WO2023090051A1 - Optical layered body - Google Patents

Optical layered body Download PDF

Info

Publication number
WO2023090051A1
WO2023090051A1 PCT/JP2022/039302 JP2022039302W WO2023090051A1 WO 2023090051 A1 WO2023090051 A1 WO 2023090051A1 JP 2022039302 W JP2022039302 W JP 2022039302W WO 2023090051 A1 WO2023090051 A1 WO 2023090051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
liquid crystal
transparent resin
retardation
Prior art date
Application number
PCT/JP2022/039302
Other languages
French (fr)
Japanese (ja)
Inventor
央人 矢野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280075537.7A priority Critical patent/CN118235070A/en
Publication of WO2023090051A1 publication Critical patent/WO2023090051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical laminate.
  • Display devices such as liquid crystal display devices and organic EL display devices use linear polarizing layers, retardation layers, and optical films such as laminates obtained by laminating these layers.
  • a linear polarizing layer in addition to a PVA polarizing film in which a dichroic dye such as iodine is adsorbed and oriented on a polyvinyl alcohol-based resin film, a liquid crystal curing manufactured by applying a composition containing a polymerizable liquid crystal compound to a substrate. It is known to use layers (eg US Pat.
  • the retardation layer in addition to a retardation film which is a stretched film obtained by stretching a resin film, it is known to use a liquid crystal cured layer produced by applying a composition containing a polymerizable liquid crystal compound to a substrate. (For example, Patent Document 1).
  • An optical film may have an adhesive layer for application to a display device and a release film for covering and protecting the adhesive layer.
  • an optical film in which an adhesive tape for peeling hereinafter sometimes referred to as "peeling tape" is pasted on the surface of a peeling film is used.
  • peeling tape an adhesive tape for peeling
  • the peeling film is peeled off by raising the peeling tape while it is fixed on a suction stage having suction holes.
  • An object of the present invention is to provide an optical laminate capable of satisfactorily peeling off a release film even when a linear polarizing layer and a retardation layer including a cured layer of a composition containing a polymerizable liquid crystal compound are included. do.
  • the present invention provides the following optical layered body.
  • the surface protection film is peelable from the transparent resin film
  • the circularly polarizing plate includes, in order from the transparent resin film side, a linear polarizing layer including a first cured layer of a first composition containing a polymerizable liquid crystal compound, and a second composition of a second composition containing a polymerizable liquid crystal compound.
  • a first retardation layer including a cured layer
  • a distance D from the surface of the surface protective film on the transparent resin film side to the surface of the first adhesive layer on the circularly polarizing plate side is 20 ⁇ m or more and 60 ⁇ m or less;
  • the surface protection film has a second adhesive layer and a base film in order from the transparent resin film side, The tensile elastic modulus of the base film at a temperature of 23° C.
  • the polymerizable liquid crystal compound contained in the first composition is a polymerizable liquid crystal compound exhibiting a smectic liquid crystal phase
  • the circularly polarizing plate further comprises a second retardation layer comprising a third cured layer of a third composition containing a polymerizable liquid crystal compound on the side opposite to the linear polarization layer side of the first retardation layer.
  • the adhesion force F1 between the surface protective film and the transparent resin film and the adhesion force F2 between the first pressure-sensitive adhesive layer and the release film satisfy the relationship of the following formula (1).
  • the release film can be removed satisfactorily.
  • FIG. 1 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention
  • FIG. FIG. 4 is a cross-sectional view schematically showing an optical layered body according to another embodiment of the present invention
  • FIG. 4A is a top view for explaining an example of a method for peeling a release film from the optical layered body according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view for explaining an example of a method for peeling a release film from the optical layered body according to the embodiment of the invention.
  • optical laminate 1 and 2 are cross-sectional views schematically showing optical laminates according to embodiments of the present invention.
  • 3 and 4 are a top view and a cross-sectional view, respectively, for explaining an example of a method for peeling a release film from an optical layered body according to an embodiment of the present invention.
  • the optical laminates 1 and 2 shown in FIGS. 1 and 2 have a surface protective film 10, a transparent resin film 15, circularly polarizing plates 30 and 40, a first adhesive layer 21, and a release film 23 in this order.
  • the optical laminate 2 may have a first anti-diffusion layer 35 (anti-diffusion layer) between the transparent resin film 15 and the circularly polarizing plate 40 .
  • the surface protective film 10 can be peeled off from the transparent resin film 15 and is in contact with the transparent resin film 15 .
  • the surface protective film 10 can be peeled off from the transparent resin film 15 while maintaining the shapes of the surface protective film 10 and the transparent resin film 15 respectively.
  • Surface protection film 10 may be a self-adhesive film. In this case, the surface protective film 10 is a self-adhesive film alone, which is in contact with the transparent resin film 15 as it is.
  • the surface protection film 10 may have a second adhesive layer 12 and a first base film 11 (base film) in order from the transparent resin film 15 side. In this case, the second adhesive layer 12 forming the surface protection film 10 is in contact with the transparent resin film 15 .
  • the transparent resin film 15 and the circularly polarizing plates 30 and 40 may be in direct contact with each other, but as shown in FIGS. may have been
  • FIG. 1 when the optical laminate 1 does not have the first anti-diffusion layer 35 between the transparent resin film 15 and the circularly polarizing plate 30, the transparent resin film 15 and the circularly polarizing plate 30 are in direct contact with each other.
  • each may be in direct contact with the first bonding layer 25 .
  • the transparent resin film 15 and the first anti-diffusion layer 35 are directly Alternatively, each may be in direct contact with the first bonding layer 25 .
  • the first anti-diffusion layer 35 and the circularly polarizing plate 40 are preferably in direct contact with each other, but may be laminated via a bonding layer (adhesive layer or adhesive layer).
  • the circularly polarizing plates 30 and 40 have a linear polarizing layer 31 and a first retardation layer 33 in this order from the transparent resin film 15 side.
  • the linear polarizing layer 31 may be the outermost surface of the circularly polarizing plates 30 and 40 on the transparent resin film 15 side.
  • the linear polarizing layer 31 and the first retardation layer 33 may be in direct contact with each other.
  • the circularly polarizing plates 30 and 40 further bond the linearly polarizing layer 31 and the first retardation layer 33 to the second bonding layer 32 (adhesive layer or adhesive layer). layer), and the linear polarizing layer 31 and the first retardation layer 33 may each be in direct contact with the second bonding layer 32 .
  • the circularly polarizing plate 40 may further have a second anti-diffusion layer 36 between the linearly polarizing layer 31 and the first retardation layer 33, as shown in FIG.
  • the second anti-diffusion layer 36 and the linear polarizing layer 31 are preferably in direct contact with each other, but may be laminated via a bonding layer (adhesive layer or adhesive layer).
  • the second anti-diffusion layer 36 and the first retardation layer 33 may be in direct contact with each other, or may be laminated via a bonding layer (adhesive layer or adhesive layer).
  • the circularly polarizing plate 40 may further have a second retardation layer 38 on the side of the first retardation layer 33 opposite to the linear polarization layer 31 side, as shown in FIG.
  • the first retardation layer 33 and the second retardation layer 38 may be in direct contact, but as shown in FIG. It may have a third bonding layer 37 (adhesive layer or adhesive layer) that bonds 33 and the second retardation layer 38 together.
  • the first retardation layer 33 and the second retardation layer 38 are in direct contact with the third bonding layer 37 respectively.
  • the circularly polarizing plate 40 may have one or more third retardation layers in addition to the first retardation layer 33 and the second retardation layer 38 .
  • the lamination position of the third retardation layer is not particularly limited, for example, it may be laminated on the side opposite to the first retardation layer 33 side of the second retardation layer 38, It may be laminated between the two retardation layers 38 .
  • the third retardation layer may be in direct contact with another layer, or may be laminated via a bonding layer (adhesive layer or pressure-sensitive adhesive layer).
  • the linear polarizing layer 31 includes a first cured layer of a first composition containing a polymerizable liquid crystal compound.
  • the first retardation layer 33 includes a second cured layer of a second composition containing a polymerizable liquid crystal compound.
  • the second retardation layer 38 preferably includes a second cured layer of a second composition containing a polymerizable liquid crystal compound.
  • the third retardation layer preferably includes a third cured layer of a third composition containing a polymerizable liquid crystal compound.
  • the circularly polarizing plates 30 and 40 and the first adhesive layer 21 are in direct contact.
  • the release film 23 can be peeled off from the first adhesive layer 21 and is in contact with the first adhesive layer 21 .
  • the release film 23 can be peeled off from the first adhesive layer 21 while maintaining the shapes of the release film 23 and the first adhesive layer 21 . When the peeling film 23 is peeled off, the first adhesive layer 21 in contact therewith is exposed.
  • the optical laminates 1 and 2 are applied to a display device by laminating the first adhesive layer 21 exposed by peeling the release film 23 to a display element of a display device such as an organic EL display device. .
  • a display element of a display device such as an organic EL display device.
  • the optical laminates 1 and 2 are separated between the release film 23 and the first adhesive layer 21 by pulling the release tape 45 in the direction of the arrows shown in FIGS. 3 and 4 (a) to (c).
  • the release film 23 is peeled off so that the .
  • the linear polarizing layer 31 and the first retardation layer 33 included in the circularly polarizing plates 30 and 40 are composed of a cured layer of a composition containing a polymerizable liquid crystal compound, and their thicknesses are small.
  • the circularly polarizing plates 30 and 40 include, for example, a polyvinyl alcohol-based resin film, a PVA polarizing film in which a dichroic dye such as iodine is adsorbed and oriented, and a retardation film that is a stretched film obtained by stretching the resin film. Compared to the plate, the rigidity is small.
  • the optical laminates 1 and 2 have a transparent resin film 15 between the surface protective film 10 and the circularly polarizing plates 30 and 40.
  • the transparent resin film 15 can improve the rigidity of the optical laminates 1 and 2 . Therefore, the peeling film 23 can be suitably peeled off from the optical laminates 1 and 2 by lifting the peeling tape 45 as shown in FIGS. 4(a) to 4(c).
  • an optical layered body in which the linear polarizing layer and the first retardation layer are the cured layers described above and does not include a transparent resin film does not have sufficient rigidity. Therefore, when the peeling tape is lifted, not only the peeling film but also the optical layered body is lifted from the suction stage, making it difficult to peel off the peeling film. If the suction holding force of the optical layered body on the suction stage is increased in order to suppress the lifting of the optical layered body from the suction stage, the surface protection film and/or the circularly polarizing plate may leave marks of the suction holes. The traces of the suction holes formed in the optical layered body may hinder inspection work and may cause deterioration in display performance when the optical layered body is applied to a display device. On the other hand, according to the optical layered bodies 1 and 2 of the present embodiment, it is possible to prevent the release film 23 from being satisfactorily peeled off and to prevent the optical layered bodies 1 and 2 from leaving traces of suction holes. can be done.
  • the distance D from the surface of the surface protection film 10 on the transparent resin film 15 side to the surface of the first adhesive layer 21 on the circularly polarizing plate 30 and 40 side is preferably 20 ⁇ m or more. Preferably, it may be greater than 20 ⁇ m, may be 25 ⁇ m or more, or may be 30 ⁇ m or more, and may be preferably 60 ⁇ m or less, may be 55 ⁇ m or less, or may be 50 ⁇ m or less. It may be 40 ⁇ m or less.
  • the distance D is within the range described above, the tensile elastic modulus of the transparent resin film 15 at a temperature of 23° C. is within the range of 1500 MPa or more and 8000 MPa or less, as will be described later. can be peeled off even better.
  • the adhesion force F1 between the surface protection film 10 and the transparent resin film 15 and the adhesion force F2 between the first pressure-sensitive adhesive layer 21 and the release film 23 are expressed by the formula (1) It is preferable to satisfy the relationship of
  • the adhesion force F1 is the peeling force when peeling the surface protective film 10 from the optical laminates 1 and 2, and is the force required to separate the surface protective film 10 from the transparent resin film 15 in the optical laminates 1 and 2.
  • the adhesion force F2 is a peeling force when peeling the release film 23 from the optical layered bodies 1 and 2, and is required when separating the release film 23 from the first adhesive layer 21 in the optical layered bodies 1 and 2. equivalent to force.
  • may be 0.03 N/25 mm or more, may be 0.04 N/25 mm or more, may be 0.20 N/25 mm or less, or may be 0.10 N/25 mm or less, or 0.08 N/25 mm or less.
  • the peeling force when peeling the surface protective film 10 and the peeling film 23 from the optical layered bodies 1 and 2 has a moderate strength relationship. be able to.
  • the surface protective film 10 and the peeling film 23 can be peeled off in a desired order.
  • the adhesion force F2 should be smaller than the adhesion force F1
  • the surface protective film 10 is peeled from the optical layered bodies 1 and 2 first. In that case, the adhesion force F1 should be made smaller than the adhesion force F2.
  • the adhesion force F1 may be, for example, 0.04 N/25 mm or more, 0.06 N/25 mm or more, 0.08 N/25 mm or more, or 0.30 N/25 mm. or less, 0.25 N/25 mm or less, 0.20 N/25 mm or less, or 0.15 N/25 mm or less.
  • the surface protective film 10 can be easily peeled off from the optical laminates 1 and 2 .
  • the adhesion force F2 may be, for example, 0.01 N/25 mm or more, 0.02 N/25 mm or more, 0.03 N/25 mm or more, or 0.05 N/25 mm or more. 0.30 N/25 mm or less, 0.25 N/25 mm or less, 0.20 N/25 mm or less, or 0.15 N/25 mm or less There may be.
  • the adhesion force F2 is within the above range, the release film 23 can be easily peeled off from the optical layered bodies 1 and 2 .
  • the adhesion force F1 and the adhesion force F2 are the surface of the surface protection film 10 on the side in contact with the transparent resin film 15 and the first adhesive of the release film 23, which adjusts the type and thickness of the surface protection film 10 and the release film 23. It can be adjusted by, for example, modifying the surface of the side in contact with the layer 21 .
  • the adhesion force F1 and the adhesion force F2 can be measured by the method described in Examples described later, and can be measured according to the 90° peeling test method specified in JIS K 6854-1:1999.
  • the surface protective film 10 exists on the outermost layer of the optical laminates 1 and 2 and is provided so as to be peelable from the transparent resin film 15 .
  • the surface protection film 10 is used to cover and protect the surface of the transparent resin film.
  • the thickness of the surface protective film 10 may be, for example, 30 ⁇ m or more, 40 ⁇ m or more, or 50 ⁇ m or more, or may be 150 ⁇ m or less, or 120 ⁇ m or less. , 100 ⁇ m or less, or 90 ⁇ m or less.
  • the surface protection film 10 may have a multilayer structure of the first base film 11 and the second adhesive layer 12, or a self-adhesive single-layer structure composed of the first base film 11. It may be a flexible film.
  • the surface protective film 10 may further have antistatic properties and/or antifouling properties.
  • the tensile elastic modulus of the first base film 11 at a temperature of 23° C. may be, for example, 2500 MPa or more, 3000 MPa or more, 3500 MPa or more, or 6000 MPa or less. , 5500 MPa or less.
  • the thickness of the first base film 11 may be, for example, 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, or 120 ⁇ m or less. 100 ⁇ m or less, or 80 ⁇ m or less.
  • the release film 23 can be easily peeled off from the optical laminates 1 and 2, and the release film The optical laminates 1 and 2 from which 23 has been peeled off can be easily and satisfactorily attached to the display device.
  • the tensile elastic modulus of the first base film 11 can be measured by the method described in Examples below.
  • the first base film 11 for example, a film formed using a resin known in the field of optical films, or the like can be used.
  • the resin constituting the first base film include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; meth)acrylic acid ester; cellulosic resins such as triacetylcellulose, diacetylcellulose and cellulose acetate propionate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; Among them, at least one selected from cyclic olefin resins, cellulose resins, and polyesters is preferable from the viewpoint of smoothness and quality as a coating substrate.
  • (Meth)acryl means at least one selected from acryl and methacryl.
  • the surface protective film 10 When the surface protective film 10 has self-adhesiveness, it can be formed using a polypropylene-based resin, a polyethylene-based resin, or the like.
  • the first base film 11 may have antistatic properties and/or antifouling properties.
  • a surface functional layer having antistatic properties and/or antifouling properties may be laminated on the surface.
  • the surface functional layer is preferably in direct contact with the first base film 11, and when the surface protective film 10 has the second adhesive layer 12, the surface functional layer is the second adhesive layer of the first base film 11. It is preferably provided on the side opposite to the agent layer 12 side.
  • the first base film 11 is subjected to corona treatment, plasma treatment, flame treatment, etc., depending on the type of layer adjacent to the first base film 11, etc. surface modification treatment may be applied.
  • the transparent resin film 15 is provided to provide the optical laminates 1 and 2 with appropriate rigidity.
  • the tensile elastic modulus of the transparent resin film at a temperature of 23° C. is preferably 1500 MPa or higher, may be 1800 MPa or higher, may be 2000 MPa or higher, may be 3000 MPa or higher, and may be 8000 MPa or lower. 7000 MPa or less, 6000 MPa or less, or 5000 MPa or less.
  • the tensile elastic modulus of the transparent resin film 15 can be measured by the method described in Examples below.
  • the tensile elastic modulus of the transparent resin film 15 is within the above range, even when the distance D of the optical laminates 1 and 2 is within the range of 20 ⁇ m or more and 60 ⁇ m or less, the optical laminates 1 and 2 can be maintained. 2 can be imparted with appropriate rigidity.
  • the release film 23 can be preferably peeled off by using the peeling tape 45 (FIGS. 3 and 4) while suppressing the traces of the suction holes from remaining on the optical laminates 1 and 2. can be done.
  • the thickness of the transparent resin film 15 may be, for example, 5 m or more, 10 ⁇ m or more, 12 ⁇ m or more, 15 ⁇ m or more, or 40 ⁇ m or less. , 30 ⁇ m or less, or 25 ⁇ m or less.
  • the transparent resin film 15 for example, a film formed using a resin known in the field of optical films, or the like can be used.
  • the resin forming the transparent resin film 15 include the resin forming the first base film 11 described above. Among them, at least one selected from cyclic olefin-based resins, cellulose-based resins, and polyesters is preferable.
  • the above resin can be formed into a film by known means such as a solvent casting method and a melt extrusion method.
  • the transparent resin film 15 is subjected to surface modification treatment such as corona treatment, plasma treatment, flame treatment, etc., depending on the type of layer adjacent to the transparent resin film 15 in order to impart desired adhesion. good too.
  • the circularly polarizing plates 30 and 40 can convert the light incident from the linearly polarizing layer 31 side into linearly polarized light, and convert the linearly polarized light into circularly polarized light. When this converted circularly polarized light is reflected and again enters the circularly polarizing plates 30 and 40 from the side of the first retardation layer 33, the circularly polarizing plates 30 and 40 convert the circularly polarized light into linearly polarized light. Polarized light can be absorbed by the linearly polarizing layer.
  • the linear polarizing layer 31 and the first retardation layer 33 are laminated directly or via the second anti-diffusion layer 36 and/or the second bonding layer 32 .
  • the adhesion between the linear polarizing layer 31 and the first retardation layer 33 is usually 2N/25mm or more.
  • the linear polarizing layer 31 and the first retardation layer 33 may be laminated with such an adhesion force as to cause so-called material destruction without causing separation between them.
  • the adhesion force between the linear polarizing layer 31 and the first retardation layer 33 is determined according to JIS K 6854-1: 1999, as described in the method for measuring the adhesion force F1 and the adhesion force F2 described in Examples below. It can be measured according to the specified 90° peel test method.
  • the linear polarizing layer 31 has a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when non-polarized light is incident thereon.
  • the linear polarizing layer 31 includes a first cured layer of a first composition containing a polymerizable liquid crystal compound, and may include a first alignment layer for orienting the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound contained in the first composition is a compound that contains at least one polymerizable group and exhibits liquid crystallinity.
  • the polymerizable liquid crystal compound may be a compound exhibiting absorption anisotropy, and when the polymerizable liquid crystal compound exhibits absorption anisotropy, the first composition should not contain a dye exhibiting absorption anisotropy. good too.
  • a polymerizable group means a group that can participate in a polymerization reaction by an active radical or acid generated from a polymerization initiator, and is preferably a photopolymerizable group.
  • the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyl group, oxiranyl group and oxetanyl group.
  • a radically polymerizable group is preferred, a (meth)acryloyl group, a vinyl group, and a vinyloxy group are more preferred, and a (meth)acryloyl group is even more preferred.
  • the polymerizable liquid crystal compound contained in the first composition is preferably a compound exhibiting smectic liquid crystallinity.
  • a linear polarizing layer having a high degree of orientational order can be formed.
  • the liquid crystal state exhibited by the polymerizable liquid crystal compound is more preferably a high-order smectic phase (high-order smectic liquid crystal state).
  • the higher order smectic phase includes smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase and smectic L phase.
  • smectic B phase, smectic F phase and smectic I phase are more preferable.
  • Thermotropic liquid crystals or lyotropic liquid crystals may be used as liquid crystals, but thermotropic liquid crystals are preferred because they allow precise film thickness control.
  • the polymerizable liquid crystal compound may be a monomer, but may be an oligomer or a polymer in which a polymerizable group is polymerized.
  • the first composition may contain a dye exhibiting absorption anisotropy in addition to the polymerizable liquid crystal compound.
  • a dye having absorption anisotropy means a dye having different absorbance in the long-axis direction and the short-axis direction of the molecule.
  • the dye exhibiting absorption anisotropy is not particularly limited as long as it has the above properties, and may be a dye or a pigment. Also, two or more dyes or pigments may be used in combination, or a dye and a pigment may be used in combination.
  • the dye having absorption anisotropy one having a maximum absorption wavelength ( ⁇ MAX ) in the wavelength range of 300 nm to 700 nm is preferable.
  • Dyes having such absorption anisotropy include, for example, acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes and anthraquinone dyes. Among them, azo dyes are preferred. Examples of azo dyes include monoazo dyes, bisazo dyes, trisazo dyes, tetrakis azo dyes, and stilbene azo dyes, with bisazo dyes and trisazo dyes being preferred. Examples of dyes having absorption anisotropy include those exemplified in JP-A-2013-101328.
  • the first composition includes a solvent, a polymerization initiator such as a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, and an antioxidant. agents, release agents, stabilizers, colorants, flame retardants, lubricants, and the like.
  • a polymerization initiator such as a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, and an antioxidant.
  • agents, release agents, stabilizers, colorants, flame retardants, lubricants, and the like can be used, for example, those exemplified in JP-A-2017-102479 and JP-A-2017-83843 can be used.
  • the linear polarizing layer 31 may include a first alignment layer.
  • the first alignment layer may be provided on the first retardation layer 33 side of the first cured layer, or may be provided on the transparent resin film 15 side of the first cured layer.
  • the first alignment layer has an alignment control force that aligns the polymerizable liquid crystal compound in a desired direction.
  • the first alignment layer preferably has solvent resistance that does not dissolve when the first composition is applied or the like, and has heat resistance to heat treatment for removing the solvent and for aligning the polymerizable liquid crystal compound.
  • the first alignment layer includes an alignment polymer layer made of an alignment polymer, a photo-alignment polymer layer made of a photo-alignment polymer, and a groove alignment layer having an uneven pattern or a plurality of grooves on the layer surface. can be mentioned.
  • the first alignment layer is preferably a photo-alignment polymer layer from the viewpoint of alignment angle precision and quality. Examples of the first alignment layer include those exemplified in JP-A-2013-33249.
  • the linear polarizing layer 31 can be manufactured by the manufacturing method of the polarizing layer described in JP-A-2013-33249.
  • the first cured layer can be formed, for example, by coating the first composition on the first alignment layer to form a coating film and solidifying (curing) the coating film.
  • the first cured layer may be formed by coating the first composition on the substrate layer to form a coating film, and stretching the coating film together with the substrate layer.
  • the first retardation layer 33 includes a second cured layer of a second composition containing a polymerizable liquid crystal compound, and may include a second alignment layer for orienting the polymerizable liquid crystal compound.
  • the second retardation layer 38 includes a third cured layer of a third composition containing a polymerizable liquid crystal compound, and may include a third alignment layer for orienting the polymerizable liquid crystal compound.
  • the third retardation layer includes a fourth cured layer of a fourth composition containing a polymerizable liquid crystal compound, and may include a fourth alignment layer for orienting the polymerizable liquid crystal compound.
  • the second to fourth alignment layers may be provided on the linear polarizing layer 31 side of the second to fourth cured layers, respectively, and the first adhesive layer 21 of the second to fourth cured layers may be provided. It may be provided on the side.
  • the second cured layer included in the first retardation layer 33 is composed of the polymerizable liquid crystal compound as the first It is preferable that the film is cured while being oriented horizontally with respect to the surface of the retardation layer 33 .
  • the first retardation layer 33 is preferably a ⁇ /4 retardation layer that satisfies the relationship shown in formula (2) below. 120 nm ⁇ Re(550) ⁇ 170 nm (2) [In formula (2), Re(550) represents the in-plane retardation value of the first retardation layer at a wavelength of 550 nm. ]
  • the in-plane retardation value Re(550) may be 125 nm or more, or 130 nm or more, or may be 165 nm or less, or may be 160 nm or less. .
  • the first retardation layer 33 is a reverse wavelength dispersion ⁇ /4 retardation layer that satisfies the above formula (2) and the following formulas (3) and (4).
  • Re(650)/Re(550) ⁇ 1.00 (4) [In formulas (3) and (4), Re (450) represents the in-plane retardation value of the first retardation layer at a wavelength of 450 nm, Re (550) represents the in-plane retardation value of the first retardation layer at a wavelength of 550 nm, Re(650) represents the in-plane retardation value of the first retardation layer at a wavelength of 650 nm. ]
  • Re(450)/Re(550) may be 0.70 or more, 0.78 or more, or 0.92 or less. It may be 0.90 or less, 0.87 or less, 0.86 or less, or 0.85 or less.
  • Re(650)/Re(550) may be 1.01 or more, or 1.02 or more.
  • the combination of the first retardation layer 33 and the second retardation layer 38 examples include [i] a combination of a ⁇ /4 retardation layer and a positive C layer, and [ii] a combination of a ⁇ /2 retardation layer and a ⁇ /4 retardation layer.
  • the polymerizable liquid crystal compound is cured in a state aligned in the horizontal direction with respect to the surface of the first retardation layer 33. is preferred.
  • the second retardation layer 38 is a ⁇ /4 retardation layer
  • the third cured layer included in the second retardation layer 38 has a polymerizable liquid crystal compound in the horizontal direction with respect to the surface of the second retardation layer 38. It is preferably cured in a state of orientation.
  • the second cured layer included in the first retardation layer 33 is the polymerizable liquid crystal compound of the first retardation layer 33 It is preferably cured in a state of being oriented in the direction perpendicular to the plane of the .
  • the third cured layer included in the second retardation layer 38 contains a polymerizable liquid crystal compound in the second retardation layer 38 It is preferably cured in a state of being oriented in the direction perpendicular to the plane of the .
  • the positive C layer preferably satisfies the relationship of formula (5) below. ⁇ 100 nm ⁇ Rth(550) ⁇ 40 nm (5) [In formula (5), Rth(550) represents a retardation value in the thickness direction of the first retardation layer or the second retardation layer at a wavelength of 550 nm. ]
  • the thickness direction retardation value Rth(550) may be ⁇ 90 nm or more, ⁇ 80 nm or more, or ⁇ 50 nm or less.
  • the second cured layer included in the first retardation layer 33 has a polymerizable liquid crystal compound in the first place. It is preferable that the phase difference layer 33 is cured while being oriented in the horizontal direction.
  • the third cured layer included in the second retardation layer 38 has a polymerizable liquid crystal compound in the second order. It is preferable that the film is cured while being oriented horizontally with respect to the plane of the retardation layer 38 .
  • the ⁇ /2 retardation layer preferably satisfies the relationship of formula (6) below. 200 nm ⁇ Re(550) ⁇ 300 nm (6) [In formula (6), Re(550) represents an in-plane retardation value of the first retardation layer or the second retardation layer at a wavelength of 550 nm. ]
  • the in-plane retardation value Re(550) may be 220 nm or more and may be 280 nm or less.
  • the in-plane retardation values Re(550) and Re(450) and the thickness direction retardation value Rth(550) can be determined, for example, by measurement using a retardation measuring device.
  • a known polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound for forming the second cured layer, the third cured layer, and the fourth cured layer.
  • a polymerizable liquid crystal compound is a compound having at least one polymerizable group and having liquid crystallinity.
  • the type of polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used.
  • a cured layer formed by polymerizing a polymerizable liquid crystal compound develops retardation by curing in a state in which the polymerizable liquid crystal compound is oriented in a suitable direction.
  • the optical axis of the polymerizable liquid crystal compound coincides with the long axis direction of the polymerizable liquid crystal compound.
  • the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the discotic surface of the polymerizable liquid crystal compound.
  • the rod-like polymerizable liquid crystal compound for example, those described in JP-A-11-513019 (claim 1 etc.) can be preferably used.
  • JP-A-2007-108732 paragraphs [0020] to [0067], etc.
  • JP-A-2010-244038 paragraphs [0013] to [0108], etc.
  • the polymerizable group possessed by the polymerizable liquid crystal compound means a group involved in the polymerization reaction as described above, and is preferably a photopolymerizable group.
  • a photopolymerizable group is a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyloxy group, oxiranyl group, oxetanyl group, styryl group and allyl group. .
  • thermotropic liquid crystal a (meth)acryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order.
  • at least one type preferably has two or more polymerizable groups in the molecule.
  • “(Meth)acryloyl” means at least one selected from acryloyl and methacryloyl.
  • the liquid crystallinity exhibited by the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferable in that it enables precise film thickness control. Further, the phase-ordered structure of the thermotropic liquid crystal may be nematic liquid crystal, smectic liquid crystal, or discotic liquid crystal.
  • a polymerizable liquid crystal compound can be used individually or in combination of 2 or more types.
  • a polymerizable liquid crystal compound having a so-called T-shaped or H-shaped molecular structure tends to exhibit reverse wavelength dispersion when polymerized and cured, and a polymerizable liquid crystal compound having a T-shaped molecular structure has a stronger property. It tends to exhibit reverse wavelength dispersion.
  • the first retardation layer 33, the second retardation layer 38, and the third retardation layer may respectively include a second alignment layer, a third alignment layer, and a fourth alignment layer.
  • the second to fourth alignment layers have an alignment control force to align the polymerizable liquid crystal compound in a desired direction.
  • the second alignment layer to the fourth alignment layer may each independently be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is vertically aligned with respect to the plane direction of the display device, and the molecules of the polymerizable liquid crystal compound It may be a horizontal alignment layer in which the axis is horizontally aligned with respect to the plane direction of the display device, or an inclined alignment layer in which the molecular axis of the polymerizable liquid crystal compound is tilted with respect to the plane direction of the display device, A photo-aligned polymer layer is preferable from the viewpoint of alignment angle accuracy and quality.
  • the second to fourth alignment layers have a solvent resistance that does not dissolve when the second to fourth compositions containing the polymerizable liquid crystal compound are applied, etc., and the removal of the solvent and the alignment of the polymerizable liquid crystal compound It is preferable to use a material having heat resistance to the heat treatment for the purpose.
  • the second to fourth alignment layers each independently, an alignment polymer layer formed of an alignment polymer, a photo-alignment polymer layer formed of a photo-alignment polymer, an uneven pattern or a plurality of layers on the layer surface. Grooved alignment layers with grooves can be mentioned.
  • the second composition to the fourth composition each contain a polymerizable liquid crystal compound, a solvent, and various additives as necessary.
  • the second cured layer to the fourth cured layer are formed by applying the second composition to the fourth composition on the second alignment layer to the fourth alignment layer, respectively, to form a coating film, and solidifying (curing) the coating film. ).
  • the second to fourth compositions are applied on the substrate layer to form a coating film, and the coating film is stretched together with the substrate layer to form the second to fourth cured layers.
  • Additives contained in the second to fourth compositions include polymerization initiators, reactive additives, leveling agents, polymerization inhibitors, and the like. Known solvents, polymerization initiators, reactive additives, leveling agents, polymerization inhibitors and the like can be used as appropriate.
  • a film obtained by forming a resin can be used as the base material layer, and for example, a film using the resin constituting the above-described first base material film can be used.
  • the thickness of the substrate layer is not particularly limited, but in general, it is preferably 1 to 300 ⁇ m or less, more preferably 20 to 200 ⁇ m, more preferably 30 to 120 ⁇ m from the viewpoint of workability such as strength and handleability. is more preferred.
  • the substrate layer may be incorporated in the display device together with the first to third retardation layers, and the substrate layer is peeled off to form only the second cured layer to the fourth cured layer, or the second A stiffening layer and a second alignment layer, a third stiffening layer and a third alignment layer, or a fourth stiffening layer and a fourth alignment layer may be incorporated into the display device.
  • the thickness of the substrate layer may be less than 30 ⁇ m, for example 25 ⁇ m or less.
  • the thicknesses of the first to third retardation layers may each independently be 0.1 ⁇ m or more, may be 0.2 ⁇ m or more, may be 3 ⁇ m or less, and may be 2 ⁇ m. It may be below.
  • the first adhesive layer 21 and the second adhesive layer 12 are adhesive layers formed using an adhesive composition.
  • the pressure-sensitive adhesive composition or the reaction product of the pressure-sensitive adhesive composition develops adhesiveness by attaching itself to an adherend such as a display element of a display device, and is called a so-called pressure-sensitive adhesive. It is a thing.
  • the adhesive layer formed using the active-energy-ray-curable adhesive composition mentioned later can adjust a crosslinking degree and adhesive strength by irradiating an active-energy-ray.
  • the pressure-sensitive adhesive composition known pressure-sensitive adhesives having excellent optical transparency can be used without particular limitation. can use objects.
  • the adhesive composition may also be an active energy ray-curable adhesive composition, a heat-curable adhesive composition, or the like.
  • a pressure-sensitive adhesive composition using an acrylic resin as a base polymer which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable.
  • the pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
  • the active energy ray-curable pressure-sensitive adhesive composition is obtained by blending an ultraviolet-curable compound such as a polyfunctional acrylate with the above-described pressure-sensitive adhesive composition, and curing the layer formed by coating with ultraviolet rays. can form a harder pressure-sensitive adhesive layer.
  • Active energy ray-curable pressure-sensitive adhesives have the property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the active energy ray-curable adhesive has adhesiveness even before energy ray irradiation, it adheres to the adherend and has the property that it can be cured by energy ray irradiation to adjust the adhesive strength. .
  • the pressure-sensitive adhesive composition and the active energy ray-curable pressure-sensitive adhesive composition optionally contain an antioxidant, a tackifier, a thermoplastic resin, a filler, a flow control agent, a plasticizer, an antifoaming agent, and an antistatic agent. , solvents and other additives.
  • the thicknesses of the first pressure-sensitive adhesive layer 21 and the second pressure-sensitive adhesive layer 12 are not particularly limited. It may be 20 ⁇ m or more, 25 ⁇ m or more, 300 ⁇ m or less, 250 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the first anti-diffusion layer 35 and the second anti-diffusion layer 36 are a dye having absorption anisotropy in the linear polarizing layer 31 or a polymerizable liquid crystal compound having absorption anisotropy (hereinafter both are collectively referred to as “absorption anisotropy”). It is used to suppress the diffusion of the dye (sometimes referred to as a "colorant”) to other layers.
  • the first anti-diffusion layer 35 is provided between the transparent resin film 15 and the circularly polarizing plate 40, the second anti-diffusion layer constitutes the circularly polarizing plate 40, the linearly polarizing layer 31 and the first retardation layer 33 provided between The optical layered body 2 having the first anti-diffusion layer 35 and/or the second anti-diffusion layer 36 suppresses degradation of optical properties over time due to diffusion of the absorption anisotropic dye when incorporated into a display device. can do.
  • the first diffusion prevention layer 35 and the second diffusion prevention layer 36 are not particularly limited as long as they are layers capable of suppressing the diffusion of the absorption anisotropic dye.
  • the first diffusion prevention layer 35 and the second diffusion prevention layer 36 each independently, for example, a layer formed from a resin composition containing a water-soluble polymer, a curable composition containing an active energy ray-curable resin Layers to be formed and the like can be mentioned.
  • the first diffusion prevention layer 35 and the second diffusion prevention layer 36 formed from a resin composition containing a water-soluble polymer have anisotropic absorption. Diffusion of pigment can be suppressed.
  • water-soluble polymers that can form the first diffusion prevention layer 35 and the second diffusion prevention layer 36 include polyacrylamide-based polymers; polyvinyl alcohol, ethylene-vinyl alcohol copolymers, (meth)acrylic acid or its anhydride. carboxyvinyl-based polymers; polyvinylpyrrolidone; starches; sodium alginate; polyethylene oxide-based polymers and the like. These polymers may be used alone or in combination of two or more.
  • the content of the water-soluble polymer in the layer is preferably 75% by mass or more. , more preferably 80% by mass or more, and still more preferably 85% by mass or more.
  • the resin composition containing a water-soluble polymer introduces a crosslinked structure for enhancing the denseness of the first anti-diffusion layer 35 and the second anti-diffusion layer 36 to improve the function of suppressing the diffusion of the absorption anisotropic dye.
  • a cross-linking agent may be included.
  • cross-linking agents include ionic cross-linking agents such as glyoxylate, water-soluble cross-linking agents such as epoxy cross-linking agents; isocyanate cross-linking agents, polyvalent aldehyde cross-linking agents such as glyoxal and glyoxal derivatives, and zirconium chloride.
  • the content of the cross-linking agent in the resin composition containing the water-soluble polymer may be, for example, 0.1 parts by mass or more, or may be 1 part by mass or more, with respect to 100 parts by mass of the water-soluble polymer. It may be 10 parts by mass or more, 100 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less.
  • a resin composition containing a water-soluble polymer is prepared as a solution in which the water-soluble polymer is dissolved in a solvent.
  • the solvent may be selected according to the type of water-soluble polymer, and examples thereof include water, alcohol, and mixtures of water and alcohol, with water being preferred.
  • the solid content concentration of the resin composition containing the water-soluble polymer may be, for example, 1% by mass or more, may be 2% by mass or more, may be 50% by mass or less, or may be 30% by mass. It may be below.
  • a resin composition containing a water-soluble polymer may contain additives such as a preservative and a leveling agent in addition to the water-soluble polymer, cross-linking agent, and solvent.
  • the content of the additive in the resin composition containing the water-soluble polymer may be, for example, 10% by mass or less, or 5% by mass or less, relative to the solid content of the resin composition.
  • the first anti-diffusion layer 35 and the second anti-diffusion layer 36 formed from a resin composition containing a water-soluble polymer are formed on the surface forming the first anti-diffusion layer 35 and the second anti-diffusion layer 36 (for example, a circularly polarizing plate It can be formed by applying the resin composition to the linear polarizing layer 31) of 30 and 40 and drying it.
  • the drying treatment can be performed by, for example, blowing hot air.
  • the drying temperature may be, for example, 40° C. or higher, 60° C. or lower, or 100° C. or lower, and the drying time may be, for example, 10 seconds or more and 600 seconds or less. .
  • the first diffusion prevention layer 35 and the second diffusion prevention layer 36 formed from a curable composition containing the active energy ray-curable resin are composed of the absorption anisotropic dye diffusion can be suppressed.
  • the curable composition include a cationic polymerizable curable composition containing a cationic polymerizable compound as a curable compound, a radical polymerizable curable composition containing a radical polymerizable compound as a curable compound, a cationically polymerizable compound, and Examples thereof include hybrid-type curable compositions containing both radically polymerizable compounds.
  • cationic polymerizable compounds include epoxy compounds having one or more epoxy groups in the molecule, oxetane compounds having one or more oxetane rings in the molecule, and vinyl compounds.
  • radically polymerizable compounds include (meth)acrylic compounds having one or more (meth)acryloyl groups in the molecule, vinyl compounds, and the like.
  • the curable composition can contain one or more cationically polymerizable compounds and/or can contain one or more radically polymerizable compounds.
  • the cationic polymerizable compound which is the main component of the cationic polymerizable curable composition, is a compound that undergoes a cationic polymerization reaction and is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, or by heating. It refers to oligomers, and examples thereof include epoxy compounds, oxetane compounds, and vinyl compounds. Among them, epoxy compounds are preferred.
  • An epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule.
  • An epoxy compound may be used individually by 1 type, and may use 2 or more types together.
  • Examples of epoxy compounds include alicyclic epoxy compounds, aromatic epoxy compounds, hydrogenated epoxy compounds, and aliphatic epoxy compounds.
  • the epoxy compound preferably contains an alicyclic epoxy compound and/or an aliphatic epoxy compound from the viewpoint of weather resistance, curing speed and adhesiveness.
  • the content of the epoxy compound may be 10 parts by mass or more, or 15 parts by mass with respect to 100 parts by mass of the solid content of the curable composition. 20 parts by mass or more, 70 parts by mass or less, 60 parts by mass or less, or 50 parts by mass or less.
  • the content of the cationic polymerizable compound (the total content when two or more cationic polymerizable compounds are included) is It may be 50% by mass or more, 60% by mass or more, or 70% by mass or more.
  • the curable composition may further contain a polymer component (thermoplastic resin, etc.).
  • the curable composition contains a cationic polymerizable compound
  • it preferably contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams, and initiates the polymerization reaction of the cationic curable compound. Since the photocationic polymerization initiator acts catalytically with light, it is excellent in storage stability and workability even when mixed with a photocationically curable compound.
  • Compounds that generate cationic species or Lewis acids upon irradiation with active energy rays include, for example, onium salts such as aromatic iodonium salts and aromatic sulfonium salts, aromatic diazonium salts, iron-arene complexes, and the like.
  • the photocationic polymerization initiator may be used alone or in combination of two or more.
  • aromatic sulfonium salts are preferably used because they have ultraviolet absorption properties even in a wavelength region around 300 nm, and can give a cured product having excellent curability and good mechanical strength and adhesive strength.
  • the content of the photocationic polymerization initiator in the curable composition may be 1 part by mass or more, or may be 2 parts by mass or more, with respect to 100 parts by mass of the solid content of the curable compound. It may be 10 parts by mass or less, or may be 8 parts by mass or less.
  • the content of the photocationic polymerization initiator is within the above range, the cationic polymerizable compound can be sufficiently cured, and the first diffusion prevention layer 35 and the second diffusion prevention layer 36 have high mechanical strength and adhesive strength. can be given.
  • a hybrid-type curable composition can be obtained by adding a radically polymerizable compound to a curable composition containing a cationic polymerizable compound.
  • a radical polymerizable compound By using a radical polymerizable compound together, the effect of increasing the hardness and mechanical strength of the first diffusion prevention layer 35 and the second diffusion prevention layer 36 can be expected, and the viscosity and curing speed of the curable composition can be adjusted. becomes easier to do.
  • the radically polymerizable compound refers to a compound or oligomer that undergoes a radical polymerization reaction by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays or by heating.
  • active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays or by heating.
  • Compounds having an ethylenically unsaturated bond include (meth)acrylic compounds having one or more (meth)acryloyl groups in the molecule, as well as styrene, styrenesulfonic acid, vinyl acetate, vinyl propionate, and N-vinyl.
  • vinyl compounds such as -2-pyrrolidone; Among them, preferred radically polymerizable compounds are (meth)acrylic compounds.
  • the (meth)acrylic compound is a compound having at least one (meth)acryloyloxy group in the molecule, and may be a monomer, oligomer or polymer.
  • Examples of (meth)acrylic compounds include (meth)acrylate compounds such as monofunctional (meth)acrylate compounds and polyfunctional (meth)acrylate compounds; urethane (meth)acrylate compounds such as polyfunctional urethane (meth)acrylate compounds; Epoxy (meth)acrylate compounds such as polyfunctional epoxy (meth)acrylate compounds; carboxyl group-modified epoxy (meth)acrylate compounds, polyester (meth)acrylate compounds, and the like.
  • the (meth)acrylic compounds may be used singly or in combination of two or more.
  • the (meth)acrylate compounds include monofunctional (meth)acrylate compounds having one (meth)acryloyloxy group in the molecule, and polyfunctional (meth)acrylate compounds having two or more (meth)acryloyloxy groups in the molecule. Acrylate compounds are mentioned.
  • the crosslink density of the first diffusion prevention layer 35 and the second diffusion prevention layer 36 can be adjusted by controlling the molecular weight between crosslink points and the number of crosslink points of the compound. More specifically, the smaller the molecular weight between cross-linking points, the higher the cross-linking density, and the higher the number of cross-linking points, the higher the cross-linking density. can improve shielding against
  • a urethane (meth)acrylate compound generally means a reaction product of an isocyanate compound, a polyol compound and a (meth)acrylate compound, and is a polyfunctional urethane (meth)acrylate having two or more (meth)acryloyloxy groups in the molecule.
  • a compound is preferred. Since the polyfunctional urethane (meth)acrylate compound can form a crosslinked structure, it is advantageous from the viewpoint of improving the function of suppressing the diffusion of the absorption anisotropic dye of the first diffusion prevention layer 35 and the second diffusion prevention layer 36. At the same time, appropriate toughness can be imparted.
  • the number of functional groups of the polyfunctional urethane (meth)acrylate compound is preferably 2 or more and 5 or less.
  • epoxy (meth)acrylate compounds include polyfunctional epoxy (meth)acrylate compounds that can be obtained by an addition reaction between polyglycidyl ether and (meth)acrylic acid and have at least two (meth)acryloyloxy groups in the molecule. ) acrylates and the like. Polyester (meth)acrylate compounds include, for example, compounds having an ester bond and at least two (meth)acryloyl groups (typically (meth)acryloyloxy groups) in the molecule.
  • the curable composition contains a radically polymerizable compound
  • it preferably contains a polyfunctional (meth)acrylate compound as the radically polymerizable compound.
  • the content of the polyfunctional (meth)acrylate compound may be, for example, 50 parts by mass or more, or may be 60 parts by mass or more, relative to 100 parts by mass of the solid content of the curable composition. It may be 70 parts by mass or more, 100 parts by mass or less, 95 parts by mass or less, or 90 parts by mass or less.
  • the curable composition contains a radically polymerizable compound
  • it preferably contains a polyfunctional (meth)acrylate compound and a polyfunctional urethane (meth)acrylate compound as the radically polymerizable compound.
  • the content ratio of the polyfunctional (meth)acrylate compound and the urethane (meth)acrylate compound is 95:5 to 50:50. It may be from 90:10 to 70:30.
  • the curable composition When the curable composition contains a radically polymerizable compound, it preferably contains a radical photopolymerization initiator.
  • a radical photopolymerization initiator initiates a polymerization reaction of a radically polymerizable compound by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams.
  • a photoradical polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • photoradical polymerization initiators include acetophenone, 3-methylacetophenone, benzyldimethylketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 2-methyl-1- Acetophenone initiators such as [4-(methylthio)phenyl]-2-morpholinopropan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone and 4, Benzophenone initiators such as 4′-diaminobenzophenone; alkylphenone initiators such as 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone; benzoin propyl ether and benzoin ether-based initiators such as benzoin ethyl ether; thioxanthone-based initiators such as 4-isopropylthioxanthone; acylphosphin
  • the content of the photoradical polymerization initiator in the curable composition may be 1 part by mass or more, 2 parts by mass or more, or 10 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable compound. It may be less than or equal to 8 parts by mass.
  • the photoradical polymerization initiator is less likely to remain while sufficiently expressing the polymerization initiation ability and improving the curability, resulting in a decrease in visible light transmittance. etc., can be easily suppressed.
  • the first anti-diffusion layer 35 and the second anti-diffusion layer 36 formed from the curable composition are formed on the surfaces forming the first anti-diffusion layer 35 and the second anti-diffusion layer 36 (for example, the surfaces of the circularly polarizing plates 30 and 40 It can be formed by applying the curable composition to the linear polarizing layer 31), irradiating it with an active energy ray, and curing the curable composition.
  • the curable composition may contain an organic solvent in order to adjust the viscosity to suit the application method, or may be substantially solvent-free (solvent-free). "Substantially free" means not excluding cases where the solvent is unavoidably mixed.
  • Any solvent can be used as long as it can dissolve the components constituting the curable composition.
  • examples include water; methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, and the like Alcohol solvents; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate, ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone, methyl isobutyl ketone, etc.
  • ketone solvents such as pentane, hexane and heptane; aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxyethane; hydrocarbon solvents and the like. These solvents may be used alone or in combination of two or more.
  • the curable composition may optionally contain a cationic polymerization accelerator, a photosensitizer, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow control agent, and a plasticizer. , antifoaming agents, antistatic agents, and leveling agents.
  • the active energy rays used for curing the curable composition include visible light, ultraviolet rays, X-rays, electron beams, etc., but ultraviolet rays are preferred.
  • Light sources for active energy rays include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excimer lasers, and a wavelength range of 380 to 440 nm. LED light sources, chemical lamps, black light lamps, microwave excited mercury lamps, metal halide lamps, and the like.
  • the irradiation intensity of ultraviolet rays is usually 10 mW/cm 2 or more and 3000 mW/cm 2 or less. It is preferable that the ultraviolet irradiation intensity is in a wavelength range effective for activating the photopolymerization initiator.
  • the irradiation time of ultraviolet rays is usually 0.1 seconds or longer, may be 1 second or longer, may be 5 seconds or longer, may be 10 seconds or longer, and may be 10 minutes or shorter. It may be 5 minutes or less, 3 minutes or less, or 1 minute or less.
  • the cumulative amount of UV light may be 10 mJ/cm 2 or more, 50 mJ/cm 2 or more, 100 mJ/cm 2 or more, or 3000 mJ/cm 2 or less. Well, it may be 2000 mJ/cm 2 or less, or it may be 1000 mJ/cm 2 .
  • the thicknesses of the first anti-diffusion layer 35 and the second anti-diffusion layer 36 are each independently preferably 5 ⁇ m or less, may be 4 ⁇ m or less, or may be 3 ⁇ m or less. It may be 1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the absorption anisotropic dye in the linear polarizing layer 31 is effectively suppressed from diffusing into other layers. be able to.
  • the 1st bonding layer 25, the 2nd bonding layer 32, the 3rd bonding layer 37, and the bonding layer are adhesive layers or adhesive layers.
  • the pressure-sensitive adhesive layer can be formed using the pressure-sensitive adhesive composition or the active energy ray-curable pressure-sensitive adhesive composition described for the first pressure-sensitive adhesive layer 21 and the second pressure-sensitive adhesive layer 12 .
  • the thickness of the pressure-sensitive adhesive layer can be within the range described for the first pressure-sensitive adhesive layer 21 and the second pressure-sensitive adhesive layer 12 .
  • the adhesive layer can be formed by curing the curable component in the adhesive composition.
  • the adhesive composition for forming the adhesive layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
  • water-based adhesives include adhesives in which polyvinyl alcohol resin is dissolved or dispersed in water.
  • the method of drying when a water-based adhesive is used is not particularly limited. For example, a method of drying using a hot air dryer or an infrared ray dryer can be employed.
  • Active energy ray-curable adhesives include, for example, solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. be done. Adhesion between layers can be improved by using a non-solvent active energy ray-curable adhesive.
  • the active energy ray-curable adhesive preferably contains either one or both of a cationic polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness.
  • the active energy ray-curable adhesive can further contain a cationic polymerization initiator such as a photocationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • Examples of cationic polymerizable curable compounds include alicyclic epoxy compounds having an epoxy group bonded to an alicyclic ring, and polyfunctional aliphatic epoxy compounds having two or more epoxy groups and no aromatic ring. , monofunctional epoxy groups having one epoxy group (excluding those contained in alicyclic epoxy compounds), polyfunctional aromatic epoxy compounds having two or more epoxy groups and aromatic rings, etc. compounds; oxetane compounds having one or more oxetane rings in the molecule; and combinations thereof.
  • Radically polymerizable curable compounds include, for example, (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule), and other radically polymerizable double bonds. vinyl-based compounds, or combinations thereof.
  • the active energy ray-curable adhesive can contain a sensitizer such as a photosensitizer as needed.
  • a sensitizer By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved.
  • a known sensitizer can be appropriately applied.
  • the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass as the total amount of the active energy ray-curable adhesive.
  • Active energy ray-curable adhesives may optionally contain ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow control agents, plasticizers, antifoaming agents, and antistatic agents. Additives such as agents, leveling agents, solvents and the like can be included.
  • an adhesive layer can be formed by irradiating an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive coating layer.
  • an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays
  • ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, etc. can be used. can.
  • the thickness of the adhesive layer may be 0.1 ⁇ m or more, 0.5 ⁇ m or more, 10 ⁇ m or less, or 5 ⁇ m or less.
  • Coronate HX hexamethylene diisocyanate compound 1.5 parts of an isocyanurate body: manufactured by Tosoh Corporation
  • surface protective film (2) Except for using a polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m with antistatic treatment and antifouling treatment on one side as the first base film, the surface protective film with a separate film (1) was prepared. A surface protective film (2) with a separate film was obtained by the same procedure. The layer structure of the surface protective film (2) with a separate film was surface protective film (2) (first base film/second pressure-sensitive adhesive layer)/separate film.
  • PET polyethylene terephthalate
  • composition for forming a photo-alignment layer was obtained by mixing the following components and stirring the resulting mixture at a temperature of 80° C. for 1 hour.
  • Photo-alignable polymer Polymer represented by the following formula described in JP-A-2013-33249 (number average molecular weight: about 28200, Mw / Mn: 1.82)]: 2 parts
  • a first composition was obtained by mixing the following components and stirring at a temperature of 80° C. for 1 hour.
  • an azo dye represented by the following formula described in Examples of JP-A-2013-101328 was used.
  • a second composition was obtained by mixing each of the following components and stirring at a temperature of 80° C. for 1 hour.
  • composition for forming alignment layer A composition for forming an orientation layer was prepared by adding 2-butoxyethanol to Sanever SE-610 (manufactured by Nissan Chemical Industries, Ltd.), which is a commercially available orientation polymer.
  • the solid content was 1% and the solvent content was 99% with respect to the total amount of the alignment layer-forming composition.
  • the solid content of the oriented polymer was converted from the concentration described in the delivery specification.
  • the composition for forming a photo-alignment layer prepared above was applied using a bar coater to form a coating film.
  • This coating film was dried at a temperature of 100° C. for 2 minutes to remove the solvent and form a dry film.
  • the dry film was irradiated with polarized ultraviolet light at an intensity of 20 mJ/cm 2 (313 nm standard) to impart an alignment regulating force to form a first alignment layer having a thickness of 50 nm.
  • the first composition prepared above was applied onto the first alignment layer using a bar coater to form a coating film. Furthermore, the solvent is removed by drying at a temperature of 110° C. for 2 minutes, and the polymerizable liquid crystal compound is phase-transitioned to a liquid phase, and then cooled to room temperature to phase-transition the polymerizable liquid crystal compound to a smectic liquid crystal state. rice field. Thereafter, the obtained dry film is irradiated with ultraviolet light at 1000 mJ/cm 2 (365 nm standard) using a high-pressure mercury lamp to polymerize the polymerizable liquid crystal compound contained in the dry film while maintaining the smectic liquid crystal state. to form a first cured layer having a thickness of 3 ⁇ m.
  • the 3 mass% water-soluble polymer aqueous solution prepared above is applied with a bar coater and dried at a temperature of 100 ° C. for 2 minutes to remove the water-soluble polymer.
  • a second anti-diffusion layer made of a film and having a thickness of 2 ⁇ m was formed to obtain a linear polarizing layer with an anti-diffusion layer.
  • the layer structure of the linear polarizing layer with the diffusion prevention layer was release PET film/first diffusion prevention layer/linear polarization layer (first alignment layer/first cured layer)/second diffusion prevention layer.
  • Corona treatment was applied to the surface of a release polyethylene terephthalate (PET) film ("FF-50" manufactured by Unitika Ltd., single-sided release-treated PET film, substrate thickness: 50 ⁇ m) opposite to the release-treated surface. provided.
  • PET polyethylene terephthalate
  • the composition for forming a photo-alignment layer prepared above was applied with a bar coater, dried at a temperature of 120° C. for 2 minutes, and then cooled to room temperature to form a dry film.
  • the dry film was irradiated with polarized ultraviolet light at an intensity of 100 mJ/cm 2 (313 nm standard) to form a second alignment layer with a thickness of 100 nm.
  • the second composition prepared above was applied onto the second alignment layer using a bar coater to form a coating film. Further, after drying by heating at a temperature of 120° C. for 2 minutes, it was cooled to room temperature to obtain a dry film. After that, the dry film is irradiated with ultraviolet rays with an exposure amount of 1000 mJ/cm 2 (365 nm standard) using an ultraviolet irradiation device, so that the polymerizable liquid crystal compound is oriented horizontally with respect to the surface of the first retardation layer.
  • a second cured layer having a thickness of 2 ⁇ m was formed by curing in an oriented state to obtain a first retardation layer with a substrate layer.
  • the layer structure of the first retardation layer with the substrate layer was release PET film/first retardation layer (second orientation layer/second cured layer).
  • the third composition prepared above was applied using a bar coater to form a coating film, further dried at a temperature of 90 ° C. for 1 minute, and then irradiated with ultraviolet rays using a high-pressure mercury lamp.
  • the polymerizable liquid crystal compound is cured in a state perpendicular to the surface of the second retardation layer.
  • a cured layer was formed to obtain a second retardation layer with a substrate layer.
  • the layer structure of the second retardation layer with the substrate layer was COP film/second retardation layer (third orientation layer/third cured layer).
  • the second bonding layer (manufactured by Lintec Corporation, sensor A pressure-sensitive adhesive layer having a thickness of 5 ⁇ m) is laminated so that the angle formed by the absorption axis of the linear polarizing layer and the slow axis of the first retardation layer is 45 °, and the linear polarizing layer and A laminate with the first retardation layer was obtained.
  • the layer structure of this laminate is release PET film/first anti-diffusion layer/linearly polarizing layer (first alignment layer/first cured layer)/second anti-diffusion layer/second bonding layer (adhesive layer) /first retardation layer (second cured layer/second orientation layer)/release PET film.
  • the surface of the second retardation layer of the second retardation layer with the substrate layer obtained above was subjected to corona treatment.
  • the surface exposed by peeling the release PET film on the first retardation layer side of the laminate (laminate of the linear polarizing layer and the first retardation layer) obtained above and the second retardation with the base layer The corona-treated surface of the layer was laminated through the adhesive composition prepared above, and an exposure amount of 500 mJ/cm 2 (365 nm) was applied using an ultraviolet irradiation device (SPOT CURE SP-7, manufactured by Ushio Inc.). standard) was irradiated.
  • SPOT CURE SP-7 ultraviolet irradiation device
  • a third bonding layer as an adhesive layer having a thickness of 2 ⁇ m was formed from the adhesive composition to obtain a circularly polarizing plate with a diffusion prevention layer.
  • the layer structure of the circularly polarizing plate with an anti-diffusion layer is a release PET film/first anti-diffusion layer/linear polarizing layer (first alignment layer/first cured layer)/second anti-diffusion layer/second bonding layer ( Adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second retardation layer (third cured layer / third alignment layer) / It was a COP film.
  • the linearly polarizing layer to the second retardation layer constitute the circularly polarizing plate.
  • the inner temperature was increased to 54 while continuously adding acetone to the reactor at an addition rate of 17.3 parts/hr so that the concentration of the acrylic resin excluding the monomers was 35%.
  • the temperature was maintained at ⁇ 56°C for 12 hours, and finally ethyl acetate was added to adjust the concentration of the acrylic resin to 20% to obtain an acrylic resin solution (2).
  • Acrylic resin solution (2) 100 parts (nonvolatile content), isocyanate compound (Coronate L, ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate (solid content concentration 75%) (manufactured by Tosoh Corporation)) 0.5 part, 0.5 part of a silane compound (KBM-403, 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)), and ethyl acetate is added so that the solid content concentration becomes 10%. Then, a pressure-sensitive adhesive composition (2) was obtained.
  • isocyanate compound Coronate L, ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate (solid content concentration 75%) (manufactured by Tosoh Corporation)
  • silane compound KBM-403, 3-glycidoxypropyltrimethoxysilane (manufactured
  • a release-treated polyethylene terephthalate film (thickness: 38 ⁇ m) was used as the release film, and the pressure-sensitive adhesive composition (2) was applied to the release-treated surface using an applicator so that the thickness after drying was 15 ⁇ m. applied.
  • the coating layer was dried at a temperature of 100° C. for 1 minute to obtain a release film with a first pressure-sensitive adhesive layer.
  • a release-treated polyethylene terephthalate (PET) film (thickness: 38 ⁇ m) was laminated as a release film on the first adhesive layer, and cured for 7 days under conditions of a temperature of 23° C. and a relative humidity of 50% RH.
  • PET polyethylene terephthalate
  • Example 1 A 13 ⁇ m thick cycloolefin polymer (COP) film (ZF-14, manufactured by Zeon Corporation) as a transparent resin film, and the exposed surface of the release PET film of the circularly polarizing plate with the diffusion prevention layer obtained above. were each subjected to corona treatment.
  • the corona-treated surfaces were laminated together via the adhesive composition prepared above, and exposed to 500 mJ/cm 2 (365 nm standard) using an ultraviolet irradiation device (SPOT CURE SP-7, manufactured by Ushio Inc.). ) was irradiated with ultraviolet rays.
  • SPOT CURE SP-7 ultraviolet irradiation device
  • a first bonding layer as an adhesive layer having a thickness of 2 ⁇ m was formed from the adhesive composition to obtain a laminate of the transparent resin film and the circularly polarizing plate.
  • the layer structure of this laminate is transparent resin film (COP film) / first bonding layer (adhesive layer) / first diffusion prevention layer / linear polarizing layer (first orientation layer / first cured layer) / second Diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second retardation layer (second 3 cured layer/third alignment layer)/COP film.
  • COP film transparent resin film
  • the layer structure of the optical laminate (1) is as follows: surface protective film (1) (first base film/second adhesive layer)/transparent resin film (COP film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
  • surface protective film (1) first base film/second adhesive layer
  • COP film transparent resin film
  • first bonding layer adheresive layer
  • First diffusion prevention layer / linear polarizing layer
  • first alignment layer / first cured layer / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer
  • Example 2 An optical laminate (2) was obtained in the same manner as in Example 1, except that the surface protective film (2) with a separate film obtained above was used instead of the surface protective film (1) with a separate film. .
  • the layer structure of the optical laminate (2) is as follows: surface protective film (2) (first base film/second adhesive layer)/transparent resin film (COP film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
  • Example 3 In the same manner as in Example 1, except that a 20 ⁇ m-thick triacetyl cellulose (TAC) film (KC2CT, manufactured by Konica Minolta, Inc.) was used instead of the cycloolefin polymer (COP) film as the transparent resin film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • the layer structure of the optical laminate (3) is as follows: surface protective film (1) (first base film/second adhesive layer)/transparent resin film (TAC film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
  • surface protective film (1) first base film/second adhesive layer
  • TAC film transparent resin film
  • first bonding layer adheresive layer
  • First diffusion prevention layer / linear polarizing layer
  • first alignment layer / first cured layer / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive
  • Example 4 In the same manner as in Example 2, except that a 20 ⁇ m-thick triacetyl cellulose (TAC) film (KC2CT, manufactured by Konica Minolta, Inc.) was used instead of the cycloolefin polymer (COP) film as the transparent resin film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • the layer structure of the optical laminate (4) is as follows: surface protective film (2) (first base film/second adhesive layer)/transparent resin film (TAC film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
  • surface protective film (2) first base film/second adhesive layer
  • TAC film transparent resin film
  • first bonding layer adheresive layer
  • First diffusion prevention layer / linear polarizing layer
  • first alignment layer / first cured layer / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhes
  • the layer structure of the optical laminate (5) is as follows: surface protective film (2) (first base film/second adhesive layer)/first anti-diffusion layer/linear polarizing layer (first orientation layer/first cured layer ) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second Retardation layer (third cured layer/third orientation layer)/first pressure-sensitive adhesive layer/release film.
  • optical laminate (6) was obtained in the same manner as in Comparative Example 1, except that the surface protective film (1) with a separate film obtained above was used instead of the surface protective film (2) with a separate film.
  • the layer structure of the optical laminate (6) is as follows: surface protective film (1) (first base film/second adhesive layer)/first anti-diffusion layer/linear polarizing layer (first orientation layer/first cured layer ) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second Retardation layer (third cured layer/third orientation layer)/first pressure-sensitive adhesive layer/release film.
  • test piece In an environment with a relative humidity of 55%, the test piece is pulled in the long side direction at a tensile speed of 1 mm / min, and the resulting stress - From the slope of the initial straight line in the strain curve, the tensile modulus [MPa] in MD at 23 ° C. Calculated. Table 1 shows the results.
  • the tensile elastic modulus [MPa] of the transparent resin film was calculated in the same manner as the measurement of the tensile elastic modulus of the first base film, except that the transparent resin film used in Examples was used. Table 1 shows the results.
  • test piece (2) having a width of 25 mm and a length of about 150 mm was cut out from the optical laminates (1) to (6) obtained in Examples and Comparative Examples.
  • a tensile tester [AUTOGRAPH AG-1S tester manufactured by Shimadzu Corporation]
  • one end of the test piece (2) in the length direction was gripped, and the crosshead speed was measured under an environment of a temperature of 23 ° C. and a relative humidity of 60%.
  • a test piece (3) having a width of 80 mm and a length of about 50 mm was cut out from each of the optical laminates (1) to (6) obtained in Examples and Comparative Examples.
  • the surface protective film side of the test piece (3) was pasted to Corning glass (thickness: 0.4 mm) via an adhesive layer (pressure-sensitive adhesive, 5 ⁇ m thick).
  • a release tape (Cellotape (registered trademark) CT-24; manufactured by Nichiban Co., Ltd.) was attached to the release film of the test piece (3) attached to Corning glass.
  • the peeling tape has a width of 24 mm and a length of 80 mm. Mounted on the surface (see Figure 3). This was fixed to the evaluation stage of a high-speed peeling tester (manufactured by Imada Seisakusho Co., Ltd.) using a tape.
  • a 180° peeling test was conducted with a peeling angle of 180° and a peeling speed of 2.4 m/min.
  • the results of this test were evaluated according to the following criteria.
  • the laminated body after bonding was taken out, and the presence or absence of traces of suction holes was checked and evaluated according to the following criteria. a: No marks of suction holes were found on the test piece (4). b: Traces of suction holes were observed on the test piece (4) or the surface protection film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide an optical layered body that allows satisfactory peeling of a release film even if a phase difference layer and a linear polarization layer, containing a hardened layer of a composition including a polymerizable liquid crystal compound, are included. [Solution] The optical layered body has a surface-protecting film, a transparent resin film, a circular polarizing plate, a first adhesive layer, and a release film in this order. The surface-protecting film is peelable from the transparent resin film. The circular polarizing plate, in order from the transparent resin film side, has a linear polarization layer containing a first hardened layer of a first composition including a polymerizable liquid crystal compound and a first phase difference layer containing a second hardened layer of a second composition including a polymerizable liquid crystal compound. The release film is peelable from the first adhesive layer.

Description

光学積層体optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 液晶表示装置及び有機EL表示装置等の表示装置には、直線偏光層、位相差層、及びこれらを積層した積層体等の光学フィルムが用いられている。直線偏光層として、ポリビニルアルコール系樹脂フィルムにヨウ素等の二色性色素が吸着配向されたPVA偏光膜のほか、重合性液晶化合物を含む組成物を基材に塗布することによって製造される液晶硬化層を用いることが知られている(例えば、特許文献1)。位相差層についても、樹脂フィルムを延伸した延伸フィルムである位相差フィルムのほか、重合性液晶化合物を含む組成物を基材に塗布することによって製造される液晶硬化層を用いることが知られている(例えば、特許文献1)。 Display devices such as liquid crystal display devices and organic EL display devices use linear polarizing layers, retardation layers, and optical films such as laminates obtained by laminating these layers. As a linear polarizing layer, in addition to a PVA polarizing film in which a dichroic dye such as iodine is adsorbed and oriented on a polyvinyl alcohol-based resin film, a liquid crystal curing manufactured by applying a composition containing a polymerizable liquid crystal compound to a substrate. It is known to use layers (eg US Pat. As for the retardation layer, in addition to a retardation film which is a stretched film obtained by stretching a resin film, it is known to use a liquid crystal cured layer produced by applying a composition containing a polymerizable liquid crystal compound to a substrate. (For example, Patent Document 1).
特開2017-83843号公報JP 2017-83843 A
 光学フィルムは、表示装置に適用するための粘着剤層及びこの粘着剤層を被覆保護するための剥離フィルムを有することがある。このような光学フィルムでは、剥離フィルムを剥離して粘着剤層を露出させる必要がある。例えば、自動貼合装置等を用いて表示装置に適用する場合には、剥離フィルムの表面に剥離用の粘着テープ(以下、「剥離用テープ」ということがある。)を貼り付けた光学フィルムを吸引孔を有する吸引ステージ上に固定した状態で、剥離用テープを引き起こすことにより、剥離フィルムを剥離する。 An optical film may have an adhesive layer for application to a display device and a release film for covering and protecting the adhesive layer. In such an optical film, it is necessary to peel off the release film to expose the pressure-sensitive adhesive layer. For example, when applied to a display device using an automatic laminating device or the like, an optical film in which an adhesive tape for peeling (hereinafter sometimes referred to as "peeling tape") is pasted on the surface of a peeling film is used. The peeling film is peeled off by raising the peeling tape while it is fixed on a suction stage having suction holes.
 しかしながら、光学フィルムに含まれる直線偏光層及び位相差層が液晶硬化層である場合、上記のように剥離用テープを用いて剥離フィルムを剥離しようとすると、剥離フィルムだけではなく光学フィルム全体が持ち上がり、剥離フィルムを剥離できない場合があることが見出された。剥離フィルムを剥離するために、保持台の真空吸引力を大きくし、吸引ステージへの光学フィルムの保持力を高める方法も考えられるが、この場合、光学フィルムに吸引孔の痕が残ってしまうことがある。吸引孔の痕は、光学フィルムの検品作業の妨げとなったり、光学フィルムの光学性能等に悪影響を及ぼしたりする虞がある。 However, when the linear polarizing layer and the retardation layer contained in the optical film are liquid crystal cured layers, when the peeling film is peeled off using the peeling tape as described above, not only the peeling film but also the entire optical film is lifted. , it was found that the release film could not be peeled off. In order to peel off the release film, it is conceivable to increase the vacuum suction force of the holding table to increase the holding force of the optical film on the suction stage. There is The traces of the suction holes may hinder the inspection work of the optical film or adversely affect the optical performance of the optical film.
 本発明は、重合性液晶化合物を含む組成物の硬化層を含む直線偏光層及び位相差層を含む場合であっても、剥離フィルムを良好に剥離することができる光学積層体の提供を目的とする。 An object of the present invention is to provide an optical laminate capable of satisfactorily peeling off a release film even when a linear polarizing layer and a retardation layer including a cured layer of a composition containing a polymerizable liquid crystal compound are included. do.
 本発明は、以下の光学積層体を提供する。
 〔1〕 表面保護フィルム、透明樹脂フィルム、円偏光板、第1粘着剤層、及び剥離フィルムをこの順に有し、
 前記表面保護フィルムは、前記透明樹脂フィルムに対して剥離可能であり、
 前記円偏光板は、前記透明樹脂フィルム側から順に、重合性液晶化合物を含む第1組成物の第1硬化層を含む直線偏光層、及び、重合性液晶化合物を含む第2組成物の第2硬化層を含む第1位相差層を有し、
 前記剥離フィルムは、前記第1粘着剤層に対して剥離可能である、光学積層体。
 〔2〕 前記表面保護フィルムの前記透明樹脂フィルム側の表面から、前記第1粘着剤層の前記円偏光板側の表面までの距離Dは、20μm以上60μm以下であり、
 前記透明樹脂フィルムの温度23℃における引張弾性率は、1500MPa以上8000MPa以下である、〔1〕に記載の光学積層体。
 〔3〕 前記表面保護フィルムは、前記透明樹脂フィルム側から順に、第2粘着剤層及び基材フィルムを有し、
 前記基材フィルムの温度23℃における引張弾性率は、2500MPa以上6000MPa以下であり、
 前記基材フィルムの厚みは、30μm以上120μm以下である、〔1〕又は〔2〕に記載の光学積層体。
 〔4〕 さらに、前記透明樹脂フィルムと前記円偏光板との間に第1貼合層を有する、〔1〕~〔3〕のいずれかに記載の光学積層体。
 〔5〕 さらに、前記透明樹脂フィルムと前記円偏光板との間に拡散防止層を有する、〔1〕~〔4〕のいずれかに記載の光学積層体。
 〔6〕 前記拡散防止層の厚みは、5μm以下である、〔5〕に記載の光学積層体。
 〔7〕 前記円偏光板は、前記直線偏光層と前記第1位相差層とを貼合する第2貼合層を有する、〔1〕~〔6〕のいずれかに記載の光学積層体。
 〔8〕 前記第1組成物に含まれる前記重合性液晶化合物は、スメクチック液晶相を示す重合性液晶化合物であり、
 前記第1組成物は、さらに吸収異方性を有する色素を含む、〔1〕~〔7〕のいずれかに記載の光学積層体。
 〔9〕 前記第2硬化層は、前記重合性液晶化合物が前記第1位相差層の面に対して水平方向に配向した状態で硬化している、〔1〕~〔8〕のいずれかに記載の光学積層体。
 〔10〕 前記円偏光板は、さらに、前記第1位相差層の前記直線偏光層側とは反対側に、重合性液晶化合物を含む第3組成物の第3硬化層を含む第2位相差層を有する、〔1〕~〔9〕のいずれかに記載の光学積層体。
 〔11〕 前記第3硬化層は、前記重合性液晶化合物が前記第2位相差層の面に対して垂直方向に配向した状態で硬化している、〔10〕に記載の光学積層体。
 〔12〕 前記表面保護フィルムと前記透明樹脂フィルムとの間の密着力F1と、前記第1粘着剤層と前記剥離フィルムとの間の密着力F2とは、下記式(1)の関係を満たす、〔1〕~〔11〕のいずれかに記載の光学積層体。
  |F1-F2|≧0.02[N/25mm]  (1)
The present invention provides the following optical layered body.
[1] Having a surface protective film, a transparent resin film, a circularly polarizing plate, a first pressure-sensitive adhesive layer, and a release film in this order,
The surface protection film is peelable from the transparent resin film,
The circularly polarizing plate includes, in order from the transparent resin film side, a linear polarizing layer including a first cured layer of a first composition containing a polymerizable liquid crystal compound, and a second composition of a second composition containing a polymerizable liquid crystal compound. Having a first retardation layer including a cured layer,
The optical layered body, wherein the release film is peelable from the first pressure-sensitive adhesive layer.
[2] a distance D from the surface of the surface protective film on the transparent resin film side to the surface of the first adhesive layer on the circularly polarizing plate side is 20 μm or more and 60 μm or less;
The optical laminate according to [1], wherein the transparent resin film has a tensile elastic modulus of 1500 MPa or more and 8000 MPa or less at a temperature of 23°C.
[3] The surface protection film has a second adhesive layer and a base film in order from the transparent resin film side,
The tensile elastic modulus of the base film at a temperature of 23° C. is 2500 MPa or more and 6000 MPa or less,
The optical laminate according to [1] or [2], wherein the base film has a thickness of 30 μm or more and 120 μm or less.
[4] The optical laminate according to any one of [1] to [3], further comprising a first bonding layer between the transparent resin film and the circularly polarizing plate.
[5] The optical laminate according to any one of [1] to [4], further comprising a diffusion prevention layer between the transparent resin film and the circularly polarizing plate.
[6] The optical laminate according to [5], wherein the anti-diffusion layer has a thickness of 5 μm or less.
[7] The optical laminate according to any one of [1] to [6], wherein the circularly polarizing plate has a second bonding layer bonding the linear polarizing layer and the first retardation layer.
[8] The polymerizable liquid crystal compound contained in the first composition is a polymerizable liquid crystal compound exhibiting a smectic liquid crystal phase,
The optical laminate according to any one of [1] to [7], wherein the first composition further contains a dye having absorption anisotropy.
[9] Any one of [1] to [8], wherein the second cured layer is cured with the polymerizable liquid crystal compound oriented horizontally with respect to the surface of the first retardation layer. An optical laminate as described.
[10] The circularly polarizing plate further comprises a second retardation layer comprising a third cured layer of a third composition containing a polymerizable liquid crystal compound on the side opposite to the linear polarization layer side of the first retardation layer. The optical laminate according to any one of [1] to [9], which has layers.
[11] The optical laminate according to [10], wherein the third cured layer is cured with the polymerizable liquid crystal compound oriented in a direction perpendicular to the surface of the second retardation layer.
[12] The adhesion force F1 between the surface protective film and the transparent resin film and the adhesion force F2 between the first pressure-sensitive adhesive layer and the release film satisfy the relationship of the following formula (1). , the optical laminate according to any one of [1] to [11].
|F1-F2|≧0.02 [N/25mm] (1)
 本発明の光学積層体によれば、剥離フィルムを良好に剥離することができる。 According to the optical layered body of the present invention, the release film can be removed satisfactorily.
本発明の一実施形態に係る光学積層体を模式的に示す断面図である。1 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention; FIG. 本発明の他の一実施形態に係る光学積層体を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an optical layered body according to another embodiment of the present invention; 本発明の実施形態に係る光学積層体から剥離フィルムを剥離する方法の一例を説明するための上面図である。FIG. 4A is a top view for explaining an example of a method for peeling a release film from the optical layered body according to the embodiment of the present invention. 本発明の実施形態に係る光学積層体から剥離フィルムを剥離する方法の一例を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining an example of a method for peeling a release film from the optical layered body according to the embodiment of the invention.
 以下、図面を参照して光学積層体の好ましい実施形態について説明する。
 (光学積層体)
 図1及び図2は、本発明の実施形態に係る光学積層体を模式的に示す断面図である。図3及び図4はそれぞれ、本発明の実施形態に係る光学積層体から剥離フィルムを剥離する方法の一例を説明するための上面図及び断面図である。
Preferred embodiments of the optical layered body will be described below with reference to the drawings.
(Optical laminate)
1 and 2 are cross-sectional views schematically showing optical laminates according to embodiments of the present invention. 3 and 4 are a top view and a cross-sectional view, respectively, for explaining an example of a method for peeling a release film from an optical layered body according to an embodiment of the present invention.
 図1及び図2に示す光学積層体1,2は、表面保護フィルム10、透明樹脂フィルム15、円偏光板30,40、第1粘着剤層21、及び剥離フィルム23をこの順に有する。
図2に示すように、光学積層体2は、透明樹脂フィルム15と円偏光板40との間に第1拡散防止層35(拡散防止層)を有していてもよい。
The optical laminates 1 and 2 shown in FIGS. 1 and 2 have a surface protective film 10, a transparent resin film 15, circularly polarizing plates 30 and 40, a first adhesive layer 21, and a release film 23 in this order.
As shown in FIG. 2, the optical laminate 2 may have a first anti-diffusion layer 35 (anti-diffusion layer) between the transparent resin film 15 and the circularly polarizing plate 40 .
 表面保護フィルム10は、透明樹脂フィルム15に対して剥離可能であり、透明樹脂フィルム15に接している。表面保護フィルム10は、表面保護フィルム10および透明樹脂フィルム15の形状をそれぞれ保ったままで、透明樹脂フィルム15から剥離することができる。表面保護フィルム10は、自己粘着性のフィルムであってもよい。この場合、表面保護フィルム10は自己粘着性のフィルム単独であり、これがそのまま透明樹脂フィルム15に接している。表面保護フィルム10は図1及び図2に示すように、透明樹脂フィルム15側から順に、第2粘着剤層12及び第1基材フィルム11(基材フィルム)を有していてもよい。この場合、表面保護フィルム10を構成する第2粘着剤層12が透明樹脂フィルム15に接している。 The surface protective film 10 can be peeled off from the transparent resin film 15 and is in contact with the transparent resin film 15 . The surface protective film 10 can be peeled off from the transparent resin film 15 while maintaining the shapes of the surface protective film 10 and the transparent resin film 15 respectively. Surface protection film 10 may be a self-adhesive film. In this case, the surface protective film 10 is a self-adhesive film alone, which is in contact with the transparent resin film 15 as it is. As shown in FIGS. 1 and 2, the surface protection film 10 may have a second adhesive layer 12 and a first base film 11 (base film) in order from the transparent resin film 15 side. In this case, the second adhesive layer 12 forming the surface protection film 10 is in contact with the transparent resin film 15 .
 透明樹脂フィルム15と円偏光板30,40とは、直接接していてもよいが、図1及び図2に示すように第1貼合層25(接着剤層又は粘着剤層)を介して積層されていてもよい。例えば図1に示すように、光学積層体1が透明樹脂フィルム15と円偏光板30との間に第1拡散防止層35を有しない場合、透明樹脂フィルム15及び円偏光板30は、直接接していてもよく、又は、それぞれが第1貼合層25に直接接していてもよい。例えば図2に示すように、光学積層体2が透明樹脂フィルム15と円偏光板40との間に第1拡散防止層35を有する場合、透明樹脂フィルム15と第1拡散防止層35は、直接接していてもよく、又は、それぞれが第1貼合層25に直接接していてもよい。第1拡散防止層35と円偏光板40とは、直接接していることが好ましいが、貼合層(接着剤層又は粘着剤層)を介して積層されていてもよい。 The transparent resin film 15 and the circularly polarizing plates 30 and 40 may be in direct contact with each other, but as shown in FIGS. may have been For example, as shown in FIG. 1, when the optical laminate 1 does not have the first anti-diffusion layer 35 between the transparent resin film 15 and the circularly polarizing plate 30, the transparent resin film 15 and the circularly polarizing plate 30 are in direct contact with each other. Alternatively, each may be in direct contact with the first bonding layer 25 . For example, as shown in FIG. 2, when the optical laminate 2 has the first anti-diffusion layer 35 between the transparent resin film 15 and the circularly polarizing plate 40, the transparent resin film 15 and the first anti-diffusion layer 35 are directly Alternatively, each may be in direct contact with the first bonding layer 25 . The first anti-diffusion layer 35 and the circularly polarizing plate 40 are preferably in direct contact with each other, but may be laminated via a bonding layer (adhesive layer or adhesive layer).
 円偏光板30,40は、透明樹脂フィルム15側から順に、直線偏光層31及び第1位相差層33をこの順に有する。円偏光板30,40の透明樹脂フィルム15側の最表面は直線偏光層31であってもよい。直線偏光層31と第1位相差層33とは直接接していてもよい。あるいは、図1及び図2に示すように、円偏光板30,40が、さらに直線偏光層31と第1位相差層33とを貼合する第2貼合層32(接着剤層又は粘着剤層)を有し、直線偏光層31及び第1位相差層33はそれぞれ第2貼合層32に直接接していてもよい。 The circularly polarizing plates 30 and 40 have a linear polarizing layer 31 and a first retardation layer 33 in this order from the transparent resin film 15 side. The linear polarizing layer 31 may be the outermost surface of the circularly polarizing plates 30 and 40 on the transparent resin film 15 side. The linear polarizing layer 31 and the first retardation layer 33 may be in direct contact with each other. Alternatively, as shown in FIGS. 1 and 2, the circularly polarizing plates 30 and 40 further bond the linearly polarizing layer 31 and the first retardation layer 33 to the second bonding layer 32 (adhesive layer or adhesive layer). layer), and the linear polarizing layer 31 and the first retardation layer 33 may each be in direct contact with the second bonding layer 32 .
 円偏光板40は、図2に示すように、さらに、直線偏光層31と第1位相差層33との間に第2拡散防止層36を有していてもよい。この場合、第2拡散防止層36と直線偏光層31とは、直接接していることが好ましいが、貼合層(接着剤層又は粘着剤層)を介して積層されていてもよい。第2拡散防止層36と第1位相差層33とは、直接接していてもよく、又は、貼合層(接着剤層又は粘着剤層)を介して積層されていてもよい。 The circularly polarizing plate 40 may further have a second anti-diffusion layer 36 between the linearly polarizing layer 31 and the first retardation layer 33, as shown in FIG. In this case, the second anti-diffusion layer 36 and the linear polarizing layer 31 are preferably in direct contact with each other, but may be laminated via a bonding layer (adhesive layer or adhesive layer). The second anti-diffusion layer 36 and the first retardation layer 33 may be in direct contact with each other, or may be laminated via a bonding layer (adhesive layer or adhesive layer).
 円偏光板40は、さらに、図2に示すように第1位相差層33の直線偏光層31側とは反対側に、第2位相差層38を有していてもよい。円偏光板40が第2位相差層38を有する場合、第1位相差層33と第2位相差層38とは直接接していてもよいが、図2に示すように、第1位相差層33と第2位相差層38とを貼合する第3貼合層37(接着剤層又は粘着剤層)を有していてもよい。この場合、第1位相差層33及び第2位相差層38はそれぞれ第3貼合層37に直接接していることが好ましい。 The circularly polarizing plate 40 may further have a second retardation layer 38 on the side of the first retardation layer 33 opposite to the linear polarization layer 31 side, as shown in FIG. When the circularly polarizing plate 40 has the second retardation layer 38, the first retardation layer 33 and the second retardation layer 38 may be in direct contact, but as shown in FIG. It may have a third bonding layer 37 (adhesive layer or adhesive layer) that bonds 33 and the second retardation layer 38 together. In this case, it is preferable that the first retardation layer 33 and the second retardation layer 38 are in direct contact with the third bonding layer 37 respectively.
 円偏光板40は、第1位相差層33及び第2位相差層38に加えて、さらに1以上の第3位相差層を有していてもよい。第3位相差層の積層位置は特に限定されず、例えば、第2位相差層38の第1位相差層33側とは反対側に積層されていてもよく、第1位相差層33と第2位相差層38との間に積層されていてもよい。第3位相差層は、他の層に直接接していてもよく、貼合層(接着剤層又は粘着剤層)を介して積層されていてもよい。 The circularly polarizing plate 40 may have one or more third retardation layers in addition to the first retardation layer 33 and the second retardation layer 38 . The lamination position of the third retardation layer is not particularly limited, for example, it may be laminated on the side opposite to the first retardation layer 33 side of the second retardation layer 38, It may be laminated between the two retardation layers 38 . The third retardation layer may be in direct contact with another layer, or may be laminated via a bonding layer (adhesive layer or pressure-sensitive adhesive layer).
 直線偏光層31は、重合性液晶化合物を含む第1組成物の第1硬化層を含む。第1位相差層33は、重合性液晶化合物を含む第2組成物の第2硬化層を含む。第2位相差層38は、重合性液晶化合物を含む第2組成物の第2硬化層を含むことが好ましい。第3位相差層は、重合性液晶化合物を含む第3組成物の第3硬化層を含むことが好ましい。 The linear polarizing layer 31 includes a first cured layer of a first composition containing a polymerizable liquid crystal compound. The first retardation layer 33 includes a second cured layer of a second composition containing a polymerizable liquid crystal compound. The second retardation layer 38 preferably includes a second cured layer of a second composition containing a polymerizable liquid crystal compound. The third retardation layer preferably includes a third cured layer of a third composition containing a polymerizable liquid crystal compound.
 円偏光板30,40と第1粘着剤層21とは直接接していることが好ましい。剥離フィルム23は、第1粘着剤層21に対して剥離可能であり、第1粘着剤層21に接している。剥離フィルム23は、剥離フィルム23および第1粘着剤層21の形状を保ったままで第1粘着剤層21から剥離することができる。剥離フィルム23を剥離すると、これに接していた第1粘着剤層21が露出する。 It is preferable that the circularly polarizing plates 30 and 40 and the first adhesive layer 21 are in direct contact. The release film 23 can be peeled off from the first adhesive layer 21 and is in contact with the first adhesive layer 21 . The release film 23 can be peeled off from the first adhesive layer 21 while maintaining the shapes of the release film 23 and the first adhesive layer 21 . When the peeling film 23 is peeled off, the first adhesive layer 21 in contact therewith is exposed.
 光学積層体1,2は、剥離フィルム23を剥離して露出した第1粘着剤層21を、有機EL表示装置等の表示装置の表示素子等に貼合することにより、表示装置に適用される。光学積層体1,2から剥離フィルム23を剥離する場合には、まず、図3及び図4に示すように、剥離フィルム23の表面に剥離用の粘着テープ(以下、「剥離用テープ」ということがある。)45を取り付けた光学積層体1,2を、表面保護フィルム10側が吸引孔を有する吸引ステージ46側となるように、真空吸引等により固定する。その後、図3及び図4の(a)~(c)に示す矢印の方向に剥離用テープ45を引き起こすことによって、剥離フィルム23と第1粘着剤層21との間で光学積層体1,2が分離するように、剥離フィルム23を剥離する。 The optical laminates 1 and 2 are applied to a display device by laminating the first adhesive layer 21 exposed by peeling the release film 23 to a display element of a display device such as an organic EL display device. . When peeling the release film 23 from the optical laminates 1 and 2, first, as shown in FIGS. ) 45 is fixed by vacuum suction or the like so that the surface protection film 10 side faces the suction stage 46 side having suction holes. Thereafter, the optical laminates 1 and 2 are separated between the release film 23 and the first adhesive layer 21 by pulling the release tape 45 in the direction of the arrows shown in FIGS. 3 and 4 (a) to (c). The release film 23 is peeled off so that the .
 光学積層体1,2は、円偏光板30,40に含まれる直線偏光層31及び第1位相差層33が重合性液晶化合物を含む組成物の硬化層によって構成され、その厚みが小さい。円偏光板30,40は、例えばポリビニルアルコール系樹脂フィルムに、ヨウ素等の二色性色素が吸着配向されたPVA偏光膜、及び、樹脂フィルムを延伸した延伸フィルムである位相差フィルムを含む円偏光板に比較すると、剛性が小さくなっている。 In the optical laminates 1 and 2, the linear polarizing layer 31 and the first retardation layer 33 included in the circularly polarizing plates 30 and 40 are composed of a cured layer of a composition containing a polymerizable liquid crystal compound, and their thicknesses are small. The circularly polarizing plates 30 and 40 include, for example, a polyvinyl alcohol-based resin film, a PVA polarizing film in which a dichroic dye such as iodine is adsorbed and oriented, and a retardation film that is a stretched film obtained by stretching the resin film. Compared to the plate, the rigidity is small.
 光学積層体1,2は、表面保護フィルム10と円偏光板30,40との間に透明樹脂フィルム15を有している。これにより、上記のように円偏光板30,40の剛性が小さい場合であっても、透明樹脂フィルム15により光学積層体1,2の剛性を向上することができる。そのため、図4の(a)~(c)に示すように行われる剥離用テープ45の引き起こしにより、光学積層体1,2から剥離フィルム23を好適に剥離することができる。 The optical laminates 1 and 2 have a transparent resin film 15 between the surface protective film 10 and the circularly polarizing plates 30 and 40. As a result, even if the circularly polarizing plates 30 and 40 have low rigidity as described above, the transparent resin film 15 can improve the rigidity of the optical laminates 1 and 2 . Therefore, the peeling film 23 can be suitably peeled off from the optical laminates 1 and 2 by lifting the peeling tape 45 as shown in FIGS. 4(a) to 4(c).
 これに対し、直線偏光層及び第1位相差層が上記した硬化層であって、透明樹脂フィルムを備えていない光学積層体は、十分な剛性を備えていない。そのため、剥離用テープを引き起こすと、剥離フィルムのみではなく光学積層体が吸引ステージから持ち上がり、剥離フィルムを剥離することが困難となる。吸引ステージからの光学積層体の持ち上がりを抑制するために、吸引ステージにおける光学積層体の吸引保持力を大きくすると、表面保護フィルム及び/又は円偏光板に、吸引孔の痕が残る虞がある。光学積層体に生じた吸引孔の痕は、検品作業の妨げとなる、光学積層体を表示装置に適用した場合の表示性能を低下させる等の原因となる可能性がある。一方、本実施形態の光学積層体1,2によれば、剥離フィルム23を良好に剥離することができなかったり、光学積層体1,2に吸引孔の痕が残ったりすることを抑制することができる。 On the other hand, an optical layered body in which the linear polarizing layer and the first retardation layer are the cured layers described above and does not include a transparent resin film does not have sufficient rigidity. Therefore, when the peeling tape is lifted, not only the peeling film but also the optical layered body is lifted from the suction stage, making it difficult to peel off the peeling film. If the suction holding force of the optical layered body on the suction stage is increased in order to suppress the lifting of the optical layered body from the suction stage, the surface protection film and/or the circularly polarizing plate may leave marks of the suction holes. The traces of the suction holes formed in the optical layered body may hinder inspection work and may cause deterioration in display performance when the optical layered body is applied to a display device. On the other hand, according to the optical layered bodies 1 and 2 of the present embodiment, it is possible to prevent the release film 23 from being satisfactorily peeled off and to prevent the optical layered bodies 1 and 2 from leaving traces of suction holes. can be done.
 光学積層体1,2において、表面保護フィルム10の透明樹脂フィルム15側の表面から、第1粘着剤層21の円偏光板30,40側の表面までの距離Dは、20μm以上であることが好ましく、20μm超であってもよく、25μm以上であってもよく、30μm以上であってもよく、また、60μm以下であることが好ましく、55μm以下であってもよく、50μm以下であってもよく、40μm以下であってもよい。距離Dが上記した範囲内である場合、後述するように透明樹脂フィルム15の温度23℃における引張弾性率を1500MPa以上8000MPa以下の範囲内とすることにより、光学積層体1,2から剥離フィルム23をより一層良好に剥離することができる。 In the optical laminates 1 and 2, the distance D from the surface of the surface protection film 10 on the transparent resin film 15 side to the surface of the first adhesive layer 21 on the circularly polarizing plate 30 and 40 side is preferably 20 μm or more. Preferably, it may be greater than 20 μm, may be 25 μm or more, or may be 30 μm or more, and may be preferably 60 μm or less, may be 55 μm or less, or may be 50 μm or less. It may be 40 μm or less. When the distance D is within the range described above, the tensile elastic modulus of the transparent resin film 15 at a temperature of 23° C. is within the range of 1500 MPa or more and 8000 MPa or less, as will be described later. can be peeled off even better.
 光学積層体1,2において、表面保護フィルム10と透明樹脂フィルム15との間の密着力F1と、第1粘着剤層21と剥離フィルム23との間の密着力F2とは、式(1)の関係を満たすことが好ましい。
  |F1-F2|≧0.02[N/25mm]  (1)
In the optical laminates 1 and 2, the adhesion force F1 between the surface protection film 10 and the transparent resin film 15 and the adhesion force F2 between the first pressure-sensitive adhesive layer 21 and the release film 23 are expressed by the formula (1) It is preferable to satisfy the relationship of
|F1-F2|≧0.02 [N/25mm] (1)
 密着力F1は、光学積層体1,2から表面保護フィルム10を剥離するときの剥離力であり、光学積層体1,2において透明樹脂フィルム15から表面保護フィルム10を分離するときに要する力に相当する。密着力F2とは、光学積層体1,2から剥離フィルム23を剥離するときの剥離力であって、光学積層体1,2において第1粘着剤層21から剥離フィルム23を分離するときに要する力に相当する。 The adhesion force F1 is the peeling force when peeling the surface protective film 10 from the optical laminates 1 and 2, and is the force required to separate the surface protective film 10 from the transparent resin film 15 in the optical laminates 1 and 2. Equivalent to. The adhesion force F2 is a peeling force when peeling the release film 23 from the optical layered bodies 1 and 2, and is required when separating the release film 23 from the first adhesive layer 21 in the optical layered bodies 1 and 2. equivalent to force.
 |F1-F2|は、0.03N/25mm以上であってもよく、0.04N/25mm以上であってもよく、また、0.20N/25mm以下であってもよく、0.10N/25mm以下であってもよく、0.08N/25mm以下であってもよい。 |F1-F2| may be 0.03 N/25 mm or more, may be 0.04 N/25 mm or more, may be 0.20 N/25 mm or less, or may be 0.10 N/25 mm or less, or 0.08 N/25 mm or less.
 密着力F1及び密着力F2が上記式(1)の関係を満たすことにより、光学積層体1,2から表面保護フィルム10及び剥離フィルム23を剥離する際の剥離力に適度な強弱関係を生じさせることができる。これにより、表面保護フィルム10及び剥離フィルム23を所望する順に剥離することができる。例えば、光学積層体1,2から剥離フィルム23を先に剥離する場合には、密着力F2を密着力F1よりも小さくすればよく、光学積層体1,2から表面保護フィルム10を先に剥離する場合には、密着力F1を密着力F2よりも小さくすればよい。 When the adhesion force F1 and the adhesion force F2 satisfy the relationship of the above formula (1), the peeling force when peeling the surface protective film 10 and the peeling film 23 from the optical layered bodies 1 and 2 has a moderate strength relationship. be able to. Thereby, the surface protective film 10 and the peeling film 23 can be peeled off in a desired order. For example, when peeling the release film 23 from the optical layered bodies 1 and 2 first, the adhesion force F2 should be smaller than the adhesion force F1, and the surface protective film 10 is peeled from the optical layered bodies 1 and 2 first. In that case, the adhesion force F1 should be made smaller than the adhesion force F2.
 密着力F1は、例えば、0.04N/25mm以上であってもよく、0.06N/25mm以上であってもよく、0.08N/25mm以上であってもよく、また、0.30N/25mm以下であってもよく、0.25N/25mm以下であってもよく、0.20N/25mm以下であってもよく、0.15N/25mm以下であってもよい。密着力F1が上記の範囲内であることにより、光学積層体1,2から表面保護フィルム10を剥離しやすい。 The adhesion force F1 may be, for example, 0.04 N/25 mm or more, 0.06 N/25 mm or more, 0.08 N/25 mm or more, or 0.30 N/25 mm. or less, 0.25 N/25 mm or less, 0.20 N/25 mm or less, or 0.15 N/25 mm or less. When the adhesion force F1 is within the above range, the surface protective film 10 can be easily peeled off from the optical laminates 1 and 2 .
 密着力F2は、例えば、0.01N/25mm以上であってもよく、0.02N/25mm以上であってもよく、0.03N/25mm以上であってもよく、0.05N/25mm以上であってもよく、また、0.30N/25mm以下であってもよく、0.25N/25mm以下であってもよく、0.20N/25mm以下であってもよく、0.15N/25mm以下であってもよい。密着力F2が上記の範囲内であることにより、光学積層体1,2から剥離フィルム23を剥離しやすい。 The adhesion force F2 may be, for example, 0.01 N/25 mm or more, 0.02 N/25 mm or more, 0.03 N/25 mm or more, or 0.05 N/25 mm or more. 0.30 N/25 mm or less, 0.25 N/25 mm or less, 0.20 N/25 mm or less, or 0.15 N/25 mm or less There may be. When the adhesion force F2 is within the above range, the release film 23 can be easily peeled off from the optical layered bodies 1 and 2 .
 密着力F1及び密着力F2は、表面保護フィルム10及び剥離フィルム23の種類及び厚みを調整する、表面保護フィルム10の透明樹脂フィルム15と接する側の表面、及び、剥離フィルム23の第1粘着剤層21と接する側の表面に対して改質処理を施す等により調整することができる。 The adhesion force F1 and the adhesion force F2 are the surface of the surface protection film 10 on the side in contact with the transparent resin film 15 and the first adhesive of the release film 23, which adjusts the type and thickness of the surface protection film 10 and the release film 23. It can be adjusted by, for example, modifying the surface of the side in contact with the layer 21 .
 密着力F1及び密着力F2は、後述する実施例に記載の方法によって測定することができ、JIS K 6854-1:1999に規定される90°剥離試験法に準じて測定することができる。 The adhesion force F1 and the adhesion force F2 can be measured by the method described in Examples described later, and can be measured according to the 90° peeling test method specified in JIS K 6854-1:1999.
 以下、光学積層体を構成する各部材、光学積層体を製造するために用いる部材の詳細について説明する。 The details of each member constituting the optical layered body and the members used to manufacture the optical layered body will be described below.
 (表面保護フィルム)
 表面保護フィルム10は、光学積層体1,2の最表層に存在し、透明樹脂フィルム15に対して剥離可能に設けられる。表面保護フィルム10は、透明樹脂フィルムの表面を被覆保護するために用いられる。
(Surface protection film)
The surface protective film 10 exists on the outermost layer of the optical laminates 1 and 2 and is provided so as to be peelable from the transparent resin film 15 . The surface protection film 10 is used to cover and protect the surface of the transparent resin film.
