WO2023090111A1 - 成分濃度測定装置、成分濃度測定プログラム、及び、成分濃度測定方法 - Google Patents

成分濃度測定装置、成分濃度測定プログラム、及び、成分濃度測定方法 Download PDF

Info

Publication number
WO2023090111A1
WO2023090111A1 PCT/JP2022/040152 JP2022040152W WO2023090111A1 WO 2023090111 A1 WO2023090111 A1 WO 2023090111A1 JP 2022040152 W JP2022040152 W JP 2022040152W WO 2023090111 A1 WO2023090111 A1 WO 2023090111A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
component
liquid sample
measured
conductivity
Prior art date
Application number
PCT/JP2022/040152
Other languages
English (en)
French (fr)
Inventor
達也 中原
拓也 斧田
一徳 土生
Original Assignee
株式会社堀場アドバンスドテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場アドバンスドテクノ filed Critical 株式会社堀場アドバンスドテクノ
Priority to KR1020247012905A priority Critical patent/KR20240112258A/ko
Priority to CN202280073109.0A priority patent/CN118215836A/zh
Priority to JP2023561498A priority patent/JPWO2023090111A1/ja
Publication of WO2023090111A1 publication Critical patent/WO2023090111A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/302Electrodes, e.g. test electrodes; Half-cells pH sensitive, e.g. quinhydron, antimony or hydrogen electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a component concentration measuring device for measuring the concentration of a component to be measured in a liquid sample, a component concentration measuring program, and a component concentration measuring method.
  • absorption spectroscopy is used as shown in Patent Document 1 as a method for measuring the concentration of a measurement target component contained in a liquid sample such as a chemical solution.
  • a liquid sample is irradiated with light to measure a light absorption spectrum (spectral spectrum), and the absorbance obtained from the light absorption spectrum is converted into a concentration using a previously obtained calibration curve. .
  • the above absorption spectroscopy has the problem of large instrumental differences in principle.
  • the instrumental difference is a difference in measured values that occurs between apparatuses of the same model.
  • causes of instrumental differences include variation in light source intensity, variation in detector sensitivity, and variation in mechanical accuracy of optical systems among devices.
  • a liquid sample contains a plurality of components and the absorption spectra of these components overlap each other, it is difficult to accurately measure the concentration of the component to be measured.
  • concentration measurement of trace components at the ppm level is required, and importance is attached to improving the accuracy of concentration measurement of components to be measured.
  • the present invention has been made to solve the above-mentioned problems, and the main object thereof is to accurately determine the concentration of the component to be measured contained in the liquid sample.
  • a component concentration measuring device measures the concentration of a component to be measured contained in a liquid sample, and includes an optical measurement unit for measuring the spectrum of the liquid sample, and a characteristic value of the liquid sample. It is characterized by comprising an electrochemical measurement unit that performs electrochemical measurement, and a concentration calculation unit that calculates the concentration of the component to be measured by multivariate analysis using the spectroscopic spectrum and the characteristic value as explanatory variables.
  • the concentration of the component to be measured is calculated by multivariate analysis using the spectroscopic spectrum of the liquid sample and the characteristic value of the liquid sample as explanatory variables. can be obtained with high accuracy.
  • characteristic values obtained by electrochemical measurement which is a measurement method with little instrumental difference in principle, are used as explanatory variables for multivariate analysis, so only absorption spectroscopy is used.
  • the concentration calculation unit performs primary differentiation or secondary differentiation of the spectral spectrum with respect to wavelength, and performs multivariate analysis using the differential value as an explanatory variable. It is desirable to be With this configuration, the measurement accuracy of the measurement target component can be improved compared to the case of using the absorbance at one wavelength. Note that when using the absorbance at one wavelength, the data is only for one point and is not a continuous function, so differentiation processing cannot be performed, and the influence of drift due to light source fluctuations and stray light must be reduced. is difficult.
  • the SN ratio is better than when second-order differentiation is performed.
  • the concentration calculation unit performs multivariate analysis using values at at least one or more wavelengths in the spectral spectrum as explanatory variables.
  • the electrochemical measurement unit may have a conductivity meter that measures the conductivity of the liquid sample or a pH meter that measures the pH of the liquid sample. desirable.
  • This conductivity meter and pH meter have small instrumental differences due to the measurement principle, and by adding these to the explanatory variables of multivariate analysis, compared to the case of calculating the concentration of the measurement target component using only absorption spectroscopy Machine difference can be reduced.
  • a conductivity meter is desirable, and if the liquid sample contains a trace component correlated with hydrogen ions (H + ), a pH meter is recommended. It is desirable to have
  • the electrochemical measurement unit is configured to measure the conductivity of the liquid sample. It is desirable to have a rate meter and a pH meter for measuring the pH of the liquid sample, and the concentration calculator to calculate the concentration of the component to be measured by multivariate analysis using the following formula.
  • the electrochemical measurement unit has a conductivity meter, the component that produces conductivity in the spectroscopic spectrum and components that do not produce conductivity are superimposed, they can be measured separately.
  • the explanatory variable of conductivity even for components that are indistinguishable only by spectroscopic spectra (even for samples whose concentration cannot be measured for each component by spectroscopic spectra alone)
  • the weighting of each explanatory variable that describes the component concentration is changed. This makes it possible to measure the concentration of each of the components whose absorption spectra overlap and cannot be separated.
  • the curve represents the absorbance of the sample
  • the round points of conductivity and pH represent the respective measured values
