WO2023089806A1 - Wireless signal measurement system, wireless signal measurement method, and control device - Google Patents

Wireless signal measurement system, wireless signal measurement method, and control device Download PDF

Info

Publication number
WO2023089806A1
WO2023089806A1 PCT/JP2021/042729 JP2021042729W WO2023089806A1 WO 2023089806 A1 WO2023089806 A1 WO 2023089806A1 JP 2021042729 W JP2021042729 W JP 2021042729W WO 2023089806 A1 WO2023089806 A1 WO 2023089806A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
wireless
communication system
measurement
signal measurement
Prior art date
Application number
PCT/JP2021/042729
Other languages
French (fr)
Japanese (ja)
Inventor
笑子 篠原
裕介 淺井
泰司 鷹取
純一 岩谷
芳孝 清水
知之 山田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/042729 priority Critical patent/WO2023089806A1/en
Publication of WO2023089806A1 publication Critical patent/WO2023089806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to technology for measuring interference conditions of channels used in wireless communication systems.
  • wireless signals of various standards coexist in the same frequency band.
  • it is effective to select and use a channel with less interference to improve throughput and communication capacity. Since the interference situation is not constant, it is preferable to properly grasp the interference situation and reselect the channel.
  • Non-Patent Document 1 discloses a beacon signal transmitted by a wireless LAN access point.
  • the radio signals of the own system can be distinguished from other radio signals. As a result, it is possible to check the usage status of the channels used in the own system.
  • One object of the present invention is to provide a technology capable of accurately measuring the interference situation of channels used in a wireless communication system.
  • a first aspect relates to wireless signal measurement systems.
  • a wireless signal measurement system includes a measurement device and a control device.
  • a measuring device measures the interference state of a channel used in a wireless communication system.
  • the control device controls the wireless communication system so as to stop signal transmission at least during the measurement period during which the measurement device measures the interference situation.
  • a second aspect relates to the radio signal measurement method.
  • the wireless signal measurement method is A process of measuring interference conditions of channels used in a wireless communication system; and a process of controlling the wireless communication system to stop signal transmission at least during the measurement period during which the interference situation is measured.
  • a third aspect relates to a control device that controls a radio signal measurement system that measures interference conditions of channels used in a radio communication system.
  • the controller is configured to control the wireless communication system to stop signal transmission at least during the measurement period during which the interference situation is measured.
  • the wireless communication system to be measured when the interference condition of the channel used in the wireless communication system is measured, the wireless communication system to be measured is controlled to stop signal transmission. In other words, the interference situation is measured while the wireless communication system to be measured stops signal transmission. Therefore, it is possible to prevent the radio signal of the radio communication system to be measured from interfering with the measurement of the interference state. As a result, it is possible to more accurately measure (recognize) the interference situation that changes over time. Moreover, even if the radio communication system to be measured is in operation, it is possible to accurately measure the interference state of the channel.
  • FIG. 1 is a schematic diagram showing a configuration example of a radio communication system according to an embodiment
  • FIG. 1 is a block diagram showing a configuration example of a radio signal measurement system according to an embodiment
  • FIG. It is a block diagram showing another configuration example of the radio signal measurement system according to the embodiment.
  • 4 is a conceptual diagram for explaining radio signal measurement processing by the radio signal measurement system according to the embodiment
  • FIG. FIG. 2 is a conceptual diagram for explaining a first example of radio signal measurement processing according to an embodiment
  • 6 is a flowchart showing a first example of radio signal measurement processing according to the embodiment
  • 6 is a flowchart showing a first example of radio signal measurement processing according to the embodiment
  • FIG. 7 is a conceptual diagram for explaining a second example of radio signal measurement processing according to the embodiment
  • 9 is a flowchart showing a second example of radio signal measurement processing according to the embodiment;
  • FIG. 1 is a schematic diagram showing a configuration example of a radio communication system 1 according to the present embodiment.
  • a radio communication system 1 includes a plurality of radio communication devices 10 forming a radio communication network.
  • the radio communication system 1 includes radio communication devices 10-1 to 10-4.
  • the plurality of wireless communication devices 10 include a base station (master device) and one or more wireless terminals (child devices).
  • a base station and one or more wireless terminals configure a wireless communication network and perform wireless communication with each other.
  • the wireless communication system 1 is a wireless LAN (Local Area Network) system.
  • the base station is a wireless LAN access point.
  • wireless communication device 10-1 is a wireless LAN access point (AP).
  • Wireless communication devices 10-2 to 10-4 are wireless terminals (STAs) that communicate with access points.
  • a cell composed of an access point and one or more wireless terminals is called a BSS (Basic Service Set).
  • FIG. 2 is a block diagram showing a configuration example of the radio signal measurement system 100 according to the present embodiment.
  • the radio signal measurement system 100 measures the interference state of channels used in the radio communication system 1 by measuring radio signals.
  • a wireless signal measurement system 100 includes a wireless communication device 10 , a measurement device 20 and a control device 30 .
  • a wireless communication device 10 is included in a wireless communication system 1 to be measured.
  • the measuring device 20 measures the interference state of the channel used in the wireless communication system 1 by measuring the wireless signal.
  • measurement device 20 includes a spectrum analyzer.
  • measurement device 20 may comprise a wireless interface, wireless software, and a processor that executes the wireless software.
  • This measuring device 20 can measure a radio signal without depending on the radio signal standard.
  • the measuring device 20 scans the frequency bands of the channels used in the wireless communication system 1 to be measured and the peripheral channels. Note that the measurement device 20 may be included in the wireless communication device 10 .
  • the control device 30 controls the radio signal measurement system 100 . That is, the control device 30 controls the wireless communication device 10 and the measuring device 20 . Note that the control device 30 may be a control device included in the wireless communication device 10 . As shown in FIG. 3 , wireless communication device 10 may include measurement device 20 and control device 30 .
  • the control device 30 may be a computer including one or more processors 31 (hereinafter simply referred to as “processors 31") and one or more storage devices 32 (hereinafter simply referred to as “storage devices 32").
  • processors 31 include a CPU (Central Processing Unit).
  • storage devices 32 stores various information necessary for processing by the processor 31 . Examples of the storage device 32 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the program 33 is a computer program executed by the processor 31.
  • the functions of the control device 30 are implemented by the processor 31 executing the program 33 .
  • a program 33 is stored in the storage device 32 .
  • the program 33 may be recorded on a computer-readable recording medium.
  • Program 33 may be provided to control device 30 via a network.
  • the measurement device 20 measures the interference state of the channel used in the radio communication system 1 by measuring radio signals. At this time, the measuring device 20 scans the frequency bands of the channels used in the wireless communication system 1 to be measured and the peripheral channels. However, while the radio communication system 1 to be measured is using the channel, it is difficult to determine whether the radio signal measured by scanning is the radio signal of the radio communication system 1 itself or an interference signal. . This causes a decrease in recognition accuracy of the interference situation. Therefore, the radio signal measurement system 100 according to the present embodiment executes radio signal measurement processing as follows.
  • FIG. 4 is a conceptual diagram for explaining radio signal measurement processing by the radio signal measurement system 100 according to the present embodiment.
  • the measurement period PM is a period during which the measurement device 20 measures the interference state of the channel used in the wireless communication system 1 .
  • the controller 30 controls the radio communication system 1 to stop signal transmission at least during the measurement period PM. That is, the control device 30 stops signal transmission in the wireless communication system 1 in conjunction with measurement by the measurement device 20 .
  • control device 30 causes the wireless communication system 1 to stop signal transmission by controlling the wireless communication device 10 included in the wireless communication system 1 to be measured. That is, the control device 30 controls the radio communication device 10 included in the radio communication system 1 so that the radio communication system 1 stops signal transmission at least during the measurement period PM.
  • the transmission prohibited period PX is a period during which signal transmission in the wireless communication system 1 is prohibited.
  • the transmission prohibited period PX is set to include the measurement period PM.
  • Each wireless communication device 10 included in the wireless communication system 1 suspends signal transmission during the transmission prohibited period PX.
  • the control device 30 controls the measurement device 20 to perform measurement during the transmission prohibited period PX.
  • the wireless communication system 1 to be measured when the interference state of the channel used in the wireless communication system 1 is measured, the wireless communication system 1 to be measured is controlled to stop signal transmission. In other words, the interference situation is measured while the radio communication system 1 to be measured stops signal transmission. Therefore, the wireless signal of the wireless communication system 1 itself to be measured is prevented from interfering with the measurement of the interference state. As a result, it is possible to more accurately measure (recognize) the interference situation that changes over time. Further, according to the present embodiment, even if the wireless communication system 1 to be measured is in an operating state, it is possible to accurately measure the interference state of the channel.
  • radio signal measurement processing by the radio signal measurement system 100 will be described below.
  • the wireless communication system 1 is a wireless LAN system (see FIG. 1).
  • the RTS (Request To Send)/CTS (Clear To Send) scheme is known as a technique for efficiently avoiding collisions.
  • a wireless terminal (STA) transmits an RTS frame, which is a transmission request, to an access point (AP) before data transmission.
  • the RTS frame contains information on the length of data to be transmitted.
  • An access point that receives the RTS frame returns a CTS frame to the requesting wireless terminal.
  • a CTS frame transmitted by an access point is received not only by the requesting wireless terminal, but also by other wireless terminals in the network.
  • the CTS frame contains information on the channel occupancy period (Network Allocation Vector, NAV).
  • NAV Network Allocation Vector
  • FIG. 5 is a conceptual diagram for explaining a first example of radio signal measurement processing.
  • the CTS frame described above is used.
  • the channel occupied period indicated by the CTS frame corresponds to the transmission prohibited period PX.
  • the wireless communication device 10 (access point) included in the wireless communication system 1 transmits the CTS frame, the wireless communication system 1 can set the transmission prohibited period PX.
  • the transmission prohibited period PX is 37 msec at maximum.
  • the control device 30 determines the timing for the measurement device 20 to measure the channel interference situation.
  • the control device 30 controls the wireless communication device 10 and the measurement device 20 to cooperate based on the determined measurement timing.
  • the wireless communication device 10 and the measurement device 20 operate as follows under the control of the control device 30 .
  • FIG. 6 is a flowchart showing a first example of radio signal measurement processing.
  • the wireless communication device 10 is a wireless LAN access point (AP).
  • AP wireless LAN access point
  • the wireless communication device 10 empties the transmission queue near the measurement timing (step S110). Moreover, the measuring device 20 completes the parameter setting by the measurement timing (step S111).
  • the maximum value of the transmission prohibited period PX (channel occupied period) is approximately 37 msec. Since it is necessary to secure a margin of 1 msec or more before the start of scanning, the measurement period PM (scanning period) is set to 35 msec or less.
  • step S112A the wireless communication device 10 (access point) transmits a "CTS-to-self frame".
  • a CTS-to-self frame is a CTS frame for the access point itself.
  • a CTS-to-self frame transmitted from the access point is received by each wireless communication device 10 in the wireless communication system 1 . Therefore, it is possible to set the transmission prohibited period PX for each wireless communication device 10 in the wireless communication system 1 .
  • the measuring device 20 After step S112A, the measuring device 20 starts scanning after the amplitude of the random access time (approximately 1 msec) (step S113). The measuring device 20 scans the frequency bands of the channels and peripheral channels used in the wireless communication system 1 to be measured (step S114). The measuring device 20 then completes the scan (step S115).
  • step S115 the wireless communication device 10 performs normal data transmission (step S116).
  • FIG. 7 shows a processing flow when the wireless communication device 10 is a wireless terminal (STA).
  • STA wireless terminal
  • step S112B the wireless communication apparatus 10 (STA) transmits the RTS frame to the access point, thereby causing the access point to transmit the CTS frame.
  • a CTS frame transmitted from an access point is received by each wireless communication device 10 in the wireless communication system 1 . Therefore, it is possible to set the transmission prohibited period PX for each wireless communication device 10 in the wireless communication system 1 .
  • FIG. 8 is a conceptual diagram for explaining a second example of the radio signal measurement processing according to this embodiment.
  • a "notification frame" specifying a transmission prohibited period PX including a measurement period PM is used.
  • the wireless communication device 10 transmits the notification frame to other wireless communication devices 10 included in the wireless communication system 1 in advance. This enables each wireless communication device 10 included in the wireless communication system 1 to grasp the transmission prohibited period PX in advance.
  • Each wireless communication device 10 stops signal transmission during the transmission prohibited period PX specified in the notification frame.
  • the control device 30 determines the timing for the measurement device 20 to measure the channel interference situation.
  • the control device 30 sets the transmission prohibited period PX so as to include the measurement period PM. If accurate time synchronization is possible between the wireless communication devices 10 included in the wireless communication system 1, the transmission prohibited period PX may be set in absolute time. If precise time synchronization is not possible, well-known time timing such as TBTT (Target Beacon Transmit Time) is used.
  • the control device 30 controls the wireless communication device 10 and the measuring device 20 to cooperate based on the set transmission prohibition period PX.
  • the wireless communication device 10 and the measurement device 20 operate as follows under the control of the control device 30 .
  • FIG. 9 is a flowchart showing a second example of radio signal measurement processing.
  • step S ⁇ b>120 the wireless communication device 10 transmits in advance a notification frame designating the transmission prohibited period PX to other wireless communication devices 10 included in the wireless communication system 1 . This enables each wireless communication device 10 included in the wireless communication system 1 to grasp the transmission prohibited period PX in advance.
  • the measurement device 20 completes parameter setting by the measurement timing (step S121).
  • each wireless communication device 10 included in the wireless communication system 1 stops signal transmission (step S122). That is, each wireless communication device 10 stops signal transmission during the transmission prohibited period PX specified in the notification frame.
  • the measuring device 20 After step S122, the measuring device 20 starts scanning after the amplitude of time synchronization (about 10 msec) (step S123). The measuring device 20 scans the frequency bands of the channels used in the wireless communication system 1 to be measured and the peripheral channels (step S124). The measuring device 20 then completes the scan (step S125).
  • step S125 the wireless communication device 10 performs normal data transmission (step S126).
  • the wireless communication system 1 to be measured is controlled to stop signal transmission.
  • the interference situation is measured while the radio communication system 1 to be measured stops signal transmission. Therefore, the wireless signal of the wireless communication system 1 itself to be measured is prevented from interfering with the measurement of the interference state.
  • even if the wireless communication system 1 to be measured is in an operating state it is possible to accurately measure the interference state of the channel.
  • wireless communication system 10 wireless communication device 20 measuring device 30 control device 31 processor 32 storage device 33 program 100 wireless signal measuring system

Abstract

This wireless signal measurement system measures the interference state of a channel used in a wireless communication system. More particularly, the wireless signal measurement system includes a measurement device and a control device. The measurement device measures the interference state of a channel used in the wireless communication system. At least in the measurement period in which the measurement device measures the interference state, the control device controls the wireless communication system to stop the signal transmission.

Description

無線信号計測システム、無線信号計測方法、及び制御装置Wireless signal measurement system, wireless signal measurement method, and control device
 本発明は、無線通信システムにおいて利用されるチャネルの干渉状況を計測する技術に関する。 The present invention relates to technology for measuring interference conditions of channels used in wireless communication systems.
 複数の無線通信システムが同じ周波数帯を共用する場合、同じ周波数帯に様々な規格の無線信号が混在する。そのような無線環境では、干渉の小さいチャネルを選択して使用することがスループットや通信容量の向上のために有効である。干渉状況は一定ではないため、干渉状況を適切に把握し、チャネルを再選択することが好ましい。 When multiple wireless communication systems share the same frequency band, wireless signals of various standards coexist in the same frequency band. In such a wireless environment, it is effective to select and use a channel with less interference to improve throughput and communication capacity. Since the interference situation is not constant, it is preferable to properly grasp the interference situation and reselect the channel.
 非特許文献1は、無線LANのアクセスポイントが送信するビーコン信号を開示している。ビーコン信号内のフィールドに記載されている情報を参照することによって、自システムの無線信号を他の無線信号から区別することができる。それにより、自システムにおいて利用されるチャネルの利用状況を調べることができる。 Non-Patent Document 1 discloses a beacon signal transmitted by a wireless LAN access point. By referring to the information described in the fields within the beacon signal, the radio signals of the own system can be distinguished from other radio signals. As a result, it is possible to check the usage status of the channels used in the own system.
 ある無線通信システムにおいて利用されるチャネルの干渉状況を把握するために、当該チャネル及び周辺チャネルの無線信号を計測することを考える。複数の無線通信システムが同じ周波数帯を共用する場合、同じ周波数帯に様々な規格の無線信号が混在する。よって、無線信号の規格に依存せず無線信号を計測することができるスペクトルアナライザやソフトウェア無線を利用することが考えられる。その場合、計測対象である無線通信システムにおいて利用されるチャネル及び周辺チャネルの周波数帯がスキャンされる。しかしながら、計測対象である無線通信システムがチャネルを使用している間は、スキャンにより計測される無線信号が当該無線通信システム自身の無線信号なのか干渉信号なのかを判定することが困難である。このことは、干渉状況の認識精度の低下を招く。 Consider measuring the radio signals of the channel and surrounding channels in order to understand the interference situation of the channel used in a certain radio communication system. When a plurality of wireless communication systems share the same frequency band, wireless signals of various standards coexist in the same frequency band. Therefore, it is conceivable to use a spectrum analyzer or software defined radio that can measure radio signals without depending on the radio signal standard. In this case, the frequency bands of the channels used in the wireless communication system to be measured and the peripheral channels are scanned. However, while the radio communication system to be measured is using the channel, it is difficult to determine whether the radio signal measured by scanning is the radio signal of the radio communication system itself or an interference signal. This causes a decrease in recognition accuracy of the interference situation.
 本発明の1つの目的は、無線通信システムにおいて利用されるチャネルの干渉状況を精度良く計測することができる技術を提供することにある。 One object of the present invention is to provide a technology capable of accurately measuring the interference situation of channels used in a wireless communication system.
 第1の観点は、無線信号計測システムに関連する。
 無線信号計測システムは、計測装置と制御装置を備える。
 計測装置は、無線通信システムにおいて利用されるチャネルの干渉状況を計測する。
 制御装置は、少なくとも計測装置が干渉状況を計測する計測期間、信号送信を停止するように無線通信システムを制御する。
A first aspect relates to wireless signal measurement systems.
A wireless signal measurement system includes a measurement device and a control device.
A measuring device measures the interference state of a channel used in a wireless communication system.
The control device controls the wireless communication system so as to stop signal transmission at least during the measurement period during which the measurement device measures the interference situation.
 第2の観点は、無線信号計測方法に関連する。
 無線信号計測方法は、
 無線通信システムにおいて利用されるチャネルの干渉状況を計測する処理と、
 少なくとも干渉状況が計測される計測期間、信号送信を停止するように無線通信システムを制御する処理と
 を含む。
A second aspect relates to the radio signal measurement method.
The wireless signal measurement method is
A process of measuring interference conditions of channels used in a wireless communication system;
and a process of controlling the wireless communication system to stop signal transmission at least during the measurement period during which the interference situation is measured.
 第3の観点は、無線通信システムにおいて利用されるチャネルの干渉状況を計測する無線信号計測システムを制御する制御装置に関連する。
 制御装置は、少なくとも干渉状況が計測される計測期間、信号送信を停止するように無線通信システムを制御するように構成される。
A third aspect relates to a control device that controls a radio signal measurement system that measures interference conditions of channels used in a radio communication system.
The controller is configured to control the wireless communication system to stop signal transmission at least during the measurement period during which the interference situation is measured.
 本発明によれば、無線通信システムにおいて利用されるチャネルの干渉状況が計測される際に、計測対象の無線通信システムは信号送信を停止するように制御される。言い換えれば、計測対象の無線通信システムが信号送信を停止している間に、干渉状況の計測が実施される。従って、計測対象の無線通信システム自身の無線信号が干渉状況の計測を妨げることが防止される。その結果、時間的に変化する干渉状況をより精度良く計測(認識)することが可能となる。また、計測対象の無線通信システムが稼働状態であっても、チャネルの干渉状況を精度良く計測することが可能である。 According to the present invention, when the interference condition of the channel used in the wireless communication system is measured, the wireless communication system to be measured is controlled to stop signal transmission. In other words, the interference situation is measured while the wireless communication system to be measured stops signal transmission. Therefore, it is possible to prevent the radio signal of the radio communication system to be measured from interfering with the measurement of the interference state. As a result, it is possible to more accurately measure (recognize) the interference situation that changes over time. Moreover, even if the radio communication system to be measured is in operation, it is possible to accurately measure the interference state of the channel.
実施の形態に係る無線通信システムの構成例を示す概略図である。1 is a schematic diagram showing a configuration example of a radio communication system according to an embodiment; FIG. 実施の形態に係る無線信号計測システムの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a radio signal measurement system according to an embodiment; FIG. 実施の形態に係る無線信号計測システムの他の構成例を示すブロック図である。It is a block diagram showing another configuration example of the radio signal measurement system according to the embodiment. 実施の形態に係る無線信号計測システムによる無線信号計測処理を説明するための概念図である。4 is a conceptual diagram for explaining radio signal measurement processing by the radio signal measurement system according to the embodiment; FIG. 実施の形態に係る無線信号計測処理の第1の例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining a first example of radio signal measurement processing according to an embodiment; 実施の形態に係る無線信号計測処理の第1の例を示すフローチャートである。6 is a flowchart showing a first example of radio signal measurement processing according to the embodiment; 実施の形態に係る無線信号計測処理の第1の例を示すフローチャートである。6 is a flowchart showing a first example of radio signal measurement processing according to the embodiment; 実施の形態に係る無線信号計測処理の第2の例を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining a second example of radio signal measurement processing according to the embodiment; 実施の形態に係る無線信号計測処理の第2の例を示すフローチャートである。9 is a flowchart showing a second example of radio signal measurement processing according to the embodiment;
 添付図面を参照して、本発明の実施の形態を説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings.
 1.無線通信システム
 図1は、本実施の形態に係る無線通信システム1の構成例を示す概略図である。無線通信システム1は、無線通信ネットワークを構成する複数の無線通信装置10を含んでいる。図1に示される例では、無線通信システム1は、無線通信装置10-1~10-4を含んでいる。
1. 1. Radio Communication System FIG. 1 is a schematic diagram showing a configuration example of a radio communication system 1 according to the present embodiment. A radio communication system 1 includes a plurality of radio communication devices 10 forming a radio communication network. In the example shown in FIG. 1, the radio communication system 1 includes radio communication devices 10-1 to 10-4.
 例えば、複数の無線通信装置10は、基地局(親機)と1以上の無線端末(子機)を含んでいる。基地局と1以上の無線端末は、無線通信ネットワークを構成し、互いに無線通信を行う。 For example, the plurality of wireless communication devices 10 include a base station (master device) and one or more wireless terminals (child devices). A base station and one or more wireless terminals configure a wireless communication network and perform wireless communication with each other.
 例えば、無線通信システム1は、無線LAN(Local Area Network)システムである。その場合、基地局は、無線LANのアクセスポイントである。図1に示される例において、無線通信装置10-1は、無線LANのアクセスポイント(AP)である。無線通信装置10-2~10-4は、アクセスポイントと通信を行う無線端末(STA)である。アクセスポイントと1以上の無線端末とで構成されるセルは、BSS(Basic Service Set)と呼ばれる。 For example, the wireless communication system 1 is a wireless LAN (Local Area Network) system. In that case, the base station is a wireless LAN access point. In the example shown in FIG. 1, wireless communication device 10-1 is a wireless LAN access point (AP). Wireless communication devices 10-2 to 10-4 are wireless terminals (STAs) that communicate with access points. A cell composed of an access point and one or more wireless terminals is called a BSS (Basic Service Set).
 複数の無線通信システムが同じ周波数帯を共用する場合も考えられる。その場合、同じ周波数帯に様々な規格の無線信号が混在する。そのような無線環境では、干渉の小さいチャネルを選択して使用することが、スループットや通信容量の向上のために有効である。干渉状況は一定ではないため、システム稼働中においても干渉状況を把握し、チャネルを再選択することが好ましい。 It is conceivable that multiple wireless communication systems share the same frequency band. In that case, radio signals of various standards coexist in the same frequency band. In such a wireless environment, it is effective to select and use a channel with less interference in order to improve throughput and communication capacity. Since the interference situation is not constant, it is preferable to grasp the interference situation and reselect the channel even while the system is in operation.
 以下、無線通信システム1において利用されるチャネルの干渉状況を把握するために無線信号を計測することを考える。 In the following, consider measuring radio signals in order to grasp the interference situation of the channels used in the radio communication system 1.
 2.無線信号計測システム
 図2は、本実施の形態に係る無線信号計測システム100の構成例を示すブロック図である。無線信号計測システム100は、無線信号を計測することにより、無線通信システム1において利用されるチャネルの干渉状況を計測する。無線信号計測システム100は、無線通信装置10、計測装置20、及び制御装置30を備えている。無線通信装置10は、計測対象の無線通信システム1に含まれている。
2. Radio Signal Measurement System FIG. 2 is a block diagram showing a configuration example of the radio signal measurement system 100 according to the present embodiment. The radio signal measurement system 100 measures the interference state of channels used in the radio communication system 1 by measuring radio signals. A wireless signal measurement system 100 includes a wireless communication device 10 , a measurement device 20 and a control device 30 . A wireless communication device 10 is included in a wireless communication system 1 to be measured.
 計測装置20は、無線信号を計測することにより、無線通信システム1において利用されるチャネルの干渉状況を計測する。例えば、計測装置20は、スペクトルアナライザを含んでいる。他の例として、計測装置20は、無線インタフェース、無線ソフトウェア、及びその無線ソフトウェアを実行するプロセッサにより構成されてもよい。この計測装置20は、無線信号の規格に依存せず無線信号を計測することができる。例えば、計測装置20は、計測対象である無線通信システム1において利用されるチャネル及び周辺チャネルの周波数帯をスキャンする。尚、計測装置20は、無線通信装置10に含まれていてもよい。 The measuring device 20 measures the interference state of the channel used in the wireless communication system 1 by measuring the wireless signal. For example, measurement device 20 includes a spectrum analyzer. As another example, measurement device 20 may comprise a wireless interface, wireless software, and a processor that executes the wireless software. This measuring device 20 can measure a radio signal without depending on the radio signal standard. For example, the measuring device 20 scans the frequency bands of the channels used in the wireless communication system 1 to be measured and the peripheral channels. Note that the measurement device 20 may be included in the wireless communication device 10 .
 制御装置30は、無線信号計測システム100を制御する。つまり、制御装置30は、無線通信装置10及び計測装置20を制御する。尚、制御装置30は、無線通信装置10に含まれる制御装置であってもよい。図3に示されるように、無線通信装置10は、計測装置20と制御装置30を含んでいてもよい。 The control device 30 controls the radio signal measurement system 100 . That is, the control device 30 controls the wireless communication device 10 and the measuring device 20 . Note that the control device 30 may be a control device included in the wireless communication device 10 . As shown in FIG. 3 , wireless communication device 10 may include measurement device 20 and control device 30 .
 制御装置30は、1又は複数のプロセッサ31(以下、単に「プロセッサ31」と呼ぶ)と1又は複数の記憶装置32(以下、単に「記憶装置32」と呼ぶ)を備えるコンピュータであってもよい。例えば、プロセッサ31は、CPU(Central Processing Unit)を含んでいる。記憶装置32は、プロセッサ31による処理に必要な各種情報を格納する。記憶装置32としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。 The control device 30 may be a computer including one or more processors 31 (hereinafter simply referred to as "processors 31") and one or more storage devices 32 (hereinafter simply referred to as "storage devices 32"). . For example, the processor 31 includes a CPU (Central Processing Unit). The storage device 32 stores various information necessary for processing by the processor 31 . Examples of the storage device 32 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
 プログラム33は、プロセッサ31によって実行されるコンピュータプログラムである。プロセッサ31がプログラム33を実行することにより、制御装置30の機能が実現される。プログラム33は、記憶装置32に格納される。プログラム33は、コンピュータ読み取り可能な記録媒体に記録されてもよい。プログラム33は、ネットワーク経由で制御装置30に提供されてもよい。 The program 33 is a computer program executed by the processor 31. The functions of the control device 30 are implemented by the processor 31 executing the program 33 . A program 33 is stored in the storage device 32 . The program 33 may be recorded on a computer-readable recording medium. Program 33 may be provided to control device 30 via a network.
 3.無線信号計測処理
 上述の通り、計測装置20は、無線信号を計測することにより、無線通信システム1において利用されるチャネルの干渉状況を計測する。このとき、計測装置20は、計測対象である無線通信システム1において利用されるチャネル及び周辺チャネルの周波数帯をスキャンする。しかしながら、計測対象である無線通信システム1がチャネルを使用している間は、スキャンにより計測される無線信号が無線通信システム1自身の無線信号なのか干渉信号なのかを判定することが困難である。このことは、干渉状況の認識精度の低下を招く。そこで、本実施の形態に係る無線信号計測システム100は、次のように無線信号計測処理を実行する。
3. Radio Signal Measurement Processing As described above, the measurement device 20 measures the interference state of the channel used in the radio communication system 1 by measuring radio signals. At this time, the measuring device 20 scans the frequency bands of the channels used in the wireless communication system 1 to be measured and the peripheral channels. However, while the radio communication system 1 to be measured is using the channel, it is difficult to determine whether the radio signal measured by scanning is the radio signal of the radio communication system 1 itself or an interference signal. . This causes a decrease in recognition accuracy of the interference situation. Therefore, the radio signal measurement system 100 according to the present embodiment executes radio signal measurement processing as follows.
 図4は、本実施の形態に係る無線信号計測システム100による無線信号計測処理を説明するための概念図である。計測期間PMは、計測装置20が無線通信システム1において利用されるチャネルの干渉状況を計測する期間である。制御装置30は、少なくともその計測期間PMの間、信号送信を停止するように無線通信システム1を制御する。すなわち、制御装置30は、計測装置20による計測と連動して、無線通信システム1における信号送信を停止させる。 FIG. 4 is a conceptual diagram for explaining radio signal measurement processing by the radio signal measurement system 100 according to the present embodiment. The measurement period PM is a period during which the measurement device 20 measures the interference state of the channel used in the wireless communication system 1 . The controller 30 controls the radio communication system 1 to stop signal transmission at least during the measurement period PM. That is, the control device 30 stops signal transmission in the wireless communication system 1 in conjunction with measurement by the measurement device 20 .
 より詳細には、制御装置30は、計測対象である無線通信システム1に含まれる無線通信装置10を制御することによって、無線通信システム1に信号送信を停止させる。つまり、制御装置30は、少なくとも計測期間PMの間に無線通信システム1が信号送信を停止するように、無線通信システム1に含まれる無線通信装置10を制御する。 More specifically, the control device 30 causes the wireless communication system 1 to stop signal transmission by controlling the wireless communication device 10 included in the wireless communication system 1 to be measured. That is, the control device 30 controls the radio communication device 10 included in the radio communication system 1 so that the radio communication system 1 stops signal transmission at least during the measurement period PM.
 送信禁止期間PXは、無線通信システム1における信号送信が禁止される期間である。送信禁止期間PXは、計測期間PMを含むように設定される。無線通信システム1に含まれる各無線通信装置10は、送信禁止期間PXの間、信号送信を停止する。制御装置30は、その送信禁止期間PXの最中に計測を実施するよう計測装置20を制御する。 The transmission prohibited period PX is a period during which signal transmission in the wireless communication system 1 is prohibited. The transmission prohibited period PX is set to include the measurement period PM. Each wireless communication device 10 included in the wireless communication system 1 suspends signal transmission during the transmission prohibited period PX. The control device 30 controls the measurement device 20 to perform measurement during the transmission prohibited period PX.
 このように、本実施の形態によれば、無線通信システム1において利用されるチャネルの干渉状況が計測される際に、計測対象の無線通信システム1は信号送信を停止するように制御される。言い換えれば、計測対象の無線通信システム1が信号送信を停止している間に、干渉状況の計測が実施される。従って、計測対象の無線通信システム1自身の無線信号が干渉状況の計測を妨げることが防止される。その結果、時間的に変化する干渉状況をより精度良く計測(認識)することが可能となる。また、本実施の形態によれば、計測対象の無線通信システム1が稼働状態であっても、チャネルの干渉状況を精度良く計測することが可能である。 As described above, according to the present embodiment, when the interference state of the channel used in the wireless communication system 1 is measured, the wireless communication system 1 to be measured is controlled to stop signal transmission. In other words, the interference situation is measured while the radio communication system 1 to be measured stops signal transmission. Therefore, the wireless signal of the wireless communication system 1 itself to be measured is prevented from interfering with the measurement of the interference state. As a result, it is possible to more accurately measure (recognize) the interference situation that changes over time. Further, according to the present embodiment, even if the wireless communication system 1 to be measured is in an operating state, it is possible to accurately measure the interference state of the channel.
 以下、本実施の形態に係る無線信号計測システム100による無線信号計測処理の具体例を説明する。 A specific example of radio signal measurement processing by the radio signal measurement system 100 according to the present embodiment will be described below.
 3-1.第1の例
 第1の例では、無線通信システム1は、無線LANシステムである(図1参照)。無線LANでは、衝突を効率よく回避するための技術としてRTS(Request To Send)/CTS(Clear To Send)方式が知られている。無線端末(STA)は、データ送信前に、送信要求であるRTSフレームをアクセスポイント(AP)に送信する。RTSフレームは、送信予定のデータ長の情報を含んでいる。RTSフレームを受信したアクセスポイントは、要求元の無線端末にCTSフレームを返す。アクセスポイントから送信されたCTSフレームは、要求元の無線端末だけでなく、ネットワーク内の他の無線端末によっても受信される。CTSフレームは、チャネル占有期間(Network Allocation Vector,NAV)の情報を含んでいる。要求元の無線端末以外の無線端末は、CTSフレームを受信することにより、他の無線端末がデータ送信を開始することを認識する。そして、要求元の無線端末以外の無線端末は、CTSフレームで示されるチャネル占有期間の間、データ送信を控える。
3-1. First Example In a first example, the wireless communication system 1 is a wireless LAN system (see FIG. 1). In wireless LANs, the RTS (Request To Send)/CTS (Clear To Send) scheme is known as a technique for efficiently avoiding collisions. A wireless terminal (STA) transmits an RTS frame, which is a transmission request, to an access point (AP) before data transmission. The RTS frame contains information on the length of data to be transmitted. An access point that receives the RTS frame returns a CTS frame to the requesting wireless terminal. A CTS frame transmitted by an access point is received not only by the requesting wireless terminal, but also by other wireless terminals in the network. The CTS frame contains information on the channel occupancy period (Network Allocation Vector, NAV). By receiving the CTS frame, the wireless terminals other than the requesting wireless terminal recognize that the other wireless terminals will start data transmission. Wireless terminals other than the requesting wireless terminal refrain from data transmission during the channel occupation period indicated by the CTS frame.
 図5は、無線信号計測処理の第1の例を説明するための概念図である。第1の例では、上記のCTSフレームが利用される。CTSフレームで示されるチャネル占有期間が、送信禁止期間PXに対応する。無線通信システム1に含まれる無線通信装置10(アクセスポイント)がCTSフレームを送信することにより、無線通信システム1において送信禁止期間PXを設定することが可能となる。尚、送信禁止期間PXは、最大37msecである。 FIG. 5 is a conceptual diagram for explaining a first example of radio signal measurement processing. In a first example, the CTS frame described above is used. The channel occupied period indicated by the CTS frame corresponds to the transmission prohibited period PX. When the wireless communication device 10 (access point) included in the wireless communication system 1 transmits the CTS frame, the wireless communication system 1 can set the transmission prohibited period PX. The transmission prohibited period PX is 37 msec at maximum.
 制御装置30は、計測装置20がチャネルの干渉状況を計測するタイミングを決定する。制御装置30は、決定した計測タイミングに基づいて、無線通信装置10と計測装置20が連携するように制御する。無線通信装置10及び計測装置20は、制御装置30による制御に従って、次のように動作する。 The control device 30 determines the timing for the measurement device 20 to measure the channel interference situation. The control device 30 controls the wireless communication device 10 and the measurement device 20 to cooperate based on the determined measurement timing. The wireless communication device 10 and the measurement device 20 operate as follows under the control of the control device 30 .
 図6は、無線信号計測処理の第1の例を示すフローチャートである。ここでは、無線通信装置10は、無線LANのアクセスポイント(AP)である。 FIG. 6 is a flowchart showing a first example of radio signal measurement processing. Here, the wireless communication device 10 is a wireless LAN access point (AP).
 無線通信装置10は、計測タイミングの近くで送信キューを空にする(ステップS110)。また、計測装置20は、計測タイミングまでにパラメータ設定を完了する(ステップS111)。送信禁止期間PX(チャネル占有期間)の最大値は約37msecである。スキャン開始までに1msec以上のマージンを確保する必要があるため、計測期間PM(スキャン期間)は35msec以下に設定される。 The wireless communication device 10 empties the transmission queue near the measurement timing (step S110). Moreover, the measuring device 20 completes the parameter setting by the measurement timing (step S111). The maximum value of the transmission prohibited period PX (channel occupied period) is approximately 37 msec. Since it is necessary to secure a margin of 1 msec or more before the start of scanning, the measurement period PM (scanning period) is set to 35 msec or less.
 その後、ステップS112Aにおいて、無線通信装置10(アクセスポイント)は、「CTS-to-selfフレーム」を送信する。CTS-to-selfフレームは、アクセスポイント自身に対するCTSフレームである。アクセスポイントから送信されるCTS-to-selfフレームは、無線通信システム1中の各無線通信装置10によって受信される。従って、無線通信システム1中の各無線通信装置10に対して送信禁止期間PXを設定することができる。 After that, in step S112A, the wireless communication device 10 (access point) transmits a "CTS-to-self frame". A CTS-to-self frame is a CTS frame for the access point itself. A CTS-to-self frame transmitted from the access point is received by each wireless communication device 10 in the wireless communication system 1 . Therefore, it is possible to set the transmission prohibited period PX for each wireless communication device 10 in the wireless communication system 1 .
 ステップS112Aの後、ランダムアクセス時間の振れ幅(約1msec)以降に、計測装置20はスキャンを開始する(ステップS113)。計測装置20は、計測対象である無線通信システム1において利用されるチャネル及び周辺チャネルの周波数帯をスキャンする(ステップS114)。そして、計測装置20は、スキャンを完了する(ステップS115)。 After step S112A, the measuring device 20 starts scanning after the amplitude of the random access time (approximately 1 msec) (step S113). The measuring device 20 scans the frequency bands of the channels and peripheral channels used in the wireless communication system 1 to be measured (step S114). The measuring device 20 then completes the scan (step S115).
 ステップS115の後、無線通信装置10は、通常のデータ伝送を行う(ステップS116)。 After step S115, the wireless communication device 10 performs normal data transmission (step S116).
 図7は、無線通信装置10が無線端末(STA)である場合の処理フローを示している。図7に示される例では、上記のステップS112AがステップS112Bに置換されている。それ以外は、図6で示された処理フローと同じである。 FIG. 7 shows a processing flow when the wireless communication device 10 is a wireless terminal (STA). In the example shown in FIG. 7, the above step S112A is replaced with step S112B. Other than that, the processing flow is the same as that shown in FIG.
 ステップS112Bにおいて、無線通信装置10(STA)は、アクセスポイントにRTSフレームを送信し、それにより、アクセスポイントにCTSフレームを送信させる。アクセスポイントから送信されるCTSフレームは、無線通信システム1中の各無線通信装置10によって受信される。従って、無線通信システム1中の各無線通信装置10に対して送信禁止期間PXを設定することができる。 In step S112B, the wireless communication apparatus 10 (STA) transmits the RTS frame to the access point, thereby causing the access point to transmit the CTS frame. A CTS frame transmitted from an access point is received by each wireless communication device 10 in the wireless communication system 1 . Therefore, it is possible to set the transmission prohibited period PX for each wireless communication device 10 in the wireless communication system 1 .
 3-2.第2の例
 図8は、本実施の形態に係る無線信号計測処理の第2の例を説明するための概念図である。第2の例では、計測期間PMを含む送信禁止期間PXを指定する「通知フレーム」が利用される。無線通信装置10は、その通知フレームを無線通信システム1に含まれる他の無線通信装置10に事前に送信する。これにより、無線通信システム1に含まれる各無線通信装置10が、送信禁止期間PXを予め把握することが可能となる。各無線通信装置10は、通知フレームで指定される送信禁止期間PXに信号送信を停止する。
3-2. Second Example FIG. 8 is a conceptual diagram for explaining a second example of the radio signal measurement processing according to this embodiment. In the second example, a "notification frame" specifying a transmission prohibited period PX including a measurement period PM is used. The wireless communication device 10 transmits the notification frame to other wireless communication devices 10 included in the wireless communication system 1 in advance. This enables each wireless communication device 10 included in the wireless communication system 1 to grasp the transmission prohibited period PX in advance. Each wireless communication device 10 stops signal transmission during the transmission prohibited period PX specified in the notification frame.
 制御装置30は、計測装置20がチャネルの干渉状況を計測するタイミングを決定する。制御装置30は、計測期間PMを含むように送信禁止期間PXを設定する。無線通信システム1に含まれる無線通信装置10間で正確な時間同期が可能な場合、送信禁止期間PXは絶対時間で設定されてもよい。正確な時間同期が不可能である場合は、TBTT(Target Beacon Transmit Time)等の周知の時間タイミングが利用される。制御装置30は、設定した送信禁止期間PXに基づいて、無線通信装置10と計測装置20が連携するように制御する。無線通信装置10及び計測装置20は、制御装置30による制御に従って、次のように動作する。 The control device 30 determines the timing for the measurement device 20 to measure the channel interference situation. The control device 30 sets the transmission prohibited period PX so as to include the measurement period PM. If accurate time synchronization is possible between the wireless communication devices 10 included in the wireless communication system 1, the transmission prohibited period PX may be set in absolute time. If precise time synchronization is not possible, well-known time timing such as TBTT (Target Beacon Transmit Time) is used. The control device 30 controls the wireless communication device 10 and the measuring device 20 to cooperate based on the set transmission prohibition period PX. The wireless communication device 10 and the measurement device 20 operate as follows under the control of the control device 30 .
 図9は、無線信号計測処理の第2の例を示すフローチャートである。 FIG. 9 is a flowchart showing a second example of radio signal measurement processing.
 ステップS120において、無線通信装置10は、送信禁止期間PXを指定する通知フレームを、無線通信システム1に含まれる他の無線通信装置10に事前に送信する。これにより、無線通信システム1に含まれる各無線通信装置10が、送信禁止期間PXを予め把握することが可能となる。 In step S<b>120 , the wireless communication device 10 transmits in advance a notification frame designating the transmission prohibited period PX to other wireless communication devices 10 included in the wireless communication system 1 . This enables each wireless communication device 10 included in the wireless communication system 1 to grasp the transmission prohibited period PX in advance.
 計測装置20は、計測タイミングまでにパラメータ設定を完了する(ステップS121)。 The measurement device 20 completes parameter setting by the measurement timing (step S121).
 送信禁止期間PXの開始時刻が到来すると、無線通信システム1に含まれる各無線通信装置10は、信号送信を停止する(ステップS122)。つまり、各無線通信装置10は、通知フレームで指定される送信禁止期間PXに信号送信を停止する。 When the start time of the transmission prohibited period PX arrives, each wireless communication device 10 included in the wireless communication system 1 stops signal transmission (step S122). That is, each wireless communication device 10 stops signal transmission during the transmission prohibited period PX specified in the notification frame.
 ステップS122の後、時間同期の振れ幅(約10msec)以降に、計測装置20はスキャンを開始する(ステップS123)。計測装置20は、計測対象である無線通信システム1において利用されるチャネル及び周辺チャネルの周波数帯をスキャンする(ステップS124)。そして、計測装置20は、スキャンを完了する(ステップS125)。 After step S122, the measuring device 20 starts scanning after the amplitude of time synchronization (about 10 msec) (step S123). The measuring device 20 scans the frequency bands of the channels used in the wireless communication system 1 to be measured and the peripheral channels (step S124). The measuring device 20 then completes the scan (step S125).
 ステップS125の後、無線通信装置10は、通常のデータ伝送を行う(ステップS126)。 After step S125, the wireless communication device 10 performs normal data transmission (step S126).
 第2の例によれば、適応的に送信停止を実現できるので、計測以外の時間を効率的に利用することが可能となる。 According to the second example, it is possible to adaptively stop transmission, so it is possible to efficiently use time other than measurement.
 4.効果
 本実施の形態によれば、無線通信システム1において利用されるチャネルの干渉状況が計測される際に、計測対象の無線通信システム1は信号送信を停止するように制御される。言い換えれば、計測対象の無線通信システム1が信号送信を停止している間に、干渉状況の計測が実施される。従って、計測対象の無線通信システム1自身の無線信号が干渉状況の計測を妨げることが防止される。その結果、時間的に変化する干渉状況をより精度良く計測(認識)することが可能となる。また、本実施の形態によれば、計測対象の無線通信システム1が稼働状態であっても、チャネルの干渉状況を精度良く計測することが可能である。
4. Effect According to the present embodiment, when the interference state of the channel used in the wireless communication system 1 is measured, the wireless communication system 1 to be measured is controlled to stop signal transmission. In other words, the interference situation is measured while the radio communication system 1 to be measured stops signal transmission. Therefore, the wireless signal of the wireless communication system 1 itself to be measured is prevented from interfering with the measurement of the interference state. As a result, it is possible to more accurately measure (recognize) the interference situation that changes over time. Further, according to the present embodiment, even if the wireless communication system 1 to be measured is in an operating state, it is possible to accurately measure the interference state of the channel.
   1  無線通信システム
  10  無線通信装置
  20  計測装置
  30  制御装置
  31  プロセッサ
  32  記憶装置
  33  プログラム
 100  無線信号計測システム
1 wireless communication system 10 wireless communication device 20 measuring device 30 control device 31 processor 32 storage device 33 program 100 wireless signal measuring system

Claims (7)

  1.  無線通信システムにおいて利用されるチャネルの干渉状況を計測する計測装置と、
     少なくとも前記計測装置が前記干渉状況を計測する計測期間、信号送信を停止するように前記無線通信システムを制御する制御装置と
     を備える
     無線信号計測システム。
    a measuring device that measures the interference state of a channel used in a wireless communication system;
    A wireless signal measurement system, comprising: a control device that controls the wireless communication system to stop signal transmission at least during a measurement period in which the measurement device measures the interference situation.
  2.  請求項1に記載の無線信号計測システムであって、
     前記無線通信システムに含まれる無線通信装置を更に備え、
     前記制御装置は、前記無線通信システムに含まれる前記無線通信装置を制御することによって、前記無線通信システムに前記信号送信を停止させる
     無線信号計測システム。
    The wireless signal measurement system according to claim 1,
    further comprising a wireless communication device included in the wireless communication system;
    The wireless signal measurement system, wherein the control device causes the wireless communication system to stop the signal transmission by controlling the wireless communication device included in the wireless communication system.
  3.  請求項2に記載の無線信号計測システムであって、
     前記無線通信装置は、無線LANの基地局であり、
     前記制御装置は、前記計測期間の前にCTS-to-selfフレームを送信するように前記基地局を制御する
     無線信号計測システム。
    The wireless signal measurement system according to claim 2,
    The wireless communication device is a wireless LAN base station,
    The wireless signal measurement system, wherein the controller controls the base station to transmit a CTS-to-self frame before the measurement period.
  4.  請求項2に記載の無線信号計測システムであって、
     前記無線通信装置は、無線LANの基地局と通信を行う無線端末であり、
     前記制御装置は、前記計測期間の前にRTSフレームを前記基地局に送信するように前記無線端末を制御する
     無線信号計測システム。
    The wireless signal measurement system according to claim 2,
    The wireless communication device is a wireless terminal that communicates with a wireless LAN base station,
    The wireless signal measurement system, wherein the controller controls the wireless terminal to transmit an RTS frame to the base station before the measurement period.
  5.  請求項2に記載の無線信号計測システムであって、
     前記制御装置は、前記計測期間を含む送信禁止期間を指定する通知フレームを前記無線通信システムに含まれる他の無線通信装置に送信するよう、前記無線通信装置を制御し、
     前記無線通信システムに含まれる各無線通信装置は、前記通知フレームで指定される前記送信禁止期間に信号送信を停止する
     無線信号計測システム。
    The wireless signal measurement system according to claim 2,
    The control device controls the wireless communication device to transmit a notification frame specifying a transmission prohibited period including the measurement period to another wireless communication device included in the wireless communication system;
    A wireless signal measurement system, wherein each wireless communication device included in the wireless communication system suspends signal transmission during the transmission prohibited period specified in the notification frame.
  6.  無線通信システムにおいて利用されるチャネルの干渉状況を計測する処理と、
     少なくとも前記干渉状況が計測される計測期間、信号送信を停止するように前記無線通信システムを制御する処理と
     を含む
     無線信号計測方法。
    A process of measuring interference conditions of channels used in a wireless communication system;
    A radio signal measurement method, comprising: controlling the radio communication system to stop signal transmission at least during a measurement period during which the interference situation is measured.
  7.  無線通信システムにおいて利用されるチャネルの干渉状況を計測する無線信号計測システムを制御する制御装置であって、
     少なくとも前記干渉状況が計測される計測期間、信号送信を停止するように前記無線通信システムを制御するように構成された
     制御装置。
    A control device that controls a radio signal measurement system that measures the interference state of a channel used in a radio communication system,
    A control device configured to control the wireless communication system to stop signal transmission at least during a measurement period during which the interference situation is measured.
PCT/JP2021/042729 2021-11-22 2021-11-22 Wireless signal measurement system, wireless signal measurement method, and control device WO2023089806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042729 WO2023089806A1 (en) 2021-11-22 2021-11-22 Wireless signal measurement system, wireless signal measurement method, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042729 WO2023089806A1 (en) 2021-11-22 2021-11-22 Wireless signal measurement system, wireless signal measurement method, and control device

Publications (1)

Publication Number Publication Date
WO2023089806A1 true WO2023089806A1 (en) 2023-05-25

Family

ID=86396544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042729 WO2023089806A1 (en) 2021-11-22 2021-11-22 Wireless signal measurement system, wireless signal measurement method, and control device

Country Status (1)

Country Link
WO (1) WO2023089806A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094672A (en) * 2003-09-19 2005-04-07 Toshiba Corp Multicarrier communication method, multicarrier communication system, and communication apparatus used therein
WO2011018927A1 (en) * 2009-08-10 2011-02-17 三菱電機株式会社 Radio communication system, radio communication device and radio communication method
JP2011239480A (en) * 2011-09-01 2011-11-24 Mitsubishi Electric Corp Interference control method, control device, and base station device
JP2016510580A (en) * 2013-02-14 2016-04-07 クアルコム,インコーポレイテッド Receiver measurement support access point control
WO2021106078A1 (en) * 2019-11-26 2021-06-03 日本電信電話株式会社 Wireless lan system, interference control signal management device, base station device, and interference control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094672A (en) * 2003-09-19 2005-04-07 Toshiba Corp Multicarrier communication method, multicarrier communication system, and communication apparatus used therein
WO2011018927A1 (en) * 2009-08-10 2011-02-17 三菱電機株式会社 Radio communication system, radio communication device and radio communication method
JP2011239480A (en) * 2011-09-01 2011-11-24 Mitsubishi Electric Corp Interference control method, control device, and base station device
JP2016510580A (en) * 2013-02-14 2016-04-07 クアルコム,インコーポレイテッド Receiver measurement support access point control
WO2021106078A1 (en) * 2019-11-26 2021-06-03 日本電信電話株式会社 Wireless lan system, interference control signal management device, base station device, and interference control method

Similar Documents

Publication Publication Date Title
US11153759B2 (en) Wireless communication method and wireless communication terminal for spatial reuse of overlapped basic service set
JP6333897B2 (en) Method and apparatus for using multiple channels simultaneously in a dynamic frequency channel selection band in a wireless network
KR101720001B1 (en) Method and apparatus for multi-channel operation in wireless local area network system
EP1931086B1 (en) A method and system for coexistence between 20 MHZ and 40 MHZ overlapping basic service sets (OBSS) in wireless local area networks
US20230328589A1 (en) Multi-user wireless communication method and wireless communication terminal using same
JP5335153B2 (en) Wireless communication apparatus and wireless communication method
CN107615869B (en) Wireless device, access point and method using different Clear Channel Assessment (CCA) thresholds
KR101764380B1 (en) Wireless communication system, cluster head equipment (che) installed in wireless communication system, and wireless communication method
JP4412033B2 (en) Wireless communication device
WO2023089806A1 (en) Wireless signal measurement system, wireless signal measurement method, and control device
US11240672B2 (en) Method and device for performing energy detection on a subset of a wireless channel
EP3915310B1 (en) Cooperative inter-network channel selection
JP2021520145A (en) Parallel transmission method and equipment
US20180343688A1 (en) Wireless communication system and guard terminal
WO2023181965A1 (en) Communication device and communication method
EP4059286B1 (en) Location-aware spatial reuse
JP7448025B2 (en) Wireless systems, base stations and wireless communication methods
KR20100067974A (en) Channel changing method and apparatus
US20230319882A1 (en) Uplink multiple access sounding sequences
JP2017183821A (en) Transmission station, reception station, transmission right acquisition method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964821

Country of ref document: EP

Kind code of ref document: A1