JPS58167045A - Hot forging of steel material - Google Patents

Hot forging of steel material

Info

Publication number
JPS58167045A
JPS58167045A JP5014382A JP5014382A JPS58167045A JP S58167045 A JPS58167045 A JP S58167045A JP 5014382 A JP5014382 A JP 5014382A JP 5014382 A JP5014382 A JP 5014382A JP S58167045 A JPS58167045 A JP S58167045A
Authority
JP
Japan
Prior art keywords
steel material
forging
extend forging
extend
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5014382A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Tanaka
光之 田中
Shoichi Kano
鹿野 昭一
Hiroaki Moriya
博明 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP5014382A priority Critical patent/JPS58167045A/en
Publication of JPS58167045A publication Critical patent/JPS58167045A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough

Abstract

PURPOSE:To enable extend forging of a large steel material using a press of relatively small capacity in a process that performs extend forging of axially symmetrical steel material between upper and lower anvils, by making sectional form perpendicular to the direction of extend forging rectangular during the stage of extend forging. CONSTITUTION:When extend forging a steel material 3 between upper and lower anvils 1, 2, extend forging is started in a state that the sectional form perpendicular to the direction of extend forging is, for instance, nearly circular. Then, in an optional stage during the stage of extend forging, the sectional form perpendicular to the direction of extend forging is made rectangular or nearly rectangular, and the ratio of longer side to shorter side is made 1.4 or more. The material is then extend forged to desired final form such as square, octagon etc. of axial symmetry. By this way, the height H of the steel material when it is rectangular can be made small, and W/H can be made large without enlarging the width W of anvils 1, 2. Accordingly, internal cavities of a large-sized steel material can be pressure welded, and a formed product free from deffects can be obtained.

Description

【発明の詳細な説明】 本発明は、鋼材の熱間鍛造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for hot forging steel materials.

従来の鋼材の熱間鍛造方法では、例えば発電機用ロータ
軸のような軸対称形状の鍛造成形品を得たい場合に、次
のようにした鋼材を鍛伸していた。すなわち、第1及び
2図に示すように、上金敷l及び下金数2間の鋼材3に
プレスによる力を作用させ、第2図中で左右方向に鋼材
を鍛伸していた。鍛造途中の鋼材3の鍛伸方向に垂直な
断面形状(すなわち、第1図に示されている鋼材3の形
状)は、円、入角形、正方形等の軸対称の形状、又はそ
れに近い形状に保たれていた。このような鋼材の熱間鍛
造方法においても、鋼材3の形状が小さい場合には、第
3図に示すように塑性流動が中心部まで及び、鋼材3の
内部の空隙(鋼塊の凝固過程で内部に形成される空隙)
を圧着するように鍛伸することが可能であった。
In conventional hot forging methods for steel materials, for example, when it is desired to obtain an axially symmetrical forged product such as a rotor shaft for a generator, the following steel materials are forged and drawn. That is, as shown in FIGS. 1 and 2, pressing force was applied to the steel material 3 between the upper anvil 1 and the lower anvil 2, and the steel material was forged and stretched in the left-right direction in FIG. The cross-sectional shape perpendicular to the forging direction of the steel material 3 during forging (that is, the shape of the steel material 3 shown in Fig. 1) is an axially symmetrical shape such as a circle, a rectangular shape, or a square, or a shape close to it. It was kept. Even in this method of hot forging steel, when the shape of the steel 3 is small, the plastic flow extends to the center as shown in Figure 3, and the voids inside the steel 3 (in the solidification process of the steel ingot) voids formed inside)
It was possible to forge and stretch it so that it was crimped.

しかしながら、上金敷1及び下金数2の幅Wが鋼材3の
高さHに比較して小さい場合、すなわち、W/Hが小さ
い場合には、第4図に示すように、上金敷1及び下金数
2によって加えられる力による塑性流動が及ばない部分
(すなわち、塑性変形を生じない部分)4を鋼材3の中
心部に生じてしまう、このため鋼材3の中心部の空隙は
圧着されずそのまま残存してしまい、内部欠陥のある成
形品となってしまう、空隙を圧着して欠陥を無くすこと
が熱間鍛造の目的の一つであるから、上記問題点は非常
に重大である。
However, when the width W of the upper anvil 1 and the lower anvil number 2 is smaller than the height H of the steel material 3, that is, when W/H is small, as shown in FIG. A portion (i.e., a portion where plastic deformation does not occur) that is not affected by plastic flow due to the force applied by the lower metal number 2 is created in the center of the steel material 3. Therefore, the void in the center of the steel material 3 is not crimped. The above-mentioned problem is very serious because one of the purposes of hot forging is to eliminate defects by compressing the voids that would otherwise remain and result in a molded product with internal defects.

上記問題点を解決するために、上金敷l及び下金数2の
幅Wを大きくすることが考えられるが、幅Wを大きくす
ると上金敷l及び下金数2と鋼材3との接触面積が大き
くなって、大きな力を加える必要が生じ、プレスの能力
を越えてしまう。
In order to solve the above problem, it is possible to increase the width W of the upper anvil l and the lower anvil number 2, but if the width W is increased, the contact area between the upper anvil l and the lower anvil number 2 and the steel material 3 will increase. As it gets bigger, it becomes necessary to apply a lot of force, which exceeds the ability of the press.

従って、上金敷1及び下金数2の幅Wを所定以上に大き
くすることはできなかった。このため、大型の鋼材3の
鍛伸は強大な能力のプレスを用いることなしに行なうこ
とは不可能であった。
Therefore, the width W of the upper anvil 1 and the lower anvil 2 could not be made larger than a predetermined value. For this reason, it has been impossible to forge and elongate the large steel material 3 without using a powerful press.

本発明は、従来の鋼材の熱間鍛造方法における上記よう
な問題点に着目してなされたものであり、比較的小能力
のプレスを用いて大型の鋼材を鍛伸することができる鋼
材の熱間鍛造方法を得ることを目的としている。
The present invention was made by focusing on the above-mentioned problems in the conventional hot forging method for steel materials. The purpose is to obtain an intermediate forging method.

以下、本発明をその実施例を示す添付図面の第5〜11
図に基づいて説明する。
Hereinafter, the present invention will be described in figures 5 to 11 of the attached drawings showing embodiments thereof.
This will be explained based on the diagram.

まず、構成について説明する。First, the configuration will be explained.

上金敷1及び下金数2間において鋼材3を鍛伸するが、
その際、まず第5図に示すように鍛伸方向に垂直な断面
形状が例えば略円形の状態で鍛伸を開始しくなお、鍛伸
開始時の断面形状は円形に限らず任意の形状であって差
し支えない)、次いで鍛伸途中の任意の段階で第6図に
示すように鍛伸方向に垂直な断面形状を長方形又は略長
方形とする。長方形の長辺と短辺との長さの比は、後述
のように少なくとも1.4とする0次いで、第7図に示
すように再び軸対称の正方形断面形状(なお、正方形に
限らずへ角形等所望の最終断面形状でよい)に鍛伸する
。要するに、鍛伸工程の任意の段階において、鍛伸方向
に垂直な断面形状が長方形又は略長方形となるようにす
る。こうすることによって鋼材3の長方形時における高
さHを小さくすることができ、上金敷l及び下金数2の
幅Wを大きくすることなしに、W/Hの値を大きくする
ことができる。従って、プレスの能力を増強することな
しに、大型の鋼材の内部空隙を圧着し欠陥のない成形品
を得ることができる。
The steel material 3 is forged between the upper anvil 1 and the lower anvil 2,
At this time, first, as shown in Fig. 5, forging is started with the cross-sectional shape perpendicular to the forging and stretching direction being, for example, approximately circular. Then, at any stage during the forging and stretching, the cross-sectional shape perpendicular to the forging and stretching direction is made rectangular or approximately rectangular, as shown in FIG. The ratio of the length of the long side to the short side of the rectangle should be at least 1.4 as described later. It is forged and drawn into a desired final cross-sectional shape such as a rectangular shape. In short, at any stage of the forging and stretching process, the cross-sectional shape perpendicular to the forging and stretching direction is made to be rectangular or approximately rectangular. By doing this, the height H of the steel material 3 when it is rectangular can be reduced, and the value of W/H can be increased without increasing the width W of the upper anvil 1 and the lower anvil number 2. Therefore, it is possible to press the internal voids of a large steel material and obtain a defect-free molded product without increasing the press capacity.

次に、長方形断面の長辺と短辺との長さの比を少なくと
も1.4とする必要性について説明する。
Next, the necessity of setting the length ratio of the long side to the short side of the rectangular cross section to be at least 1.4 will be explained.

第8図に正方形断面の場合の塑性変形の及ぶ領域5を斜
線部で示す、また、第9図に長方形断面の場合の塑性変
形の及ぶ領域5を斜線部で示す、このように、鋼材3の
断面形状の高さと幅との比が大きくなるほど塑性変形を
受ける領域が拡大する。第1O図に、第9図に示す鋼材
断面の右上l/4の部分を拡大して示す0図のように符
号L1、L2、Ll及びαを定めると、幾何学的関係よ
り。
In FIG. 8, the region 5 where plastic deformation occurs in the case of a square cross section is shown as a shaded area, and in FIG. The larger the ratio of the height to width of the cross-sectional shape, the larger the area that undergoes plastic deformation. If the symbols L1, L2, Ll, and α are defined in FIG. 1O as shown in FIG.

L s / 2 = L 3 / 2 + (L z 
/ 2 ) / t a n aここでαは一般に約4
5°であるので、LI=L3+L2 従って、 L 3 / L 1= 1−1 / (L t / L
 z )となる。
L s / 2 = L 3 / 2 + (L z
/ 2 ) / t a na where α is generally about 4
5°, so LI=L3+L2 Therefore, L 3 / L 1 = 1-1 / (L t / L
z).

この関係を図示すると第11図のようになる。This relationship is illustrated in FIG. 11.

一方、鋼材の素材である鋼塊では、内部空隙は軸心を中
心としてほぼ円形の領域に分布しており、その円の直径
は鋼塊外径の約30%の大きさである。従っ・ζ、鋼材
の軸心から鋼材全幅の30%の長さまでの領域に塑性変
形が及べば十分な空隙の圧着効果を得ることができる。
On the other hand, in a steel ingot, which is a raw material for steel, internal voids are distributed in a substantially circular area centered on the axis, and the diameter of the circle is approximately 30% of the outer diameter of the steel ingot. Therefore, if the plastic deformation extends from the axis of the steel material to a length of 30% of the total width of the steel material, a sufficient gap crimping effect can be obtained.

すなわち、L3/L1の値が0.3以上であればよい。That is, it is sufficient if the value of L3/L1 is 0.3 or more.

L3/Llが063以上であるためには、第11図より
り。
For L3/Ll to be 063 or more, see Figure 11.

/ L zは1.4以上であればよいことがわかる。It can be seen that /Lz should be 1.4 or more.

次に、本発明方法の効果を実際に試験によって確認した
結果を示す、約400)ンの鋼塊から発電機タービン用
大型ローラ軸材を成形したが、11本は従来方法(なお
、L I / L z < 1.4の長方形断面の場合
も従来方法としである)により、また11本は本発明方
法により、同一プレスを用いて熱間鍛造した。こうして
鍛造成形した軸材を超音波探傷試検により検査し、優、
良、不可に分類した結果を下表に示す。
Next, a large roller shaft material for a generator turbine was formed from approximately 400 mm of steel ingots, which shows the results of actual tests confirming the effectiveness of the method of the present invention, but 11 were formed using the conventional method (L I / L z < 1.4, the conventional method was used), and 11 pieces were hot forged by the method of the present invention using the same press. The shaft material thus forged and formed was inspected by ultrasonic testing, and was found to be excellent.
The results of classification into good and poor are shown in the table below.

(Jズ″F4BJ) なお、()内は合計本数を100とした百分率を示す。(J’s “F4BJ”) Note that the numbers in parentheses indicate percentages based on the total number of 100.

この結果から、本発明方法によると鋼材の内部空隙を確
実に圧着することができることがわかる。
This result shows that the method of the present invention can reliably compress the internal voids of the steel material.

なお、本発明方法と、特許第436035号に示される
鋼材に温度こう配を与えて鍛伸する方法とを併用すれば
、更に空隙圧着の効果を高めることができる。
Note that if the method of the present invention is used in combination with the method of forging and elongating a steel material by giving a temperature gradient, as disclosed in Japanese Patent No. 436035, the effect of gap compression bonding can be further enhanced.

以上説明してきたように、本発明によると、鍛伸を開始
して鍛伸を終了するまでの間に、軸対称形状の鋼材の鍛
伸する方向に垂直な断面形状を長辺の長さと短辺の長さ
との比が少なくとも1.4である長方形又は略長方形に
する工程を設けたので、比較的小能力のプレスによって
大型の鋼材を鍛伸して内部空隙を圧着することができる
という効果が得られる。
As explained above, according to the present invention, between the start of forging and the end of forging, the cross-sectional shape perpendicular to the direction of forging of an axially symmetrical steel material is determined by the length of the long side and the short side. Since we have provided a process to make the steel into a rectangle or approximately rectangular with a side length ratio of at least 1.4, the effect is that it is possible to forge and stretch a large steel material using a press with a relatively small capacity and press-bond the internal voids. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法により鍛造される鋼材を示す正面図、
第2図は第1図の側面図、第3図は高さの低い鋼材の場
合の塑性流動を示す図、第4図は高さの高い鋼材の場合
の塑性流動を示す図、第5〜7図は本発明方法による鍛
造の各工程を示す図、第8図は断面正方形の鋼材の塑性
変形域を示す図、第9図は断面長方形の鋼材の塑性変形
域を示す図、第10図は第9図の右上部の拡大図、第1
1図はL 1 / L zとL 3/ L +との関係
を示す線図である。 l・・・上金敷、2・・・下金数、3・・・鋼材。 特許出願人  株式会社日本製鋼所 代理人   弁理士 宮内利行 馬5 図 116wI 第7M 第g口   第f波・ 第90e4
Figure 1 is a front view showing a steel material forged by the conventional method;
Figure 2 is a side view of Figure 1, Figure 3 is a diagram showing plastic flow in the case of a low-height steel material, Figure 4 is a diagram showing plastic flow in the case of a high-height steel material, and Figures 5- Figure 7 is a diagram showing each process of forging according to the method of the present invention, Figure 8 is a diagram showing a plastic deformation area of a steel material with a square cross section, Figure 9 is a diagram showing a plastic deformation area of a steel material with a rectangular cross section, and Figure 10. is an enlarged view of the upper right corner of Figure 9, 1st
FIG. 1 is a diagram showing the relationship between L 1 /L z and L 3 /L +. l... Upper anvil, 2... Lower anvil number, 3... Steel material. Patent Applicant Japan Steel Works Co., Ltd. Agent Patent Attorney Toshiyuki Miyauchi 5 Figure 116 wI 7M Port g Wave f/90e4

Claims (1)

【特許請求の範囲】[Claims] 上金敷及び下金散開において軸対称形状の鋼材を鍛伸す
る鋼材の熱間鍛造方法において、鍛伸を開始して鍛伸を
終了するまでの間に、鋼材の鍛伸する方向に垂直な断面
形状を長辺の長さと短辺の長さとの比が少なくとも1.
4である長方形又は略長方形にする工程を設けたことを
特徴とする鋼材の熱間鍛造方法。
In a hot forging method for steel materials in which steel materials with an axially symmetrical shape are forged and drawn in the upper and lower anvils, a cross section perpendicular to the direction of forging of the steel material is created between the start of forging and the end of forging. The shape has a ratio of the length of the long side to the length of the short side of at least 1.
4. A hot forging method for steel material, characterized by comprising a step of forming it into a rectangle or approximately rectangle.
JP5014382A 1982-03-30 1982-03-30 Hot forging of steel material Pending JPS58167045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5014382A JPS58167045A (en) 1982-03-30 1982-03-30 Hot forging of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5014382A JPS58167045A (en) 1982-03-30 1982-03-30 Hot forging of steel material

Publications (1)

Publication Number Publication Date
JPS58167045A true JPS58167045A (en) 1983-10-03

Family

ID=12850937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5014382A Pending JPS58167045A (en) 1982-03-30 1982-03-30 Hot forging of steel material

Country Status (1)

Country Link
JP (1) JPS58167045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224832A (en) * 1985-07-25 1987-02-02 Japan Steel Works Ltd:The Hot free forging method for large-sized steel material
CN105328096A (en) * 2015-11-14 2016-02-17 沈阳黎明航空发动机(集团)有限责任公司 Forming method of die forging clamps made of titanium alloy
CN111054866A (en) * 2019-12-27 2020-04-24 建龙北满特殊钢有限责任公司 Forging method for improving internal quality of forging material with ultimate specification produced by continuous casting billet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224832A (en) * 1985-07-25 1987-02-02 Japan Steel Works Ltd:The Hot free forging method for large-sized steel material
CN105328096A (en) * 2015-11-14 2016-02-17 沈阳黎明航空发动机(集团)有限责任公司 Forming method of die forging clamps made of titanium alloy
CN105328096B (en) * 2015-11-14 2017-08-29 沈阳黎明航空发动机(集团)有限责任公司 A kind of manufacturing process of titanium alloy clip class forging part
CN111054866A (en) * 2019-12-27 2020-04-24 建龙北满特殊钢有限责任公司 Forging method for improving internal quality of forging material with ultimate specification produced by continuous casting billet

Similar Documents

Publication Publication Date Title
DE2914314A1 (en) PROCESS FOR PRODUCING A PRESSED JOINT BETWEEN METAL PARTS USING AN EUTECTIC REACTION
JPS58167045A (en) Hot forging of steel material
US4628008A (en) Method for eliminating, or minimizing the effects of, defects in materials
JPH0234289A (en) Manufacture of metal clad plate by rolling
JPS6111698B2 (en)
JPS5819373B2 (en) Forging method for metal materials
JPH0635021B2 (en) Burring method
JP3812033B2 (en) Press forming method
JPS6224832A (en) Hot free forging method for large-sized steel material
JPH09327743A (en) Crack generation preventing method in cogging
KR0144704B1 (en) Multi-meta coin manufacture method
JPS6327842B2 (en)
JPS61102140A (en) Rotor for rotary electric machine
SU812475A1 (en) Method of cold lap welding of metals
SU1011312A1 (en) Method of producing large-size articles
KR0182078B1 (en) Fracture division of connecting rod
JPH10325504A (en) Method of fixing orifice
Fujitsu et al. Development of slab sizing press for extensive width reduction in hot strip mills
JPH01309745A (en) Hot forging method of large sized steel products
JPH0813398B2 (en) Flange member plastic working method
JPH0481206A (en) Method for working hard/brittle material
JPS61137641A (en) Manufacture of connecting rod
JPH0270347A (en) Manufacture of forging member
JPH03207502A (en) Rolling method of bar steel from continuously cast billet
JPS62173046A (en) Enclosed forging method