  • the bar graph quantifies the magnitude of the effect of each explanatory variable on the concentration. (displayed as "concentration contribution rate” in the figure).
  • the electrochemical measurement unit has a pH meter
  • hydrogen Even if a component correlated with ions and a component uncorrelated with hydrogen ions are superimposed, they can be separated and measured. Specifically, as shown in Fig. 3, by increasing the pH explanatory variable, even for components that cannot be distinguished by spectroscopic spectra alone (even in samples whose concentrations cannot be measured for each component by spectroscopic spectra alone), the component The weighting of each explanatory variable that explains the concentration (the equivalent of the concentration regression coefficient for each explanatory variable) is changed. This makes it possible to measure the concentration of each of the components whose absorption spectra overlap and cannot be separated.
  • a component concentration measurement program measures the concentration of a component to be measured contained in a liquid sample, and includes an optical measurement unit for measuring the spectrum of the liquid sample, and a characteristic of the liquid sample.
  • An electrochemical measuring unit that electrochemically measures a value
  • a concentration calculating unit that calculates the concentration of the measurement target component by multivariate analysis using the spectroscopic spectrum and the characteristic value as explanatory variables. do.
  • a component concentration measuring method is a method for measuring the concentration of a component to be measured contained in a liquid sample, wherein the spectroscopic spectrum of the liquid sample is measured, and the characteristic value of the liquid sample is electrochemically measured. and calculating the concentration of the component to be measured by multivariate analysis using the spectroscopic spectrum and the characteristic value as explanatory variables.
  • the concentration of the measurement target component of the liquid sample can be determined with high accuracy by multivariate analysis using the spectroscopic spectrum of the liquid sample and the characteristic values of the liquid sample as explanatory variables.
  • FIG. 1 is a schematic diagram showing the configuration of a component concentration measuring device according to an embodiment of the present invention
  • FIG. It is experimental data showing the effect of instrumental error between (a) the case of using the calibration curve of the conventional example and (b) the case of using the calibration curve of the present embodiment.
  • a component concentration measuring device 100 measures the concentration of a component to be measured contained in a liquid sample such as a chemical solution used in semiconductor manufacturing equipment.
  • This component concentration measuring device 100 is interposed, for example, in a chemical pipe that supplies the chemical, and measures the concentration of the component to be measured in the chemical. By using the concentration thus obtained, the concentration and the like of the chemical solution are controlled.
  • the chemical solution is a mixed chemical solution (mixed liquid sample) of two or more components, for example, a component that produces conductivity when dissolved, a component that does not produce conductivity, or a component that correlates with hydrogen ions (H + ). contains.
  • the component concentration measuring device 100 includes an optical measuring unit 2 for measuring the spectroscopic spectrum of a liquid sample, an electrochemical measuring unit 3 for electrochemically measuring characteristic values of the liquid sample, An information processing device 4 for processing measurement information obtained from the optical measurement unit 2 and the electrochemical measurement unit 3 is provided.
  • the characteristic value is a physical property value that correlates with the concentration of the component to be measured contained in the liquid sample.
  • the optical measurement unit 2 is an absorbance meter that irradiates a liquid sample with light and measures the absorbance of the liquid sample.
  • the optical measurement unit 2 includes a flow cell 21 through which a liquid sample flows, a light irradiation unit 22 having a light source 22a for irradiating the liquid sample in the flow cell 21 with light, a condenser lens 22b, and the like, It has a photodetector 23 having a spectrometer 23a that disperses and detects light, a photodetector 23b, and the like.
  • a light absorption spectrum (spectral spectrum) of the transmitted light is obtained by the light detection unit 23 .
  • the light absorption spectrum of the present embodiment is a concept including an absorbance spectrum obtained from the light absorption spectrum of transmitted light and the light absorption spectrum of incident light.
  • the flow cell 21 is provided in a first sample channel L1 formed by a chemical pipe (not shown) connected to the chemical tank 5 of the semiconductor manufacturing apparatus, for example.
  • the electrochemical measurement unit 3 of this embodiment includes a conductivity meter 31 that measures the conductivity (electrical conductivity) of the liquid sample and a pH meter 32 that measures the pH of the liquid sample.
  • the conductivity meter 31 applies an alternating voltage between two electrodes 31a and 31b and measures the conductivity (electrical conductivity) of the liquid sample based on the flowing current.
  • the conductivity meter 31 of this embodiment is provided upstream or downstream of the optical measurement section 2 in the first sample flow path L1 in which the optical measurement section 2 is provided.
  • the conductivity meter 31 may be of an AC 4-pole type, or of an electromagnetic induction type, instead of an AC 2-pole type.
  • the conductivity meter 31 may be provided in a sample channel different from the first sample channel L1.
  • the pH meter 32 measures the pH of the liquid sample based on the potential difference generated between the pH glass electrode (working electrode) 32a and the reference electrode 32b.
  • the pH meter 32 of this embodiment is provided in a second sample channel L2 formed by a chemical pipe (not shown) connected to the chemical tank 5, separately from the first sample channel L1.
  • the pH meter 32 may be provided, for example, upstream or downstream of the optical measurement section 2 in the first sample flow path L1.
  • the information processing device 4 uses the light absorption spectrum (or absorbance spectrum) obtained by the optical measurement unit 2, the conductivity obtained by the conductivity meter 31, and the pH obtained by the pH meter to measure the liquid sample is used to calculate the concentration of the component to be measured.
