WO2023089951A1 - Thick steel sheet and manufacturing method therefor - Google Patents

Thick steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2023089951A1
WO2023089951A1 PCT/JP2022/035525 JP2022035525W WO2023089951A1 WO 2023089951 A1 WO2023089951 A1 WO 2023089951A1 JP 2022035525 W JP2022035525 W JP 2022035525W WO 2023089951 A1 WO2023089951 A1 WO 2023089951A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
slab
steel plate
thickness
content
Prior art date
Application number
PCT/JP2022/035525
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 寺澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280070255.8A priority Critical patent/CN118119725A/en
Priority to JP2022579886A priority patent/JP7508026B2/en
Priority to EP22895237.0A priority patent/EP4403661A1/en
Priority to KR1020247014905A priority patent/KR20240075905A/en
Publication of WO2023089951A1 publication Critical patent/WO2023089951A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a thick steel plate and a method for manufacturing the same.
  • Patent Document 1 includes: "In a hot forging method for steel materials that forges and stretches axially symmetrical steel materials in the upper anvil and the lower metal spread, between the start of forging and the end of forging, A method for hot forging a steel material, comprising a step of forming a rectangular or substantially rectangular cross-sectional shape with a ratio of the length of the long side to the length of the short side of at least 1.4. is disclosed.
  • Patent Document 2 "A slab forging method in which asymmetrical anvils with different widths for the upper and lower anvils are used to continuously apply reduction in the width direction and then in the thickness direction, The above-mentioned reduction in the width direction is performed from one end in the longitudinal direction of the slab.
  • a slab forging method characterized by limiting the ratio ⁇ L/B to 0.20 or less, where B is the contact length of the shorter contact length. ” is disclosed.
  • Patent Document 3 In a hot forging method for slabs produced by continuous casting, using an asymmetrical anvil, continuous reduction is applied in the width direction and then in the thickness direction, The slab reduction in the width direction is performed in two stages, in which the slab is reversed between the first stage and the second stage, and the reduction is performed at least twice in each stage, and the slab reduction in the width direction in each stage
  • an anvil with a width of 400 to 1200 mm is used as an anvil on the short side
  • an anvil with a width of 800 to 1500 mm is used as an anvil on the long side
  • the pressing position of the anvil on the short side is the first slab.
  • the rolling phase is shifted so that the deviation ( ⁇ L) between the slab feed allowance boundary at the time of rolling and the center of the anvil contact length (B) at the time of the next rolling satisfies ⁇ L ⁇ 0.20B, and
  • a hot forging method for a slab characterized in that each rolling reduction in the slab rolling in the width direction is 4% or more, and the total rolling reduction in the slab rolling in the thickness direction is 10% or more. ” is disclosed.
  • Patent Document 4 In the manufacturing method of extra-thick steel plate, the slab produced by the continuous casting method is tentered in the rough rolling process and further rolled to the product thickness in the finish rolling process.
  • a slab is described as "Al: 0.07% by weight or less aluminum killed continuous cast strand is cut into a predetermined length and then hot-charged in a blooming soaking furnace as it is. Soaking at a temperature of 1150 ° C. and performing slab rolling so that the value of the shape ratio R according to the following formula is 0.5 or more, Then, the slab is subjected to a dehydrogenation treatment to reduce the diffusible hydrogen contained in the central part of the thickness to 1.2 ppm or less, After that, the slab is reheated to 950 to 1050° C., and then thick plate rolling is performed to a required thickness of 50 mm or more.
  • accelerated cooling is performed at a heat removal rate of 15°C or more per minute from Ar 3 or a temperature not lower than 40°C or less to 500 to 350°C.
  • a method for producing a high toughness steel plate with excellent internal quality by continuous casting, characterized by the order bonding of ” is disclosed.
  • Patent Documents 1 to 3 apply hot forging to the slab.
  • the production efficiency of hot forging is much lower than that of hot rolling. Therefore, there is a problem that the production capacity is low and the manufacturing cost is high.
  • Patent Documents 4 and 5 apply hot rolling to the slab instead of hot forging, but it is necessary to apply a large reduction in rolling shape ratio.
  • the present invention has been developed in view of the above-mentioned current situation, and can be manufactured at low cost (in other words, with high productivity) without requiring special equipment, and has excellent intrinsic properties. and a steel plate having high strength. Another object of the present invention is to provide a method for manufacturing the thick steel plate.
  • ⁇ Slabs which are materials for rolling or forging thick steel plates, are generally manufactured by continuous casting or ingot casting. Therefore, the final solidification position is usually the vicinity of the thickness center position of the slab. When molten steel solidifies, volumetric contraction occurs. Therefore, void defects inevitably occur in the vicinity of the thickness center position of the slab. These void defects become starting points for fractures such as ductile fractures, brittle fractures and fatigue fractures, and the more void defects there are, the more frequently fractures occur.
  • the distribution of the strain introduced into the slab by hot rolling in the thickness direction is greatest near the surface of the slab that is in contact with the rolling rolls, and decreases toward the center of the thickness. Therefore, the strain amount is the smallest at the thickness center position of the slab, and the void defect crimping capability is also the lowest.
  • the present inventors conducted various studies to increase the amount of strain in the vicinity of the thickness center position of the slab in hot rolling without using special equipment. As a result, the present inventors obtained the following findings. ⁇ By reducing the temperature difference between the slab surface and the thickness center position to a certain level or more, the deformation resistance near the slab surface is increased relatively to the thickness center position and applied to the slab surface vicinity. Strain amount can be reduced. The reduced amount of strain applied near the surface of the slab has the effect of increasing the amount of strain applied near the plate thickness center position. ⁇ In addition, by reducing the temperature at the center of the thickness of the slab at a certain level or higher, specifically 700° C. or higher, it is possible to more advantageously close void defects by rolling strain and crimp by metal bonding.
  • the present inventors conducted further studies based on the above knowledge, and in particular, by increasing the rolling reduction in the rolling pass that satisfies the following (a) and (b), the thickness center position of the slab We have found that the amount of void defects in the vicinity can be greatly reduced.
  • the inventors of the present invention made further studies and obtained the following findings. ⁇ By setting the area ratio of void defects at the plate thickness center position of the thick steel plate to 0.5% or less, it is possible to obtain excellent internal properties with a sufficiently reduced risk of fracture occurrence. ⁇ In order to make the area ratio of void defects at the thickness center position of a thick steel plate 0.5% or less, the total rolling reduction in the rolling passes that satisfy the above (a) and (b) in the hot rolling process is More than 30% is effective.
  • the present inventors found that in cooling after hot rolling, the cooling rate when passing through the transformation temperature range from the austenitic structure, specifically, the 700 to 1/4 position of the thickness of the hot rolled steel sheet. It has been found that it is effective to set the average cooling rate in the temperature range of 600° C. to 6000 t ⁇ 1.8 or more depending on the thickness t (mm) of the hot rolled steel sheet.
  • the present invention has been completed based on the above findings and further studies.
  • the gist and configuration of the present invention are as follows.
  • Ceq and plate thickness t (mm) defined by the following formula (1) satisfy the relationship of Ceq/t ⁇ 0.0015, The area ratio of void defects at the plate thickness center position is 0.5% or less, A thick steel plate having a yield strength of 325 MPa or more.
  • the component composition further contains, in % by mass, Cu: 2.00% or less, Ni: 2.50% or less, Cr: 1.50% or less, Mo: 1.00% or less, Nb: 0.100% or less, Ti: 0.100% or less, V: 0.30% or less, B: 0.0100% or less, W: 0.50% or less, Ca: 0.0200% or less,
  • a method for manufacturing a thick steel plate according to [1] or [2] above a preparation step of preparing a slab having the composition according to [1] or [2]; A hot rolling step of hot rolling the slab into a hot rolled steel sheet; a cooling step of cooling the hot-rolled steel sheet; with The total rolling reduction in the rolling passes satisfying the following (a) and (b) in the hot rolling process is more than 30%, A method for producing a thick steel plate, wherein in the cooling step, an average cooling rate (° C./s) in a temperature range of 700 to 600° C. at a position of 1/4 thickness of the hot rolled steel plate is 6000 t ⁇ 1.8 or more. (a) Temperature at the thickness center position of the slab: 700° C. or more (b) Temperature difference between the surface of the slab and the thickness center position: 100° C. or more Here, t is the thickness (mm) of the hot-rolled steel sheet.
  • the present invention it is possible to obtain a thick steel plate that can be manufactured at low cost without requiring special equipment, has excellent internal properties, and has high strength.
  • the use of the thick steel plate of the present invention is not particularly limited, and it is generally used for thick steel plates such as ships, line pipes, buildings, bridges, offshore structures, wind power generators, construction machinery and pressure vessels. is applicable to a wide range of fields where
  • a thick steel plate according to the present invention will be described based on the following embodiments.
  • the chemical composition of the steel plate according to one embodiment of the present invention will be described.
  • the unit of the content of the element in the component composition is "mass %", and hereinafter, unless otherwise specified, it is indicated simply as "%".
  • C 0.04-0.18%
  • C is an element that can most inexpensively improve the strength of steel. If the C content is less than 0.04%, the desired strength cannot be obtained. On the other hand, when the C content exceeds 0.18%, the weldability deteriorates. Also, the toughness is reduced. Therefore, the C content should be 0.04 to 0.18%. In addition, 0.05% or more of C content is preferable. Also, the C content is preferably 0.17% or less.
  • Si 0.03-0.70% Si is an element effective for deoxidation. If the Si content is less than 0.03%, sufficient effects cannot be obtained. However, when the Si content exceeds 0.70%, the weldability deteriorates. Therefore, the Si content should be 0.03 to 0.70%. Incidentally, the Si content is preferably 0.04% or more. Also, the Si content is preferably 0.60% or less.
  • Mn 0.30-2.50%
  • Mn is an element that improves the hardenability and strength of steel at low cost. From the viewpoint of obtaining such effects, the Mn content is set to 0.30% or more. On the other hand, when the Mn content exceeds 2.50%, the weldability deteriorates. Therefore, the Mn content should be 0.30 to 2.50%.
  • the Mn content is preferably 0.50% or more.
  • the Mn content is preferably 2.20% or less.
  • P 0.030% or less
  • P is an element that greatly embrittles grain boundaries. Therefore, when P is contained in a large amount, the toughness of the steel is lowered. Therefore, the P content should be 0.030% or less.
  • the P content is preferably 0.025% or less.
  • the lower the P content the better, so the lower limit of the P content is not particularly limited, and may be 0%.
  • P is an element that is inevitably contained in steel as an impurity, and an excessive decrease in P leads to an increase in refining time and cost. Therefore, the P content is preferably 0.001% or more.
  • S 0.0200% or less S lowers the toughness of steel. Therefore, the S content should be 0.0200% or less.
  • the S content is preferably 0.0100% or less.
  • the lower the S content the better, so the lower limit of the S content is not particularly limited, and may be 0%.
  • S is an element that is unavoidably contained in steel as an impurity, and excessive reduction of S causes an increase in refining time and an increase in cost. Therefore, the S content is preferably 0.0001% or more.
  • Al 0.001-0.100%
  • Al is an element effective for deoxidation.
  • Al is an element that forms nitrides and has the effect of reducing the grain size of austenite.
  • the Al content is made 0.001% or more.
  • the Al content exceeds 0.100%, the cleanliness of the steel is lowered. As a result, ductility and toughness are reduced. Therefore, the Al content is set to 0.001 to 0.100%.
  • 0.005% or more of Al content is preferable.
  • the Al content is preferably 0.080% or less.
  • O 0.0100% or less
  • O is an element that reduces ductility and toughness. Therefore, the O content is set to 0.0100% or less.
  • the lower the O content the better, so the lower limit of the O content is not particularly limited, and may be 0%.
  • O is an element that is inevitably contained in steel as an impurity, and excessive reduction in O causes an increase in refining time and an increase in cost. Therefore, the O content is preferably 0.0005% or more.
  • N 0.0100% or less
  • N is an element that reduces ductility and toughness. Therefore, the N content is set to 0.0100% or less.
  • the lower the N content the better, so the lower limit of the N content is not particularly limited, and may be 0%.
  • N is an element that is unavoidably contained in steel as an impurity, it may exceed 0% industrially.
  • an excessive reduction in N causes an increase in refining time and an increase in cost. Therefore, the N content is preferably 0.0005% or more.
  • the basic chemical composition of the steel plate according to one embodiment of the present invention has been described above, but from the viewpoint of further improving strength and weldability (toughness of weld zone, welding workability, etc.), the following optional additions are made as appropriate.
  • One or more of the elements can be contained.
  • Cu 2.00% or less
  • Cu is an element that improves the strength of steel without significantly deteriorating toughness.
  • the Cu content exceeds 2.00%, hot tearing due to the Cu-enriched layer formed directly under the scale becomes a problem. Therefore, when Cu is contained, the Cu content is preferably 2.00% or less.
  • the Cu content is more preferably 0.01% or more. Also, the Cu content is more preferably 1.50% or less.
  • Ni 2.50% or less
  • Ni is an element that enhances the hardenability of steel.
  • Ni is also an element that has the effect of improving toughness.
  • the Ni content is preferably 2.50% or less.
  • the Ni content is more preferably 0.01% or more.
  • the Ni content is more preferably 2.00% or less.
  • Cr 1.50% or less Cr is an element that improves the strength of steel by improving the hardenability of steel. However, when the Cr content exceeds 1.50%, the weldability deteriorates. Therefore, when Cr is contained, the Cr content is preferably 1.50% or less. Incidentally, the Cr content is more preferably 0.01% or more. Also, the Cr content is more preferably 1.20% or less.
  • Mo 1.00% or less Mo is an element that improves the strength of steel by improving the hardenability of steel. However, when the Mo content exceeds 1.00%, the weldability deteriorates. Therefore, when Mo is contained, the Mo content is preferably 1.00% or less. Incidentally, the Mo content is more preferably 0.01% or more. Also, the Mo content is more preferably 0.80% or less.
  • Nb 0.100% or less
  • Nb is an element that suppresses recrystallization when strain is applied to the austenitic structure due to solid solution Nb and finely precipitated NbC.
  • Nb is also an element that has the effect of increasing the temperature of the non-recrystallization temperature range.
  • the Nb content is preferably 0.100% or less.
  • the Nb content is more preferably 0.001% or more, and still more preferably 0.005% or more.
  • the Nb content is more preferably 0.075% or less, and still more preferably 0.050% or less.
  • Ti 0.100% or less
  • Ti is an element that has the effect of pinning movement of grain boundaries and suppressing grain growth by precipitating as TiN.
  • the Ti content exceeds 0.100%, the cleanliness of the steel deteriorates. As a result, ductility and toughness are reduced. Therefore, when Ti is contained, the Ti content is preferably 0.100% or less.
  • the Ti content is more preferably 0.001% or more. Also, the Ti content is more preferably 0.080% or less.
  • V 0.30% or less
  • V is an element that improves the strength of steel by improving the hardenability of steel and forming carbonitrides.
  • the V content is preferably 0.30% or less.
  • the V content is more preferably 0.01% or more.
  • the V content is more preferably 0.25% or less.
  • B 0.0100% or less
  • B is an element that improves the strength of steel by improving the hardenability of steel.
  • the B content is preferably 0.0100% or less.
  • the B content is more preferably 0.0001% or more.
  • the B content is more preferably 0.0070% or less.
  • W 0.50% or less W is an element that improves the strength of steel by improving the hardenability of steel. However, when the W content exceeds 0.50%, the weldability deteriorates. Therefore, when W is contained, the W content is preferably 0.50% or less. Incidentally, the W content is more preferably 0.01% or more. Moreover, the W content is more preferably 0.40% or less.
  • Ca 0.0200% or less
  • Ca is an element that improves weldability by forming oxysulfides that are highly stable at high temperatures.
  • the Ca content exceeds 0.0200%, the cleanliness of the steel is lowered and the toughness of the steel is lowered. Therefore, when Ca is contained, the Ca content is preferably 0.0200% or less.
  • the Ca content is more preferably 0.0001% or more.
  • the Ca content is more preferably 0.0180% or less.
  • Mg 0.0200% or less
  • Mg is an element that improves weldability by forming oxysulfides that are highly stable at high temperatures.
  • the Mg content exceeds 0.0200%, the effect of adding Mg is saturated and the effect corresponding to the content cannot be expected, which is economically disadvantageous. Therefore, when Mg is contained, the Mg content is preferably 0.0200% or less.
  • the Mg content is more preferably 0.0001% or more.
  • the Mg content is more preferably 0.0180% or less.
  • REM 0.0500% or less REM (rare earth metal) is an element that improves weldability by forming an oxysulfide that is highly stable at high temperatures. However, if the REM content exceeds 0.0500%, the effect of adding REM is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when REM is contained, the REM content is preferably 0.0500% or less. The REM content is more preferably 0.0001% or more. Also, the REM content is more preferably 0.0450% or less.
  • the balance other than the above elements in the chemical composition of the steel plate according to one embodiment of the present invention is Fe and unavoidable impurities.
  • the content of the element related to the optional additive component is less than each preferred lower limit, the element is treated as an unavoidable impurity.
  • Ceq [C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (1)
  • [element symbol] in formula (1) is the content (% by mass) of each element in the component composition, and is calculated as 0 when the element is not contained.
  • Ceq/t ⁇ 0.0015 Ceq is a parameter correlated with the strength of the steel structure.
  • a desired yield strength can be obtained by appropriately controlling the ratio of Ceq to the plate thickness t (mm) of the thick steel plate, specifically by setting Ceq/t to 0.0015 or more. Therefore, Ceq/t is set to 0.0015 or more.
  • Ceq/t is preferably 0.0018 or more.
  • the upper limit of Ceq/t is not particularly limited, Ceq/t is preferably 0.0200 or less, for example.
  • the area ratio of void defects at the plate thickness center position is 0.5% or less.
  • Area ratio of void defects at center position of sheet thickness 0.5% or less
  • Void defects inside the steel plate become starting points of fractures such as ductile fracture, brittle fracture and fatigue fracture.
  • the area ratio of void defects at the plate thickness center position exceeds 0.5%, the frequency of such fractures decreases.
  • the area ratio of void defects at the thickness center position is set to 0.5% or less.
  • the area ratio of void defects at the thickness center position is preferably 0.3% or less.
  • the lower limit of the area ratio of the void defects at the plate thickness center position is not particularly limited, and may be 0%.
  • the area ratio of void defects at the sheet thickness center position is measured in accordance with the procedure described in Examples described later.
  • excellent internal properties means that the reduction ratio in the plate thickness direction of the thick steel plate measured by a tensile test in accordance with ASTM A370 (2010) is 35% or more. means.
  • the detailed test conditions are as described in [Plate thickness direction tensile test] in Examples described later.
  • high strength means that the yield strength measured by a tensile test conforming to JIS Z2241 (2011) is 325 MPa or more.
  • detailed test conditions are as described in [Panel width direction tensile test] in Examples to be described later.
  • the steel structure of the steel plate according to one embodiment of the present invention is not particularly limited, but from the viewpoint of obtaining the desired strength more advantageously, it is a structure mainly composed of fine structures with an average grain size of 15 ⁇ m or less. preferably.
  • the microstructure-based structure having an average grain size of 15 ⁇ m or less means that the total area ratio of ferrite and bainite to the entire steel structure is 60% or more, and the average grain size of ferrite and bainite (large angle Equivalent circle diameter of the grain boundary) is 15 ⁇ m or less.
  • the residual structure other than ferrite and bainite includes pearlite, martensite, etc., and the total area ratio of the residual structure to the entire steel structure is preferably 40% or less.
  • the area ratio and average crystal grain size of each structure may be measured by a conventional method, and can be measured, for example, by optical micrographs or scanning electron micrographs.
  • the measurement position of the area ratio of each structure and the average crystal grain size shall be the plate thickness center position.
  • the plate thickness of the thick steel plate according to one embodiment of the present invention is preferably 30 to 240 mm.
  • the plate thickness of the thick steel plate according to one embodiment of the present invention is more preferably 50 mm or more, and still more preferably 101 mm or more. Further, the plate thickness of the thick steel plate according to one embodiment of the present invention is more preferably 230 mm or less.
  • a method for manufacturing a thick steel plate according to one embodiment of the present invention includes: a preparatory step of preparing a slab (steel material) having the above composition; A hot rolling step of hot rolling the slab into a hot rolled steel sheet; a cooling step of cooling the hot-rolled steel sheet; with The total rolling reduction in the rolling passes satisfying the following (a) and (b) in the hot rolling process is more than 30%, In the cooling step, the average cooling rate (° C./s) in the temperature range of 700 to 600° C. at the position of 1/4 thickness of the hot rolled steel sheet is 6000 t ⁇ 1.8 or more.
  • the surface temperature of the slab and steel plate can be measured, for example, with a radiation thermometer.
  • the temperature at the thickness center position of the slab is measured, for example, by attaching a thermocouple to the thickness center position of the slab, or the temperature distribution in the slab cross section is calculated by heat transfer analysis, and the result is used for the slab. It can be obtained by correcting with the surface temperature.
  • the temperature at the position of 1/4 thickness of the hot-rolled steel sheet can also be obtained in the same manner.
  • the temperature of the slab and steel plate means the surface temperature.
  • the material to be rolled during the hot rolling process is called a slab instead of a steel plate (hot rolled steel plate or thick steel plate), and the steel plate obtained through the hot rolling process is It is called rolled steel plate.
  • a slab having the component composition described above is prepared.
  • the method of preparation is not limited.
  • molten steel is melted by a known melting method such as a converter, an electric furnace, and a vacuum melting furnace.
  • secondary refining such as ladle refining, may be performed.
  • the melted steel is made into a slab by, for example, a continuous casting method, an ingot casting method, or the like, and a slab having the chemical composition described above is prepared.
  • a conventional method about each condition is just to follow a conventional method about each condition.
  • Total rolling reduction in rolling passes that satisfy (a) and (b) (hereinafter also referred to as rolling passes under predetermined conditions): more than 30% (a) Temperature at the thickness center position of the slab: 700 ° C. or higher (b ) Temperature difference between the surface of the slab and the thickness center position: 100°C or more In order to close the gap defects existing near the thickness center position of the slab and press it by metal bonding, the temperature at the thickness center position of the slab should be 700°C. It is effective to apply strain at °C or higher. Also, in order to increase the amount of strain applied to the slab near the thickness center position, it is necessary to perform rolling with a temperature difference of 100° C. or more between the surface of the slab and the thickness center position.
  • the total rolling reduction in rolling passes under predetermined conditions is set to more than 30%.
  • the total rolling reduction in rolling passes under predetermined conditions is preferably 40% or more.
  • the upper limit of the total rolling reduction in rolling passes under predetermined conditions is not particularly limited, but the total rolling reduction in rolling passes under predetermined conditions is preferably 65% or less.
  • the total rolling reduction in rolling passes under predetermined conditions is calculated by the following equation (1).
  • r t 100 ⁇ (t i1 ⁇ t f1 )/t i1 +(t i2 ⁇ t f2 )/t i2 +(t i3 ⁇ t f3 )/t i3 + . . .
  • r t is the total rolling reduction (%) in the rolling pass under the given conditions
  • t iN is the thickness (mm) of the slab at the start of rolling in the N-th rolling pass among the rolling passes under predetermined conditions
  • t fN is the thickness (mm) of the slab at the end of rolling of the N-th rolling pass among the rolling passes under predetermined conditions
  • N is the number of rolling passes under a predetermined condition.
  • the method of adjusting the temperature difference between the surface of the slab and the thickness center position is not particularly limited. For example, by forcibly cooling the surface of the slab by air cooling or water cooling, the temperature difference between the surface of the slab and the thickness center position can be adjusted within the above range.
  • the slab heating temperature is preferably 950-1300.degree.
  • the total number of rolling passes in hot rolling is preferably 5 to 60 passes.
  • N the number of rolling passes under predetermined conditions
  • Hot rolling reduction ratio [slab thickness (mm) at the start of hot rolling (start of first rolling pass)] / [end of hot rolling (end of final rolling pass) of hot-rolled steel sheet obtained after Thickness (mm)]) is preferably 1.6 to 16. It is preferable that the finish rolling end temperature (delivery side temperature of the final pass) is 700 to 1000°C.
  • Average cooling rate (°C/s) in the temperature range of 700 to 600°C at the 1/4 position of the thickness of the hot-rolled steel sheet 6000t -1.8 or more Specifically, in order to achieve a yield strength of 325 MPa or more, the transformation temperature range from the austenite structure, particularly the cooling rate when passing through the temperature range of 700 to 600 ° C. at the 1/4 position of the thickness of the hot rolled steel sheet can be accelerated according to the thickness t (mm) of the hot-rolled steel sheet. Therefore, the average cooling rate in the temperature range of 700 to 600° C. (hereinafter also referred to as the average cooling rate at 700 to 600° C.) at the position of 1/4 thickness of the hot-rolled steel sheet is set to 6000 t ⁇ 1.8 or more.
  • the average cooling rate at 700-600° C. is preferably 7000 t ⁇ 1.8 or higher.
  • the average cooling rate at 700-600° C. is preferably 30000 t ⁇ 1.8 or less.
  • cooling methods include water cooling and gas cooling.
  • the cooling rate in temperature ranges other than the above is not particularly limited, and any cooling method may be used to cool to room temperature.
  • the hot-rolled steel sheet may optionally be subjected to a tempering treatment in order to adjust strength, ductility, toughness, and the like.
  • a tempering treatment in order to adjust strength, ductility, toughness, and the like.
  • the tempering temperature is set to 650° C. or lower.
  • conditions other than the above are not particularly limited, and conventional methods may be followed.
  • the tempering temperature is the temperature at the 1/4 thickness position of the hot-rolled steel sheet during soaking.
  • a molten steel having the chemical composition shown in Table 1 was melted, and a slab (slab) with a thickness of 260 to 600 mm was prepared by a continuous casting method, an ingot casting method, or the like. It should be noted that the blanks in the column of elements in Table 1 indicate that they are not intentionally added, and include not only the case of not containing (0%) but also the case of unavoidable containing. .
  • the prepared slabs were hot-rolled and cooled under the conditions shown in Table 2, and partially tempered to obtain thick steel plates having a thickness t (mm) shown in Table 2. Since the values of the plate thickness of the thick steel plate and the plate thickness of the hot-rolled steel plate are the same, they are indicated as plate thickness t in Table 2.
  • "-" in the column of tempering temperature means that no tempering treatment was performed.
  • the rolling reduction ratio of hot rolling was in the range of 2.5 to 3.5, and N (the number of rolling passes under predetermined conditions) was in the range of 5 to 37 passes.
  • the slab surface temperature was measured with a radiation thermometer, and the slab thickness center temperature and hot-rolled steel plate temperature at the 1/4 thickness position were measured with a thermocouple.
  • the temperature difference between the surface of the slab and the central position of the plate thickness was adjusted by forcibly cooling the surface of the slab by air cooling or water cooling. For conditions other than the above, it was assumed that the ordinary method was followed.
  • the area ratio of void defects at the plate thickness center position was measured in the following manner.
  • the measurement results are also shown in Table 2.
  • a microstructure-based structure (a ferrite- and bainite-based structure) having an average grain boundary of 15 ⁇ m or less was obtained.
  • the thickness is adjusted so that the cross section in the width direction (perpendicular to rolling direction) of the thick steel plate at the center position of the thickness of the thick steel plate is the evaluation surface at the center position in the longitudinal direction (rolling direction) of the thick steel plate.
  • Samples for the full width of the steel plate were taken. Then, each of the obtained samples was mirror-polished with an alumina buffing finish.
  • the evaluation area was defined as thickness direction: thickness center position ⁇ 3 mm x width direction: full width of the sheet, and the area ratio of void defects in the evaluation area was measured by image analysis. Then, the measured value was taken as the area ratio of the void defect at the plate thickness center position.
  • the yield strength of the thick steel plate was defined as the minimum value among the yield strengths measured in each tensile test piece sampled over the full width of the thick steel plate. Then, when the value was 325 MPa or more, it was evaluated that high strength was obtained.
  • all the steel plates of the present invention had excellent internal properties and high strength.
  • all of the thick steel plates of the present invention examples can be manufactured by general hot rolling equipment, and can be manufactured at low cost (with high productivity) without requiring special equipment. rice field.
  • Comparative Example No. 23 and 24 sufficient strength was not obtained because the C content was below the proper range. Comparative example no. Nos. 25 and 26 did not satisfy the relationship of Ceq/t ⁇ 0.0015, so sufficient strength was not obtained. Comparative example no. In Nos. 27 and 28, since the hot rolling conditions were unsuitable, the area ratio of void defects at the sheet thickness center position was large, and sufficient internal properties were not obtained. Comparative example no. For Nos. 29 and 30, the average cooling rate in the temperature range of 700 to 600° C. was too slow, so sufficient strength could not be obtained. Comparative example no. In Nos. 31 and 32, sufficient strength was not obtained because the tempering temperature was too high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a thick steel sheet that has excellent internal quality properties and high strength, and can be manufactured at a low cost without requiring special equipment. The thick steel sheet has a prescribed component composition and satisfies the relationship Ceq/t ≥ 0.0015, and the area ratio of gap defects in a central position of the sheet thickness is 0.5% or less.

Description

厚鋼板およびその製造方法Thick steel plate and its manufacturing method
 本発明は、厚鋼板およびその製造方法に関するものである。 The present invention relates to a thick steel plate and a method for manufacturing the same.
 近年、船舶、ラインパイプ、建築物、橋梁、海洋構造物、風力発電機、建産機および圧力容器等の分野において、構造物の大型化が進んでいる。それに伴い、上記の分野で使用される鋼板の板厚も厚くなっている。 In recent years, structures have become larger in the fields of ships, line pipes, buildings, bridges, offshore structures, wind power generators, construction machinery, and pressure vessels. Along with this, the plate thickness of steel plates used in the above fields is also increasing.
 このような板厚の厚い鋼板(以下、厚鋼板ともいう)およびその製造方法に関する技術として、例えば、特許文献1には、
「上金敷及び下金散開において軸対称形状の鋼材を鍛伸する鋼材の熱間鍛造方法において、鍛伸を開始して鍛伸を終了するまでの間に、鋼材の鍛伸する方向に垂直な断面形状を長辺の長さと短辺の長さとの比が少なくとも1.4である長方形又は略長方形にする工程を設けたことを特徴とする鋼材の熱間鍛造方法。」
が開示されている。
As a technique related to such a thick steel plate (hereinafter also referred to as a thick steel plate) and a method for manufacturing the same, for example, Patent Document 1 includes:
"In a hot forging method for steel materials that forges and stretches axially symmetrical steel materials in the upper anvil and the lower metal spread, between the start of forging and the end of forging, A method for hot forging a steel material, comprising a step of forming a rectangular or substantially rectangular cross-sectional shape with a ratio of the length of the long side to the length of the short side of at least 1.4.
is disclosed.
 特許文献2には、
「スラブに対し、上金敷と下金敷の幅が異なる非対称金敷を用いて、連続的に幅方向ついで厚み方向に圧下を加えることからなるスラブ鍛造方法において、
  上記の幅方向の圧下をスラブ長手方向の一方の端部から行うものとし、その際、スラブ長手方向の他方の端部側における上下金敷の端部位置のずれ量をΔL、上下金敷のうちスラブとの接触長さが短い方の接触長さをBとするとき、これらの比ΔL/Bを0.20以下に制限することを特徴とするスラブ鍛造方法。」
が開示されている。
In Patent Document 2,
"A slab forging method in which asymmetrical anvils with different widths for the upper and lower anvils are used to continuously apply reduction in the width direction and then in the thickness direction,
The above-mentioned reduction in the width direction is performed from one end in the longitudinal direction of the slab. A slab forging method characterized by limiting the ratio ΔL/B to 0.20 or less, where B is the contact length of the shorter contact length. ”
is disclosed.
 特許文献3には、
「連続鋳造により製造したスラブに対し、上下非対称の金敷を用いて、連続的に幅方向ついで厚み方向に圧下を加えることからなるスラブの熱間鍛造方法において、
  上記幅方向のスラブ圧下を、1段目と2段目との間にスラブの反転を行う2段階で、かつ各段階において少なくとも2回の圧下を行うものとし、各段階における幅方向のスラブ圧下の際、短尺側の金敷としてその幅が400~1200mmの金敷を、また長尺側の金敷としてその幅が800~1500mmの金敷を用い、該短尺側の金敷での圧下位置が、最初のスラブ圧下時におけるスラブ送り代境界と次回の圧下時における金敷接触長さ(B)の中心とのずれ(ΔL)がΔL≦0.20Bを満足するように、圧下位相をずらして行うと共に、
  上記幅方向のスラブ圧下におけるそれぞれの圧下率を4%以上とし、かつ
  上記厚み方向のスラブ圧下における総圧下率を10%以上とする
ことを特徴とするスラブの熱間鍛造方法。」
が開示されている。
In Patent Document 3,
"In a hot forging method for slabs produced by continuous casting, using an asymmetrical anvil, continuous reduction is applied in the width direction and then in the thickness direction,
The slab reduction in the width direction is performed in two stages, in which the slab is reversed between the first stage and the second stage, and the reduction is performed at least twice in each stage, and the slab reduction in the width direction in each stage In this case, an anvil with a width of 400 to 1200 mm is used as an anvil on the short side, and an anvil with a width of 800 to 1500 mm is used as an anvil on the long side, and the pressing position of the anvil on the short side is the first slab. The rolling phase is shifted so that the deviation (ΔL) between the slab feed allowance boundary at the time of rolling and the center of the anvil contact length (B) at the time of the next rolling satisfies ΔL≦0.20B, and
A hot forging method for a slab, characterized in that each rolling reduction in the slab rolling in the width direction is 4% or more, and the total rolling reduction in the slab rolling in the thickness direction is 10% or more. ”
is disclosed.
 特許文献4には、
「連続鋳造法による鋳片を粗圧延工程で幅出し圧延を行い、さらに仕上げ圧延工程で製品厚みまで圧延する極厚鋼板の製造方法において、
上記仕上げ圧延工程では圧延速度を200~350mm/secで複数パス圧延することを特徴とする内部性状の優れた極厚鋼板の製造方法。」
が開示されている。
In Patent Document 4,
"In the manufacturing method of extra-thick steel plate, the slab produced by the continuous casting method is tentered in the rough rolling process and further rolled to the product thickness in the finish rolling process.
A method for producing an extra-thick steel plate having excellent internal properties, characterized in that in the finish rolling step, multiple passes are rolled at a rolling speed of 200 to 350 mm/sec. ”
is disclosed.
 特許文献5には、スラブに
「Al:0.07重量%以下のアルミキルド釧の連続鋳造ストランドを所定長に切断した直後に熱鋳片のまま、分塊均熱炉にホットチャージし、1050~1150℃の温度に均熱して、下記式に従う形状比Rの値が0.5以上となるスラブ圧延を行うこと、
 ついでこのスラブにその肉厚中心部に内蔵された拡散性水素を1.2ppm以下に低減させる脱水素処理を施すこと、
 その後スラブを950~1050℃に再加熱してから、50mm以上の必要厚みに予定された仕上り板厚に厚板圧延を行うことおよび、
 この厚板圧延の終了後、Arないしこれより40℃以上は低くない温度から、500~350℃までの間に、毎分15℃以上の抜熱速度にて加速冷却を施すこと、
の順序結合を特徴とする、連続鋳造による内質が優れた高じん性厚鋼板の製造方法。」
が開示されている。
In Patent Document 5, a slab is described as "Al: 0.07% by weight or less aluminum killed continuous cast strand is cut into a predetermined length and then hot-charged in a blooming soaking furnace as it is. Soaking at a temperature of 1150 ° C. and performing slab rolling so that the value of the shape ratio R according to the following formula is 0.5 or more,
Then, the slab is subjected to a dehydrogenation treatment to reduce the diffusible hydrogen contained in the central part of the thickness to 1.2 ppm or less,
After that, the slab is reheated to 950 to 1050° C., and then thick plate rolling is performed to a required thickness of 50 mm or more.
After the plate rolling is completed, accelerated cooling is performed at a heat removal rate of 15°C or more per minute from Ar 3 or a temperature not lower than 40°C or less to 500 to 350°C.
A method for producing a high toughness steel plate with excellent internal quality by continuous casting, characterized by the order bonding of ”
is disclosed.
特開昭58-167045号公報JP-A-58-167045 特許第6137080号Patent No. 6137080 特許第6156321号Patent No. 6156321 特公平6-69569号公報Japanese Patent Publication No. 6-69569 特開昭59-74220号公報JP-A-59-74220
 ところで、厚鋼板は、その板厚が厚いために、延性破壊、脆性破壊および疲労破壊等の破壊の発生リスクが高い。そのため、このような破壊の発生リスクを低減した、優れた内質特性を有する厚鋼板が求められる。しかし、特許文献1~5の技術により製造した厚鋼板では、このような破壊の発生リスクを必ずしも十分に低減できず、優れた内質特性が得られない場合がある。 By the way, since thick steel plates are thick, there is a high risk of fractures such as ductile fractures, brittle fractures, and fatigue fractures. Therefore, there is a demand for a steel plate having excellent internal properties with reduced risk of such fractures. However, in the thick steel plates manufactured by the techniques of Patent Documents 1 to 5, the risk of occurrence of such fracture cannot necessarily be sufficiently reduced, and excellent internal properties may not be obtained.
 また、特許文献1~3の技術は、スラブに熱間鍛造を施すものである。しかし、熱間鍛造の製造能率は、熱間圧延の製造能率に比べて非常に低い。そのため、生産能力が低く、また製造コストが高くなってしまうという問題がある。 In addition, the techniques of Patent Documents 1 to 3 apply hot forging to the slab. However, the production efficiency of hot forging is much lower than that of hot rolling. Therefore, there is a problem that the production capacity is low and the manufacturing cost is high.
 特許文献4および5の技術は、スラブに熱間鍛造ではなく、熱間圧延を施すものであるが、圧延形状比が大きな圧下を加える必要がある。しかし、スラブの板厚が厚い段階において圧延形状比が大きな圧下を加えるには、1パス当たりの圧下量を大きくする必要がある。そのため、耐荷重上限やトルク上限の高い高価な圧延設備の導入が必要になるという問題がある。 The techniques of Patent Documents 4 and 5 apply hot rolling to the slab instead of hot forging, but it is necessary to apply a large reduction in rolling shape ratio. However, in order to apply a reduction with a large rolling shape ratio when the thickness of the slab is large, it is necessary to increase the amount of reduction per pass. Therefore, there is a problem that it is necessary to introduce expensive rolling equipment with a high load-bearing upper limit and torque upper limit.
 さらに近年、大型構造物の軽量化が志向されている。そのため、厚鋼板のさらなる高強度化、特に降伏強度の向上が求められている。 Furthermore, in recent years, there has been a desire to reduce the weight of large structures. Therefore, it is required to further increase the strength of the steel plate, particularly to improve the yield strength.
 本発明は、上記の現状に鑑み開発されたものであって、特別な設備を必要とせずに低コストで(換言すれば、高い生産性の下で)製造可能である、内質特性に優れ、かつ、高い強度を有する厚鋼板を提供することを目的とする。また、本発明は、上記の厚鋼板の製造方法を提供することを目的とする。 The present invention has been developed in view of the above-mentioned current situation, and can be manufactured at low cost (in other words, with high productivity) without requiring special equipment, and has excellent intrinsic properties. and a steel plate having high strength. Another object of the present invention is to provide a method for manufacturing the thick steel plate.
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、以下の知見を得た。
・厚鋼板の圧延または鍛造素材であるスラブは、一般的に連続鋳造法や造塊法等で製造される。そのため、通常、スラブの板厚中心位置近傍が最終凝固位置となる。溶鋼が凝固する際には、体積収縮が起きる。そのため、スラブの板厚中心位置近傍には、空隙欠陥が不可避的に生じる。そして、この空隙欠陥が延性破壊、脆性破壊および疲労破壊等の破壊の起点となり、空隙欠陥の量が多くなるほど、破壊の発生頻度が高くなる。
・スラブの板厚中心位置近傍の空隙欠陥の発生量を低減するには、熱間圧延時に導入される当該位置近傍でのひずみ量を増加させることが有効である。しかし、熱間圧延によりスラブに導入されるひずみの板厚方向の分布は、圧延ロールに接触しているスラブの表面近傍で最も大きくなり、板厚中心に近づくほど小さくなる。したがって、スラブの板厚中心位置ではひずみ量が最も小さくなり、空隙欠陥圧着能力も最も低くなる。
The present inventors have made intensive studies to solve the above problems, and as a result, have obtained the following findings.
・Slabs, which are materials for rolling or forging thick steel plates, are generally manufactured by continuous casting or ingot casting. Therefore, the final solidification position is usually the vicinity of the thickness center position of the slab. When molten steel solidifies, volumetric contraction occurs. Therefore, void defects inevitably occur in the vicinity of the thickness center position of the slab. These void defects become starting points for fractures such as ductile fractures, brittle fractures and fatigue fractures, and the more void defects there are, the more frequently fractures occur.
・In order to reduce the amount of void defects generated in the vicinity of the thickness center position of the slab, it is effective to increase the amount of strain introduced in the vicinity of the position during hot rolling. However, the distribution of the strain introduced into the slab by hot rolling in the thickness direction is greatest near the surface of the slab that is in contact with the rolling rolls, and decreases toward the center of the thickness. Therefore, the strain amount is the smallest at the thickness center position of the slab, and the void defect crimping capability is also the lowest.
 そこで、本発明者らは、特別な設備を用いることなく、熱間圧延においてスラブの板厚中心位置近傍でのひずみ量を増加させるべく、種々検討を重ねた。
 その結果、本発明者らは、以下の知見を得た。
・スラブの表面と板厚中心位置における温度差を一定以上とした圧下を施すことにより、スラブの表面近傍の変形抵抗を板厚中心位置に対して相対的に高くしてスラブの表面近傍に加わるひずみ量を低減できる。そして、そのスラブの表面近傍に加わるひずみ量の低減分によって、板厚中心位置近傍に加わるひずみ量を増加させる効果がある。
・また、スラブの板厚中心位置における温度を一定以上、具体的には700℃以上の状態で圧下を施すことにより、より有利に、空隙欠陥を圧延ひずみにより閉塞させて金属結合により圧着できる。
Therefore, the present inventors conducted various studies to increase the amount of strain in the vicinity of the thickness center position of the slab in hot rolling without using special equipment.
As a result, the present inventors obtained the following findings.
・By reducing the temperature difference between the slab surface and the thickness center position to a certain level or more, the deformation resistance near the slab surface is increased relatively to the thickness center position and applied to the slab surface vicinity. Strain amount can be reduced. The reduced amount of strain applied near the surface of the slab has the effect of increasing the amount of strain applied near the plate thickness center position.
・In addition, by reducing the temperature at the center of the thickness of the slab at a certain level or higher, specifically 700° C. or higher, it is possible to more advantageously close void defects by rolling strain and crimp by metal bonding.
 そして、本発明者らは、上記の知見を基にさらに検討を重ね、特に、以下の(a)および(b)を満足する圧延パスでの圧下率を高めることにより、スラブの板厚中心位置近傍の空隙欠陥の発生量を大幅に低減することができる、という知見を得た。
  (a)スラブの板厚中心位置における温度:700℃以上
  (b)スラブの表面と板厚中心位置における温度差:100℃以上
Then, the present inventors conducted further studies based on the above knowledge, and in particular, by increasing the rolling reduction in the rolling pass that satisfies the following (a) and (b), the thickness center position of the slab We have found that the amount of void defects in the vicinity can be greatly reduced.
(a) Temperature at the thickness center position of the slab: 700°C or more (b) Temperature difference between the surface of the slab and the thickness center position: 100°C or more
 また、本発明者らは、さらに検討を重ね、以下の知見を得た。
・厚鋼板の板厚中心位置における空隙欠陥の面積率を0.5%以下とすることにより、破壊の発生リスクを十分に低減した優れた内質特性が得られる。
・厚鋼板の板厚中心位置における空隙欠陥の面積率を0.5%以下とするには、熱間圧延工程において上記(a)および(b)を満足する圧延パスでの合計の圧下率を30%超とすることが有効である。
In addition, the inventors of the present invention made further studies and obtained the following findings.
・By setting the area ratio of void defects at the plate thickness center position of the thick steel plate to 0.5% or less, it is possible to obtain excellent internal properties with a sufficiently reduced risk of fracture occurrence.
・In order to make the area ratio of void defects at the thickness center position of a thick steel plate 0.5% or less, the total rolling reduction in the rolling passes that satisfy the above (a) and (b) in the hot rolling process is More than 30% is effective.
 また、本発明者らは、さらに検討を重ね、優れた内質特性を担保しつつ、さらなる高強度化、具体的には、降伏強度:325MPa以上を実現すべく検討を重ねたところ、以下の知見を得た。
 すなわち、厚鋼板の板厚に応じて次式(1)により定義されるCeqを適正に制御する、具体的には、Ceq/t≧0.0015の関係を満足させることが有効である。
 Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(1)
In addition, the inventors of the present invention have further studied, and have made further studies to achieve a higher strength, specifically, a yield strength of 325 MPa or more while ensuring excellent internal properties. I got some insight.
That is, it is effective to appropriately control Ceq defined by the following equation (1) according to the thickness of the steel plate, specifically to satisfy the relationship Ceq/t≧0.0015.
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (1)
 併せて、本発明者らは、熱間圧延後の冷却において、オーステナイト組織からの変態温度域を通過する際の冷却速度、具体的には、熱延鋼板の板厚1/4位置の700~600℃の温度域での平均冷却速度を、熱延鋼板の板厚t(mm)に応じて6000t-1.8以上とすることが有効である、ことを知見した。
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
In addition, the present inventors found that in cooling after hot rolling, the cooling rate when passing through the transformation temperature range from the austenitic structure, specifically, the 700 to 1/4 position of the thickness of the hot rolled steel sheet. It has been found that it is effective to set the average cooling rate in the temperature range of 600° C. to 6000 t −1.8 or more depending on the thickness t (mm) of the hot rolled steel sheet.
The present invention has been completed based on the above findings and further studies.
 すなわち、本発明の要旨構成は次のとおりである。 That is, the gist and configuration of the present invention are as follows.
[1]質量%で、
  C :0.04~0.18%、
  Si:0.03~0.70%、
  Mn:0.30~2.50%、
  P :0.030%以下、
  S :0.0200%以下、
  Al:0.001~0.100%、
  O :0.0100%以下および
  N :0.0100%以下
であり、残部がFeおよび不可避不純物からなる成分組成を有し、
 次式(1)により定義されるCeqと板厚t(mm)とが、Ceq/t≧0.0015の関係を満足し、
 板厚中心位置における空隙欠陥の面積率が0.5%以下であり、
 降伏強度が325MPa以上である、厚鋼板。
 Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(1)
 ここで、式(1)中の[元素記号]は、成分組成における各元素の含有量(質量%)であり、当該元素が含有されていない場合は0として計算する。
[1] % by mass,
C: 0.04 to 0.18%,
Si: 0.03 to 0.70%,
Mn: 0.30-2.50%,
P: 0.030% or less,
S: 0.0200% or less,
Al: 0.001 to 0.100%,
O: 0.0100% or less and N: 0.0100% or less, with the balance being Fe and inevitable impurities,
Ceq and plate thickness t (mm) defined by the following formula (1) satisfy the relationship of Ceq/t ≥ 0.0015,
The area ratio of void defects at the plate thickness center position is 0.5% or less,
A thick steel plate having a yield strength of 325 MPa or more.
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (1)
Here, [element symbol] in formula (1) is the content (% by mass) of each element in the component composition, and is calculated as 0 when the element is not contained.
[2]前記成分組成が、さらに、質量%で、
  Cu:2.00%以下、
  Ni:2.50%以下、
  Cr:1.50%以下、
  Mo:1.00%以下、
  Nb:0.100%以下、
  Ti:0.100%以下、
  V :0.30%以下、
  B :0.0100%以下、
  W :0.50%以下、
  Ca:0.0200%以下、
  Mg:0.0200%以下および
  REM:0.0500%以下
からなる群より選択される1種または2種以上を含む、前記[1]に記載の厚鋼板。
[2] The component composition further contains, in % by mass,
Cu: 2.00% or less,
Ni: 2.50% or less,
Cr: 1.50% or less,
Mo: 1.00% or less,
Nb: 0.100% or less,
Ti: 0.100% or less,
V: 0.30% or less,
B: 0.0100% or less,
W: 0.50% or less,
Ca: 0.0200% or less,
The steel plate according to [1] above, containing one or more selected from the group consisting of Mg: 0.0200% or less and REM: 0.0500% or less.
[3]前記[1]または[2]に記載の厚鋼板を製造するための方法であって、
 前記[1]または[2]に記載の成分組成を有するスラブを準備する、準備工程と、
 該スラブを熱間圧延して熱延鋼板とする、熱間圧延工程と、
 該熱延鋼板を冷却する、冷却工程と、
をそなえ、
 該熱間圧延工程における以下の(a)および(b)を満足する圧延パスでの合計の圧下率が30%超であり、
 該冷却工程において、該熱延鋼板の板厚1/4位置の700~600℃の温度域での平均冷却速度(℃/s)が6000t-1.8以上である、厚鋼板の製造方法。
  (a)スラブの板厚中心位置における温度:700℃以上
  (b)スラブの表面と板厚中心位置における温度差:100℃以上
 ここで、tは熱延鋼板の板厚(mm)である。
[3] A method for manufacturing a thick steel plate according to [1] or [2] above,
a preparation step of preparing a slab having the composition according to [1] or [2];
A hot rolling step of hot rolling the slab into a hot rolled steel sheet;
a cooling step of cooling the hot-rolled steel sheet;
with
The total rolling reduction in the rolling passes satisfying the following (a) and (b) in the hot rolling process is more than 30%,
A method for producing a thick steel plate, wherein in the cooling step, an average cooling rate (° C./s) in a temperature range of 700 to 600° C. at a position of 1/4 thickness of the hot rolled steel plate is 6000 t −1.8 or more.
(a) Temperature at the thickness center position of the slab: 700° C. or more (b) Temperature difference between the surface of the slab and the thickness center position: 100° C. or more Here, t is the thickness (mm) of the hot-rolled steel sheet.
[4]前記冷却工程後、焼戻し温度:650℃以下の条件で前記熱延鋼板に焼戻し処理を行う、焼戻し工程をさらにそなえる、前記[3]に記載の厚鋼板の製造方法。 [4] The method for manufacturing a thick steel plate according to [3], further comprising a tempering step in which the hot-rolled steel plate is tempered at a tempering temperature of 650°C or less after the cooling step.
 本発明によれば、特別な設備を必要とせずに低コストで製造可能である、内質特性に優れ、かつ、高い強度を有する厚鋼板を得ることができる。
 なお、本発明の厚鋼板は、特に用途が限定される訳ではなく、船舶、ラインパイプ、建築物、橋梁、海洋構造物、風力発電機、建産機および圧力容器等、一般的に厚鋼板が適用される幅広い分野に適用可能である。
According to the present invention, it is possible to obtain a thick steel plate that can be manufactured at low cost without requiring special equipment, has excellent internal properties, and has high strength.
The use of the thick steel plate of the present invention is not particularly limited, and it is generally used for thick steel plates such as ships, line pipes, buildings, bridges, offshore structures, wind power generators, construction machinery and pressure vessels. is applicable to a wide range of fields where
 本発明の厚鋼板を、以下の実施形態に基づき説明する。
 まず、本発明の一実施形態に従う厚鋼板の成分組成について説明する。なお、成分組成における元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り、単に「%」で示す。
A thick steel plate according to the present invention will be described based on the following embodiments.
First, the chemical composition of the steel plate according to one embodiment of the present invention will be described. In addition, the unit of the content of the element in the component composition is "mass %", and hereinafter, unless otherwise specified, it is indicated simply as "%".
C:0.04~0.18%
 Cは、鋼の強度を最も安価に向上させられる元素である。C含有量が0.04%未満であると、所望の強度が得られない。一方、C含有量が0.18%を超えると、溶接性が低下する。また、靭性も低下する。そのため、C含有量は0.04~0.18%とする。なお、C含有量は0.05%以上が好ましい。また、C含有量は0.17%以下が好ましい。
C: 0.04-0.18%
C is an element that can most inexpensively improve the strength of steel. If the C content is less than 0.04%, the desired strength cannot be obtained. On the other hand, when the C content exceeds 0.18%, the weldability deteriorates. Also, the toughness is reduced. Therefore, the C content should be 0.04 to 0.18%. In addition, 0.05% or more of C content is preferable. Also, the C content is preferably 0.17% or less.
Si:0.03~0.70%
 Siは、脱酸に有効な元素である。Si含有量が0.03%未満であると、十分な効果を得ることができない。しかし、Si含有量が0.70%を超えると、溶接性が低下する。そのため、Si含有量は0.03~0.70%とする。なお、Si含有量は0.04%以上が好ましい。また、Si含有量は0.60%以下が好ましい。
Si: 0.03-0.70%
Si is an element effective for deoxidation. If the Si content is less than 0.03%, sufficient effects cannot be obtained. However, when the Si content exceeds 0.70%, the weldability deteriorates. Therefore, the Si content should be 0.03 to 0.70%. Incidentally, the Si content is preferably 0.04% or more. Also, the Si content is preferably 0.60% or less.
Mn:0.30~2.50%
 Mnは、低コストで鋼の焼入れ性を向上させ、強度を向上させる元素である。このような効果を得る観点から、Mn含有量は0.30%以上とする。一方、Mn含有量が2.50%を超えると、溶接性が低下する。そのため、Mn含有量は0.30~2.50%とする。なお、Mn含有量は0.50%以上が好ましい。また、Mn含有量は2.20%以下が好ましい。
Mn: 0.30-2.50%
Mn is an element that improves the hardenability and strength of steel at low cost. From the viewpoint of obtaining such effects, the Mn content is set to 0.30% or more. On the other hand, when the Mn content exceeds 2.50%, the weldability deteriorates. Therefore, the Mn content should be 0.30 to 2.50%. Incidentally, the Mn content is preferably 0.50% or more. Moreover, the Mn content is preferably 2.20% or less.
P:0.030%以下
 Pは、粒界を脆化させる作用の大きい元素である。そのため、Pが多量に含有されると、鋼の靭性が低下する。よって、P含有量は0.030%以下とする。P含有量は0.025%以下が好ましい。一方、Pは少ないほど好ましいため、P含有量の下限は特に限定されず、0%であってもよい。しかし、Pは不純物として鋼中に不可避的に含有される元素であり、過度の低P化は精錬時間の増加やコストの上昇を招く。そのため、P含有量を0.001%以上が好ましい。
P: 0.030% or less P is an element that greatly embrittles grain boundaries. Therefore, when P is contained in a large amount, the toughness of the steel is lowered. Therefore, the P content should be 0.030% or less. The P content is preferably 0.025% or less. On the other hand, the lower the P content, the better, so the lower limit of the P content is not particularly limited, and may be 0%. However, P is an element that is inevitably contained in steel as an impurity, and an excessive decrease in P leads to an increase in refining time and cost. Therefore, the P content is preferably 0.001% or more.
S:0.0200%以下
 Sは、鋼の靭性を低下させる。そのため、S含有量は0.0200%以下とする。S含有量は0.0100%以下が好ましい。一方、Sは少ないほど好ましいため、S含有量の下限は特に限定されず、0%であってもよい。しかし、Sは不純物として鋼中に不可避的に含有される元素であり、過度の低S化は精錬時間の増加やコストの上昇を招く。そのため、S含有量は0.0001%以上が好ましい。
S: 0.0200% or less S lowers the toughness of steel. Therefore, the S content should be 0.0200% or less. The S content is preferably 0.0100% or less. On the other hand, the lower the S content, the better, so the lower limit of the S content is not particularly limited, and may be 0%. However, S is an element that is unavoidably contained in steel as an impurity, and excessive reduction of S causes an increase in refining time and an increase in cost. Therefore, the S content is preferably 0.0001% or more.
Al:0.001~0.100%
 Alは、脱酸に有効な元素である。また、Alは、窒化物を形成してオーステナイト粒径を小さくする効果を有する元素である。このような効果を得るため、Al含有量は0.001%以上とする。一方、Al含有量が0.100%を超えると、鋼の清浄度が低下する。その結果、延性および靭性が低下する。そのため、Al含有量は0.001~0.100%とする。なお、Al含有量は0.005%以上が好ましい。また、Al含有量は0.080%以下が好ましい。
Al: 0.001-0.100%
Al is an element effective for deoxidation. Also, Al is an element that forms nitrides and has the effect of reducing the grain size of austenite. In order to obtain such effects, the Al content is made 0.001% or more. On the other hand, when the Al content exceeds 0.100%, the cleanliness of the steel is lowered. As a result, ductility and toughness are reduced. Therefore, the Al content is set to 0.001 to 0.100%. In addition, 0.005% or more of Al content is preferable. Also, the Al content is preferably 0.080% or less.
O:0.0100%以下
 Oは、延性および靭性を低下させる元素である。そのため、O含有量は0.0100%以下とする。一方、Oは少ないほど好ましいため、O含有量の下限は特に限定されず、0%であってもよい。しかし、Oは不純物として鋼中に不可避的に含有される元素であり、過度の低O化は精錬時間の増加やコストの上昇を招く。そのため、O含有量は0.0005%以上が好ましい。
O: 0.0100% or less O is an element that reduces ductility and toughness. Therefore, the O content is set to 0.0100% or less. On the other hand, the lower the O content, the better, so the lower limit of the O content is not particularly limited, and may be 0%. However, O is an element that is inevitably contained in steel as an impurity, and excessive reduction in O causes an increase in refining time and an increase in cost. Therefore, the O content is preferably 0.0005% or more.
N:0.0100%以下
 Nは、延性および靭性を低下させる元素である。そのため、N含有量は0.0100%以下とする。一方、Nは少ないほど好ましいため、N含有量の下限は特に限定されず、0%であってもよい。しかし、Nは不純物として鋼中に不可避的に含有される元素であるため、工業的には0%超であってもよい。なお、過度の低N化は精錬時間の増加やコストの上昇を招く。そのため、N含有量は0.0005%以上が好ましい。
N: 0.0100% or less N is an element that reduces ductility and toughness. Therefore, the N content is set to 0.0100% or less. On the other hand, the lower the N content, the better, so the lower limit of the N content is not particularly limited, and may be 0%. However, since N is an element that is unavoidably contained in steel as an impurity, it may exceed 0% industrially. In addition, an excessive reduction in N causes an increase in refining time and an increase in cost. Therefore, the N content is preferably 0.0005% or more.
 以上、本発明の一実施形態に従う厚鋼板の基本成分組成について説明したが、さらに、強度や溶接性(溶接部の靱性や溶接作業性など)のさらなる向上の観点から、適宜、以下の任意添加元素の1種または2種以上を含有させることができる。
  Cu:2.00%以下、
  Ni:2.50%以下、
  Cr:1.50%以下、
  Mo:1.00%以下、
  Nb:0.100%以下、
  Ti:0.100%以下、
  V :0.30%以下、
  B :0.0100%以下、
  W :0.50%以下、
  Ca:0.0200%以下、
  Mg:0.0200%以下および
  REM:0.0500%以下
The basic chemical composition of the steel plate according to one embodiment of the present invention has been described above, but from the viewpoint of further improving strength and weldability (toughness of weld zone, welding workability, etc.), the following optional additions are made as appropriate. One or more of the elements can be contained.
Cu: 2.00% or less,
Ni: 2.50% or less,
Cr: 1.50% or less,
Mo: 1.00% or less,
Nb: 0.100% or less,
Ti: 0.100% or less,
V: 0.30% or less,
B: 0.0100% or less,
W: 0.50% or less,
Ca: 0.0200% or less,
Mg: 0.0200% or less and REM: 0.0500% or less
Cu:2.00%以下
 Cuは、靭性を大きく劣化させることなく、鋼の強度を向上させる元素である。しかし、Cu含有量が2.00%を超えると、スケール直下に生成するCu濃化層に起因する熱間割れが問題となる。そのため、Cuを含有させる場合、Cu含有量は2.00%以下とすることが好ましい。なお、Cu含有量は、より好ましくは0.01%以上である。また、Cu含有量は、より好ましくは1.50%以下である。
Cu: 2.00% or less Cu is an element that improves the strength of steel without significantly deteriorating toughness. However, when the Cu content exceeds 2.00%, hot tearing due to the Cu-enriched layer formed directly under the scale becomes a problem. Therefore, when Cu is contained, the Cu content is preferably 2.00% or less. Incidentally, the Cu content is more preferably 0.01% or more. Also, the Cu content is more preferably 1.50% or less.
Ni:2.50%以下
 Niは、鋼の焼入れ性を高める元素である。また、Niは、靭性を向上させる効果を有する元素でもある。しかし、Ni含有量が2.50%を超えると、製造コストの増加が問題となる。そのため、Niを含有させる場合、Ni含有量は2.50%以下とすることが好ましい。なお、Ni含有量は、より好ましくは0.01%以上である。また、Ni含有量は、より好ましくは2.00%以下である。
Ni: 2.50% or less Ni is an element that enhances the hardenability of steel. Ni is also an element that has the effect of improving toughness. However, when the Ni content exceeds 2.50%, an increase in manufacturing cost becomes a problem. Therefore, when Ni is contained, the Ni content is preferably 2.50% or less. Incidentally, the Ni content is more preferably 0.01% or more. Also, the Ni content is more preferably 2.00% or less.
Cr:1.50%以下
 Crは、鋼の焼入れ性を向上させることにより、鋼の強度を向上させる元素である。しかし、Cr含有量が1.50%を超えると、溶接性が低下する。そのため、Crを含有させる場合、Cr含有量は1.50%以下とすることが好ましい。なお、Cr含有量は、より好ましくは0.01%以上である。また、Cr含有量は、より好ましくは1.20%以下である。
Cr: 1.50% or less Cr is an element that improves the strength of steel by improving the hardenability of steel. However, when the Cr content exceeds 1.50%, the weldability deteriorates. Therefore, when Cr is contained, the Cr content is preferably 1.50% or less. Incidentally, the Cr content is more preferably 0.01% or more. Also, the Cr content is more preferably 1.20% or less.
Mo:1.00%以下
 Moは、鋼の焼入れ性を向上させることにより、鋼の強度を向上させる元素である。しかし、Mo含有量が1.00%を超えると、溶接性が低下する。そのため、Moを含有させる場合、Mo含有量は1.00%以下とすることが好ましい。なお、Mo含有量は、より好ましくは0.01%以上である。また、Mo含有量は、より好ましくは0.80%以下である。
Mo: 1.00% or less Mo is an element that improves the strength of steel by improving the hardenability of steel. However, when the Mo content exceeds 1.00%, the weldability deteriorates. Therefore, when Mo is contained, the Mo content is preferably 1.00% or less. Incidentally, the Mo content is more preferably 0.01% or more. Also, the Mo content is more preferably 0.80% or less.
Nb:0.100%以下
 Nbは、固溶Nbや微細析出したNbCにより、オーステナイト組織にひずみが加わった際の再結晶を抑制する元素である。また、Nbは、未再結晶温度域を高温化する効果を有する元素でもある。しかし、Nb含有量が0.100%を超えると、溶接性が低下する。そのため、Nbを含有させる場合、Nb含有量は0.100%以下とすることが好ましい。なお、Nb含有量は、より好ましくは0.001%以上、さらに好ましくは0.005%以上である。また、Nb含有量は、より好ましくは0.075%以下、さらに好ましくは0.050%以下である。
Nb: 0.100% or less Nb is an element that suppresses recrystallization when strain is applied to the austenitic structure due to solid solution Nb and finely precipitated NbC. Nb is also an element that has the effect of increasing the temperature of the non-recrystallization temperature range. However, when the Nb content exceeds 0.100%, the weldability deteriorates. Therefore, when Nb is contained, the Nb content is preferably 0.100% or less. The Nb content is more preferably 0.001% or more, and still more preferably 0.005% or more. Also, the Nb content is more preferably 0.075% or less, and still more preferably 0.050% or less.
Ti:0.100%以下
 Tiは、TiNとして析出することで結晶粒界の移動をピン止めし、粒成長を抑制する効果を有する元素である。しかし、Ti含有量が0.100%を超えると、鋼の清浄度が低下する。その結果、延性および靭性が低下する。そのため、Tiを含有させる場合、Ti含有量は0.100%以下とすることが好ましい。なお、Ti含有量は、より好ましくは0.001%以上である。また、Ti含有量は、より好ましくは0.080%以下である。
Ti: 0.100% or less Ti is an element that has the effect of pinning movement of grain boundaries and suppressing grain growth by precipitating as TiN. However, when the Ti content exceeds 0.100%, the cleanliness of the steel deteriorates. As a result, ductility and toughness are reduced. Therefore, when Ti is contained, the Ti content is preferably 0.100% or less. Incidentally, the Ti content is more preferably 0.001% or more. Also, the Ti content is more preferably 0.080% or less.
V:0.30%以下
 Vは、鋼の焼入れ性の向上および炭窒化物の生成により、鋼の強度を向上させる元素である。しかし、V含有量が0.30%を超えると、溶接性が低下する。そのため、Vを含有させる場合、V含有量は0.30%以下とすることが好ましい。なお、V含有量は、より好ましくは0.01%以上である。また、V含有量は、より好ましくは0.25%以下である。
V: 0.30% or less V is an element that improves the strength of steel by improving the hardenability of steel and forming carbonitrides. However, when the V content exceeds 0.30%, the weldability deteriorates. Therefore, when V is contained, the V content is preferably 0.30% or less. Incidentally, the V content is more preferably 0.01% or more. Also, the V content is more preferably 0.25% or less.
B:0.0100%以下
 Bは、鋼の焼入れ性を向上させることにより、鋼の強度を向上させる元素である。しかし、B含有量が0.0100%を超えると、溶接性が低下する。そのため、Bを含有させる場合、B含有量は0.0100%以下とすることが好ましい。なお、B含有量は、より好ましくは0.0001%以上である。また、B含有量は、より好ましくは0.0070%以下である。
B: 0.0100% or less B is an element that improves the strength of steel by improving the hardenability of steel. However, when the B content exceeds 0.0100%, the weldability deteriorates. Therefore, when B is contained, the B content is preferably 0.0100% or less. Incidentally, the B content is more preferably 0.0001% or more. Also, the B content is more preferably 0.0070% or less.
W:0.50%以下
 Wは、鋼の焼入れ性を向上させることにより、鋼の強度を向上させる元素である。しかし、W含有量が0.50%を超えると、溶接性が低下する。そのため、Wを含有させる場合、W含有量は0.50%以下とすることが好ましい。なお、W含有量は、より好ましくは0.01%以上である。また、W含有量は、より好ましくは0.40%以下である。
W: 0.50% or less W is an element that improves the strength of steel by improving the hardenability of steel. However, when the W content exceeds 0.50%, the weldability deteriorates. Therefore, when W is contained, the W content is preferably 0.50% or less. Incidentally, the W content is more preferably 0.01% or more. Moreover, the W content is more preferably 0.40% or less.
Ca:0.0200%以下
 Caは、高温での安定性が高い酸硫化物を形成することにより、溶接性を向上させる元素である。しかし、Ca含有量が0.0200%を超えると、鋼の清浄度が低下して鋼の靭性が低下する。そのため、Caを含有させる場合、Ca含有量は0.0200%以下とすることが好ましい。なお、Ca含有量は、より好ましくは0.0001%以上である。また、Ca含有量は、より好ましくは0.0180%以下である。
Ca: 0.0200% or less Ca is an element that improves weldability by forming oxysulfides that are highly stable at high temperatures. However, when the Ca content exceeds 0.0200%, the cleanliness of the steel is lowered and the toughness of the steel is lowered. Therefore, when Ca is contained, the Ca content is preferably 0.0200% or less. Incidentally, the Ca content is more preferably 0.0001% or more. Also, the Ca content is more preferably 0.0180% or less.
Mg:0.0200%以下
 Mgは、高温での安定性が高い酸硫化物を形成することにより、溶接性を向上させる元素である。しかし、Mg含有量が0.0200%を超えると、Mgの添加効果が飽和して含有量に見合う効果が期待できず、経済的に不利となる。そのため、Mgを含有させる場合、Mg含有量は0.0200%以下とすることが好ましい。なお、Mg含有量は、より好ましくは0.0001%以上である。また、Mg含有量は、より好ましくは0.0180%以下である。
Mg: 0.0200% or less Mg is an element that improves weldability by forming oxysulfides that are highly stable at high temperatures. However, if the Mg content exceeds 0.0200%, the effect of adding Mg is saturated and the effect corresponding to the content cannot be expected, which is economically disadvantageous. Therefore, when Mg is contained, the Mg content is preferably 0.0200% or less. Incidentally, the Mg content is more preferably 0.0001% or more. Moreover, the Mg content is more preferably 0.0180% or less.
REM:0.0500%以下
 REM(希土類金属)は、高温での安定性が高い酸硫化物を形成することにより、溶接性を向上させる元素である。しかし、REM含有量が0.0500%を超えると、REMの添加効果が飽和して含有量に見合う効果が期待できず、経済的に不利となる。そのため、REMを含有させる場合、REM含有量は0.0500%以下とすることが好ましい。なお、REM含有量は、より好ましくは0.0001%以上である。また、REM含有量は、より好ましくは0.0450%以下である。
REM: 0.0500% or less REM (rare earth metal) is an element that improves weldability by forming an oxysulfide that is highly stable at high temperatures. However, if the REM content exceeds 0.0500%, the effect of adding REM is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when REM is contained, the REM content is preferably 0.0500% or less. The REM content is more preferably 0.0001% or more. Also, the REM content is more preferably 0.0450% or less.
 本発明の一実施形態に従う厚鋼板の成分組成における上記の元素以外の残部は、Feおよび不可避的不純物である。なお、上記した任意添加成分に係る元素について、その含有量が各好適下限値未満の場合には、当該元素を不可避的不純物として扱うものとする。 The balance other than the above elements in the chemical composition of the steel plate according to one embodiment of the present invention is Fe and unavoidable impurities. Incidentally, if the content of the element related to the optional additive component is less than each preferred lower limit, the element is treated as an unavoidable impurity.
 また、本発明の一実施形態に従う厚鋼板では、次式(1)により定義されるCeqと厚鋼板の板厚t(mm)とが、Ceq/t≧0.0015の関係を満足することが重要である。
 Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(1)
 ここで、式(1)中の[元素記号]は、成分組成における各元素の含有量(質量%)であり、当該元素が含有されていない場合は0として計算する。
Further, in the thick steel plate according to one embodiment of the present invention, Ceq defined by the following formula (1) and the plate thickness t (mm) of the thick steel plate satisfy the relationship of Ceq/t≧0.0015. is important.
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (1)
Here, [element symbol] in formula (1) is the content (% by mass) of each element in the component composition, and is calculated as 0 when the element is not contained.
Ceq/t≧0.0015
 Ceqは、鋼組織の強度と相関のあるパラメータである。このCeqの厚鋼板の板厚t(mm)に対する比を適正に制御する、具体的には、Ceq/tを0.0015以上とすることにより、所望の降伏強度が得られる。そのため、Ceq/tを0.0015以上とする。なお、Ceq/tは好ましくは0.0018以上である。Ceq/tの上限は特に限定されるものではないが、例えば、Ceq/tは0.0200以下が好適である。
Ceq/t≧0.0015
Ceq is a parameter correlated with the strength of the steel structure. A desired yield strength can be obtained by appropriately controlling the ratio of Ceq to the plate thickness t (mm) of the thick steel plate, specifically by setting Ceq/t to 0.0015 or more. Therefore, Ceq/t is set to 0.0015 or more. In addition, Ceq/t is preferably 0.0018 or more. Although the upper limit of Ceq/t is not particularly limited, Ceq/t is preferably 0.0200 or less, for example.
 また、本発明の一実施形態に従う厚鋼板では、板厚中心位置における空隙欠陥の面積率を0.5%以下とすることが極めて重要である。 In addition, in the steel plate according to one embodiment of the present invention, it is extremely important that the area ratio of void defects at the plate thickness center position is 0.5% or less.
板厚中心位置における空隙欠陥の面積率:0.5%以下
 厚鋼板内部の空隙欠陥は、延性破壊、脆性破壊および疲労破壊等の破壊の起点となる。特に、厚鋼板の板厚中心位置において空隙欠陥が多量に残存する、具体的には、板厚中心位置における空隙欠陥の面積率が0.5%を超えると、このような破壊が生じる頻度が高くなり、内質特性に優れた厚鋼板が得られない。そのため、板厚中心位置における空隙欠陥の面積率は0.5%以下とする。板厚中心位置における空隙欠陥の面積率は、好ましくは0.3%以下である。なお、板厚中心位置における空隙欠陥の面積率の下限は特に限定されず、0%であってもよい。
Area ratio of void defects at center position of sheet thickness: 0.5% or less Void defects inside the steel plate become starting points of fractures such as ductile fracture, brittle fracture and fatigue fracture. In particular, when a large amount of void defects remain at the plate thickness center position of the thick steel plate, specifically, when the area ratio of the void defects at the plate thickness center position exceeds 0.5%, the frequency of such fractures decreases. As a result, a thick steel plate with excellent internal properties cannot be obtained. Therefore, the area ratio of void defects at the plate thickness center position is set to 0.5% or less. The area ratio of void defects at the thickness center position is preferably 0.3% or less. In addition, the lower limit of the area ratio of the void defects at the plate thickness center position is not particularly limited, and may be 0%.
 ここで、板厚中心位置における空隙欠陥の面積率は、後述する実施例に記載の要領に従い測定する。また、内質特性に優れた(優れた内質特性)とは、ASTM A370(2010)に準拠した引張試験により測定される厚鋼板の板厚方向における絞り率が、35%以上であることを意味する。なお、詳細な試験条件は、後述する実施例の[板厚方向引張試験]に記載の要領のとおりである。 Here, the area ratio of void defects at the sheet thickness center position is measured in accordance with the procedure described in Examples described later. In addition, excellent internal properties (excellent internal properties) means that the reduction ratio in the plate thickness direction of the thick steel plate measured by a tensile test in accordance with ASTM A370 (2010) is 35% or more. means. In addition, the detailed test conditions are as described in [Plate thickness direction tensile test] in Examples described later.
 また、高い強度とは、JIS Z2241(2011)に準拠した引張試験により測定される降伏強度が、325MPa以上であることを意味する。なお、詳細な試験条件は、後述する実施例の[板幅方向引張試験]に記載の要領のとおりである。 Also, high strength means that the yield strength measured by a tensile test conforming to JIS Z2241 (2011) is 325 MPa or more. In addition, detailed test conditions are as described in [Panel width direction tensile test] in Examples to be described later.
 また、本発明の一実施形態に従う厚鋼板の鋼組織は、特に限定されるものではないが、所望の強度をより有利に得る観点から、平均結晶粒径が15μm以下の微細組織主体の組織とすることが好ましい。
 ここで、平均結晶粒径が15μm以下の微細組織主体の組織とは、鋼組織全体に対するフェライトおよびベイナイトの合計の面積率が60%以上であり、かつ、フェライトおよびベイナイトの平均結晶粒径(大角粒界の円相当直径)が15μm以下であることを意味する。なお、フェライトおよびベイナイト以外の残部組織としては、パーライトやマルテンサイトなどが挙げられ、鋼組織全体に対する残部組織の合計の面積率は40%以下であることが好ましい。
 なお、各組織の面積率および平均結晶粒径は、常法に従い測定すればよく、例えば、光学顕微鏡写真や走査型電子顕微鏡写真により、測定することができる。また、各組織の面積率および平均結晶粒径の測定位置は、板厚中心位置とする。
In addition, the steel structure of the steel plate according to one embodiment of the present invention is not particularly limited, but from the viewpoint of obtaining the desired strength more advantageously, it is a structure mainly composed of fine structures with an average grain size of 15 μm or less. preferably.
Here, the microstructure-based structure having an average grain size of 15 μm or less means that the total area ratio of ferrite and bainite to the entire steel structure is 60% or more, and the average grain size of ferrite and bainite (large angle Equivalent circle diameter of the grain boundary) is 15 μm or less. Note that the residual structure other than ferrite and bainite includes pearlite, martensite, etc., and the total area ratio of the residual structure to the entire steel structure is preferably 40% or less.
The area ratio and average crystal grain size of each structure may be measured by a conventional method, and can be measured, for example, by optical micrographs or scanning electron micrographs. In addition, the measurement position of the area ratio of each structure and the average crystal grain size shall be the plate thickness center position.
 また、本発明の一実施形態に従う厚鋼板の板厚は、30~240mmが好ましい。本発明の一実施形態に従う厚鋼板の板厚は、より好ましくは50mm以上であり、さらに好ましくは101mm以上である。また、本発明の一実施形態に従う厚鋼板の板厚は、より好ましくは230mm以下である。 Further, the plate thickness of the thick steel plate according to one embodiment of the present invention is preferably 30 to 240 mm. The plate thickness of the thick steel plate according to one embodiment of the present invention is more preferably 50 mm or more, and still more preferably 101 mm or more. Further, the plate thickness of the thick steel plate according to one embodiment of the present invention is more preferably 230 mm or less.
 次に、本発明の一実施形態に従う厚鋼板の製造方法を説明する。
 本発明の一実施形態に従う厚鋼板の製造方法は、
 上記した成分組成を有するスラブ(鋼素材)を準備する、準備工程と、
 該スラブを熱間圧延して熱延鋼板とする、熱間圧延工程と、
 該熱延鋼板を冷却する、冷却工程と、
をそなえ、
 該熱間圧延工程における以下の(a)および(b)を満足する圧延パスでの合計の圧下率が30%超であり、
 該冷却工程において、該熱延鋼板の板厚1/4位置の700~600℃の温度域での平均冷却速度(℃/s)が6000t-1.8以上である、というものである。
  (a)スラブの板厚中心位置における温度:700℃以上
  (b)スラブの表面と板厚中心位置における温度差:100℃以上
(ここで、tは熱延鋼板の板厚(mm)である。なお、(最終製品である)厚鋼板の板厚と熱延鋼板の板厚は同じになることが多いので、ここでは両者の板厚をいずれもtにより表している。)
 これにより、上記した本発明の一実施形態に従う厚鋼板を、好適に製造することができる。以下、各工程について説明する。
Next, a method for manufacturing a thick steel plate according to one embodiment of the present invention will be described.
A method for manufacturing a thick steel plate according to one embodiment of the present invention includes:
a preparatory step of preparing a slab (steel material) having the above composition;
A hot rolling step of hot rolling the slab into a hot rolled steel sheet;
a cooling step of cooling the hot-rolled steel sheet;
with
The total rolling reduction in the rolling passes satisfying the following (a) and (b) in the hot rolling process is more than 30%,
In the cooling step, the average cooling rate (° C./s) in the temperature range of 700 to 600° C. at the position of 1/4 thickness of the hot rolled steel sheet is 6000 t −1.8 or more.
(a) Temperature at the thickness center position of the slab: 700°C or more (b) Temperature difference between the surface of the slab and the thickness center position: 100°C or more (where t is the thickness (mm) of the hot-rolled steel sheet) Note that the thickness of the thick steel plate (which is the final product) and the thickness of the hot-rolled steel plate are often the same, so here both thicknesses are represented by t.)
Thereby, the thick steel plate according to one embodiment of the present invention described above can be suitably manufactured. Each step will be described below.
 なお、スラブおよび鋼板の表面温度は、例えば、放射温度計等で測定することができる。また、スラブの板厚中心位置の温度は、例えば、スラブの板厚中心位置に熱電対を付けて測定する、または、スラブ断面内の温度分布を伝熱解析により計算し、その結果をスラブの表面温度によって補正することで求めることができる。熱延鋼板の板厚1/4位置の温度も同様にして求めることができる。以下、特に断らない場合には、スラブおよび鋼板の温度は、表面温度を意味するものとする。また、ここでは、熱間圧延工程中の被圧延材について、便宜的に、鋼板(熱延鋼板や厚鋼板)ではなく、スラブと呼ぶこととし、熱間圧延工程を経て得た鋼板を、熱延鋼板と呼ぶこととする。 The surface temperature of the slab and steel plate can be measured, for example, with a radiation thermometer. In addition, the temperature at the thickness center position of the slab is measured, for example, by attaching a thermocouple to the thickness center position of the slab, or the temperature distribution in the slab cross section is calculated by heat transfer analysis, and the result is used for the slab. It can be obtained by correcting with the surface temperature. The temperature at the position of 1/4 thickness of the hot-rolled steel sheet can also be obtained in the same manner. Hereinafter, unless otherwise specified, the temperature of the slab and steel plate means the surface temperature. In addition, here, for convenience, the material to be rolled during the hot rolling process is called a slab instead of a steel plate (hot rolled steel plate or thick steel plate), and the steel plate obtained through the hot rolling process is It is called rolled steel plate.
[準備工程]
 準備工程では、上記した成分組成を有するスラブを準備する。準備方法は限定されない。例えば、転炉、電気炉および真空溶解炉等の公知の溶製方法により、溶鋼を溶製する。任意に、取鍋精錬等の二次精錬を行ってもよい。ついで、溶製した溶鋼を、例えば、連続鋳造法や造塊法等によりスラブとして、上記した成分組成を有するスラブを準備する。なお、各条件については常法に従えばよい。
[Preparation process]
In the preparation step, a slab having the component composition described above is prepared. The method of preparation is not limited. For example, molten steel is melted by a known melting method such as a converter, an electric furnace, and a vacuum melting furnace. Optionally, secondary refining, such as ladle refining, may be performed. Then, the melted steel is made into a slab by, for example, a continuous casting method, an ingot casting method, or the like, and a slab having the chemical composition described above is prepared. In addition, what is necessary is just to follow a conventional method about each condition.
[熱間圧延工程]
 ついで、準備工程で準備したスラブを必要に応じて加熱し、熱間圧延を施して熱延鋼板とする。そして、この際、以下の条件を満足させることが極めて重要である。
[Hot rolling process]
Next, the slab prepared in the preparatory step is heated as necessary and subjected to hot rolling to obtain a hot-rolled steel sheet. In this case, it is extremely important to satisfy the following conditions.
(a)および(b)を満足する圧延パス(以下、所定条件の圧延パスともいう)での合計の圧下率:30%超
  (a)スラブの板厚中心位置における温度:700℃以上
  (b)スラブの表面と板厚中心位置における温度差:100℃以上
 スラブの板厚中心位置近傍に存在する空隙欠陥を閉塞させて金属結合により圧着するには、スラブの板厚中心位置における温度が700℃以上の状態でひずみを加えることが有効である。また、スラブの板厚中心位置近傍に加わるひずみ量を増加させるには、スラブの表面と板厚中心位置における温度差を100℃以上とした状態で、圧延を行うことが必要である。このようなスラブの板厚中心位置近傍に存在する空隙欠陥の閉塞および圧着のために必要なひずみ量を確保する観点から、所定条件の圧延パスでの合計の圧下率は30%超とする。所定条件の圧延パスでの合計の圧下率は、好ましくは40%以上である。なお、所定条件の圧延パスでの合計の圧下率の上限は特に限定されるものではないが、所定条件の圧延パスでの合計の圧下率は65%以下とすることが好ましい。
Total rolling reduction in rolling passes that satisfy (a) and (b) (hereinafter also referred to as rolling passes under predetermined conditions): more than 30% (a) Temperature at the thickness center position of the slab: 700 ° C. or higher (b ) Temperature difference between the surface of the slab and the thickness center position: 100°C or more In order to close the gap defects existing near the thickness center position of the slab and press it by metal bonding, the temperature at the thickness center position of the slab should be 700°C. It is effective to apply strain at ℃ or higher. Also, in order to increase the amount of strain applied to the slab near the thickness center position, it is necessary to perform rolling with a temperature difference of 100° C. or more between the surface of the slab and the thickness center position. From the viewpoint of closing void defects existing near the thickness center position of the slab and securing the amount of strain required for crimping, the total rolling reduction in rolling passes under predetermined conditions is set to more than 30%. The total rolling reduction in rolling passes under predetermined conditions is preferably 40% or more. The upper limit of the total rolling reduction in rolling passes under predetermined conditions is not particularly limited, but the total rolling reduction in rolling passes under predetermined conditions is preferably 65% or less.
 なお、所定条件の圧延パスでの合計の圧下率は、次式(1)により算出する。
 r=100×{(ti1-tf1)/ti1+(ti2-tf2)/ti2+(ti3-tf3)/ti3+・・・+(tiN-tfN)/tiN}    ・・・(1)
 ここで、
 rは、所定条件の圧延パスでの合計の圧下率(%)
 tiNは、所定条件の圧延パスのうち、N番目の圧延パスの圧延開始時点でのスラブの板厚(mm)、
 tfNは、所定条件の圧延パスのうち、N番目の圧延パスの圧延終了時点でのスラブの板厚(mm)、
 Nは、所定条件の圧延パスのパス数、である。
The total rolling reduction in rolling passes under predetermined conditions is calculated by the following equation (1).
r t =100×{(t i1 −t f1 )/t i1 +(t i2 −t f2 )/t i2 +(t i3 −t f3 )/t i3 + . . . +(t iN −t fN ) /t iN } (1)
here,
r t is the total rolling reduction (%) in the rolling pass under the given conditions
t iN is the thickness (mm) of the slab at the start of rolling in the N-th rolling pass among the rolling passes under predetermined conditions;
t fN is the thickness (mm) of the slab at the end of rolling of the N-th rolling pass among the rolling passes under predetermined conditions,
N is the number of rolling passes under a predetermined condition.
 また、上記(a)および(b)で規定する温度条件を満足するか否かは、当該圧延パスの圧延開始時点のスラブの表面温度および板厚中心位置での温度により、判断する。 Whether or not the temperature conditions specified in (a) and (b) above are satisfied is determined by the surface temperature of the slab at the start of rolling in the relevant rolling pass and the temperature at the thickness center position.
 なお、スラブの表面と板厚中心位置における温度差の調整方法は特に限定されない。例えば、スラブの表面を空冷または水冷などにより強制冷却することにより、スラブの表面と板厚中心位置における温度差を上記の範囲に調整することができる。 The method of adjusting the temperature difference between the surface of the slab and the thickness center position is not particularly limited. For example, by forcibly cooling the surface of the slab by air cooling or water cooling, the temperature difference between the surface of the slab and the thickness center position can be adjusted within the above range.
 上記以外の条件については限定されず、常法に従えばよい。
 例えば、スラブ加熱温度は950~1300℃とすることが好ましい。熱間圧延における合計の圧延パスは、5~60パスとすることが好ましい。N(所定条件の圧延パスのパス数)は、5~50パスとすることが好ましい。熱間圧延の圧下比(=[熱間圧延開始(最初の圧延パス開始)時点のスラブの厚さ(mm)]/[熱間圧延終了(最終の圧延パス終了)後に得られる熱延鋼板の板厚(mm)])は、1.6~16とすることが好ましい。仕上げ圧延終了温度(最終パスの出側温度)は、700~1000℃とすることが好ましい。
Conditions other than the above are not limited, and may be in accordance with conventional methods.
For example, the slab heating temperature is preferably 950-1300.degree. The total number of rolling passes in hot rolling is preferably 5 to 60 passes. N (the number of rolling passes under predetermined conditions) is preferably 5 to 50 passes. Hot rolling reduction ratio (= [slab thickness (mm) at the start of hot rolling (start of first rolling pass)] / [end of hot rolling (end of final rolling pass) of hot-rolled steel sheet obtained after Thickness (mm)]) is preferably 1.6 to 16. It is preferable that the finish rolling end temperature (delivery side temperature of the final pass) is 700 to 1000°C.
[冷却工程]
 ついで、熱延鋼板を冷却する。そして、この際、以下の条件を満足させることが極めて重要である。
[Cooling process]
The hot-rolled steel sheet is then cooled. In this case, it is extremely important to satisfy the following conditions.
熱延鋼板の板厚1/4位置の700~600℃の温度域での平均冷却速度(℃/s):6000t-1.8以上
 優れた内質特性を担保しつつ、高強度化、具体的には、降伏強度:325MPa以上を実現するには、オーステナイト組織からの変態温度域、特に、熱延鋼板の板厚1/4位置において700~600℃の温度域を通過する際の冷却速度を、熱延鋼板の板厚t(mm)に応じて速めることが有効である。そのため、熱延鋼板の板厚1/4位置の700~600℃の温度域での平均冷却速度(以下、700~600℃での平均冷却速度ともいう)を6000t-1.8以上とする。700~600℃での平均冷却速度は、好ましくは7000t-1.8以上である。700~600℃での平均冷却速度は、好ましくは30000t-1.8以下である。
Average cooling rate (°C/s) in the temperature range of 700 to 600°C at the 1/4 position of the thickness of the hot-rolled steel sheet: 6000t -1.8 or more Specifically, in order to achieve a yield strength of 325 MPa or more, the transformation temperature range from the austenite structure, particularly the cooling rate when passing through the temperature range of 700 to 600 ° C. at the 1/4 position of the thickness of the hot rolled steel sheet can be accelerated according to the thickness t (mm) of the hot-rolled steel sheet. Therefore, the average cooling rate in the temperature range of 700 to 600° C. (hereinafter also referred to as the average cooling rate at 700 to 600° C.) at the position of 1/4 thickness of the hot-rolled steel sheet is set to 6000 t −1.8 or more. The average cooling rate at 700-600° C. is preferably 7000 t −1.8 or higher. The average cooling rate at 700-600° C. is preferably 30000 t −1.8 or less.
 なお、上記以外の条件については限定されず、常法に従えばよい。例えば、冷却方式としては、水冷やガス冷却などが挙げられる。また、上記以外の温度域での冷却速度は特に限定されず、任意の冷却方式で室温まで冷却すればよい。 In addition, conditions other than the above are not limited, and may be in accordance with ordinary methods. For example, cooling methods include water cooling and gas cooling. Moreover, the cooling rate in temperature ranges other than the above is not particularly limited, and any cooling method may be used to cool to room temperature.
[焼戻し工程]
 上記の冷却工程後、強度、延性および靭性などを調整するために、任意に、熱延鋼板に焼戻し処理を行ってもよい。ただし、焼戻し温度が650℃を超えると、軟化が過度に進行し、所望の降伏強度が得られない。そのため、焼戻し処理を行う場合には、焼戻し温度を650℃以下とする。なお、上記以外の条件については特に限定されず、常法に従えばよい。なお、焼戻し温度は、均熱保持中の熱延鋼板の板厚1/4位置における温度である。
[Tempering process]
After the cooling process described above, the hot-rolled steel sheet may optionally be subjected to a tempering treatment in order to adjust strength, ductility, toughness, and the like. However, if the tempering temperature exceeds 650°C, the softening progresses excessively and the desired yield strength cannot be obtained. Therefore, when tempering is performed, the tempering temperature is set to 650° C. or lower. In addition, conditions other than the above are not particularly limited, and conventional methods may be followed. The tempering temperature is the temperature at the 1/4 thickness position of the hot-rolled steel sheet during soaking.
 表1に示す成分組成を有する溶鋼を溶製し、連続鋳造法や造塊法等により、板厚:260~600mmのスラブ(スラブ)を準備した。なお、表1の元素の欄で空欄となっている箇所は、意図的に添加していないことを表しており、含有しない(0%)の場合だけでなく、不可避的に含有する場合も含む。 A molten steel having the chemical composition shown in Table 1 was melted, and a slab (slab) with a thickness of 260 to 600 mm was prepared by a continuous casting method, an ingot casting method, or the like. It should be noted that the blanks in the column of elements in Table 1 indicate that they are not intentionally added, and include not only the case of not containing (0%) but also the case of unavoidable containing. .
 次に、準備したスラブに、表2に示す条件で熱間圧延および冷却、ならびに、一部について焼戻し処理を行い、表2に示す板厚t(mm)の厚鋼板を得た。なお、厚鋼板の板厚と熱延鋼板の板厚の値は同じであるため、表2では、これらを板厚tとして記載している。また、表2において焼戻し温度の欄が「-」であるものは、焼戻し処理を行っていないことを意味している。なお、熱間圧延の圧下比は2.5~3.5の範囲とし、N(所定条件の圧延パスのパス数)は、5~37パスとした。また、スラブの表面温度は放射温度計で測定した値を用い、スラブの板厚中心温度および熱延鋼板の板厚1/4位置における温度は熱電対により測温した値を用いた。なお、スラブの表面と板厚中心位置における温度差は、スラブの表面を空冷または水冷などにより強制冷却することにより、調整した。上記以外の条件については、常法に従うものとした。 Next, the prepared slabs were hot-rolled and cooled under the conditions shown in Table 2, and partially tempered to obtain thick steel plates having a thickness t (mm) shown in Table 2. Since the values of the plate thickness of the thick steel plate and the plate thickness of the hot-rolled steel plate are the same, they are indicated as plate thickness t in Table 2. In Table 2, "-" in the column of tempering temperature means that no tempering treatment was performed. The rolling reduction ratio of hot rolling was in the range of 2.5 to 3.5, and N (the number of rolling passes under predetermined conditions) was in the range of 5 to 37 passes. The slab surface temperature was measured with a radiation thermometer, and the slab thickness center temperature and hot-rolled steel plate temperature at the 1/4 thickness position were measured with a thermocouple. The temperature difference between the surface of the slab and the central position of the plate thickness was adjusted by forcibly cooling the surface of the slab by air cooling or water cooling. For conditions other than the above, it was assumed that the ordinary method was followed.
 かくして得られた各厚鋼板について、以下の要領で、板厚中心位置における空隙欠陥の面積率を測定した。測定結果を表2に併記する。なお、本発明例ではいずれも、平均結晶粒界が15μm以下の微細組織主体の組織(フェライトおよびベイナイト主体の組織)が得られていた。 For each thick steel plate thus obtained, the area ratio of void defects at the plate thickness center position was measured in the following manner. The measurement results are also shown in Table 2. In addition, in all the examples of the present invention, a microstructure-based structure (a ferrite- and bainite-based structure) having an average grain boundary of 15 μm or less was obtained.
[板厚中心位置における空隙欠陥の面積率の測定]
 得られた各厚鋼板から、該厚鋼板の長手方向(圧延方向)中央位置において、厚鋼板の板厚中心位置の厚鋼板の幅方向(圧延直角方向)断面が評価面となるように、厚鋼板全幅分のサンプルを採取した。ついで、得られた各サンプルをアルミナバフ研磨仕上で鏡面研磨した。ついで、各サンプルにおいて評価領域を、板厚方向:板厚中心位置±3mm×幅方向:板幅全幅とし、画像解析により、当該評価領域における空隙欠陥の面積率を測定した。そして、その測定値を、板厚中心位置の空隙欠陥の面積率とした。
[Measurement of Area Ratio of Void Defects at Plate Thickness Center Position]
From each thick steel plate obtained, the thickness is adjusted so that the cross section in the width direction (perpendicular to rolling direction) of the thick steel plate at the center position of the thickness of the thick steel plate is the evaluation surface at the center position in the longitudinal direction (rolling direction) of the thick steel plate. Samples for the full width of the steel plate were taken. Then, each of the obtained samples was mirror-polished with an alumina buffing finish. Next, in each sample, the evaluation area was defined as thickness direction: thickness center position ±3 mm x width direction: full width of the sheet, and the area ratio of void defects in the evaluation area was measured by image analysis. Then, the measured value was taken as the area ratio of the void defect at the plate thickness center position.
 また、得られた各厚鋼板について、以下の要領で、板厚方向引張試験および板幅方向引張試験を行い、内質特性および降伏強度を評価した。評価結果を表2に併記する。 In addition, for each thick steel plate obtained, a tensile test in the thickness direction and a tensile test in the width direction were performed in the following manner to evaluate the internal properties and yield strength. The evaluation results are also shown in Table 2.
[板厚方向引張試験]
 得られた各厚鋼板から、該厚鋼板の長手方向(圧延方向)中央位置において、引張試験片の長手方向が厚鋼板の板厚方向と平行になるように、引張試験片を採取した。ここで、引張試験片は、引張試験片の長手方向中心位置が、厚鋼板の板厚中心位置(板厚1/2位置)となるように採取した。また、板幅方向の採取ピッチを100mmとして、当該引張試験片を板幅全幅にわたり採取した。引張試験片の形状は、ASTM A770(2007) Type3形状のものとした。ついで、採取した各引張試験片を用い、ASTM A370(2010)に準拠した引張試験を行い、絞り率を測定した。ここで、厚鋼板の板幅全幅にわたり採取した各引張試験片で測定した絞り率のうち、最小値を当該厚鋼板の絞り率とした。そして、その値が35%以上の場合に、優れた内質特性が得られていると評価した。
[Thickness direction tensile test]
From each thick steel plate thus obtained, a tensile test piece was taken at the central position in the longitudinal direction (rolling direction) of the thick steel plate so that the longitudinal direction of the tensile test piece was parallel to the thickness direction of the thick steel plate. Here, the tensile test piece was sampled so that the center position of the tensile test piece in the longitudinal direction coincided with the center position of the plate thickness of the thick steel plate (1/2 plate thickness position). Also, the sampling pitch in the sheet width direction was set to 100 mm, and the tensile test pieces were sampled over the full width of the sheet. The shape of the tensile test piece was ASTM A770 (2007) Type 3 shape. Next, using each tensile test piece thus obtained, a tensile test was performed according to ASTM A370 (2010) to measure the reduction ratio. Here, among the reduction ratios measured in each tensile test piece sampled over the full width of the thick steel plate, the minimum value was taken as the reduction ratio of the thick steel plate. When the value was 35% or more, it was evaluated that excellent internal properties were obtained.
[板幅方向引張試験]
 得られた各厚鋼板から、該厚鋼板の長手方向(圧延方向)中央位置において、引張試験片の長手方向が厚鋼板の板幅方向(圧延直角方向)と平行になるように、引張試験片を採取した。ここで、引張試験片は、引張試験片の厚さ方向中心位置が、厚鋼板の板厚1/4位置となるように採取した。また、板幅方向の採取ピッチを500mmとして、当該引張試験片を板幅全幅にわたり採取した。引張試験片の形状は、JIS4号形状のものとした。ついで、採取した各引張試験片を用い、JIS Z2241(2011)に準拠した引張試験を行い、降伏強度を測定した。ここで、厚鋼板の板幅全幅にわたり採取した各引張試験片で測定した降伏強度のうち、最小値を当該厚鋼板の降伏強度とした。そして、その値が325MPa以上の場合に、高い強度が得られていると評価した。
[Sheet width direction tensile test]
A tensile test piece was prepared from each of the obtained thick steel plates so that the longitudinal direction of the tensile test piece was parallel to the plate width direction (perpendicular to the rolling direction) of the thick steel plate at the center position in the longitudinal direction (rolling direction) of the thick steel plate. was taken. Here, the tensile test piece was sampled so that the central position of the tensile test piece in the thickness direction was at the 1/4 position of the plate thickness of the thick steel plate. Also, the sampling pitch in the sheet width direction was set to 500 mm, and the tensile test pieces were sampled over the full width of the sheet. The shape of the tensile test piece was JIS No. 4 shape. Then, using each tensile test piece thus obtained, a tensile test was performed according to JIS Z2241 (2011) to measure the yield strength. Here, the yield strength of the thick steel plate was defined as the minimum value among the yield strengths measured in each tensile test piece sampled over the full width of the thick steel plate. Then, when the value was 325 MPa or more, it was evaluated that high strength was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、本発明例の厚鋼板ではいずれも、優れた内質特性と高い強度とが得られた。また、本発明例の厚鋼板はいずれも、一般的な熱間圧延設備により製造可能であり、特別な設備を必要とせずに低コストで(高い生産性の下で)製造可能なものであった。 As shown in Table 2, all the steel plates of the present invention had excellent internal properties and high strength. In addition, all of the thick steel plates of the present invention examples can be manufactured by general hot rolling equipment, and can be manufactured at low cost (with high productivity) without requiring special equipment. rice field.
 一方、比較例の厚鋼板ではいずれも、内質特性と強度のうち少なくとも一方が十分ではなかった。
 すなわち、比較例No.23および24は、C含有量が適正範囲に満たないため、十分な強度が得られなかった。
 比較例No.25および26は、Ceq/t≧0.0015の関係を満足しないため、十分な強度が得られなかった。
 比較例No.27および28は、熱間圧延条件が不適であるため、板厚中心位置における空隙欠陥の面積率が大きくなり、十分な内質特性が得られなかった。
 比較例No.29および30は、700~600℃の温度域での平均冷却速度が遅すぎるため、十分な強度が得られなかった。
 比較例No.31および32は、焼戻し温度が高すぎるため、十分な強度が得られなかった。
On the other hand, in the thick steel plates of the comparative examples, at least one of the internal properties and the strength was insufficient.
That is, Comparative Example No. In Nos. 23 and 24, sufficient strength was not obtained because the C content was below the proper range.
Comparative example no. Nos. 25 and 26 did not satisfy the relationship of Ceq/t≧0.0015, so sufficient strength was not obtained.
Comparative example no. In Nos. 27 and 28, since the hot rolling conditions were unsuitable, the area ratio of void defects at the sheet thickness center position was large, and sufficient internal properties were not obtained.
Comparative example no. For Nos. 29 and 30, the average cooling rate in the temperature range of 700 to 600° C. was too slow, so sufficient strength could not be obtained.
Comparative example no. In Nos. 31 and 32, sufficient strength was not obtained because the tempering temperature was too high.

Claims (4)

  1.  質量%で、
      C :0.04~0.18%、
      Si:0.03~0.70%、
      Mn:0.30~2.50%、
      P :0.030%以下、
      S :0.0200%以下、
      Al:0.001~0.100%、
      O :0.0100%以下および
      N :0.0100%以下
    であり、残部がFeおよび不可避不純物からなる成分組成を有し、
     次式(1)により定義されるCeqと板厚t(mm)とが、Ceq/t≧0.0015の関係を満足し、
     板厚中心位置における空隙欠陥の面積率が0.5%以下であり、
     降伏強度が325MPa以上である、厚鋼板。
     Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(1)
     ここで、式(1)中の[元素記号]は、成分組成における各元素の含有量(質量%)であり、当該元素が含有されていない場合は0として計算する。
    in % by mass,
    C: 0.04 to 0.18%,
    Si: 0.03 to 0.70%,
    Mn: 0.30-2.50%,
    P: 0.030% or less,
    S: 0.0200% or less,
    Al: 0.001 to 0.100%,
    O: 0.0100% or less and N: 0.0100% or less, with the balance being Fe and inevitable impurities,
    Ceq and plate thickness t (mm) defined by the following formula (1) satisfy the relationship of Ceq/t ≥ 0.0015,
    The area ratio of void defects at the plate thickness center position is 0.5% or less,
    A thick steel plate having a yield strength of 325 MPa or more.
    Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (1)
    Here, [element symbol] in formula (1) is the content (% by mass) of each element in the component composition, and is calculated as 0 when the element is not contained.
  2.  前記成分組成が、さらに、質量%で、
      Cu:2.00%以下、
      Ni:2.50%以下、
      Cr:1.50%以下、
      Mo:1.00%以下、
      Nb:0.100%以下、
      Ti:0.100%以下、
      V :0.30%以下、
      B :0.0100%以下、
      W :0.50%以下、
      Ca:0.0200%以下、
      Mg:0.0200%以下および
      REM:0.0500%以下
    からなる群より選択される1種または2種以上を含む、請求項1に記載の厚鋼板。
    The component composition further, in mass %,
    Cu: 2.00% or less,
    Ni: 2.50% or less,
    Cr: 1.50% or less,
    Mo: 1.00% or less,
    Nb: 0.100% or less,
    Ti: 0.100% or less,
    V: 0.30% or less,
    B: 0.0100% or less,
    W: 0.50% or less,
    Ca: 0.0200% or less,
    The steel plate according to claim 1, comprising one or more selected from the group consisting of Mg: 0.0200% or less and REM: 0.0500% or less.
  3.  請求項1または2に記載の厚鋼板を製造するための方法であって、
     請求項1または2に記載の成分組成を有するスラブを準備する、準備工程と、
     該スラブを熱間圧延して熱延鋼板とする、熱間圧延工程と、
     該熱延鋼板を冷却する、冷却工程と、
    をそなえ、
     該熱間圧延工程における以下の(a)および(b)を満足する圧延パスでの合計の圧下率が30%超であり、
     該冷却工程において、該熱延鋼板の板厚1/4位置の700~600℃の温度域での平均冷却速度(℃/s)が6000t-1.8以上である、厚鋼板の製造方法。
      (a)スラブの板厚中心位置における温度:700℃以上
      (b)スラブの表面と板厚中心位置における温度差:100℃以上
     ここで、tは熱延鋼板の板厚(mm)である。
    A method for manufacturing a thick steel plate according to claim 1 or 2,
    A preparation step of preparing a slab having the component composition according to claim 1 or 2;
    A hot rolling step of hot rolling the slab into a hot rolled steel sheet;
    a cooling step of cooling the hot-rolled steel sheet;
    with
    The total rolling reduction in the rolling passes satisfying the following (a) and (b) in the hot rolling process is more than 30%,
    A method for producing a thick steel plate, wherein in the cooling step, an average cooling rate (° C./s) in a temperature range of 700 to 600° C. at a position of 1/4 thickness of the hot rolled steel plate is 6000 t −1.8 or more.
    (a) Temperature at the thickness center position of the slab: 700° C. or more (b) Temperature difference between the surface of the slab and the thickness center position: 100° C. or more Here, t is the thickness (mm) of the hot-rolled steel sheet.
  4.  前記冷却工程後、焼戻し温度:650℃以下の条件で前記熱延鋼板に焼戻し処理を行う、焼戻し工程をさらにそなえる、請求項3に記載の厚鋼板の製造方法。 The method for manufacturing a thick steel plate according to claim 3, further comprising a tempering step in which the hot-rolled steel plate is tempered at a tempering temperature of 650°C or less after the cooling step.
PCT/JP2022/035525 2021-11-19 2022-09-22 Thick steel sheet and manufacturing method therefor WO2023089951A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280070255.8A CN118119725A (en) 2021-11-19 2022-09-22 Thick steel plate and method for manufacturing same
JP2022579886A JP7508026B2 (en) 2021-11-19 2022-09-22 Heavy steel plate and its manufacturing method
EP22895237.0A EP4403661A1 (en) 2021-11-19 2022-09-22 Thick steel sheet and manufacturing method therefor
KR1020247014905A KR20240075905A (en) 2021-11-19 2022-09-22 Heavy steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189014 2021-11-19
JP2021189014 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023089951A1 true WO2023089951A1 (en) 2023-05-25

Family

ID=86396795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035525 WO2023089951A1 (en) 2021-11-19 2022-09-22 Thick steel sheet and manufacturing method therefor

Country Status (5)

Country Link
EP (1) EP4403661A1 (en)
JP (1) JP7508026B2 (en)
KR (1) KR20240075905A (en)
CN (1) CN118119725A (en)
WO (1) WO2023089951A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167045A (en) 1982-03-30 1983-10-03 Japan Steel Works Ltd:The Hot forging of steel material
JPS5974220A (en) 1982-10-19 1984-04-26 Kawasaki Steel Corp Production of thick steel plate having high toughness and good internal quality by continuous casting
JPH0669569B2 (en) 1988-08-18 1994-09-07 新日本製鐵株式会社 Manufacturing method of extra thick steel plate with excellent internal properties
JP2007302908A (en) * 2006-04-10 2007-11-22 Sumitomo Metal Ind Ltd High tensile strength steel plate and its manufacturing method
JP6137080B2 (en) 2014-07-28 2017-05-31 Jfeスチール株式会社 Slab forging method
JP6156321B2 (en) 2014-10-22 2017-07-05 Jfeスチール株式会社 Hot forging method of slab
WO2021182618A1 (en) * 2020-03-13 2021-09-16 日本製鉄株式会社 Steel sheet for wind power generation plants and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137080U (en) 1984-08-09 1986-03-07 トヨタ自動車株式会社 Automobile rear body structure
JPH0221463Y2 (en) 1984-09-19 1990-06-11
JPH0669569A (en) 1992-08-20 1994-03-11 Fuji Photo Optical Co Ltd Optical wavelength conversion apparatus
JP5272759B2 (en) 2009-02-02 2013-08-28 新日鐵住金株式会社 Thick steel plate manufacturing method
JP5326827B2 (en) 2009-06-03 2013-10-30 新日鐵住金株式会社 Low yield ratio steel and its manufacturing method
JP5953952B2 (en) 2011-11-30 2016-07-20 Jfeスチール株式会社 Steel material excellent in impact resistance and method for producing the same
JP6682988B2 (en) 2016-04-25 2020-04-15 日本製鉄株式会社 High-tensile steel plate with excellent ductility and method of manufacturing the same
CN112585289B (en) 2018-08-23 2022-04-29 杰富意钢铁株式会社 Hot-rolled steel sheet and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167045A (en) 1982-03-30 1983-10-03 Japan Steel Works Ltd:The Hot forging of steel material
JPS5974220A (en) 1982-10-19 1984-04-26 Kawasaki Steel Corp Production of thick steel plate having high toughness and good internal quality by continuous casting
JPH0669569B2 (en) 1988-08-18 1994-09-07 新日本製鐵株式会社 Manufacturing method of extra thick steel plate with excellent internal properties
JP2007302908A (en) * 2006-04-10 2007-11-22 Sumitomo Metal Ind Ltd High tensile strength steel plate and its manufacturing method
JP6137080B2 (en) 2014-07-28 2017-05-31 Jfeスチール株式会社 Slab forging method
JP6156321B2 (en) 2014-10-22 2017-07-05 Jfeスチール株式会社 Hot forging method of slab
WO2021182618A1 (en) * 2020-03-13 2021-09-16 日本製鉄株式会社 Steel sheet for wind power generation plants and method for producing same

Also Published As

Publication number Publication date
CN118119725A (en) 2024-05-31
JPWO2023089951A1 (en) 2023-05-25
KR20240075905A (en) 2024-05-29
EP4403661A1 (en) 2024-07-24
JP7508026B2 (en) 2024-07-01

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
CA2941202C (en) Method for producing a high-strength flat steel product
EP2484791B1 (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
EP2272994B1 (en) High-tensile strength steel and manufacturing method thereof
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
JP5277672B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
WO2019181130A1 (en) Wear-resistant steel and method for producing same
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
US20220033926A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, highstrength hot-dip galvanized steel sheet, and manufacturing methods therefor
CN114599812B (en) Electric resistance welded steel pipe, method for producing same, line pipe, and building structure
CN113614268B (en) Electric resistance welded steel pipe, method for producing same, and steel pipe pile
CN114402089A (en) Thick steel plate and method for producing thick steel plate
JP2009242841A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
CN113677816B (en) Electric resistance welded steel pipe, method for producing same, and steel pipe pile
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
JP3589071B2 (en) Manufacturing method of ultra-thick section steel with excellent weldability, strength and toughness
CN108350550B (en) High-strength cold-rolled steel sheet having excellent shear workability and method for producing same
CN113737103A (en) Steel sheet and method for producing same
JP7508026B2 (en) Heavy steel plate and its manufacturing method
WO2023089950A1 (en) Thick steel sheet and manufacturing method therefor
EP4450662A1 (en) Steel material having high strength and excellent impact toughness, and manufacturing method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022579886

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280070255.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022895237

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022895237

Country of ref document: EP

Effective date: 20240419

ENP Entry into the national phase

Ref document number: 20247014905

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE