introduction step and the differentiation induction step can be performed by two-dimensional culture (planar culture, monolayer culture).
  • the culture vessel flasks, dishes, plates, and the like having general shapes can be used, and wells that can accommodate cells may be formed.
  • Culture vessels that are made of general materials such as glass, plastic, and resin can be used.
  • the surface of the culture vessel may be untreated, or may be subjected to a treatment related to cell adhesion, proliferation, etc., or other treatments.
  • coating with poly-D-lysine and laminin or 'iMatrix-511' (Nippi Co., Ltd., human laminin 511-E8 fragment) improved the survival of urine-derived cells (and fibroblasts) infected with viral vectors.
  • the size (area, volume) of the culture vessel, and if the culture vessel has wells, the size (aperture, depth) and number of the wells can be selected as appropriate. If necessary, the cells may be cultured while shaking the culture vessel.
  • the culture environment is not particularly limited, but is preferably about 5% CO 2 and about 37°C.
  • motor neurons obtained by the production method of the present invention is not particularly limited. , in screening systems for prophylactic or therapeutic drugs, and may also be used in cell therapy.
  • motor neurons manufactured from urine-derived cells of patients with motor neuron disease can be cultured in a medium supplemented with a candidate drug to evaluate drug efficacy (or toxicity), and the culture supernatant can be analyzed. By doing so, it is possible to search for substances that can serve as biomarkers.
  • Motor neurons produced from urine-derived cells from multiple patients can also be used for patient stratification and companion diagnostic studies.
  • motor neurons obtained by the production method of the present invention are suitable for motor neurons such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal bulbar muscular atrophy (SBMA). It can be used for the treatment or prevention of diseases associated with degeneration.
  • ALS amyotrophic lateral sclerosis
  • SMA spinal muscular atrophy
  • SBMA spinal bulbar muscular atrophy
  • the manufacturing method of the present invention has, for example, the following effects.
  • a motor neuron cell population with a high positive rate for each marker can be obtained.
  • Each marker comprises at least one MN marker (e.g. ISL1, LHX3, HB9, ChAT, SMI32, VAChT) and preferably further at least one neural marker (e.g. Tuj1, MAP2, NeuN , neurofilament, synapsin, PSD-95).
  • at least one motor neuron selected from the group consisting of (X) ISL1, LHX3, HB9, ChAT, SMI32, and VAChT (MN marker) has a high positive rate by the production method of the present invention.
  • cell population is obtained.
  • at least one selected from the group consisting of (I) Tuj1 and ISL1 and (II) at least one selected from the group consisting of HB9, ChAT and SMI32 is produced by the production method of the present invention.
  • a cell population of motor neurons with a high rate of positivity for both I and II can be obtained.
  • “Positive rate” may vary depending on the type of marker, culture conditions (days of culture, etc.), etc., but for example, 60% or more, 70% or more, 80% or more, 85% or more, 90% or more, or 95% or more can be The positive rate can be measured from fluorescent immunostaining images targeting each marker, for example, as shown in Examples.
  • a cell population of motor neurons with a high degree of differentiation and maturity can be obtained.
  • the degree of differentiation/maturity of motor neurons can be evaluated by the length of the nerve fiber or the rate of elongation of the length, and it can be said that the longer the nerve fiber, the higher the degree of differentiation/maturity.
  • Nerve fiber length can be measured, for example, from fluorescent immunostaining images targeting markers expressed by motor neurons, as shown in Examples.
  • a functional motor neuron cell population is obtained by the production method of the present invention.
  • Functionality of motor neurons includes spontaneous firing and formation of ganglionic junctions (NMJs) with muscle cells to control the movement of muscle cells. It can be evaluated as functional by being excellent in these properties. Spontaneous firing of motor neurons can be confirmed or quantified, for example, by calcium imaging, ie, the area under the curve (AUC) of the calcium waveform, as shown in the Examples.
  • control of muscle cell movement by motor neurons is determined by, for example, NMJs formed when motor neurons and skeletal muscle cells are co-cultured, markers expressed by motor neurons and skeletal muscle cells, or acetylcholine receptors. It can be evaluated qualitatively or quantitatively by targeted fluorescent immunostaining images, or by contraction probability of skeletal muscle cells.
  • a motor neuron obtained by the production method of the present invention and a pharmaceutical composition (cell preparation) containing the cells for use in treating or preventing diseases such as those described above are provided.
  • a motor neuron obtained by the production method of the present invention and a pharmaceutical composition (cell preparation) containing the cells are administered for the treatment or prevention of diseases such as those described above.
  • a method (cell therapy) is provided.
  • the pharmaceutical composition (cell preparation) of the present invention can be formulated by known pharmaceutical methods depending on the route of administration and the like. They can be prepared as suspensions, emulsions and the like. In such formulations, if necessary, pharmacologically acceptable carriers (medium) and additives, specifically sterile water, physiological saline, vegetable oils, solvents, bases, emulsifiers, suspensions Agents, surfactants, stabilizers, vehicles, preservatives, diluents, tonicity agents, soothing agents, buffers, solubilizers and the like can be used in appropriate combination. In addition, pharmacopoeia-compliant products and pharmaceutical excipient-compliant products can be used as formulations. Furthermore, together with motor neurons, other active ingredients (other drugs, cells, etc.) can be contained for therapeutic or preventive purposes.
  • pharmacologically acceptable carriers specifically sterile water, physiological saline, vegetable oils, solvents, bases, emulsifiers, suspensions Agents, surfactants,
  • the administration method of the pharmaceutical composition (cell preparation) of the present invention is not particularly limited, but parenteral administration such as intravenous, intraperitoneal, subcutaneous or intramuscular administration, or local administration to the affected area is more preferable. is administered intravenously or locally to the affected area.
  • the dosage of the pharmaceutical composition (cell preparation) of the present invention can be appropriately adjusted according to the age, body weight, symptoms, health condition, dosage form, administration method, and the like of the subject.
  • the pharmaceutical composition (cell preparation) product of the present invention may be labeled as being used for the treatment or prevention of diseases.
  • information to the effect that it is used for the treatment or prevention of diseases, etc. can be indicated on the main body, container, packaging, etc. of a product, or on product instructions, package inserts, promotional materials, and other printed materials. .
  • the pharmaceutical composition (cell preparation) of the present invention has low toxicity (e.g., acute toxicity, chronic toxicity, genotoxicity, reproductive toxicity, cardiotoxicity, carcinogenicity), few side effects, , horses, dogs, cats, pigs, monkeys, mice, rats, and rabbits) as a prophylactic or therapeutic agent for the above diseases, or a diagnostic agent.
  • low toxicity e.g., acute toxicity, chronic toxicity, genotoxicity, reproductive toxicity, cardiotoxicity, carcinogenicity
  • few side effects e.g., horses, dogs, cats, pigs, monkeys, mice, rats, and rabbits
  • the dosage of the pharmaceutical composition (cell preparation) of the present invention varies depending on the administration subject, administration route, target disease, symptoms, etc. For example, in the case of oral or parenteral administration to adult patients, it is usually a single dose. It is about 0.01 to 100 mg/kg body weight, preferably 0.1 to 50 mg/kg body weight, more preferably 0.5 to 20 mg/kg body weight, and it is desirable to administer this amount once to three times a day. .
  • the pharmaceutical composition (cell preparation) of the present invention can be used in combination with other drugs (hereinafter abbreviated as concomitant drugs).
  • concomitant drugs drugs that can be used in combination with other drugs.
  • the dosage can be reduced compared to when the pharmaceutical composition (cell preparation) or concomitant drug of the present invention is administered alone;
  • Drugs to be used in combination with the pharmaceutical composition (cell preparation) of the present invention can be selected according to the patient's symptoms (mild, severe, etc.).
  • a concomitant drug having a mechanism of action different from that of the pharmaceutical composition (cell preparation) of the present invention a longer treatment period can be set.
  • the therapeutic effect can be sustained.
  • the pharmaceutical composition (cell preparation) of the present invention in combination with a concomitant drug, excellent effects such as a synergistic effect can be obtained.
  • the combined use of the pharmaceutical composition (cell preparation) of the present invention and the concomitant drug will be referred to as the "concomitant drug of the present invention”.
  • the timing of administration of the pharmaceutical composition (cell preparation) of the present invention and the concomitant drug is not limited.
  • the pharmaceutical composition may be administered to the administration subject at the same time or at different times.
  • the dose of the concomitant drug may conform to the dose used clinically, and can be appropriately selected depending on the subject of administration, administration route, disease, combination, and the like.
  • the dosage form of the concomitant drug of the present invention is not particularly limited, as long as the pharmaceutical composition (cell preparation) of the present invention and the concomitant drug are combined at the time of administration.
  • Such administration forms include, for example, (1) administration of a single preparation obtained by simultaneously formulating the pharmaceutical composition (cell preparation) of the present invention and a concomitant drug, and (2) the pharmaceutical composition of the present invention.
  • the dose of the concomitant drug of the present invention can be appropriately selected based on the clinically used dose.
  • the compounding ratio of the pharmaceutical composition (cell preparation) of the present invention and the concomitant drug can be appropriately selected depending on the administration subject, administration route, target disease, symptom, combination, and the like.
  • the content of the pharmaceutical composition (cell preparation) of the present invention in the combination drug of the present invention varies depending on the form of the preparation, but is usually about 0.01 to 100% by weight, preferably about 0.01 to 100% by weight of the entire preparation. .1 to 50% by weight, more preferably about 0.5 to 20% by weight.
  • the content of the concomitant drug in the concomitant drug of the present invention varies depending on the form of the preparation, but is usually about 0.01 to 100% by weight, preferably about 0.1 to 50% by weight, more preferably about 0.1 to 50% by weight, based on the total preparation. It is about 0.5 to 20% by weight.
  • the content of additives such as carriers in the combination drug of the present invention varies depending on the form of the preparation, but is generally about 1 to 99.99% by weight, preferably about 10 to 90% by weight, based on the total preparation. .
  • the pharmaceutical composition (cell preparation) of the present invention and the concomitant drug are formulated separately, the same content may be used.
  • Concomitant drugs include, but are not limited to, the following. Narcolepsy drugs (e.g., methylphenidate, amphetamine, pemoline, phenelzine, protriptyline, sodium oxybate, modafinil, caffeine), antiobesity drugs (amphetamine, benzphetamine, bromocloptine, bupropion, diethylpropion, exenatide, fen fluramine, liothyronine, liraglutide, mazindol, methamphetamine, octreotide, octreotide, orlistat, phendimetrazine, phendimetrazine, phenmetrazine, phentermine, Qnexa®, phenylpropanolamine, pramlintide, propylhexedrine , recombinant leptin, sibutramine, topiramate, zimerizine, zonis
  • ⁇ -secretase inhibitor eg, PTI-00703, ALZHEMED (NC-531), PPI-368 (PCT National Publication No. 11-514333), PPI-558 (PCT National Publication No. 2001-500852), SKF-74652 (Biochem. J.
  • ⁇ -amyloid vaccines e.g., ⁇ -amyloid degrading enzymes, etc.
  • brain function activators e.g., aniracetam, nicergoline
  • Parkinson's disease therapeutic agents e.g., dopamine receptor agonists (e.g., L-dopa, bromocriptine, pergolide, talipexole, pramipexole, cabergoline, amantadine), monoamine oxidase (MAO) inhibitors (e.g., deprenyl, sergiline (selegiline), remacemide, riluzole), anticholinergics (e.g., trihedrin) xyphenidyl, biperiden), COMT inhibitors (e.g., entacapone)], amyotrophic lateral sclerosis therapeutic agents (e.g., riluzole, etc., neurotrophic factors), treatment of abnormal
  • Drugs e.g., sedatives, anxiolytics
  • apoptosis inhibitors e.g., CPI-1189, IDN-6556, CEP-1347
  • neuronal differentiation/regeneration promoters e.g., leteprinim, Xaliproden; SR-57746- A
  • SB-216763, Y-128, VX-853 prosaptide, 5,6-dimethoxy-2-[2,2,4,6,7-pentamethyl-3-(4-methylphenyl)-2,3 -dihydro-1-benzofuran-5-yl]isoindoline, 5,6-dimethoxy-2-[3-(4-isopropylphenyl)-2,2,4,6,7-pentamethyl-2,3-dihydro- 1-benzofuran-5-yl]isoindoline, 6-[3-(4-isopropylphenyl)-2,2,4,6,7-pentamethyl-2,3-
  • estradiol estradiol benzoate
  • anti-osteoporotic agents e.g. alfacalcidol, calcitriol, elcatonin, salmon calcitonin, estriol, ipriflavone, disodium pamidronate, alendronate sodium water hydrates, disodium incadronate
  • parathyroid hormone PTH
  • calcium receptor antagonists e.g., anti-insomnia drugs (e.g., benzodiazepines, non-benzodiazepines, melatonin agonists, orexin receptor antagonists), consolidation
  • Antipsychotics e.g., typical antipsychotics such as haloperidol; atypical antipsychotics such as clozapine, olanzapine, risperidone, aripiprazole; agents acting on metabotropic glutamate receptors or ion channel-coupled glutamate receptors; phosphodiesterase inhibitors) drug
  • Two or more of the above concomitant drugs may be used in combination at an appropriate ratio.
  • the pharmaceutical composition (cell preparation) of the present invention when applied to each of the above diseases, it can be used in combination with a biological preparation (e.g., antibody drug, nucleic acid or nucleic acid derivative, aptamer drug, vaccine preparation). It is also possible to use it in combination with gene therapy or the like, or in combination with treatment in the psychiatric field that does not use drugs.