  • the information processing device 4 is a computer having a CPU, a memory, an input/output interface, an AD converter, output means such as a display, and input means such as a keyboard. Then, based on the component concentration calculation program stored in the memory, the CPU and the peripheral device work together to function as the concentration calculator 41 .
  • the concentration calculator 41 calculates the concentration of the component to be measured by multivariate analysis using the light absorption spectrum and characteristic values (conductivity and pH) as explanatory variables.
  • Multivariate analysis may include multiple regression analysis (MLR or ILS), principal component regression analysis (PCR), least squares method (CLS), partial least squares method (PLS (PLS1 or PLS2)), and the like.
  • the concentration calculation unit 41 differentiates the light absorption spectrum by first-order differentiation or second-order differentiation, and performs multivariate analysis using the differential value as an explanatory variable. Further, the concentration calculator 41 performs multivariate analysis using the respective values of a plurality of wavelengths in the light absorption spectrum as explanatory variables.
  • the concentration calculation unit 41 calculates the concentration of the component to be measured by multivariate analysis using the following formula.
  • Abs i is obtained by differentiating the light absorption spectrum, and is a value for each of a plurality of wavelengths ( ⁇ 1, ⁇ 2, . . . ⁇ n).
  • Coefficients a i , b, and c are respectively a concentration regression coefficient for wavelength ⁇ i, a concentration regression coefficient for conductivity, and a concentration regression coefficient for pH. Note that the concentration regression coefficient corresponds to the weight of each explanatory variable.
  • k is a calibration curve obtained in advance
  • S is measurement data (actual measurement data) of the liquid sample of the optical measurement unit 2 and the electrochemical measurement unit 3 .
  • the calibration curve is obtained by performing multivariate analysis using the above equation on the measurement data of the optical measurement unit 2 and the electrochemical measurement unit 3 obtained when measuring a standard sample of known concentration.
  • absorbance and conductivity it is sufficient to put zero in the pH term in the above equation 1, and when using two explanatory variables, absorbance and pH, the above number In 1, it suffices to put zero in the conductivity term.
  • FIG. 2 shows the effects of machine differences between (a) the case of using the calibration curve of the conventional example and (b) the case of using the calibration curve of the present embodiment.
  • FIG. 2 shows experimental data using a mixed liquid sample containing two components (component A and component B) with known concentrations.
  • each calibration curve of the conventional example was created using only the light absorption spectrum of the absorbance meter, and each calibration curve of the present example is composed of the light absorption spectrum of the absorbance meter, the conductivity of the conductivity meter, and the pH It was created using the pH of the meter. Both "apparatus X" and “apparatus Y” indicate the predicted concentration "ppm" when the same calibration curve is applied.
  • the concentration of the component to be measured is calculated by multivariate analysis using the optical absorption spectrum (spectral spectrum) of the liquid sample and the characteristic values of the liquid sample as explanatory variables.
  • the concentration of the component to be measured can be obtained with high accuracy.
  • characteristic values obtained by electrochemical measurement which is a measurement method with little instrumental difference in principle, are used as explanatory variables for multivariate analysis.
  • concentration of the component to be measured is calculated using only spectroscopy, it is possible to reduce the instrumental difference in the predicted concentration, and it is possible to obtain the concentration of the component to be measured with high accuracy regardless of the device.
  • the values (spectral spectrum and characteristic values) obtained by multiple measurement principles are used as explanatory variables, even if the spectral spectrum of the component to be measured is superimposed on the spectral spectrum of another component, the Concentration can be measured with high accuracy.
  • liquid sample temperature and physical property values of liquid samples measured by measurement principles other than electrochemical measurements can be added. good.
  • either conductivity or pH may be used, and in addition to conductivity or pH, refractive index, viscosity, chromaticity, alkalinity, acidity, ORP, water Hardness, turbidity, density, concentration of ions other than hydrogen ions, etc. may be added.
  • ultrasonic signal intensity, flow rate, pressure, or the like may be added.
  • multivariate analysis is performed using a differential value obtained by differentiating the spectral spectrum as an explanatory variable.
  • the optical measurement unit of the above-described embodiment is of a type in which, for example, the flow cell 21 (sample) is irradiated with white light, and the light transmitted through the flow cell 21 (sample) is spectrally detected.
  • a method may be used in which the light is dispersed before irradiating it onto the flow cell 21 (sample) and the flow cell 21 (sample) is irradiated with the dispersed light, and the wavelength with which the flow cell 21 (sample) is irradiated is changed.
  • the optical measurement unit 2 of the above embodiment is an absorbance meter, it may be of another type for measuring the spectroscopic spectrum of a liquid sample.
  • the optical measurement unit 2 include an ultraviolet/visible spectrophotometer, an infrared spectrophotometer, a Fourier transform infrared spectrophotometer (FTIR), a non-dispersive infrared spectrophotometer (NDIR), and a near-infrared spectrophotometer.
  • FTIR Fourier transform infrared spectrophotometer
  • NDIR non-dispersive infrared spectrophotometer
  • NMR inductively coupled plasma atomic emission spectrometer
  • ICP-AES inductively coupled plasma atomic emission spectrometer
  • XAFS X-ray fluorescence spectrometer
  • NMR nuclear magnetic resonance spectrometer
  • FT-NMR Fourier transform nuclear magnetic resonance spectrometer
  • the concentration of the component to be measured in the liquid sample can be obtained with high accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明は、液体サンプルの測定対象成分の濃度を精度良く求めるものであり、液体サンプルの分光スペクトルを計測する光学計測部2と、液体サンプルの特性値を電気化学的に計測する電気化学計測部3と、分光スペクトル及び特性値を説明変数とした多変量解析により、測定対象成分の濃度を算出する濃度算出部41とを備える。