 表面保護フィルム10の厚みは、例えば30μm以上であってもよく、40μm以上であってもよく、50μm以上であってもよく、また、150μm以下であってもよく、120μm以下であってもよく、100μm以下であってもよく、90μm以下であってもよい。 The thickness of the surface protective film 10 may be, for example, 30 μm or more, 40 μm or more, or 50 μm or more, or may be 150 μm or less, or 120 μm or less. , 100 μm or less, or 90 μm or less.
 上記したように、表面保護フィルム10は、第1基材フィルム11と第2粘着剤層12との多層構造を有していてもよく、第1基材フィルム11からなる単層構造の自己粘着性のフィルムであってもよい。表面保護フィルム10は、さらに、帯電防止特性及び/又は防汚特性等を有していてもよい。 As described above, the surface protection film 10 may have a multilayer structure of the first base film 11 and the second adhesive layer 12, or a self-adhesive single-layer structure composed of the first base film 11. It may be a flexible film. The surface protective film 10 may further have antistatic properties and/or antifouling properties.
 第1基材フィルム11の温度23℃における引張弾性率は、例えば2500MPa以上であってもよく、3000MPa以上であってもよく、3500MPa以上であってもよく、また、6000MPa以下であってもよく、5500MPa以下であってもよい。 The tensile elastic modulus of the first base film 11 at a temperature of 23° C. may be, for example, 2500 MPa or more, 3000 MPa or more, 3500 MPa or more, or 6000 MPa or less. , 5500 MPa or less.
 第1基材フィルム11の厚みは、例えば30μm以上であってもよく、35μm以上であってもよく、40μm以上であってもよく、50μm以上であってもよく、また、120μm以下であってもよく、100μm以下であってもよく、80μm以下であってもよい。 The thickness of the first base film 11 may be, for example, 30 μm or more, 35 μm or more, 40 μm or more, 50 μm or more, or 120 μm or less. 100 μm or less, or 80 μm or less.
 第1基材フィルム11の引張弾性率が上記の範囲内であり、かつ、厚みが上記の範囲内であることにより、光学積層体1,2から剥離フィルム23を良好に剥離しやすく、剥離フィルム23を剥離した光学積層体1,2を表示装置に良好に貼合しやすくなる。第1基材フィルム11の引張弾性率は、後述する実施例に記載の方法によって測定することができる。 When the tensile elastic modulus of the first base film 11 is within the above range and the thickness is within the above range, the release film 23 can be easily peeled off from the optical laminates 1 and 2, and the release film The optical laminates 1 and 2 from which 23 has been peeled off can be easily and satisfactorily attached to the display device. The tensile elastic modulus of the first base film 11 can be measured by the method described in Examples below.
 第1基材フィルム11は、例えば、光学フィルムの分野において公知の樹脂を用いて製膜されたフィルム等を用いることができる。第1基材フィルムを構成する樹脂としては、例えば、ポリエチレン及びポリプロピレン等のポリオレフィン;ノルボルネン系ポリマー等の環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリ(メタ)アクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロース系樹脂;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド;ポリフェニレンオキシド等が挙げられる。中でも、平滑性や塗布基材としての品質の観点から、環状オレフィン系樹脂、セルロース系樹脂、ポリエステルから選択される少なくとも1種であることが好ましい。これらの樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。上記した樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜してフィルムとすることができる。「(メタ)アクリル」は、アクリル及びメタクリルから選択される少なくとも一方を意味する。 For the first base film 11, for example, a film formed using a resin known in the field of optical films, or the like can be used. Examples of the resin constituting the first base film include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; meth)acrylic acid ester; cellulosic resins such as triacetylcellulose, diacetylcellulose and cellulose acetate propionate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; Among them, at least one selected from cyclic olefin resins, cellulose resins, and polyesters is preferable from the viewpoint of smoothness and quality as a coating substrate. These resins may be used alone or in combination of two or more. The above resin can be formed into a film by known means such as a solvent casting method and a melt extrusion method. "(Meth)acryl" means at least one selected from acryl and methacryl.
 表面保護フィルム10が自己粘着性を有する場合、ポリプロピレン系樹脂及びポリエチレン系樹脂等を用いて形成することができる。 When the surface protective film 10 has self-adhesiveness, it can be formed using a polypropylene-based resin, a polyethylene-based resin, or the like.
 表面保護フィルム10が帯電防止特性及び/又は防汚特性等を有する場合、第1基材フィルム11が帯電防止特性及び/又は防汚特性を有していてもよく、第1基材フィルム11の表面に帯電防止特性及び/又は防汚特性等を有する表面機能層を積層してもよい。表面機能層は、第1基材フィルム11に直接接していることが好ましく、表面保護フィルム10が第2粘着剤層12を有する場合、表面機能層は、第1基材フィルム11の第2粘着剤層12側とは反対側に設けられることが好ましい。 When the surface protection film 10 has antistatic properties and/or antifouling properties, the first base film 11 may have antistatic properties and/or antifouling properties. A surface functional layer having antistatic properties and/or antifouling properties may be laminated on the surface. The surface functional layer is preferably in direct contact with the first base film 11, and when the surface protective film 10 has the second adhesive layer 12, the surface functional layer is the second adhesive layer of the first base film 11. It is preferably provided on the side opposite to the agent layer 12 side.
 第1基材フィルム11は、所望の離型性及び/又は密着性を付与するために、第1基材フィルム11に隣接する層の種類等に応じて、コロナ処理、プラズマ処理、フレーム処理等の表面改質処理が施されていてもよい。 In order to impart desired releasability and/or adhesion, the first base film 11 is subjected to corona treatment, plasma treatment, flame treatment, etc., depending on the type of layer adjacent to the first base film 11, etc. surface modification treatment may be applied.
 (透明樹脂フィルム)
 透明樹脂フィルム15は、光学積層体1,2に適度な剛性を付与するために設けられる。透明樹脂フィルムの温度23℃における引張弾性率は、1500MPa以上であることが好ましく、1800MPa以上であってもよく、2000MPa以上であってもよく、3000MPa以上であってもよく、また、8000MPa以下であってもよく、7000MPa以下であってもよく、6000MPa以下であってもよく、5000MPa以下であってもよい。透明樹脂フィルム15の引張弾性率は、後述する実施例に記載の方法によって測定することができる。
(transparent resin film)
The transparent resin film 15 is provided to provide the optical laminates 1 and 2 with appropriate rigidity. The tensile elastic modulus of the transparent resin film at a temperature of 23° C. is preferably 1500 MPa or higher, may be 1800 MPa or higher, may be 2000 MPa or higher, may be 3000 MPa or higher, and may be 8000 MPa or lower. 7000 MPa or less, 6000 MPa or less, or 5000 MPa or less. The tensile elastic modulus of the transparent resin film 15 can be measured by the method described in Examples below.
 透明樹脂フィルム15の引張弾性率が上記の範囲内であることにより、光学積層体1,2の上記した距離Dが20μm以上60μm以下という範囲内にある場合であっても、光学積層体1,2に適度な剛性を付与することができる。これにより、上記したように剥離用テープ45(図3、図4)を用いて、光学積層体1,2に吸引孔の痕が残ることを抑制しつつ、好適に剥離フィルム23を剥離することができる。 Since the tensile elastic modulus of the transparent resin film 15 is within the above range, even when the distance D of the optical laminates 1 and 2 is within the range of 20 μm or more and 60 μm or less, the optical laminates 1 and 2 can be maintained. 2 can be imparted with appropriate rigidity. Thereby, as described above, the release film 23 can be preferably peeled off by using the peeling tape 45 (FIGS. 3 and 4) while suppressing the traces of the suction holes from remaining on the optical laminates 1 and 2. can be done.
 透明樹脂フィルム15の厚みは、例えば5m以上であってもよく、10μm以上であってもよく、12μm以上であってもよく、15μm以上であってもよく、また、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよい。 The thickness of the transparent resin film 15 may be, for example, 5 m or more, 10 μm or more, 12 μm or more, 15 μm or more, or 40 μm or less. , 30 μm or less, or 25 μm or less.
 透明樹脂フィルム15は、例えば、光学フィルムの分野において公知の樹脂を用いて製膜されたフィルム等を用いることができる。透明樹脂フィルム15を構成する樹脂としては、上記した第1基材フィルム11を構成する樹脂を挙げることができる。中でも、環状オレフィン系樹脂、セルロース系樹脂、ポリエステルから選択される少なくとも1種であることが好ましい。上記した樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜してフィルムとすることができる。 For the transparent resin film 15, for example, a film formed using a resin known in the field of optical films, or the like can be used. Examples of the resin forming the transparent resin film 15 include the resin forming the first base film 11 described above. Among them, at least one selected from cyclic olefin-based resins, cellulose-based resins, and polyesters is preferable. The above resin can be formed into a film by known means such as a solvent casting method and a melt extrusion method.
 透明樹脂フィルム15は、所望の密着性を付与するために、透明樹脂フィルム15に隣接する層の種類等に応じて、コロナ処理、プラズマ処理、フレーム処理等の表面改質処理が施されていてもよい。 The transparent resin film 15 is subjected to surface modification treatment such as corona treatment, plasma treatment, flame treatment, etc., depending on the type of layer adjacent to the transparent resin film 15 in order to impart desired adhesion. good too.
 (円偏光板)
 円偏光板30,40は、直線偏光層31側から入射した光を直線偏光に変換し、この直線偏光を円偏光に変換することができる。この変換された円偏光が反射して再び第1位相差層33側から円偏光板30,40に入射した場合に、円偏光板30,40は、円偏光を直線偏光に変換し、この直線偏光を直線偏光層が吸収することができる。
(Circularly polarizing plate)
The circularly polarizing plates 30 and 40 can convert the light incident from the linearly polarizing layer 31 side into linearly polarized light, and convert the linearly polarized light into circularly polarized light. When this converted circularly polarized light is reflected and again enters the circularly polarizing plates 30 and 40 from the side of the first retardation layer 33, the circularly polarizing plates 30 and 40 convert the circularly polarized light into linearly polarized light. Polarized light can be absorbed by the linearly polarizing layer.
 直線偏光層31と第1位相差層33とは、直接、若しくは、第2拡散防止層36及び/又は第2貼合層32を介して積層されている。直線偏光層31と第1位相差層33との間の密着力は、通常2N/25mm以上である。直線偏光層31と第1位相差層33とは、両者の間で剥離が生じず、いわゆる材料破壊が生じるような大きさの密着力で積層されていてもよい。直線偏光層31と第1位相差層33との間の密着力は、後述する実施例に記載の密着力F1及び密着力F2の測定方法で説明するように、JIS K 6854-1:1999に規定される90°剥離試験法に準じて測定することができる。 The linear polarizing layer 31 and the first retardation layer 33 are laminated directly or via the second anti-diffusion layer 36 and/or the second bonding layer 32 . The adhesion between the linear polarizing layer 31 and the first retardation layer 33 is usually 2N/25mm or more. The linear polarizing layer 31 and the first retardation layer 33 may be laminated with such an adhesion force as to cause so-called material destruction without causing separation between them. The adhesion force between the linear polarizing layer 31 and the first retardation layer 33 is determined according to JIS K 6854-1: 1999, as described in the method for measuring the adhesion force F1 and the adhesion force F2 described in Examples below. It can be measured according to the specified 90° peel test method.
 (直線偏光層)
 直線偏光層31は、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する。直線偏光層31は、重合性液晶化合物を含む第1組成物の第1硬化層を含み、重合性液晶化合物を配向させるための第1配向層を含んでいてもよい。
(linear polarizing layer)
The linear polarizing layer 31 has a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when non-polarized light is incident thereon. The linear polarizing layer 31 includes a first cured layer of a first composition containing a polymerizable liquid crystal compound, and may include a first alignment layer for orienting the polymerizable liquid crystal compound.
 第1組成物に含まれる重合性液晶化合物は、少なくとも1つの重合性基を含み、液晶性を示す化合物である。重合性液晶化合物は、吸収異方性を示す化合物であってもよく、重合性液晶化合物が吸収異方性を示す場合、第1組成物は吸収異方性を示す色素を含んでいなくてもよい。 The polymerizable liquid crystal compound contained in the first composition is a compound that contains at least one polymerizable group and exhibits liquid crystallinity. The polymerizable liquid crystal compound may be a compound exhibiting absorption anisotropy, and when the polymerizable liquid crystal compound exhibits absorption anisotropy, the first composition should not contain a dye exhibiting absorption anisotropy. good too.
 重合性基とは、重合開始剤から発生する活性ラジカルや酸などによって重合反応に関与し得る基を意味し、光重合性基であることが好ましい。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、(メタ)アクリロイル基、オキシラニル基、オキセタニル基等が挙げられる。中でも、ラジカル重合性基が好ましく、(メタ)アクリロイル基、ビニル基、ビニルオキシ基がより好ましく、(メタ)アクリロイル基がさらに好ましい。 A polymerizable group means a group that can participate in a polymerization reaction by an active radical or acid generated from a polymerization initiator, and is preferably a photopolymerizable group. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyl group, oxiranyl group and oxetanyl group. Among them, a radically polymerizable group is preferred, a (meth)acryloyl group, a vinyl group, and a vinyloxy group are more preferred, and a (meth)acryloyl group is even more preferred.
 第1組成物に含まれる重合性液晶化合物は、スメクチック液晶性を示す化合物であることが好ましい。スメクチック液晶性を示す重合性液晶化合物を用いることにより、配向秩序度の高い直線偏光層を形成することができる。より高い配向秩序度を実現し得る観点から、重合性液晶化合物の示す液晶状態は、高次スメクチック相(高次スメクチック液晶状態)であることがより好ましい。ここで、高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相及びスメクチックL相を意味し、これらの中でも、スメクチックB相、スメクチックF相及びスメクチックI相がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、重合性液晶化合物はモノマーであってもよいが、重合性基が重合したオリゴマーであってもポリマーであってもよい。 The polymerizable liquid crystal compound contained in the first composition is preferably a compound exhibiting smectic liquid crystallinity. By using a polymerizable liquid crystal compound exhibiting smectic liquid crystallinity, a linear polarizing layer having a high degree of orientational order can be formed. From the viewpoint of realizing a higher degree of alignment order, the liquid crystal state exhibited by the polymerizable liquid crystal compound is more preferably a high-order smectic phase (high-order smectic liquid crystal state). Here, the higher order smectic phase includes smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase and smectic L phase. Among these, smectic B phase, smectic F phase and smectic I phase are more preferable. Thermotropic liquid crystals or lyotropic liquid crystals may be used as liquid crystals, but thermotropic liquid crystals are preferred because they allow precise film thickness control. Moreover, the polymerizable liquid crystal compound may be a monomer, but may be an oligomer or a polymer in which a polymerizable group is polymerized.
 第1組成物は、重合性液晶化合物に加えて、吸収異方性を示す色素を含んでいてもよい。吸収異方性を有する色素は、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素を意味する。吸収異方性を示す色素は、上記性質を有するものであれば特に制限されず、染料であっても、顔料であってもよい。また、2種以上の染料又は顔料をそれぞれ組合せて用いてもよいし、染料と顔料とを組合せて用いてもよい。 The first composition may contain a dye exhibiting absorption anisotropy in addition to the polymerizable liquid crystal compound. A dye having absorption anisotropy means a dye having different absorbance in the long-axis direction and the short-axis direction of the molecule. The dye exhibiting absorption anisotropy is not particularly limited as long as it has the above properties, and may be a dye or a pigment. Also, two or more dyes or pigments may be used in combination, or a dye and a pigment may be used in combination.
 吸収異方性を有する色素としては、波長300nm~700nmの範囲に極大吸収波長(λMAX)を有するものが好ましい。このような吸収異方性を有する色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素及びアントラキノン色素等が挙げられる。中でも、アゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及びスチルベンアゾ色素等が挙げられ、ビスアゾ色素及びトリスアゾ色素が好ましい。吸収異方性を有する色素としては、例えば特開2013-101328号公報に例示されているものが挙げられる。 As the dye having absorption anisotropy, one having a maximum absorption wavelength (λ MAX ) in the wavelength range of 300 nm to 700 nm is preferable. Dyes having such absorption anisotropy include, for example, acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes and anthraquinone dyes. Among them, azo dyes are preferred. Examples of azo dyes include monoazo dyes, bisazo dyes, trisazo dyes, tetrakis azo dyes, and stilbene azo dyes, with bisazo dyes and trisazo dyes being preferred. Examples of dyes having absorption anisotropy include those exemplified in JP-A-2013-101328.
 第1組成物は、上記した重合性液晶化合物及び吸収異方性を有する色素に加えて、溶剤、光重合開始剤等の重合開始剤、光増感剤、重合禁止剤、レベリング剤、酸化防止剤、離型剤、安定剤、着色剤、難燃剤、及び滑剤等を含むことができる。これらについては、公知のものを用いることができ、例えば、特開2017-102479号公報、特開2017-83843号公報に例示されているものを用いることができる。 In addition to the polymerizable liquid crystal compound and the dye having absorption anisotropy described above, the first composition includes a solvent, a polymerization initiator such as a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, and an antioxidant. agents, release agents, stabilizers, colorants, flame retardants, lubricants, and the like. For these, known ones can be used, for example, those exemplified in JP-A-2017-102479 and JP-A-2017-83843 can be used.
 直線偏光層31は、第1配向層を含んでいてもよい。第1配向層は、第1硬化層の第1位相差層33側に設けられていてもよく、第1硬化層の透明樹脂フィルム15側に設けられていてもよい。 The linear polarizing layer 31 may include a first alignment layer. The first alignment layer may be provided on the first retardation layer 33 side of the first cured layer, or may be provided on the transparent resin film 15 side of the first cured layer.
 第1配向層は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。第1配向層は、第1組成物の塗工等により溶解しない溶媒耐性を有し、溶媒の除去や重合性液晶化合物の配向のための加熱処理に対する耐熱性を有するものが好ましい。第1配向層としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。第1配向層は、配向角の精度及び品質等の観点から光配向ポリマー層であることが好ましい。第1配向層は、例えば特開2013-33249号公報に例示されているものが挙げられる。 The first alignment layer has an alignment control force that aligns the polymerizable liquid crystal compound in a desired direction. The first alignment layer preferably has solvent resistance that does not dissolve when the first composition is applied or the like, and has heat resistance to heat treatment for removing the solvent and for aligning the polymerizable liquid crystal compound. The first alignment layer includes an alignment polymer layer made of an alignment polymer, a photo-alignment polymer layer made of a photo-alignment polymer, and a groove alignment layer having an uneven pattern or a plurality of grooves on the layer surface. can be mentioned. The first alignment layer is preferably a photo-alignment polymer layer from the viewpoint of alignment angle precision and quality. Examples of the first alignment layer include those exemplified in JP-A-2013-33249.
 直線偏光層31は、特開2013-33249号公報等に記載の偏光層の製造方法により製造することができる。第1硬化層は、例えば、第1配向層上に第1組成物を塗布して塗膜を形成し、この塗膜を固化(硬化)させることによって形成することができる。あるいは、基材層上に第1組成物を塗布して塗膜を形成し、この塗膜を基材層とともに延伸することによって第1硬化層を形成してもよい。 The linear polarizing layer 31 can be manufactured by the manufacturing method of the polarizing layer described in JP-A-2013-33249. The first cured layer can be formed, for example, by coating the first composition on the first alignment layer to form a coating film and solidifying (curing) the coating film. Alternatively, the first cured layer may be formed by coating the first composition on the substrate layer to form a coating film, and stretching the coating film together with the substrate layer.
 (第1位相差層、第2位相差層、第3位相差層)
 第1位相差層33は、重合性液晶化合物を含む第2組成物の第2硬化層を含み、重合性液晶化合物を配向させるための第2配向層を含んでいてもよい。第2位相差層38は、重合性液晶化合物を含む第3組成物の第3硬化層を含み、重合性液晶化合物を配向させるための第3配向層を含んでいてもよい。第3位相差層は、重合性液晶化合物を含む第4組成物の第4硬化層を含み、重合性液晶化合物を配向させるための第4配向層を含んでいてもよい。第2配向層~4配向層はそれぞれ、第2硬化層~第4硬化層の直線偏光層31側に設けられていてもよく、第2硬化層~第4硬化層の第1粘着剤層21側に設けられていてもよい。
(First retardation layer, second retardation layer, third retardation layer)
The first retardation layer 33 includes a second cured layer of a second composition containing a polymerizable liquid crystal compound, and may include a second alignment layer for orienting the polymerizable liquid crystal compound. The second retardation layer 38 includes a third cured layer of a third composition containing a polymerizable liquid crystal compound, and may include a third alignment layer for orienting the polymerizable liquid crystal compound. The third retardation layer includes a fourth cured layer of a fourth composition containing a polymerizable liquid crystal compound, and may include a fourth alignment layer for orienting the polymerizable liquid crystal compound. The second to fourth alignment layers may be provided on the linear polarizing layer 31 side of the second to fourth cured layers, respectively, and the first adhesive layer 21 of the second to fourth cured layers may be provided. It may be provided on the side.
 図1に示すように、円偏光板30が直線偏光層31と第1位相差層33とを有する場合、第1位相差層33に含まれる第2硬化層は、重合性液晶化合物が第1位相差層33の面に対して水平方向に配向した状態で硬化していることが好ましい。 As shown in FIG. 1, when the circularly polarizing plate 30 has the linear polarizing layer 31 and the first retardation layer 33, the second cured layer included in the first retardation layer 33 is composed of the polymerizable liquid crystal compound as the first It is preferable that the film is cured while being oriented horizontally with respect to the surface of the retardation layer 33 .
 第1位相差層33は、下記式(2)に示す関係を満たすλ/4位相差層であることが好ましい。
  120nm≦Re(550)≦170nm  (2)
[式(2)中、Re(550)は、波長550nmにおける第1位相差層の面内位相差値を表す。]
The first retardation layer 33 is preferably a λ/4 retardation layer that satisfies the relationship shown in formula (2) below.
120 nm≦Re(550)≦170 nm (2)
[In formula (2), Re(550) represents the in-plane retardation value of the first retardation layer at a wavelength of 550 nm. ]
 式(2)において、面内位相差値Re(550)は、125nm以上であってもよく、130nm以上であってもよく、また、165nm以下であってもよく、160nm以下であってもよい。 In formula (2), the in-plane retardation value Re(550) may be 125 nm or more, or 130 nm or more, or may be 165 nm or less, or may be 160 nm or less. .
 第1位相差層33は、上記式(2)を満たし、かつ下記式(3)及び(4)を満たす逆波長分散性のλ/4位相差層であることがより好ましい。
  Re(450)/Re(550)≦1.00  (3)
  Re(650)/Re(550)≧1.00  (4)
[式(3)及び式(4)中、
 Re(450)は、波長450nmにおける第1位相差層の面内位相差値を表し、
 Re(550)は、波長550nmにおける第1位相差層の面内位相差値を表し、
 Re(650)は、波長650nmにおける第1位相差層の面内位相差値を表す。]
More preferably, the first retardation layer 33 is a reverse wavelength dispersion λ/4 retardation layer that satisfies the above formula (2) and the following formulas (3) and (4).
Re(450)/Re(550)≤1.00 (3)
Re(650)/Re(550)≧1.00 (4)
[In formulas (3) and (4),
Re (450) represents the in-plane retardation value of the first retardation layer at a wavelength of 450 nm,
Re (550) represents the in-plane retardation value of the first retardation layer at a wavelength of 550 nm,
Re(650) represents the in-plane retardation value of the first retardation layer at a wavelength of 650 nm. ]
 式(3)において、Re(450)/Re(550)は、0.70以上であってもよく、0.78以上であってもよく、また、0.92以下であってもよく、0.90以下であってもよく、0.87以下であってもよく、0.86以下であってもよく、0.85以下であってもよい。式(4)において、Re(650)/Re(550)は、1.01以上であってもよく、1.02以上であってもよい。 In formula (3), Re(450)/Re(550) may be 0.70 or more, 0.78 or more, or 0.92 or less. It may be 0.90 or less, 0.87 or less, 0.86 or less, or 0.85 or less. In formula (4), Re(650)/Re(550) may be 1.01 or more, or 1.02 or more.
 図2に示すように、円偏光板40が直線偏光層31、第1位相差層33、及び第2位相差層38を有する場合、第1位相差層33及び第2位相差層38の組み合わせとしては、[i]λ/4位相差層とポジティブC層との組み合わせ、及び、[ii]λ/2位相差層とλ/4位相差層との組み合わせを挙げることができる。 As shown in FIG. 2, when the circularly polarizing plate 40 has the linear polarizing layer 31, the first retardation layer 33, and the second retardation layer 38, the combination of the first retardation layer 33 and the second retardation layer 38 Examples include [i] a combination of a λ/4 retardation layer and a positive C layer, and [ii] a combination of a λ/2 retardation layer and a λ/4 retardation layer.
 第1位相差層33がλ/4位相差層である場合、上記したように、重合性液晶化合物が第1位相差層33の面に対して水平方向に配向した状態で硬化していることが好ましい。
第2位相差層38がλ/4位相差層である場合、第2位相差層38に含まれる第3硬化層は、重合性液晶化合物が第2位相差層38の面に対して水平方向に配向した状態で硬化していることが好ましい。さらに、第1位相差層33又は第2位相差層38がλ/4位相差層である場合、上記式(2)の関係を満たすことが好ましく、上記式(2)に加えて上記(3)及び(4)の関係を満たしていてもよい。
When the first retardation layer 33 is a λ / 4 retardation layer, as described above, the polymerizable liquid crystal compound is cured in a state aligned in the horizontal direction with respect to the surface of the first retardation layer 33. is preferred.
When the second retardation layer 38 is a λ/4 retardation layer, the third cured layer included in the second retardation layer 38 has a polymerizable liquid crystal compound in the horizontal direction with respect to the surface of the second retardation layer 38. It is preferably cured in a state of orientation. Furthermore, when the first retardation layer 33 or the second retardation layer 38 is a λ / 4 retardation layer, it is preferable to satisfy the relationship of the above formula (2), and in addition to the above formula (2), the above (3 ) and (4) may be satisfied.
 上記[i]の場合であって、第1位相差層33がポジティブC層である場合、第1位相差層33に含まれる第2硬化層は、重合性液晶化合物が第1位相差層33の面に対して垂直方向に配向した状態で硬化していることが好ましい。上記[i]の場合であって、第2位相差層38がポジティブC層である場合、第2位相差層38に含まれる第3硬化層は、重合性液晶化合物が第2位相差層38の面に対して垂直方向に配向した状態で硬化していることが好ましい。 In the case of [i] above, when the first retardation layer 33 is a positive C layer, the second cured layer included in the first retardation layer 33 is the polymerizable liquid crystal compound of the first retardation layer 33 It is preferably cured in a state of being oriented in the direction perpendicular to the plane of the . In the case of [i] above, when the second retardation layer 38 is a positive C layer, the third cured layer included in the second retardation layer 38 contains a polymerizable liquid crystal compound in the second retardation layer 38 It is preferably cured in a state of being oriented in the direction perpendicular to the plane of the .
 ポジティブC層は、下記式(5)の関係を満たすことが好ましい。
  -100nm≦Rth(550)≦-40nm  (5)
[式(5)中、Rth(550)は、第1位相差層又は第2位相差層の波長550nmにおける厚み方向の位相差値を表す。]
The positive C layer preferably satisfies the relationship of formula (5) below.
−100 nm≦Rth(550)≦−40 nm (5)
[In formula (5), Rth(550) represents a retardation value in the thickness direction of the first retardation layer or the second retardation layer at a wavelength of 550 nm. ]
 式(5)において、厚み方向の位相差値Rth(550)は、-90nm以上であってもよく、-80nm以上であってもよく、また、-50nm以下であってもよい。 In formula (5), the thickness direction retardation value Rth(550) may be −90 nm or more, −80 nm or more, or −50 nm or less.
 上記[ii]の場合であって、第1位相差層33がλ/2位相差層である場合、第1位相差層33に含まれる第2硬化層は、重合性液晶化合物が第1位相差層33の面に対して水平方向に配向した状態で硬化していることが好ましい。上記[ii]の場合であって、第2位相差層38がλ/2位相差層である場合、第2位相差層38に含まれる第3硬化層は、重合性液晶化合物が第2位相差層38の面に対して水平方向に配向した状態で硬化していることが好ましい。 In the case of [ii] above, when the first retardation layer 33 is a λ / 2 retardation layer, the second cured layer included in the first retardation layer 33 has a polymerizable liquid crystal compound in the first place. It is preferable that the phase difference layer 33 is cured while being oriented in the horizontal direction. In the case of [ii] above, when the second retardation layer 38 is a λ / 2 retardation layer, the third cured layer included in the second retardation layer 38 has a polymerizable liquid crystal compound in the second order. It is preferable that the film is cured while being oriented horizontally with respect to the plane of the retardation layer 38 .
 λ/2位相差層は、下記式(6)の関係を満たすことが好ましい。
  200nm≦Re(550)≦300nm  (6)
[式(6)中、Re(550)は、波長550nmにおける第1位相差層又は第2位相差層の面内位相差値を表す。]
The λ/2 retardation layer preferably satisfies the relationship of formula (6) below.
200 nm≦Re(550)≦300 nm (6)
[In formula (6), Re(550) represents an in-plane retardation value of the first retardation layer or the second retardation layer at a wavelength of 550 nm. ]
 式(6)において、面内位相差値Re(550)は、220nm以上であってもよく、280nm以下であってもよい。 In Equation (6), the in-plane retardation value Re(550) may be 220 nm or more and may be 280 nm or less.
 面内位相差値Re(550)及びRe(450)、並びに、厚み方向の位相差値Rth(550)は、例えば位相差測定装置による測定によって決定することができる。 The in-plane retardation values Re(550) and Re(450) and the thickness direction retardation value Rth(550) can be determined, for example, by measurement using a retardation measuring device.
 第2硬化層、第3硬化層、及び第4硬化層を形成するための重合性液晶化合物としては、公知の重合性液晶化合物を用いることができる。重合性液晶化合物は、少なくとも1つの重合性基を有し、かつ、液晶性を有する化合物である。 A known polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound for forming the second cured layer, the third cured layer, and the fourth cured layer. A polymerizable liquid crystal compound is a compound having at least one polymerizable group and having liquid crystallinity.
 重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物を重合することによって形成される硬化層は、重合性液晶化合物を適した方向に配向させた状態で硬化することにより位相差を発現する。棒状の重合性液晶化合物が、表示装置の平面方向に対して水平配向又は垂直配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の長軸方向と一致する。円盤状の重合性液晶化合物が配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の円盤面に対して直交する方向に存在する。棒状の重合性液晶化合物としては、例えば、特表平11-513019号公報(請求項1等)に記載のものを好適に用いることができる。円盤状の重合性液晶化合物としては、特開2007-108732号公報(段落[0020]~[0067]等)、特開2010-244038号公報(段落[0013]~[0108]等)に記載のものを好適に用いることができる。 The type of polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used. A cured layer formed by polymerizing a polymerizable liquid crystal compound develops retardation by curing in a state in which the polymerizable liquid crystal compound is oriented in a suitable direction. When the rod-like polymerizable liquid crystal compound is aligned horizontally or vertically with respect to the planar direction of the display device, the optical axis of the polymerizable liquid crystal compound coincides with the long axis direction of the polymerizable liquid crystal compound. When the discotic polymerizable liquid crystal compound is oriented, the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the discotic surface of the polymerizable liquid crystal compound. As the rod-like polymerizable liquid crystal compound, for example, those described in JP-A-11-513019 (claim 1 etc.) can be preferably used. As the discotic polymerizable liquid crystal compound, JP-A-2007-108732 (paragraphs [0020] to [0067], etc.), JP-A-2010-244038 (paragraphs [0013] to [0108], etc.) described in can be preferably used.
 重合性液晶化合物が有する重合性基とは、上記したように重合反応に関与する基を意味し、光重合性基であることが好ましい。光重合性基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、(メタ)アクリロイルオキシ基、オキシラニル基、オキセタニル基、スチリル基、アリル基等が挙げられる。中でも、(メタ)アクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物が有する液晶性はサーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。重合性液晶化合物の硬化層を形成するために重合性液晶化合物を2種類以上を併用する場合、少なくとも1種類が分子内に2以上の重合性基を有することが好ましい。「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルから選択される少なくとも一方を意味する。 The polymerizable group possessed by the polymerizable liquid crystal compound means a group involved in the polymerization reaction as described above, and is preferably a photopolymerizable group. A photopolymerizable group is a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyloxy group, oxiranyl group, oxetanyl group, styryl group and allyl group. . Among them, a (meth)acryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred. The liquid crystallinity of the polymerizable liquid crystal compound may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order. When two or more types of polymerizable liquid crystal compounds are used in combination to form a cured layer of the polymerizable liquid crystal compound, at least one type preferably has two or more polymerizable groups in the molecule. "(Meth)acryloyl" means at least one selected from acryloyl and methacryloyl.
 重合性液晶化合物が示す液晶性はサーモトロピック性液晶であってもよいし、リオトロピック性液晶であってもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック液晶でもスメクチック液晶でもディスコチック液晶でもよい。重合性液晶化合物は単独又は二種以上組み合わせて使用できる。 The liquid crystallinity exhibited by the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferable in that it enables precise film thickness control. Further, the phase-ordered structure of the thermotropic liquid crystal may be nematic liquid crystal, smectic liquid crystal, or discotic liquid crystal. A polymerizable liquid crystal compound can be used individually or in combination of 2 or more types.
 いわゆるT字型又はH型の分子構造を有する重合性液晶化合物は、重合して硬化させた際に逆波長分散性を発現しやすく、T字型の分子構造を有する重合性液晶化合物はより強い逆波長分散性を発現する傾向にある。 A polymerizable liquid crystal compound having a so-called T-shaped or H-shaped molecular structure tends to exhibit reverse wavelength dispersion when polymerized and cured, and a polymerizable liquid crystal compound having a T-shaped molecular structure has a stronger property. It tends to exhibit reverse wavelength dispersion.
 第1位相差層33、第2位相差層38、及び第3位相差層はそれぞれ、第2配向層、第3配向層、及び第4配向層を含んでいてもよい。第2配向層~第4配向層は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。第2配向層~第4配向層は、それぞれ独立して、重合性液晶化合物の分子軸を表示装置の平面方向に対して垂直配向した垂直配向層であってもよく、重合性液晶化合物の分子軸を表示装置の平面方向に対して水平配向した水平配向層であってもよく、重合性液晶化合物の分子軸を表示装置の平面方向に対して傾斜配向させる傾斜配向層であってもよく、配向角の精度及び品質等の観点から光配向ポリマー層であることが好ましい。 The first retardation layer 33, the second retardation layer 38, and the third retardation layer may respectively include a second alignment layer, a third alignment layer, and a fourth alignment layer. The second to fourth alignment layers have an alignment control force to align the polymerizable liquid crystal compound in a desired direction. The second alignment layer to the fourth alignment layer may each independently be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is vertically aligned with respect to the plane direction of the display device, and the molecules of the polymerizable liquid crystal compound It may be a horizontal alignment layer in which the axis is horizontally aligned with respect to the plane direction of the display device, or an inclined alignment layer in which the molecular axis of the polymerizable liquid crystal compound is tilted with respect to the plane direction of the display device, A photo-aligned polymer layer is preferable from the viewpoint of alignment angle accuracy and quality.
 第2配向層~第4配向層は、重合性液晶化合物を含む第2組成物~第4組成物の塗工等により溶解しない溶媒耐性を有し、溶媒の除去や重合性液晶化合物の配向のための加熱処理に対する耐熱性を有するものが好ましい。第2配向層~第4配向層としては、それぞれ独立して、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。 The second to fourth alignment layers have a solvent resistance that does not dissolve when the second to fourth compositions containing the polymerizable liquid crystal compound are applied, etc., and the removal of the solvent and the alignment of the polymerizable liquid crystal compound It is preferable to use a material having heat resistance to the heat treatment for the purpose. As the second to fourth alignment layers, each independently, an alignment polymer layer formed of an alignment polymer, a photo-alignment polymer layer formed of a photo-alignment polymer, an uneven pattern or a plurality of layers on the layer surface. Grooved alignment layers with grooves can be mentioned.
 第2組成物~第4組成物は、それぞれ、重合性液晶化合物、溶剤、及び、必要に応じて各種添加剤を含む。第2硬化層~第4硬化層はそれぞれ、第2配向層~第4配向層上に、第2組成物~第4組成物を塗布して塗膜を形成し、この塗膜を固化(硬化)させることによって形成することができる。あるいは、基材層上に第2組成物~第4組成物を塗布して塗膜を形成し、この塗膜を基材層とともに延伸することによって第2硬化層~第4硬化層を形成してもよい。第2組成物~第4組成物に含まれる添加剤としては、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等が挙げられる。溶剤、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等は、公知のものを適宜用いることができる。 The second composition to the fourth composition each contain a polymerizable liquid crystal compound, a solvent, and various additives as necessary. The second cured layer to the fourth cured layer are formed by applying the second composition to the fourth composition on the second alignment layer to the fourth alignment layer, respectively, to form a coating film, and solidifying (curing) the coating film. ). Alternatively, the second to fourth compositions are applied on the substrate layer to form a coating film, and the coating film is stretched together with the substrate layer to form the second to fourth cured layers. may Additives contained in the second to fourth compositions include polymerization initiators, reactive additives, leveling agents, polymerization inhibitors, and the like. Known solvents, polymerization initiators, reactive additives, leveling agents, polymerization inhibitors and the like can be used as appropriate.
 基材層としては、樹脂を製膜したフィルムを用いることができ、例えば上記した第1基材フィルムを構成する樹脂を用いたフィルムを挙げることができる。基材層の厚みは特に限定されないが、一般には強度や取扱い性等の作業性の点から1~300μm以下であることが好ましく、20~200μmであることがより好ましく、30~120μmであることがさらに好ましい。基材層は、第1位相差層~第3位相差層とともに表示装置に組み込まれていてもよく、基材層を剥離して、第2硬化層~第4硬化層のみ、又は、第2硬化層及び第2配向層、第3硬化層及び第3配向層、若しくは第4硬化層及び第4配向層が表示装置に組み込まれていてもよい。基材層が表示装置に組み込まれる場合、基材層の厚みは30μm未満であってもよく、例えば25μm以下であってもよい。 A film obtained by forming a resin can be used as the base material layer, and for example, a film using the resin constituting the above-described first base material film can be used. The thickness of the substrate layer is not particularly limited, but in general, it is preferably 1 to 300 μm or less, more preferably 20 to 200 μm, more preferably 30 to 120 μm from the viewpoint of workability such as strength and handleability. is more preferred. The substrate layer may be incorporated in the display device together with the first to third retardation layers, and the substrate layer is peeled off to form only the second cured layer to the fourth cured layer, or the second A stiffening layer and a second alignment layer, a third stiffening layer and a third alignment layer, or a fourth stiffening layer and a fourth alignment layer may be incorporated into the display device. When the substrate layer is incorporated into a display device, the thickness of the substrate layer may be less than 30 μm, for example 25 μm or less.
 第1位相差層~第3位相差層の厚みは、それぞれ独立して、0.1μm以上であってもよく0.2μm以上であってもよく、また、3μm以下であってもよく、2μm以下であってもよい。 The thicknesses of the first to third retardation layers may each independently be 0.1 μm or more, may be 0.2 μm or more, may be 3 μm or less, and may be 2 μm. It may be below.
 (第1粘着剤層、第2粘着剤層)
 第1粘着剤層21及び第2粘着剤層12は、粘着剤組成物を用いて形成された粘着剤層である。粘着剤組成物又は粘着剤組成物の反応生成物は、それ自体を表示装置の表示素子等の被着体に張り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。また、後述する活性エネルギー線硬化型粘着剤組成物を用いて形成された粘着剤層は、活性エネルギー線を照射することにより、架橋度や接着力を調整することができる。
(First adhesive layer, second adhesive layer)
The first adhesive layer 21 and the second adhesive layer 12 are adhesive layers formed using an adhesive composition. The pressure-sensitive adhesive composition or the reaction product of the pressure-sensitive adhesive composition develops adhesiveness by attaching itself to an adherend such as a display element of a display device, and is called a so-called pressure-sensitive adhesive. It is a thing. Moreover, the adhesive layer formed using the active-energy-ray-curable adhesive composition mentioned later can adjust a crosslinking degree and adhesive strength by irradiating an active-energy-ray.
 粘着剤組成物としては、公知の光学的な透明性に優れる粘着剤を特に制限なく用いることができ、例えば、アクリルポリマー、ウレタンポリマー、シリコーンポリマー、ポリビニルエーテル等のベースポリマーを含有する粘着剤組成物を用いることができる。また、粘着剤組成物は、活性エネルギー線硬化型粘着剤組成物、又は、熱硬化型粘着剤組成物等であってもよい。これらの中でも、透明性、粘着力、再剥離性(リワーク性)、耐候性、耐熱性等に優れるアクリル樹脂をベースポリマーとした粘着剤組成物が好適である。粘着剤層は、(メタ)アクリル樹脂、架橋剤、シラン化合物を含む粘着剤組成物の反応生成物から構成されることが好ましく、その他の成分を含んでいてもよい。 As the pressure-sensitive adhesive composition, known pressure-sensitive adhesives having excellent optical transparency can be used without particular limitation. can use objects. The adhesive composition may also be an active energy ray-curable adhesive composition, a heat-curable adhesive composition, or the like. Among these, a pressure-sensitive adhesive composition using an acrylic resin as a base polymer, which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable. The pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
 活性エネルギー線硬化型粘着剤組成物は、上記した粘着剤組成物に、多官能性アクリレート等の紫外線硬化性化合物を配合し、これを塗布して形成した層に紫外線を照射して硬化させることにより、より硬い粘着剤層を形成することができる。活性エネルギー線硬化型粘着剤は、紫外線や電子線等のエネルギー線の照射を受けて硬化する性質を有している。活性エネルギー線硬化型粘着剤は、エネルギー線照射前においても粘着性を有しているため、被着体に密着し、エネルギー線の照射により硬化して密着力を調整することができる性質を有する。 The active energy ray-curable pressure-sensitive adhesive composition is obtained by blending an ultraviolet-curable compound such as a polyfunctional acrylate with the above-described pressure-sensitive adhesive composition, and curing the layer formed by coating with ultraviolet rays. can form a harder pressure-sensitive adhesive layer. Active energy ray-curable pressure-sensitive adhesives have the property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the active energy ray-curable adhesive has adhesiveness even before energy ray irradiation, it adheres to the adherend and has the property that it can be cured by energy ray irradiation to adjust the adhesive strength. .
 粘着剤組成物及び活性エネルギー線硬化型粘着剤組成物は、必要に応じて、酸化防止剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、溶媒等の添加剤を含有することができる。 The pressure-sensitive adhesive composition and the active energy ray-curable pressure-sensitive adhesive composition optionally contain an antioxidant, a tackifier, a thermoplastic resin, a filler, a flow control agent, a plasticizer, an antifoaming agent, and an antistatic agent. , solvents and other additives.
 第1粘着剤層21及び第2粘着剤層12の厚みは特に限定されないが、それぞれ独立して、5μm以上であってもよく、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、25μm以上であってもよく、また、300μm以下であってもよく、250μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。 The thicknesses of the first pressure-sensitive adhesive layer 21 and the second pressure-sensitive adhesive layer 12 are not particularly limited. It may be 20 μm or more, 25 μm or more, 300 μm or less, 250 μm or less, 100 μm or less, or 50 μm or less.
 (第1拡散防止層、第2拡散防止層)
 第1拡散防止層35及び第2拡散防止層36は、直線偏光層31中の吸収異方性を有する色素又は吸収異方性を有する重合性液晶化合物(以下、両者をまとめて「吸収異方性色素」ということがある。)が他の層へ拡散することを抑制するために用いられる。
(First anti-diffusion layer, second anti-diffusion layer)
The first anti-diffusion layer 35 and the second anti-diffusion layer 36 are a dye having absorption anisotropy in the linear polarizing layer 31 or a polymerizable liquid crystal compound having absorption anisotropy (hereinafter both are collectively referred to as “absorption anisotropy”). It is used to suppress the diffusion of the dye (sometimes referred to as a "colorant") to other layers.
 第1拡散防止層35は、透明樹脂フィルム15と円偏光板40との間に設けられ、第2拡散防止層は、円偏光板40を構成し、直線偏光層31と第1位相差層33との間に設けられる。第1拡散防止層35及び/又は第2拡散防止層36を有する光学積層体2は、表示装置に組み入れたときに、吸収異方性色素の拡散に起因する経時的な光学特性の低下を抑制することができる。 The first anti-diffusion layer 35 is provided between the transparent resin film 15 and the circularly polarizing plate 40, the second anti-diffusion layer constitutes the circularly polarizing plate 40, the linearly polarizing layer 31 and the first retardation layer 33 provided between The optical layered body 2 having the first anti-diffusion layer 35 and/or the second anti-diffusion layer 36 suppresses degradation of optical properties over time due to diffusion of the absorption anisotropic dye when incorporated into a display device. can do.
 第1拡散防止層35及び第2拡散防止層36は、吸収異方性色素の拡散を抑制することができる層であれば特に限定されない。第1拡散防止層35及び第2拡散防止層36としては、それぞれ独立して、例えば、水溶性ポリマーを含む樹脂組成物から形成される層、活性エネルギー線硬化性樹脂を含む硬化性組成物から形成される層等が挙げられる。 The first diffusion prevention layer 35 and the second diffusion prevention layer 36 are not particularly limited as long as they are layers capable of suppressing the diffusion of the absorption anisotropic dye. As the first diffusion prevention layer 35 and the second diffusion prevention layer 36, each independently, for example, a layer formed from a resin composition containing a water-soluble polymer, a curable composition containing an active energy ray-curable resin Layers to be formed and the like can be mentioned.
 水溶性ポリマーは吸収異方性色素と極性が大きく異なるため、水溶性ポリマー水溶性ポリマーを含む樹脂組成物から形成される第1拡散防止層35及び第2拡散防止層36は、吸収異方性色素の拡散を抑制することができる。第1拡散防止層35及び第2拡散防止層36を形成し得る水溶性ポリマーとしては、例えば、ポリアクリルアミド系ポリマー;ポリビニルアルコール、及びエチレン-ビニルアルコール共重合体、(メタ)アクリル酸又はその無水物-ビニルアルコール共重合体等のビニルアルコール系ポリマー;カルボキシビニル系ポリマー;ポリビニルピロリドン;デンプン類;アルギン酸ナトリウム;ポリエチレンオキシド系ポリマー等が挙げられる。これらのポリマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Since the water-soluble polymer is significantly different in polarity from the absorption anisotropic dye, the first diffusion prevention layer 35 and the second diffusion prevention layer 36 formed from a resin composition containing a water-soluble polymer have anisotropic absorption. Diffusion of pigment can be suppressed. Examples of water-soluble polymers that can form the first diffusion prevention layer 35 and the second diffusion prevention layer 36 include polyacrylamide-based polymers; polyvinyl alcohol, ethylene-vinyl alcohol copolymers, (meth)acrylic acid or its anhydride. carboxyvinyl-based polymers; polyvinylpyrrolidone; starches; sodium alginate; polyethylene oxide-based polymers and the like. These polymers may be used alone or in combination of two or more.
 第1拡散防止層35及び第2拡散防止層36が水溶性ポリマーを含む樹脂組成物から形成される層である場合、該層における水溶性ポリマーの含有量は、好ましくは75質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは85質量%以上である。 When the first diffusion prevention layer 35 and the second diffusion prevention layer 36 are layers formed from a resin composition containing a water-soluble polymer, the content of the water-soluble polymer in the layer is preferably 75% by mass or more. , more preferably 80% by mass or more, and still more preferably 85% by mass or more.
 水溶性ポリマーを含む樹脂組成物は、第1拡散防止層35及び第2拡散防止層36の緻密性を高めて吸収異方性色素の拡散を抑制する機能を向上させるための架橋構造を導入するために、架橋剤を含んでいてもよい。架橋剤としては、例えば、グリオキシル酸塩等のイオン結合性架橋剤、エポキシ系架橋剤等の水溶性の架橋剤;イソシアネート系架橋剤、グリオキザール及びグリオキザール誘導体等の多価アルデヒド系架橋剤、塩化ジルコニウム系及びチタンラクテート系等の金属化合物系架橋剤等の疎水性の架橋剤等が挙げられる。水溶性ポリマーを含む樹脂組成物における架橋剤の含有量は、例えば、水溶性ポリマー100質量部に対して、0.1質量部以上であってもよく、1質量部以上であってもよく、10質量部以上であってもよく、また、100質量部以下であってもよく、50質量部以下であってもよく、30質量部以下であってもよい。 The resin composition containing a water-soluble polymer introduces a crosslinked structure for enhancing the denseness of the first anti-diffusion layer 35 and the second anti-diffusion layer 36 to improve the function of suppressing the diffusion of the absorption anisotropic dye. For this purpose, a cross-linking agent may be included. Examples of cross-linking agents include ionic cross-linking agents such as glyoxylate, water-soluble cross-linking agents such as epoxy cross-linking agents; isocyanate cross-linking agents, polyvalent aldehyde cross-linking agents such as glyoxal and glyoxal derivatives, and zirconium chloride. and hydrophobic cross-linking agents such as metal compound-based cross-linking agents such as titanium lactate-based cross-linking agents. The content of the cross-linking agent in the resin composition containing the water-soluble polymer may be, for example, 0.1 parts by mass or more, or may be 1 part by mass or more, with respect to 100 parts by mass of the water-soluble polymer. It may be 10 parts by mass or more, 100 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less.
 水溶性ポリマーを含む樹脂組成物は、水溶性ポリマーを溶剤に溶解させた溶液として調製される。溶剤は、水溶性ポリマーの種類によって選択すればよいが、例えば水、アルコール、水とアルコールとの混合物等が挙げられ、水であることが好ましい。 A resin composition containing a water-soluble polymer is prepared as a solution in which the water-soluble polymer is dissolved in a solvent. The solvent may be selected according to the type of water-soluble polymer, and examples thereof include water, alcohol, and mixtures of water and alcohol, with water being preferred.
 水溶性ポリマーを含む樹脂組成物の固形分濃度は、例えば1質量%以上であってもよく、2質量%以上であってもよく、また、50質量%以下であってもよく、30質量%以下であってもよい。 The solid content concentration of the resin composition containing the water-soluble polymer may be, for example, 1% by mass or more, may be 2% by mass or more, may be 50% by mass or less, or may be 30% by mass. It may be below.
 水溶性ポリマーを含む樹脂組成物は、水溶性ポリマー、架橋剤、及び溶剤に加えて、防腐剤、レベリング剤等の添加剤等を含んでいてもよい。水溶性ポリマーを含む樹脂組成物における添加剤の含有量は、当該樹脂組成物の固形分に対して、例えば10質量%以下であってもよく、5質量%以下であってもよい。 A resin composition containing a water-soluble polymer may contain additives such as a preservative and a leveling agent in addition to the water-soluble polymer, cross-linking agent, and solvent. The content of the additive in the resin composition containing the water-soluble polymer may be, for example, 10% by mass or less, or 5% by mass or less, relative to the solid content of the resin composition.
 水溶性ポリマーを含む樹脂組成物から形成される第1拡散防止層35及び第2拡散防止層36は、第1拡散防止層35及び第2拡散防止層36を形成する面(例えば、円偏光板30,40の直線偏光層31)に、当該樹脂組成物を塗布して乾燥させることによって形成することができる。乾燥処理は、例えば熱風を吹き付けること等によって行うことができる。乾燥温度は、例えば40℃以上であってもよく、60℃以下であってもよく、また、100℃以下であってもよく、乾燥時間は、例えば10秒以上600秒以下とすることができる。 The first anti-diffusion layer 35 and the second anti-diffusion layer 36 formed from a resin composition containing a water-soluble polymer are formed on the surface forming the first anti-diffusion layer 35 and the second anti-diffusion layer 36 (for example, a circularly polarizing plate It can be formed by applying the resin composition to the linear polarizing layer 31) of 30 and 40 and drying it. The drying treatment can be performed by, for example, blowing hot air. The drying temperature may be, for example, 40° C. or higher, 60° C. or lower, or 100° C. or lower, and the drying time may be, for example, 10 seconds or more and 600 seconds or less. .
 活性エネルギー線硬化性樹脂は高度に重合し得るため、活性エネルギー線硬化性樹脂を含む硬化性組成物から形成される第1拡散防止層35及び第2拡散防止層36は、吸収異方性色素の拡散を抑制することができる。硬化性組成物としては、硬化性化合物としてカチオン重合性化合物を含むカチオン重合型の硬化性組成物、硬化性化合物としてラジカル重合性化合物を含むラジカル重合型の硬化性組成物、カチオン重合性化合物及びラジカル重合性化合物の双方を含むハイブリッド型の硬化性組成物等が挙げられる。カチオン重合性化合物の具体例としては、分子内に1個以上のエポキシ基を有するエポキシ化合物、分子内に1個以上のオキセタン環を有するオキセタン化合物、ビニル化合物等が挙げられる。また、ラジカル重合性化合物の具体例としては、分子内に1個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物、ビニル化合物等が挙げられる。硬化性組成物は、カチオン重合性化合物を1種又は2種以上含むことができ、及び/又は、ラジカル重合性化合物を1種又は2種以上含むことができる。 Since the active energy ray-curable resin can be highly polymerized, the first diffusion prevention layer 35 and the second diffusion prevention layer 36 formed from a curable composition containing the active energy ray-curable resin are composed of the absorption anisotropic dye diffusion can be suppressed. Examples of the curable composition include a cationic polymerizable curable composition containing a cationic polymerizable compound as a curable compound, a radical polymerizable curable composition containing a radical polymerizable compound as a curable compound, a cationically polymerizable compound, and Examples thereof include hybrid-type curable compositions containing both radically polymerizable compounds. Specific examples of cationic polymerizable compounds include epoxy compounds having one or more epoxy groups in the molecule, oxetane compounds having one or more oxetane rings in the molecule, and vinyl compounds. Further, specific examples of radically polymerizable compounds include (meth)acrylic compounds having one or more (meth)acryloyl groups in the molecule, vinyl compounds, and the like. The curable composition can contain one or more cationically polymerizable compounds and/or can contain one or more radically polymerizable compounds.
 カチオン重合型の硬化性組成物の主成分であるカチオン重合性化合物は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射や加熱によりカチオン重合反応が進行し、硬化する化合物又はオリゴマーをいい、エポキシ化合物、オキセタン化合物、ビニル化合物等を例示することができる。中でも、エポキシ化合物であることが好ましい。 The cationic polymerizable compound, which is the main component of the cationic polymerizable curable composition, is a compound that undergoes a cationic polymerization reaction and is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, or by heating. It refers to oligomers, and examples thereof include epoxy compounds, oxetane compounds, and vinyl compounds. Among them, epoxy compounds are preferred.
 エポキシ化合物とは、分子内に1個以上、好ましくは2個以上のエポキシ基を有する化合物である。エポキシ化合物は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。エポキシ化合物としては、脂環式エポキシ化合物、芳香族エポキシ化合物、水素化エポキシ化合物、脂肪族エポキシ化合物等を挙げることができる。中でも、耐候性、硬化速度及び接着性の観点から、エポキシ化合物は、脂環式エポキシ化合物及び/又は脂肪族エポキシ化合物を含むことが好ましい。 An epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule. An epoxy compound may be used individually by 1 type, and may use 2 or more types together. Examples of epoxy compounds include alicyclic epoxy compounds, aromatic epoxy compounds, hydrogenated epoxy compounds, and aliphatic epoxy compounds. Among them, the epoxy compound preferably contains an alicyclic epoxy compound and/or an aliphatic epoxy compound from the viewpoint of weather resistance, curing speed and adhesiveness.
 硬化性組成物がカチオン重合性化合物としてエポキシ化合物を含む場合、エポキシ化合物の含有量は、硬化性組成物の固形分100質量部に対して、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよく、また、70質量部以下であってもよく、60質量部以下であってもよく、50質量部以下であってもよい。 When the curable composition contains an epoxy compound as a cationically polymerizable compound, the content of the epoxy compound may be 10 parts by mass or more, or 15 parts by mass with respect to 100 parts by mass of the solid content of the curable composition. 20 parts by mass or more, 70 parts by mass or less, 60 parts by mass or less, or 50 parts by mass or less.
 硬化性組成物に含まれる硬化性化合物の全量を100質量%とするとき、カチオン重合性化合物の含有量(2種以上のカチオン重合性化合物が含まれる場合にはそれらの合計含有量)は、50質量%以上であってもよく、60質量%以上であってもよく、70質量%以上であってもよい。また、硬化性組成物は、ポリマー成分(熱可塑性樹脂等)をさらに含んでいてもよい。 When the total amount of curable compounds contained in the curable composition is 100% by mass, the content of the cationic polymerizable compound (the total content when two or more cationic polymerizable compounds are included) is It may be 50% by mass or more, 60% by mass or more, or 70% by mass or more. In addition, the curable composition may further contain a polymer component (thermoplastic resin, etc.).
 硬化性組成物がカチオン重合性化合物を含む場合、光カチオン重合開始剤を含むことが好ましい。光カチオン重合開始剤は、可視光線、紫外線、X線、又は電子線等の活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、カチオン硬化性化合物の重合反応を開始させるものである。光カチオン重合開始剤は、光で触媒的に作用するため、光カチオン硬化性化合物に混合しても保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種又はルイス酸を生じる化合物としては、例えば、芳香族ヨードニウム塩及び芳香族スルホニウム塩等のオニウム塩、芳香族ジアゾニウム塩、鉄-アレーン錯体等が挙げられる。 When the curable composition contains a cationic polymerizable compound, it preferably contains a photocationic polymerization initiator. The photocationic polymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams, and initiates the polymerization reaction of the cationic curable compound. Since the photocationic polymerization initiator acts catalytically with light, it is excellent in storage stability and workability even when mixed with a photocationically curable compound. Compounds that generate cationic species or Lewis acids upon irradiation with active energy rays include, for example, onium salts such as aromatic iodonium salts and aromatic sulfonium salts, aromatic diazonium salts, iron-arene complexes, and the like.
 光カチオン重合開始剤は、1種のみを単独で使用してもよいし2種以上を併用してもよい。中でも、芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械的強度や接着強度を有する硬化物を与えることができるため好ましく用いられる。 The photocationic polymerization initiator may be used alone or in combination of two or more. Among them, aromatic sulfonium salts are preferably used because they have ultraviolet absorption properties even in a wavelength region around 300 nm, and can give a cured product having excellent curability and good mechanical strength and adhesive strength.
 硬化性組成物における光カチオン重合開始剤の含有量は、硬化性化合物の固形分100質量部に対して、1質量部以上であってもよく、2質量部以上であってもよく、また、10質量部以下であってもよく、8質量部以下であってもよい。光カチオン重合開始剤の含有量が上記範囲内であると、カチオン重合性化合物を十分に硬化させることができ、第1拡散防止層35及び第2拡散防止層36に高い機械的強度や接着強度を付与し得る。 The content of the photocationic polymerization initiator in the curable composition may be 1 part by mass or more, or may be 2 parts by mass or more, with respect to 100 parts by mass of the solid content of the curable compound. It may be 10 parts by mass or less, or may be 8 parts by mass or less. When the content of the photocationic polymerization initiator is within the above range, the cationic polymerizable compound can be sufficiently cured, and the first diffusion prevention layer 35 and the second diffusion prevention layer 36 have high mechanical strength and adhesive strength. can be given.
 カチオン重合性化合物を含む硬化性組成物に、さらにラジカル重合性化合物を含有させることによりハイブリッド型の硬化性組成物とすることもできる。ラジカル重合性化合物を併用することにより、第1拡散防止層35及び第2拡散防止層36の硬度や機械的強度を高める効果が期待でき、さらには硬化性組成物の粘度や硬化速度等の調整がより行いやすくなる。 A hybrid-type curable composition can be obtained by adding a radically polymerizable compound to a curable composition containing a cationic polymerizable compound. By using a radical polymerizable compound together, the effect of increasing the hardness and mechanical strength of the first diffusion prevention layer 35 and the second diffusion prevention layer 36 can be expected, and the viscosity and curing speed of the curable composition can be adjusted. becomes easier to do.
 ラジカル重合性化合物は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射や加熱によりラジカル重合反応が進行し、硬化する化合物又はオリゴマーをいい、具体的にはエチレン性不飽和結合を有する化合物を挙げることができる。エチレン性不飽和結合を有する化合物としては、分子内に1個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物の他、スチレン、スチレンスルホン酸、酢酸ビニル、プロピオン酸ビニル、N-ビニル-2-ピロリドン等のビニル化合物等が挙げられる。中でも、好ましいラジカル重合性化合物は(メタ)アクリル系化合物である。 The radically polymerizable compound refers to a compound or oligomer that undergoes a radical polymerization reaction by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays or by heating. can be mentioned. Compounds having an ethylenically unsaturated bond include (meth)acrylic compounds having one or more (meth)acryloyl groups in the molecule, as well as styrene, styrenesulfonic acid, vinyl acetate, vinyl propionate, and N-vinyl. vinyl compounds such as -2-pyrrolidone; Among them, preferred radically polymerizable compounds are (meth)acrylic compounds.
 (メタ)アクリル系化合物は、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する化合物であり、モノマー、オリゴマー又はポリマーであってもよい。(メタ)アクリル化合物としては、例えば、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物等の(メタ)アクリレート化合物;多官能ウレタン(メタ)アクリレート化合物等のウレタン(メタ)アクリレート化合物;多官能エポキシ(メタ)アクリレート化合物等のエポキシ(メタ)アクリレート化合物;カルボキシル基変性エポキシ(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物等が挙げられる。(メタ)アクリル系化合物は、1種のみを単独で用いてもよいし2種以上を併用してもよい。 The (meth)acrylic compound is a compound having at least one (meth)acryloyloxy group in the molecule, and may be a monomer, oligomer or polymer. Examples of (meth)acrylic compounds include (meth)acrylate compounds such as monofunctional (meth)acrylate compounds and polyfunctional (meth)acrylate compounds; urethane (meth)acrylate compounds such as polyfunctional urethane (meth)acrylate compounds; Epoxy (meth)acrylate compounds such as polyfunctional epoxy (meth)acrylate compounds; carboxyl group-modified epoxy (meth)acrylate compounds, polyester (meth)acrylate compounds, and the like. The (meth)acrylic compounds may be used singly or in combination of two or more.
 (メタ)アクリレート化合物としては、分子内に1個の(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物、分子内に2個以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物が挙げられる。 The (meth)acrylate compounds include monofunctional (meth)acrylate compounds having one (meth)acryloyloxy group in the molecule, and polyfunctional (meth)acrylate compounds having two or more (meth)acryloyloxy groups in the molecule. Acrylate compounds are mentioned.