  • a biological preparation e.g., antibody drug, nucleic acid or nucleic acid derivative, aptamer drug, vaccine preparation.
  • gene therapy or the like e.g., or in combination with treatment in the psychiatric field that does not use drugs.
  • Antibody drugs and vaccine preparations include, for example, vaccine preparations against angiotensin II, vaccine preparations against CETP, CETP antibodies, TNF ⁇ antibodies and antibodies against other cytokines, amyloid ⁇ vaccine preparations, type 1 diabetes vaccines (e.g., Peptor's DIAPEP- 277), in addition to anti-HIV antibodies and HIV vaccine preparations, etc., antibodies or vaccine preparations against cytokines, renin-angiotensin system enzymes and their products, antibodies or vaccine preparations against enzymes and proteins involved in blood lipid metabolism, blood coagulation - Antibodies or vaccines against enzymes or proteins involved in the fibrinolytic system, antibodies or vaccine preparations against proteins involved in glucose metabolism or insulin resistance, and the like. In addition, combined use with biologics related to growth factors such as GH and IGF is also possible.
  • biologics related to growth factors such as GH and IGF is also possible.
  • gene therapy methods include therapeutic methods using genes related to cytokines, renin-angiotensin enzymes and their products, G proteins, G protein-coupled receptors and their phosphorylating enzymes, and DNA decoys such as NF ⁇ B decoys.
  • therapeutic methods using antisense therapeutic methods using antisense, therapeutic methods using antisense, genes related to enzymes and proteins involved in blood lipid metabolism (e.g., genes related to metabolism, excretion, and absorption of cholesterol, triglycerides, HDL-cholesterol, or blood phospholipids) ), treatment methods using genes related to enzymes and proteins (e.g., growth factors such as HGF and VEGF) involved in angiogenesis therapy for peripheral vascular occlusive disease, glucose metabolism and insulin Treatment methods using genes associated with proteins involved in resistance, antisense against cytokines such as TNF, and the like are included.
  • genes related to enzymes and proteins involved in blood lipid metabolism e.g., genes related to metabolism, excretion, and absorption of cholesterol, triglycerides, HDL-cholesterol, or blood phospholipids
  • treatment methods using genes related to enzymes and proteins e.g., growth factors such as HGF and VEGF
  • Treatment methods in the psychiatric area that do not use drugs include modified electroconvulsive therapy, deep brain stimulation therapy, repetitive transcranial magnetic stimulation therapy, and psychotherapy including cognitive behavioral therapy.
  • the pharmaceutical composition (cell preparation) of the present invention can be used for various organ regeneration methods such as heart regeneration, kidney regeneration, pancreatic regeneration, and blood vessel regeneration, cell transplantation therapy using bone marrow cells (bone marrow mononuclear cells, bone marrow stem cells), tissue It is also possible to use it together with an engineered artificial organ (eg, artificial blood vessel, cardiomyocyte sheet).
  • organ regeneration methods such as heart regeneration, kidney regeneration, pancreatic regeneration, and blood vessel regeneration, cell transplantation therapy using bone marrow cells (bone marrow mononuclear cells, bone marrow stem cells), tissue
  • an engineered artificial organ eg, artificial blood vessel, cardiomyocyte sheet.
  • human urine-derived cells (Urine-Derived Cells: UDC) are 3 strains obtained from ReproCell Japan (3805-8505 from healthy subjects and sporadic amyotrophic lateral 3805-8506 and 3805-8507 derived from sclerosis patients), and 5 strains derived from healthy subjects (UDC280, UDC283, UDC304, UDC305, UDC306) obtained from Evercyte, Austria.
  • ⁇ Human fibroblast> In the following examples, unless otherwise specified, healthy human-derived fibroblasts, catalog number C-12302 obtained from Promo Cell, Germany and catalog number 106-05n obtained from Cell Applications, USA, were used.
  • ⁇ Mouse myoblast cell line C2C12> skeletal muscle cells obtained by differentiating the mouse myoblast cell line C2C12 (catalogue number CRL-1772) obtained from ATCC in the USA by the method described below were used unless otherwise specified.
  • ⁇ Adenoviral vector construction and virus packaging> At Vector Builder Inc., an artificially synthesized gene connecting exogenous nucleic acid (the termination codon of the first gene is deleted) with a cleaved sequence T2A is incorporated into the virus vector pAV, and the adenovirus vector pAV[Exp]-CMV>hNGN2-T2A -mSox11 and pAV[Exp]-CMV>hISL1-T2A-hLHX3 were constructed, respectively.
  • Virus packaging was carried out at Vector Builder, Inc. and the resulting virus solution was stored at -80°C. In this viral vector, human NGN2 and mouse Sox11, human ISL1 and human LHX3 are each bicistronicly expressed under the CMV promoter.
  • ⁇ Method 1 Culture of fibroblasts and introduction of exogenous nucleic acid using a viral vector> Fibroblasts were cultured and maintained using MEM medium (GIBCO) containing FBS (15%; GIBCO), GlutaMAX (1%; GIBCO), and penicillin and streptomycin (1%; GIBCO). Fibroblasts were detached and isolated into single cells by treatment with 0.05% Trypsin-EDTA (GIBCO), and seeded in a 96-well multiwell plate at a cell density of 10,000 cells/well.
  • MEM medium containing FBS (15%; GIBCO), GlutaMAX (1%; GIBCO), and penicillin and streptomycin (1%; GIBCO).
  • Fibroblasts were detached and isolated into single cells by treatment with 0.05% Trypsin-EDTA (GIBCO), and seeded in a 96-well multiwell plate at a cell density of 10,000 cells/well.
  • the medium was replaced with a medium containing 2 types of viruses (in the case of lentivirus, 6 ⁇ g/mL of polybrene was added) to infect the cells with viruses, thereby expressing 4 exogenous genes.
  • the medium was replaced with the medium for fibroblasts (described above) (Fig. 1).
  • ⁇ Method 2 Culture of UDC and Introduction of Foreign Nucleic Acid Using a Viral Vector>
  • ReproCell UDCs were cultured on gelatin (Merck-Millipore) coated plastic plates using media obtained from ReproCell.
  • Evercyte's UDC consists of REGM Renal Epithelial Cell Growth Medium Bullet Kit (Lonza) with FBS (30%; Corning), GlutaMAX (1%; GIBCO), non-essential amino acids (1%; GIBCO), base fibroblast growth factor (5 ng/mL; PeproTech), platelet-derived growth factor AB (5 ng/mL; PeproTech), epidermal growth factor (5 ng/mL; PeproTech), and penicillin and streptomycin (2%; GIBCO The cells were cultured on a gelatin-coated plastic plate using a medium obtained by mixing a high-glucose DMEM medium (GIBCO) at a volume ratio of 1:1.
  • GlutaMAX 1%
  • UDCs were detached and isolated into single cells by treatment with 0.05% or 0.25% Trypsin-EDTA, and seeded in a 96-well multiwell plate at a cell density of 10,000 cells/well.
  • the medium was replaced with a medium containing 2 types of viruses (in the case of lentivirus, 6 ⁇ g/mL of polybrene was added) to infect the cells with viruses, thereby expressing 4 exogenous genes.
  • C2C12 culture and differentiation into skeletal muscle cells C2C12 was maintained in culture using high-glucose DMEM medium (Wako) containing FBS (10%; GIBCO) and penicillin and streptomycin (1%). Thereafter, C2C12 was differentiated into skeletal muscle cells by replacing with high glucose DMEM medium containing 1% FBS or horse serum (2%; GIBCO) and insulin (1 ⁇ M; Wako), penicillin and streptomycin (1%). let me
  • ⁇ Method 3 Induction of Differentiation into Motor Neurons after Introduction of Exogenous Nucleic Acid and Co-Culture of Skeletal Muscle Cells> Two days after virus infection, the whole volume was replaced with neuronal differentiation medium.
  • N2 supplement (0.8%; Fujifilm Wako Pure Chemical Industries, Ltd.
  • B27 supplement (0.8%; GIBCO)
  • forskolin (10 ⁇ M; Kojunyaku Co., Ltd.)
  • Dorsomorphin (1 ⁇ M; FUJIFILM Wako Pure Chemical Industries, Ltd.
  • basic FGF basic fibroblast growth factor
  • penicillin and streptomycin (1 %) supplemented with DMEM / F12 medium (Fujifilm Wako Pure Chemical Industries, Ltd.) and Neurobasal Medium medium (GIBCO) mixed medium (mixing volume ratio is 2: 1)
  • N2 supplement after 14 days of virus infection (0.8%)
  • B27 supplement 0.8%
  • C2C12 cells differentiated with 1% FBS or 2% horse serum and 1 ⁇ M insulin are detached with 0.05% Trypsin-EDTA treatment, seeded on motor neurons and cultured for 7 days. It was implemented by
  • RNA extraction, cDNA synthesis, and quantitative PCR was extracted using RNeasy Mini kit (Qiagen) according to the manufacturer's instructions.
  • cDNA was synthesized using SuperScript VILO cDNA Synthesis Kit (Invitrogen).
  • qPCR was performed with a 7900HT Fast Real-Time PCR System (Applied Biosystems) using TaqMan Fast Advanced Master Mix (Invitrogen). All TaqMan Gene Expression Assays used were obtained from Applied Biosystems (Table 1). The expression level was expressed as a relative expression level (%) to GAPDH.
  • ⁇ Method 5 Immunocytochemistry and image analysis> After fixing the cells with paraformaldehyde (4%; Fujifilm Wako Pure Chemical Industries, Ltd.) for a total of 30 minutes at room temperature, the cells were permeabilized with Triton X-100 (0.1%; MP Biomedicals) and Protein-free T20. Blocking was performed with (TBS) Blocking Buffer (Pierce). After the primary antibody was reacted at room temperature for 1 hour, the plate was washed with DPBS (Fuji Film Wako Pure Chemical Industries, Ltd.), and then the secondary antibody was reacted at room temperature for 1 hour. After washing with DPBS, nuclear staining was performed with a nuclear staining reagent.
  • TBS Blocking Buffer
  • Fluorescent images were automatically acquired using CV7000 or CV8000 (Yokogawa Electric Corporation), and cells expressing motor neuron markers were analyzed by image analysis using CV7000 analysis support software or CellPath finder (Yokogawa Electric Corporation). Percentages and nerve fiber lengths, as well as the number of ⁇ -bungarotoxin-positive clusters were calculated. The following primary antibodies were used.
  • Tuj1 (R&D, MAB1195, 1:1000), Tuj1 (Cell Signaling Technology, 5568S, 1:200), HB9 (Abcam, ab221884, 1:100), ISL1/2 (DSHB, 39.4D5-c , 1:100), ChAT (Millipore, AB144P, 1:100), SMI32 (BioLegend, 801701, 1:300), MyHC (R&D Systems, MAB4470, 1:1000), and SYP (Synaptic Systems, Inc.). 101004, 1:1000). Alexa Fluor 647-labeled ⁇ -bungarotoxin (Invitrogen, B35450, 1:500) was used for detection of acetylcholine receptors.
  • ⁇ Method 6 Calcium imaging and skeletal muscle contraction>
  • Cells were stained with calcium indicator Cal-520AM (AAT Bioquest, 21130) and subjected to CV8000 time-lapse imaging for 30 seconds. Fluorescence values were quantified by image analysis using CellPath finder, and waveform analysis was performed using Spotfire-based Wave Finder (TIBCO) to calculate the area under the curve (AUC). The contraction probability of skeletal muscle was calculated based on bright-field time-lapse images obtained with CV8000.
  • Cal-520AM AAT Bioquest, 21130
  • TIBCO Spotfire-based Wave Finder
  • Non-Patent Document 3 Human fibroblasts with lentivirus four transcription factors human NGN2 and Method of directly differentiating fibroblasts into motor neurons by introducing mouse Sox11, human ISL1 and human LHX3.
  • Matrigel (30 ⁇ g/cm 2 ; Corning), iMatrix-511 (0.3 ⁇ g/cm 2 ; Nippi Co., Ltd.), and poly-D-lysine (PDL; 8 ⁇ g/cm 2 concentration; Sigma)/laminin as coating agents (10 ⁇ g/mL; Trevigen) was used to infect human fibroblasts (106-05n) with lentivirus at multiple MOIs (20-100). After switching to the neuronal differentiation medium according to method 3, bright field images were acquired using a CellVoyager CV7000 (Yokogawa Electric Corporation) on days 7 and 14 after lentivirus infection (FIGS. 2A and 2B).
  • a CellVoyager CV7000 Yamagawa Electric Corporation
  • MOI was fixed at 30 here.
  • iMatrix-511 had a higher Tuj1 positive rate than PDL/laminin (Fig. 2C).
  • iMatrix-511 was used as the coating agent and MOI was 30 during lentivirus infection in the Examples.
  • Example 2 Differentiation of human UDCs and human fibroblasts into motoneurons by adenovirus vector Since it was possible to induce the differentiation of fibroblasts into motoneurons by using adenovirus, UDC was also induced by adenovirus. It was examined whether motor neurons can be differentiated from UDCs by introducing 4 transcription factors. As in Example 1, gene expressions of HB9 and ChAT were first confirmed by qPCR. As a result, not only was the expression significantly increased after differentiation (day 7, day 14) than before differentiation (day 0) (Fig. 5), but also expression was induced by lentivirus (Fig. 3). Compared to the adenovirus, it was found that the expression of both marker genes was greatly increased (Fig. 5).
  • Example 3 Examination of functionality of motor neurons differentiated from human UDC by adenoviral vector In order to examine the functionality as motor neurons, first, whether motor neurons differentiated from UDC spontaneously fire or not by calcium imaging. investigated. As a result, spontaneous firing was observed at least 14 days after differentiation (Fig. 8A). Calcium waveform analysis revealed that the area under the curve (AUC) of the calcium waveform increased significantly after differentiation (Fig. 8A). The role of motor neurons in vivo is to innervate muscles and control their movement through synaptic structures called neuromuscular junctions.
  • skeletal muscle cells obtained by differentiating C2C12 and motor neurons differentiated from UDC are co-cultured to form neuromuscular junctions, or ⁇ -bungarotoxin, which specifically detects acetylcholine receptors.
  • ⁇ -bungarotoxin-positive clusters increased significantly in co-culturing with motor neurons induced to differentiate from UDCs, compared to co-culturing with C2C12 alone or pre-differentiated UDCs (FIGS. 8B, C).
  • the contraction probability of C2C12 was significantly increased (Fig. 8D). From the above, it was shown that motor neurons induced to differentiate from UDCs are functional as motor neurons.
  • a cell population of motor neurons can be produced from urine-derived cells with less burden on the donor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、ドナーの負担が少ない、モーターニューロンの分化誘導方法を提供する。本発明による尿由来細胞からモーターニューロンを製造する方法は、モーターニューロンへの分化誘導用の転写因子を尿由来細胞に導入する工程を含む。前記転写因子は、例えば、アデノウイルスベクターにより前記尿由来細胞に導入される。本発明の方法は、前記転写因子が導入された尿由来細胞を培養し、(I)Tuj1およびISL1からなる群より選ばれる少なくとも1つが陽性、かつ(II)HB9、ChATおよびSMI32からなる群より選ばれる少なくとも1つが陽性である細胞、好ましくは前記(II)について少なくともSMI32が陽性である細胞を得る工程を、さらに含むことができる。

Description

細胞の製造方法
 本発明は細胞の製造方法に関する。より詳しくは、本発明は、ダイレクトリプログラミングによるモーターニューロンの製造方法に関する。
発明の背景
 iPS細胞のような多能性幹細胞からではなく、終末分化した体細胞等に所定の転写因子を導入することで、目的とする細胞を直接的に得る技術(ダイレクトリプログラミング)が公知となっているが、モーターニューロンを目的細胞とするダイレクトリプログラミングとしては、例えば次のような方法が公知となっている。
 非特許文献1には、8種類の転写因子(Asc1、Brn2、Myt1l、NEUROD1、Lhx3、Hb9、Isl1、Ngn2)およびレトロウイルスベクターを用いることで、胚性幹細胞(ESC)由来のヒト胎仔線維芽細胞(HEF)から、HB9陽性のモーターニューロンが得られたことが記載されている。
 非特許文献2には、2種類の転写因子(NGN2、Sox11)およびレンチウイルスベクターを用いることで、ヒト出生後/成人線維芽細胞から、Tuj1、ChAT、HB9が陽性のモーターニューロンが得られたことが記載されている。一方、ISL1およびLHX3の発現は確認されなかったとも記載されている。
 非特許文献3には、4種類の転写因子(NGN2、Sox11、ISL1、LHX3)およびレンチウイルスベクターを用いることで、ヒト成人線維芽細胞から、Tuj1、HB9、ChATなどが陽性のモーターニューロンが得られたことが記載されている。
 非特許文献4には、4種類の転写因子(NGN2、Sox11、ISL1、LHX3)およびレンチウイルスを用いることで、ヒト成人線維芽細胞から、Tuj1、HB9、ChATなどが陽性のモーターニューロンが得られたことが記載されている。
 非特許文献5には、2種類のmiRNA(miR-9/9*およびmiR-124)とともに、2種類の転写因子(ISL1およびLHX3)を用いることで、ヒト成人線維芽細胞から、Tuj1、HB9、ChAT、SMI32などが陽性のモーターニューロンが得られたことが記載されている。
 非特許文献6には、3種類の転写因子(Ascl1、Brn2、Myt1lあるいはAscl1、Brn2、Ngn2)およびアデノウイルスベクターを用いることで、マウス線維芽細胞からTuj1が陽性のニューロンが得られたことが記載されている(但し、モーターニューロンマーカーの発現は確認されておらず、ニューロンタイプまでは特定されていない。)。
 しかしながら、非特許文献1~6はいずれも、線維芽細胞からモーターニューロンへのダイレクトリプログラミングに関する報告であり、ダイレクトリプログラミングにより尿由来細胞からモーターニューロンが得られたことは記載されてない。
 一方、非特許文献7には、総説として、ダイレクトリプログラミングにより尿由来細胞から神経細胞が得たことがいくつか報告されていることは記載されているが、モーターニューロンを得たことは記載されていない。
Esther Y. Son et al. (2011) Cell Stem Cell 9, 205-218 Meng-Lu Liu et al. (2013) Nature Communications, DOI:10.1038 Meng-Lu Liu et al. (2016) Cell Reports 14, 115-128 Yu Tang et al. (2017) Frontiers in Molecular Neuroscience, Vol.10, Article 359 Daniel G. Abernathy, st al. (2017) Cell Stem Cell 21, 332-348 Cell Research (2012) 22:436-440 Mitsuo Sato et al. (2019) Frontiers in Molecular Neuroscience, Vol.12, Article 297
 従来のモーターニューロンの分化誘導方法としては、上記のように線維芽細胞からダイレクトリプログラミングが一般的に用いられていたが、線維芽細胞を採取する際のパンチングは侵襲性が高く、ドナーの負担が大きかった。
 本発明は、ドナーの負担が少ない、モーターニューロンの分化誘導方法を提供することを課題とする。
 本発明者らは、ドナーの尿から非侵襲的に採取できる、尿由来細胞を用いて、この細胞にモーターニューロンへの分化誘導用の転写因子を導入するダイレクトリプログラミングにより、モーターニューロンに分化誘導できることを見出した。しかも、この方法によれば、従来の線維芽細胞からのダイレクトリプログラミングに比べて、モーターニューロンのマーカーを発現している細胞の陽性率が高く、神経線維長の伸び(モーターニューロンの分化度・成熟度)にも優れ、骨格筋細胞に対して機能的であるモーターニューロンを含む細胞集団が得られる。
 すなわち、本発明は少なくとも下記の事項を含む。
[1]
 尿由来細胞からモーターニューロンを製造する方法であって、
 モーターニューロンへの分化誘導用の転写因子を尿由来細胞に導入する工程を含む方法。
[2]
 前記転写因子が、アデノウイルスベクターにより前記尿由来細胞に導入される、[1]に記載の方法。
[3]
 さらに、前記転写因子が導入された尿由来細胞を培養し、(X)ISL1、LHX3、HB9、ChAT、SMI32、VAChTからなる群より選ばれる少なくとも1つが陽性である細胞を得る工程を含む、[1]または[2]に記載の方法。
[4]
 さらに、前記転写因子が導入された尿由来細胞を培養し、(X)ISL1、LHX3、HB9、ChAT、SMI32、VAChTからなる群より選ばれる少なくとも1つが陽性、かつ(Y)Tuj1、MAP2、NeuN、neurofilament、synapsin、PSD-95からなる群より選ばれる少なくとも1つが陽性である細胞を得る工程を含む、[1]または[2]に記載の方法。
[5]
 さらに、前記転写因子が導入された尿由来細胞を培養し、(I)Tuj1およびISL1からなる群より選ばれる少なくとも1つが陽性、かつ(II)HB9、ChATおよびSMI32からなる群より選ばれる少なくとも1つが陽性である細胞を得る工程を含む、[1]または[2]に記載の方法。
[6]
 前記工程が、少なくともSMI32が陽性である細胞を得る工程である、[3]~[5]のいずれか一つに記載の方法。
[6a]
 前記転写因子が、神経分化因子およびモーターニューロン分化因子を含む、[1]~[6]のいずれか一つに記載の方法。
[7]
 前記転写因子が、(i)NGN2、ASCL1、BRN2、MYT1L、NEUROD1およびmiR-9/9*-124からなる群より選ばれる少なくとも1つの神経分化因子および(ii)ISL1、LHX3およびHB9からなる群より選ばれる少なくとも1つのモーターニューロン分化因子を含む、[1]~[6a]のいずれか一つに記載の方法。
[7a]
 前記転写因子が、さらにSOX11を含む、[1]~[7]のいずれか一つに記載の方法。
[8]
 塩基性線維芽細胞増殖因子、フォルスコリンおよびドルソモルフィンからなる群より選ばれる少なくとも1つを添加した培地で前記転写因子が導入された尿由来細胞を培養する、[1]~[7a]のいずれか一つに記載の方法。
[9]
 [1]~[8]のいずれか一つに記載の方法により得られたモーターニューロンを含む細胞集団。
 本発明により、ドナーに負担をかけずに、そのドナーから得られた尿由来細胞を用いてモーターニューロンへと分化誘導することができ、しかも、従来一般的であった線維芽細胞を用いて分化誘導した場合に比べて、モーターニューロンの所定のマーカーの陽性率が高く、神経線維長の伸びも優れ、骨格筋細胞に対して機能的である傾向にある。例えば、モーターニューロンが関係する疾患(例えば筋萎縮性側索硬化症:ALS)の患者から得られた尿由来細胞を用いた場合、当該尿由来細胞から分化誘導されたモーターニューロンも当該患者に固有の遺伝子情報を含んでいるため、当該モーターニューロンを用いることで当該患者のALSの治療に向けた薬効評価、バイオマーカーの探索などをより的確に行うことができる。
レンチウイルスならびにアデノウイルスベクターによる運動ニューロンの分化誘導を示す図である。hNGN2、mSox11、hISL1およびhLHX3の4転写因子(4 TFs)導入によってヒト線維芽細胞あるいはUDCから運動ニューロン(MN)を作製するための実験手順を図示した。 レンチウイルスによるヒト線維芽細胞から運動ニューロンを分化誘導する際のコーティング剤とMOIを比較する図である。図1に示した手順に従い、ヒト線維芽細胞(106-05n)にレンチウイルス2種を感染させ、運動ニューロンへ分化誘導し、(A)7日目、および(B)14日目に明視野画像を取得した。スケールバー=50μm。(C)分化誘導0日目、7日目におけるTuj1(ニューロンマーカー)に対する免疫蛍光染色像ならびに発現率の定量結果を示す。スケールバー=50μm。エラーバーはSD、N=3である。 レンチウイルスを用いてヒトUDCから分化誘導した運動ニューロンにおいて、運動ニューロンマーカーの遺伝子発現を示す図である。図1に示した手順に従い、レンチウイルス2種を感染させ、運動ニューロンへ分化誘導した。比較としてヒト線維芽細胞(C-12302)を用いた。分化誘導0日目、7日目および14日目における運動ニューロンマーカー(HB9およびChAT)のqPCRによる遺伝子発現解析。エラーバーはSD、N=3である。 レンチウイルスを用いてヒトUDCから分化誘導した運動ニューロンにおいて、ニューロンマーカーおよび運動ニューロンマーカーの発現を示す図である。図1に示した手順に従い、レンチウイルス2種を感染させ、運動ニューロンへ分化誘導した。比較としてヒト線維芽細胞(C-12302)を用いた。分化誘導0日目、7日目、14日目の各マーカー発現率の定量結果を示す。 アデノウイルスを用いてヒトUDCから分化誘導した運動ニューロンにおいて、ニューロンマーカーおよび運動ニューロンマーカーの発現を示す図である。図1に示した手順に従い、アデノウイルス2種を感染させ、運動ニューロンへ分化誘導した。比較としてヒト線維芽細胞(C-12302)を用いた。分化誘導0日目、7日目および14日目における運動ニューロンマーカー(HB9およびChAT)のqPCRによる遺伝子発現解析。エラーバーはSD、N=3である。 アデノウイルスを用いてヒトUDCから分化誘導した運動ニューロンにおいて、ニューロンマーカーおよび運動ニューロンマーカーの発現を示す図である。図1に示した手順に従い、アデノウイルス2種を感染させ、運動ニューロンへ分化誘導した。比較としてヒト線維芽細胞(C-12302)を用いた。分化誘導0日目、7日目、14日目の各マーカー発現率の定量結果を示す。 レンチウイルスあるいはアデノウイルスを用いてヒトUDCから分化誘導した運動ニューロンにおいて、ニューロンマーカーTUJ1および運動ニューロンマーカーSMI32の神経線維長を示す図である。図1に示した手順に従い、レンチウイルスあるいはアデノウイルス2種を感染させ、運動ニューロンへ分化誘導した。比較としてヒト線維芽細胞(C-12302)を用いた。(A)アデノウイルスを用いた分化誘導0日目、7日目、14日目におけるSMI32に対する免疫蛍光染色像を示す。スケールバー=50μm。(B)レンチウイルスを用いた分化誘導0日目、7日目、14日目のTUJ1およびSMI32の神経線維長の定量結果を示す。(C)アデノウイルスを用いた分化誘導0日目、7日目、14日目のTUJ1およびSMI32の神経線維長の定量結果を示す。 アデノウイルスを用いてヒトUDCから分化誘導した運動ニューロンの機能性を示す図である。図1に示した手順に従い、アデノウイルス2種を感染させ、運動ニューロンへ分化誘導した。(A)アデノウイルスを用いた分化誘導14日目、21日目、28日目におけるカルシウムイメージングの結果を示す。スケールバー=30μm。(B)UDCあるいはアデノウイルスを用いた分化誘導14日目の運動ニューロンと骨格筋細胞を7日間共培養した時の神経筋接合部(NMJ)形成について、免疫蛍光染色像を示す。スケールバー=50μm。(C)UDCあるいはアデノウイルスを用いた分化誘導14日目の運動ニューロンと骨格筋細胞を7日間共培養した時のNMJ形成について、α-bungarotoxin陽性のクラスター数の定量結果を示す。(D)UDCあるいはアデノウイルスを用いた分化誘導14日目の運動ニューロンと骨格筋細胞を7日間共培養した時の骨格筋細胞の収縮確率の結果を示す。
 本明細書において「マーカー」とは、「マーカータンパク質」又は「マーカー遺伝子」であって、所定の細胞型において細胞表面、細胞質内及び/又は核内等に特異的に発現されるタンパク質又はその遺伝子を意味する。マーカーは、陽性選択マーカー又は陰性選択マーカーでありうる。好ましくは、マーカーは細胞表面マーカーであり、特に細胞表面陽性選択マーカーによれば、生存細胞の濃縮、単離、及び/又は検出が実施可能となる。
 マーカータンパク質の検出は、当該マーカータンパク質に特異的な抗体を用いた免疫学的アッセイ、例えば、ELISA、免疫染色、フローサイトメトリーなどを利用して行うことができる。マーカータンパク質に特異的な抗体としては、マーカータンパク質における特定のアミノ酸配列又はマーカータンパク質に結合した特定の糖鎖等に結合する抗体を用いることができる。また、細胞内に発現し、細胞表面(細胞膜上)には現れない、又は細胞から分泌されるマーカータンパク質(例えば転写因子またはそのサブユニット、サイトカインなど)を対象として、細胞を固定した上で、当該マーカータンパク質に特異的な抗体を用いて細胞内で蛍光染色したり、当該マーカータンパク質とともにレポータータンパク質を発現させたりする手法を用いることができる。この手法は、適当な細胞表面マーカーが認められない場合に用いることが好ましい。一方、マーカー遺伝子の検出は、当該分野で公知の核酸増幅方法及び/又は核酸検出方法、例えば、RT-PCR(定量的PCRを含む)、マイクロアレイ、バイオチップ及びRNAseq等を利用して行うことができる。
 本明細書において、マーカー等が「陽性」(ポジティブ)であるとは、マーカー等のタンパク質又は遺伝子の発現量(それを反映する測定値、シグナル)が、上記のような当該分野で公知の手法による検出可能量または所定の基準値を超えている(もしくはそれら以上である)ことを意味する。本明細書において、マーカー等が「陰性」(ネガティブ)であるとは、マーカー等のタンパク質又は遺伝子の発現量が、上記のような当該分野で公知の手法の全てあるいはいずれかによる検出可能量又は所定の基準値未満である(もしくはそれら以下である)ことを意味する。タンパク質又は遺伝子の発現の検出可能量や基準値は、採用する手法や分析の目的により異なり得る。例えば、マーカーとなるタンパク質の発現量(分泌量)であれば、蛍光標識抗体で細胞を染色するフローサイトメトリー(代表的には蛍光活性化セルソーティング:FACS)における蛍光シグナルが、非染色細胞の蛍光シグナルに基づき設定された所定の基準よりも高い(以上である)ときに「陽性」、低い(以下である)ときに「陰性」、と判定することができる。発現が陽性であることを「+」の記号で、発現が陰性であることを「-」の記号で表すことがある。本明細書において、細胞集団における所定のマーカー等の「陽性率」または「陰性率」とは、細胞集団に含まれる一定数の細胞のうち、所定のマーカー等が「陽性」または「陰性」である細胞の比率を意味する。「陽性率」または「陰性率」は、常法に従って、例えば蛍光免疫染色画像を用いたり、フローサイトメトリー(FACS)を用いたりすることによって、測定することができる。
 本発明の尿由来細胞からモーターニューロンを製造する方法(本明細書において「本発明の製造方法」と呼ぶことがある。)は、モーターニューロンへの分化誘導用の転写因子を尿由来細胞に導入する工程(本明細書において「転写因子導入工程」と呼ぶことがある。)を含む。
 「尿由来細胞」(UDC;Urine-Derived Cells)は、対象(ドナー)の尿中に含まれている、腎臓、尿管、膀胱、尿道などの泌尿器系の組織に由来する様々な細胞の混合物である。尿由来細胞は、常法に従って(例えば遠心分離により)尿から分離し回収することができる。本発明では、そのようにして回収された尿由来細胞を用いてもよいし、回収された尿由来細胞を株化して得られた培養細胞株、例えば市販の商品を用いてもよい。尿由来細胞は、ヒトに由来するものであってもよいし、ヒト以外の動物、例えばマウス、ラット、イヌ、ブタ、サルなどの哺乳動物に由来するものであってもよく、本発明により得られるモーターニューロンの用途に応じて選択することができる。例えば、筋萎縮性側索硬化症(ALS)の患者の尿から採取した尿由来細胞を用いて、本発明の製造方法によりモーターニューロンに分化誘導した場合、当該モーターニューロンは、当該患者のALSの治療に向けた薬効評価、バイオマーカーの探索などに適したものとなる。
 なお、尿由来細胞には、「尿由来幹細胞」(Urine-derived stem cells)、「尿由来前駆細胞」(Urine-derived progenitor cells)、「尿中落下細胞」(cells voided in urine)などと呼ばれることもあり、当業者であればこれらの細胞は同じ概念の細胞を指すことを理解できる。
 「モーターニューロン」(日本語で「運動ニューロン」と表記されることもある。)は、骨格筋を支配する神経細胞であり、大脳皮質運動野の上位モーターニューロンと、脳幹および脊髄の下位運動ニューロンが含まれる。上位モーターニューロンおよび/または下位モーターニューロンの変性により、筋萎縮性側索硬化、原発性側索硬化症、進行性仮性球麻痺、進行性筋萎縮症、進行性球麻痺、ポリオ後症候群などのモーターニューロン疾患が引き起こされる。細胞がモーターニューロンであるか否かは、次に記載するような所定のマーカーが陽性(または陰性)であるか否かによって判別することができる。
 本発明の一実施形態において、本発明の製造方法に従い、尿由来細胞からの分化誘導により得られるモーターニューロンは、少なくとも1つのモーターニューロンマーカー(本明細書において「MNマーカー」と呼ぶこともある)(例:ISL1、LHX3、HB9、ChAT、SMI32、VAChT)が陽性の細胞である。本発明の好ましい一実施形態において、本発明の製造方法に従い、尿由来細胞からの分化誘導により得られるモーターニューロンは、少なくとも1つの神経マーカー(例:Tuj1、MAP2、NeuN、neurofilament(ニューロフィラメント)、synapsin(シナプシン)、PSD-95)が陽性、かつ少なくとも1つのMNマーカーが陽性の細胞である。本発明の特に好ましい一実施形態において、本発明の製造方法に従い、尿由来細胞からの分化誘導により得られるモーターニューロンは、神経マーカーのうちTuj1およびISL1からなる群より選ばれる少なくとも1つが陽性、かつMNマーカーのうちHB9、ChATおよびSMI32からなる群より選ばれる少なくとも1つが陽性の細胞である。
 本発明の好ましい一実施形態において、本発明の製造方法に従い、尿由来細胞からの分化誘導により得られるモーターニューロンは、上記所定のマーカーのうち、少なくともSMI32が陽性である。
 本発明における「モーターニューロンへの分化誘導用の転写因子」(本明細書において「MN用転写因子」と呼ぶことがある。)は、細胞を神経細胞に分化誘導するための因子である「神経分化因子」および神経細胞をモーターニューロンに分化誘導するための因子である「モーターニューロン分化因子」、ならびに必要に応じて用いられる(例えば神経細胞への変換効率を向上させる)補助的な因子である「追加因子」の総称である。このようなMN用転写因子は公知であり、例えば、前掲非特許文献1~6に記載されている、NGN2、ASCL1、BRN2、MYT1L、NEUROD1や、miR-9/9*、miR-124などのmiRNAは「神経分化因子」に該当し、ISL1、LHX3、HB9などは「モーターニューロン分化因子」に該当し、SOX11は「追加因子」に該当する。MN用転写因子は、上記の遺伝子(タンパク質)のヒト以外の動物種(例えばマウス)におけるホモログであってもよい。MN用転写因子のホモログは、例えば日本DNAデータバンク(DDBJ)、NCBI GenBank、EMBLなどのデータベースによって検索することができる。MN用転写因子は、通常は複数種が組み合わせて用いられ、当業者であれば適切なMN用転写因子の組合せを選択することができる。
 本発明の一実施形態において、MN用転写因子は、少なくとも神経分化因子およびモーターニューロン分化因子を含む。本発明の好ましい一実施形態において、MN用転写因子は、神経分化因子、モーターニューロン分化因子および追加因子を含む。
 本発明の一実施形態において、MN用転写因子は、(i)NGN2、ASCL1、BRN2、MYT1L、NEUROD1およびmiR-9/9*-124からなる群より選ばれる少なくとも1つの神経分化因子と、(ii)ISL1、LHX3およびHB9からなる群より選ばれる少なくとも1つのモーターニューロン分化因子を含み、さらに(iii)追加因子としてSOX11を含んでいてもよい。本発明の好ましい一実施形態において、MN用転写因子は、(i)神経分化因子であるNGN2と、(ii)ISL1およびLHX3からなる群より選ばれる少なくとも1つのモーターニューロン分化因子を含み、さらに(iii)追加因子としてSOX11を含んでいてもよい。本発明のより好ましい一実施形態において、MN用転写因子は、(i)神経分化因子としてNGN2と、(ii)モーターニューロン分化因子としてISL1およびLHX3の両方と、(iii)追加因子としてSOX11とを含む。
 MN用転写因子は、尿由来細胞内に、遺伝子(核酸)の形態で導入してもよいし、その遺伝子の産物であるタンパク質の形態で導入してもよい。細胞内に遺伝子(核酸)またはタンパク質を導入するための手段はそれぞれ当業者にとって公知であり、適切な手段およびそれに対応する条件を本発明で利用することができる。MN用転写因子の遺伝子(核酸)は、例えば、プラスミド、発現ベクター等のDNAの形態であってもよいし、mRNA等のRNAの形態であってもよく、例えば、ウイルス感染法、カルシウムリン酸法、リポフェクション法、マイクロインジェクション法、エレクトロポレーション法などの公知の方法により、尿由来細胞内に導入することができる。また、MN用転写因子のタンパク質は、例えば、細胞透過性ペプチドを連結させることによって尿由来細胞内に導入することができる。
 例えば、MN用転写因子は、MN用転写因子をコードする遺伝子が挿入された発現ベクター(ウイルスベクタープラスミド、発現プラスミド等)の形態で尿由来細胞内に導入してもよい。発現ベクターは、二本鎖であっても一本鎖であってもよいし、DNAであってもRNAであってもよい。発現ベクターは、核内または細胞質内に一時的または複製されながら持続的に存在する実施形態でもよいし、ゲノムDNAに組み込まれて永続的に存在する実施形態でもよい。複数の種類のMN用転写因子は、1つの発現ベクターに全種類を含めて発現させるようにしてもよいし、1つの発現ベクターに1種類または一部の種類のMN用転写因子を含め、そのような発現ベクターを複数種組み合わせて発現させるようにしてもよい。尿由来細胞内で所定の全てのMN用転写因子の遺伝子が発現することにより、MN用転写因子のタンパク質が産生され、その直接的または間接的な結果として、尿由来細胞はモーターニューロンに分化誘導される。
 MN用転写因子は、好ましくは、発現ベクターの形態で、ウイルス感染法により尿由来細胞に導入される。例えば、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクターの各ウイルスベクターに対応した市販のキットを用いて、発現ベクターおよび各ウイルスのパッケージングベクター(プラスミド)を宿主細胞にトランスフェクションして組換えウイルスを作製した後、得られた組換えウイルスを尿由来細胞に感染させる方法を挙げることができる。
 本発明の一実施形態において、MN用転写因子は、アデノウイルスベクターにより尿由来細胞に導入される。アデノウイルスベクターを用いることは、例えば、所定のMNマーカーの陽性率が高く(例えば、レンチウイルスベクターを用いた場合より高い)、神経突起の長さなど形態的にも成熟したモーターニューロンの細胞集団が得られ、また尿由来細胞のドナー間でモーターニューロンの所定のMNマーカーの陽性率の差が小さくどれも高い傾向にあるという観点から好ましい。
 本発明の製造方法は、転写因子導入工程の後、転写因子が導入された尿由来細胞を培養し、前述したような所定のマーカーが陽性である細胞(すなわちモーターニューロン)を得る工程(本明細書において「分化誘導工程」と呼ぶことがある。)を含む。
 分化誘導工程における培養期間は、例えば1日以上、好ましくは1週以上、より好ましくは2週以上、さらに好ましくは3週以上とすることができる。分化誘導工程における培養期限の上限は特に限定されない。具体的には、例えば1~12週、好ましくは1~8週、より好ましくは1~4週、さらに好ましくは1~3週、特に好ましくは2~3週とすることができる。分化誘導工程は、所望の細胞の組成を有する(例えば、所定のマーカーの発現プロファイルや、陽性率を有する)細胞集団が得られるよう、用いる尿由来細胞およびMN用転写因子や、培地その他の培養条件などに応じて、上記のような範囲内で培養期間を適宜調整することができる。
 本発明において、尿由来細胞からモーターニューロンへ分化誘導のための培地は、公知の各種の培地の中から適宜選択することができ、必要に応じた成分を適切な濃度で添加して用いることができる。基礎培地および添加成分は、本発明の製造方法の工程(転写因子導入工程、分化誘導工程等)によって、または培養日数の経過に伴って変更することができる。例えば、転写因子導入工程における培地として、腎上皮細胞用の基礎培地および添加成分の混合物を用いることができ、分化誘導工程における培地としては、神経細胞用の基礎培地および添加成分の混合物を用いることができる。
 基礎培地は、例えば、AIM V、X-VIVO-15、NeuroBasal、EGM2、TeSR、BME、BGJb、CMRL 1066、グラスゴーMEM、改良MEM亜鉛オプション、IMDM、199培地、イーグルMEM、αMEM、DMEM、Ham、RPMI-1640、F12、およびフィッシャー培地が挙げられる。これらの培地は、いずれか1種を単独で用いてもよいし、2種以上を混合して用いてもよい。好ましい培地の一例として、(高グルコース)DMEM、F12が挙げられる。また、転写因子導入工程における尿由来細胞用の培地を(他の基礎培地との混合培地として)調製するために、例えば、REGM Renal Epithelial Cell Growth Medium Bullet Kit(Lonza社)を用いることができ、分化誘導工程における神経細胞用の培地を(他の基礎培地との混合培地として)調製するために、例えば、Neurobasal Medium培地(GIBCO社)を用いることができる。
 培地は、血清(例えば牛胎仔血清:FBS)を含有する培地であっても、含有しない培地(血清不含培地:SFM)であってもよく、またゼノフリー培地であってもよい。異種動物由来構成要素による汚染を阻止する観点からは、血清は、培養する細胞と同じ動物に由来するものであってもよい。血清不含培地は、未加工または未精製の血清を有しない培地を指し、したがって、精製された血液由来構成要素または動物組織由来構成要素(成長因子など)を有する培地を含み得る。培地は、血清の任意の代替物を含有しても含有しなくてもよい。血清の代替物には、アルブミン(脂質に富んだアルブミン、ウシアルブミン、組換えアルブミンまたはヒト化アルブミンなどのアルブミン代用物、植物デンプン、デキストラン、およびタンパク質加水分解物など)、トランスフェリン(または、他の鉄輸送体)、脂肪酸、インスリン、コラーゲン先駆体、微量元素、2-メルカプトエタノール、3'-チオグリセロール(α-モノチオグリセロール、MTG)、またはそれらの同等物を適当に含有する材料が含まれ得る。ノックアウト血清代替品(knockout Serum Replacement)(KSR)、化学的に規定された脂質濃縮型(Chemically-defined Lipid concentrated)(Gibco)、およびGlutaMAX(Gibco)などの、市販の材料を用いることもできる。例えば、培地は、B-27(登録商標)サプリメント、ゼノフリーB-27(登録商標)サプリメント、N2サプリメント、NS21サプリメント、GS21(商標)サプリメント、またはそれらの組み合わせを含み得る。
 培地は、ビオチン;酢酸DLアルファトコフェロール;DLアルファ-トコフェロール;ビタミンA(アセテート)などのビタミン;BSA(ウシ血清アルブミン)またはヒトアルブミン、脂肪酸不含のフラクションV;カタラーゼ;ヒト組換えインスリン;ヒトトランスフェリン;スーパーオキシドジスムターゼなどのタンパク質;コルチコステロン;D-ガラクトース;エタノールアミンHCl;グルタチオン(還元型);L-カルニチンHCl;リノール酸;リノレン酸;プロゲステロン;プトレシン2HCl;亜セレン酸ナトリウム;およびT3(トリヨード-I-サイロニン);PSG(ペニシリン、ストレプトマイシン、及びL-グルタミン)からなる群より選ばれる1種または2種以上を含んでいてもよい。培地は、外部から添加されたアスコルビン酸またはその誘導体(例えばアスコルビン酸2-リン酸:PAA)を含んでいてもよい。培地は、それぞれ外部から添加された、脂肪酸もしくは脂質、アミノ酸(例えば非必須アミノ酸)、ビタミン、成長因子(例えば、塩基性線維芽細胞増殖因子:bFGF、血小板由来増殖因子AB、上皮成長因子)、栄養因子(例えば、脳由来神経栄養因子:BDNF、グリア細胞株由来神経栄養因子:GDNF、ニューロトロフィン3:NT-3、ニューロトロフィン4/5、神経成長因子などから構成される、神経栄養因子)、サイトカイン、抗生物質(例えばペニシリン、ストレプトマイシン)、抗酸化物質、2-メルカプトエタノール、ピルビン酸、緩衝剤、および無機塩からなる群より選ばれる1種または2種以上を含んでいてもよい。
 培地は、外部から添加されたサイトカインを含んでいてもよい。サイトカインとしては、例えば、FLT3リガンド(FLT3L)、インターロイキン7(IL-7)、幹細胞因子(SCF)、トロンボポエチン(TPO)、IL-2、IL-3、IL-4、IL-6、IL-12、IL-15、IL-21、TNF-アルファ、TGF-ベータ、インターフェロン-ガンマ、インターフェロン-ラムダ、TSLP、チモペンチン、プレオトロフィン(pleotrophin)、およびミッドカインが挙げられる。これらのサイトカインは、いずれか1種を単独で用いてもよいし、2種以上を併用してもよい。
 本発明の一実施形態において、培地は、塩基性線維芽細胞増殖因子(bFGF)、フォルスコリン(FSK)およびドルソモルフィン(DM)からなる群より選ばれる少なくとも1つを含む。特に、分化誘導工程における培地は、塩基性線維芽細胞増殖因子、フォルスコリンおよびドルソモルフィンの全てを含むことが好ましい。
 転写因子導入工程および分化誘導工程は、二次元的な培養(平面培養、単層培養)で行うことができる。培養容器は、フラスコ、ディッシュ、プレートなど、一般的な形状を有するものを用いることができ、細胞を収容できるウェルが形成されているものであってもよい。培養容器は、ガラス、プラスチック、樹脂など、一般的な材質で作製されているものを用いることができる。培養容器の表面は、無処理であってもよいし、細胞の付着性、増殖性等に関係する処理またはその他の処理がなされていてもよい。例えば、ポリ-D-リジンおよびlaminin(ラミニン)または「iMatrix-511」(株式会社ニッピ、ヒトラミニン511-E8断片)によるコーティングは、ウイルスベクターを感染させた尿由来細胞(および線維芽細胞)の生存率などの観点から、本発明における好ましい表面処理といえる。培養容器のサイズ(面積、容積)、また培養容器がウェルを備えているものであればそのウェルのサイズ(口径、深さ)および数なども、適宜選択することができる。必要に応じて、培養容器を振盪しながら細胞を培養してもよい。培養環境は、特に限定されないが、好ましくは、約5%CO、約37℃の条件である。
 本発明の製造方法により得られたモーターニューロンの用途は特に限定されるものではないが、例えば、筋萎縮性側索硬化症(ALS)などのモーターニューロンが関連する疾患の疾患モデルとして使用したり、予防薬または治療薬のスクリーニング系において使用したりすることができ、さらに細胞治療に使用できる可能性もある。例えば、モーターニューロン疾患の患者の尿由来細胞から製造されたモーターニューロンは、候補薬物を添加した培地中で培養することにより薬効(または毒性)を評価することができ、また培養上清中を分析することでバイオマーカーとなる物質を探索することができる。また、複数の患者の尿由来細胞から製造されたモーターニューロンを使用することで、患者層別化や、コンパニオン診断の研究に使用することもできる。
 また、本発明の製造方法により得られたモーターニューロンは、筋萎縮性側索硬化症(ALS)、脊髄性筋萎縮症(SMA)、および球脊髄性筋萎縮症(SBMA)などのモーターニューロンの変性が関連する疾患の治療または予防のために使用することができる。
 本発明の製造方法は、例えば以下の効果が得られる。
 (1)本発明の製造方法により、各マーカーの陽性率が高い運動ニューロンの細胞集団が得られる。各マーカーは、本明細書において前述した、少なくとも1つのMNマーカー(例:ISL1、LHX3、HB9、ChAT、SMI32、VAChT)を含み、好ましくはさらに少なくとも1つの神経マーカー(例:Tuj1、MAP2、NeuN、neurofilament(ニューロフィラメント)、synapsin(シナプシン)、PSD-95)も含む。本発明の好ましい一実施形態において、本発明の製造方法により、(X)ISL1、LHX3、HB9、ChAT、SMI32、VAChT(MNマーカー)からなる群より選ばれる少なくとも1つの陽性率が高い、運動ニューロンの細胞集団が得られる。本発明のより好ましい一実施形態において、本発明の製造方法により、(X)ISL1、LHX3、HB9、ChAT、SMI32、VAChT(MNマーカー)からなる群より選ばれる少なくとも1つ、および(Y)Tuj1、MAP2、NeuN、neurofilament、synapsin、PSD-95からなる群より選ばれる少なくとも1つの陽性率(XおよびYの両方が陽性である細胞の比率)が高い、運動ニューロンの細胞集団が得られる。本発明の特に好ましい一実施形態において、本発明の製造方法により、(I)Tuj1およびISL1からなる群より選ばれる少なくとも1つ、および(II)HB9、ChATおよびSMI32からなる群より選ばれる少なくとも1つの陽性率(IおよびIIの両方が陽性である細胞の比率)が高い、運動ニューロンの細胞集団を得られる。「陽性率」は、マーカーの種類、培養条件(培養日数等)等によって変動しうるが、例えば、60%以上、70%以上、80%以上、85%以上、90%以上、または95%以上とすることができる。陽性率は、例えば、実施例に示すようにして、各マーカーを標的とした蛍光免疫染色画像から測定することができる。
 (2)本発明の製造方法により、分化度・成熟度が高い運動ニューロンの細胞集団が得られる。運動ニューロンの分化度・成熟度は、神経線維の長さによって、あるいはその長さの伸びる速度によって、評価することができ、神経線維が長いほど分化度・成熟度が高いといえる。神経線維の長さは、例えば、実施例に示すようにして、運動ニューロンが発現する各マーカーを標的とした蛍光免疫染色像から測定することができる。
 (3)本発明の製造方法により、機能的な運動ニューロンの細胞集団が得られる。運動ニューロンの機能性としては、自発的に発火すること、筋肉細胞との間に神経節接合部(NMJ)を形成して筋肉細胞の動きを支配することなどが挙げられ、これらの性質を有すること、またはこれらの性質に優れていることにより機能的であると評価することができる。運動ニューロンの自発的な発火は、例えば、実施例に示すようなカルシウムイメージング、すなわちカルシウム波型の曲線下面積(AUC)により確認または定量することができる。また、運動ニューロンによる筋肉細胞の動きの支配は、例えば、運動ニューロンと骨格筋細胞を共培養したときに形成されるNMJを、運動ニューロンおよび骨格筋細胞が発現する各マーカー、あるいはアセチルコリン受容体を標的とした蛍光免疫染色像により定性的または定量的に評価したり、骨格筋細胞の収縮確率によって評価したりすることができる。
 本発明の一側面において、上記のような疾患等の治療または予防のために使用するための、本発明の製造方法により得られたモーターニューロンおよび当該細胞を含有する医薬組成物(細胞製剤)が提供される。
 また、本発明の他の側面において、上記のような疾患等の治療または予防のために、本発明の製造方法により得られたモーターニューロンおよび当該細胞を含有する医薬組成物(細胞製剤)を投与する方法(細胞療法)が提供される。
 本発明の医薬組成物(細胞製剤)は、投与経路等に応じて、公知の製剤学的方法により製剤化することができ、例えば、注射剤(静脈注射剤、点滴注射剤等)、液剤、懸濁剤、乳剤などとして調製することができる。このような製剤化においては、必要に応じて、薬理学上許容される担体(媒体)や添加剤、具体的には、滅菌水、生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、ベヒクル、防腐剤、希釈剤、等張化剤、無痛化剤、緩衝剤、溶解補助剤などを、適宜組み合わせて用いることができる。また、製剤として薬局方適合品・医薬品添加物規格適合品を用いることができる。さらに、モーターニューロンと一緒に、治療または予防の目的に応じたその他の有効成分(他の薬剤、細胞等)を含有することもできる。
 本発明の医薬組成物(細胞製剤)の投与方法は特に限定されないが、好ましくは非経口投与、例えば、静脈内、腹腔内、皮下もしくは筋肉内投与、または患部への局所投与であり、より好ましくは静脈内投与または患部への局所投与である。本発明の医薬組成物(細胞製剤)の投与量は、対象の年齢、体重、症状、健康状態、剤形、投与方法等に応じて、適宜調節することができる。
 本発明の医薬組成物(細胞製剤)の製品は、疾患等の治療または予防のために用いられる旨の表示を付したものであり得る。例えば、製品の本体、容器、包装等に、または製品の説明書、添付文書、宣伝物、その他の印刷物等に、疾患等の治療または予防のために用いられる旨の情報を記載することができる。
 本発明の医薬組成物(細胞製剤)は、毒性(例、急性毒性、慢性毒性、遺伝毒性、生殖毒性、心毒性、癌原性)が低く、副作用も少なく、哺乳動物(例えば、ヒト、ウシ、ウマ、イヌ、ネコ、ブタ、サル、マウス、ラット、ウサギ)に対し、上記のような疾患の予防または治療剤、または診断薬として用いることができる。
 本発明の医薬組成物(細胞製剤)の投与量は、投与対象、投与ルート、対象疾患、症状などによっても異なるが、例えば、成人の患者に経口または非経口投与する場合、通常1回量として約0.01~100mg/kg体重、好ましくは0.1~50mg/kg体重、さらに好ましくは0.5~20mg/kg体重であり、この量を1日1回~3回投与するのが望ましい。
 本発明の医薬組成物(細胞製剤)は、他の薬物(以下、併用薬物と略記する)と組み合わせて用いることができる。本発明の医薬組成物(細胞製剤)と併用薬物とを組み合わせることにより、
(1)本発明の医薬組成物(細胞製剤)又は併用薬物を単独で投与する場合に比べて、その投与量を軽減することができる、
(2)患者の症状(軽症、重症など)に応じて、本発明の医薬組成物(細胞製剤)と併用する薬物を選択することができる、
(3)本発明の医薬組成物(細胞製剤)と作用機序が異なる併用薬物を選択することにより、治療期間を長く設定することができる、
(4)本発明の医薬組成物(細胞製剤)と作用機序が異なる併用薬物を選択することにより、治療効果の持続を図ることができる、
(5)本発明の医薬組成物(細胞製剤)と併用薬物とを併用することにより、相乗効果が得られる、等の優れた効果を得ることができる。
 以下、本発明の医薬組成物(細胞製剤)と併用薬物を併用して使用することを「本発明の併用剤」と称する。
 本発明の併用剤の使用に際しては、本発明の医薬組成物(細胞製剤)と併用薬物の投与時期は限定されず、本発明の医薬組成物(細胞製剤)又はその医薬組成物と併用薬物又はその医薬組成物とを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。併用薬物の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することができる。
 本発明の併用剤の投与形態は、特に限定されず、投与時に、本発明の医薬組成物(細胞製剤)と併用薬物とが組み合わされていればよい。このような投与形態としては、例えば、(1)本発明の医薬組成物(細胞製剤)と併用薬物とを同時に製剤化して得られる単一の製剤の投与、(2)本発明の医薬組成物(細胞製剤)と併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)本発明の医薬組成物(細胞製剤)と併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4)本発明の医薬組成物(細胞製剤)と併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、(5)本発明の医薬組成物(細胞製剤)と併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発明の医薬組成物(細胞製剤);併用薬物の順序での投与、あるいは逆の順序での投与)などが挙げられる。
 本発明の併用剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本発明の医薬組成物(細胞製剤)と併用薬物の配合比は、投与対象、投与ルート、対象疾患、症状、組み合わせ等により適宜選択することができる。
 例えば、本発明の併用剤における本発明の医薬組成物(細胞製剤)の含有量は、製剤の形態によって相違するが、通常製剤全体に対して約0.01~100重量%、好ましくは約0.1~50重量%、さらに好ましくは約0.5~20重量%程度である。
 本発明の併用剤における併用薬物の含有量は、製剤の形態によって相違するが、通常製剤全体に対して約0.01~100重量%、好ましくは約0.1~50重量%、さらに好ましくは約0.5~20重量%程度である。
 本発明の併用剤における担体等の添加剤の含有量は、製剤の形態によって相違するが、通常製剤全体に対して約1~99.99重量%、好ましくは約10~90重量%程度である。
 また、本発明の医薬組成物(細胞製剤)及び併用薬物をそれぞれ別々に製剤化する場合も同様の含有量でよい。
 併用薬物としては、これらに限定されないが、たとえば以下が挙げられる。ナルコレプシー治療薬(例、メチルフェニデート、アンフェタミン、ペモリン、フェネルジン、プロトリプチリン、ナトリウムオキシベート、モダフィニル、カフェイン)、抗肥満薬(アンフェタミン、ベンズフェタミン、ブロモクロプチン、ブプロピオン、ジエチルプロピオン、エグゼナチド、フェンフルラミン、リオチロニン、リラグルチド、マジンドール、メタンフェタミン、オクトレオチド、オクトレオチド、オルリスタット、フェンジメトラジン、フェンジメトラジン、フェンメトラジン、フェンテルミン、Qnexa(登録商標)、フェニルプロパノールアミン、プラムリンチド、プロピルヘキセドリン、リコンビナント レプチン、シブトラミン、トピラマート、ジメリジン、ゾニサミド、ロルカセリン、メトホルミン)、アセチルコリンエステラーゼ阻害剤(例、ドネペジル、リバスチグミン、ガランタミン、ザナペジル、イデベノン、タクリン)、抗認知症剤(例、メマンチン)、βアミロイド蛋白産生、分泌、蓄積、凝集および/または沈着抑制剤、βセクレターゼ阻害剤(例、6-(4-ビフェニリル)メトキシ-2-[2-(N,N-ジメチルアミノ)エチル]テトラリン、6-(4-ビフェニリル)メトキシ-2-(N,N-ジメチルアミノ)メチルテトラリン、6-(4-ビフェニリル)メトキシ-2-(N,N-ジプロピルアミノ)メチルテトラリン、2-(N,N-ジメチルアミノ)メチル-6-(4’-メトキシビフェニル-4-イル)メトキシテトラリン、6-(4-ビフェニリル)メトキシ-2-[2-(N,N-ジエチルアミノ)エチル]テトラリン、2-[2-(N,N-ジメチルアミノ)エチル]-6-(4’-メチルビフェニル-4-イル)メトキシテトラリン、2-[2-(N,N-ジメチルアミノ)エチル]-6-(4’-メトキシビフェニル-4-イル)メトキシテトラリン、6-(2’,4’-ジメトキシビフェニル-4-イル)メトキシ-2-[2-(N,N-ジメチルアミノ)エチル]テトラリン、6-[4-(1,3-ベンゾジオキソール-5-イル)フェニル]メトキシ-2-[2-(N,N-ジメチルアミノ)エチル]テトラリン、6-(3’,4’-ジメトキシビフェニル-4-イル)メトキシ-2-[2-(N,N-ジメチルアミノ)エチル]テトラリン、その光学活性体、その塩およびその水和物、OM99-2(国際公開01/00663))、γセクレターゼ阻害作用剤、βアミロイド蛋白凝集阻害作用剤(例、PTI-00703、ALZHEMED(NC-531)、PPI-368(特表平11-514333)、PPI-558(特表2001-500852)、SKF-74652(Biochem.J.(1999),340(1),283-289))、βアミロイドワクチン、βアミロイド分解酵素等、脳機能賦活薬(例、アニラセタム、ニセルゴリン)、パーキンソン病治療薬[(例、ドーパミン受容体作動薬(例、L-ドーパ、ブロモクリプチン、パーゴライド、タリペキソール、プラミペキソール、カベルゴリン、アマンタジン)、モノアミン酸化酵素(MAO)阻害薬(例、 デプレニル、セルジリン(セレギリン)、レマセミド、リルゾール)、抗コリン剤(例、トリヘキシフェニジル、ビペリデン)、COMT阻害剤(例、エンタカポン)]、筋萎縮性側索硬化症治療薬(例、リルゾール等、神経栄養因子)、認知症の進行に伴う異常行動、徘徊等の治療薬(例、鎮静剤、抗不安剤)、アポトーシス阻害薬(例、CPI-1189、IDN-6556、CEP-1347)、神経分化・再生促進剤(例、レテプリニム、キサリプローデン(Xaliproden;SR-57746-A)、SB-216763、Y-128、VX-853、prosaptide、5,6-ジメトキシ-2-[2,2,4,6,7-ペンタメチル-3-(4-メチルフェニル)-2,3-ジヒドロ-1-ベンゾフラン-5-イル]イソインドリン、5,6-ジメトキシ-2-[3-(4-イソプロピルフェニル)-2,2,4,6,7-ペンタメチル-2,3-ジヒドロ-1-ベンゾフラン-5-イル]イソインドリン、6-[3-(4-イソプロピルフェニル)-2,2,4,6,7-ペンタメチル-2,3-ジヒドロ-1-ベンゾフラン-5-イル]-6,7-ジヒドロ-5H-[1,3]ジオキソロ[4,5-f]イソインドールおよびその光学活性体、塩、水和物)、非ステロイド系抗炎症薬(メロキシカム、テノキシカム、インドメタシン、イブプロフェン、セレコキシブ、ロフェコキシブ、アスピリン等)、ステロイド薬(デキサメサゾン、ヘキセストロール、酢酸コルチゾン等)、疾患修飾性抗リウマチ薬(DMARDs)、抗サイトカイン薬(例、TNF阻害薬、MAPキナーゼ阻害薬)、尿失禁・頻尿治療剤(例、塩酸フラボキサート、塩酸オキシブチニン、塩酸プロピベリン)、ホスホジエステラーゼ阻害薬(例、(クエン酸)シルデナフィル)、ドーパミン作動薬(例、アポモルフィン)、抗不整脈薬(例、メキシレチン)、性ホルモンまたはその誘導体(例、プロゲステロン、エストラジオール、安息香酸エストラジオール)、骨粗鬆症治療剤(例、アルファカルシドール、カルシトリオール、エルカトニン、サケカルシトニン、エストリオール、イプリフラボン、パミドロン酸二ナトリウム、アレンドロン酸ナトリウム水和物、インカドロン酸二ナトリウム)、副甲状腺ホルモン(PTH)、カルシウム受容体拮抗薬、不眠症治療薬(例、ベンゾジアゼピン系薬剤、非ベンゾジアゼピン系薬剤、メラトニン作動薬、オレキシン受容体拮抗薬)、統合失調症治療薬(例、ハロペリドールなどの定型抗精神病薬;クロザピン、オランザピン、リスペリドン、アリピプラゾールなどの非定型抗精神病薬;代謝型グルタミン酸受容体またはイオンチャネル共役型グルタミン酸受容体に作用する薬剤;ホスホジエステラーゼ阻害薬)、ベンゾジアゼピン系薬剤(クロルジアゼポキシド、ジアゼパム、クロラゼブ酸カリウム、ロラゼパム、クロナゼパム、アルプラゾラム等)、L-型カルシウムチャネル阻害薬(プレガバリン等)、三環性又は四環性抗うつ薬(塩酸イミプラミン、塩酸アミトリプチリン、塩酸デシプラミン、塩酸クロミプラミン等)、選択的セロトニン再取り込み阻害薬(マレイン酸フルボキサミン、塩酸フロキセチン、臭酸シタロプラム、塩酸セルトラリン、塩酸パロキセチン、シュウ酸エスシタロプラム等)、セロトニン-ノルアドレナリン再取り込み阻害薬(塩酸ベンラファキシン、塩酸デュロキセチン、塩酸デスベンラファキシン等)、ノルアドレナリン再取り込み阻害薬(メシル酸レボキセチン等)、ミルタザピン、塩酸トラゾドン、塩酸ネファゾドン、塩酸ブプロピオン、マレイン酸セチプチリン、5-HT1A作動薬(塩酸ブスピロン、クエン酸タンドスピロン、塩酸オセモゾタン等)、5-HT2A拮抗薬、5-HT2A逆作動薬、5-HT3拮抗薬(シアメマジン等)、心臓選択的ではないβ阻害薬(塩酸プロプラノロール、塩酸オキシプレノロール等)、ヒスタミンH1拮抗薬(塩酸ヒドロキシジン等)、CRF拮抗薬、その他の抗不安薬(メプロバメート等)、タキキニン拮抗薬(MK-869、サレデュタント等)、代謝型グルタミン酸受容体に作用する薬剤、CCK拮抗薬、β3アドレナリン拮抗薬(塩酸アミベグロン等)、GAT-1阻害薬(塩酸チアガビン等)、N-型カルシウムチャネル阻害薬、2型炭酸脱水素酵素阻害薬、NMDAグリシン部位作動薬、NMDA拮抗薬(メマンチン等)、末梢性ベンゾジアゼピン受容体作動薬、バソプレッシン拮抗薬、バソプレッシンV1b拮抗薬、バソプレッシンV1a拮抗薬、ホスホジエステラーゼ阻害薬、オピオイド拮抗薬、オピオイド作動薬、ウリジン、ニコチン酸受容体作動薬、チロイドホルモン(T3、T4)、TSH、TRH、MAO阻害薬(硫酸フェネルジン、硫酸トラニルシプロミン、モクロベミド等)、双極性障害治療薬(炭酸リチウム、バルプロ酸ナトリウム、ラモトリジン、リルゾール、フェルバメート等)、カンナビノイドCB1拮抗薬(リモナバント等)、FAAH阻害薬、ナトリウムチャネル阻害薬、抗ADHD薬(塩酸メチルフェニデート、塩酸メタンフェタミン等)、アルコール依存症治療薬、自閉症治療薬、慢性疲労症候群治療薬、痙攣治療薬、線維筋痛症治療薬、頭痛治療薬、禁煙のための治療薬、重症筋無力症治療薬、脳梗塞治療薬、躁病治療薬、過眠症治療薬、疼痛治療薬、気分変調症治療薬、自律神経失調症治療薬、男性及び女性の性機能障害治療薬、片頭痛治療薬、病的賭博治療薬、下肢静止不能症候群治療薬、物質依存症治療薬、アルコール関連症の治療薬、過敏性腸症候群治療薬、コレステロール低下薬のような脂質異常症治療薬(スタチンシリーズ(プラバスタチンナトリウム、アトロバスタチン、シンバスタチン、ロスバスタチン等)、フィブレート(クロフィブレート等)、スクワレン合成阻害薬)、異常行動治療薬又は認知症による放浪癖の抑制薬(鎮静薬、抗不安薬等)、糖尿病治療薬、糖尿病性合併症治療剤、高血圧治療薬、低血圧治療薬、利尿剤、化学療法剤、免疫療法剤、抗血栓剤、抗癌剤など。
 上記併用薬物は、2種以上を適宜の割合で組み合わせて用いてもよい。
 さらに、本発明の医薬組成物(細胞製剤)を上記各疾患に適用する際に、生物製剤(例、抗体医薬、核酸又は核酸誘導体、アプタマー薬、ワクチン製剤)と併用することも可能であり、また、遺伝子治療法等と併用すること、薬剤を用いない精神科領域での治療法と併用することも可能である。
 抗体医薬およびワクチン製剤としては、例えば、アンジオテンシンIIに対するワクチン製剤、CETPに対するワクチン製剤、CETP抗体、TNFα抗体や他のサイトカインに対する抗体、アミロイドβワクチン製剤、1型糖尿病ワクチン(例、Peptor社のDIAPEP-277)、抗HIV抗体やHIVワクチン製剤等の他、サイトカイン、レニン・アンジオテンシン系酵素およびその産物に対する抗体あるいはワクチン製剤、血中脂質代謝に関与する酵素や蛋白に対する抗体あるいはワクチン製剤、血中の凝固・線溶系に関与する酵素や蛋白に関する抗体あるいはワクチン、糖代謝やインスリン抵抗性に関与する蛋白に対する抗体あるいはワクチン製剤等が挙げられる。その他、GHやIGF等の成長因子に関わる生物製剤との併用も可能である。
 遺伝子治療法としては、例えば、サイトカイン、レニン・アンジオテンシン系酵素およびその産物、G蛋白、G蛋白共役型受容体およびそのリン酸化酵素に関連する遺伝子を用いた治療法、NFκBデコイ等のDNAデコイを用いる治療方法、アンチセンスを用いる治療方法、血中脂質代謝に関与する酵素や蛋白に関連する遺伝子(例、コレステロールまたはトリグリセリドまたはHDL-コレステロールまたは血中リン脂質の代謝、排泄、吸収に関連する遺伝子)を用いた治療法、末梢血管閉塞症等を対象とした血管新生療法に関与する酵素や蛋白(例、HGF、VEGF等の増殖因子)に関連する遺伝子を用いた治療法、糖代謝やインスリン抵抗性に関与する蛋白に関連する遺伝子を用いた治療法、TNF等のサイトカインに対するアンチセンス等が挙げられる。
 薬剤を用いない精神科領域での治療法としては、修正電気痙攣療法、脳深部刺激療法、反復経頭蓋磁気刺激療法、認知行動療法を含む心理療法等が挙げられる。
 また、本発明の医薬組成物(細胞製剤)は、心臓再生、腎再生、膵再生、血管再生等各種臓器再生法や骨髄細胞(骨髄単核細胞、骨髄幹細胞)を利用した細胞移植療法、組織工学を利用した人工臓器(例、人工血管、心筋細胞シート)と併用することも可能である。
 本明細書および請求の範囲で使用される場合、特に文脈上必要とされない限り、単数形の用語は複数形を含み、複数形の用語は単数形を含むものとする。したがって、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。
<材料および方法>
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。最初に、下記実施例で用いた材料及び基本的な実験手法について説明する。
<ヒト尿由来細胞(UDC)>
 以下の実施例では、特に断りがない限り、ヒト尿由来細胞(Urine-Derived Cells:UDC)として、日本ReproCellから入手した3株(健常者由来の3805-8505ならびに孤発性筋萎縮性側索硬化症患者由来の3805-8506および3805-8507)、およびオーストリアEvercyte社から入手した健常者由来の5株(UDC280、UDC283、UDC304、UDC305、UDC306)を用いた。
<ヒト線維芽細胞>
 以下の実施例では、特に断りがない限り、健常人由来線維芽細胞としてドイツPromo Cell社から入手したカタログ番号C-12302および米国Cell Applications社から入手したカタログ番号106-05nを用いた。
<マウス筋芽細胞株C2C12>
 以下の実施例では、特に断りがない限り、アメリカATCCから入手したマウス筋芽細胞株C2C12(カタログ番号CRL-1772)を後述の方法で分化させたものを骨格筋細胞として用いた。
<外来性核酸>
 以下の実施例では、外来性遺伝子として下記のヒトあるいはマウス遺伝子配列を用いた。ヒトNGN2(NM_024019.4のサイレント突然変異の1塩基置換)、マウスSox11(NM_009234.6)、ヒトISL1(NM_002202.3のサイレント突然変異の1塩基置換)、ヒトLHX3(NM_014564.5)。
<レンチウイルスベクター構築とウイルスパッケージング>
 ベクタービルダー社において、外来性核酸(一つ目の遺伝子の終始コドンは削除)を切断配列T2Aでつないだ人工合成遺伝子を薬剤耐性遺伝子とともにウイルスベクターpLVに組み込み、レンチウイルスベクター pLV[Exp]-Neo-CMV>hNGN2-T2A-mSox11ならびにpLV[Exp]-Puro-CMV>hISL1-T2A-hLHX3がそれぞれ構築された。ウイルスのパッケージングはベクタービルダー社で実施され、得られたウイルス液は-80℃にて保存した。当該ウイルスベクターでは、CMVプロモーター下でヒトNGN2およびマウスSox11、ヒトISL1およびヒトLHX3がそれぞれバイシストロニックに発現する。
<アデノウイルスベクター構築とウイルスパッケージング>
 ベクタービルダー社において、外来性核酸(一つ目の遺伝子の終始コドンは削除)を切断配列T2Aでつないだ人工合成遺伝子をウイルスベクターpAVに組み込み、アデノウイルスベクター pAV[Exp]-CMV>hNGN2-T2A-mSox11ならびにpAV[Exp]-CMV>hISL1-T2A-hLHX3がそれぞれ構築された。ウイルスのパッケージングはベクタービルダー社で実施され、得られたウイルス液は-80℃にて保存した。当該ウイルスベクターでは、CMVプロモーター下でヒトNGN2およびマウスSox11、ヒトISL1およびヒトLHX3がそれぞれバイシストロニックに発現する。
<手法1:線維芽細胞の培養とウイルスベクターを用いた外来性核酸の導入>
 線維芽細胞は、FBS(15%;GIBCO社)、GlutaMAX(1%;GIBCO社)ならびにペニシリン及びストレプトマイシン(1%;GIBCO社)を含むMEM培地(GIBCO社)を用いて培養維持した。線維芽細胞を0.05% Trypsin-EDTA(GIBCO社)処理によって単一細胞に剥離・単離し、96ウェルマルチウェルプレートに10,000 cells/wellの細胞密度で播種した。翌日、ウイルス2種(レンチウイルスの場合は、6μg/mLのpolybreneを添加した)を含む培地に置換することでウイルスを感染させ、外来性遺伝子4つを発現させた。ウイルス感染の翌日、線維芽細胞の培地(前述)に置換した(図1)。
<手法2:UDCの培養とウイルスベクターを用いた外来性核酸の導入>
 ReproCell社のUDCは、ReproCell社から入手した培地を用いてゼラチン(Merck-Millipore社)でコートされたプラスチックプレート上で培養した。Evercyte社のUDCは、REGM Renal Epithelial Cell Growth Medium Bullet Kit(Lonza社)と、FBS(30%;Corning社)、GlutaMAX(1%;GIBCO社)、非必須アミノ酸(1%;GIBCO社)、塩基性線維芽細胞増殖因子(5ng/mL;PeproTech社)、血小板由来増殖因子AB(5ng/mL;PeproTech社)、上皮成長因子(5ng/mL;PeproTech社)、ならびにペニシリン及びストレプトマイシン(2%;GIBCO社)を含む高グルコースDMEM培地(GIBCO社)を1:1の体積比で混合して得た培地を用いて、ゼラチンでコートされたプラスチックプレート上で培養した。UDCを0.05%あるいは0.25% Trypsin-EDTA処理によって単一細胞に剥離・単離し、96ウェルマルチウェルプレートに10,000 cells/wellの細胞密度で播種した。翌日、ウイルス2種(レンチウイルスの場合は、6μg/mLのpolybreneを添加した)を含む培地に置換することでウイルスを感染させ、外来性遺伝子4つを発現させた。ウイルス感染の翌日、UDC用培地(前述)に置換した(図1)。
<手法3:C2C12の培養と骨格筋細胞への分化>
 C2C12は、FBS(10%; GIBCO社)ならびにペニシリン及びストレプトマイシン(1%)を含む高グルコースDMEM培地(Wako社)を用いて培養維持した。その後、1% FBSあるいはhorse serum(2%;GIBCO社)及びインスリン(1μM;Wako社)ならびにペニシリン及びストレプトマイシン(1%)を含む高グルコースDMEM培地に置換することで、C2C12を骨格筋細胞へ分化させた。
<手法3:外来性核酸導入後のモーターニューロンへの分化誘導と骨格筋細胞共培養>
 ウイルス感染の翌々日に神経分化培地に全量置換した。神経分化培地として、ウイルス感染14日目までは、N2 supplement(0.8%;富士フイルム和光純薬株式会社)、B27 supplement(0.8%;GIBCO社)、フォルスコリン(10μM;富士フイルム和光純薬株式会社)、ドルソモルフィン(1μM;富士フイルム和光純薬株式会社)、塩基性線維芽細胞増殖因子(basic FGF)(10ng/mL;富士フイルム和光純薬株式会社)、ペニシリン及びストレプトマイシン(1%)を添加したDMEM/F12培地(富士フイルム和光純薬株式会社)とNeurobasal Medium培地(GIBCO社)の混合培地(混合体積比は2:1)を、ウイルス感染14日目以降は、N2 supplement(0.8%)、B27 supplement(0.8%)、フォルスコリン(5μM)、脳由来神経栄養因子(BDNF)(10ng/mL;PeproTech社)、グリア細胞株由来神経栄養因子(GDNF)(10ng/mL;富士フイルム和光純薬株式会社)、及びニューロトロフィン3(NT―3)(10ng/mL;富士フイルム和光純薬株式会社)、ペニシリン及びストレプトマイシン(1%)を添加したDMEM/F12培地とNeurobasal Medium培地の混合培地(混合体積比は2:1)をそれぞれ用いた(図1)。2日から3日おきに、半量ずつ培地を交換した。骨格筋細胞との共培養は、1% FBSあるいは2% horse serum及び1μM インスリンで分化させたC2C12細胞を0.05% Trypsin-EDTA処理で剥離し、モーターニューロンの上に播種し7日間培養することで実施した。
<手法4:RNA抽出、cDNA合成、および定量的PCR(qPCR)>
 RNAは、RNeasy Mini kit(Qiagen社)を用いて取扱説明書に従って抽出した。cDNAは、SuperScript VILO cDNA Synthesis Kit(Invitrogen社)を用いて合成した。qPCRは、TaqMan Fast Advanced Master Mix(Invitrogen社)を用いて7900HT Fast Real-Time PCR System(Applied Biosystems社)により実施した。使用したTaqMan Gene Expression Assayは、すべてApplied Biosystemsから入手した(表1)。発現量は、GAPDHに対する相対的発現量(%)として表した。
Figure JPOXMLDOC01-appb-T000001
<手法5:免疫細胞化学と画像解析>
 パラホルムアルデヒド(4%;富士フイルム和光純薬株式会社)で細胞を室温で合計30分間固定後、Triton X-100(0.1%;MP Biomedicals社)で膜透過処理を行い、Protein-free T20(TBS)Blocking Buffer(Pierce社)でブロッキングを行った。1次抗体を室温で1時間反応させた後、DPBS(富士フイルム和光純薬株式会社)で洗浄し、次いで2次抗体を室温で1時間反応させた。DPBSにて洗浄後、核染色試薬で核染色を行った。CV7000あるいはCV8000(横河電機株式会社)を用いて自動的に蛍光画像を取得し、CV7000解析支援ソフトあるいはCellPath finder(横河電機株式会社)を用いた画像解析により運動ニューロンマーカーを発現する細胞の割合および神経線維の長さ、ならびにα-bungarotoxin陽性クラスター数を算出した。1次抗体は以下を用いた。Tuj1(R&D社、MAB1195、1:1000)、Tuj1(Cell Signaling Technology社、5568S、1:200)、HB9(Abcam社、ab221884、1:100)、ISL1/2(DSHB社、39.4D5-c、1:100)、ChAT(Millipore社、AB144P、1:100)、SMI32(BioLegend社、801701、1:300)、MyHC(R&D Systems社、MAB4470、1:1000)、およびSYP(Synaptic Systems社、101004、1:1000)。アセチルコリン受容体の検出には、Alexa Fluor 647標識されたα-bungarotoxin(Invitrogen社、B35450、1:500)を用いた。
<手法6:カルシウムイメージングと骨格筋収縮>
 細胞をカルシウム指示薬Cal-520AM(AAT Bioquest社、21130)で染色し、CV8000で30秒間のタイムラプスイメージングを行った。CellPath finderを用いた画像解析により蛍光値を定量し、SpotfireベースのWave Finder(TIBCO社)で波形解析を行い曲線下面積(AUC)を算出した。骨格筋の収縮確率は、CV8000で得た明視野のタイムラプス画像を基に算出した。
<コーティング剤とウイルスの多重感染度(MOI)の比較検討>
 まず、Meng-Lu Liu et al. (2016) Cell Reports 14, 115-128(非特許文献3)において報告された分化誘導方法(すなわち、ヒト線維芽細胞にレンチウイルスで4つの転写因子ヒトNGN2およびマウスSox11、ヒトISL1およびヒトLHX3を導入することにより、線維芽細胞を運動ニューロンへと直接分化する方法)において、レンチウイルスを感染させる際のコーティング剤とMOIを比較検討するため、前記手法1のコーティング剤としてマトリゲル(30μg/cm;Corning社)、iMatrix-511(0.3μg/cm;株式会社ニッピ)、およびポリ-D-リジン(PDL;8μg/cm濃度;Sigma社)/laminin(10μg/mL;Trevigen社)を用い、複数のMOI(20~100)のレンチウイルスをヒト線維芽細胞(106-05n)に感染させた。前記手法3に従って神経分化培地に切り替え、レンチウイルス感染から7日目および14日目にCellVoyager CV7000(横河電機株式会社)を用いて明視野画像を取得した(図2A、B)。いずれのコーティングおよびMOIにおいても、神経様細胞が認められたが、MOI=100では残存する細胞数が分化日数依存的に減少した(図2A、B)。特にマトリゲルでは残存する細胞数がMOIならびに分化日数依存的に減少したため、iMatrix-511とPDL/lamininに絞り、さらなる比較検討を行った。ここでMOIは30に固定した。前述の方法と同様にして、レンチウイルス感染から7日目においてTuj1で免疫染色を行ったところ、iMatrix-511の方がPDL/lamininよりもTuj1陽性率が高かった(図2C)。以上の結果から、iMatrix-511が最も効率よく運動ニューロンを得られることが示唆されたため、実施例ではコーティング剤としてはiMatrix-511、レンチウイルス感染時のMOIは30を用いた。
[実施例1]レンチウイルスベクターによるヒトUDCならびにヒト線維芽細胞の運動ニューロンへの分化
 レンチウイルスによる上記4転写因子の導入でUDCから運動ニューロンを分化できるか検討した。まず、運動ニューロンマーカーであるHB9とChATの遺伝子発現をqPCRで確認したところ、いずれも分化前(day0)よりも分化後(day7、day14)に発現が増加していることが認められた(図3)。免疫染色とその定量解析結果においても、Tuj1陽性かつHB9陽性細胞、外来性に発現させたISL1陽性かつChAT陽性細胞、Tuj1陽性かつSMI32(運動ニューロンマーカー)陽性細胞の割合は、分化前よりも上昇した(図4)。線維芽細胞と比較すると、UDCの方が概ね各マーカーの陽性率が高かった。
[実施例2]アデノウイルスベクターによるヒトUDCならびにヒト線維芽細胞の運動ニューロンへの分化
 アデノウイルスを用いることでも線維芽細胞から運動ニューロンを分化誘導できる結果を得ていたため、UDCにおいてもアデノウイルスによる4転写因子の導入でUDCから運動ニューロンを分化できるか検討した。実施例1と同様に、まずHB9とChATの遺伝子発現をqPCRで確認した。その結果、いずれも分化前(day0)よりも分化後(day7、day14)に発現が顕著に増加していることが認められたのみならず(図5)、レンチウイルスによる発現誘導(図3)と比べて、アデノウイルスでは両マーカー遺伝子の発現が大幅に増加していることが明らかとなった(図5)。また、免疫染色とその定量解析結果においても、Tuj1陽性かつHB9陽性細胞、外来性に発現させたISL1陽性かつChAT陽性細胞、Tuj1陽性かつSMI32陽性細胞の割合は、分化前よりも上昇したのみならず(図6)、線維芽細胞と比較すると、UDCの方が各マーカーの陽性率が高かった。さらに、レンチウイルスによる分化誘導(図4)と比較すると、いずれのマーカー陽性率も高かった。特にSMI32について、線維芽細胞ではレンチウイルスならびにアデノウイルスともに発現誘導の程度が小さかったが、UDCでは顕著に発現誘導され、陽性率が高かった。また、Tuj1あるいはSMI32で染色される神経線維の長さを経時的に計測したところ、線維芽細胞よりもUDCの方が分化日数依存的に神経線維長が伸びることが分かった(図7)。以上から、線維芽細胞よりもUDCから分化誘導された運動ニューロンの方が、分化度・成熟度が進んでいることが示唆された。
[実施例3]アデノウイルスベクターによりヒトUDCから分化した運動ニューロンの機能性検討
 運動ニューロンとしての機能性を検討するため、まずUDCから分化誘導した運動ニューロンが自発的に発火するかカルシウムイメージングにて検討した。その結果、少なくとも分化14日後から自発発火が認められた(図8A)。カルシウム波形解析の結果、分化後はカルシウム波形の曲線下面積(AUC)が顕著に増加した(図8A)。In vivoにおける運動ニューロンの役割は、神経筋接合部と呼ばれるシナプス構造を介して筋肉を神経支配し、その動きをコントロールすることである。そこで次に、C2C12を分化して得た骨格筋細胞とUDCから分化誘導した運動ニューロンを共培養した際に神経筋接合部を形成するか、アセチルコリン受容体を特異的に検出するα-bungarotoxinを用いて検討した。その結果、C2C12単独や分化前のUDC自体と共培養した場合より、UDCから分化誘導した運動ニューロンと共培養した方がα-bungarotoxin陽性のクラスター数が顕著に増加した(図8B、C)。さらに、UDCから分化誘導した運動ニューロンと共培養した場合、C2C12が収縮する確率が顕著に増加した(図8D)。以上から、UDCから分化誘導した運動ニューロンは運動ニューロンとして機能的であることが示された。
 本発明によれば、ドナーの負担が少ない、尿由来細胞からモーターニューロンの細胞集団を製造できる。
 本出願は、日本で出願された特願2021-186927を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (9)

  1.  尿由来細胞からモーターニューロンを製造する方法であって、
     モーターニューロンへの分化誘導用の転写因子を尿由来細胞に導入する工程を含む方法。
  2.  前記転写因子が、アデノウイルスベクターにより前記尿由来細胞に導入される、請求項1に記載の方法。
  3.  さらに、前記転写因子が導入された尿由来細胞を培養し、(X)ISL1、LHX3、HB9、ChAT、SMI32、VAChTからなる群より選ばれる少なくとも1つが陽性である細胞を得る工程を含む、請求項1に記載の方法。
  4.  さらに、前記転写因子が導入された尿由来細胞を培養し、(X)ISL1、LHX3、HB9、ChAT、SMI32、VAChTからなる群より選ばれる少なくとも1つが陽性、かつ(Y)Tuj1、MAP2、NeuN、neurofilament、synapsin、PSD-95からなる群より選ばれる少なくとも1つが陽性である細胞を得る工程を含む、請求項1に記載の方法。
  5.  さらに、前記転写因子が導入された尿由来細胞を培養し、(I)Tuj1およびISL1からなる群より選ばれる少なくとも1つが陽性、かつ(II)HB9、ChATおよびSMI32からなる群より選ばれる少なくとも1つが陽性である細胞を得る工程を含む、請求項1に記載の方法。
  6.  前記工程が、少なくともSMI32が陽性である細胞を得る工程である、請求項5に記載の方法。
  7.  前記転写因子が、(i)NGN2、ASCL1、BRN2、MYT1L、NEUROD1およびmiR-9/9*-124からなる群より選ばれる少なくとも1つの神経分化因子および(ii)ISL1、LHX3およびHB9からなる群より選ばれる少なくとも1つのモーターニューロン分化因子を含む、請求項1に記載の方法。
  8.  塩基性線維芽細胞増殖因子、フォルスコリンおよびドルソモルフィンからなる群より選ばれる少なくとも1つを添加した培地で前記転写因子が導入された尿由来細胞を培養する、請求項1に記載の方法。
  9.  請求項1に記載の方法により得られたモーターニューロンを含む細胞集団。
PCT/JP2022/042056 2021-11-17 2022-11-11 細胞の製造方法 WO2023090268A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186927 2021-11-17
JP2021186927 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023090268A1 true WO2023090268A1 (ja) 2023-05-25

Family

ID=86396942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042056 WO2023090268A1 (ja) 2021-11-17 2022-11-11 細胞の製造方法

Country Status (1)

Country Link
WO (1) WO2023090268A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509719A (ja) * 2012-02-29 2015-04-02 中国科学院広州生物医薬与健康研究院 神経幹細胞を調製するための培養培地およびその使用
US20210260132A1 (en) * 2018-08-28 2021-08-26 Stemlab Inc. A method for direct reprogramming of urine cells into neural stem cells using synthetic mrna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509719A (ja) * 2012-02-29 2015-04-02 中国科学院広州生物医薬与健康研究院 神経幹細胞を調製するための培養培地およびその使用
US20210260132A1 (en) * 2018-08-28 2021-08-26 Stemlab Inc. A method for direct reprogramming of urine cells into neural stem cells using synthetic mrna

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUNITAKE, KATSUHIKO ET AL.: "Cellular modeling of neuromuscular disease and development of therapy", NEUROLOGICAL THERAPEUTICS, vol. 38, no. 4, 28 April 2022 (2022-04-28), pages 579 - 582, XP009545682 *
LIU DONGHUI; RYCHKOV GRIGORI; AL-HAWWAS MOHAMMED; MANAPH NIMSHITHA PAVATHUPARAMBIL ABDUL; ZHOU FIONA; BOBROVSKAYA LARISA; LIAO HON: "Conversion of human urine-derived cells into neuron-like cells by small molecules", MOLECULAR BIOLOGY REPORTS, SPRINGER NETHERLANDS, NL, vol. 47, no. 4, 17 March 2020 (2020-03-17), NL , pages 2713 - 2722, XP037094812, ISSN: 0301-4851, DOI: 10.1007/s11033-020-05370-1 *
LIU MENG-LU, ZANG TONG, ZHANG CHUN-LI: "Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients", CELL REPORTS, ELSEVIER INC, US, vol. 14, no. 1, 1 January 2016 (2016-01-01), US , pages 115 - 128, XP093067895, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2015.12.018 *
SATO, M. ET AL.: "Direct reprogramming of somatic urine-derived cells to generate multiple neuronal cell lineages", PROGRAMS AND ABSTRACTS OF THE 61ST ANNUAL MEETING OF THE JAPANESE SOCIETY OF NEUROLOGY., vol. 61, Pe-27-2, 2020, pages 604, XP009546534 *

Similar Documents

Publication Publication Date Title
Li et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts
Wang et al. Notch receptor activation inhibits oligodendrocyte differentiation
Hashemi et al. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells
Braga et al. Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action
JP6362596B2 (ja) 神経栄養因子を分泌する間葉系幹細胞の作製方法
Shao et al. Estrogen preserves Fas ligand levels by inhibiting microRNA‐181a in bone marrow‐derived mesenchymal stem cells to maintain bone remodeling balance
Dong et al. MiRNA-181a inhibits the proliferation, migration, and epithelial–mesenchymal transition of lens epithelial cells
JP2022081657A (ja) インビボで血管形成能を有する中胚葉細胞および/または血管内皮コロニー形成細胞様細胞を作製する方法
WO2016196895A1 (en) Methods amd compositions for promoting thermogenic potential
Liu et al. The role of bone-derived PDGF-AA in age-related pancreatic β cell proliferation and function
Shi et al. Cellular prion protein promotes neuronal differentiation of adipose-derived stem cells by upregulating miRNA-124
Zhuang et al. Downregulated fat mass and obesity-associated protein inhibits bone resorption and osteoclastogenesis by nuclear factor-kappa B inactivation
Akrami et al. PlGF gene knockdown in human retinal pigment epithelial cells
WO2023090268A1 (ja) 細胞の製造方法
JP6532653B2 (ja) 造血幹細胞の増殖方法
Pan et al. Sphingosine 1-phosphate receptor 2 promotes erythrocyte clearance by vascular smooth muscle cells in intraplaque hemorrhage through MFG-E8 production
KR20180068119A (ko) 중간엽 줄기세포 또는 액티빈 a를 포함하는 퇴행성 뇌질환을 치료하기 위한 조성물
Yao et al. The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis
Chen et al. Sodium iodate influences the apoptosis, proliferation and differentiation potential of radial glial cells in vitro
US20080293056A1 (en) Method for preparing cancer stem cells
Ji et al. Graphene oxide accelerates diabetic wound repair by inhibiting apoptosis of Ad‐MSCs via Linc00324/miR‐7977/STK4 pathway
Zhang et al. Rspo1 inhibited apoptosis of glucocorticoid-induced osteoblasts via Wnt/β-catenin pathway in Legg–Calve–Perthes disease
Han et al. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells
Jakobsen et al. Sortilin inhibition protects neurons from degeneration in the diabetic retina
JP6948059B2 (ja) miR−140−3pによる骨芽細胞からのオステオカルシン産生促進

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023561570

Country of ref document: JP

Kind code of ref document: A