Description

成分濃度測定装置、成分濃度測定プログラム、及び、成分濃度測定方法
 本発明は、液体サンプルの測定対象成分の濃度を測定する成分濃度測定装置、成分濃度測定用プログラム、及び、成分濃度測定方法に関するものである。
 例えば薬液等の液体サンプルに含まれる測定対象成分の濃度を測定する方法としては、特許文献1に示すように、吸収分光法が用いられている。この吸収分光法は、液体サンプルに光を照射して光吸収スペクトル(分光スペクトル)を計測し、当該光吸収スペクトルから求まる吸光度を、予め求められた検量線を用いて濃度に換算するものである。
 しかしながら、上記の吸収分光法は、原理的に機差が大きいという問題がある。なお、機差とは、同じ機種の装置間に生じる測定値の差である。機差が生じる原因としては、装置間における光源強度のばらつき、検出器感度のばらつき、又は、光学系の機械的精度のばらつきなどが挙げられる。また、液体サンプルに複数の成分が含まれており、かつ、それら成分間の吸収スペクトルが重畳している場合にも、測定対象成分の濃度を精度良く測定することが難しい。さらに、近年では、ppmレベルの微量成分の濃度測定が求められる場合があり、測定対象成分の濃度測定の精度向上が重要視されている。
特開2014-126529号公報
 そこで、本発明は、上記の問題点を解決すべくなされたものであり、液体サンプルに含まれる測定対象成分の濃度を精度良く求めることを主たる課題とするものである。
 すなわち本発明に係る成分濃度測定装置は、液体サンプルに含まれる測定対象成分の濃度を測定するものであって、前記液体サンプルの分光スペクトルを計測する光学計測部と、前記液体サンプルの特性値を電気化学的に計測する電気化学計測部と、前記分光スペクトル及び前記特性値を説明変数とした多変量解析により、前記測定対象成分の濃度を算出する濃度算出部とを備えることを特徴とする。
 このように構成された成分濃度測定装置によれば、液体サンプルの分光スペクトル及び液体サンプルの特性値を説明変数とした多変量解析により、測定対象成分の濃度を算出するので、測定対象成分の濃度を精度良く求めることができる。
 具体的には、分光スペクトルに加えて、原理的に機差の小さい測定手法である電気化学測定で得られた特性値を多変量解析の説明変数として用いているので、吸収分光法のみを用いて測定対象成分の濃度を算出する場合に比べて機差を低減することができる。
 また、複数の測定原理で得られた値(分光スペクトル及び特性値)を説明変数としているので、測定対象成分の分光スペクトルに他の成分の分光スペクトルが重畳している場合でも、測定対象成分の濃度を精度良く測定することができる。
 また、光源の揺らぎや迷光等によるドリフトの影響を低減するためには、前記濃度算出部は、前記分光スペクトルを波長で一次微分又は二次微分し、その微分値を説明変数として多変量解析するものであることが望ましい。
 この構成であれば、1つの波長における吸光度を用いる場合に比べて、測定対象成分の測定精度を向上することができる。なお、1つの波長における吸光度を用いた場合には、一点のみのデータであり、連続関数ではないため、微分処理をすることができず、光源の揺らぎや迷光等によるドリフトの影響を低減することが難しい。
 ここで、分光スペクトルを波長で一次微分した場合には、SN比が二次微分した場合に比べて良くなる。一方、分光スペクトルを波長で二次微分した場合には、一次微分した場合に比べてノイズを減らすことができる。SN比をとるかノイズをとるかで、一次微分するか二次微分するかを決定することができる。
 測定対象成分の測定精度をより一層向上するためには、前記濃度算出部は、前記分光スペクトルのうちの少なくとも1つ以上の波長における値を説明変数として多変量解析するものであることが望ましい。
 電気化学計測部の具体的な実施の態様としては、前記電気化学計測部は、前記液体サンプルの導電率を計測する導電率計、又は、前記液体サンプルのpHを計測するpH計を有することが望ましい。この導電率計及びpH計は、測定原理的に機差が小さく、これらを多変量解析の説明変数に加えることで、吸収分光法のみを用いて測定対象成分の濃度を算出する場合に比べて機差を低減することができる。特に、液体サンプルに導電性を有する微量成分がある場合には、導電率計であることが望ましく、液体サンプルに水素イオン(H)に相関がある微量成分がある場合には、pH計であることが望ましい。
 また、測定対象成分の測定精度をより一層向上するための電気化学計測部及び濃度算出部の具体的な実施の態様としては、前記電気化学計測部は、前記液体サンプルの導電率を計測する導電率計、及び、前記液体サンプルのpHを計測するpH計を有し、前記濃度算出部は、以下の式を用いた多変量解析により、前記測定対象成分の濃度を算出することが望ましい。
Figure JPOXMLDOC01-appb-M000002
 前記液体サンプルが、導電性を生じる成分と、導電性を生じない成分とを含んでいる場合において、前記電気化学計測部が導電率計を有する構成であれば、分光スペクトルにおいて導電性を生じる成分と導電性を生じない成分とが重畳しても、それらを分離して測定することができる。具体的には、図3に示すように、分光スペクトルだけでは区別がつかない成分でも(分光スペクトルだけでは濃度を成分ごとに測定できないようなサンプルでも)、導電率という説明変数を増やすことで、成分濃度を説明する各説明変数の重みづけ(各説明変数に対する濃度回帰係数に相当するもの)が変化する。これによって、吸収スペクトルが重なっていて分離できない成分であってもそれぞれの濃度を測定することができる。なお、図3において、曲線はサンプルの吸光度を表し、導電率及びpHの丸い点は、それぞれの測定値を表し、棒グラフは、各説明変数が濃度に対して与える影響の大きさを数値化したもの(図中では「濃度寄与率」として表示)を表している。
