WO2023157406A1 - Optical laminate and image display device - Google Patents

Optical laminate and image display device Download PDF

Info

Publication number
WO2023157406A1
WO2023157406A1 PCT/JP2022/042566 JP2022042566W WO2023157406A1 WO 2023157406 A1 WO2023157406 A1 WO 2023157406A1 JP 2022042566 W JP2022042566 W JP 2022042566W WO 2023157406 A1 WO2023157406 A1 WO 2023157406A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
optical
layer
active energy
Prior art date
Application number
PCT/JP2022/042566
Other languages
French (fr)
Japanese (ja)
Inventor
亮 菅野
昌之 岡本
かおる ▲黒▼原
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023157406A1 publication Critical patent/WO2023157406A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical laminate.
  • the optical layered body can form an image display device such as a liquid crystal display (LCD) or an organic EL display.
  • a display screen is usually formed of an optical laminate in which a plurality of optical films are laminated.
  • the adhesion between the laminated optical film and the adhesive layer is excellent. Otherwise, peeling or cracking may occur, especially in a humid environment, which may lead to product failure.
  • Patent Document 1 discloses a laminated film having a laminated liquid crystal layer obtained by laminating at least two liquid crystal layers on one side of a base film with an adhesion-imparting layer interposed therebetween, wherein each liquid crystal layer is formed by the adhesion-imparting layer. describes an infrared reflective film in which the orientation of the
  • Patent Document 2 describes a method for manufacturing a half mirror used on the surface of an image display portion of an image display device, wherein the half mirror includes a circularly polarized light reflecting layer, an adhesive layer and a transparent substrate in this order, and the circularly polarized light reflecting layer is It includes a cholesteric liquid crystal layer, and the manufacturing method includes preparing a transfer material including a circularly polarized light reflecting layer, bonding the surface of the circularly polarized light reflecting layer of the transfer material and a transparent substrate with a curable adhesive, and A production method is described which includes curing an adhesive to form the adhesive layer having a thickness of 1 ⁇ m or more and 5 ⁇ m or less, and wherein the pencil hardness of the surface of the transfer material to be bonded to the transparent substrate is HB or less.
  • Patent Document 3 describes a laminate composed at least of a support substrate/adhesive layer/cholesteric liquid crystal layer/ultraviolet absorption layer, wherein the cholesteric liquid crystal layer has a cholesteric liquid crystal layer partially having a region exhibiting diffraction ability.
  • Optical laminates composed of optical films are described.
  • Patent Document 4 discloses a base layer having a first main surface and a second main surface, an adhesive layer provided in contact with the first main surface of the base layer, and a liquid crystal composition provided in contact with the adhesive layer. and a material-curing layer, wherein the substrate layer is made of a resin containing a polymer containing an alicyclic structure, and the first main surface of the substrate layer has a water contact angle of 80° or less.
  • the adhesive layer is made of a cured product of an ultraviolet-curable resin composition, the ultraviolet-curable resin composition contains hydroxyalkyl acrylate as a main component, and the liquid crystal composition cured layer is a cured liquid crystal composition containing a liquid crystal compound. Laminates are described, consisting of objects.
  • JP 2013-158970 A Japanese Patent Application Laid-Open No. 2016-224292 JP-A-2000-304927 JP 2019-188740 A
  • the present invention has been developed in view of the above circumstances, and the optical film exhibits excellent adhesion between the optical film and the adhesive layer and crack resistance of the optical film even in a humidified environment, especially when the adhesive layer is folded.
  • An object of the present invention is to provide an optical layered body provided with an adhesive layer capable of improving properties, and an image display device using the optical layered body.
  • the present invention provides an optical laminate in which an optical functional layer and a base film are laminated via an adhesive layer, wherein the optical functional layer has a thickness of 0.5 to 5 ⁇ m, and the adhesive layer has a thickness of 0.5 to 3 ⁇ m, the adhesive layer is formed of a cured product layer of an active energy ray-curable resin composition, and the glass transition temperature of the cured product layer (hereinafter, also referred to as “Tg” ) is less than 30°C.
  • Tg glass transition temperature of the cured product layer
  • the active energy ray-curable resin composition contains 20 to 90 parts by mass of a (meth)acrylate having a polar group when the total amount of the composition is 100 parts by mass. preferable.
  • the polar group is preferably a hydroxyl group or a carboxyl group.
  • the active energy ray-curable resin composition contains 5 to 90 parts by mass of (meth)acrylate having an alkylene glycol unit when the total amount of the composition is 100 parts by mass. is preferred.
  • the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass of a polyfunctional (meth)acrylate when the total amount of the composition is 100 parts by mass.
  • the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass of an acrylic oligomer when the total amount of the composition is 100 parts by mass.
  • the active energy ray-curable resin composition contains 30 polymer components having a glass transition temperature exceeding 30° C. when homopolymerized, when the total amount of the composition is 100 parts by mass. It is preferably not more than parts by mass.
  • the optical function layer is a liquid crystal layer.
  • the above-described optical layered body includes a bending region that is bent along a bending axis located between two non-bending regions.
  • the optical function layer is bent so as to be positioned on the outside.
  • the present invention also relates to an image display device using any one of the optical laminates described above.
  • the optical laminate according to the present invention is obtained by laminating an optical function layer and a base film via an adhesive layer, and the thickness of the optical function layer is as thin as 0.5 to 5 ⁇ m.
  • the adhesive layer is formed of a cured product layer of the active energy ray-curable resin composition, and the glass transition temperature of the cured product layer is designed to be less than 30°C.
  • the soft adhesive layer relaxes the stress applied to the optical function layer. As a result, it is possible to improve the crack resistance of the optical functional layer while ensuring the adhesion between the optical functional layer and the adhesive layer.
  • the active energy ray-curable resin composition which is a raw material for the adhesive layer, is a (meth)acrylate having a polar group, particularly a (meth)acrylate having a hydroxyl group or a carboxyl group, or a (meth)acrylate having an alkylene glycol unit.
  • a predetermined amount of acrylate, acrylic oligomer, or polyfunctional (meth)acrylate is contained, the adhesion between the optical function layer and the adhesive layer is excellent both in the normal state (when not folded) and when folded.
  • the crack resistance of the optical function layer is further improved even if the optical function layer is folded.
  • the optical layered body according to the present invention has excellent adhesion of the adhesive layer and crack resistance of the thin optical function layer not only when it is normal (when not folded) but also when it is folded. can improve sexuality.
  • an optical stack comprising a folding region that is folded along a folding axis located between two non-folding regions, and an optical stack for an image display device in which the display screen can be curved, bent, folded or rolled up Useful as a body.
  • FIG. 1 is a schematic diagram of a 180° folding endurance tester (manufactured by Imoto Seisakusho Co., Ltd.); FIG.
  • the optical laminate according to the present invention is obtained by laminating an optical function layer and a base film via an adhesive layer. Each configuration will be described below.
  • optical function layer A thin film having a thickness of 0.5 to 5 ⁇ m is used as the optical function layer. From the viewpoint of thinning the optical layered body, the thickness of the optical function layer is more preferably 0.5 to 3 ⁇ m.
  • the adhesive layer is formed of a cured product layer of an active energy ray-curable resin composition, and the glass transition temperature of the cured product layer is designed to be less than 30°C. there is Therefore, when the optical function layer is brittle, specifically, even if the breaking stress is 5 N/10 mm or less, the crack resistance of the optical function layer can be improved, which is preferable.
  • the optical function layer is preferably a liquid crystal layer.
  • the liquid crystal layer can be formed, for example, by applying a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound directly on the substrate film or on an alignment film, aligning the polymerizable liquid crystal compound, and polymerizing it. .
  • the liquid crystal layer contains at least a liquid crystal compound.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound. That is, the liquid crystal layer preferably contains a cured polymerizable liquid crystal composition containing a polymerizable liquid crystal compound. In other words, the liquid crystal layer preferably has a fixed alignment state of the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound is not particularly limited, and can be appropriately selected according to the desired retardation value, wavelength dispersion, orientation, solubility, and the like.
  • the polymerizable liquid crystal compound may be used singly or in combination of two or more. By using two or more polymerizable liquid crystal compounds in combination, it is possible to adjust the retardation value, wavelength dispersion, orientation, solubility, phase transition temperature, and the like.
  • a polymerizable liquid crystal composition containing a polymerizable compound having no liquid crystallinity, a photopolymerization initiator, a sensitizer, a leveling agent, an antioxidant, a light stabilizer, etc. You can use it as an object.
  • a polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group, and includes a monofunctional liquid crystal compound with one polymerizable group and a polyfunctional liquid crystal compound with two or more polymerizable groups.
  • polyfunctional liquid crystal compounds are preferred, polyfunctional liquid crystal compounds having two or three polymerizable groups are more preferred, and polyfunctional liquid crystal compounds having two polymerizable groups are even more preferred.
  • the polymerizable group can be polymerized by irradiation with an active energy ray such as ultraviolet rays, and examples thereof include ethylenically unsaturated double bonds such as vinyl groups, acryloyl groups, and methacryloyl groups.
  • the polymerizable liquid crystal compound may be a low-molecular-weight liquid crystal compound or a high-molecular-weight liquid crystal compound.
  • the liquid crystal phase of the polymerizable liquid crystal compound is not particularly limited, and may be, for example, nematic phase, smectic phase, cholesteric phase, or discotic phase.
  • the liquid crystal layer may be, for example, a polymerizable liquid crystal compound fixed in a state of exhibiting a nematic phase, or a polymerizable liquid crystal compound fixed in a state of exhibiting a cholesteric phase.
  • the polymerizable liquid crystal compound may be immobilized in a state showing a smectic phase.
  • the orientation state of the liquid crystal compound contained in the liquid crystal layer may be, for example, horizontal orientation, vertical orientation, tilt orientation, twist orientation, or hybrid orientation with respect to the surface of the base film.
  • the thickness of the base film is not particularly limited, but the thickness of the base film is 0.5 to 40 ⁇ m, especially considering the balance between the improvement of the crack resistance of the optical function layer and the thinning of the optical laminate. and more preferably 0.5 to 30 ⁇ m.
  • the breaking stress of the base film is 10 N/10 mm or more from the standpoint of improving the crack resistance of the optical functional layer. is preferable, and 20 N/10 mm or more is more preferable.
  • breaking stress means the breaking stress of MD direction.
  • the breaking stress of the base film is preferably 80 N/10 mm or less, more preferably 60 N/10 mm or less.
  • any film having the above thickness and the above breaking stress can be used, but polyethylene terephthalate film (PET film) or triacetyl cellulose film (TAC film) is preferably used. It is possible.
  • PET film polyethylene terephthalate film
  • TAC film triacetyl cellulose film
  • an optical laminate in which at least two optical functional layers are laminated via an adhesive layer may be used instead of the base film.
  • the adhesive layer included in the optical laminate according to the present invention is formed of a cured product layer of an active energy ray-curable resin composition, and is characterized in that the cured product layer has a Tg of less than 30°C.
  • the Tg of the cured product layer can be optimized by adjusting the blending ratio of the materials constituting the active energy ray-curable resin composition. From the viewpoint of improving both the adhesion between the optical film and the adhesive layer and the crack resistance of the optical film in a well-balanced manner, the Tg of the cured product layer is more preferably less than 30°C.
  • the lower limit of Tg of the cured product layer is not particularly limited, it can be, for example, about -50°C.
  • the thickness of the adhesive layer is 0.5 to 3 ⁇ m, more preferably 0.5 to 2.5 ⁇ m.
  • the storage elastic modulus E′ of the cured product layer of the active energy ray-curable resin composition (Pa (25° C.)) is preferably 1 ⁇ 10 4 to 5 ⁇ 10 7 , more preferably 1 ⁇ 10 5 to 1 ⁇ 10 7 .
  • Materials constituting the active energy ray-curable resin composition are described below.
  • Active energy ray-curable resin compositions can be classified into radically polymerizable and cationic polymerizable resin compositions.
  • active energy rays with a wavelength range of 10 nm to less than 380 nm are expressed as ultraviolet rays
  • active energy rays with a wavelength range of 380 nm to 800 nm are expressed as visible rays.
  • Examples of monomer components constituting the radically polymerizable curable resin composition include compounds having radically polymerizable functional groups of carbon-carbon double bonds such as (meth)acryloyl groups and vinyl groups. These monomer components can be either monofunctional radically polymerizable compounds or multifunctional radically polymerizable compounds having two or more polymerizable functional groups. Moreover, these radical polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, (meth)acrylates having a (meth)acryloyl group are suitable. In the present invention, (meth)acryloyl means an acryloyl group and/or a methacryloyl group, and "(meth)" has the same meaning below.
  • the adhesion between the optical film and the adhesive layer is improved even in a humidified environment, especially when the adhesive layer is folded. is excellent and the crack resistance of the optical film can be improved.
  • the polar groups a hydroxyl group or a carboxyl group is particularly preferred.
  • hydroxyl group-containing (meth)acrylates examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl Hydroxyalkyl (meth)acrylates such as (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, [4-(hydroxymethyl)cyclohexyl]methyl acrylate, cyclohexanedimethanol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, unsaturated fatty acid hydroxyalkyl ester-modified ⁇ -caprolactone, 1,4-cyclohexane and dimethanol monoacrylate.
  • the Tg of the resulting adhesive layer (cured material layer) is lowered while optical It is preferable because it can improve the adhesion between the film and the adhesive layer.
  • the (meth)acrylate having an alkylene glycol unit and a terminal hydroxyl group include polyethylene glycol (meth)acrylate having an average of 2 to 10 ethylene glycol units, and an average of 2 to 13 propylene glycol units. and polypropylene glycol (meth)acrylate having
  • hydroxyl group-containing (meth)acrylates include N-hydroxyalkyl group-containing (meth)acrylamide derivatives such as N-methylol (meth)acrylamide, N-hydroxyethyl (meth)acrylamide, N-methylol-N-propane (meth)acrylamide. Available.
  • Carboxyl group-containing (meth)acrylates include (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • the active energy ray-curable resin composition preferably contains 20 to 90 parts by mass of a (meth)acrylate having a polar group when the total amount of the composition is 100 parts by mass. It is more preferable to contain 30 to 80 parts by mass.
  • the (meth)acrylate having a polar group preferably has a glass transition temperature of 30° C. or less when homopolymerized, and 0° C. or less, from the viewpoint of lowering the Tg of the resulting adhesive layer (cured material layer). is more preferred.
  • the (meth)acrylate having an alkylene glycol unit may be a (meth)acrylate having the alkylene glycol unit described above and having a hydroxyl group at the end, or a methyl group, an ethyl group, and 2-ethylhexyl at the end. and alkoxy groups such as methoxy, ethoxy, and phenoxy groups.
  • the active energy ray-curable resin composition preferably contains 5 to 90 parts by mass of (meth)acrylate having an alkylene glycol unit when the total amount of the composition is 100 parts by mass. , more preferably 15 to 80 parts by mass.
  • a compound other than (meth)acrylate having a polar group and (meth)acrylate having an alkylene glycol unit may be used.
  • Usable (meth)acrylates include, for example, (meth)acrylamide derivatives having a (meth)acrylamide group.
  • a (meth)acrylamide derivative is preferable in terms of securing adhesion to the optical function layer and/or the substrate film, and in terms of high polymerization rate and excellent productivity.
  • (meth)acrylamide derivatives include N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N -N-alkyl group-containing (meth)acrylamide derivatives such as butyl (meth)acrylamide and N-hexyl (meth)acrylamide;; N-aminoalkyl group-containing (such as aminomethyl (meth)acrylamide and aminoethyl (meth)acrylamide) meth)acrylamide derivatives; N-alkoxy group-containing (meth)acrylamide derivatives such as N-methoxymethylacrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing derivatives such as mercaptomethyl (meth)acrylamide and mercaptoethyl (meth)acrylamide (meth)acrylamide derivatives; and the like.
  • heterocycle-containing (meth)acrylamide derivative in which the nitrogen atom of the (meth)acrylamide group forms a heterocycle includes, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine etc.
  • examples of monofunctional radically polymerizable compounds include various (meth)acrylic acid derivatives having a (meth)acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyloxy
  • Examples of the (meth)acrylic acid derivative include cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclopentenyl (meth) )
  • Polycyclic (meth)acrylates such as acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate; 2-methoxyethyl (meth)acrylate, 2-ethoxy Ethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-
  • a compound represented by the following formula (1) as a monofunctional radically polymerizable compound (where X is a functional group containing a reactive group, R 1 and R 2 are each independently a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, an aryl group, or a heterocyclic group represents), preferably a compound according to the general formula (1′);
  • the active energy ray-curable resin composition can be blended into the active energy ray-curable resin composition.
  • the adhesion between the optical function layer and the substrate film may be improved, which is preferable.
  • the content of the compound represented by the general formula (1) in the active energy ray-curable resin composition is 0.1 to 10 parts by mass. is preferred, and 0.5 to 5 parts by mass is more preferred.
  • the aliphatic hydrocarbon group includes a linear or branched alkyl group optionally having a substituent having 1 to 20 carbon atoms, and a substituent having 3 to 20 carbon atoms.
  • cyclic alkyl groups which may be substituted, and alkenyl groups having 2 to 20 carbon atoms. optionally substituted naphthyl groups and the like, and examples of heterocyclic groups include 5- or 6-membered ring groups containing at least one heteroatom and optionally having substituents. These may be linked together to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, most preferably a hydrogen atom.
  • X possessed by the compound represented by the general formula (1) is a functional group containing a reactive group, and the reactive group contained in X includes, for example, a hydroxyl group, an amino group, an aldehyde group, a carboxyl group, and a vinyl group. , (meth)acryl group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group, ⁇ , ⁇ -unsaturated carbonyl group, mercapto group, halogen group and the like.
  • the reactive group contained in X is at least one reactive group selected from the group consisting of a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group and a mercapto group. is preferably a group, and particularly when the active energy ray-curable resin composition is radically polymerizable, the reactive group contained in X is selected from the group consisting of a (meth)acryl group, a styryl group and a (meth)acrylamide group.
  • the compound represented by the general formula (1) has a (meth)acrylamide group, the reactivity is high, and the active energy ray-curable resin composition and It is more preferable because the copolymerization rate of is increased.
  • the (meth)acrylamide group has a high polarity and is excellent in adhesiveness, so it is preferable from the viewpoint that the effects of the present invention can be obtained efficiently.
  • the reactive group contained in X is a hydroxyl group, an amino group, an aldehyde, a carboxyl group, a vinyl ether group, an epoxy group, an oxetane group, or a mercapto group. It is preferable to have at least one selected functional group, especially when it has an epoxy group, it is preferable for excellent adhesion between the resulting curable resin layer and the adherend, and when it has a vinyl ether group, the curable resin composition is preferred because of its excellent curability.
  • the compound represented by the general formula (1) may be one in which the reactive group and the boron atom are directly bonded.
  • the compound represented by is preferably one in which a reactive group and a boron atom are bonded via an organic group, that is, a compound represented by general formula (1′).
  • a compound represented by general formula (1′) For example, when the compound represented by the general formula (1) is bonded to a reactive group via an oxygen atom bonded to a boron atom, the adhesion water resistance of the polarizing film tends to deteriorate.
  • the compound represented by the general formula (1) does not have a boron-oxygen bond, but has a boron-carbon bond by bonding a boron atom and an organic group, and contains a reactive group.
  • the organic group specifically means an organic group having 1 to 20 carbon atoms which may have a substituent, and more specifically, for example, having a substituent having 1 to 20 carbon atoms.
  • a naphthylene group which may have 20 substituents may be mentioned.
  • esters of hydroxyethylacrylamide and boric acid in addition to the compounds exemplified above, esters of hydroxyethylacrylamide and boric acid, esters of methylolacrylamide and boric acid, esters of hydroxyethyl acrylate and boric acid, and hydroxybutyl Esters of (meth)acrylates and boric acid can be exemplified, such as esters of acrylate and boric acid.
  • the active energy ray-curable resin composition contains a polyfunctional (meth)acrylate as a polyfunctional radically polymerizable compound
  • the optical film and the adhesive can be used in a humidified environment, especially even when the adhesive is folded. It is preferable because it has excellent adhesion between the layers and can improve the crack resistance of the optical film.
  • polyfunctional (meth)acrylates include tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, 1,6-hexanediol di (Meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, bisphenol A di(meth)acrylate, bisphenol A ethylene oxide adduct di(meth)acrylate, bisphenol A propylene oxide adduct di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, cyclic trimethylolpropane formal (meth)
  • Specific examples include light acrylate 9EG-A (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer ADP-400 (manufactured by NOF Corporation), NK ester A-GLY-9E (manufactured by Shin-Nakamura Chemical Co., Ltd.), light acrylate 1,9ND- A (manufactured by Kyoeisha Chemical Co., Ltd.), Aronix M-220 (manufactured by Toagosei Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP-A (manufactured by Kyoeisha Chemical Co., Ltd.), SR-531 (manufactured by Sartomer ), CD-536 (manufactured by Sartomer), and the like.
  • the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass of a polyfunctional (meth)acrylate when the total amount of the composition is 100 parts by mass. It is more preferable to contain 15 parts by mass.
  • the adhesive layer included in the optical laminate according to the present invention is formed of a cured product layer of an active energy ray-curable resin composition, and is characterized in that the cured product layer has a Tg of less than 30°C.
  • the glass when homopolymerized when the total amount of the composition is 100 parts by mass, the glass when homopolymerized
  • the content of the polymerized component having a transition temperature exceeding 30°C is preferably 30 parts by mass or less, and the content of the polymerized component having a glass transition temperature exceeding 30°C when homopolymerized is 20 parts by mass or less. It is more preferable to be
  • the active energy ray-curable resin composition preferably contains an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer.
  • an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer.
  • the active energy ray-curable resin composition preferably has a low viscosity.
  • the acrylic oligomer which has a low viscosity and can prevent curing shrinkage of the adhesive layer preferably has a weight-average molecular weight (Mw) of 15,000 or less, more preferably 10,000 or less, and particularly 5,000 or less. preferable.
  • Mw weight-average molecular weight
  • the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more. 1500 or more is particularly preferable.
  • the (meth)acrylic monomer constituting the acrylic oligomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl- 2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth)acrylic acid (C1-20) al
  • acrylic oligomer (E) examples include "ARUFON” manufactured by Toagosei Co., Ltd., “ACT FLOW” manufactured by Soken Chemical Co., Ltd., and "JONCRYL” manufactured by BASF Japan.
  • the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass, more preferably 3 to 15 parts by mass, of the acrylic oligomer when the total amount of the composition is 100 parts by mass. It is more preferable to contain a part.
  • the active energy ray-curable resin composition used in the present invention preferably contains a photopolymerization initiator.
  • a photopolymerization initiator is appropriately selected depending on the active energy ray.
  • a photopolymerization initiator that is cleaved with ultraviolet light or visible light is used.
  • photopolymerization initiator examples include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, and 3,3′-dimethyl-4-methoxybenzophenone; 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2 -propyl)ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, ⁇ -hydroxycyclohexylphenylketone and other aromatic ketone compounds; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholinopropane-1; benzoin methyl ether, Benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and anisoin methyl ether
  • the amount of the photopolymerization initiator is preferably 0.5 to 5 parts by mass, preferably 1 to 4 parts by mass, when the total amount of the active energy ray-curable resin composition is 100 parts by mass. It is more preferable that
  • a photopolymerization initiator that is particularly sensitive to light of 380 nm or more.
  • a photopolymerization initiator highly sensitive to light of 380 nm or more will be described later.
  • the photopolymerization initiator a compound represented by the following general formula (2); (wherein R 3 and R 4 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 3 and R 4 may be the same or different), or the general formula ( It is preferable to use the compound represented by 1) together with a photopolymerization initiator highly sensitive to light of 380 nm or longer, which will be described later.
  • the adhesiveness is superior to the case where a photopolymerization initiator highly sensitive to light of 380 nm or more is used alone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferred.
  • the amount of the compound represented by the general formula (2) in the active energy ray-curable resin composition is 0.1 to 4 parts by mass when the total amount of the active energy ray-curable resin composition is 100 parts by mass. It preferably contains 0.5 to 3 parts by mass, more preferably 0.5 to 3 parts by mass.
  • polymerization initiation aid examples include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate. and ethyl 4-dimethylaminobenzoate is particularly preferred.
  • the amount added is preferably 0.1 to 3 parts by mass when the total amount of the active energy ray-curable resin composition is 100 parts by mass. It is more preferable to contain 3 to 1 part by mass.
  • a known photopolymerization initiator can be used together as needed. Since the optical functional layer and base film having UV absorbability do not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator highly sensitive to light of 380 nm or more as the photopolymerization initiator. .
  • 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 , 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrole- 1-yl)-phenyl) titanium and the like.
  • the active energy ray-curable resin composition used in the present invention preferably contains a silane coupling agent.
  • the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycide as active energy ray-curable compounds.
  • xypropyltrimethoxysilane 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and the like.
  • the amount of the silane coupling agent compounded is preferably in the range of 0.01 to 20% by mass, preferably 0.05 to 15% by mass, based on the total amount of the active energy ray-curable resin composition. It is more preferably 1 to 10% by mass. This is because if the amount exceeds 20% by mass, the storage stability of the active energy ray-curable resin composition deteriorates, and if the amount is less than 0.1% by mass, the effect of adhesion water resistance is not sufficiently exhibited.
  • non-active energy ray-curable silane coupling agents other than the above include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • the active energy ray-curable resin composition used in the present invention may be a cationic polymerization-curable resin composition.
  • the cationically polymerizable compound used in the cationically polymerizable curable resin composition includes a monofunctional cationically polymerizable compound having one cationically polymerizable functional group in the molecule and two or more cationically polymerizable functional groups in the molecule. It is classified into polyfunctional cationic polymerizable compounds with Since the monofunctional cationically polymerizable compound has a relatively low liquid viscosity, the liquid viscosity can be reduced by including it in the cationically polymerizable curable resin composition.
  • the monofunctional cationically polymerizable compound often has a functional group that exhibits various functions.
  • Various functions can be expressed in the cured product of the curable resin composition.
  • the polyfunctional cationically polymerizable compound can three-dimensionally crosslink the cured product of the cationically polymerizable curable resin composition, it is preferably contained in the cationically polymerizable curable resin composition.
  • the ratio of the monofunctional cationically polymerizable compound and the polyfunctional cationically polymerizable compound is to mix 10 parts by mass to 1000 parts by mass of the polyfunctional cationically polymerizable compound with respect to 100 parts by mass of the monofunctional cationically polymerizable compound. is preferred.
  • Examples of cationic polymerizable functional groups include epoxy groups, oxetanyl groups, and vinyl ether groups.
  • Compounds having an epoxy group include aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds. It is particularly preferred to contain a cyclic epoxy compound.
  • Alicyclic epoxy compounds include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, caprolactone-modified products of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and trimethylcaprolactone-modified products.
  • the compound having an oxetanyl group improve the curability of the cationic polymerizable resin composition
  • the compound having an oxetanyl group includes 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl) methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[(3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, phenol novolak Oxetane and the like are mentioned, and Aron oxetane OXT-101, Aron oxetane OXT-121, Aron oxetane OXT-211, Aron oxetane OXT-221, Aron oxetane OXT-212 (manufactured by To
  • a compound having a vinyl ether group has the effect of improving the curability of the cationic polymerizable resin composition and lowering the liquid viscosity of the composition, so it is preferable to include the compound having a vinyl ether group.
  • the cationically polymerizable curable resin composition contains at least one compound selected from the epoxy group-containing compound, the oxetanyl group-containing compound, and the vinyl ether group-containing compound described above as a curable component.
  • a photo cationic polymerization initiator is blended because it is cured by This cationic photopolymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays and electron beams, and initiates the polymerization reaction of epoxy groups and oxetanyl groups.
  • active energy rays such as visible light, ultraviolet rays, X-rays and electron beams
  • a photoacid generator described later is preferably used as the photocationic polymerization initiator.
  • a cationic photopolymerization initiator that is highly sensitive to light of 380 nm or more. Since it is a compound that exhibits maximum absorption in a wavelength region near or shorter than that, by blending a photosensitizer that exhibits maximum absorption in a wavelength region longer than that, specifically, light with a wavelength longer than 380 nm, and can promote the generation of cationic species or acid from the photocationic polymerization initiator.
  • photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, photoreducible dyes, and the like. You may use it in mixture of 2 or more types.
  • Anthracene compounds are particularly preferable because of their excellent photosensitizing effect, and specific examples thereof include Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Kasei Co., Ltd.).
  • the content of the photosensitizer is preferably 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass.
  • the active energy ray-curable resin composition may contain a photoacid generator.
  • the active energy ray-curable resin composition contains a photoacid generator, the water resistance and durability of the adhesive layer can be dramatically improved as compared with the case where the photoacid generator is not contained.
  • the photoacid generator can be represented by the following general formula (3).
  • the counter anion X 1 ⁇ in general formula (3) is not particularly limited in principle, but is preferably a non-nucleophilic anion.
  • the counter anion X ⁇ is a non-nucleophilic anion, nucleophilic reactions in cations coexisting in the molecule and various materials used in combination are unlikely to occur, and as a result, the photoacid generator represented by general formula (4) itself It is possible to improve the aging stability of the composition using it.
  • a non-nucleophilic anion as used herein refers to an anion having a low ability to cause a nucleophilic reaction.
  • Such anions include PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SbCl 6 ⁇ , BiCl 5 ⁇ , SnCl 6 ⁇ , ClO 4 ⁇ , B(C 6 H 5 ) 4 ⁇ , dithiocarbamate anion, SCN - and the like.
  • the content of the photoacid generator in the active energy ray-curable resin composition is 0.1 to 5 parts by mass when the total amount of the active energy ray curable resin composition is 100 parts by mass. is preferred, and 0.5 to 4 parts by mass is more preferred.
  • the optical layered body according to the present invention can be produced, for example, by the following production method.
  • the optical functional layer and base film may be subjected to surface modification treatment before the coating process.
  • the surface modification treatment include corona treatment, plasma treatment, excimer treatment and flame treatment, with corona treatment being particularly preferred.
  • corona treatment reactive functional groups such as carbonyl groups and amino groups are generated on the surface of the optical function layer and/or the substrate film, thereby improving adhesion to the adhesive layer.
  • foreign matter on the surface is removed by the ashing effect, and unevenness on the surface is reduced, so that an optical layered body with excellent appearance characteristics can be produced.
  • the method of applying the active energy ray-curable resin composition is appropriately selected depending on the viscosity of the composition and the desired thickness.
  • a coater, a die coater, a bar coater, a rod coater and the like can be mentioned.
  • the viscosity of the active energy ray-curable resin composition used in the present invention is preferably 3 to 100 mPa ⁇ s, more preferably 5 to 50 mPa ⁇ s, and most preferably 10 to 30 mPa ⁇ s.
  • the active energy ray-curable resin composition used in the present invention can be applied by heating or cooling the composition to adjust the viscosity to a preferred range.
  • the optical functional layer and the substrate film are bonded together via the active energy ray-curable resin composition coated as described above.
  • the optical function layer and the substrate film can be attached together using a roll laminator or the like.
  • an active energy ray (electron beam, ultraviolet rays, visible light, etc.) is irradiated to cure the active energy ray-curable resin composition to form an adhesive layer.
  • the irradiation direction of the active energy rays can be any suitable direction.
  • electron beam irradiation preferably has an acceleration voltage of 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive, resulting in insufficient curing. It may cause damage.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the optical function layer and the base film will be damaged, the mechanical strength will be reduced, yellowing will occur, and the desired optical properties will be obtained. I can't.
  • Electron beam irradiation is usually carried out in an inert gas, but if necessary, it may be carried out in the air or with a small amount of oxygen introduced. Although it depends on the materials of the optical functional layer and the substrate film, by appropriately introducing oxygen, the surfaces of the optical functional layer and the substrate film that are first exposed to the electron beam are intentionally inhibited by oxygen, and the optical functional layer and the substrate film are exposed. can be prevented, and only the adhesive can be efficiently irradiated with the electron beam.
  • active energy rays containing visible light with a wavelength range of 380 nm to 450 nm particularly active energy rays with the largest irradiation amount of visible light with a wavelength range of 380 nm to 450 nm are used. preferably.
  • ultraviolet light or visible light and when using an optical functional layer or substrate film imparted with ultraviolet absorption ability (ultraviolet non-transmissive optical functional layer or substrate film), light with a wavelength shorter than approximately 380 nm , light with a wavelength shorter than 380 nm does not reach the active energy ray-curable resin composition and does not contribute to its polymerization reaction.
  • the optical functional layer or substrate film Furthermore, light with a wavelength shorter than 380 nm absorbed by the optical functional layer or substrate film is converted into heat, and the optical functional layer or substrate film itself generates heat, which causes defects such as curling and wrinkling of the optical laminate. . Therefore, when ultraviolet light and visible light are used in the present invention, it is preferable to use a device that does not emit light with a wavelength shorter than 380 nm as an active energy ray generator, more specifically, an integrated wavelength range of 380 to 440 nm.
  • the ratio of the illuminance to the integrated illuminance in the wavelength range of 250 to 370 nm is preferably 100:0 to 100:50, more preferably 100:0 to 100:40.
  • the active energy ray is preferably a gallium-encapsulated metal halide lamp or an LED light source emitting light in a wavelength range of 380 to 440 nm.
  • ultraviolet rays from low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, extra high pressure mercury lamps, incandescent lamps, xenon lamps, halogen lamps, carbon arc lamps, metal halide lamps, fluorescent lamps, tungsten lamps, gallium lamps, excimer lasers, or sunlight.
  • a light source containing visible light can be used, and a band-pass filter can be used to cut off ultraviolet light with a wavelength shorter than 380 nm.
  • a gallium-filled metal halide lamp is used and light with a wavelength shorter than 380 nm is blocked. It is preferable to use an active energy ray obtained through a possible bandpass filter or an active energy ray with a wavelength of 405 nm obtained using an LED light source.
  • the temperature is preferably 40°C or higher, and the temperature is preferably 50°C or higher. is more preferable. It is also preferable to heat the active energy ray-curable resin composition after irradiation with ultraviolet light or visible light (post-irradiation heating). is more preferable.
  • the line speed is preferably 1 to 500 m/min, more preferably 5 to 300 m/min, although it depends on the curing time of the active energy ray-curable resin composition. More preferably, it is 10 to 100 m/min. If the line speed is too low, the productivity will be poor, or the damage to the optical functional layer or substrate film will be too great, and an optical laminate that can withstand durability tests and the like cannot be produced. If the line speed is too high, the curing of the active energy ray-curable resin composition may be insufficient and the intended adhesiveness may not be obtained.
  • an easy-adhesion layer containing a specific boric acid group-containing compound is formed on the bonding surface of at least one of the optical function layer and the substrate film before the coating step.
  • An easy-adhesion treatment process may be provided. Specifically, the following manufacturing method; A method for producing an optical laminate in which an optical functional layer and a substrate film are laminated via an adhesive layer, wherein the compound represented by the general formula (1) is applied to the bonding surface of at least one of the optical functional layer and the substrate film.
  • a compound represented by, more preferably a compound represented by general formula (1′) is adhered to an easy-adhesion treatment step, and at least one bonding surface of the optical function layer and the base film is coated with an active energy ray-curable
  • an optical layered body manufacturing method including an adhesion step of bonding the optical functional layer and the substrate film via an adhesive layer obtained by curing a flexible resin composition.
  • ⁇ Easy adhesion treatment process> As a method of forming an easy-adhesion layer on at least one of the bonding surface of the optical function layer and the base film using the easy-adhesion composition containing the compound represented by general formula (1), for example, general formula (1 ) is prepared, and the composition is coated on at least one bonding surface of the optical function layer and the base film.
  • the easy-adhesion composition (A) may include solvents and additives.
  • the composition (A) When the easily adhesive composition (A) contains a solvent, the composition (A) is applied to the bonding surface of at least one of the optical function layer and the base film, and if necessary, a drying step or a curing treatment (such as heat treatment) is performed. ) may be performed.
  • the solvent that the easy-adhesion composition (A) may contain, a solvent capable of stabilizing and dissolving or dispersing the compound represented by general formula (1) is preferable.
  • An organic solvent, water, or a mixed solvent thereof can be used as such a solvent.
  • the solvent examples include esters such as ethyl acetate, butyl acetate, and 2-hydroxyethyl acetate; ketones such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, diethyl ketone, methyl-n-propyl ketone, and acetylacetone; tetrahydrofuran ( Cyclic ethers such as THF) and dioxane; Aliphatic or alicyclic hydrocarbons such as n-hexane and cyclohexane; Aromatic hydrocarbons such as toluene and xylene; Methanol, ethanol, n-propanol, isopropanol, cyclohexanol aliphatic or alicyclic alcohols such as; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and diethylene glycol monoethy
  • Additives that the easy-adhesion composition (A) may contain include, for example, surfactants, plasticizers, tackifiers, low-molecular-weight polymers, polymerizable monomers, surface lubricants, leveling agents, antioxidants, and corrosion inhibitors. agents, light stabilizers, ultraviolet absorbers, polymerization inhibitors, silane coupling agents, titanium coupling agents, inorganic or organic fillers, metal powders, particles, and foils.
  • the content of the compound represented by general formula (1) in the easy-adhesion layer is preferably 1% by mass or more, more preferably 20% by mass or more, and 40% by mass or more. is more preferred.
  • the lamination surface of at least one of the optical function layer and/or the base film is composed
  • a method of direct immersion in the treatment bath for the product (A) or a known coating method can be used as appropriate.
  • Specific examples of the coating method include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and curtain coating, but are not limited to these.
  • the thickness of the easy-adhesion layer is preferably 2000 nm or less, more preferably 1000 nm or less, and even more preferably 500 nm or less.
  • the minimum thickness for the easy-adhesion layer to fully exhibit its effect includes at least the thickness of the monomolecular film of the compound represented by the general formula (1), preferably 1 nm or more, and more It is preferably 2 nm or more, more preferably 3 nm or more.
  • optical laminate of the present invention can be used as an optical film laminated with other optical layers in practical use.
  • the optical layer is not particularly limited. Examples thereof include optical layers, such as polarizing films, which are sometimes used in the formation of liquid crystal display devices and the like.
  • a film having a front retardation of 40 nm or more and/or a thickness direction retardation of 80 nm or more can be used.
  • the front retardation is usually controlled in the range of 40-200 nm
  • the thickness direction retardation is usually controlled in the range of 80-300 nm.
  • the retardation film examples include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an oriented film of a liquid crystal polymer, and a film in which an oriented layer of a liquid crystal polymer is supported.
  • the thickness of the retardation film is not particularly limited, it is generally about 20 to 150 ⁇ m.
  • Re [450] and Re [550] are the in-plane retardation values of the retardation film measured with light having wavelengths of 450 nm and 550 nm, respectively, at 23 ° C.
  • ⁇ n is the slow phase of the retardation film
  • In-plane birefringence that is nx-ny when the refractive indices in the axial direction and the fast axis direction are nx and ny, respectively
  • NZ is the refractive index in the thickness direction of the retardation film, (ratio of nx-nz, which is birefringence in the thickness direction, to nx-ny, which is in-plane birefringence) may be used.
  • An adhesive layer for adhering to other members such as liquid crystal cells can also be provided in the optical layered body described above and the optical film in which an optical layer is further layered on the optical layered body.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but for example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based polymer, rubber-based polymer, or the like is appropriately selected.
  • adhesives such as acrylic pressure-sensitive adhesives which are excellent in optical transparency, exhibit appropriate wettability, cohesiveness and adhesive properties, and are excellent in weather resistance and heat resistance can be preferably used.
  • the adhesive layer can also be provided on one side or both sides of the optical laminate as a superimposed layer of different compositions or types. Further, when provided on both sides, adhesive layers with different compositions, types, thicknesses, etc. can be provided on the front and back sides of the optical layered body.
  • the thickness of the adhesive layer can be appropriately determined depending on the purpose of use, adhesive strength, etc., and is generally 1 to 500 ⁇ m, preferably 1 to 200 ⁇ m, particularly preferably 1 to 100 ⁇ m.
  • the exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put into practical use. This prevents contact with the adhesive layer during normal handling conditions.
  • a separator excluding the above thickness conditions, suitable thin sheets such as plastic films, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, and laminates thereof may be used.
  • An appropriate release agent according to the prior art such as one coated with an appropriate release agent such as chain alkyl, fluorine, or molybdenum sulfide, can be used.
  • the optical layered body according to the present invention exhibits excellent adhesion of the adhesive layer and excellent crack resistance of the thin optical function layer not only in the normal state (when not folded) but also in the case of folding. .
  • FIG. 1 is an example showing an aspect in which the optical laminate according to the present invention is folded. 20 is an example showing an aspect folded along 20.
  • the optical function layer 1 included in the optical laminate A has a thin thickness of 0.5 to 5 ⁇ m. As shown in FIG. 1, when the optical layered body A having such a structure is bent so that the optical function layer 1 is positioned on the outside, a strong stress is applied to the thin optical function layer 1 in the direction of elongation.
  • the adhesive layer 2 is formed of a cured product layer of the active energy ray-curable resin composition, and the glass transition temperature of the cured product layer is designed to be less than 30°C. there is Therefore, even if a force is applied so as to bend the optical layered body A, the soft adhesive layer 2 relaxes the stress applied to the optical function layer 1 in the outward extending direction. As a result, the crack resistance of the optical functional layer 1 can be improved while ensuring the adhesion between the optical functional layer 1 and the adhesive layer 2 in particular.
  • the optical laminate of the present invention can be preferably used for forming various devices such as liquid crystal display devices. Formation of the liquid crystal display device can be carried out according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and, if necessary, an illumination system, and incorporating a driving circuit. There is no particular limitation except that the polarizing film or optical film according to the invention is used, and conventional methods can be applied. As for the liquid crystal cell, any type such as TN type, STN type, or ⁇ type can be used.
  • Appropriate liquid crystal display devices can be formed, such as a liquid crystal display device in which an optical laminate is arranged on one side or both sides of a liquid crystal cell, or a device using a backlight or a reflector for an illumination system.
  • the optical laminate according to the present invention can be placed on one side or both sides of the liquid crystal cell. If optical stacks are provided on both sides, they may be the same or different.
  • appropriate parts such as a diffuser plate, an anti-glare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffuser plate, and a backlight are arranged in a single layer or at an appropriate position. Two or more layers can be arranged.
  • the optical layered body according to the present invention has excellent adhesion between the optical film and the adhesive layer even in a humidified environment, especially when folded, and adhesion that can improve the crack resistance of the optical film. It has an agent layer. Therefore, it is particularly preferable for an image display device whose display screen can be curved, bent, folded or rolled up.
  • ⁇ Optical function layer> A 4 ⁇ m-thick cholesteric liquid crystal layer (manufactured by Dai Nippon Printing Co., Ltd.) was used as the optical function layer.
  • the breaking stress of the cholesteric liquid crystal layer used was 3 N/10 mm.
  • ⁇ Base film> A polyethylene terephthalate (PET) film with a thickness of 25 ⁇ m (manufactured by Toyobo Co., Ltd.: trade name A4100) or a triacetyl cellulose (TAC) film with a thickness of 25 ⁇ m (manufactured by Konica Minolta: trade name KC2UA) was used as the base film.
  • the breaking stress of the polyethylene terephthalate (PET) film used was 55 N/10 mm in the MD direction and 65 N/mm in the TD direction, and the breaking stress of the triacetyl cellulose (TAC) film was 35 N/10 mm.
  • the breaking stress of the optical function layer and base film was measured according to JIS-K-7161 using samples cut into 10 mm width.
  • active energy ray As the active energy ray, visible light (gallium-filled metal halide lamp) Irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc. Bulb: V bulb Peak illuminance: 1600 mW/cm 2 , integrated irradiation amount 1000/mJ/cm 2 (wavelength 380- 440 nm) was used. The illuminance of visible light was measured using a Sola-Check system manufactured by Solatell.
  • each material constituting the active energy ray-curable resin composition is shown below.
  • liquid viscosity 630 (mPa s) (10) photosensitizer, diethylthioxanthone; trade name “KAYACURE DETX-S”, manufactured by Nippon Kayaku Co., Ltd. (11) leveling agent, liquid viscosity (normal temperature solid) ⁇ Trade name “BYK-UV3505”, manufactured by BYK, liquid viscosity 596 (mPa s)
  • Example 1 Using an MCD coater (manufactured by Fuji Machinery Co., Ltd.) (cell shape: honeycomb, number of gravure roll lines: 1000 lines/inch, rotation speed 140%/relative to line speed), on the bonding surface of the PET film as the base film, The active energy ray-curable resin composition used in Example 1 was applied so as to have a thickness of 1.1 ⁇ m, and was bonded to the surface of the optical function layer using a roll machine. After that, the visible light was irradiated from the bonded substrate film side by an active energy ray irradiation device to cure the active energy ray-curable adhesive, thereby obtaining an optical laminate. The lamination line speed was 25 m/min.
  • An optical laminate (PET) is obtained by using a PET film as a base film.
  • An optical layered body manufactured in the same manner except that a TAC film was used as the base film instead of the PET film is referred to as an optical layered body (TAC).
  • TAC optical layered
  • Examples 2-16, Comparative Examples 1-3 Instead of the active energy ray-curable adhesive used in Example 1, the active energy ray-curable adhesive used in Examples 2 to 16 and Comparative Examples 1 to 3 was used, and the active energy ray-curable resin An optical layered body (PET) and an optical layered body (TAC) were produced in the same manner as in Example 1, except that the thickness of the composition was changed to that shown in the table.
  • PET optical layered body
  • TAC optical layered body
  • the optical laminates (PET) and the optical laminates (TAC) according to Examples 1 to 16 and Comparative Examples 1 to 3 were coated with a reinforcing polyimide tape (manufactured by Nitto Denko Co., Ltd., polyimide adhesive tape No. 360A).
  • a sample for measurement was produced by cutting a piece having a PET surface and a TAC surface of 15 mm wide.
  • a glass plate to which double-sided tape (manufactured by Nitto Denko Co., Ltd., double-sided tape No. 500) is attached is prepared, and the optical functional layer surface (liquid crystal layer surface) of the prepared sample is attached to the double-sided tape on the glass plate to form an optical laminate.
  • an isocyanate cross-linking agent (trade name: Takenate D110N, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals, Inc.) per 100 parts by mass of the solid content of the (meth)acrylic polymer 1 solution obtained above and 0.08 parts by mass of a silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare an acrylic pressure-sensitive adhesive composition 1.
  • the acrylic pressure-sensitive adhesive composition 1 obtained above is evenly coated with a fountain coater on the surface of a 38 ⁇ m thick polyethylene terephthalate film (PET film, transparent substrate, separator) treated with a silicone release agent. and dried in an air circulation type constant temperature oven at 155° C. for 2 minutes to form an adhesive layer (25) with a thickness of 25 ⁇ m and an adhesive layer (50) with a thickness of 50 ⁇ m on the surface of the separator.
  • PET film polyethylene terephthalate film
  • separator transparent substrate, separator
  • the pressure-sensitive adhesive layer (50) was transferred from the separator to the TAC side of the optical laminates (TAC) according to Examples 1 to 16 and Comparative Examples 1 to 3, and the pressure-sensitive adhesive layer (25) was transferred from the separator to the cholesteric liquid crystal layer side. ) to produce an optical layered body having pressure-sensitive adhesive layers on both sides.
  • a corona-treated 25 ⁇ m-thick PET film transparent substrate, manufactured by Mitsubishi Plastics Co., Ltd., trade name: Diafoil
  • Examples 1 to 16 and Comparative Evaluation samples of optical laminates (TAC) according to Examples 1 to 3 were produced.
  • FIG. 2 shows a schematic diagram of a 180° folding endurance tester (manufactured by Imoto Seisakusho Co., Ltd.).
  • This device has a mechanism in which the chuck on one side of the mandrel is repeatedly bent by 180° in a constant temperature bath, and the bending radius can be changed according to the diameter of the mandrel. It has a mechanism that stops the test when the film breaks.
  • evaluation samples (5 cm ⁇ 15 cm) of the optical laminates (TAC) according to Examples 1 to 16 and Comparative Examples 1 to 3 manufactured above were placed on the outside (TAC on the mandrel side). It was set in an apparatus in such a manner that the temperature was 60° C. and the humidity was 95% RH. Evaluation conditions are as follows.
  • Adhesion in a humidified environment was ⁇ Slight peeling between the adhesive layer and the cholesteric liquid crystal layer and/or between the adhesive layer and the TAC only in the folded area even after the number of times of folding reaches 200,000 (practical level) ⁇
  • Adhesion is ⁇ in a humidified environment ⁇ When the number of times of bending reaches 200,000 times, peeling occurs between the adhesive layer and the cholesteric liquid crystal layer and/or between the adhesive layer and the TAC (unpractical level) ⁇ in a humidified environment
  • the optical laminates according to Examples 1 to 16 not only exhibit excellent adhesion between each film and the adhesive layer at room temperature (23°C) when unfolded, but also exhibit excellent adhesion under a humidified environment. It can be seen that the adhesion is also excellent. In addition, it can be seen that the optical layered bodies according to Examples 1 to 16 are also excellent in crack resistance under a humid environment. On the other hand, in the optical laminates according to Comparative Examples 1 to 3, even though the adhesion between each film and the adhesive layer at room temperature (23° C.) when not folded is relatively good, adhesion under a humidified environment I know it gets worse.
  • Comparative Example 2 peeling occurred only in the bent region, but cracks occurred in the cholesteric liquid crystal layer.
  • Comparative Examples 1 and 3 the cholesteric liquid crystal layer was particularly peeled off, and cracks occurred in the cholesteric liquid crystal layer during the evaluation test.

Abstract

An optical laminate obtained by laminating an optical functional layer and a base film with an adhesive layer therebetween, said optical laminate characterized in that the thickness of the optical functional layer is 0.5 to 5 μm, the thickness of the adhesive layer is 0.5 to 3 μm, the adhesive layer is formed from a cured layer of an active energy ray-curable resin composition, and the glass transition temperature of the cured layer is less than 30°C.

Description

光学積層体および画像表示装置Optical laminate and image display device
 本発明は光学積層体に関する。当該光学積層体は液晶表示装置(LCD)、有機EL表示装置などの画像表示装置を形成しうる。 The present invention relates to an optical laminate. The optical layered body can form an image display device such as a liquid crystal display (LCD) or an organic EL display.
 近年、液晶表示装置および有機EL表示装置に代表される画像表示装置が急速に普及している。従来は、画像表示装置の表示画面が平面のものが殆どであったが、近年は、表示画面が湾曲、屈曲、折り曲げまたは巻き取り可能な画像表示装置が開発されている。表示画面は通常、複数の光学フィルムが積層された光学積層体で形成されているが、例えば折り曲げ可能な表示画面の場合、積層された光学フィルムと接着剤層との間で密着性が優れるものでないと、特に加湿環境下では剥がれやクラックが発生し、製品故障に繋がる虞がある。 In recent years, image display devices represented by liquid crystal display devices and organic EL display devices have spread rapidly. Conventionally, most image display devices have flat display screens, but in recent years, image display devices whose display screens can be curved, bent, folded, or rolled up have been developed. A display screen is usually formed of an optical laminate in which a plurality of optical films are laminated. For example, in the case of a foldable display screen, the adhesion between the laminated optical film and the adhesive layer is excellent. Otherwise, peeling or cracking may occur, especially in a humid environment, which may lead to product failure.
 下記特許文献1には、基材フィルムの一方の面に接着性付与層を介して少なくとも2層の液晶層を積層した積層液晶層を有する積層フィルムであって、接着性付与層により各液晶層の配向を乱した赤外線反射フィルムが記載されている。 Patent Document 1 below discloses a laminated film having a laminated liquid crystal layer obtained by laminating at least two liquid crystal layers on one side of a base film with an adhesion-imparting layer interposed therebetween, wherein each liquid crystal layer is formed by the adhesion-imparting layer. describes an infrared reflective film in which the orientation of the
 下記特許文献2には、画像表示装置の画像表示部表面に用いられるハーフミラーの製造方法であって、ハーフミラーは円偏光反射層、接着層および透明基板をこの順に含み、円偏光反射層はコレステリック液晶層を含み、製造方法は、円偏光反射層を含む転写材料を用意すること、転写材料の円偏光反射層の面と透明基板とを硬化型接着剤で貼合すること、および硬化型接着剤を硬化して厚みが1μm以上5μm以下である前記接着層を形成することを含み、転写材料の透明基板と貼合する表面の鉛筆硬度がHB以下である製造方法が記載されている。 Patent Document 2 below describes a method for manufacturing a half mirror used on the surface of an image display portion of an image display device, wherein the half mirror includes a circularly polarized light reflecting layer, an adhesive layer and a transparent substrate in this order, and the circularly polarized light reflecting layer is It includes a cholesteric liquid crystal layer, and the manufacturing method includes preparing a transfer material including a circularly polarized light reflecting layer, bonding the surface of the circularly polarized light reflecting layer of the transfer material and a transparent substrate with a curable adhesive, and A production method is described which includes curing an adhesive to form the adhesive layer having a thickness of 1 μm or more and 5 μm or less, and wherein the pencil hardness of the surface of the transfer material to be bonded to the transparent substrate is HB or less.
 下記特許文献3には、支持基板/接着剤層/コレステリック液晶層/紫外線吸収層から少なくとも構成される積層体であって、コレステリック液晶層が、一部に回折能を示す領域を有したコレステリック液晶性フィルムからなる光学積層体が記載されている。 Patent Document 3 below describes a laminate composed at least of a support substrate/adhesive layer/cholesteric liquid crystal layer/ultraviolet absorption layer, wherein the cholesteric liquid crystal layer has a cholesteric liquid crystal layer partially having a region exhibiting diffraction ability. Optical laminates composed of optical films are described.
 下記特許文献4には、第1主面及び第2主面を備えた基材層と、基材層の第1主面に接して設けられる接着層と、接着層に接して設けられる液晶組成物硬化層とを含む積層体であって、基材層が脂環式構造を含有する重合体を含む樹脂からなり、基材層の第1主面は、水の接触角が80°以下であり、接着層が、紫外線硬化型樹脂組成物の硬化物からなり、紫外線硬化型樹脂組成物がヒドロキシアルキルアクリレートを主成分として含み、液晶組成物硬化層が、液晶化合物を含む液晶組成物の硬化物からなる、積層体が記載されている。 Patent Document 4 below discloses a base layer having a first main surface and a second main surface, an adhesive layer provided in contact with the first main surface of the base layer, and a liquid crystal composition provided in contact with the adhesive layer. and a material-curing layer, wherein the substrate layer is made of a resin containing a polymer containing an alicyclic structure, and the first main surface of the substrate layer has a water contact angle of 80° or less. The adhesive layer is made of a cured product of an ultraviolet-curable resin composition, the ultraviolet-curable resin composition contains hydroxyalkyl acrylate as a main component, and the liquid crystal composition cured layer is a cured liquid crystal composition containing a liquid crystal compound. Laminates are described, consisting of objects.
特開2013-158970号公報JP 2013-158970 A 特開2016-224292公報Japanese Patent Application Laid-Open No. 2016-224292 特開2000-304927号公報JP-A-2000-304927 特開2019-188740号公報JP 2019-188740 A
 上記特許文献に記載の技術では、そもそも湾曲、屈曲、折り曲げまたは巻き取り可能な表示画面用途を想定していない。加えて、本発明者らが鋭意検討した結果、上記特許文献に記載の技術では、光学積層体を折り曲げた場合に、接着剤層が被着対象(光学フィルム)との間の密着性を維持できるものではないことが判明した。 The technology described in the above patent document does not originally envision applications for display screens that can be curved, bent, bent, or rolled up. In addition, as a result of intensive studies by the present inventors, in the technique described in the above patent document, when the optical laminate is folded, the adhesive layer maintains the adhesion between the adherend (optical film). Turns out it wasn't possible.
 本発明は上記実情に鑑みて開発されたものであり、加湿環境下、特には折り曲げた場合であっても、光学フィルムと接着剤層との間の密着性に優れ、かつ光学フィルムの耐クラック性を向上し得る接着剤層を備える光学積層体、および該光学積層体が用いられた画像表示装置を提供することを目的とする。 The present invention has been developed in view of the above circumstances, and the optical film exhibits excellent adhesion between the optical film and the adhesive layer and crack resistance of the optical film even in a humidified environment, especially when the adhesive layer is folded. An object of the present invention is to provide an optical layered body provided with an adhesive layer capable of improving properties, and an image display device using the optical layered body.
 上記課題は下記構成により解決し得る。即ち、本発明は、光学機能層と基材フィルムとが接着剤層を介して積層された光学積層体であって、前記光学機能層の厚みが0.5~5μmであり、前記接着剤層の厚みが0.5~3μmであり、前記接着剤層は、活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、前記硬化物層のガラス転移温度(以下、「Tg」ともいう)が30℃未満であることを特徴とする光学積層体に関する。 The above issues can be resolved by the following configuration. That is, the present invention provides an optical laminate in which an optical functional layer and a base film are laminated via an adhesive layer, wherein the optical functional layer has a thickness of 0.5 to 5 μm, and the adhesive layer has a thickness of 0.5 to 3 μm, the adhesive layer is formed of a cured product layer of an active energy ray-curable resin composition, and the glass transition temperature of the cured product layer (hereinafter, also referred to as “Tg” ) is less than 30°C.
 上記光学積層体において、前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、極性基を有する(メタ)アクリレートを20~90質量部含有するものであることが好ましい。 In the optical layered body, the active energy ray-curable resin composition contains 20 to 90 parts by mass of a (meth)acrylate having a polar group when the total amount of the composition is 100 parts by mass. preferable.
 上記光学積層体において、前記極性基が水酸基またはカルボキシル基であることが好ましい。 In the above optical laminate, the polar group is preferably a hydroxyl group or a carboxyl group.
 上記光学積層体において、前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、アルキレングリコール単位を有する(メタ)アクリレートを5~90質量部含有するものであることが好ましい。 In the optical layered body, the active energy ray-curable resin composition contains 5 to 90 parts by mass of (meth)acrylate having an alkylene glycol unit when the total amount of the composition is 100 parts by mass. is preferred.
 上記光学積層体において、前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、多官能(メタ)アクリレートを3~20質量部含有するものであることが好ましい。 In the optical layered body, the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass of a polyfunctional (meth)acrylate when the total amount of the composition is 100 parts by mass.
 上記光学積層体において、前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、アクリル系オリゴマーを3~20質量部含有するものであることが好ましい。 In the above optical layered body, the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass of an acrylic oligomer when the total amount of the composition is 100 parts by mass.
 上記光学積層体において、前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、ホモポリマー化した際のガラス転移温度が30℃を超える重合成分の含有量が30質量部以下のものであることが好ましい。 In the optical layered body, the active energy ray-curable resin composition contains 30 polymer components having a glass transition temperature exceeding 30° C. when homopolymerized, when the total amount of the composition is 100 parts by mass. It is preferably not more than parts by mass.
 上記光学積層体において、前記光学機能層が液晶層であることが好ましい。 In the above optical layered body, it is preferable that the optical function layer is a liquid crystal layer.
 上記光学積層体において、2つの非折り曲げ領域の間に位置する折り曲げ軸に沿って折り曲げられる折り曲げ領域を備えることが好ましい。 It is preferable that the above-described optical layered body includes a bending region that is bent along a bending axis located between two non-bending regions.
 上記光学積層体において、前記光学機能層が外側に位置するように折り曲げられるものであることが好ましい。 In the above optical layered body, it is preferable that the optical function layer is bent so as to be positioned on the outside.
 また、本発明は前記いずれかに記載の光学積層体が用いられていることを特徴とする画像表示装置に関する。 The present invention also relates to an image display device using any one of the optical laminates described above.
 本発明に係る光学積層体は、光学機能層と基材フィルムとが接着剤層を介して積層されたものであるが、光学機能層の厚みが0.5~5μmと薄い。このような構成の光学積層体が、例えば光学機能層が外側に位置するように折り曲げられると、薄い光学機能層には伸びる方向に応力が強くかかる。そうすると、接着剤層と光学機能層との密着性が確保できないのみならず、光学機能層のクラックが生ずる虞がある。しかしながら、本発明に係る光学積層体は、接着剤層が活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、該硬化物層のガラス転移温度が30℃未満となるように設計されている。このため、光学積層体を折り曲げるように力が加えられたとしても、柔らかい接着剤層が光学機能層に加えられる応力を緩和する。その結果、特に光学機能層と接着剤層との間の密着性を確保しつつ、光学機能層の耐クラック性を向上することができる。 The optical laminate according to the present invention is obtained by laminating an optical function layer and a base film via an adhesive layer, and the thickness of the optical function layer is as thin as 0.5 to 5 μm. For example, when the optical layered body having such a structure is bent so that the optical function layer is positioned on the outside, a strong stress is applied to the thin optical function layer in the extending direction. In this case, not only is it impossible to ensure the adhesion between the adhesive layer and the optical function layer, but cracks may occur in the optical function layer. However, in the optical laminate according to the present invention, the adhesive layer is formed of a cured product layer of the active energy ray-curable resin composition, and the glass transition temperature of the cured product layer is designed to be less than 30°C. It is Therefore, even if force is applied to bend the optical layered body, the soft adhesive layer relaxes the stress applied to the optical function layer. As a result, it is possible to improve the crack resistance of the optical functional layer while ensuring the adhesion between the optical functional layer and the adhesive layer.
 特に、接着剤層の原料となる活性エネルギー線硬化性樹脂組成物が、極性基を有する(メタ)アクリレート、特には水酸基またはカルボキシル基を有する(メタ)アクリレート、あるいはアルキレングリコール単位を有する(メタ)アクリレート、あるいはアクリル系オリゴマー、さらには多官能(メタ)アクリレートを所定量含有する場合、光学機能層と接着剤層との通常時(非折り曲げ時)および折り曲げ時の両方で密着性に優れる。加えて、光学機能層と接着剤層との密着性に優れることに起因して、仮に折り曲げられた場合でも、光学機能層の耐クラック性がさらに向上する。 In particular, the active energy ray-curable resin composition, which is a raw material for the adhesive layer, is a (meth)acrylate having a polar group, particularly a (meth)acrylate having a hydroxyl group or a carboxyl group, or a (meth)acrylate having an alkylene glycol unit. When a predetermined amount of acrylate, acrylic oligomer, or polyfunctional (meth)acrylate is contained, the adhesion between the optical function layer and the adhesive layer is excellent both in the normal state (when not folded) and when folded. In addition, due to the excellent adhesion between the optical function layer and the adhesive layer, the crack resistance of the optical function layer is further improved even if the optical function layer is folded.
 上記のとおり、本発明に係る光学積層体は、通常時(非折り曲げ時)だけでなく、折り曲げられた場合であっても、接着剤層の密着性に優れ、かつ薄い光学機能層の耐クラック性を向上することができる。このため、特に2つの非折り曲げ領域の間に位置する折り曲げ軸に沿って折り曲げられる折り曲げ領域を備える光学積層体、および表示画面が湾曲、屈曲、折り曲げまたは巻き取り可能な画像表示装置用の光学積層体として有用である。 As described above, the optical layered body according to the present invention has excellent adhesion of the adhesive layer and crack resistance of the thin optical function layer not only when it is normal (when not folded) but also when it is folded. can improve sexuality. To this end, in particular an optical stack comprising a folding region that is folded along a folding axis located between two non-folding regions, and an optical stack for an image display device in which the display screen can be curved, bent, folded or rolled up Useful as a body.
本発明に係る光学積層体を折り曲げた態様を示す一例である。It is an example which shows the aspect which bent the optical laminated body which concerns on this invention. 180°耐折性試験機(井元製作所社製)の概略図である。1 is a schematic diagram of a 180° folding endurance tester (manufactured by Imoto Seisakusho Co., Ltd.); FIG.
 本発明に係る光学積層体は、光学機能層と基材フィルムとが接着剤層を介して積層されたものである。以下、各構成について説明する。 The optical laminate according to the present invention is obtained by laminating an optical function layer and a base film via an adhesive layer. Each configuration will be described below.
(光学機能層)
 光学機能層として、厚みが0.5~5μmと薄いフィルムを使用する。光学積層体の薄型化の観点から、光学機能層の厚みは、0.5~3μmであることがより好ましい。
(Optical function layer)
A thin film having a thickness of 0.5 to 5 μm is used as the optical function layer. From the viewpoint of thinning the optical layered body, the thickness of the optical function layer is more preferably 0.5 to 3 μm.
本発明に係る光学積層体は、接着剤層が活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、該硬化物層のガラス転移温度が30℃未満となるように設計されている。このため、光学機能層が脆い場合、具体的には例えば破断応力が5N/10mm以下であっても、光学機能層の耐クラック性の向上が図れるため好ましい。 In the optical laminate according to the present invention, the adhesive layer is formed of a cured product layer of an active energy ray-curable resin composition, and the glass transition temperature of the cured product layer is designed to be less than 30°C. there is Therefore, when the optical function layer is brittle, specifically, even if the breaking stress is 5 N/10 mm or less, the crack resistance of the optical function layer can be improved, which is preferable.
 本発明においては、光学機能層が液晶層であることが好ましい。液晶層は、例えば、基材フィルム上に直接、または配向膜上に重合性液晶化合物を含む重合性液晶組成物を塗布し、重合性液晶化合物を配向させ、重合させることにより形成することができる。 In the present invention, the optical function layer is preferably a liquid crystal layer. The liquid crystal layer can be formed, for example, by applying a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound directly on the substrate film or on an alignment film, aligning the polymerizable liquid crystal compound, and polymerizing it. .
 液晶層は、少なくとも液晶化合物を含有する。液晶化合物は、重合性液晶化合物であることが好ましい。すなわち、液晶層は、重合性液晶化合物を含む重合性液晶組成物の硬化物を含有することが好ましい。さらに言い換えると、液晶層は、重合性液晶化合物の配向状態が固定化されたものであることが好ましい。 The liquid crystal layer contains at least a liquid crystal compound. The liquid crystal compound is preferably a polymerizable liquid crystal compound. That is, the liquid crystal layer preferably contains a cured polymerizable liquid crystal composition containing a polymerizable liquid crystal compound. In other words, the liquid crystal layer preferably has a fixed alignment state of the polymerizable liquid crystal compound.
 重合性液晶化合物としては、特に限定されるものではなく、目的とするリタデーション値、波長分散性、配向性、溶解性などに応じて適宜選択可能である。また、重合性液晶化合物は、1種単独で用いてもよく、2種以上を混合して用いてもよい。2種以上の重合性液晶化合物を組み合わせて用いることにより、リタデーション値、波長分散性、配向性、溶解性、相転移温度などを調整することができる。また、重合性化合物に加え、必要に応じて、液晶性を有さない重合性化合物、光重合開始剤、増感剤、レベリング剤、酸化防止剤、光安定剤などを含有した重合性液晶組成物として使用してもよい。 The polymerizable liquid crystal compound is not particularly limited, and can be appropriately selected according to the desired retardation value, wavelength dispersion, orientation, solubility, and the like. In addition, the polymerizable liquid crystal compound may be used singly or in combination of two or more. By using two or more polymerizable liquid crystal compounds in combination, it is possible to adjust the retardation value, wavelength dispersion, orientation, solubility, phase transition temperature, and the like. In addition to the polymerizable compound, if necessary, a polymerizable liquid crystal composition containing a polymerizable compound having no liquid crystallinity, a photopolymerization initiator, a sensitizer, a leveling agent, an antioxidant, a light stabilizer, etc. You can use it as an object.
 重合性液晶化合物は、重合性基を有する液晶化合物であり、重合性基が1つの単官能性液晶化合物、または重合性基が2以上の多官能性液晶化合物が挙げられる。中でも、多官能性液晶化合物が好ましく、重合性基の数が2または3の多官能液晶化合物がより好ましく、重合性基の数が2の多官能液晶化合物がさらに好ましい。重合性基は、紫外線などの活性エネルギー線の照射を受けて重合可能となるものであり、例えば、ビニル基、アクリロイル基、メタクリロイル基などのエチレン性不飽和二重結合などが挙げられる。また、重合性液晶化合物は、低分子液晶化合物であってもよく、高分子液晶化合物であってもよい。 A polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group, and includes a monofunctional liquid crystal compound with one polymerizable group and a polyfunctional liquid crystal compound with two or more polymerizable groups. Among them, polyfunctional liquid crystal compounds are preferred, polyfunctional liquid crystal compounds having two or three polymerizable groups are more preferred, and polyfunctional liquid crystal compounds having two polymerizable groups are even more preferred. The polymerizable group can be polymerized by irradiation with an active energy ray such as ultraviolet rays, and examples thereof include ethylenically unsaturated double bonds such as vinyl groups, acryloyl groups, and methacryloyl groups. Moreover, the polymerizable liquid crystal compound may be a low-molecular-weight liquid crystal compound or a high-molecular-weight liquid crystal compound.
 重合性液晶化合物の液晶相としては、特に限定されるものではなく、例えば、ネマチック相、スメクチック相、コレステリック相、ディスコチック相のいずれであってもよい。また、液晶層は、例えば、重合性液晶化合物がネマチック相を示す状態で固定化されたものであってもよく、重合性液晶化合物がコレステリック相を示す状態で固定化されたものであってもよく、重合性液晶化合物がスメクチック相を示す状態で固定化されたものであってもよい。 The liquid crystal phase of the polymerizable liquid crystal compound is not particularly limited, and may be, for example, nematic phase, smectic phase, cholesteric phase, or discotic phase. Further, the liquid crystal layer may be, for example, a polymerizable liquid crystal compound fixed in a state of exhibiting a nematic phase, or a polymerizable liquid crystal compound fixed in a state of exhibiting a cholesteric phase. Well, the polymerizable liquid crystal compound may be immobilized in a state showing a smectic phase.
 液晶層に含まれる液晶化合物の配向状態としては、例えば、基材フィルムの面に対して、水平配向、垂直配向、傾斜配向、ツイスト配向、ハイブリッド配向のいずれであってもよい。 The orientation state of the liquid crystal compound contained in the liquid crystal layer may be, for example, horizontal orientation, vertical orientation, tilt orientation, twist orientation, or hybrid orientation with respect to the surface of the base film.
(基材フィルム)
 基材フィルムの厚みは特に限定されるものではないが、特に光学機能層の耐クラック性向上と光学積層体の薄型化とのバランスを考慮し、基材フィルムの厚みは、0.5~40μmであることが好ましく、0.5~30μmであることがより好ましい。
(Base film)
The thickness of the base film is not particularly limited, but the thickness of the base film is 0.5 to 40 μm, especially considering the balance between the improvement of the crack resistance of the optical function layer and the thinning of the optical laminate. and more preferably 0.5 to 30 μm.
 本発明に係る光学積層体が備える光学機能層は、厚みが0.5~5μmと薄いため、光学機能層の耐クラック性向上の見地から、基材フィルムの破断応力は10N/10mm以上であることが好ましく、20N/10mm以上であることがより好ましい。なお、基材フィルムが延伸フィルムである場合、破断応力はMD方向の破断応力を意味する。また、基材フィルムの破断応力は80N/10mm以下であることが好ましく、60N/10mm以下であることがより好ましい。 Since the optical functional layer included in the optical layered body according to the present invention is as thin as 0.5 to 5 μm in thickness, the breaking stress of the base film is 10 N/10 mm or more from the standpoint of improving the crack resistance of the optical functional layer. is preferable, and 20 N/10 mm or more is more preferable. In addition, when a base film is a stretched film, breaking stress means the breaking stress of MD direction. Moreover, the breaking stress of the base film is preferably 80 N/10 mm or less, more preferably 60 N/10 mm or less.
 基材フィルムとしては、上記厚みを有し、かつ上記破断応力を備える任意のフィルムを使用可能であるが、好適にはポリエチレンテレフタレートフィルム(PETフィルム)、またはトリアセチルセルロースフィルム(TACフィルム)が使用可能である。 As the base film, any film having the above thickness and the above breaking stress can be used, but polyethylene terephthalate film (PET film) or triacetyl cellulose film (TAC film) is preferably used. It is possible.
 なお、本発明においては、基材フィルムに代えて、少なくとも2層の前記光学機能層が接着剤層を介して積層された光学積層体であってもよい。 In the present invention, instead of the base film, an optical laminate in which at least two optical functional layers are laminated via an adhesive layer may be used.
 (接着剤層)
 本発明に係る光学積層体が備える接着剤層は、活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、硬化物層のTgが30℃未満である点が特徴である。硬化物層のTgは、活性エネルギー線硬化性樹脂組成物を構成する材料の配合比率を調製することにより、最適化することができる。光学フィルムと接着剤層との間の密着性および光学フィルムの耐クラック性の両方をバランスよく向上させる観点からは、硬化物層のTgは30℃未満である点ことがより好ましい。なお、該硬化物層のTgの下限は特に限定されるものではないが、例えば-50℃程度が例示可能である。接着剤層の厚みは0.5~3μmであり、0.5~2.5μmであることがより好ましい。
(adhesive layer)
The adhesive layer included in the optical laminate according to the present invention is formed of a cured product layer of an active energy ray-curable resin composition, and is characterized in that the cured product layer has a Tg of less than 30°C. The Tg of the cured product layer can be optimized by adjusting the blending ratio of the materials constituting the active energy ray-curable resin composition. From the viewpoint of improving both the adhesion between the optical film and the adhesive layer and the crack resistance of the optical film in a well-balanced manner, the Tg of the cured product layer is more preferably less than 30°C. Although the lower limit of Tg of the cured product layer is not particularly limited, it can be, for example, about -50°C. The thickness of the adhesive layer is 0.5 to 3 μm, more preferably 0.5 to 2.5 μm.
 また、光学フィルムと接着剤層との間の密着性および光学フィルムの耐クラック性の両方をバランスよく向上させる観点からは、活性エネルギー線硬化性樹脂組成物の硬化物層の貯蔵弾性率E’(Pa(25℃))は、1×10~5×10であることが好ましく、1×10~1×10であることがより好ましい。以下に、活性エネルギー線硬化性樹脂組成物を構成する材料について説明する。 In addition, from the viewpoint of improving both the adhesion between the optical film and the adhesive layer and the crack resistance of the optical film in a well-balanced manner, the storage elastic modulus E′ of the cured product layer of the active energy ray-curable resin composition (Pa (25° C.)) is preferably 1×10 4 to 5×10 7 , more preferably 1×10 5 to 1×10 7 . Materials constituting the active energy ray-curable resin composition are described below.
 活性エネルギー線硬化性樹脂組成物は、ラジカル重合硬化性樹脂組成物とカチオン重合硬化性樹脂組成物に区分出来る。本発明において、波長範囲10nm~380nm未満の活性エネルギー線を紫外線、波長範囲380nm~800nmの活性エネルギー線を可視光線として表記する。 Active energy ray-curable resin compositions can be classified into radically polymerizable and cationic polymerizable resin compositions. In the present invention, active energy rays with a wavelength range of 10 nm to less than 380 nm are expressed as ultraviolet rays, and active energy rays with a wavelength range of 380 nm to 800 nm are expressed as visible rays.
 ラジカル重合硬化性樹脂組成物を構成する単量体成分としては、(メタ)アクリロイル基、ビニル基などの炭素-炭素二重結合のラジカル重合性の官能基を有する化合物が挙げられる。これら単量体成分は、単官能ラジカル重合性化合物または重合性官能基を2以上有する多官能ラジカル重合性化合物のいずれも用いることができる。また、これらラジカル重合性化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。これらラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する(メタ)アクリレートが好適である。なお、本発明において、(メタ)アクリロイルとは、アクリロイル基および/またはメタクリロイル基を意味し、「(メタ)」は以下同様の意味である。 Examples of monomer components constituting the radically polymerizable curable resin composition include compounds having radically polymerizable functional groups of carbon-carbon double bonds such as (meth)acryloyl groups and vinyl groups. These monomer components can be either monofunctional radically polymerizable compounds or multifunctional radically polymerizable compounds having two or more polymerizable functional groups. Moreover, these radical polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, (meth)acrylates having a (meth)acryloyl group are suitable. In the present invention, (meth)acryloyl means an acryloyl group and/or a methacryloyl group, and "(meth)" has the same meaning below.
 本発明では単官能ラジカル重合性化合物として、極性基を有する(メタ)アクリレートを使用した場合、加湿環境下、特には折り曲げた場合であっても、光学フィルムと接着剤層との間の密着性に優れ、かつ光学フィルムの耐クラック性を向上し得るため好ましい。極性基の中でも、特に水酸基またはカルボキシル基が好ましい。 In the present invention, when a (meth)acrylate having a polar group is used as the monofunctional radically polymerizable compound, the adhesion between the optical film and the adhesive layer is improved even in a humidified environment, especially when the adhesive layer is folded. is excellent and the crack resistance of the optical film can be improved. Among the polar groups, a hydroxyl group or a carboxyl group is particularly preferred.
 水酸基含有(メタ)アクリレートとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートや、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン、1,4-シクロヘキサンジメタノールモノアクリレートなどが挙げられる。 Examples of hydroxyl group-containing (meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl Hydroxyalkyl (meth)acrylates such as (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, [4-(hydroxymethyl)cyclohexyl]methyl acrylate, cyclohexanedimethanol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, unsaturated fatty acid hydroxyalkyl ester-modified ε-caprolactone, 1,4-cyclohexane and dimethanol monoacrylate.
 また、水酸基含有(メタ)アクリレートとしては、アルキレングリコール単位を有し、かつ末端に水酸基を有する(メタ)アクリレートを使用した場合、得られる接着剤層(硬化物層)のTgを下げつつ、光学フィルムと接着剤層との密着性を向上できるため好ましい。アルキレングリコール単位を有し、かつ末端に水酸基を有する(メタ)アクリレートとしては例えば、エチレングリコール単位を平均で2~10個有するポリエチレングリコール(メタ)アクリレート、、プロピレングリコール単位を平均で2~13個有するポリプロピレングリコール(メタ)アクリレートなどが挙げられる。 Further, as the hydroxyl group-containing (meth)acrylate, when a (meth)acrylate having an alkylene glycol unit and a terminal hydroxyl group is used, the Tg of the resulting adhesive layer (cured material layer) is lowered while optical It is preferable because it can improve the adhesion between the film and the adhesive layer. Examples of the (meth)acrylate having an alkylene glycol unit and a terminal hydroxyl group include polyethylene glycol (meth)acrylate having an average of 2 to 10 ethylene glycol units, and an average of 2 to 13 propylene glycol units. and polypropylene glycol (meth)acrylate having
 水酸基含有(メタ)アクリレートとして、N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミドなどのN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体も使用可能である。 Examples of hydroxyl group-containing (meth)acrylates include N-hydroxyalkyl group-containing (meth)acrylamide derivatives such as N-methylol (meth)acrylamide, N-hydroxyethyl (meth)acrylamide, N-methylol-N-propane (meth)acrylamide. Available.
 カルボキシル基含有(メタ)アクリレートとしては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などが挙げられる。 Carboxyl group-containing (meth)acrylates include (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 本発明においては、活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、極性基を有する(メタ)アクリレートを20~90質量部含有するものであることが好ましく、30~80質量部含有するものであることがより好ましい。 In the present invention, the active energy ray-curable resin composition preferably contains 20 to 90 parts by mass of a (meth)acrylate having a polar group when the total amount of the composition is 100 parts by mass. It is more preferable to contain 30 to 80 parts by mass.
 また、極性基を有する(メタ)アクリレートは、得られる接着剤層(硬化物層)のTgを下げる観点から、ホモポリマー化した際のガラス転移温度が30℃以下のものが好ましく、0℃以下のものがより好ましい。 In addition, the (meth)acrylate having a polar group preferably has a glass transition temperature of 30° C. or less when homopolymerized, and 0° C. or less, from the viewpoint of lowering the Tg of the resulting adhesive layer (cured material layer). is more preferred.
 本発明では単官能ラジカル重合性化合物として、アルキレングリコール単位を有する(メタ)アクリレートを使用した場合、加湿環境下、特には折り曲げた場合であっても、光学フィルムと接着剤層との間の密着性に優れ、かつ光学フィルムの耐クラック性を向上し得るため好ましい。アルキレングリコール単位を有する(メタ)アクリレートとしては、前述したアルキレングリコール単位を有し、かつ末端に水酸基を有する(メタ)アクリレートであってもよく、あるいは末端にメチル基、エチル基、および2-エチルヘキシル基などのアルキル基や、メトキシ基、エトキシ基、およびフェノキシ基などのアルコキシ基を有するものであってもよい。 In the present invention, when a (meth)acrylate having an alkylene glycol unit is used as the monofunctional radically polymerizable compound, adhesion between the optical film and the adhesive layer is maintained even in a humidified environment, especially when the adhesive layer is folded. It is preferable because it has excellent properties and can improve the crack resistance of the optical film. The (meth)acrylate having an alkylene glycol unit may be a (meth)acrylate having the alkylene glycol unit described above and having a hydroxyl group at the end, or a methyl group, an ethyl group, and 2-ethylhexyl at the end. and alkoxy groups such as methoxy, ethoxy, and phenoxy groups.
 本発明においては、活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、アルキレングリコール単位を有する(メタ)アクリレートを5~90質量部含有するものであることが好ましく、15~80質量部含有するものであることがより好ましい。 In the present invention, the active energy ray-curable resin composition preferably contains 5 to 90 parts by mass of (meth)acrylate having an alkylene glycol unit when the total amount of the composition is 100 parts by mass. , more preferably 15 to 80 parts by mass.
 本発明では単官能ラジカル重合性化合物として、極性基を有する(メタ)アクリレートおよびアルキレングリコール単位を有する(メタ)アクリレート以外のものを使用してもよい。使用可能な(メタ)アクリレートとしては例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体は、光学機能層および/または基材フィルムとの密着性を確保するうえで、また、重合速度が速く生産性に優れる点で好ましい。(メタ)アクリルアミド誘導体の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミドなどのN-アルキル基含有(メタ)アクリルアミド誘導体;;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミドなどのN-アミノアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミドなどのN-アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミドなどのN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体;などが挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体としては、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジンなどがあげられる。 In the present invention, as the monofunctional radically polymerizable compound, a compound other than (meth)acrylate having a polar group and (meth)acrylate having an alkylene glycol unit may be used. Usable (meth)acrylates include, for example, (meth)acrylamide derivatives having a (meth)acrylamide group. A (meth)acrylamide derivative is preferable in terms of securing adhesion to the optical function layer and/or the substrate film, and in terms of high polymerization rate and excellent productivity. Specific examples of (meth)acrylamide derivatives include N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N -N-alkyl group-containing (meth)acrylamide derivatives such as butyl (meth)acrylamide and N-hexyl (meth)acrylamide;; N-aminoalkyl group-containing (such as aminomethyl (meth)acrylamide and aminoethyl (meth)acrylamide) meth)acrylamide derivatives; N-alkoxy group-containing (meth)acrylamide derivatives such as N-methoxymethylacrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing derivatives such as mercaptomethyl (meth)acrylamide and mercaptoethyl (meth)acrylamide (meth)acrylamide derivatives; and the like. Further, the heterocycle-containing (meth)acrylamide derivative in which the nitrogen atom of the (meth)acrylamide group forms a heterocycle includes, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine etc.
 また、単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。 In addition, examples of monofunctional radically polymerizable compounds include various (meth)acrylic acid derivatives having a (meth)acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl-2-propylpentyl ( Examples include (meth)acrylic acid (C1-20) alkyl esters such as meth)acrylate and n-octadecyl (meth)acrylate.
 また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート;ベンジル(メタ)アクリレートなどのアラルキル(メタ)アクリレート;2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト、などの多環式(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレートなどのアルコキシ基またはフェノキシ基含有(メタ)アクリレート;などが挙げられる。 Examples of the (meth)acrylic acid derivative include cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclopentenyl (meth) ) Polycyclic (meth)acrylates such as acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate; 2-methoxyethyl (meth)acrylate, 2-ethoxy Ethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, alkylphenoxy polyethylene glycol (meth) acrylate, etc. alkoxy group- or phenoxy group-containing (meth)acrylates; and the like.
 本発明では単官能ラジカル重合性化合物として、下記式(1)に示す化合物;
Figure JPOXMLDOC01-appb-C000001
(ただし、Xは反応性基を含む官能基であり、RおよびRはそれぞれ独立に、水素原子、置換基を有してもよい、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す)、好ましくは前記一般式(1’)に記載の化合物;
In the present invention, a compound represented by the following formula (1) as a monofunctional radically polymerizable compound;
Figure JPOXMLDOC01-appb-C000001
(where X is a functional group containing a reactive group, R 1 and R 2 are each independently a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, an aryl group, or a heterocyclic group represents), preferably a compound according to the general formula (1′);
Figure JPOXMLDOC01-appb-C000002
(ただし、Yは有機基であり、X’はXが含む反応性基であり、RおよびRは前記と同じ)、さらに好ましくは後述する一般式(1a)~(1d)に記載の化合物;
Figure JPOXMLDOC01-appb-C000002
(where Y is an organic group, X' is a reactive group contained in X, and R 1 and R 2 are the same as described above), more preferably the following general formulas (1a) to (1d) Compound;
Figure JPOXMLDOC01-appb-C000003
を活性エネルギー線硬化性樹脂組成物に配合することができる。活性エネルギー線硬化性樹脂組成物中にこれらの化合物を配合した場合、光学機能層および基材フィルムとの密着性が向上することがあるため好ましい。光学機能層および基材フィルムとの密着性向上の見地から、活性エネルギー線硬化性樹脂組成物中、前記一般式(1)に記載の化合物の含有量は、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。
Figure JPOXMLDOC01-appb-C000003
can be blended into the active energy ray-curable resin composition. When these compounds are blended in the active energy ray-curable resin composition, the adhesion between the optical function layer and the substrate film may be improved, which is preferable. From the standpoint of improving the adhesion between the optical functional layer and the substrate film, the content of the compound represented by the general formula (1) in the active energy ray-curable resin composition is 0.1 to 10 parts by mass. is preferred, and 0.5 to 5 parts by mass is more preferred.
 前記一般式(1)中、前記脂肪族炭化水素基としては、炭素数1~20の置換基を有してもよい直鎖または分岐のアルキル基、炭素数3~20の置換基を有してもよい環状アルキル基、炭素数2~20のアルケニル基が挙げられ、アリール基としては、炭素数6~20の置換基を有してもよいフェニル基、炭素数10~20の置換基を有してもよいナフチル基などが挙げられ、ヘテロ環基としては例えば、少なくとも一つのヘテロ原子を含む、置換基を有してもよい5員環または6員環の基が挙げられる。これらは互いに連結して環を形成してもよい。一般式(1)中、RおよびRとして好ましくは、水素原子、炭素数1~3の直鎖または分岐のアルキル基であり、最も好ましくは、水素原子である。 In the general formula (1), the aliphatic hydrocarbon group includes a linear or branched alkyl group optionally having a substituent having 1 to 20 carbon atoms, and a substituent having 3 to 20 carbon atoms. cyclic alkyl groups which may be substituted, and alkenyl groups having 2 to 20 carbon atoms. optionally substituted naphthyl groups and the like, and examples of heterocyclic groups include 5- or 6-membered ring groups containing at least one heteroatom and optionally having substituents. These may be linked together to form a ring. In formula (1), R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, most preferably a hydrogen atom.
 一般式(1)で表される化合物が有するXは反応性基を含む官能基であって、Xが含む反応性基としては、例えば、ヒドロキシル基、アミノ基、アルデヒド基、カルボキシル基、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基、α,β-不飽和カルボニル基、メルカプト基、ハロゲン基などが挙げられる。Xが含む反応性基は、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基およびメルカプト基からなる群より選択される少なくとも1種の反応性基であることが好ましく、特に活性エネルギー線硬化性樹脂組成物がラジカル重合性である場合、Xが含む反応性基は、(メタ)アクリル基、スチリル基および(メタ)アクリルアミド基からなる群より選択される少なくとも1種の反応性基であることが好ましく、一般式(1)で表される化合物が(メタ)アクリルアミド基を有する場合、反応性が高く、活性エネルギー線硬化性樹脂組成物との共重合率が高まるためより好ましい。また、(メタ)アクリルアミド基の極性が高く、接着性に優れるため本発明の効果を効率的に得られるという点からも好ましい。接着剤層を構成する硬化性樹脂組成物がカチオン重合性である場合、Xが含む反応性基は、ヒドロキシル基、アミノ基、アルデヒド、カルボキシル基、ビニルエーテル基、エポキシ基、オキセタン基、メルカプト基から選ばれる少なくとも1つの官能基を有することが好ましく、特にエポキシ基を有する場合、得られる硬化性樹脂層と被着体との密着性に優れるため好ましく、ビニルエーテル基を有する場合、硬化性樹脂組成物の硬化性が優れるため好ましい。 X possessed by the compound represented by the general formula (1) is a functional group containing a reactive group, and the reactive group contained in X includes, for example, a hydroxyl group, an amino group, an aldehyde group, a carboxyl group, and a vinyl group. , (meth)acryl group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group, α,β-unsaturated carbonyl group, mercapto group, halogen group and the like. The reactive group contained in X is at least one reactive group selected from the group consisting of a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group and a mercapto group. is preferably a group, and particularly when the active energy ray-curable resin composition is radically polymerizable, the reactive group contained in X is selected from the group consisting of a (meth)acryl group, a styryl group and a (meth)acrylamide group. It is preferably at least one selected reactive group, and when the compound represented by the general formula (1) has a (meth)acrylamide group, the reactivity is high, and the active energy ray-curable resin composition and It is more preferable because the copolymerization rate of is increased. In addition, the (meth)acrylamide group has a high polarity and is excellent in adhesiveness, so it is preferable from the viewpoint that the effects of the present invention can be obtained efficiently. When the curable resin composition that constitutes the adhesive layer is cationic polymerizable, the reactive group contained in X is a hydroxyl group, an amino group, an aldehyde, a carboxyl group, a vinyl ether group, an epoxy group, an oxetane group, or a mercapto group. It is preferable to have at least one selected functional group, especially when it has an epoxy group, it is preferable for excellent adhesion between the resulting curable resin layer and the adherend, and when it has a vinyl ether group, the curable resin composition is preferred because of its excellent curability.
 本発明においては、一般式(1)で表される化合物が、反応性基とホウ素原子とが直接結合するものであっても良いが、前記具体例で示したように、一般式(1)で表される化合物が、反応性基とホウ素原子とが、有機基を介して結合したものであること、つまり、一般式(1’)で表される化合物であることが好ましい。一般式(1)で表される化合物が、例えばホウ素原子に結合した酸素原子を介して反応性基と結合したものである場合、偏光フィルムの接着耐水性が悪化する傾向がある。一方、一般式(1)で表される化合物が、ホウ素-酸素結合を有するものではなく、ホウ素原子と有機基とが結合することにより、ホウ素-炭素結合を有しつつ、反応性基を含むものである場合(一般式(1’)である場合)、偏光フィルムの接着耐水性が向上するため好ましい。前記有機基とは、具体的には、置換基を有してもよい、炭素数1~20の有機基を意味し、より具体的には例えば、炭素数1~20の置換基を有してもよい直鎖または分岐のアルキレン基、炭素数3~20の置換基を有してもよい環状アルキレン基、炭素数6~20の置換基を有してもよいフェニレン基、炭素数10~20の置換基を有してもよいナフチレン基などが挙げられる。 In the present invention, the compound represented by the general formula (1) may be one in which the reactive group and the boron atom are directly bonded. The compound represented by is preferably one in which a reactive group and a boron atom are bonded via an organic group, that is, a compound represented by general formula (1′). For example, when the compound represented by the general formula (1) is bonded to a reactive group via an oxygen atom bonded to a boron atom, the adhesion water resistance of the polarizing film tends to deteriorate. On the other hand, the compound represented by the general formula (1) does not have a boron-oxygen bond, but has a boron-carbon bond by bonding a boron atom and an organic group, and contains a reactive group. When it is a compound (when represented by general formula (1′)), it is preferable because the adhesive water resistance of the polarizing film is improved. The organic group specifically means an organic group having 1 to 20 carbon atoms which may have a substituent, and more specifically, for example, having a substituent having 1 to 20 carbon atoms. A linear or branched alkylene group which may be optionally substituted, a cyclic alkylene group which may have a substituent of 3 to 20 carbon atoms, a phenylene group which may have a substituent of 6 to 20 carbon atoms, a phenylene group which may have a substituent of 10 to 10 carbon atoms. A naphthylene group which may have 20 substituents may be mentioned.
 一般式(1)で表される化合物としては、前記例示した化合物以外にも、ヒドロキシエチルアクリルアミドとホウ酸のエステル、メチロールアクリルアミドとホウ酸のエステル、ヒドロキシエチルアクリレートとホウ酸のエステル、およびヒドロキシブチルアクリレートとホウ酸のエステルなど、(メタ)アクリレートとホウ酸とのエステルを例示可能である。 As the compound represented by the general formula (1), in addition to the compounds exemplified above, esters of hydroxyethylacrylamide and boric acid, esters of methylolacrylamide and boric acid, esters of hydroxyethyl acrylate and boric acid, and hydroxybutyl Esters of (meth)acrylates and boric acid can be exemplified, such as esters of acrylate and boric acid.
 本発明では活性エネルギー線硬化性樹脂組成物が、多官能ラジカル重合性化合物として多官能(メタ)アクリレートを含有する場合、加湿環境下、特には折り曲げた場合であっても、光学フィルムと接着剤層との間の密着性に優れ、かつ光学フィルムの耐クラック性を向上し得るため好ましい。多官能(メタ)アクリレートとしては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、EO変性ジグリセリンテトラ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル化物、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、ライトアクリレート9EG-A(共栄社化学社製)、ブレンマーADP-400(日油社製)、NKエステルA-GLY-9E(新中村化学工業社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、アロニックスM-220(東亞合成社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)などが挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマーなどが挙げられる。 In the present invention, when the active energy ray-curable resin composition contains a polyfunctional (meth)acrylate as a polyfunctional radically polymerizable compound, the optical film and the adhesive can be used in a humidified environment, especially even when the adhesive is folded. It is preferable because it has excellent adhesion between the layers and can improve the crack resistance of the optical film. Examples of polyfunctional (meth)acrylates include tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, 1,6-hexanediol di (Meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, bisphenol A di(meth)acrylate, bisphenol A ethylene oxide adduct di(meth)acrylate, bisphenol A propylene oxide adduct di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, dioxane glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, Esterified products of (meth)acrylic acid and polyhydric alcohols, such as dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethoxylated glycerin triacrylate, and EO-modified diglycerin tetra(meth)acrylate, 9 ,9-bis[4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene. Specific examples include light acrylate 9EG-A (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer ADP-400 (manufactured by NOF Corporation), NK ester A-GLY-9E (manufactured by Shin-Nakamura Chemical Co., Ltd.), light acrylate 1,9ND- A (manufactured by Kyoeisha Chemical Co., Ltd.), Aronix M-220 (manufactured by Toagosei Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP-A (manufactured by Kyoeisha Chemical Co., Ltd.), SR-531 (manufactured by Sartomer ), CD-536 (manufactured by Sartomer), and the like. Various epoxy (meth)acrylates, urethane (meth)acrylates, polyester (meth)acrylates, various (meth)acrylate monomers, and the like can also be used as necessary.
 本発明においては、活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、多官能(メタ)アクリレートを3~20質量部含有するものであることが好ましく、5~15質量部含有するものであることがより好ましい。 In the present invention, the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass of a polyfunctional (meth)acrylate when the total amount of the composition is 100 parts by mass. It is more preferable to contain 15 parts by mass.
 本発明に係る光学積層体が備える接着剤層は、活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、硬化物層のTgが30℃未満である点が特徴である。ただし、光学フィルムと接着剤層との間の密着性および光学フィルムの耐クラック性の両方をバランスよく向上させる観点から、組成物の全量を100質量部としたとき、ホモポリマー化した際のガラス転移温度が30℃を超える重合成分の含有量が30質量部以下のものであることが好ましく、ホモポリマー化した際のガラス転移温度が30℃を超える重合成分の含有量が20質量部以下のものであることがより好ましい。 The adhesive layer included in the optical laminate according to the present invention is formed of a cured product layer of an active energy ray-curable resin composition, and is characterized in that the cured product layer has a Tg of less than 30°C. However, from the viewpoint of improving both the adhesion between the optical film and the adhesive layer and the crack resistance of the optical film in a well-balanced manner, when the total amount of the composition is 100 parts by mass, the glass when homopolymerized The content of the polymerized component having a transition temperature exceeding 30°C is preferably 30 parts by mass or less, and the content of the polymerized component having a glass transition temperature exceeding 30°C when homopolymerized is 20 parts by mass or less. It is more preferable to be
 本発明においては、活性エネルギー線硬化性樹脂組成物が、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有することが好ましい。活性エネルギー線硬化性樹脂組成物中にアクリル系オリゴマーを含有することで、該組成物に活性エネルギー線を照射・硬化させる際の硬化収縮を低減し、接着剤層と、光学機能層および基材フィルムなどの被着体との界面応力を低減することができる。その結果、接着剤層と被着体との密着性の低下を抑制することができる。 In the present invention, the active energy ray-curable resin composition preferably contains an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer. By containing an acrylic oligomer in the active energy ray-curable resin composition, curing shrinkage when irradiating and curing the composition with an active energy ray is reduced, and the adhesive layer, the optical function layer and the base material Interfacial stress with an adherend such as a film can be reduced. As a result, deterioration in adhesion between the adhesive layer and the adherend can be suppressed.
 活性エネルギー線硬化性樹脂組成物は、塗工時の作業性や均一性を考慮した場合、低粘度であることが好ましいため、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーも低粘度であることが好ましい。低粘度であって、かつ接着剤層の硬化収縮を防止できるアクリル系オリゴマーとしては、重量平均分子量(Mw)が15000以下のものが好ましく、10000以下のものがより好ましく、5000以下のものが特に好ましい。一方、硬化物層(接着剤層)の硬化収縮を十分に抑制するためには、アクリル系オリゴマーの重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが特に好ましい。アクリル系オリゴマーを構成する(メタ)アクリルモノマーとしては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、N-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。これら(メタ)アクリレートは、単独使用または2種類以上併用することができる。アクリル系オリゴマー(E)の具体例としては、東亞合成社製「ARUFON」、綜研化学社製「アクトフロー」、BASFジャパン社製「JONCRYL」などが挙げられる。 Considering workability and uniformity during coating, the active energy ray-curable resin composition preferably has a low viscosity. Preferably. The acrylic oligomer which has a low viscosity and can prevent curing shrinkage of the adhesive layer preferably has a weight-average molecular weight (Mw) of 15,000 or less, more preferably 10,000 or less, and particularly 5,000 or less. preferable. On the other hand, in order to sufficiently suppress curing shrinkage of the cured product layer (adhesive layer), the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more. 1500 or more is particularly preferable. Specific examples of the (meth)acrylic monomer constituting the acrylic oligomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl- 2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth)acrylic acid (C1-20) alkyl esters such as meth)acrylate, 4-methyl-2-propylpentyl (meth)acrylate, N-octadecyl (meth)acrylate, and further, for example, cycloalkyl (meth) ) acrylates (e.g., cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylates (e.g., benzyl (meth) acrylate, etc.), polycyclic (meth) acrylates (e.g., 2-isobornyl (meth) ) acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornen-2-yl-methyl (meth)acrylate, 3-methyl-2-norbornylmethyl (meth)acrylate, etc.), hydroxyl group-containing (meth) ) Acrylic esters (e.g., hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,3-dihydroxypropylmethyl-butyl (meth)methacrylate, etc.), alkoxy group- or phenoxy group-containing (meth)acryl Acid esters (2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-methoxymethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phenoxy ethyl (meth)acrylate, etc.), epoxy group-containing (meth)acrylic acid esters (e.g., glycidyl (meth)acrylate, etc.), halogen-containing (meth)acrylic acid esters (e.g., 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) ) acrylate, etc.), alkylaminoalkyl (meth)acrylate (eg, dimethylaminoethyl (meth)acrylate, etc.), and the like. These (meth)acrylates can be used alone or in combination of two or more. Specific examples of the acrylic oligomer (E) include "ARUFON" manufactured by Toagosei Co., Ltd., "ACT FLOW" manufactured by Soken Chemical Co., Ltd., and "JONCRYL" manufactured by BASF Japan.
 上記光学積層体において、活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、アクリル系オリゴマーを3~20質量部含有するものであることが好ましく、3~15質量部含有するものであることがより好ましい。 In the optical layered body, the active energy ray-curable resin composition preferably contains 3 to 20 parts by mass, more preferably 3 to 15 parts by mass, of the acrylic oligomer when the total amount of the composition is 100 parts by mass. It is more preferable to contain a part.
 本発明で使用する活性エネルギー線硬化性樹脂組成物は、光重合性開始剤を含有することが好ましい。光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1-プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。 The active energy ray-curable resin composition used in the present invention preferably contains a photopolymerization initiator. A photopolymerization initiator is appropriately selected depending on the active energy ray. When curing with ultraviolet light or visible light, a photopolymerization initiator that is cleaved with ultraviolet light or visible light is used. Examples of the photopolymerization initiator include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, and 3,3′-dimethyl-4-methoxybenzophenone; 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2 -propyl)ketone, α-hydroxy-α,α'-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, α-hydroxycyclohexylphenylketone and other aromatic ketone compounds; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholinopropane-1; benzoin methyl ether, Benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and anisoin methyl ether; aromatic ketal compounds such as benzyl dimethyl ketal; aromatic sulfonyl chlorides such as 2-naphthalenesulfonyl chloride Photoactive oxime compounds such as 1-phenone-1,1-propanedione-2-(o-ethoxycarbonyl)oxime; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4- Thioxanthone compounds such as dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone; camphorquinone; halogenated ketone; acylphosphinoxide; acylphosphonate, and the like.
 前記光重合開始剤の配合量は、活性エネルギー線硬化性樹脂組成物の全量を100質量部としたとき、0.5~5質量部含有するものであることが好ましく、1~4質量部含有するものであることがより好ましい。 The amount of the photopolymerization initiator is preferably 0.5 to 5 parts by mass, preferably 1 to 4 parts by mass, when the total amount of the active energy ray-curable resin composition is 100 parts by mass. It is more preferable that
 また、活性エネルギー線硬化性樹脂組成物を可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。 In addition, when using a visible light-curable active energy ray-curable resin composition, it is preferable to use a photopolymerization initiator that is particularly sensitive to light of 380 nm or more. A photopolymerization initiator highly sensitive to light of 380 nm or more will be described later.
 前記光重合開始剤としては、下記一般式(2)で表される化合物;
Figure JPOXMLDOC01-appb-C000004
(式中、RおよびRは-H、-CHCH、-iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(1)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(2)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて接着性に優れる。一般式(2)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。活性エネルギー線硬化性樹脂組成物中の一般式(2)で表される化合物の配合量は、活性エネルギー線硬化性樹脂組成物の全量を100質量部としたとき、0.1~4質量部含有するものであることが好ましく、0.5~3質量部含有するものであることがより好ましい。
As the photopolymerization initiator, a compound represented by the following general formula (2);
Figure JPOXMLDOC01-appb-C000004
(wherein R 3 and R 4 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 3 and R 4 may be the same or different), or the general formula ( It is preferable to use the compound represented by 1) together with a photopolymerization initiator highly sensitive to light of 380 nm or longer, which will be described later. When the compound represented by the general formula (2) is used, the adhesiveness is superior to the case where a photopolymerization initiator highly sensitive to light of 380 nm or more is used alone. Among the compounds represented by general formula (2), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferred. The amount of the compound represented by the general formula (2) in the active energy ray-curable resin composition is 0.1 to 4 parts by mass when the total amount of the active energy ray-curable resin composition is 100 parts by mass. It preferably contains 0.5 to 3 parts by mass, more preferably 0.5 to 3 parts by mass.
 また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどが挙げられ、4-ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、活性エネルギー線硬化性樹脂組成物の全量を100質量部としたとき、0.1~3質量部含有するものであることが好ましく、0.3~1質量部含有するものであることがより好ましい。 In addition, it is preferable to add a polymerization initiation aid as necessary. Examples of polymerization initiation aids include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate. and ethyl 4-dimethylaminobenzoate is particularly preferred. When a polymerization initiation aid is used, the amount added is preferably 0.1 to 3 parts by mass when the total amount of the active energy ray-curable resin composition is 100 parts by mass. It is more preferable to contain 3 to 1 part by mass.
 また、必要に応じて公知の光重合開始剤を併用することができる。UV吸収能を有する光学機能層および基材フィルムは、380nm以下の光を透過しないため、光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。 In addition, a known photopolymerization initiator can be used together as needed. Since the optical functional layer and base film having UV absorbability do not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator highly sensitive to light of 380 nm or more as the photopolymerization initiator. . Specifically, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 , 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(η5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrole- 1-yl)-phenyl) titanium and the like.
 本発明で使用する活性エネルギー線硬化性樹脂組成物は、シランカップリング剤を含有することが好ましい。シランカップリング剤の具体例としては、活性エネルギー線硬化性の化合物としてビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどが挙げられる。 The active energy ray-curable resin composition used in the present invention preferably contains a silane coupling agent. Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycide as active energy ray-curable compounds. xypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and the like.
 好ましくは、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランである。  Preferred are 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
 シランカップリング剤の配合量は、活性エネルギー線硬化性樹脂組成物の全量に対して、0.01~20質量%の範囲が好ましく、0.05~15質量%であることが好ましく、0.1~10質量%であることがさらに好ましい。20質量%を超える配合量の場合、活性エネルギー線硬化性樹脂組成物の保存安定性が悪化し、また0.1質量%未満の場合は接着耐水性の効果が十分発揮されないためである。 The amount of the silane coupling agent compounded is preferably in the range of 0.01 to 20% by mass, preferably 0.05 to 15% by mass, based on the total amount of the active energy ray-curable resin composition. It is more preferably 1 to 10% by mass. This is because if the amount exceeds 20% by mass, the storage stability of the active energy ray-curable resin composition deteriorates, and if the amount is less than 0.1% by mass, the effect of adhesion water resistance is not sufficiently exhibited.
 上記以外の活性エネルギー線硬化性ではないシランカップリング剤の具体例としては、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシランなどが挙げられる。 Specific examples of non-active energy ray-curable silane coupling agents other than the above include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane. silane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, imidazolesilane, and the like.
 本発明で使用する活性エネルギー線硬化性樹脂組成物は、カチオン重合硬化性樹脂組成物であってもよい。カチオン重合硬化性樹脂組成物に使用されるカチオン重合性化合物としては、分子内にカチオン重合性官能基を1つ有する単官能カチオン重合性化合物と、分子内にカチオン重合性官能基を2つ以上有する多官能カチオン重合性化合物とに分類される。単官能カチオン重合性化合物は比較的液粘度が低いため、カチオン重合硬化性樹脂組成物に含有させることで液粘度を低下させることができる。また、単官能カチオン重合性化合物は各種機能を発現させる官能基を有している場合が多く、カチオン重合硬化性樹脂組成物に含有させることで、カチオン重合硬化性樹脂組成物及び/又はカチオン重合硬化性樹脂組成物の硬化物に各種機能を発現させることができる。多官能カチオン重合性化合物は、カチオン重合硬化性樹脂組成物の硬化物を3次元架橋させることができるため、カチオン重合硬化性樹脂組成物に含有させることが好ましい。単官能カチオン重合性化合物と多官能カチオン重合性化合物の比は、単官能カチオン重合性化合物100質量部に対して、多官能カチオン重合性化合物を10質量部から1000質量部の範囲で混合することが好ましい。カチオン重合性官能基としては、エポキシ基やオキセタニル基、ビニルエーテル基が挙げられる。エポキシ基を有する化合物としては、脂肪族エポキシ化合物、脂環式エポキシ化合物、芳香族エポキシ化合物が挙げられ、本発明のカチオン重合性樹脂組成物としては、硬化性や接着性に優れることから、脂環式エポキシ化合物を含有することが特に好ましい。脂環式エポキシ化合物としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートのカプロラクトン変性物やトリメチルカプロラクトン変性物やバレロラクトン変性物等が挙げられ、具体的には、セロキサイド2021、セロキサイド2021A、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上、ダイセル化学工業(株製)、サイラキュアUVR-6105、サイラキュアUVR-6107、サイラキュア30、R-6110(以上、ダウ・ケミカル日本(株)製)等が挙げられる。オキセタニル基を有する化合物は、カチオン重合性樹脂組成物の硬化性を改善したり、該組成物の液粘度を低下させる効果があるため、含有させることが好ましい。オキセタニル基を有する化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ[(3-エチル-3-オキセタニル)メチル]エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタンなどが挙げられ、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-211、アロンオキセタンOXT-221、アロンオキセタンOXT-212(以上、東亞合成社製)等が市販されている。ビニルエーテル基を有する化合物は、カチオン重合性樹脂組成物の硬化性を改善したり、該組成物の液粘度を低下させる効果があるため、含有させることが好ましい。ビニルエーテル基を有する化合物としては、2-ヒドロキシエチルビニルエーテル、ジエチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールものビニルエーテル、トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、トリシクロデカンビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、ペンタエリスリトール型テトラビニルエーテル等が挙げられる。 The active energy ray-curable resin composition used in the present invention may be a cationic polymerization-curable resin composition. The cationically polymerizable compound used in the cationically polymerizable curable resin composition includes a monofunctional cationically polymerizable compound having one cationically polymerizable functional group in the molecule and two or more cationically polymerizable functional groups in the molecule. It is classified into polyfunctional cationic polymerizable compounds with Since the monofunctional cationically polymerizable compound has a relatively low liquid viscosity, the liquid viscosity can be reduced by including it in the cationically polymerizable curable resin composition. In addition, the monofunctional cationically polymerizable compound often has a functional group that exhibits various functions. Various functions can be expressed in the cured product of the curable resin composition. Since the polyfunctional cationically polymerizable compound can three-dimensionally crosslink the cured product of the cationically polymerizable curable resin composition, it is preferably contained in the cationically polymerizable curable resin composition. The ratio of the monofunctional cationically polymerizable compound and the polyfunctional cationically polymerizable compound is to mix 10 parts by mass to 1000 parts by mass of the polyfunctional cationically polymerizable compound with respect to 100 parts by mass of the monofunctional cationically polymerizable compound. is preferred. Examples of cationic polymerizable functional groups include epoxy groups, oxetanyl groups, and vinyl ether groups. Compounds having an epoxy group include aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds. It is particularly preferred to contain a cyclic epoxy compound. Alicyclic epoxy compounds include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, caprolactone-modified products of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and trimethylcaprolactone-modified products. and valerolactone modified products, and specifically, Celoxide 2021, Celoxide 2021A, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085 (manufactured by Daicel Chemical Industries, Ltd., Cyracure UVR-6105, Cyracure UVR -6107, Cyracure 30, R-6110 (manufactured by Dow Chemical Japan Co., Ltd.), etc. Compounds having an oxetanyl group improve the curability of the cationic polymerizable resin composition, The compound having an oxetanyl group includes 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl) methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[(3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, phenol novolak Oxetane and the like are mentioned, and Aron oxetane OXT-101, Aron oxetane OXT-121, Aron oxetane OXT-211, Aron oxetane OXT-221, Aron oxetane OXT-212 (manufactured by Toagosei Co., Ltd.) and the like are commercially available. A compound having a vinyl ether group has the effect of improving the curability of the cationic polymerizable resin composition and lowering the liquid viscosity of the composition, so it is preferable to include the compound having a vinyl ether group. -hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, triethylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanedimethanol monovinyl ether, tricyclodecane vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, ethoxy Examples include ethyl vinyl ether and pentaerythritol type tetravinyl ether.
 カチオン重合硬化性樹脂組成物は、硬化性成分として以上説明したエポキシ基を有する化合物、オキセタニル基を有する化合物、ビニルエーテル基を有する化合物から選ばれる少なくとも1つの化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線などの活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。光カチオン重合開始剤としては、後述の光酸発生剤が好適に使用される。またカチオン重合性樹脂組成物を可視光線硬化性で用いる場合には、特に380nm以上の光に対して高感度な光カチオン重合開始剤を用いることが好ましいが、光カチオン重合開始剤は一般に、300nm付近またはそれより短い波長域に極大吸収を示す化合物であるため、それより長い波長域、具体的には380nmより長い波長の光に極大吸収を示す光増感剤を配合することで、この付近の波長の光に感応し、光カチオン重合開始剤からのカチオン種または酸の発生を促進させることができる。光増感剤としては、例えば、アントラセン化合物、ピレン化合物、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、光還元性色素等が挙げられ、これらは、2種類以上を混合して使用してもよい。特にアントラセン化合物は、光増感効果に優れるため好ましく、具体的にはアントラキュアUVS-1331、アントラキュアUVS-1221(川崎化成社製)が挙げられる。光増感剤の含有量は、0.1質量%~5質量%であることが好ましく、0.5質量%~3質量%であることがより好ましい。 The cationically polymerizable curable resin composition contains at least one compound selected from the epoxy group-containing compound, the oxetanyl group-containing compound, and the vinyl ether group-containing compound described above as a curable component. A photo cationic polymerization initiator is blended because it is cured by This cationic photopolymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays and electron beams, and initiates the polymerization reaction of epoxy groups and oxetanyl groups. As the photocationic polymerization initiator, a photoacid generator described later is preferably used. In addition, when the cationic polymerizable resin composition is used with visible light curing, it is preferable to use a cationic photopolymerization initiator that is highly sensitive to light of 380 nm or more. Since it is a compound that exhibits maximum absorption in a wavelength region near or shorter than that, by blending a photosensitizer that exhibits maximum absorption in a wavelength region longer than that, specifically, light with a wavelength longer than 380 nm, and can promote the generation of cationic species or acid from the photocationic polymerization initiator. Examples of photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, photoreducible dyes, and the like. You may use it in mixture of 2 or more types. Anthracene compounds are particularly preferable because of their excellent photosensitizing effect, and specific examples thereof include Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Kasei Co., Ltd.). The content of the photosensitizer is preferably 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass.
 本発明においては、活性エネルギー線硬化性樹脂組成物が、光酸発生剤を含有してもよい。活性エネルギー線硬化性樹脂組成物が光酸発生剤を含有する場合、光酸発生剤を含有しない場合に比べて、接着剤層の耐水性および耐久性を飛躍的に向上することができる。光酸発生剤は、下記一般式(3)で表すことができる。 In the present invention, the active energy ray-curable resin composition may contain a photoacid generator. When the active energy ray-curable resin composition contains a photoacid generator, the water resistance and durability of the adhesive layer can be dramatically improved as compared with the case where the photoacid generator is not contained. The photoacid generator can be represented by the following general formula (3).
 一般式(3)
Figure JPOXMLDOC01-appb-C000005
 (ただし、Lは、任意のオニウムカチオンを表す。また、Xは、PF6 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCN-よりからなる群より選択されるカウンターアニオンを表す。)
General formula (3)
Figure JPOXMLDOC01-appb-C000005
(wherein L + represents any onium cation, and X is PF6 6 , SbF 6 , AsF 6 − , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , dithiocarbamate represents a counter anion selected from the group consisting of an anion and SCN-.)
 次に、一般式(3)中のカウンターアニオンXについて説明する。 Next, the counter anion X in general formula (3) will be explained.
 一般式(3)中のカウンターアニオンXは原理的に特に限定されるものではないが、非求核性アニオンが好ましい。カウンターアニオンXが非求核性アニオンの場合、分子内に共存するカチオンや併用される各種材料における求核反応が起こりにくいため、結果として一般式(4)で表記される光酸発生剤自身やそれを用いた組成物の経時安定性を向上させることが可能である。ここでいう非求核性アニオンとは、求核反応を起こす能力が低いアニオンを指す。このようなアニオンとしては、PF 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、B(C 、ジチオカルバメートアニオン、SCNなどが挙げられる。 The counter anion X 1 in general formula (3) is not particularly limited in principle, but is preferably a non-nucleophilic anion. When the counter anion X is a non-nucleophilic anion, nucleophilic reactions in cations coexisting in the molecule and various materials used in combination are unlikely to occur, and as a result, the photoacid generator represented by general formula (4) itself It is possible to improve the aging stability of the composition using it. A non-nucleophilic anion as used herein refers to an anion having a low ability to cause a nucleophilic reaction. Such anions include PF 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , B(C 6 H 5 ) 4 , dithiocarbamate anion, SCN - and the like.
 具体的には、「サイラキュアーUVI-6992」、「サイラキュアーUVI-6974」(以上、ダウ・ケミカル日本株式会社製)、「アデカオプトマーSP150」、「アデカオプトマーSP152」、「アデカオプトマーSP170」、「アデカオプトマーSP172」(以上、株式会社ADEKA製)、「Omnicat250」(IGM Resins B.V.社製)、「CI-5102」、「CI-2855」(以上、日本曹達社製)、「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-110L」、「サンエイドSI-180L」(以上、三新化学社製)、「IK-1」、「CPI-100P」、「CPI-101A」、「CPI-110P」、「CPI-200K」、「CPI-210S」、「CPI-310B」、「CPI-410B」、「CPI-410S」(以上、サンアプロ株式会社製)、「WPI-069」、「WPI-113」、「WPI-116」、「WPI-041」、「WPI-044」、「WPI-054」、「WPI-055」、「WPAG-281」、「WPAG-567」、「WPAG-596」(以上、富士フイルム和光純薬社製)が本発明の光酸発生剤の好ましい具体例として挙げられる。 Specifically, "Cyracure UVI-6992", "Cyracure UVI-6974" (manufactured by Dow Chemical Japan Co., Ltd.), "ADEKA OPTOMER SP150", "ADEKA OPTOMER SP152", "ADEKA OPTOMER SP170", "Adeka Optomer SP172" (manufactured by ADEKA Corporation), "Omnicat250" (manufactured by IGM Resins B.V.), "CI-5102", "CI-2855" (manufactured by Nippon Soda Co., Ltd.) ), “San-Aid SI-60L”, “San-Aid SI-80L”, “San-Aid SI-100L”, “San-Aid SI-110L”, “San-Aid SI-180L” (manufactured by Sanshin Chemical Co., Ltd.), “IK-1 ”, “CPI-100P”, “CPI-101A”, “CPI-110P”, “CPI-200K”, “CPI-210S”, “CPI-310B”, “CPI-410B”, “CPI-410S” ( Above, manufactured by San-Apro Co., Ltd.), “WPI-069”, “WPI-113”, “WPI-116”, “WPI-041”, “WPI-044”, “WPI-054”, “WPI-055”, "WPAG-281", "WPAG-567" and "WPAG-596" (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) are preferred specific examples of the photoacid generator of the present invention.
 活性エネルギー線硬化性樹脂組成物中の光酸発生剤の含有量は、活性エネルギー線硬化性樹脂組成物の全量を100質量部としたとき、0.1~5質量部含有するものであることが好ましく、0.5~4質量部含有するものであることがより好ましい。 The content of the photoacid generator in the active energy ray-curable resin composition is 0.1 to 5 parts by mass when the total amount of the active energy ray curable resin composition is 100 parts by mass. is preferred, and 0.5 to 4 parts by mass is more preferred.
 本発明に係る光学積層体は、例えば以下の製造方法により製造することができる。
 光学機能層と基材フィルムとが接着剤層を介して積層された光学積層体の製造方法であって、前記光学機能層および前記基材フィルムの少なくとも一方の面に、前記記載の活性エネルギー線硬化性樹脂組成物を塗工する塗工工程と、前記光学機能層および前記基材フィルムを貼り合わせる貼合工程と、前記光学機能層面側または前記基材フィルム面側から活性エネルギー線を照射して、活性エネルギー線硬化性樹脂組成物を硬化させることにより得られた接着剤層を介して、前記光学機能層および前記基材フィルムを接着させる接着工程とを含む。
The optical layered body according to the present invention can be produced, for example, by the following production method.
A method for producing an optical laminate in which an optical functional layer and a substrate film are laminated via an adhesive layer, wherein the active energy ray described above is applied to at least one surface of the optical functional layer and the substrate film. A coating step of applying a curable resin composition, a bonding step of bonding the optical function layer and the base film, and irradiating an active energy ray from the optical function layer surface side or the base film surface side. and a bonding step of bonding the optical function layer and the base film via an adhesive layer obtained by curing the active energy ray-curable resin composition.
 光学機能層および基材フィルムは、塗工工程前に表面改質処理を行ってもよい。表面改質処理としては、コロナ処理、プラズマ処理、エキシマ-処理およびフレーム処理などが挙げられ、特にコロナ処理であることが好ましい。コロナ処理を行うことで光学機能層および/または基材フィルム表面にカルボニル基やアミノ基などの反応性官能基が生成し、接着剤層との密着性が向上する。また、アッシング効果により表面の異物が除去されたり、表面の凹凸が軽減されたりして、外観特性に優れる光学積層体を作成することができる。 The optical functional layer and base film may be subjected to surface modification treatment before the coating process. Examples of the surface modification treatment include corona treatment, plasma treatment, excimer treatment and flame treatment, with corona treatment being particularly preferred. By performing the corona treatment, reactive functional groups such as carbonyl groups and amino groups are generated on the surface of the optical function layer and/or the substrate film, thereby improving adhesion to the adhesive layer. In addition, foreign matter on the surface is removed by the ashing effect, and unevenness on the surface is reduced, so that an optical layered body with excellent appearance characteristics can be produced.
 <塗工工程>
 活性エネルギー線硬化性樹脂組成物を塗工する方法としては、組成物の粘度や目的とする厚みによって適宜選択され、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどが挙げられる。本発明において使用する活性エネルギー線硬化性樹脂組成物の粘度は3~100mPa・sであることが好ましく、より好ましくは5~50mPa・sであり、最も好ましくは10~30mPa・sである。組成物の粘度が高い場合、塗工後の表面平滑性が乏しく外観不良が発生するため好ましくない。本発明において使用する活性エネルギー線硬化性樹脂組成物は、該組成物を加熱または冷却して好ましい範囲の粘度に調整して塗布することができる。
<Coating process>
The method of applying the active energy ray-curable resin composition is appropriately selected depending on the viscosity of the composition and the desired thickness. A coater, a die coater, a bar coater, a rod coater and the like can be mentioned. The viscosity of the active energy ray-curable resin composition used in the present invention is preferably 3 to 100 mPa·s, more preferably 5 to 50 mPa·s, and most preferably 10 to 30 mPa·s. When the viscosity of the composition is high, the surface smoothness after coating is poor, resulting in poor appearance, which is not preferable. The active energy ray-curable resin composition used in the present invention can be applied by heating or cooling the composition to adjust the viscosity to a preferred range.
 <貼合工程>
 上記のように塗工した活性エネルギー線硬化性樹脂組成物を介して、光学機能層および基材フィルムを貼り合わせる。光学機能層および基材フィルムの貼り合わせは、ロールラミネーターなどにより行うことができる。
<Lamination process>
The optical functional layer and the substrate film are bonded together via the active energy ray-curable resin composition coated as described above. The optical function layer and the substrate film can be attached together using a roll laminator or the like.
 <接着工程>
 光学機能層および基材フィルムを貼り合わせた後に、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、活性エネルギー線硬化性樹脂組成物を硬化して接着剤層を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。
<Adhesion process>
After bonding the optical function layer and the substrate film together, an active energy ray (electron beam, ultraviolet rays, visible light, etc.) is irradiated to cure the active energy ray-curable resin composition to form an adhesive layer. The irradiation direction of the active energy rays (electron beam, ultraviolet rays, visible rays, etc.) can be any suitable direction.
 電子線を照射する場合の照射条件は、上記活性エネルギー線硬化性樹脂組成物を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、光学機能層および基材フィルムにダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、光学機能層および基材フィルムにダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。 Any appropriate irradiation conditions can be adopted as long as the irradiation conditions for electron beam irradiation are such that the active energy ray-curable resin composition can be cured. For example, electron beam irradiation preferably has an acceleration voltage of 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive, resulting in insufficient curing. It may cause damage. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. If the irradiation dose is less than 5 kGy, the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the optical function layer and the base film will be damaged, the mechanical strength will be reduced, yellowing will occur, and the desired optical properties will be obtained. I can't.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。光学機能層および基材フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる光学機能層および基材フィルム面にあえて酸素阻害を生じさせ、光学機能層および基材フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。  Electron beam irradiation is usually carried out in an inert gas, but if necessary, it may be carried out in the air or with a small amount of oxygen introduced. Although it depends on the materials of the optical functional layer and the substrate film, by appropriately introducing oxygen, the surfaces of the optical functional layer and the substrate film that are first exposed to the electron beam are intentionally inhibited by oxygen, and the optical functional layer and the substrate film are exposed. can be prevented, and only the adhesive can be efficiently irradiated with the electron beam.
 本発明に係る光学積層体を製造する場合、活性エネルギー線として、波長範囲380nm~450nmの可視光線を含むもの、特には波長範囲380nm~450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。紫外線、可視光線を使用する場合であって、紫外線吸収能を付与した光学機能層または基材フィルム(紫外線不透過型光学機能層または基材フィルム)を使用する場合、およそ380nmより短波長の光を吸収するため、380nmより短波長の光は活性エネルギー線硬化性樹脂組成物に到達せず、その重合反応に寄与しない。さらに、光学機能層または基材フィルムによって吸収された380nmより短波長の光は熱に変換され、光学機能層または基材フィルム自体が発熱し、光学積層体のカール・シワなど不良の原因となる。そのため、本発明において紫外線、可視光線を採用する場合、活性エネルギー線発生装置として380nmより短波長の光を発光しない装置を使用することが好ましく、より具体的には、波長範囲380~440nmの積算照度と波長範囲250~370nmの積算照度との比が100:0~100:50であることが好ましく、100:0~100:40であることがより好ましい。本発明に係る光学積層体を製造する場合、活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。光学機能層と基材フィルムとの間の接着剤層の接着性能を高めつつ、光学積層体のカールを防止するためには、ガリウム封入メタルハライドランプを使用し、かつ380nmより短波長の光を遮断可能なバンドパスフィルターを介して得られた活性エネルギー線、またはLED光源を使用して得られる波長405nmの活性エネルギー線を使用することが好ましい。 When producing the optical layered product according to the present invention, active energy rays containing visible light with a wavelength range of 380 nm to 450 nm, particularly active energy rays with the largest irradiation amount of visible light with a wavelength range of 380 nm to 450 nm are used. preferably. When using ultraviolet light or visible light, and when using an optical functional layer or substrate film imparted with ultraviolet absorption ability (ultraviolet non-transmissive optical functional layer or substrate film), light with a wavelength shorter than approximately 380 nm , light with a wavelength shorter than 380 nm does not reach the active energy ray-curable resin composition and does not contribute to its polymerization reaction. Furthermore, light with a wavelength shorter than 380 nm absorbed by the optical functional layer or substrate film is converted into heat, and the optical functional layer or substrate film itself generates heat, which causes defects such as curling and wrinkling of the optical laminate. . Therefore, when ultraviolet light and visible light are used in the present invention, it is preferable to use a device that does not emit light with a wavelength shorter than 380 nm as an active energy ray generator, more specifically, an integrated wavelength range of 380 to 440 nm. The ratio of the illuminance to the integrated illuminance in the wavelength range of 250 to 370 nm is preferably 100:0 to 100:50, more preferably 100:0 to 100:40. When producing the optical laminate according to the present invention, the active energy ray is preferably a gallium-encapsulated metal halide lamp or an LED light source emitting light in a wavelength range of 380 to 440 nm. Alternatively, ultraviolet rays from low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, extra high pressure mercury lamps, incandescent lamps, xenon lamps, halogen lamps, carbon arc lamps, metal halide lamps, fluorescent lamps, tungsten lamps, gallium lamps, excimer lasers, or sunlight. A light source containing visible light can be used, and a band-pass filter can be used to cut off ultraviolet light with a wavelength shorter than 380 nm. In order to prevent curling of the optical laminate while improving the adhesive performance of the adhesive layer between the optical functional layer and the base film, a gallium-filled metal halide lamp is used and light with a wavelength shorter than 380 nm is blocked. It is preferable to use an active energy ray obtained through a possible bandpass filter or an active energy ray with a wavelength of 405 nm obtained using an LED light source.
 紫外線または可視光線を照射する前に活性エネルギー線硬化性樹脂組成物を加温すること(照射前加温)が好ましく、その場合40℃以上に加温することが好ましく、50℃以上に加温することがより好ましい。また、紫外線または可視光線を照射後に活性エネルギー線硬化性樹脂組成物を加温すること(照射後加温)も好ましく、その場合40℃以上に加温することが好ましく、50℃以上に加温することがより好ましい。 It is preferable to heat the active energy ray-curable resin composition before irradiation with ultraviolet light or visible light (pre-irradiation heating), in which case the temperature is preferably 40°C or higher, and the temperature is preferably 50°C or higher. is more preferable. It is also preferable to heat the active energy ray-curable resin composition after irradiation with ultraviolet light or visible light (post-irradiation heating). is more preferable.
 本発明に係る光学積層体を連続ラインで製造する場合、ライン速度は、活性エネルギー線硬化性樹脂組成物の硬化時間によるが、好ましくは1~500m/min、より好ましくは5~300m/min、さらに好ましくは10~100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい、または光学機能層または基材フィルムへのダメージが大きすぎ、耐久性試験などに耐えうる光学積層体が作製できない。ライン速度が大きすぎる場合は、活性エネルギー線硬化性樹脂組成物の硬化が不十分となり、目的とする接着性が得られない場合がある。 When the optical laminate according to the present invention is produced in a continuous line, the line speed is preferably 1 to 500 m/min, more preferably 5 to 300 m/min, although it depends on the curing time of the active energy ray-curable resin composition. More preferably, it is 10 to 100 m/min. If the line speed is too low, the productivity will be poor, or the damage to the optical functional layer or substrate film will be too great, and an optical laminate that can withstand durability tests and the like cannot be produced. If the line speed is too high, the curing of the active energy ray-curable resin composition may be insufficient and the intended adhesiveness may not be obtained.
 本発明に係る光学積層体の製造方法においては、塗工工程前に、光学機能層および基材フィルムの少なくとも一方の貼合面に、特定のホウ酸基含有化合物を含む易接着層を形成する易接着処理工程を設けてもよい。具体的には、下記製造方法;
 光学機能層と基材フィルムとが接着剤層を介して積層された光学積層体の製造方法であって、光学機能層および基材フィルムの少なくとも一方の貼合面に、前記一般式(1)で表される化合物、より好ましくは一般式(1’)で表される化合物を付着させる易接着処理工程と、光学機能層および基材フィルムの少なくとも一方の貼合面に、活性エネルギー線硬化性樹脂組成物を塗工する塗工工程と、光学機能層および基材フィルムを貼り合わせる貼合工程と、光学機能層面側または基材フィルム面側から活性エネルギー線を照射して、活性エネルギー線硬化性樹脂組成物を硬化させることにより得られた接着剤層を介して、光学機能層および基材フィルムを接着させる接着工程とを含む光学積層体の製造方法、により製造可能である。
In the method for producing an optical layered body according to the present invention, an easy-adhesion layer containing a specific boric acid group-containing compound is formed on the bonding surface of at least one of the optical function layer and the substrate film before the coating step. An easy-adhesion treatment process may be provided. Specifically, the following manufacturing method;
A method for producing an optical laminate in which an optical functional layer and a substrate film are laminated via an adhesive layer, wherein the compound represented by the general formula (1) is applied to the bonding surface of at least one of the optical functional layer and the substrate film. A compound represented by, more preferably a compound represented by general formula (1′) is adhered to an easy-adhesion treatment step, and at least one bonding surface of the optical function layer and the base film is coated with an active energy ray-curable A coating step of applying a resin composition, a lamination step of laminating an optical function layer and a substrate film, and irradiating an active energy ray from the optical function layer side or the substrate film side to cure the active energy ray. an optical layered body manufacturing method including an adhesion step of bonding the optical functional layer and the substrate film via an adhesive layer obtained by curing a flexible resin composition.
 <易接着処理工程>
 光学機能層および基材フィルムの少なくとも一方の貼合面に、一般式(1)で表される化合物を含む易接着組成物を用いて易接着層を形成する方法としては、例えば一般式(1)で表される化合物を含む易接着組成物(A)を製造し、これを光学機能層および基材フィルムの少なくとも一方の貼合面に、塗布などすることにより形成する方法が挙げられる。易接着組成物(A)中、一般式(1)で表される化合物以外に含んでも良いものとして、溶媒および添加剤などが挙げられる。
<Easy adhesion treatment process>
As a method of forming an easy-adhesion layer on at least one of the bonding surface of the optical function layer and the base film using the easy-adhesion composition containing the compound represented by general formula (1), for example, general formula (1 ) is prepared, and the composition is coated on at least one bonding surface of the optical function layer and the base film. In addition to the compound represented by formula (1), the easy-adhesion composition (A) may include solvents and additives.
 易接着組成物(A)が溶媒を含む場合、光学機能層および基材フィルムの少なくとも一方の貼合面に組成物(A)を塗布して、必要に応じて乾燥工程や硬化処理(熱処理など)を行ってもよい。 When the easily adhesive composition (A) contains a solvent, the composition (A) is applied to the bonding surface of at least one of the optical function layer and the base film, and if necessary, a drying step or a curing treatment (such as heat treatment) is performed. ) may be performed.
 易接着組成物(A)が含んでもよい溶媒としては、一般式(1)で表される化合物を安定化して、溶解または分散し得るものが好ましい。かかる溶媒は、有機溶媒、水、またはこれらの混合溶媒を用いることができる。前記溶媒としては、例えば酢酸エチル、酢酸ブチル、酢酸2-ヒドロキシエチル等のエステル類;メチルエチルケトン、アセトン、シクロヘキサノン、メチルイソブチルケトン、ジエチルケトン、メチル-n-プロピルケトン、アセチルアセトン等のケトン類;テトラヒドロフラン(THF)、ジオキサン等の環状エーテル類;n-ヘキサン、シクロヘキサン等の脂肪族または脂環族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;メタノール、エタノール、n-プロパノール、イソプロパノール、シクロヘキサノール等の脂肪族または脂環族アルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル等のグリコールエーテル類;ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;等から選択される。 As the solvent that the easy-adhesion composition (A) may contain, a solvent capable of stabilizing and dissolving or dispersing the compound represented by general formula (1) is preferable. An organic solvent, water, or a mixed solvent thereof can be used as such a solvent. Examples of the solvent include esters such as ethyl acetate, butyl acetate, and 2-hydroxyethyl acetate; ketones such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, diethyl ketone, methyl-n-propyl ketone, and acetylacetone; tetrahydrofuran ( Cyclic ethers such as THF) and dioxane; Aliphatic or alicyclic hydrocarbons such as n-hexane and cyclohexane; Aromatic hydrocarbons such as toluene and xylene; Methanol, ethanol, n-propanol, isopropanol, cyclohexanol aliphatic or alicyclic alcohols such as; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and diethylene glycol monoethyl ether; glycol ether acetates such as diethylene glycol monomethyl ether acetate and diethylene glycol monoethyl ether acetate; is selected from
 易接着組成物(A)が含んでもよい添加剤としては、たとえば、界面活性剤、可塑剤、粘着付与剤、低分子量ポリマー、重合性モノマー、表面潤滑剤、レベリング剤、酸化防止剤、腐食防止剤、光安定剤、紫外線吸収剤、重合禁止剤、シランカップリンング剤、チタンカップリング剤、無機または有機の充填剤、金属粉、粒子状、箔状物などが挙げられる。 Additives that the easy-adhesion composition (A) may contain include, for example, surfactants, plasticizers, tackifiers, low-molecular-weight polymers, polymerizable monomers, surface lubricants, leveling agents, antioxidants, and corrosion inhibitors. agents, light stabilizers, ultraviolet absorbers, polymerization inhibitors, silane coupling agents, titanium coupling agents, inorganic or organic fillers, metal powders, particles, and foils.
 易接着層中、一般式(1)で表される化合物の含有量が少なすぎると、易接着層表面に存在する一般式(1)で表される化合物の割合が低下し、易接着効果が低くなる場合がある。したがって、易接着層中、一般式(1)で表される化合物の含有量は、1質量%以上であることが好ましく、20質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。 If the content of the compound represented by general formula (1) in the easy-adhesion layer is too low, the proportion of the compound represented by general formula (1) present on the surface of the easy-adhesion layer decreases, resulting in poor adhesion. may be lower. Therefore, the content of the compound represented by general formula (1) in the easy-adhesion layer is preferably 1% by mass or more, more preferably 20% by mass or more, and 40% by mass or more. is more preferred.
 前記易接着組成物(A)を用いて易接着層を光学機能層および/または基材フィルム上に形成する方法については、光学機能層および/または基材フィルムの少なくとも一方の貼合面を組成物(A)の処理浴に直接浸漬させる方法や公知の塗布方法が適宜用いられる。前記塗布方法としては具体的には、たとえば、ロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、エアーナイフコート、カーテンコート法があげられるがこれらに限定はされない。 Regarding the method of forming an easy-adhesion layer on the optical functional layer and/or the base film using the easy-adhesion composition (A), the lamination surface of at least one of the optical function layer and/or the base film is composed A method of direct immersion in the treatment bath for the product (A) or a known coating method can be used as appropriate. Specific examples of the coating method include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and curtain coating, but are not limited to these.
 本発明において、光学機能層および/または基材フィルムの少なくとも一方の貼合面に備える易接着層の厚みが厚すぎる場合、易接着層の凝集力が低下し、易接着効果が低くなる場合がある。したがって、易接着層の厚みは2000nm以下であることが好ましく、1000nm以下であることがより好ましく、500nm以下であることがさらに好ましい。一方、易接着層が効果を十分に発揮するための厚みの最下限としては、少なくとも一般式(1)で表される化合物の単分子膜の厚みが挙げられ、好ましくは1nm以上であり、より好ましくは2nm以上であり、さらに好ましくは3nm以上である。 In the present invention, if the easy-adhesion layer provided on the lamination surface of at least one of the optical function layer and/or the base film is too thick, the cohesive force of the easy-adhesion layer may be reduced, and the easy-adhesion effect may be reduced. be. Therefore, the thickness of the easy-adhesion layer is preferably 2000 nm or less, more preferably 1000 nm or less, and even more preferably 500 nm or less. On the other hand, the minimum thickness for the easy-adhesion layer to fully exhibit its effect includes at least the thickness of the monomolecular film of the compound represented by the general formula (1), preferably 1 nm or more, and more It is preferably 2 nm or more, more preferably 3 nm or more.
 <光学フィルム>
 本発明の光学積層体は、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば、位相差フィルム(1/2や1/4等の波長板を含む)、視覚補償フィルム、輝度向上フィルム、反射板や反透過板、偏光子や偏光フィルムなどの液晶表示装置等の形成に用いられることのある光学層となるものがあげられる。
<Optical film>
The optical laminate of the present invention can be used as an optical film laminated with other optical layers in practical use. The optical layer is not particularly limited. Examples thereof include optical layers, such as polarizing films, which are sometimes used in the formation of liquid crystal display devices and the like.
 前記位相差フィルムとしては、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有するものを用いることができる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。 As the retardation film, a film having a front retardation of 40 nm or more and/or a thickness direction retardation of 80 nm or more can be used. The front retardation is usually controlled in the range of 40-200 nm, and the thickness direction retardation is usually controlled in the range of 80-300 nm.
 位相差フィルムとしては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差フィルムの厚さも特に制限されないが、20~150μm程度が一般的である。 Examples of the retardation film include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an oriented film of a liquid crystal polymer, and a film in which an oriented layer of a liquid crystal polymer is supported. Although the thickness of the retardation film is not particularly limited, it is generally about 20 to 150 μm.
 位相差フィルムとしては、下記式(1)ないし(3):
0.70<Re[450]/Re[550]<0.97・・・(1)
1.5×10-3<Δn<6×10-3・・・(2)
1.13<NZ<1.50・・・(3)
(式中、Re[450]およびRe[550]は、それぞれ、23℃における波長450nmおよび550nmの光で測定した位相差フィルムの面内の位相差値であり、Δnは位相差フィルムの遅相軸方向、進相軸方向の屈折率を、それぞれnx、nyとしたときのnx-nyである面内複屈折であり、NZはnzを位相差フィルムの厚み方向の屈折率としたときの、厚み方向複屈折であるnx-nzと面内複屈折であるnx-nyとの比である)を満足する逆波長分散型の位相差フィルムを用いてもよい。
As the retardation film, the following formulas (1) to (3):
0.70<Re[450]/Re[550]<0.97 (1)
1.5×10 −3 <Δn<6×10 −3 (2)
1.13<NZ<1.50 (3)
(Wherein, Re [450] and Re [550] are the in-plane retardation values of the retardation film measured with light having wavelengths of 450 nm and 550 nm, respectively, at 23 ° C., and Δn is the slow phase of the retardation film In-plane birefringence that is nx-ny when the refractive indices in the axial direction and the fast axis direction are nx and ny, respectively, and NZ is the refractive index in the thickness direction of the retardation film, (ratio of nx-nz, which is birefringence in the thickness direction, to nx-ny, which is in-plane birefringence) may be used.
 前述した光学積層体や、光学積層体にさらに光学層を積層した光学フィルムには、液晶セルなどの他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。 An adhesive layer for adhering to other members such as liquid crystal cells can also be provided in the optical layered body described above and the optical film in which an optical layer is further layered on the optical layered body. The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but for example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based polymer, rubber-based polymer, or the like is appropriately selected. can be used as In particular, adhesives such as acrylic pressure-sensitive adhesives which are excellent in optical transparency, exhibit appropriate wettability, cohesiveness and adhesive properties, and are excellent in weather resistance and heat resistance can be preferably used.
 粘着層は、異なる組成または種類などのものの重畳層として光学積層体の片面または両面に設けることもできる。また両面に設ける場合に、光学積層体の表裏において異なる組成や種類や厚みなどの粘着層とすることもできる。粘着層の厚みは、使用目的や接着力などに応じて適宜に決定でき、一般には1~500μmであり、1~200μmが好ましく、特に1~100μmが好ましい。 The adhesive layer can also be provided on one side or both sides of the optical laminate as a superimposed layer of different compositions or types. Further, when provided on both sides, adhesive layers with different compositions, types, thicknesses, etc. can be provided on the front and back sides of the optical layered body. The thickness of the adhesive layer can be appropriately determined depending on the purpose of use, adhesive strength, etc., and is generally 1 to 500 μm, preferably 1 to 200 μm, particularly preferably 1 to 100 μm.
 粘着層の露出面に対しては、実用に供するまでの間、その汚染防止などを目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚み条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などの適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。 The exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put into practical use. This prevents contact with the adhesive layer during normal handling conditions. As the separator, excluding the above thickness conditions, suitable thin sheets such as plastic films, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, and laminates thereof may be used. An appropriate release agent according to the prior art, such as one coated with an appropriate release agent such as chain alkyl, fluorine, or molybdenum sulfide, can be used.
 本発明に係る光学積層体は、通常時(非折り曲げ時)だけでなく、折り曲げられた場合であっても、接着剤層の密着性に優れ、かつ薄い光学機能層の耐クラック性にも優れる。図1は、本発明に係る光学積層体を折り曲げた態様を示す一例であり、光学機能層1と基材フィルム3とが接着剤層2を介して積層された光学積層体Aが、折り曲げ軸20に沿って折り曲げられた態様を示す一例である。図1中、11は折り曲げ領域、12は非折り曲げ領域を示す。光学積層体Aが備える光学機能層1の厚みは0.5~5μmと薄い。図1に示すとおり、このような構成の光学積層体Aが、光学機能層1が外側に位置するように折り曲げられると、薄い光学機能層1には伸びる方向に応力が強くかかる。しかしながら、光学積層体Aは、接着剤層2が活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、該硬化物層のガラス転移温度が30℃未満となるように設計されている。このため、光学積層体Aを折り曲げるように力が加えられたとしても、柔らかい接着剤層2が、外側で伸びる方向に光学機能層1対して加えられる応力を緩和する。その結果、特に光学機能層1と接着剤層2との間の密着性を確保しつつ、光学機能層1の耐クラック性を向上することができる。 The optical layered body according to the present invention exhibits excellent adhesion of the adhesive layer and excellent crack resistance of the thin optical function layer not only in the normal state (when not folded) but also in the case of folding. . FIG. 1 is an example showing an aspect in which the optical laminate according to the present invention is folded. 20 is an example showing an aspect folded along 20. FIG. In FIG. 1, 11 indicates a bending area and 12 indicates a non-bending area. The optical function layer 1 included in the optical laminate A has a thin thickness of 0.5 to 5 μm. As shown in FIG. 1, when the optical layered body A having such a structure is bent so that the optical function layer 1 is positioned on the outside, a strong stress is applied to the thin optical function layer 1 in the direction of elongation. However, in the optical laminate A, the adhesive layer 2 is formed of a cured product layer of the active energy ray-curable resin composition, and the glass transition temperature of the cured product layer is designed to be less than 30°C. there is Therefore, even if a force is applied so as to bend the optical layered body A, the soft adhesive layer 2 relaxes the stress applied to the optical function layer 1 in the outward extending direction. As a result, the crack resistance of the optical functional layer 1 can be improved while ensuring the adhesion between the optical functional layer 1 and the adhesive layer 2 in particular.
 <画像表示装置>
 本発明の光学積層体は液晶表示装置などの各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光フィルムまたは光学フィルム、および必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。
<Image display device>
The optical laminate of the present invention can be preferably used for forming various devices such as liquid crystal display devices. Formation of the liquid crystal display device can be carried out according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and, if necessary, an illumination system, and incorporating a driving circuit. There is no particular limitation except that the polarizing film or optical film according to the invention is used, and conventional methods can be applied. As for the liquid crystal cell, any type such as TN type, STN type, or π type can be used.
 液晶セルの片側または両側に光学積層体を配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による光学積層体は液晶セルの片側または両側に設置することができる。両側に光学積層体を設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層または2層以上配置することができる。 Appropriate liquid crystal display devices can be formed, such as a liquid crystal display device in which an optical laminate is arranged on one side or both sides of a liquid crystal cell, or a device using a backlight or a reflector for an illumination system. In that case, the optical laminate according to the present invention can be placed on one side or both sides of the liquid crystal cell. If optical stacks are provided on both sides, they may be the same or different. Furthermore, when forming a liquid crystal display device, for example, appropriate parts such as a diffuser plate, an anti-glare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffuser plate, and a backlight are arranged in a single layer or at an appropriate position. Two or more layers can be arranged.
 本発明に係る光学積層体は、加湿環境下、特には折り曲げた場合であっても、光学フィルムと接着剤層との間の密着性に優れ、かつ光学フィルムの耐クラック性を向上し得る接着剤層を備える。このため、表示画面が湾曲、屈曲、折り曲げまたは巻き取り可能な画像表示装置用として特に好ましい。 The optical layered body according to the present invention has excellent adhesion between the optical film and the adhesive layer even in a humidified environment, especially when folded, and adhesion that can improve the crack resistance of the optical film. It has an agent layer. Therefore, it is particularly preferable for an image display device whose display screen can be curved, bent, folded or rolled up.
 以下に、本発明の実施例を記載するが、本発明の実施形態はこれらに限定されない。 Examples of the present invention are described below, but embodiments of the present invention are not limited to these.
<光学機能層>
 光学機能層として、厚みが4μmのコレステリック液晶層(大日本印刷社製)を使用した。使用したコレステリック液晶層の破断応力は3N/10mmであった。
<Optical function layer>
A 4 μm-thick cholesteric liquid crystal layer (manufactured by Dai Nippon Printing Co., Ltd.) was used as the optical function layer. The breaking stress of the cholesteric liquid crystal layer used was 3 N/10 mm.
<基材フィルム>
 基材フィルムとして、厚みが25μmのポリエチレンテレフタレート(PET)フィルム(東洋紡社製:商品名A4100)または厚みが25μmのトリアセチルセルロース(TAC)フィルム(コニカミノルタ社製:商品名KC2UA)を使用した。使用したポリエチレンテレフタレート(PET)フィルムの破断応力は、MD方向で55N/10mm、TD方向で65N/mmであり、トリアセチルセルロース(TAC)フィルムの破断応力は35N/10mmであった。
<Base film>
A polyethylene terephthalate (PET) film with a thickness of 25 μm (manufactured by Toyobo Co., Ltd.: trade name A4100) or a triacetyl cellulose (TAC) film with a thickness of 25 μm (manufactured by Konica Minolta: trade name KC2UA) was used as the base film. The breaking stress of the polyethylene terephthalate (PET) film used was 55 N/10 mm in the MD direction and 65 N/mm in the TD direction, and the breaking stress of the triacetyl cellulose (TAC) film was 35 N/10 mm.
 光学機能層および基材フィルムの破断応力は、10mm幅にカットしたサンプルを使用し、JIS-K-7161に準じて測定した。 The breaking stress of the optical function layer and base film was measured according to JIS-K-7161 using samples cut into 10 mm width.
<活性エネルギー線>
 活性エネルギー線として、可視光線(ガリウム封入メタルハライドランプ) 照射装置:Fusion UV Systems,Inc社製Light HAMMER10 バルブ:Vバルブ ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用した。なお、可視光線の照度は、Solatell社製Sola-Checkシステムを使用して測定した。
<Active energy ray>
As the active energy ray, visible light (gallium-filled metal halide lamp) Irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc. Bulb: V bulb Peak illuminance: 1600 mW/cm 2 , integrated irradiation amount 1000/mJ/cm 2 (wavelength 380- 440 nm) was used. The illuminance of visible light was measured using a Sola-Check system manufactured by Solatell.
(活性エネルギー線硬化性樹脂組成物の調整)
 表1~5に記載の配合表に従い、以下に示す各成分を混合して50℃で1時間撹拌し、実施例1~16、比較例1~3で使用する活性エネルギー線硬化性樹脂組成物を得た。表中の数値は組成物全量を100質量部としたときの重量%を示す。
(Adjustment of active energy ray-curable resin composition)
According to the recipes shown in Tables 1 to 5, each component shown below was mixed and stirred at 50° C. for 1 hour to obtain the active energy ray-curable resin composition used in Examples 1 to 16 and Comparative Examples 1 to 3. got Numerical values in the table indicate weight % when the total amount of the composition is 100 parts by mass.
 活性エネルギー線硬化性樹脂組成物を構成する各材料を以下に示す。
(1)極性基(水酸基)を有する(メタ)アクリレート
・不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン;商品名「プラクセル FA1DDM」、ダイセル社製、液粘度35(mPa・s)、ホモポリマー化した際のTg-45℃
・ポリエチレングリコール-モノアクリレート(エチレングリコール単位を平均で4.5個有するアクリレート);商品名「ブレンマーAE-200」、日油社製、液粘度34(mPa・s)、ホモポリマー化した際のTg-63℃
・ポリプロピレングリコール-モノアクリレート(プロピレングリコール単位を平均で3.5個有するアクリレート);商品名「ブレンマーAP-200」、日油社製、液粘度36(mPa・s)、ホモポリマー化した際のTg-40℃
・1,4-シクロヘキサンジメタノールモノアクリレート;商品名「CHDMMA」、三菱ケミカル社製、液粘度88(mPa・s)、ホモポリマー化した際のTg18℃
・4-ヒドロキシブチルアクリレート;商品名「4HBA」、三菱ケミカル社製、液粘度5.5(mPa・s)、ホモポリマー化した際のTg-32℃
(2)極性基(カルボニル基)を有する(メタ)アクリレート
・ω-カルボキシ-ポリカプロラクトンモノアクリレート(C10COO単位を平均で2個有するアクリレート);商品名「アロニックスM-5300」、東亞合成社製、液粘度130(mPa・s)、ホモポリマー化した際のTg-41℃
(3)アルキレングリコール単位を有する(メタ)アクリレート
・上記記載のポリエチレングリコール-モノアクリレート
・上記記載のポリプロピレングリコール-モノアクリレート
(4)多官能(メタ)アクリレート
・ポリエチレングリコール-ジアクリレート(エチレングリコール単位を平均で9個有するジアクリレート);商品名「ライトアクリレート9EG-A」、共栄社化学社製、液粘度24(mPa・s)、ホモポリマー化した際のTg-23℃
・ポリプロピレングリコール-ジアクリレート(プロピレングリコール単位を平均で7個有するジアクリレート);商品名「ブレンマーADP-400」、日油社製、液粘度25(mPa・s)、ホモポリマー化した際のTg-18℃
・エトキシ化グリセリントリアクリレート;商品名「NKエステルA-GLY-9E」、新中村化学社製、液粘度100(mPa・s)、ホモポリマー化した際のTg-25℃
・1.9-ノナンジオールジアクリレート;商品名「ライトアクリレート1.9ND-A」、共栄社化学社製、液粘度10(mPa・s)、ホモポリマー化した際のTg68℃
(5)アクリル系オリゴマー
・商品名「ARUFON UP-1190」、東亞合成社製、液粘度6000(mPa・s)、Tg-50℃
・商品名「X MAP SA120S」、カネカ社製、液粘度70000(mPa・s)、Tg-50℃
(6)その他の重合性成分
・ブチルアクリレート;液粘度2(mPa・s)、ホモポリマー化した際のTg-55℃
・ラウリルアクリレート;液粘度5(mPa・s)、ホモポリマー化した際のTg-3℃
・N-アクリロイルモルホリン;商品名「ACMO」、興人社製、液粘度12(mPa・s)、ホモポリマー化した際のTg145℃
・ヒドロキシエチルアクリルアミド;商品名「HEAA」、興人社製、液粘度280(mPa・s)、ホモポリマー化した際のTg98℃
・ジシクロペンタニルアクリレ-ト;商品名「FA-513AS」、昭和電工マテリアルズ社製、液粘度12(mPa・s)、ホモポリマー化した際のTg120℃
・4-ビニルフェニルボロン酸;東京化成社製、液粘度(常温固体)、ホモポリマー化した際のTg100℃以上
(7)シランカップリング剤
・3-アクリロキシプロピルトリメトキシシラン;信越シリコーン社製、商品名「KBM-5103」、液粘度2(mPa・s)
・8-グリシドキシオクチルトリメトキシシラン;信越シリコーン社製、商品名「KBM-4803」、液粘度5(mPa・s)
(8)光ラジカル開始剤
・ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフォリンオキサイド;商品名「Omnirad 819」、IGM Resins B.V.社製、液粘度(常温固体)
・2-メチル-4’-メチルチオ-2-モルホリノプロピオフェノン ;商品名「Omnirad 907」、IGM Resins B.V.社製、液粘度(常温固体)
・1-ヒドロキシシクロヘキシル-フェニルケトン;信越シリコーン社製、商品名「Omnirad 184」、IGM Resins B.V.社製、液粘度(常温固体)
(9)光酸発生剤
・4-メチルフェニル[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロホスフェート  75% 炭酸プロピレン溶液、商品名「Omnicat 250D」、IGM Resins B.V.社製、液粘度630(mPa・s)
(10)光増感剤
・ジエチルチオキサントン;商品名「KAYACURE DETX-S」、日本化薬社製
(11)レベリング剤、液粘度(常温固体)
・商品名「BYK-UV3505」、BYK社製、液粘度596(mPa・s)
Each material constituting the active energy ray-curable resin composition is shown below.
(1) (Meth)acrylate/unsaturated fatty acid hydroxyalkyl ester-modified ε-caprolactone having a polar group (hydroxyl group); trade name “PLAXEL FA1DDM”, manufactured by Daicel Corporation, liquid viscosity 35 (mPa s), homopolymerized Initial Tg-45℃
・Polyethylene glycol-monoacrylate (acrylate having an average of 4.5 ethylene glycol units); trade name "Blemmer AE-200" manufactured by NOF Corporation, liquid viscosity 34 (mPa s), homopolymerization Tg-63°C
· Polypropylene glycol-monoacrylate (acrylate having an average of 3.5 propylene glycol units); trade name "Blemmer AP-200", manufactured by NOF Corporation, liquid viscosity 36 (mPa s), when homopolymerized Tg-40°C
· 1,4-cyclohexanedimethanol monoacrylate; trade name "CHDMMA", manufactured by Mitsubishi Chemical Corporation, liquid viscosity 88 (mPa s), Tg 18 ° C. when homopolymerized
· 4-hydroxybutyl acrylate; trade name "4HBA", manufactured by Mitsubishi Chemical Corporation, liquid viscosity 5.5 (mPa s), Tg -32 ° C. when homopolymerized
(2) (meth)acrylate having a polar group (carbonyl group) ω-carboxy-polycaprolactone monoacrylate (acrylate having an average of two C 5 H 10 COO units); trade name "Aronix M-5300", Toa Gosei Co., Ltd., liquid viscosity 130 (mPa s), Tg -41 ° C when homopolymerized
(3) (meth) acrylate having an alkylene glycol unit · polyethylene glycol-monoacrylate described above · polypropylene glycol-monoacrylate described above (4) polyfunctional (meth) acrylate · polyethylene glycol-diacrylate (ethylene glycol unit diacrylate having an average of 9); trade name “Light acrylate 9EG-A”, manufactured by Kyoeisha Chemical Co., Ltd., liquid viscosity 24 (mPa s), Tg −23 ° C. when homopolymerized
· Polypropylene glycol-diacrylate (diacrylate having an average of 7 propylene glycol units); trade name "Blemmer ADP-400" manufactured by NOF Corporation, liquid viscosity 25 (mPa s), Tg when homopolymerized -18°C
・ Ethoxylated glycerin triacrylate; trade name "NK Ester A-GLY-9E", manufactured by Shin-Nakamura Chemical Co., Ltd., liquid viscosity 100 (mPa s), Tg -25 ° C. when homopolymerized
・ 1.9-nonanediol diacrylate; trade name “Light Acrylate 1.9ND-A”, manufactured by Kyoeisha Chemical Co., Ltd., liquid viscosity 10 (mPa s), Tg 68 ° C. when homopolymerized
(5) Acrylic oligomer ・Product name “ARUFON UP-1190”, manufactured by Toagosei Co., Ltd., liquid viscosity 6000 (mPa s), Tg-50 ° C.
・ Product name “X MAP SA120S”, manufactured by Kaneka, liquid viscosity 70000 (mPa s), Tg-50 ° C.
(6) Other polymerizable components ・Butyl acrylate; liquid viscosity 2 (mPa s), Tg -55 ° C. when homopolymerized
・ Lauryl acrylate; liquid viscosity 5 (mPa s), Tg -3 ° C when homopolymerized
· N-acryloylmorpholine; trade name "ACMO", manufactured by Kojin Co., Ltd., liquid viscosity 12 (mPa s), Tg 145 ° C. when homopolymerized
・Hydroxyethyl acrylamide; trade name “HEAA”, manufactured by Kojin Co., Ltd., liquid viscosity 280 (mPa s), Tg 98 ° C. when homopolymerized
・Dicyclopentanyl acrylate; trade name “FA-513AS”, manufactured by Showa Denko Materials Co., Ltd., liquid viscosity 12 (mPa s), Tg 120 ° C. when homopolymerized
・ 4-vinylphenylboronic acid; manufactured by Tokyo Kasei Co., Ltd., liquid viscosity (solid at room temperature), Tg 100 ° C. or higher when homopolymerized (7) Silane coupling agent ・ 3-acryloxypropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd. , trade name “KBM-5103”, liquid viscosity 2 (mPa s)
· 8-glycidoxyoctyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd., trade name "KBM-4803", liquid viscosity 5 (mPa s)
(8) Photoradical initiator Bis(2,4,6-trimethylbenzoyl)phenylphosphorine oxide; trade name "Omnirad 819", IGM Resins B.V. V. company, liquid viscosity (normal temperature solid)
2-methyl-4′-methylthio-2-morpholinopropiophenone; trade name “Omnirad 907”, IGM Resins B.V. V. company, liquid viscosity (normal temperature solid)
· 1-hydroxycyclohexyl-phenyl ketone; manufactured by Shin-Etsu Silicone Co., Ltd., trade name "Omnirad 184", IGM Resins B.V. V. company, liquid viscosity (normal temperature solid)
(9) Photoacid generator 4-methylphenyl[4-(2-methylpropyl)phenyl]iodonium hexafluorophosphate 75% propylene carbonate solution, trade name "Omnicat 250D", IGM Resins B.V. V. company, liquid viscosity 630 (mPa s)
(10) photosensitizer, diethylthioxanthone; trade name "KAYACURE DETX-S", manufactured by Nippon Kayaku Co., Ltd. (11) leveling agent, liquid viscosity (normal temperature solid)
・ Trade name “BYK-UV3505”, manufactured by BYK, liquid viscosity 596 (mPa s)
<活性エネルギー線硬化性樹脂組成物の硬化物層のTgおよび貯蔵弾性率測定>
 シクロオレフィン系ポリマーフィルム(COPフィルム)に、実施例1~16、比較例1~3で使用する活性エネルギー線硬化性樹脂組成物を塗工し(厚み100μm)、塗工面に同じCOPフィルムを貼り合わせて、活性エネルギー線照射装置により上記可視光線を照射して、実施例1~16、比較例1~3で使用する活性エネルギー線硬化型接着剤の硬化物層(単体膜)を得た。動的粘弾性測定装置(TA Instruments社製、商品名「RSA-G2」を用いて、以下の条件で各単体膜の貯蔵弾性率を測定した。
(負荷モード):引っ張り
(昇温速度):5℃/min
(周波数):1Hz
(初期歪み):0.1%
また、各単体膜のTgは、上記動的粘弾性測定装置を用いて得た動的粘弾性測定結果から得られるtanδのピークトップ温度から求めた。結果を表1~5に示す。
<Measurement of Tg and storage modulus of cured product layer of active energy ray-curable resin composition>
The active energy ray-curable resin composition used in Examples 1 to 16 and Comparative Examples 1 to 3 was applied to a cycloolefin polymer film (COP film) (thickness: 100 μm), and the same COP film was attached to the coated surface. At the same time, the active energy ray irradiator was used to irradiate the above visible light to obtain a cured product layer (single layer) of the active energy ray curable adhesive used in Examples 1 to 16 and Comparative Examples 1 to 3. Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, trade name “RSA-G2”), the storage elastic modulus of each single film was measured under the following conditions.
(Load mode): Tensile (heating rate): 5°C/min
(Frequency): 1Hz
(Initial strain): 0.1%
The Tg of each single film was obtained from the peak top temperature of tan δ obtained from the dynamic viscoelasticity measurement results obtained using the dynamic viscoelasticity measurement device. The results are shown in Tables 1-5.
(光学積層体の作製)
 実施例1
 MCDコーター(富士機械社製)(セル形状:ハニカム、グラビアロール線数:1000本/inch、回転速度140%/対ライン速)を用いて、基材フィルムとしてのPETフィルムの貼合面に、実施例1で使用する活性エネルギー線硬化性樹脂組成物を厚み1.1μmになるように塗工し、光学機能層の表面にロール機で貼り合わせた。その後、貼り合わせた基材フィルム側から、活性エネルギー線照射装置により上記可視光線を照射して活性エネルギー線硬化型接着剤を硬化させることにより、光学積層体を得た。貼り合わせのライン速度は25m/minで行った。基材フィルムとしてPETフィルムを使用したものを光学積層体(PET)とする。PETフィルムに代えて、基材フィルムとしてTACフィルムを使用したこと以外は同様の方法で製造した光学積層体を光学積層体(TAC)とする。
(Fabrication of optical laminate)
Example 1
Using an MCD coater (manufactured by Fuji Machinery Co., Ltd.) (cell shape: honeycomb, number of gravure roll lines: 1000 lines/inch, rotation speed 140%/relative to line speed), on the bonding surface of the PET film as the base film, The active energy ray-curable resin composition used in Example 1 was applied so as to have a thickness of 1.1 μm, and was bonded to the surface of the optical function layer using a roll machine. After that, the visible light was irradiated from the bonded substrate film side by an active energy ray irradiation device to cure the active energy ray-curable adhesive, thereby obtaining an optical laminate. The lamination line speed was 25 m/min. An optical laminate (PET) is obtained by using a PET film as a base film. An optical layered body manufactured in the same manner except that a TAC film was used as the base film instead of the PET film is referred to as an optical layered body (TAC).
 実施例2~16、比較例1~3
 実施例1で使用する活性エネルギー線硬化型接着剤に代えて、実施例2~16、比較例1~3で使用する活性エネルギー線硬化型接着剤を使用したこと、および活性エネルギー線硬化性樹脂組成物の厚みを表に記載したものに変更したこと以外は、実施例1と同様の方法により、光学積層体(PET)および光学積層体(TAC)を製造した。
Examples 2-16, Comparative Examples 1-3
Instead of the active energy ray-curable adhesive used in Example 1, the active energy ray-curable adhesive used in Examples 2 to 16 and Comparative Examples 1 to 3 was used, and the active energy ray-curable resin An optical layered body (PET) and an optical layered body (TAC) were produced in the same manner as in Example 1, except that the thickness of the composition was changed to that shown in the table.
<光学積層体の密着性評価>
 実施例1~16、比較例1~3に係る光学積層体(PET)および光学積層体(TAC)に、補強用のポリイミドテープ(日東電工社製、ポリイミド粘着テープNo.360A)を光学積層体のPET面とTAC面に貼り合わせたものを15mm幅に切断することにより、測定用サンプルを作製した。両面テープ(日東電工社製、両面テープNo.500)を貼付したガラス板を用意し、作製した試料の光学機能層面(液晶層面)をガラス板上の両面テープに貼り合わせて、光学積層体をガラス板に固定した。この測定用サンプルの光学機能層と基材フィルム(PETもしくはTAC)との間にカッターナイフで切込みを入れ、基材フィルム(PETもしくはTAC)および補強用のポリイミドテープをガラス板面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を角度自在タイプ粘着・皮膜剥離解析装置「VPA-2」(協和界面化学社製)により測定した。
<Evaluation of Adhesion of Optical Laminate>
The optical laminates (PET) and the optical laminates (TAC) according to Examples 1 to 16 and Comparative Examples 1 to 3 were coated with a reinforcing polyimide tape (manufactured by Nitto Denko Co., Ltd., polyimide adhesive tape No. 360A). A sample for measurement was produced by cutting a piece having a PET surface and a TAC surface of 15 mm wide. A glass plate to which double-sided tape (manufactured by Nitto Denko Co., Ltd., double-sided tape No. 500) is attached is prepared, and the optical functional layer surface (liquid crystal layer surface) of the prepared sample is attached to the double-sided tape on the glass plate to form an optical laminate. fixed on a glass plate. A cut was made with a cutter knife between the optical function layer and the base film (PET or TAC) of this measurement sample, and the base film (PET or TAC) and the polyimide tape for reinforcement were attached at 90 degrees to the glass plate surface. ° angle, and the force (N/15mm) required for peeling at a peeling speed of 3000mm/min was measured using an angle-variable type adhesive/film peeling analyzer "VPA-2" (manufactured by Kyowa Interface Chemical Co., Ltd.). It was measured.
(粘着剤層の作製)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、2-エチルヘキシルアクリレート(2EHA)63質量部、2-ヒドロキシエチルアクリレート(HEA)13質量部、メチルメタクリレート(MMA)9質量部、N-ビニルピロリドン(NVP)15質量部を含有するモノマー混合物を仕込んだ。さらに、前記モノマー混合物(固形分)100重量部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1重量部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って7時間重合反応を行った。その後、得られた反応液に、酢酸エチルを加えて、固形分濃度30%に調整した、重量平均分子量100万の(メタ)アクリル系ポリマー1の溶液を調製した。
(Preparation of adhesive layer)
63 parts by mass of 2-ethylhexyl acrylate (2EHA), 13 parts by mass of 2-hydroxyethyl acrylate (HEA), and methyl methacrylate (MMA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a condenser. A monomer mixture containing 9 parts by weight and 15 parts by weight of N-vinylpyrrolidone (NVP) was charged. Further, 0.1 part by weight of 2,2'-azobisisobutyronitrile as a polymerization initiator was added to 100 parts by weight of the monomer mixture (solid content) together with ethyl acetate, and nitrogen gas was introduced while gently stirring. After introducing and purging with nitrogen, the temperature of the liquid in the flask was kept around 55° C., and the polymerization reaction was carried out for 7 hours. Thereafter, ethyl acetate was added to the resulting reaction solution to prepare a solution of (meth)acrylic polymer 1 having a weight average molecular weight of 1,000,000, adjusted to a solid concentration of 30%.
 上記で得られた(メタ)アクリル系ポリマー1溶液の固形分100質量部に対して、イソシアネート系架橋剤(商品名:タケネートD110N、トリメチロールプロパンキシリレンジイソシアネート、三井化学(株)製)1質量部、シランカップリング剤(商品名:KBM403、信越化学工業(株)製)0.08質量部を配合して、アクリル系粘着剤組成物1を調製した。 1 mass of an isocyanate cross-linking agent (trade name: Takenate D110N, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals, Inc.) per 100 parts by mass of the solid content of the (meth)acrylic polymer 1 solution obtained above and 0.08 parts by mass of a silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare an acrylic pressure-sensitive adhesive composition 1.
 上記で得られたアクリル系粘着剤組成物1を、シリコーン系剥離剤で処理された厚さ38μmのポリエチレンテレフタレートフィルム(PETフィルム、透明基材、セパレータ)の表面に、ファウンテンコータで均一に塗工し、155℃の空気循環式恒温オーブンで2分間乾燥し、セパレータの表面に厚さ25μmの粘着剤層(25)および厚さ50μmの粘着剤層(50)を形成した。 The acrylic pressure-sensitive adhesive composition 1 obtained above is evenly coated with a fountain coater on the surface of a 38 μm thick polyethylene terephthalate film (PET film, transparent substrate, separator) treated with a silicone release agent. and dried in an air circulation type constant temperature oven at 155° C. for 2 minutes to form an adhesive layer (25) with a thickness of 25 μm and an adhesive layer (50) with a thickness of 50 μm on the surface of the separator.
<光学積層体の加湿環境下での屈曲試験時の密着性および耐クラック性評価>
 実施例1~16、比較例1~3に係る光学積層体(TAC)のTAC側に、セパレータから粘着剤層(50)を移着させ、コレステリック液晶層側に、セパレータから粘着剤層(25)を移着させることで、両面に粘着剤層を備える光学積層体を製造した。次に、光学積層体の粘着剤層(25)面にコロナ処理した厚さ25μmのPETフィルム(透明基材、三菱樹脂(株)製、商品名:ダイアホイル)を貼り合わせた。さらに、粘着剤層(50)面にコロナ処理した厚さ77μmのポリイミドフィルム(PIフィルム、東レ・デュポン(株)製、カプトン300V、基材)を貼り合わせることにより、実施例1~16、比較例1~3に係る光学積層体(TAC)の評価用サンプルを製造した。
<Evaluation of Adhesion and Crack Resistance During Bending Test of Optical Layered Body in Humidified Environment>
The pressure-sensitive adhesive layer (50) was transferred from the separator to the TAC side of the optical laminates (TAC) according to Examples 1 to 16 and Comparative Examples 1 to 3, and the pressure-sensitive adhesive layer (25) was transferred from the separator to the cholesteric liquid crystal layer side. ) to produce an optical layered body having pressure-sensitive adhesive layers on both sides. Next, a corona-treated 25 μm-thick PET film (transparent substrate, manufactured by Mitsubishi Plastics Co., Ltd., trade name: Diafoil) was attached to the surface of the adhesive layer (25) of the optical laminate. Furthermore, by laminating a corona-treated 77 μm-thick polyimide film (PI film, manufactured by Toray-DuPont Co., Ltd., Kapton 300V, base material) on the surface of the pressure-sensitive adhesive layer (50), Examples 1 to 16 and Comparative Evaluation samples of optical laminates (TAC) according to Examples 1 to 3 were produced.
 図2に180°耐折性試験機(井元製作所社製)の概略図を示す。本装置は、恒温槽内で、マンドレルを挟んで片側のチャックが180°曲げを繰り返す機構となっており、マンドレルの直径により折り曲げ半径を変えることができる。フィルム破断すると試験が停止する機構になっている。試験は、上記で製造した実施例1~16、比較例1~3に係る光学積層体(TAC)の評価用サンプル(5cm×15cm)を、コレステリック液晶層が外側(TACがマンドレル側)に位置するように装置にセットし、温度60℃×湿度95%RH環境下で、曲げ角度180°、曲げ半径3mm、曲げ速度1秒/回、重り100gの条件で実施した。評価条件は以下のとおりである。
・折り曲げ回数が20万回に到達しても、接着剤層とコレステリック液晶層との間、および接着剤層とTACとの間に剥がれがなかった場合→加湿環境下での密着性が〇
・折り曲げ回数が20万回に到達しても、折り曲げ領域でのみ、接着剤層とコレステリック液晶層との間、および/または接着剤層とTACとの間でわずかな剥がれがある場合(実用レベル)→加湿環境下での密着性が△
・折り曲げ回数が20万回に到達した際、接着剤層とコレステリック液晶層との間、および/または接着剤層とTACとの間で剥がれがある場合(非実用レベル)→加湿環境下での密着性が×
・折り曲げ回数が20万回に到達しても、コレステリック液晶層およびTACにクラック発生がなかった場合→加湿環境下での耐クラック性が〇
・折り曲げ回数が20万回に到達した際、コレステリック液晶層にクラックが発生した場合→加湿環境下での耐クラック性が×
結果を表1~5に示す。
FIG. 2 shows a schematic diagram of a 180° folding endurance tester (manufactured by Imoto Seisakusho Co., Ltd.). This device has a mechanism in which the chuck on one side of the mandrel is repeatedly bent by 180° in a constant temperature bath, and the bending radius can be changed according to the diameter of the mandrel. It has a mechanism that stops the test when the film breaks. In the test, evaluation samples (5 cm × 15 cm) of the optical laminates (TAC) according to Examples 1 to 16 and Comparative Examples 1 to 3 manufactured above were placed on the outside (TAC on the mandrel side). It was set in an apparatus in such a manner that the temperature was 60° C. and the humidity was 95% RH. Evaluation conditions are as follows.
・When there was no peeling between the adhesive layer and the cholesteric liquid crystal layer and between the adhesive layer and the TAC even after the number of times of bending reached 200,000 → Adhesion in a humidified environment was 〇・Slight peeling between the adhesive layer and the cholesteric liquid crystal layer and/or between the adhesive layer and the TAC only in the folded area even after the number of times of folding reaches 200,000 (practical level) → Adhesion is △ in a humidified environment
・When the number of times of bending reaches 200,000 times, peeling occurs between the adhesive layer and the cholesteric liquid crystal layer and/or between the adhesive layer and the TAC (unpractical level) → in a humidified environment Adhesion is ×
・When no cracks occurred in the cholesteric liquid crystal layer and TAC even when the number of bends reached 200,000 times → crack resistance in a humidified environment was 〇 ・When the number of bends reached 200,000 times, the cholesteric liquid crystal When cracks occur in the layer → crack resistance under humid environment is ×
The results are shown in Tables 1-5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1~5の結果から、実施例1~16に係る光学積層体は、非折り曲げ時-室温(23℃)での各フィルムと接着剤層との密着性に優れるだけでなく、加湿環境下での密着性にも優れることが分かる。加えて、実施例1~16に係る光学積層体は、加湿環境下での耐クラック性にも優れることが分かる。一方、比較例1~3に係る光学積層体は、非折り曲げ時-室温(23℃)での各フィルムと接着剤層との密着性が比較的良好であっても、加湿環境下での密着性が悪化することが分かる。なお、比較例2では折り曲げ領域でのみ剥がれが発生する程度であったが、コレステリック液晶層にクラックが発生した。また、比較例1および3では特にコレステリック液晶層が剥がれてしまい、かつ評価試験途中でコレステリック液晶層にクラックが発生した。 From the results in Tables 1 to 5, the optical laminates according to Examples 1 to 16 not only exhibit excellent adhesion between each film and the adhesive layer at room temperature (23°C) when unfolded, but also exhibit excellent adhesion under a humidified environment. It can be seen that the adhesion is also excellent. In addition, it can be seen that the optical layered bodies according to Examples 1 to 16 are also excellent in crack resistance under a humid environment. On the other hand, in the optical laminates according to Comparative Examples 1 to 3, even though the adhesion between each film and the adhesive layer at room temperature (23° C.) when not folded is relatively good, adhesion under a humidified environment I know it gets worse. In Comparative Example 2, peeling occurred only in the bent region, but cracks occurred in the cholesteric liquid crystal layer. In Comparative Examples 1 and 3, the cholesteric liquid crystal layer was particularly peeled off, and cracks occurred in the cholesteric liquid crystal layer during the evaluation test.

Claims (11)

  1.  光学機能層と基材フィルムとが接着剤層を介して積層された光学積層体であって、
     前記光学機能層の厚みが0.5~5μmであり、
     前記接着剤層の厚みが0.5~3μmであり、
     前記接着剤層は、活性エネルギー線硬化性樹脂組成物の硬化物層で形成されており、前記硬化物層のガラス転移温度が30℃未満であることを特徴とする光学積層体。
    An optical laminate in which an optical functional layer and a base film are laminated via an adhesive layer,
    The optical function layer has a thickness of 0.5 to 5 μm,
    The adhesive layer has a thickness of 0.5 to 3 μm,
    The optical laminate, wherein the adhesive layer is formed of a cured product layer of an active energy ray-curable resin composition, and the cured product layer has a glass transition temperature of less than 30°C.
  2.  前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、極性基を有する(メタ)アクリレートを20~90質量部含有するものである請求項1に記載の光学積層体。 2. The optical laminate according to claim 1, wherein the active energy ray-curable resin composition contains 20 to 90 parts by mass of a (meth)acrylate having a polar group when the total amount of the composition is 100 parts by mass. body.
  3.  前記極性基が水酸基またはカルボキシル基である請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the polar group is a hydroxyl group or a carboxyl group.
  4.  前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、アルキレングリコール単位を有する(メタ)アクリレートを5~90質量部含有するものである請求項1~3のいずれかに記載の光学積層体。 Any one of claims 1 to 3, wherein the active energy ray-curable resin composition contains 5 to 90 parts by mass of (meth)acrylate having an alkylene glycol unit when the total amount of the composition is 100 parts by mass. The optical laminate according to any one of the above.
  5.  前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、多官能(メタ)アクリレートを3~20質量部含有するものである請求項1~4のいずれかに記載の光学積層体。 5. The active energy ray-curable resin composition according to any one of claims 1 to 4, which contains 3 to 20 parts by mass of a polyfunctional (meth)acrylate when the total amount of the composition is 100 parts by mass. optical laminate.
  6.  前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、アクリル系オリゴマーを3~20質量部含有するものである請求項1~5のいずれかに記載の光学積層体。 6. The optical laminate according to any one of claims 1 to 5, wherein the active energy ray-curable resin composition contains 3 to 20 parts by mass of an acrylic oligomer when the total amount of the composition is 100 parts by mass. body.
  7.  前記活性エネルギー線硬化性樹脂組成物が、組成物の全量を100質量部としたとき、ホモポリマー化した際のガラス転移温度が30℃を超える重合成分の含有量が30質量部以下のものである請求項1~6のいずれかに記載の光学積層体。 The active energy ray-curable resin composition contains 30 parts by mass or less of a polymer component having a glass transition temperature exceeding 30°C when homopolymerized, when the total amount of the composition is 100 parts by mass. The optical laminate according to any one of claims 1 to 6.
  8.  前記光学機能層が液晶層である請求項1~7のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 7, wherein the optical function layer is a liquid crystal layer.
  9.  2つの非折り曲げ領域の間に位置する折り曲げ軸に沿って折り曲げられる折り曲げ領域を備える請求項1~8のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 8, comprising a folding region that is folded along a folding axis located between two non-folding regions.
  10.  前記光学機能層が外側に位置するように折り曲げられるものである請求項9に記載の光学積層体。 The optical laminate according to claim 9, wherein the optical function layer is bent so as to be positioned on the outside.
  11.  請求項1~10のいずれかに記載の光学積層体が用いられていることを特徴とする画像表示装置。 An image display device using the optical laminate according to any one of claims 1 to 10.
PCT/JP2022/042566 2022-02-17 2022-11-16 Optical laminate and image display device WO2023157406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-022917 2022-02-17
JP2022022917A JP2023119830A (en) 2022-02-17 2022-02-17 Optical laminate and image display device

Publications (1)

Publication Number Publication Date
WO2023157406A1 true WO2023157406A1 (en) 2023-08-24

Family

ID=87577915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042566 WO2023157406A1 (en) 2022-02-17 2022-11-16 Optical laminate and image display device

Country Status (3)

Country Link
JP (1) JP2023119830A (en)
TW (1) TW202333950A (en)
WO (1) WO2023157406A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194572A (en) * 2016-04-20 2017-10-26 日東電工株式会社 Polarizing film and production method of the same, optical film and image display device
JP2017194568A (en) * 2016-04-20 2017-10-26 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using the polarizing plate
WO2019026760A1 (en) * 2017-07-31 2019-02-07 日東電工株式会社 Layered body for flexible image display device, and flexible image display device
JP2020090586A (en) * 2018-12-04 2020-06-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive for optical film, adhesive layer, optical member and image display device
JP2021039265A (en) * 2019-09-04 2021-03-11 日東電工株式会社 Laminated optical film and image display device
JP2021086021A (en) * 2019-11-28 2021-06-03 日東電工株式会社 Optical laminate and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194572A (en) * 2016-04-20 2017-10-26 日東電工株式会社 Polarizing film and production method of the same, optical film and image display device
JP2017194568A (en) * 2016-04-20 2017-10-26 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using the polarizing plate
WO2019026760A1 (en) * 2017-07-31 2019-02-07 日東電工株式会社 Layered body for flexible image display device, and flexible image display device
JP2020090586A (en) * 2018-12-04 2020-06-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive for optical film, adhesive layer, optical member and image display device
JP2021039265A (en) * 2019-09-04 2021-03-11 日東電工株式会社 Laminated optical film and image display device
JP2021086021A (en) * 2019-11-28 2021-06-03 日東電工株式会社 Optical laminate and image display device

Also Published As

Publication number Publication date
TW202333950A (en) 2023-09-01
JP2023119830A (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP7137900B2 (en) Active energy ray-curable adhesive composition, polarizing film and method for producing same, optical film, and image display device
JP6560999B2 (en) Curable resin composition, polarizing film and method for producing the same, optical film, and image display device
WO2016143435A1 (en) Crosslinking agent, curable resin composition, polarizing film, method for producing polarizing film, optical film and image display device
WO2015030203A1 (en) Curable adhesive for polarizing films, polarizing film, optical film and image display device
WO2016010030A1 (en) Laminate optical film production method
CN109073813B (en) Polarizing film, method for producing same, optical film, and image display device
JP7214397B2 (en) Polarizers, polarizing films, optical films, and image display devices
CN109554122B (en) Curing adhesive for polarizing film, optical film, and image display device
JP6535797B2 (en) Adhesive composition for polarizing film, polarizing film, optical film and image display device
CN110168035B (en) Adhesive composition for polarizing film, optical film, and image display device
WO2020039895A1 (en) Polarizer, polarizing film, optical film and image display device
WO2023157406A1 (en) Optical laminate and image display device
JP7265882B2 (en) Method for producing polarizing film, polarizer with easy-adhesion layer, polarizing film, optical film, and image display device
JP7219137B2 (en) Method for manufacturing polarizing film
WO2023157405A1 (en) Optical laminate and image display device
JP7398964B2 (en) Manufacturing method of polarizing film
JP2020034898A (en) Polarizer, polarizing film, optical film and image display device
JP7297608B2 (en) Method for manufacturing polarizing film
JP7336319B2 (en) Method for manufacturing polarizing film
JP7311291B2 (en) Method for manufacturing polarizing film
JP7213037B2 (en) Polarizers, polarizing films, optical films, and image display devices
WO2018173919A1 (en) Curable resin composition for polarizing films, polarizing film and method for producing same
JP7315357B2 (en) Method for manufacturing polarizing film
WO2020039899A1 (en) Polarizer, polarizing film, optical film and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927297

Country of ref document: EP

Kind code of ref document: A1