 多官能(メタ)アクリレート化合物を用いる場合、該化合物の架橋点間分子量及び架橋点数を制御することにより、第1拡散防止層35及び第2拡散防止層36の架橋密度を調整できる。より詳細には、架橋点間分子量が小さくなるほど架橋密度が上がり、また架橋点数が多くなるほど架橋密度が密になり、第1拡散防止層35及び第2拡散防止層36中の吸収異方性色素に対する遮蔽性を高めることができる。 When using a polyfunctional (meth)acrylate compound, the crosslink density of the first diffusion prevention layer 35 and the second diffusion prevention layer 36 can be adjusted by controlling the molecular weight between crosslink points and the number of crosslink points of the compound. More specifically, the smaller the molecular weight between cross-linking points, the higher the cross-linking density, and the higher the number of cross-linking points, the higher the cross-linking density. can improve shielding against
 ウレタン(メタ)アクリレート化合物は、一般に、イソシアネート化合物とポリオール化合物と(メタ)アクリレート化合物の反応物を意味し、分子内に2個以上の(メタ)アクリロイルオキシ基を有する多官能ウレタン(メタ)アクリレート化合物であることが好ましい。多官能ウレタン(メタ)アクリレート化合物は、架橋構造を形成できるため、第1拡散防止層35及び第2拡散防止層36の吸収異方性色素の拡散を抑制する機能を向上する観点から有利であるとともに、適度な靱性を付与することができる。多官能ウレタン(メタ)アクリレート化合物の官能基数は、好ましくは2以上5以下である。 A urethane (meth)acrylate compound generally means a reaction product of an isocyanate compound, a polyol compound and a (meth)acrylate compound, and is a polyfunctional urethane (meth)acrylate having two or more (meth)acryloyloxy groups in the molecule. A compound is preferred. Since the polyfunctional urethane (meth)acrylate compound can form a crosslinked structure, it is advantageous from the viewpoint of improving the function of suppressing the diffusion of the absorption anisotropic dye of the first diffusion prevention layer 35 and the second diffusion prevention layer 36. At the same time, appropriate toughness can be imparted. The number of functional groups of the polyfunctional urethane (meth)acrylate compound is preferably 2 or more and 5 or less.
 エポキシ(メタ)アクリレート化合物としては、例えば、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得ることができ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する多官能エポキシ(メタ)アクリレート等が挙げられる。
ポリエステル(メタ)アクリレート化合物としては、例えば、分子内にエステル結合と少なくとも2個の(メタ)アクリロイル基(典型的には(メタ)アクリロイルオキシ基)とを有する化合物が挙げられる。
Examples of epoxy (meth)acrylate compounds include polyfunctional epoxy (meth)acrylate compounds that can be obtained by an addition reaction between polyglycidyl ether and (meth)acrylic acid and have at least two (meth)acryloyloxy groups in the molecule. ) acrylates and the like.
Polyester (meth)acrylate compounds include, for example, compounds having an ester bond and at least two (meth)acryloyl groups (typically (meth)acryloyloxy groups) in the molecule.
 硬化性組成物がラジカル重合性化合物を含有する場合、ラジカル重合性化合物として多官能(メタ)アクリレート化合物を含むことが好ましい。この場合、多官能(メタ)アクリレート化合物の含有量は、硬化性組成物の固形分100質量部に対して、例えば50質量部以上であってもよく、60質量部以上であってもよく、70質量部以上であってもよく、また、100質量部以下であってもよく、95質量部以下であってもよく、90質量部以下であってもよい。 When the curable composition contains a radically polymerizable compound, it preferably contains a polyfunctional (meth)acrylate compound as the radically polymerizable compound. In this case, the content of the polyfunctional (meth)acrylate compound may be, for example, 50 parts by mass or more, or may be 60 parts by mass or more, relative to 100 parts by mass of the solid content of the curable composition. It may be 70 parts by mass or more, 100 parts by mass or less, 95 parts by mass or less, or 90 parts by mass or less.
 硬化性組成物がラジカル重合性化合物を含有する場合、ラジカル重合性化合物として多官能(メタ)アクリレート化合物と多官能ウレタン(メタ)アクリレート化合物とを含むことが好ましい。この場合、多官能(メタ)アクリレート化合物とウレタン(メタ)アクリレート化合物との含有比率(多官能(メタ)アクリレート化合物:ウレタン(メタ)アクリレート化合物、質量比)は、95:5~50:50であってもよく、90:10~70:30であってもよい。 When the curable composition contains a radically polymerizable compound, it preferably contains a polyfunctional (meth)acrylate compound and a polyfunctional urethane (meth)acrylate compound as the radically polymerizable compound. In this case, the content ratio of the polyfunctional (meth)acrylate compound and the urethane (meth)acrylate compound (polyfunctional (meth)acrylate compound: urethane (meth)acrylate compound, mass ratio) is 95:5 to 50:50. It may be from 90:10 to 70:30.
 硬化性組成物がラジカル重合性化合物を含有する場合、光ラジカル重合開始剤を含有することが好ましい。光ラジカル重合開始剤は、可視光線、紫外線、X線、又は電子線等の活性エネルギー線の照射によって、ラジカル重合性化合物の重合反応を開始させるものである。光ラジカル重合開始剤は、1種のみを単独で使用してもよいし2種以上を併用してもよい。 When the curable composition contains a radically polymerizable compound, it preferably contains a radical photopolymerization initiator. A radical photopolymerization initiator initiates a polymerization reaction of a radically polymerizable compound by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams. A photoradical polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
 光ラジカル重合開始剤の具体例としては、アセトフェノン、3-メチルアセトフェノン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のアセトフェノン系開始剤;ベンゾフェノン、4-クロロベンゾフェノン及び4,4’-ジアミノベンゾフェノン等のベンゾフェノン系開始剤;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン等のアルキルフェノン系開始剤;ベンゾインプロピルエーテル及びベンゾインエチルエーテル等のベンゾインエーテル系開始剤;4-イソプロピルチオキサントン等のチオキサントン系開始剤;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド系開始剤;その他、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノン等が挙げられる。 Specific examples of photoradical polymerization initiators include acetophenone, 3-methylacetophenone, benzyldimethylketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 2-methyl-1- Acetophenone initiators such as [4-(methylthio)phenyl]-2-morpholinopropan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone and 4, Benzophenone initiators such as 4′-diaminobenzophenone; alkylphenone initiators such as 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone; benzoin propyl ether and benzoin ether-based initiators such as benzoin ethyl ether; thioxanthone-based initiators such as 4-isopropylthioxanthone; acylphosphine oxide-based initiators such as bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide; fluorenone, camphorquinone, benzaldehyde, anthraquinone and the like.
 硬化性組成物における光ラジカル重合開始剤の含有量は、重合性化合物の固形分100質量部に対して、1質量部以上であってもよく、2質量部以上であってもよく、また10質量部以下であってもよく、8質量部以下であってもよい。光ラジカル重合開始剤の含有量が上記範囲内であると、重合開始能を十分に発現させ、硬化性を向上させながら、光ラジカル重合開始剤が残存しにくくなるため、可視光線透過率の低下等を抑制しやすくなる。 The content of the photoradical polymerization initiator in the curable composition may be 1 part by mass or more, 2 parts by mass or more, or 10 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable compound. It may be less than or equal to 8 parts by mass. When the content of the photoradical polymerization initiator is within the above range, the photoradical polymerization initiator is less likely to remain while sufficiently expressing the polymerization initiation ability and improving the curability, resulting in a decrease in visible light transmittance. etc., can be easily suppressed.
 硬化性組成物から形成される第1拡散防止層35及び第2拡散防止層36は、第1拡散防止層35及び第2拡散防止層36を形成する面(例えば、円偏光板30,40の直線偏光層31)に、当該硬化性組成物を塗布し、活性エネルギー線を照射して、当該硬化性組成物を硬化することによって形成することができる。硬化性組成物は、塗布方式に適した粘度に調製するために有機溶剤を含有してもよく、実質的に溶剤を含まない(無溶剤)であってもよい。実質的に含まないとは、溶剤が不可避的に混入する場合を排除しないことを意味する。 The first anti-diffusion layer 35 and the second anti-diffusion layer 36 formed from the curable composition are formed on the surfaces forming the first anti-diffusion layer 35 and the second anti-diffusion layer 36 (for example, the surfaces of the circularly polarizing plates 30 and 40 It can be formed by applying the curable composition to the linear polarizing layer 31), irradiating it with an active energy ray, and curing the curable composition. The curable composition may contain an organic solvent in order to adjust the viscosity to suit the application method, or may be substantially solvent-free (solvent-free). "Substantially free" means not excluding cases where the solvent is unavoidably mixed.
 溶剤としては、硬化性組成物を構成する成分を溶解し得るものであればよく、例えば、水;メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤;クロロホルム、クロロベンゼン等の塩素化炭化水素溶剤等が挙げられる。
これらの溶剤は、単独で用いても、2種以上を組合せて用いてもよい。
Any solvent can be used as long as it can dissolve the components constituting the curable composition. Examples include water; methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, and the like Alcohol solvents; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate, ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone, methyl isobutyl ketone, etc. ketone solvents such as pentane, hexane and heptane; aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxyethane; hydrocarbon solvents and the like.
These solvents may be used alone or in combination of two or more.
 硬化性組成物は、必要に応じて、カチオン重合促進剤、光増感剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤等の添加剤を含有してもよい。 The curable composition may optionally contain a cationic polymerization accelerator, a photosensitizer, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow control agent, and a plasticizer. , antifoaming agents, antistatic agents, and leveling agents.
 硬化性組成物の硬化に用いる活性エネルギー線は、可視光線、紫外線、X線、又は電子線等が挙げられるが、紫外線であることが好ましい。活性エネルギー線の光源としては、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 The active energy rays used for curing the curable composition include visible light, ultraviolet rays, X-rays, electron beams, etc., but ultraviolet rays are preferred. Light sources for active energy rays include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excimer lasers, and a wavelength range of 380 to 440 nm. LED light sources, chemical lamps, black light lamps, microwave excited mercury lamps, metal halide lamps, and the like.
 紫外線の照射強度は、通常10mW/cm以上3000mW/cm以下である。紫外線照射強度は、光重合開始剤の活性化に有効な波長領域における強度であることが好ましい。紫外線の照射時間は、通常0.1秒以上であり、1秒以上であってもよく、5秒以上であってもよく、10秒以上であってもよく、また10分以下であってもよく、5分以下であってもよく、3分以下であってもよく、1分以下であってもよい。紫外線の積算光量は、10mJ/cm以上であってもよく、50mJ/cm以上であってもよく、100mJ/cm以上であってもよく、また、3000mJ/cm以下であってもよく、2000mJ/cm以下としてもよく、1000mJ/cmであってもよい。 The irradiation intensity of ultraviolet rays is usually 10 mW/cm 2 or more and 3000 mW/cm 2 or less. It is preferable that the ultraviolet irradiation intensity is in a wavelength range effective for activating the photopolymerization initiator. The irradiation time of ultraviolet rays is usually 0.1 seconds or longer, may be 1 second or longer, may be 5 seconds or longer, may be 10 seconds or longer, and may be 10 minutes or shorter. It may be 5 minutes or less, 3 minutes or less, or 1 minute or less. The cumulative amount of UV light may be 10 mJ/cm 2 or more, 50 mJ/cm 2 or more, 100 mJ/cm 2 or more, or 3000 mJ/cm 2 or less. Well, it may be 2000 mJ/cm 2 or less, or it may be 1000 mJ/cm 2 .
 第1拡散防止層35及び第2拡散防止層36の厚みは、それぞれ独立して、5μm以下であることが好ましく、4μm以下であってもよく、3μm以下であってもよく、また、0.1μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよい。第1拡散防止層35及び第2拡散防止層36の厚みが上記の範囲内であることにより、直線偏光層31中の吸収異方性色素が他の層へ拡散することを効果的に抑制することができる。 The thicknesses of the first anti-diffusion layer 35 and the second anti-diffusion layer 36 are each independently preferably 5 μm or less, may be 4 μm or less, or may be 3 μm or less. It may be 1 μm or more, 0.3 μm or more, or 0.5 μm or more. When the thicknesses of the first anti-diffusion layer 35 and the second anti-diffusion layer 36 are within the above range, the absorption anisotropic dye in the linear polarizing layer 31 is effectively suppressed from diffusing into other layers. be able to.
 (第1貼合層、第2貼合層、第3貼合層、貼合層)
 第1貼合層25、第2貼合層32、第3貼合層37、及び貼合層は、粘着剤層又は接着剤層である。粘着剤層は、第1粘着剤層21及び第2粘着剤層12で説明した粘着剤組成物又は活性エネルギー線硬化型粘着剤組成物を用いて形成することができる。粘着剤層の厚みは、第1粘着剤層21及び第2粘着剤層12で説明した範囲とすることができる。
(First bonding layer, second bonding layer, third bonding layer, bonding layer)
The 1st bonding layer 25, the 2nd bonding layer 32, the 3rd bonding layer 37, and the bonding layer are adhesive layers or adhesive layers. The pressure-sensitive adhesive layer can be formed using the pressure-sensitive adhesive composition or the active energy ray-curable pressure-sensitive adhesive composition described for the first pressure-sensitive adhesive layer 21 and the second pressure-sensitive adhesive layer 12 . The thickness of the pressure-sensitive adhesive layer can be within the range described for the first pressure-sensitive adhesive layer 21 and the second pressure-sensitive adhesive layer 12 .
 接着剤層は、接着剤組成物中の硬化性成分を硬化させることによって形成することができる。接着剤層を形成するための接着剤組成物としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、活性エネルギー線硬化型接着剤が挙げられる。 The adhesive layer can be formed by curing the curable component in the adhesive composition. Examples of the adhesive composition for forming the adhesive layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
 水系接着剤としては、例えば、ポリビニルアルコール樹脂を水に溶解、又は分散させた接着剤が挙げられる。水系接着剤を用いた場合の乾燥方法については特に限定されるものではないが、例えば、熱風乾燥機や赤外線乾燥機を用いて乾燥する方法が採用できる。 Examples of water-based adhesives include adhesives in which polyvinyl alcohol resin is dissolved or dispersed in water. The method of drying when a water-based adhesive is used is not particularly limited. For example, a method of drying using a hot air dryer or an infrared ray dryer can be employed.
 活性エネルギー線硬化型接着剤としては、例えば、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する硬化性化合物を含む無溶剤型の活性エネルギー線硬化型接着剤が挙げられる。無溶剤型の活性エネルギー線硬化型接着剤を用いることにより、層間の密着性を向上させることができる。 Active energy ray-curable adhesives include, for example, solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. be done. Adhesion between layers can be improved by using a non-solvent active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤としては、良好な接着性を示すことから、カチオン重合性の硬化性化合物、ラジカル重合性の硬化性化合物のいずれか一方又は両方を含むことが好ましい。活性エネルギー線硬化型接着剤は、上記硬化性化合物の硬化反応を開始させるための光カチオン重合開始剤等のカチオン重合開始剤、又はラジカル重合開始剤をさらに含むことができる。 The active energy ray-curable adhesive preferably contains either one or both of a cationic polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness. The active energy ray-curable adhesive can further contain a cationic polymerization initiator such as a photocationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 カチオン重合性の硬化性化合物としては、例えば、脂環式環に結合したエポキシ基を有する脂環式エポキシ化合物、2個以上のエポキシ基を有し芳香環を有さない多官能脂肪族エポキシ化合物、エポキシ基を1つ有する単官能エポキシ基(但し、脂環式エポキシ化合物に含まれるものを除く)、2個以上のエポキシ基を有し芳香環を有する多官能芳香族エポキシ化合物等のエポキシ系化合物;分子内に1個又は2個以上のオキセタン環を有するオキセタン化合物;これらの組み合わせを挙げることができる。 Examples of cationic polymerizable curable compounds include alicyclic epoxy compounds having an epoxy group bonded to an alicyclic ring, and polyfunctional aliphatic epoxy compounds having two or more epoxy groups and no aromatic ring. , monofunctional epoxy groups having one epoxy group (excluding those contained in alicyclic epoxy compounds), polyfunctional aromatic epoxy compounds having two or more epoxy groups and aromatic rings, etc. compounds; oxetane compounds having one or more oxetane rings in the molecule; and combinations thereof.
 ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。 Radically polymerizable curable compounds include, for example, (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule), and other radically polymerizable double bonds. vinyl-based compounds, or combinations thereof.
 活性エネルギー線硬化型接着剤は、必要に応じて、光増感助剤等の増感剤を含有することができる。増感剤を使用することにより、反応性が向上し、接着剤層の機械強度や接着強度をさらに向上させることができる。増感剤としては、公知のものを適宜適用することができる。増感剤を配合する場合、その配合量は、活性エネルギー線硬化型接着剤の総量100質量部に対し、0.1~20質量部の範囲とすることが好ましい。 The active energy ray-curable adhesive can contain a sensitizer such as a photosensitizer as needed. By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved. A known sensitizer can be appropriately applied. When a sensitizer is blended, the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass as the total amount of the active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤は、必要に応じて、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶媒等の添加剤を含有することができる。 Active energy ray-curable adhesives may optionally contain ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow control agents, plasticizers, antifoaming agents, and antistatic agents. Additives such as agents, leveling agents, solvents and the like can be included.
 活性エネルギー線硬化型接着剤を用いた場合は、紫外線、可視光、電子線、X線等の活性エネルギー線を照射し、接着剤の塗布層を硬化させて接着剤層を形成することができる。活性エネルギー線としては、紫外線が好ましく、この場合の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を用いることができる。 When an active energy ray-curable adhesive is used, an adhesive layer can be formed by irradiating an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive coating layer. . As the active energy ray, ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, etc. can be used. can.
 接着剤層の厚みは、0.1μm以上であってもよく、0.5μm以上であってもよく、また10μm以下であってもよく、5μm以下であってもよい。 The thickness of the adhesive layer may be 0.1 μm or more, 0.5 μm or more, 10 μm or less, or 5 μm or less.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。実施例及び比較例中の「%」及び「部」は、特記しない限り、「質量%」及び「質量部」である。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. "%" and "parts" in Examples and Comparative Examples are "% by mass" and "parts by mass" unless otherwise specified.
 [表面保護フィルム(1)の作製]
 (粘着剤組成物(1)の調製)
 撹拌機、温度計、還流冷却及び窒素導入管を備えた反応装置に、窒素ガスを導入して反応装置内の空気を窒素ガスで置換した。その後、反応装置に2-エチルヘキシルアクリレート93部、8-ヒドロキシオクチルアクリレート5.5部、アクリル酸1.5部とともに溶剤(酢酸エチル)を60部加えた。その後、重合開始剤としてアゾビスイソブチロニトリル0.1部を2時間かけて滴下し、温度65℃で6時間反応を行って、アクリル樹脂溶液(1)を得た。アクリル樹脂溶液(1)に含まれるアクリル系ポリマーの重量平均分子量は、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値で約50万であった。
[Production of surface protective film (1)]
(Preparation of adhesive composition (1))
Nitrogen gas was introduced into a reactor equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen inlet tube to replace the air in the reactor with nitrogen gas. Then, 93 parts of 2-ethylhexyl acrylate, 5.5 parts of 8-hydroxyoctyl acrylate, 1.5 parts of acrylic acid, and 60 parts of a solvent (ethyl acetate) were added to the reactor. Thereafter, 0.1 part of azobisisobutyronitrile as a polymerization initiator was added dropwise over 2 hours, and reaction was carried out at 65° C. for 6 hours to obtain an acrylic resin solution (1). The acrylic polymer contained in the acrylic resin solution (1) had a weight average molecular weight of about 500,000 in terms of standard polystyrene by gel permeation chromatography.
 アクリル樹脂溶液(1)に含まれるアクリル系ポリマー100部に対して、帯電防止剤としての1-オクチルピリジニウム ドデシルベンゼンスルホン酸塩2.0部を加え撹拌した後、コロネートHX(ヘキサメチレンジイソシアネート化合物のイソシアヌレート体:東ソー株式会社製)1.5部を加えて撹拌混合して粘着剤組成物(1)を得た。 After adding 2.0 parts of 1-octylpyridinium dodecylbenzenesulfonate as an antistatic agent to 100 parts of the acrylic polymer contained in the acrylic resin solution (1) and stirring, Coronate HX (hexamethylene diisocyanate compound 1.5 parts of an isocyanurate body: manufactured by Tosoh Corporation) were added and mixed with stirring to obtain an adhesive composition (1).
 (セパレートフィルム付き表面保護フィルム(1)の作製)
 シリコーン樹脂コートされたポリエチレンテレフタレート(PET)フィルムからなる厚み15μmのセパレートフィルムの上に、粘着剤組成物(1)を塗布後、90℃で乾燥することによって溶剤を除去し、乾燥後の厚みが15μmである第2粘着剤層を形成した。その後、第1基材フィルムとして、一方の面に帯電防止処理及び防汚処理が施された厚み75μmのポリエチレンテレフタレート(PET)フィルムを用い、当該PETフィルムの帯電防止処理及び防汚処理が施された面とは反対側の面を、第2粘着剤層に積層して、セパレートフィルム付き表面保護フィルム(1)を得た。セパレートフィルム付き表面保護フィルム(1)の層構造は、表面保護フィルム(1)(第1基材フィルム/第2粘着剤層)/セパレートフィルムであった。
(Preparation of surface protective film (1) with separate film)
After applying the pressure-sensitive adhesive composition (1) on a 15 μm thick separate film made of a polyethylene terephthalate (PET) film coated with a silicone resin, the solvent is removed by drying at 90 ° C., and the thickness after drying is A second adhesive layer of 15 μm was formed. After that, as the first base film, a polyethylene terephthalate (PET) film having a thickness of 75 μm having one surface subjected to antistatic treatment and antifouling treatment was used, and the PET film was subjected to antistatic treatment and antifouling treatment. A surface protection film (1) with a separate film was obtained by laminating the surface on the opposite side of the surface to the second pressure-sensitive adhesive layer. The layer structure of the surface protective film (1) with a separate film was surface protective film (1) (first base film/second pressure-sensitive adhesive layer)/separate film.
 [表面保護フィルム(2)の作製]
 第1基材フィルムとして、一方の面に帯電防止処理及び防汚処理が施された厚み38μmのポリエチレンテレフタレート(PET)フィルムを用いたこと以外は、セパレートフィルム付き表面保護フィルム(1)の作製と同様の手順で、セパレートフィルム付き表面保護フィルム(2)を得た。セパレートフィルム付き表面保護フィルム(2)の層構造は、表面保護フィルム(2)(第1基材フィルム/第2粘着剤層)/セパレートフィルムであった。
[Preparation of surface protective film (2)]
Except for using a polyethylene terephthalate (PET) film having a thickness of 38 μm with antistatic treatment and antifouling treatment on one side as the first base film, the surface protective film with a separate film (1) was prepared. A surface protective film (2) with a separate film was obtained by the same procedure. The layer structure of the surface protective film (2) with a separate film was surface protective film (2) (first base film/second pressure-sensitive adhesive layer)/separate film.
 [拡散防止層付き円偏光板の作製] [Production of circularly polarizing plate with anti-diffusion layer]
 (水溶性ポリマー水溶液の調製)
 以下の合成スキームにしたがって、下記構造単位からなる水溶性ポリマーを得た。
Figure JPOXMLDOC01-appb-C000001
(Preparation of water-soluble polymer aqueous solution)
A water-soluble polymer composed of the following structural units was obtained according to the following synthesis scheme.
Figure JPOXMLDOC01-appb-C000001
 ジメチルスルホキシド400g中に、分子量1000のポリビニルアルコール(和光純薬工業株式会社製)20gと、求核剤としてN,N-ジメチル-4-アミノピリジンを0.55mg、トリエチルアミン4.6gを溶解し、撹拌しながら60℃まで昇温した。その後、ジメチルスルホキシド50g中にメタクリル酸無水物10.5gを溶解させた溶液を1時間かけて滴下し、温度60℃で14時間加熱撹拌することにより反応させた。得られた反応溶液を室温まで冷却後、反応溶液中にメタノール481gを加えて完全に混合するように撹拌することで、反応溶液とメタノールとの比率(質量)が1:1となるように調整した。この溶液中に1500mLのアセトンを徐々に加えることで、水溶性ポリマーを晶析法により結晶化させた。得られた白色結晶を含む溶液を濾過し、アセトンでよく洗浄した後に真空乾燥することで、水溶性ポリマーを20.2g得た。得られた水溶性ポリマーを水に溶解させ、3質量%の水溶性ポリマー水溶液を調製した。 In 400 g of dimethyl sulfoxide, 20 g of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 1000, 0.55 mg of N,N-dimethyl-4-aminopyridine as a nucleophile, and 4.6 g of triethylamine are dissolved, The temperature was raised to 60° C. while stirring. Thereafter, a solution of 10.5 g of methacrylic anhydride dissolved in 50 g of dimethyl sulfoxide was added dropwise over 1 hour, and the mixture was reacted by heating and stirring at a temperature of 60° C. for 14 hours. After cooling the obtained reaction solution to room temperature, 481 g of methanol was added to the reaction solution and stirred so as to be completely mixed, so that the ratio (mass) of the reaction solution and methanol was adjusted to 1:1. bottom. By gradually adding 1500 mL of acetone into this solution, the water-soluble polymer was crystallized by a crystallization method. The resulting solution containing white crystals was filtered, washed thoroughly with acetone, and then vacuum dried to obtain 20.2 g of a water-soluble polymer. The resulting water-soluble polymer was dissolved in water to prepare a 3 mass % water-soluble polymer aqueous solution.
 (光配向層形成用組成物の調製)
 下記成分を混合し、得られた混合物を温度80℃で1時間撹拌することにより、光配向層形成用組成物を得た。
・光配向性ポリマー〔特開2013-33249号公報に記載の下記式で表されるポリマー(数平均分子量:約28200、Mw/Mn:1.82)〕:2部
Figure JPOXMLDOC01-appb-C000002
・溶剤〔o-キシレン〕:98部
(Preparation of composition for forming photo-alignment layer)
A composition for forming a photo-alignment layer was obtained by mixing the following components and stirring the resulting mixture at a temperature of 80° C. for 1 hour.
· Photo-alignable polymer [Polymer represented by the following formula described in JP-A-2013-33249 (number average molecular weight: about 28200, Mw / Mn: 1.82)]: 2 parts
Figure JPOXMLDOC01-appb-C000002
・Solvent [o-xylene]: 98 parts
 (第1組成物の調製)
 以下の各成分を混合し、温度80℃で1時間撹拌することにより、第1組成物を得た。
吸収異方性を有する色素には、特開2013-101328号公報の実施例に記載の下記式で表されるアゾ色素を用いた。
・下記式で表される重合性液晶化合物(A1):75部
Figure JPOXMLDOC01-appb-C000003
・下記式で表される重合性液晶化合物(A2):25部
Figure JPOXMLDOC01-appb-C000004
・下記式で表される吸収異方性を有する色素(アゾ色素1):2.5部
Figure JPOXMLDOC01-appb-C000005
・下記式で表される吸収異方性を有する色素(アゾ色素2):2.5部
Figure JPOXMLDOC01-appb-C000006
・下記式で表される吸収異方性を有する色素(アゾ色素3):2.5部
Figure JPOXMLDOC01-appb-C000007
・重合開始剤〔2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバ・スペシャルティ・ケミカルズ(株)製)〕:6部
・レベリング剤〔ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)〕:1.2部
・溶剤〔o-キシレン〕:250部
(Preparation of first composition)
A first composition was obtained by mixing the following components and stirring at a temperature of 80° C. for 1 hour.
As the dye having absorption anisotropy, an azo dye represented by the following formula described in Examples of JP-A-2013-101328 was used.
- A polymerizable liquid crystal compound (A1) represented by the following formula: 75 parts
Figure JPOXMLDOC01-appb-C000003
- A polymerizable liquid crystal compound (A2) represented by the following formula: 25 parts
Figure JPOXMLDOC01-appb-C000004
- A dye having absorption anisotropy represented by the following formula (azo dye 1): 2.5 parts
Figure JPOXMLDOC01-appb-C000005
- A dye having absorption anisotropy represented by the following formula (azo dye 2): 2.5 parts
Figure JPOXMLDOC01-appb-C000006
- A dye having absorption anisotropy represented by the following formula (azo dye 3): 2.5 parts
Figure JPOXMLDOC01-appb-C000007
・Polymerization initiator [2-dimethylamino-2-benzyl-1-(4-morpholinophenyl)butan-1-one (Irgacure 369; manufactured by Ciba Specialty Chemicals Co., Ltd.)]: 6 parts ・Leveling agent [poly Acrylate compound (BYK-361N; manufactured by BYK-Chemie)]: 1.2 parts Solvent [o-xylene]: 250 parts
 (第2組成物の調製)
 以下の各成分を混合し、温度80℃で1時間撹拌することで、第2組成物を得た。
・下記式で表される重合性液晶化合物(X1):100部
Figure JPOXMLDOC01-appb-C000008
・下記式で表される重合性液晶化合物(X2):33部
Figure JPOXMLDOC01-appb-C000009
・重合開始剤〔2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア(登録商標)369;BASFジャパン社製)〕:8部
・レベリング剤〔ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)〕:0.1部
・反応添加剤〔LALOMER LR9000;BASFジャパン社製〕:6.7部
・溶剤〔シクロペンタノン〕:546部
・溶剤〔N-メチルピロリドン〕:364部
(Preparation of second composition)
A second composition was obtained by mixing each of the following components and stirring at a temperature of 80° C. for 1 hour.
- A polymerizable liquid crystal compound (X1) represented by the following formula: 100 parts
Figure JPOXMLDOC01-appb-C000008
- A polymerizable liquid crystal compound (X2) represented by the following formula: 33 parts
Figure JPOXMLDOC01-appb-C000009
・Polymerization initiator [2-dimethylamino-2-benzyl-1-(4-morpholinophenyl)butan-1-one (Irgacure (registered trademark) 369; manufactured by BASF Japan)]: 8 parts ・Leveling agent [polyacrylate Compound (BYK-361N; manufactured by BYK-Chemie)]: 0.1 parts Reaction additive [LALOMER LR9000; manufactured by BASF Japan]: 6.7 parts Solvent [cyclopentanone]: 546 parts Solvent [N -methylpyrrolidone]: 364 parts
 (配向層形成用組成物の調製)
 市販の配向性ポリマーであるサンエバーSE-610(日産化学工業株式会社製)に、2-ブトキシエタノールを加えて配向層形成用組成物を調製した。配向層形成用組成物の全量に対する固形分の含有割合は1%であり、溶剤の含有割合は99%であった。配向性ポリマーの固形分量は、納品仕様書に記載された濃度から換算した。
(Preparation of composition for forming alignment layer)
A composition for forming an orientation layer was prepared by adding 2-butoxyethanol to Sanever SE-610 (manufactured by Nissan Chemical Industries, Ltd.), which is a commercially available orientation polymer. The solid content was 1% and the solvent content was 99% with respect to the total amount of the alignment layer-forming composition. The solid content of the oriented polymer was converted from the concentration described in the delivery specification.
 (第3組成物の調製)
 以下の各成分を混合し、温度80°で1時間撹拌した後、室温まで冷却し、第3組成物を得た。以下に示す含有割合は、第3組成物の全量に対する各成分の含有割合である。
・下記式で表される重合性液晶化合物〔LC242;BASF社製〕:19.2%
Figure JPOXMLDOC01-appb-C000010
・重合開始剤〔イルガキュア907;BASFジャパン社製〕:0.5%
・レベリング剤〔ビックケミージャパン製;BYK361N〕:0.1%
・反応添加剤〔Laromer LR-9000;BASFジャパン社製〕:1.1%
・溶剤〔プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)〕:79.1%
(Preparation of third composition)
The following components were mixed, stirred at a temperature of 80° for 1 hour, and then cooled to room temperature to obtain a third composition. The content ratio shown below is the content ratio of each component with respect to the total amount of the third composition.
· A polymerizable liquid crystal compound represented by the following formula [LC242; manufactured by BASF]: 19.2%
Figure JPOXMLDOC01-appb-C000010
· Polymerization initiator [Irgacure 907; manufactured by BASF Japan]: 0.5%
・Leveling agent [BYK361N manufactured by BYK Chemie Japan]: 0.1%
・ Reactive additive [Laromer LR-9000; manufactured by BASF Japan]: 1.1%
・ Solvent [propylene glycol 1-monomethyl ether 2-acetate (PGMEA)]: 79.1%
 (拡散防止層付き直線偏光層の作製)
 離型ポリエチレンテレフタレート(PET)フィルム(ユニチカ(株)製「FF-50」、片面離型処理PETフィルム、基材の厚み:50μm)の離型処理面に、上記で調製した3質量%の水溶性ポリマー水溶液をバーコーターで塗布し、温度100℃で2分間乾燥して水溶性ポリマーの膜からなる厚み2μmの第1拡散防止層を形成した。
(Preparation of linear polarizing layer with anti-diffusion layer)
Release polyethylene terephthalate (PET) film ("FF-50" manufactured by Unitika Ltd., single-sided release-treated PET film, substrate thickness: 50 μm) was coated with 3% by mass of the aqueous solution prepared above. A water-soluble polymer aqueous solution was applied using a bar coater and dried at a temperature of 100° C. for 2 minutes to form a 2 μm-thick first diffusion prevention layer comprising a film of a water-soluble polymer.
 第1拡散防止層の表面にプラズマ処理を施した後、バーコーターを用いて上記で調製した光配向層形成用組成物を塗布して塗布膜を形成した。この塗布膜を温度100℃で2分間乾燥することにより溶剤を除去して乾燥被膜を形成した。該乾燥被膜に偏光紫外光を20mJ/cm(313nm基準)の強度となるように照射することで配向規制力を付与し、厚み50nmの第1配向層を形成した。 After plasma treatment was applied to the surface of the first anti-diffusion layer, the composition for forming a photo-alignment layer prepared above was applied using a bar coater to form a coating film. This coating film was dried at a temperature of 100° C. for 2 minutes to remove the solvent and form a dry film. The dry film was irradiated with polarized ultraviolet light at an intensity of 20 mJ/cm 2 (313 nm standard) to impart an alignment regulating force to form a first alignment layer having a thickness of 50 nm.
 第1配向層上に、バーコーターを用いて上記で調製した第1組成物を塗布し、塗布膜を形成した。さらに、温度110℃で2分間乾燥することにより溶剤を除去するとともに、重合性液晶化合物を液体相に相転移させた後、室温まで冷却して該重合性液晶化合物をスメクチック液晶状態に相転移させた。その後、得られた乾燥被膜に高圧水銀灯を用いて紫外光を1000mJ/cm(365nm基準)で照射して、該乾燥被膜に含まれる重合性液晶化合物のスメクチック液晶状態を保持したまま重合させることで厚み3μmの第1硬化層を形成した。 The first composition prepared above was applied onto the first alignment layer using a bar coater to form a coating film. Furthermore, the solvent is removed by drying at a temperature of 110° C. for 2 minutes, and the polymerizable liquid crystal compound is phase-transitioned to a liquid phase, and then cooled to room temperature to phase-transition the polymerizable liquid crystal compound to a smectic liquid crystal state. rice field. Thereafter, the obtained dry film is irradiated with ultraviolet light at 1000 mJ/cm 2 (365 nm standard) using a high-pressure mercury lamp to polymerize the polymerizable liquid crystal compound contained in the dry film while maintaining the smectic liquid crystal state. to form a first cured layer having a thickness of 3 μm.
 第1硬化層上にプラズマ処理を施した後、バーコーターを用いて上記で調製した3質量%の水溶性ポリマー水溶液をバーコーターで塗布し、温度100℃で2分間乾燥して水溶性ポリマーの膜からなる厚み2μmの第2拡散防止層を形成し、拡散防止層付き直線偏光層を得た。拡散防止層付き直線偏光層の層構造は、離型PETフィルム/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層であった。 After plasma treatment is applied to the first cured layer, the 3 mass% water-soluble polymer aqueous solution prepared above is applied with a bar coater and dried at a temperature of 100 ° C. for 2 minutes to remove the water-soluble polymer. A second anti-diffusion layer made of a film and having a thickness of 2 μm was formed to obtain a linear polarizing layer with an anti-diffusion layer. The layer structure of the linear polarizing layer with the diffusion prevention layer was release PET film/first diffusion prevention layer/linear polarization layer (first alignment layer/first cured layer)/second diffusion prevention layer.
 (基材層付き第1位相差層の作製)
 離型ポリエチレンテレフタレート(PET)フィルム(ユニチカ(株)製「FF-50」、片面離型処理PETフィルム、基材の厚み:50μm)の離型処理面とは反対側の表面に、コロナ処理を施した。このコロナ処理面に、上記で調製した光配向層形成用組成物をバーコーターで塗布し、温度120℃で2分間乾燥させた後、室温まで冷却して乾燥被膜を形成した。該乾燥被膜に偏光紫外光を100mJ/cm(313nm基準)の強度となるように照射し、厚み100nmの第2配向層を形成した。
(Preparation of first retardation layer with substrate layer)
Corona treatment was applied to the surface of a release polyethylene terephthalate (PET) film ("FF-50" manufactured by Unitika Ltd., single-sided release-treated PET film, substrate thickness: 50 μm) opposite to the release-treated surface. provided. On this corona-treated surface, the composition for forming a photo-alignment layer prepared above was applied with a bar coater, dried at a temperature of 120° C. for 2 minutes, and then cooled to room temperature to form a dry film. The dry film was irradiated with polarized ultraviolet light at an intensity of 100 mJ/cm 2 (313 nm standard) to form a second alignment layer with a thickness of 100 nm.
 第2配向層上に、バーコーターを用いて上記で調製した第2組成物を塗布し、塗布膜を形成した。さらに、温度120℃で2分間加熱乾燥した後、室温まで冷却して乾燥被膜を得た。その後、該乾燥被膜に、紫外線照射装置を用いて、露光量1000mJ/cm(365nm基準)の紫外線を照射することにより、重合性液晶化合物が第1位相差層の面に対して水平方向に配向した状態で硬化した厚み2μmの第2硬化層を形成し、基材層付き第1位相差層を得た。基材層付き第1位相差層の層構造は、離型PETフィルム/第1位相差層(第2配向層/第2硬化層)であった。 The second composition prepared above was applied onto the second alignment layer using a bar coater to form a coating film. Further, after drying by heating at a temperature of 120° C. for 2 minutes, it was cooled to room temperature to obtain a dry film. After that, the dry film is irradiated with ultraviolet rays with an exposure amount of 1000 mJ/cm 2 (365 nm standard) using an ultraviolet irradiation device, so that the polymerizable liquid crystal compound is oriented horizontally with respect to the surface of the first retardation layer. A second cured layer having a thickness of 2 μm was formed by curing in an oriented state to obtain a first retardation layer with a substrate layer. The layer structure of the first retardation layer with the substrate layer was release PET film/first retardation layer (second orientation layer/second cured layer).
 (基材層付き第2位相差層の作製)
 シクロオレフィンポリマー(COP)フィルム(ZF-14、日本ゼオン株式会社製)の表面を、コロナ処理装置を用いて出力0.3kW、処理速度3m/分の条件で1回処理した。コロナ処理を施した表面に、上記で調製した配向層形成用組成物をバーコーターを用いて塗布し、温度90℃で1分間乾燥して第3配向層を得た。第3配向層の膜厚をレーザー顕微鏡で測定したところ1μmであった。
(Preparation of second retardation layer with substrate layer)
The surface of a cycloolefin polymer (COP) film (ZF-14, manufactured by Nippon Zeon Co., Ltd.) was treated once with a corona treatment apparatus under the conditions of an output of 0.3 kW and a treatment speed of 3 m/min. The alignment layer-forming composition prepared above was applied to the corona-treated surface using a bar coater and dried at a temperature of 90° C. for 1 minute to obtain a third alignment layer. The film thickness of the third alignment layer was measured with a laser microscope and found to be 1 μm.
 第3配向層上に、バーコーターを用いて上記で調製した第3組成物を塗布し、塗布膜を形成した、さらに、温度90℃で1分間乾燥した後、高圧水銀ランプを用いて紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:1000mJ/cm)することにより、重合性液晶化合物が第2位相差層の面に対して垂直方向に配向した状態で硬化した厚み500nmの第3硬化層を形成し、基材層付き第2位相差層を得た。基材層付き第2位相差層の層構造は、COPフィルム/第2位相差層(第3配向層/第3硬化層)であった。 On the third alignment layer, the third composition prepared above was applied using a bar coater to form a coating film, further dried at a temperature of 90 ° C. for 1 minute, and then irradiated with ultraviolet rays using a high-pressure mercury lamp. By irradiating (in a nitrogen atmosphere, integrated light amount at a wavelength of 365 nm: 1000 mJ/cm 2 ), the polymerizable liquid crystal compound is cured in a state perpendicular to the surface of the second retardation layer. A cured layer was formed to obtain a second retardation layer with a substrate layer. The layer structure of the second retardation layer with the substrate layer was COP film/second retardation layer (third orientation layer/third cured layer).
 (接着剤組成物の調製)
 以下に示す成分を混合した後、脱泡して、カチオン重合型の接着層組成物を調製した。
カチオン重合開始剤は、50質量%プロピレンカーボネート溶液として配合し、その固形分量を示した。
・1,6-ヘキサンジオールジグリシジルエーテル(EX-212L、ナガセケムテックス(株)製):25部
・4-ヒドロキシブチルビニルエーテル:10部
・ビスフェノールF型エポキシ樹脂(EXA-830CRP、DIC(株)製):65部・カチオン重合開始剤(CPI-100P、サンアプロ(株)製、50質量%溶液):3部
(Preparation of adhesive composition)
After mixing the components shown below, the mixture was defoamed to prepare a cationically polymerizable adhesive layer composition.
The cationic polymerization initiator was blended as a 50% by mass propylene carbonate solution, and its solid content is shown.
· 1,6-hexanediol diglycidyl ether (EX-212L, manufactured by Nagase ChemteX Corporation): 25 parts · 4-hydroxybutyl vinyl ether: 10 parts · Bisphenol F type epoxy resin (EXA-830CRP, DIC Corporation) product): 65 parts Cationic polymerization initiator (CPI-100P, manufactured by San-Apro Co., Ltd., 50% by mass solution): 3 parts
 (拡散防止層付き円偏光板の作製)
 上記で得た拡散防止層付き直線偏光層の第2拡散防止層側と、基材層付き第1位相差層の第1位相差層側とを、第2貼合層(リンテック社製、感圧式粘着剤5μm厚の粘着剤層)を介して、直線偏光層の吸収軸と第1位相差層の遅相軸とのなす角度が45°となるように貼合して、直線偏光層と第1位相差層との積層体を得た。この積層体の層構造は、離型PETフィルム/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/離型PETフィルムであった。
(Preparation of circularly polarizing plate with anti-diffusion layer)
The second bonding layer (manufactured by Lintec Corporation, sensor A pressure-sensitive adhesive layer having a thickness of 5 μm) is laminated so that the angle formed by the absorption axis of the linear polarizing layer and the slow axis of the first retardation layer is 45 °, and the linear polarizing layer and A laminate with the first retardation layer was obtained. The layer structure of this laminate is release PET film/first anti-diffusion layer/linearly polarizing layer (first alignment layer/first cured layer)/second anti-diffusion layer/second bonding layer (adhesive layer) /first retardation layer (second cured layer/second orientation layer)/release PET film.
 上記で得た基材層付き第2位相差層の第2位相差層の表面にコロナ処理を施した。上記で得た積層体(直線偏光層と第1位相差層との積層体)の第1位相差層側の離型PETフィルムを剥離して露出した面と、基材層付き第2位相差層のコロナ処理面とを、上記で調製した接着剤組成物を介して貼合し、紫外線照射装置(SPOT CURE SP-7、ウシオ電機株式会社製)を用いて露光量500mJ/cm(365nm基準)の紫外線を照射した。これにより、接着剤組成物から厚み2μmの接着剤層としての第3貼合層を形成し、拡散防止層付き円偏光板を得た。拡散防止層付き円偏光板の層構造は、離型PETフィルム/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/COPフィルムであった。拡散防止層付き円偏光板では、直線偏光層から第2位相差層までが円偏光板を構成する。 The surface of the second retardation layer of the second retardation layer with the substrate layer obtained above was subjected to corona treatment. The surface exposed by peeling the release PET film on the first retardation layer side of the laminate (laminate of the linear polarizing layer and the first retardation layer) obtained above and the second retardation with the base layer The corona-treated surface of the layer was laminated through the adhesive composition prepared above, and an exposure amount of 500 mJ/cm 2 (365 nm) was applied using an ultraviolet irradiation device (SPOT CURE SP-7, manufactured by Ushio Inc.). standard) was irradiated. As a result, a third bonding layer as an adhesive layer having a thickness of 2 μm was formed from the adhesive composition to obtain a circularly polarizing plate with a diffusion prevention layer. The layer structure of the circularly polarizing plate with an anti-diffusion layer is a release PET film/first anti-diffusion layer/linear polarizing layer (first alignment layer/first cured layer)/second anti-diffusion layer/second bonding layer ( Adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second retardation layer (third cured layer / third alignment layer) / It was a COP film. In the circularly polarizing plate with the anti-diffusion layer, the linearly polarizing layer to the second retardation layer constitute the circularly polarizing plate.
 [第1粘着剤層付き剥離フィルムの作製]
 (粘着剤組成物(2)の調製)
 冷却管、窒素導入管、温度計及び撹拌機を備えた反応器に、アセトン81.8部、アクリル酸ブチル98.4部、アクリル酸0.6部、及びアクリル酸2-ヒドロキシエチル1.0部の混合溶液を仕込み、窒素ガスで装置内の空気を置換して酸素不含としながら、内温を55℃に上げた。その後、アゾビスイソブチロニトリル(重合開始剤)0.14部をアセトン10部に溶かした溶液を全量添加した。重合開始剤を添加した1時間後に、単量体を除くアクリル樹脂の濃度が35%になるよう、添加速度17.3部/hrでアセトンを連続的に反応器に添加しながら、内温54~56℃で12時間保温し、最後に酢酸エチルを添加して、アクリル樹脂の濃度が20%となるように調節して、アクリル樹脂溶液(2)を得た。
[Preparation of release film with first pressure-sensitive adhesive layer]
(Preparation of adhesive composition (2))
81.8 parts of acetone, 98.4 parts of butyl acrylate, 0.6 parts of acrylic acid, and 1.0 part of 2-hydroxyethyl acrylate were added to a reactor equipped with a condenser, nitrogen inlet, thermometer and stirrer. Part of the mixed solution was charged, and the internal temperature was raised to 55° C. while replacing the air in the apparatus with nitrogen gas to make it oxygen-free. Thereafter, a solution obtained by dissolving 0.14 parts of azobisisobutyronitrile (polymerization initiator) in 10 parts of acetone was added to the whole amount. One hour after the addition of the polymerization initiator, the inner temperature was increased to 54 while continuously adding acetone to the reactor at an addition rate of 17.3 parts/hr so that the concentration of the acrylic resin excluding the monomers was 35%. The temperature was maintained at ~56°C for 12 hours, and finally ethyl acetate was added to adjust the concentration of the acrylic resin to 20% to obtain an acrylic resin solution (2).
 アクリル樹脂溶液(2)100部(不揮発分量)、イソシアネート系化合物(コロネートL、トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75%)(東ソー株式会社製))0.5部、シラン系化合物(KBM-403、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製))0.5部を混合し、固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物(2)を得た。 Acrylic resin solution (2) 100 parts (nonvolatile content), isocyanate compound (Coronate L, ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate (solid content concentration 75%) (manufactured by Tosoh Corporation)) 0.5 part, 0.5 part of a silane compound (KBM-403, 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)), and ethyl acetate is added so that the solid content concentration becomes 10%. Then, a pressure-sensitive adhesive composition (2) was obtained.
 (第1粘着剤層付き剥離フィルムの作製)
 剥離フィルムとして、離型処理されたポリエチレンテレフタレートフィルム(厚み38μm)を用い、その離型処理面に、アプリケータを利用して乾燥後の厚みが15μmになるように粘着剤組成物(2)を塗布した。塗布層を温度100℃で1分間乾燥して、第1粘着剤層付き剥離フィルムを得た。その後、第1粘着剤層上に、剥離フィルムとしての離型処理されたポリエチレンテレフタレート(PET)フィルム(厚み38μm)を貼合し、温度23℃、相対湿度50%RHの条件で7日間養生させて、第1粘着剤層付き剥離フィルムを得た。第1粘着剤層付き剥離フィルムの層構造は、剥離フィルム/第1粘着剤層/剥離フィルムであった。
(Preparation of release film with first pressure-sensitive adhesive layer)
A release-treated polyethylene terephthalate film (thickness: 38 µm) was used as the release film, and the pressure-sensitive adhesive composition (2) was applied to the release-treated surface using an applicator so that the thickness after drying was 15 µm. applied. The coating layer was dried at a temperature of 100° C. for 1 minute to obtain a release film with a first pressure-sensitive adhesive layer. After that, a release-treated polyethylene terephthalate (PET) film (thickness: 38 μm) was laminated as a release film on the first adhesive layer, and cured for 7 days under conditions of a temperature of 23° C. and a relative humidity of 50% RH. Thus, a release film with a first pressure-sensitive adhesive layer was obtained. The layer structure of the release film with the first pressure-sensitive adhesive layer was release film/first pressure-sensitive adhesive layer/release film.
 〔実施例1〕
 透明樹脂フィルムとしての厚み13μmのシクロオレフィンポリマー(COP)フィルム(ZF-14、日本ゼオン株式会社製)、及び、上記で得た拡散防止層付き円偏光板の離型PETフィルムを剥離した露出面の各々にコロナ処理を施した。このコロナ処理面どうしを、上記で調製した接着剤組成物を介して貼合し、紫外線照射装置(SPOT CURE SP-7、ウシオ電機株式会社製)を用いて露光量500mJ/cm(365nm基準)の紫外線を照射した。これにより、接着剤組成物から厚み2μmの接着剤層としての第1貼合層を形成し、透明樹脂フィルムと円偏光板との積層体を得た。この積層体の層構造は、透明樹脂フィルム(COPフィルム)/第1貼合層(接着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/COPフィルムであった。
[Example 1]
A 13 μm thick cycloolefin polymer (COP) film (ZF-14, manufactured by Zeon Corporation) as a transparent resin film, and the exposed surface of the release PET film of the circularly polarizing plate with the diffusion prevention layer obtained above. were each subjected to corona treatment. The corona-treated surfaces were laminated together via the adhesive composition prepared above, and exposed to 500 mJ/cm 2 (365 nm standard) using an ultraviolet irradiation device (SPOT CURE SP-7, manufactured by Ushio Inc.). ) was irradiated with ultraviolet rays. As a result, a first bonding layer as an adhesive layer having a thickness of 2 μm was formed from the adhesive composition to obtain a laminate of the transparent resin film and the circularly polarizing plate. The layer structure of this laminate is transparent resin film (COP film) / first bonding layer (adhesive layer) / first diffusion prevention layer / linear polarizing layer (first orientation layer / first cured layer) / second Diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second retardation layer (second 3 cured layer/third alignment layer)/COP film.
 上記で得た積層体(透明樹脂フィルムと円偏光板との積層体)の第2位相差層側のCOPフィルムを剥離して露出した面と、上記で得た第1粘着剤層付き剥離フィルムから一方の剥離フィルムを剥離して露出した面とを貼合して、積層体(透明樹脂フィルム、円偏光板、第1粘着剤層、及び剥離フィルムの積層体)を得た。この積層体の透明樹脂フィルム面に、上記で得たセパレートフィルム付き表面保護フィルム(1)からセパレートフィルムを剥離して露出した面を貼合し、光学積層体(1)を得た。光学積層体(1)の層構造は、表面保護フィルム(1)(第1基材フィルム/第2粘着剤層)/透明樹脂フィルム(COPフィルム)/第1貼合層(接着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/第1粘着剤層/剥離フィルムであった。 The surface exposed by peeling the COP film on the second retardation layer side of the laminate (laminate of transparent resin film and circularly polarizing plate) obtained above, and the first pressure-sensitive adhesive layer-attached release film obtained above One of the release films was peeled off and the exposed surface was bonded to obtain a laminate (laminate of transparent resin film, circularly polarizing plate, first pressure-sensitive adhesive layer, and release film). The surface exposed by peeling off the separate film from the surface protective film (1) with the separate film obtained above was adhered to the transparent resin film surface of this laminate to obtain an optical laminate (1). The layer structure of the optical laminate (1) is as follows: surface protective film (1) (first base film/second adhesive layer)/transparent resin film (COP film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
 〔実施例2〕
 セパレートフィルム付き表面保護フィルム(1)に代えて、上記で得たセパレートフィルム付き表面保護フィルム(2)を用いたこと以外は、実施例1と同様にして、光学積層体(2)を得た。光学積層体(2)の層構造は、表面保護フィルム(2)(第1基材フィルム/第2粘着剤層)/透明樹脂フィルム(COPフィルム)/第1貼合層(接着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/第1粘着剤層/剥離フィルムであった。
[Example 2]
An optical laminate (2) was obtained in the same manner as in Example 1, except that the surface protective film (2) with a separate film obtained above was used instead of the surface protective film (1) with a separate film. . The layer structure of the optical laminate (2) is as follows: surface protective film (2) (first base film/second adhesive layer)/transparent resin film (COP film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
 〔実施例3〕
 透明樹脂フィルムとしてのシクロオレフィンポリマー(COP)フィルムに代えて、厚み20μmのトリアセチルセルロース(TAC)フィルム(KC2CT、コニカミノルタ株式会社製)を用いたこと以外は、実施例1と同様にして、光学積層体(3)を得た。光学積層体(3)の層構造は、表面保護フィルム(1)(第1基材フィルム/第2粘着剤層)/透明樹脂フィルム(TACフィルム)/第1貼合層(接着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/第1粘着剤層/剥離フィルムであった。
[Example 3]
In the same manner as in Example 1, except that a 20 μm-thick triacetyl cellulose (TAC) film (KC2CT, manufactured by Konica Minolta, Inc.) was used instead of the cycloolefin polymer (COP) film as the transparent resin film. An optical laminate (3) was obtained. The layer structure of the optical laminate (3) is as follows: surface protective film (1) (first base film/second adhesive layer)/transparent resin film (TAC film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
 〔実施例4〕
 透明樹脂フィルムとしてのシクロオレフィンポリマー(COP)フィルムに代えて、厚み20μmのトリアセチルセルロース(TAC)フィルム(KC2CT、コニカミノルタ株式会社製)を用いたこと以外は、実施例2と同様にして、光学積層体(4)を得た。光学積層体(4)の層構造は、表面保護フィルム(2)(第1基材フィルム/第2粘着剤層)/透明樹脂フィルム(TACフィルム)/第1貼合層(接着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/第1粘着剤層/剥離フィルムであった。
[Example 4]
In the same manner as in Example 2, except that a 20 μm-thick triacetyl cellulose (TAC) film (KC2CT, manufactured by Konica Minolta, Inc.) was used instead of the cycloolefin polymer (COP) film as the transparent resin film. An optical laminate (4) was obtained. The layer structure of the optical laminate (4) is as follows: surface protective film (2) (first base film/second adhesive layer)/transparent resin film (TAC film)/first bonding layer (adhesive layer)/ First diffusion prevention layer / linear polarizing layer (first alignment layer / first cured layer) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second 2 orientation layer)/3rd bonding layer (adhesive layer)/2nd retardation layer (3rd cured layer/3rd orientation layer)/1st adhesive layer/release film.
 〔比較例1〕
 上記で得た拡散防止層付き円偏光板の第2位相差層側のCOPフィルムを剥離して露出した面と、上記で得た第1粘着剤層付き剥離フィルムから一方の剥離フィルムを剥離して露出した面とを貼合して、積層体(円偏光板、第1粘着剤層、及び剥離フィルムの積層体)を得た。この積層体の円偏光板側の離型PETフィルムを剥離して露出した面と、上記で得たセパレートフィルム付き表面保護フィルム(2)からセパレートフィルムを剥離して露出した面を貼合し、光学積層体(5)を得た。光学積層体(5)の層構造は、表面保護フィルム(2)(第1基材フィルム/第2粘着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/第1粘着剤層/剥離フィルムであった。
[Comparative Example 1]
The surface exposed by peeling off the COP film on the second retardation layer side of the circularly polarizing plate with the diffusion prevention layer obtained above and one release film from the release film with the first pressure-sensitive adhesive layer obtained above. A laminate (laminate of circularly polarizing plate, first pressure-sensitive adhesive layer, and release film) was obtained. The surface exposed by peeling the release PET film on the circularly polarizing plate side of the laminate and the surface exposed by peeling the separate film from the surface protective film (2) with the separate film obtained above are bonded together, An optical laminate (5) was obtained. The layer structure of the optical laminate (5) is as follows: surface protective film (2) (first base film/second adhesive layer)/first anti-diffusion layer/linear polarizing layer (first orientation layer/first cured layer ) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second Retardation layer (third cured layer/third orientation layer)/first pressure-sensitive adhesive layer/release film.
 〔比較例2〕
 セパレートフィルム付き表面保護フィルム(2)に代えて、上記で得たセパレートフィルム付き表面保護フィルム(1)を用いたこと以外は、比較例1と同様にして、光学積層体(6)を得た。光学積層体(6)の層構造は、表面保護フィルム(1)(第1基材フィルム/第2粘着剤層)/第1拡散防止層/直線偏光層(第1配向層/第1硬化層)/第2拡散防止層/第2貼合層(粘着剤層)/第1位相差層(第2硬化層/第2配向層)/第3貼合層(接着剤層)/第2位相差層(第3硬化層/第3配向層)/第1粘着剤層/剥離フィルムであった。
[Comparative Example 2]
An optical laminate (6) was obtained in the same manner as in Comparative Example 1, except that the surface protective film (1) with a separate film obtained above was used instead of the surface protective film (2) with a separate film. . The layer structure of the optical laminate (6) is as follows: surface protective film (1) (first base film/second adhesive layer)/first anti-diffusion layer/linear polarizing layer (first orientation layer/first cured layer ) / second diffusion prevention layer / second bonding layer (adhesive layer) / first retardation layer (second cured layer / second alignment layer) / third bonding layer (adhesive layer) / second Retardation layer (third cured layer/third orientation layer)/first pressure-sensitive adhesive layer/release film.
 [評価]
 (第1基材フィルムの引張弾性率の測定)
 表面保護フィルム(1)及び(2)に用いた第1基材フィルムから、長さ100mm×幅25mmの長方形の試験片(1)を切り出した。引張試験機〔(株)島津製作所製 AUTOGRAPH AG-1S試験機〕の上下つかみ具で、つかみ具の間隔が5cmとなるように試験片(1)の長辺方向両端を挟み、温度23℃、相対湿度55%の環境下、引張速度1mm/分で試験片を長辺方向に引張り、得られる応力-ひずみ曲線における初期の直線の傾きから、23℃でのMDにおける引張弾性率[MPa]を算出した。結果を表1に示す。
[evaluation]
(Measurement of tensile modulus of first base film)
A rectangular test piece (1) having a length of 100 mm and a width of 25 mm was cut out from the first base film used for the surface protection films (1) and (2). Both ends of the test piece (1) in the long side direction were sandwiched between the upper and lower grips of a tensile tester [AUTOGRAPH AG-1S tester manufactured by Shimadzu Corporation] so that the distance between the grips was 5 cm, and the temperature was 23 ° C. In an environment with a relative humidity of 55%, the test piece is pulled in the long side direction at a tensile speed of 1 mm / min, and the resulting stress - From the slope of the initial straight line in the strain curve, the tensile modulus [MPa] in MD at 23 ° C. Calculated. Table 1 shows the results.
 (透明樹脂フィルムの引張弾性率の測定)
 実施例で用いた透明樹脂フィルムを用いたこと以外は、上記第1基材フィルムの引張弾性率の測定と同様の手順で透明樹脂フィルムの引張弾性率[MPa]を算出した。結果を表1に示す。
(Measurement of tensile modulus of transparent resin film)
The tensile elastic modulus [MPa] of the transparent resin film was calculated in the same manner as the measurement of the tensile elastic modulus of the first base film, except that the transparent resin film used in Examples was used. Table 1 shows the results.
 (密着力の測定)
 実施例及び比較例で得た光学積層体(1)~(6)から、幅25mm×長さ約150mmの試験片(2)を切り出した。引張試験機〔(株)島津製作所製 AUTOGRAPH AG-1S試験機〕を用いて、試験片(2)の長さ方向の一端をつかみ、温度23℃、相対湿度60%の環境下、クロスヘッドスピード(つかみ移動速度)200mm/分で、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法-第1部:90度はく離」に準拠した90°剥離試験を行い、試験片(2)から表面保護フィルムを剥離する際の剥離力、及び、試験片(2)から剥離フィルムを剥離する際の剥離力を測定した。表面保護フィルムを剥離する際の剥離力を、表面保護フィルムと透明樹脂フィルムとの間の密着力F1とし、剥離フィルムを剥離する際の剥離力を第1粘着剤層と剥離フィルムとの間の密着力F2とした。結果を表1に示す。
(Measurement of adhesion strength)
A test piece (2) having a width of 25 mm and a length of about 150 mm was cut out from the optical laminates (1) to (6) obtained in Examples and Comparative Examples. Using a tensile tester [AUTOGRAPH AG-1S tester manufactured by Shimadzu Corporation], one end of the test piece (2) in the length direction was gripped, and the crosshead speed was measured under an environment of a temperature of 23 ° C. and a relative humidity of 60%. (Grip movement speed) 200 mm / min, 90 ° peel test in accordance with JIS K 6854-1: 1999 "Adhesive-Peeling adhesive strength test method-Part 1: 90 degree peel", test piece (2 ), and the peel force when peeling the release film from the test piece (2) were measured. The peeling force when peeling the surface protective film is the adhesion force F1 between the surface protective film and the transparent resin film, and the peeling force when peeling the peeling film is the force between the first adhesive layer and the peeling film. The adhesion force was set to F2. Table 1 shows the results.
 (剥離フィルムの剥離試験)
 実施例及び比較例で得た光学積層体(1)~(6)のそれぞれから、幅80mm×長さ約50mmの試験片(3)を切り出した。試験片(3)の表面保護フィルム側を、粘着剤層(感圧式粘着剤、5μm厚)を介してコーニングガラス(厚み0.4mm)に貼合した。コーニングガラスに貼合した試験片(3)の剥離フィルムに剥離用テープ(セロテープ(登録商標)CT-24;ニチバン株式会社製)を貼合した。剥離用テープは、幅24mm、長さ80mmの大きさを有し、試験片(3)の一辺を跨ぎ、剥離用テープの長さ方向の一方の端から30mmの長さの範囲を剥離フィルムの表面上に取り付けた(図3を参照。)。これを、高速剥離試験機((株)今田製作所製)の評価ステージにテープを用いて固定した。
(Peeling test of peeling film)
A test piece (3) having a width of 80 mm and a length of about 50 mm was cut out from each of the optical laminates (1) to (6) obtained in Examples and Comparative Examples. The surface protective film side of the test piece (3) was pasted to Corning glass (thickness: 0.4 mm) via an adhesive layer (pressure-sensitive adhesive, 5 μm thick). A release tape (Cellotape (registered trademark) CT-24; manufactured by Nichiban Co., Ltd.) was attached to the release film of the test piece (3) attached to Corning glass. The peeling tape has a width of 24 mm and a length of 80 mm. Mounted on the surface (see Figure 3). This was fixed to the evaluation stage of a high-speed peeling tester (manufactured by Imada Seisakusho Co., Ltd.) using a tape.
 次に、剥離用テープのうちの試験片(3)に取り付けた端部とは反対側の端部を、高速剥離試験機の把持部で把持し、試験片(3)の面方向に対する角度(剥離角度)を180°、剥離速度を2.4m/minとして剥離する180°剥離試験を行った。この試験の結果を次の基準で評価した。
  A:剥離フィルムの引き起こし力が2N以下であった。
  B:剥離フィルムの引き起こし力が2N超であった。
Next, the end of the peeling tape opposite to the end attached to the test piece (3) is held by the gripping part of the high-speed peel tester, and the angle ( A 180° peeling test was conducted with a peeling angle of 180° and a peeling speed of 2.4 m/min. The results of this test were evaluated according to the following criteria.
A: The lifting force of the release film was 2 N or less.
B: The lifting force of the release film was over 2N.
 (貼合試験)
 実施例及び比較例で得た光学積層体(1)~(6)のそれぞれから、160mm×80mmの試験片(4)を切り出した。高精度精密貼合機(ハルテックHAL650:三共社製)を用いて、試験片(4)の表面保護フィルム側を、高精度精密貼合機の上吸盤側に吸着させた状態で剥離フィルムを剥離し、露出した第1粘着剤層を、高精度精密貼合機のメッシュスクリーン側に配置した厚み75μmのポリイミドフィルム(ユーピレックス-S 75S;宇部興産製)に貼合した。貼合後の積層体を取り出し、吸引孔の痕の有無を確認し、次の基準で評価した。
  a:試験片(4)に吸引孔の痕が見られなかった。
  b:試験片(4)又は表面保護フィルムに吸引孔の痕が見られた。
(Lamination test)
A test piece (4) of 160 mm×80 mm was cut out from each of the optical laminates (1) to (6) obtained in Examples and Comparative Examples. Using a high-precision precision laminating machine (HALTEC HAL650: manufactured by Sankyo Co., Ltd.), the surface protective film side of the test piece (4) is adhered to the upper sucker side of the high-precision precision laminating machine, and the release film is peeled off. Then, the exposed first pressure-sensitive adhesive layer was laminated to a 75 μm thick polyimide film (Upilex-S 75S; manufactured by Ube Industries) placed on the mesh screen side of a high-precision precision laminator. The laminated body after bonding was taken out, and the presence or absence of traces of suction holes was checked and evaluated according to the following criteria.
a: No marks of suction holes were found on the test piece (4).
b: Traces of suction holes were observed on the test piece (4) or the surface protection film.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 1,2 光学積層体、10 表面保護フィルム、11 第1基材フィルム(基材フィルム)、12 第2粘着剤層、15 透明樹脂フィルム、21 第1粘着剤層、23 剥離フィルム、25 第1貼合層、30,40 円偏光板、31 直線偏光層、32 第2貼合層、33 第1位相差層、35 第1拡散防止層(拡散防止層)、36 第2拡散防止層、37 第3貼合層、38 第2位相差層、45 剥離用テープ、46 吸引ステージ。 1, 2 optical laminate, 10 surface protective film, 11 first base film (base film), 12 second adhesive layer, 15 transparent resin film, 21 first adhesive layer, 23 release film, 25 first Bonding layers 30, 40 Circularly polarizing plate 31 Linear polarizing layer 32 Second bonding layer 33 First retardation layer 35 First diffusion prevention layer (diffusion prevention layer) 36 Second diffusion prevention layer 37 Third bonding layer, 38 second retardation layer, 45 peeling tape, 46 suction stage.

Claims (12)

  1.  表面保護フィルム、透明樹脂フィルム、円偏光板、第1粘着剤層、及び剥離フィルムをこの順に有し、
     前記表面保護フィルムは、前記透明樹脂フィルムに対して剥離可能であり、
     前記円偏光板は、前記透明樹脂フィルム側から順に、重合性液晶化合物を含む第1組成物の第1硬化層を含む直線偏光層、及び、重合性液晶化合物を含む第2組成物の第2硬化層を含む第1位相差層を有し、
     前記剥離フィルムは、前記第1粘着剤層に対して剥離可能である、光学積層体。
    Having a surface protective film, a transparent resin film, a circularly polarizing plate, a first adhesive layer, and a release film in this order,
    The surface protection film is peelable from the transparent resin film,
    The circularly polarizing plate includes, in order from the transparent resin film side, a linear polarizing layer including a first cured layer of a first composition containing a polymerizable liquid crystal compound, and a second composition of a second composition containing a polymerizable liquid crystal compound. Having a first retardation layer including a cured layer,
    The optical layered body, wherein the release film is peelable from the first pressure-sensitive adhesive layer.
  2.  前記表面保護フィルムの前記透明樹脂フィルム側の表面から、前記第1粘着剤層の前記円偏光板側の表面までの距離Dは、20μm以上60μm以下であり、
     前記透明樹脂フィルムの温度23℃における引張弾性率は、1500MPa以上8000MPa以下である、請求項1に記載の光学積層体。
    The distance D from the surface of the surface protective film on the transparent resin film side to the surface of the first adhesive layer on the circularly polarizing plate side is 20 μm or more and 60 μm or less,
    The optical laminate according to claim 1, wherein the transparent resin film has a tensile elastic modulus of 1500 MPa or more and 8000 MPa or less at a temperature of 23°C.
  3.  前記表面保護フィルムは、前記透明樹脂フィルム側から順に、第2粘着剤層及び基材フィルムを有し、
     前記基材フィルムの温度23℃における引張弾性率は、2500MPa以上6000MPa以下であり、
     前記基材フィルムの厚みは、30μm以上120μm以下である、請求項1又は2に記載の光学積層体。
    The surface protection film has a second adhesive layer and a base film in order from the transparent resin film side,
    The tensile elastic modulus of the base film at a temperature of 23° C. is 2500 MPa or more and 6000 MPa or less,
    The optical laminate according to claim 1 or 2, wherein the base film has a thickness of 30 µm or more and 120 µm or less.
  4.  さらに、前記透明樹脂フィルムと前記円偏光板との間に第1貼合層を有する、請求項1~3のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, further comprising a first bonding layer between the transparent resin film and the circularly polarizing plate.
  5.  さらに、前記透明樹脂フィルムと前記円偏光板との間に拡散防止層を有する、請求項1~4のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, further comprising a diffusion prevention layer between the transparent resin film and the circularly polarizing plate.
  6.  前記拡散防止層の厚みは、5μm以下である、請求項5に記載の光学積層体。 The optical laminate according to claim 5, wherein the diffusion prevention layer has a thickness of 5 µm or less.
  7.  前記円偏光板は、前記直線偏光層と前記第1位相差層とを貼合する第2貼合層を有する、請求項1~6のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 6, wherein the circularly polarizing plate has a second bonding layer that bonds the linear polarizing layer and the first retardation layer.
  8.  前記第1組成物に含まれる前記重合性液晶化合物は、スメクチック液晶相を示す重合性液晶化合物であり、
     前記第1組成物は、さらに吸収異方性を有する色素を含む、請求項1~7のいずれか1項に記載の光学積層体。
    The polymerizable liquid crystal compound contained in the first composition is a polymerizable liquid crystal compound exhibiting a smectic liquid crystal phase,
    The optical laminate according to any one of claims 1 to 7, wherein the first composition further contains a dye having absorption anisotropy.
  9.  前記第2硬化層は、前記重合性液晶化合物が前記第1位相差層の面に対して水平方向に配向した状態で硬化している、請求項1~8のいずれか1項に記載の光学積層体。 The optical according to any one of claims 1 to 8, wherein the second cured layer is cured in a state in which the polymerizable liquid crystal compound is oriented horizontally with respect to the surface of the first retardation layer. laminate.
  10.  前記円偏光板は、さらに、前記第1位相差層の前記直線偏光層側とは反対側に、重合性液晶化合物を含む第3組成物の第3硬化層を含む第2位相差層を有する、請求項1~9のいずれか1項に記載の光学積層体。 The circularly polarizing plate further includes a second retardation layer including a third cured layer of a third composition containing a polymerizable liquid crystal compound on the side opposite to the linear polarization layer side of the first retardation layer. The optical laminate according to any one of claims 1 to 9.
  11.  前記第3硬化層は、前記重合性液晶化合物が前記第2位相差層の面に対して垂直方向に配向した状態で硬化している、請求項10に記載の光学積層体。 The optical laminate according to claim 10, wherein the third cured layer is cured with the polymerizable liquid crystal compound oriented in a direction perpendicular to the surface of the second retardation layer.
  12.  前記表面保護フィルムと前記透明樹脂フィルムとの間の密着力F1と、前記第1粘着剤層と前記剥離フィルムとの間の密着力F2とは、下記式(1)の関係を満たす、請求項1~11のいずれか1項に記載の光学積層体。
      |F1-F2|≧0.02[N/25mm]  (1)
    The adhesion force F1 between the surface protective film and the transparent resin film and the adhesion force F2 between the first adhesive layer and the release film satisfy the relationship of the following formula (1). 12. The optical laminate according to any one of 1 to 11.
    |F1-F2|≧0.02 [N/25mm] (1)
PCT/JP2022/039302 2021-11-22 2022-10-21 Optical layered body WO2023090051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280075537.7A CN118235070A (en) 2021-11-22 2022-10-21 Optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189388 2021-11-22
JP2021189388A JP2023076153A (en) 2021-11-22 2021-11-22 optical laminate

Publications (1)

Publication Number Publication Date
WO2023090051A1 true WO2023090051A1 (en) 2023-05-25

Family

ID=86396703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039302 WO2023090051A1 (en) 2021-11-22 2022-10-21 Optical layered body

Country Status (4)

Country Link
JP (1) JP2023076153A (en)
CN (1) CN118235070A (en)
TW (1) TW202326187A (en)
WO (1) WO2023090051A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191551A (en) * 2017-10-31 2019-10-31 住友化学株式会社 Laminate body
WO2020054285A1 (en) * 2018-09-12 2020-03-19 住友化学株式会社 Polarizing plate with front plate
WO2020066832A1 (en) * 2018-09-28 2020-04-02 住友化学株式会社 Polarization film and production method therefor
JP2020147029A (en) * 2019-03-05 2020-09-17 住友化学株式会社 Laminate
WO2021187099A1 (en) * 2020-03-19 2021-09-23 住友化学株式会社 Circular polarizing sheet and optical laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191551A (en) * 2017-10-31 2019-10-31 住友化学株式会社 Laminate body
WO2020054285A1 (en) * 2018-09-12 2020-03-19 住友化学株式会社 Polarizing plate with front plate
WO2020066832A1 (en) * 2018-09-28 2020-04-02 住友化学株式会社 Polarization film and production method therefor
JP2020147029A (en) * 2019-03-05 2020-09-17 住友化学株式会社 Laminate
WO2021187099A1 (en) * 2020-03-19 2021-09-23 住友化学株式会社 Circular polarizing sheet and optical laminate

Also Published As

Publication number Publication date
TW202326187A (en) 2023-07-01
JP2023076153A (en) 2023-06-01
CN118235070A (en) 2024-06-21

Similar Documents

Publication Publication Date Title
TWI472592B (en) Polarizing plate
JP2023033285A (en) Liquid crystal cured film, optical film including liquid crystal cured film, and display device
TWI732772B (en) Laminated body, circularly polarizing plate including laminated body, display device including laminated body
KR20200141535A (en) Curable adhesive for polarizing films, polarizing film, optical film and image display device
KR20160116900A (en) Complex polaritzaion plate
JP7265882B2 (en) Method for producing polarizing film, polarizer with easy-adhesion layer, polarizing film, optical film, and image display device
WO2023090051A1 (en) Optical layered body
JP7250827B2 (en) optical laminate
WO2021124905A1 (en) Composite polarization plate and liquid crystal display device
KR20240109253A (en) optical laminate
JP7219137B2 (en) Method for manufacturing polarizing film
WO2023132164A1 (en) Polarizer
WO2024024119A1 (en) Optical laminate
WO2024024890A1 (en) Optical laminate
WO2024024889A1 (en) Optical layered body
JP7128932B1 (en) optical laminate
WO2023100716A1 (en) Circularly polarizing plate with adhesive layer
JP7336319B2 (en) Method for manufacturing polarizing film
WO2023157406A1 (en) Optical laminate and image display device
JP2023174579A (en) Organic el display device having protection film
JP2024018946A (en) Circularly polarizing plate
JP7297608B2 (en) Method for manufacturing polarizing film
KR102669735B1 (en) Polarizers, polarizing films, optical films, and image display devices
JP2024018945A (en) optical laminate
KR20240016916A (en) Circularly polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895337

Country of ref document: EP

Kind code of ref document: A1