 また、前記液体サンプルが、水素イオンと相関がある成分と、水素イオンと相関がない成分とを含んでいる場合において、前記電気化学計測部がpH計を有する構成であれば、分光スペクトルにおいて水素イオンと相関がある成分と水素イオンと相関がない成分とが重畳しても、それらを分離して測定することができる。具体的には、図3に示すように、分光スペクトルだけでは区別がつかない成分でも(分光スペクトルだけでは濃度を成分ごとに測定できないようなサンプルでも)、pHという説明変数を増やすことで、成分濃度を説明する各説明変数の重みづけ(各説明変数に対する濃度回帰係数に相当するもの)が変化する。これによって、吸収スペクトルが重なっていて分離できない成分であってもそれぞれの濃度を測定することができる。
 また、本発明に係る成分濃度測定用プログラムは、液体サンプルに含まれる測定対象成分の濃度を測定するものであって、前記液体サンプルの分光スペクトルを計測する光学計測部と、前記液体サンプルの特性値を電気化学的に計測する電気化学計測部と、前記分光スペクトル及び前記特性値を説明変数とした多変量解析により、前記測定対象成分の濃度を算出する濃度算出部とを備えることを特徴とする。
 さらに、本発明に係る成分濃度測定方法は、液体サンプルに含まれる測定対象成分の濃度を測定する方法であって、前記液体サンプルの分光スペクトルを計測し、前記液体サンプルの特性値を電気化学的に計測し、前記分光スペクトル及び前記特性値を説明変数とした多変量解析により、前記測定対象成分の濃度を算出することを特徴とする。
 本発明によれば、液体サンプルの分光スペクトル及び液体サンプルの特性値を説明変数とした多変量解析により、液体サンプルの測定対象成分の濃度を精度良く求めることができる。
本発明の一実施形態に係る成分濃度測定装置の構成を示す概略図である。 (a)従来例の検量線を用いた場合と(b)本実施例の検量線を用いた場合との器差影響を示す実験データである。 (a)吸光度のみを用いた場合の濃度寄与率、及び、(b)吸光度、導電率及びpHを用いた場合の濃度寄与率を示す図である。
 以下に本発明に係る成分濃度測定装置の一実施形態について図面を参照して説明する。
<装置構成>
 本実施形態に係る成分濃度測定装置100は、例えば半導体製造装置で使用される薬液等の液体サンプルに含まれる測定対象成分の濃度を測定するものである。この成分濃度測定装置100は、例えば前記薬液を供給する薬液配管に介在して設けられ、その薬液の測定対象成分の濃度を測定するものである。なお、このようにして得られた濃度を用いて、薬液の濃度等が制御される。なお、薬液としては、2成分以上の混合薬液(混合液体サンプル)であり、例えば、溶解時に導電性を生じる成分、導電性を生じない成分、又は、水素イオン(H)に相関がある成分を含んでいる。
 具体的に成分濃度測定装置100は、図1に示すように、液体サンプルの分光スペクトルを計測する光学計測部2と、液体サンプルの特性値を電気化学的に計測する電気化学計測部3と、光学計測部2及び電気化学計測部3から得られる計測情報を処理する情報処理装置4とを備えている。なお、特性値とは、液体サンプルに含まれる測定対象成分濃度と相関のある物性値のことである。
 光学計測部2は、液体サンプルに光を照射して液体サンプルの吸光度を計測する吸光度計である。具体的に光学計測部2は、液体サンプルが流れるフローセル21と、当該フローセル21内の液体サンプルに光を照射する光源22a及び集光レンズ22bなどを有する光照射部22と、フローセル21を透過した光を分光して検出する分光器23a及び光検出器23bなどを有する光検出部23とを有している。この光検出部23により透過光の光吸収スペクトル(分光スペクトル)が得られる。なお、本実施形態の光吸収スペクトルは、透過光の光吸収スペクトルと入射光の光吸収スペクトルとから求まる吸光度スペクトルを含む概念である。なお、フローセル21は、例えば半導体製造装置の薬液槽5に接続された薬液配管(不図示)により形成される第1のサンプル流路L1に設けられている。
 本実施形態の電気化学計測部3は、液体サンプルの導電率(電気伝導率)を計測する導電率計31と、液体サンプルのpHを計測するpH計32とを備えている。
 具体的に導電率計31は、2つの電極31a、31b間に交流電圧を印加して、流れる電流に基づいて液体サンプルの導電率(電気伝導率)を計測するものである。本実施形態の導電率計31は、前記光学計測部2が設けられた第1のサンプル流路L1において、光学計測部2の上流側又は下流側に設けられている。なお、導電率計31は、交流2極方式の他に、交流4極方式のものであっても良いし、電磁誘導方式のものであっても良い。また、導電率計31は、第1のサンプル流路L1とは別のサンプル流路に設けても良い。
 また、pH計32は、pHガラス電極(作用電極)32a及び比較電極32bの間に生じる電位差に基づいて液体サンプルのpHを計測するものである。本実施形態のpH計32は、第1のサンプル流路L1とは別に、薬液槽5に接続された薬液配管(不図示)により形成される第2のサンプル流路L2に設けられている。なお、pH計32は、第1のサンプル流路L1において、例えば光学計測部2の上流側又は下流側に設けても良い。
 情報処理装置4は、光学計測部2により得られた光吸収スペクトル(又は吸光度スペクトル)と、導電率計31により得られた導電率と、pH計により得られたpHとを用いて、液体サンプルの測定対象成分の濃度を算出するものである。なお、情報処理装置4は、CPU、メモリ、入出力インターフェイス、AD変換器、ディスプレイ等の出力手段、キーボード等の入力手段を有するコンピュータである。そして、メモリに格納された成分濃度算出用プログラムに基づいて、CPU及び周辺機器が協働して濃度算出部41としての機能を発揮する。
 具体的に濃度算出部41は、光吸収スペクトル及び特性値(導電率及びpH)を説明変数とした多変量解析により、測定対象成分の濃度を算出するものである。なお、多変量解析としては、重回帰分析(MLR又はILS)、主成分回帰分析(PCR)、最小二乗法(CLS)、部分最小二乗法(PLS(PLS1又はPLS2))等が考えられる。
 ここで、濃度算出部41は、光吸収スペクトルを一次微分又は二次微分の微分処理し、その微分値を説明変数として多変量解析するものである。また、濃度算出部41は、光吸収スペクトルにおける複数の波長それぞれの値を説明変数として多変量解析するものである。
 具体的に濃度算出部41は、以下の式を用いた多変量解析により、測定対象成分の濃度を算出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、Abs(吸光度)は、光吸収スペクトルを微分処理したものであり、複数の波長(λ1,λ2,・・・λn)それぞれの値である。
 また、係数a、b、cは、それぞれ、波長λiに対する濃度回帰係数、導電率に対する濃度回帰係数、pHに対する濃度回帰係数である。なお、濃度回帰係数が、各説明変数の重みに相当するものである。
 さらに、kは、予め求められた検量線であり、Sは、光学計測部2及び電気化学計測部3の液体サンプルの計測データ(実測データ)である。ここで、検量線は、濃度既知の標準サンプルを測定した際に得られた光学計測部2及び電気化学計測部3の計測データを上記の式を用いて多変量解析することにより求められる。
 なお、吸光度及び導電率の2つの説明変数を用いる場合には、上記の数1においてpHの項にゼロを入れれば良いし、吸光度及びpHの2つの説明変数を用いる場合には、上記の数1において導電率の項にゼロを入れれば良い。
 次に、(a)従来例の検量線を用いた場合と、(b)本実施例の検量線を用いた場合との機差影響を図2に示す。図2は、濃度既知の2成分(成分A、成分B)を含む混合液体サンプルを用いた実験データである。
 従来例の各検量線は、吸光度計の光吸収スペクトルのみを用いて作成したものであり、本実施例の各検量線は、吸光度計の光吸収スペクトルと、導電率計の導電率と、pH計のpHとを用いて作成したものである。「装置X」及び「装置Y」はいずれも、同じ検量線を適用した場合の予測濃度「ppm」を示している。
 図2から分かるように、「装置X」、「装置Y」の何れにおいても、従来例の各検量線を用いた場合に比べて、本実施例の複合分析の検量線を用いた場合の方が、予測濃度の精度が向上している。また、「装置X」及び「装置Y」の間の機差も解消されている。
<本実施形態の効果>
 このように構成した成分濃度測定装置100によれば、液体サンプルの光吸収スペクトル(分光スペクトル)及び液体サンプルの特性値を説明変数とした多変量解析により、測定対象成分の濃度を算出するので、測定対象成分の濃度を精度良く求めることができる。
 具体的には、光吸収スペクトル(分光スペクトル)に加えて、原理的に機差の小さい測定手法である電気化学測定で得られた特性値を多変量解析の説明変数として用いているので、吸収分光法のみを用いて測定対象成分の濃度を算出する場合に比べて予測濃度の機差を低減することができ、装置によらず、精度よく測定対象成分の濃度を求めることができる。
 また、複数の測定原理で得られた値(分光スペクトル及び特性値)を説明変数としているので、測定対象成分の分光スペクトルに他の成分の分光スペクトルが重畳している場合でも、測定対象成分の濃度を精度良く測定することができる。
<その他の実施形態>
 なお、本発明は前記実施形態に限られるものではない。
 例えば、多変量解析の説明変数としては、分光スペクトル及び電気化学測定の特性値の他に、液体サンプルの温度や、電気化学測定以外の測定原理により測定された液体サンプルの物性値を加えても良い。
 また、電気化学測定の特性値としては、導電率又はpHの何れか一方を用いても良いし、導電率又はpHの他に、屈折率、粘度、色度、アルカリ度、酸度、ORP、水硬度、濁度、密度、水素イオン以外のイオン濃度などを加えても良い。その他、超音波信号強度、流量又は圧力等を加えても良い。
 さらに、前記実施形態では、分光スペクトルを微分処理して得られた微分値を説明変数として多変量解析しているが、分光スペクトルを微分処理することなく、当該分光スペクトルを説明変数として多変量解析しても良い。
 前記実施形態の光学計測部は、例えば白色光をフローセル21(サンプル)に照射し、フローセル21(サンプル)を透過した光を分光して検出する方式であったが、例えば白色光をフローセル21(サンプル)に照射する前に分光し、当該分光した光をフローセル21(サンプル)に照射する方式であって、フローセル21(サンプル)に照射する波長を変えていく方式であっても良い。
 前記実施形態の光学計測部2は、吸光度計であったが、液体サンプルの分光スペクトルを計測するその他の方式のものであっても良い。光学計測部2としては、例えば、紫外/可視分光光度計、赤外分光光度計、フーリエ変換赤外分光光度計(FTIR)、非分散赤外分光光度計(NDIR)、近赤外分光光度計(NIR)、誘導結合プラズマ発光分光分析装置(ICP-AES)、蛍光X線分析装置、X線吸収分析装置(XAFS)、核磁気共鳴装置(NMR)、フーリエ変換核磁気共鳴装置(FT-NMR)などであっても良い。また、前記実施形態の成分濃度測定装置は、1種類の光学計測部を用いた構成であったが、2種類以上の光学計測部を用いた構成としても良い。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 本発明によれば、液体サンプルの測定対象成分の濃度を精度良く求めることができる。
100・・・成分濃度測定装置
2  ・・・光学計測部
3  ・・・電気化学計測部
31 ・・・導電率計
32 ・・・pH計
41 ・・・濃度算出部

Claims (10)

  1.  液体サンプル中の測定対象成分の濃度を測定するものであって、
     前記液体サンプルの分光スペクトルを計測する光学計測部と、
     前記液体サンプルの特性値を電気化学的に計測する電気化学計測部と、
     前記分光スペクトル及び前記特性値を説明変数とした多変量解析により、前記測定対象成分の濃度を算出する濃度算出部とを備える、成分濃度測定装置。
  2.  前記濃度算出部は、前記分光スペクトルを一次微分し、その微分値を説明変数として多変量解析するものである、請求項1に記載の成分濃度測定装置。
  3.  前記濃度算出部は、前記分光スペクトルを二次微分し、その微分値を説明変数として多変量解析するものである、請求項1に記載の成分濃度測定装置。
  4.  前記濃度算出部は、前記分光スペクトルのうちの少なくとも1つ以上の波長における値を説明変数として多変量解析するものである、請求項1乃至3の何れか一項に記載の成分濃度測定装置。
  5.  前記電気化学計測部は、前記液体サンプルの導電率を計測する導電率計、又は、前記液体サンプルのpHを計測するpH計を有する、請求項1乃至4の何れか一項に記載の成分濃度測定装置。
  6.  前記電気化学計測部は、前記液体サンプルの導電率を計測する導電率計、及び、前記液体サンプルのpHを計測するpH計を有し、
     前記濃度算出部は、以下の式を用いた多変量解析により、前記測定対象成分の濃度を算出する、請求項1乃至5の何れか一項に記載の成分濃度測定装置。
    Figure JPOXMLDOC01-appb-M000001
  7.  前記液体サンプルは、導電性を生じる成分と、導電性を生じない成分とを含んでいる、請求項1乃至6の何れか一項に記載の成分濃度測定装置。
  8.  前記液体サンプルは、水素イオンと相関がある成分と、水素イオンと相関がない成分とを含んでいる、請求項1乃至7の何れか一項に記載の成分濃度測定装置。
  9.  液体サンプル中の測定対象成分の濃度を測定するものであって、
     前記液体サンプルの分光スペクトルを計測する光学計測部と、
     前記液体サンプルの特性値を電気化学的に計測する電気化学計測部と、
     前記分光スペクトル及び前記特性値を説明変数とした多変量解析により、前記測定対象成分の濃度を算出する濃度算出部とを備える、成分濃度測定用プログラム。
  10.  液体サンプル中の測定対象成分の濃度を測定する方法であって、
     前記液体サンプルの分光スペクトルを計測し、
     前記液体サンプルの特性値を電気化学的に計測し、
     前記分光スペクトル及び前記特性値を説明変数とした多変量解析により、前記測定対象成分の濃度を算出する、成分濃度測定方法。
PCT/JP2022/040152 2021-11-22 2022-10-27 成分濃度測定装置、成分濃度測定プログラム、及び、成分濃度測定方法 WO2023090111A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247012905A KR20240112258A (ko) 2021-11-22 2022-10-27 성분 농도 측정 장치, 성분 농도 측정 프로그램, 및 성분 농도 측정 방법
CN202280073109.0A CN118215836A (zh) 2021-11-22 2022-10-27 成分浓度测定装置、成分浓度测定程序以及成分浓度测定方法
JP2023561498A JPWO2023090111A1 (ja) 2021-11-22 2022-10-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-189411 2021-11-22
JP2021189411 2021-11-22
JP2022102114 2022-06-24
JP2022-102114 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023090111A1 true WO2023090111A1 (ja) 2023-05-25

Family

ID=86396814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040152 WO2023090111A1 (ja) 2021-11-22 2022-10-27 成分濃度測定装置、成分濃度測定プログラム、及び、成分濃度測定方法

Country Status (4)

Country Link
JP (1) JPWO2023090111A1 (ja)
KR (1) KR20240112258A (ja)
TW (1) TW202321675A (ja)
WO (1) WO2023090111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102722361B1 (ko) * 2024-06-17 2024-10-25 주식회사 동서라인텍 산 분석이 가능한 xrf 분석장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137935A (ja) * 1997-07-18 1999-02-12 Fuji Electric Co Ltd 下水中の複数成分定量方法とその装置
JP2000356635A (ja) * 1999-06-15 2000-12-26 Meidensha Corp クロロフィルa濃度測定方法及びその装置
JP2002122538A (ja) * 2000-10-17 2002-04-26 National Food Research Institute 近赤外分光法を用いた液状試料の分析法および分析装置
JP2008169094A (ja) * 2007-01-12 2008-07-24 Nara Institute Of Science & Technology カーボンナノチューブ分散液およびその製造方法、並びにその利用
JP2012154698A (ja) * 2011-01-24 2012-08-16 Mitsubishi Heavy Ind Ltd 酸濃度計測装置
JP2020176839A (ja) * 2019-04-15 2020-10-29 株式会社日立製作所 光分析方法および光分析システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947709B2 (ja) 2012-12-27 2016-07-06 株式会社堀場製作所 分光分析方法及び分光分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137935A (ja) * 1997-07-18 1999-02-12 Fuji Electric Co Ltd 下水中の複数成分定量方法とその装置
JP2000356635A (ja) * 1999-06-15 2000-12-26 Meidensha Corp クロロフィルa濃度測定方法及びその装置
JP2002122538A (ja) * 2000-10-17 2002-04-26 National Food Research Institute 近赤外分光法を用いた液状試料の分析法および分析装置
JP2008169094A (ja) * 2007-01-12 2008-07-24 Nara Institute Of Science & Technology カーボンナノチューブ分散液およびその製造方法、並びにその利用
JP2012154698A (ja) * 2011-01-24 2012-08-16 Mitsubishi Heavy Ind Ltd 酸濃度計測装置
JP2020176839A (ja) * 2019-04-15 2020-10-29 株式会社日立製作所 光分析方法および光分析システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102722361B1 (ko) * 2024-06-17 2024-10-25 주식회사 동서라인텍 산 분석이 가능한 xrf 분석장치

Also Published As

Publication number Publication date
TW202321675A (zh) 2023-06-01
JPWO2023090111A1 (ja) 2023-05-25
KR20240112258A (ko) 2024-07-18

Similar Documents

Publication Publication Date Title
US10495570B2 (en) Measurement of hydrocarbon fuel gas composition and properties from tunable diode laser absorption spectrometry
CN106932378A (zh) 一种基于拉曼光谱的炼厂酸性气成分的在线检测系统和方法
CN103983595A (zh) 一种基于紫外-可见光谱处理的水质浊度解算方法
CN110161013A (zh) 基于机器学习的激光诱导击穿光谱数据处理方法和系统
US9157849B2 (en) Changed optical path measuring device for component concentration of water and measuring method thereof
CA2910115C (en) Method of and apparatus for correcting for intensity deviations in a spectrometer
JP2006133044A (ja) Cod測定方法及び装置。
Birkmann et al. UV spectroscopic properties of principal inorganic ionic species in natural waters
JP2015184018A (ja) 赤外吸収スペクトル作成方法、検量線作成方法、ならびにこれらを用いた溶液濃度定量方法および溶液濃度測定装置
US8847163B2 (en) Method and apparatus for absorption spectra analysis
Maurice et al. A comprehensive guide for measuring total vanadium concentration and state of charge of vanadium electrolytes using UV–Visible spectroscopy
WO2023090111A1 (ja) 成分濃度測定装置、成分濃度測定プログラム、及び、成分濃度測定方法
CN107167434A (zh) 一种进行浊度补偿的紫外‑可见光光度法测定khp含量的方法
CN112161959B (zh) 一种基于荧光光谱全局重构的叶绿素浓度测量方法
Gilmore et al. Analysis of the chromophoric dissolved organic matter in water by EEMs with Horiba-Jobin Yvon fluorescence instrument called Aqualog
CN102980871B (zh) 光学气体分析装置
EP2982967A1 (en) Method and system for real time in-situ monitoring of a solution during a solution based process
JP4048139B2 (ja) 濃度測定装置
US10241044B2 (en) NDIR glucose detection in liquids
Van den Broeke On-line and in-situ UV/vis spectroscopy
CN118215836A (zh) 成分浓度测定装置、成分浓度测定程序以及成分浓度测定方法
Kuzniz et al. Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra
US7427508B2 (en) Method for assaying multi-component mixtures
RU157015U1 (ru) Измеритель оптической плотности проточной жидкости
Kim et al. Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561498

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280073109.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE