WO2023089775A1 - 予測モデル作成システム、予測モデルの作成方法、及び予測方法 - Google Patents
予測モデル作成システム、予測モデルの作成方法、及び予測方法 Download PDFInfo
- Publication number
- WO2023089775A1 WO2023089775A1 PCT/JP2021/042617 JP2021042617W WO2023089775A1 WO 2023089775 A1 WO2023089775 A1 WO 2023089775A1 JP 2021042617 W JP2021042617 W JP 2021042617W WO 2023089775 A1 WO2023089775 A1 WO 2023089775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- growth
- genome
- status
- mutation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 33
- 230000012010 growth Effects 0.000 claims abstract description 125
- 230000035772 mutation Effects 0.000 claims abstract description 103
- 238000012545 processing Methods 0.000 claims abstract description 46
- 238000010362 genome editing Methods 0.000 claims abstract description 34
- 238000010801 machine learning Methods 0.000 claims abstract description 28
- 231100000350 mutagenesis Toxicity 0.000 claims description 42
- 238000009395 breeding Methods 0.000 claims description 39
- 230000001488 breeding effect Effects 0.000 claims description 39
- 230000007613 environmental effect Effects 0.000 claims description 37
- 238000002703 mutagenesis Methods 0.000 claims description 36
- 230000000384 rearing effect Effects 0.000 claims description 28
- 230000008826 genomic mutation Effects 0.000 claims description 18
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000009394 selective breeding Methods 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 description 38
- 241000196324 Embryophyta Species 0.000 description 26
- 238000003860 storage Methods 0.000 description 17
- 101710163270 Nuclease Proteins 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 14
- 238000010219 correlation analysis Methods 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 108091033409 CRISPR Proteins 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 238000012806 monitoring device Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000011246 composite particle Substances 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 206010020649 Hyperkeratosis Diseases 0.000 description 2
- 241000208822 Lactuca Species 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000000243 photosynthetic effect Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000005068 transpiration Effects 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000005789 organism growth Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Definitions
- the present invention relates to creating a prediction model.
- Research is being conducted to find the optimal breeding environment by monitoring the growth status of new varieties created by genome editing in plant factories. Research is also being conducted to find out the relationship between cultivation conditions and growth conditions and estimate the growth results.
- the genetically modified plant cultivation evaluation system described in Patent Document 1 includes an isolated cultivation field where plants are cultivated in a state isolated from the outside world, and between the manager of this isolated cultivation field and a genetically modified plant researcher. and a server system that collects and distributes information via this network.
- the server system has an isolated cultivation field management function that assigns an available isolated cultivation field or its section to a researcher, and a cultivation process for genetically modified plants in the isolated cultivation field or its section in use according to the instructions of the researcher. It also has a cultivation process management function for plants to be cultivated.
- the method of predicting the yield of crops described in Patent Document 2 includes inputting the value of the environmental factor into the relational expression of the environmental factor in the cultivation conditions of the crop and the light utilization efficiency of the crop, and calculating the value of the environmental factor. It includes a yield prediction step of calculating the value of the light use efficiency of the corresponding crop and predicting the yield of the crop from the calculated value of the light use efficiency of the crop. According to this method, in cultivation of crops, for example, cultivation of crops in a crop cultivation apparatus or a plant factory, optimization of cultivation conditions and prediction of yield can be performed easily and quickly.
- Patent Document 3 describes a characteristic estimation model generation device.
- This characteristic estimation model generating device generates a model for estimating the characteristic variables from the state variables representing the state of the analysis object and the characteristic variables representing the characteristics of the analysis object.
- This characteristic estimation model generation device includes a data output unit to which a state variable to be analyzed and a characteristic variable to be analyzed are input and which outputs analysis data; is used as an explanatory variable, a regression analysis with a regularization term is performed to generate a regression analysis unit that expresses the relationship between the objective variable and the explanatory variable, and the regression model and analysis data are set in advance.
- a characteristic estimation model generation unit that performs cross-validation up to the specified number of times of verification and generates a model having an optimal regularization term among the regression models as a characteristic estimation model, and data corresponding to the explanatory variables selected in the characteristic estimation model. is excluded from the analysis data as update data, and outputs the data to the data output unit as the analysis data for the next generation of the characteristic estimation model.
- This characteristic estimation model generation device repeats the updating of the analysis data and the generation of the characteristic estimation model using the updated data up to a preset number of repetitions. According to this characteristic estimation model generation device, it is possible to comprehensively extract state variables related to characteristic variables to be analyzed.
- Patent Document 3 also describes a characteristic estimation device that estimates the characteristics of an analysis target.
- This property estimation device outputs property estimation information, which is the result of estimating the property of an analysis target, by inputting gene expression information of an organism into the property estimation model generated by the property estimation model generation device. has a part.
- This characteristic estimation device can further include a state diagnosis unit that diagnoses the state of the organism using the characteristic estimation information.
- the artificial light type plant factory seed cohort phenotyping system described in Patent Document 4 includes an arithmetic/control unit, a data set input unit, a data storage, a machine learning unit, an image processing unit, a statistical data analysis unit, an association/causal It consists of a relation derivation calculation unit and an integrated control unit having a verification unit.
- the general control unit Based on the image information, environmental factor information, genetic characteristic information, and artificial operation information input from the data set input unit and stored in the data storage, the general control unit extracts the plant characteristic information in the growth process at the germination stage. We calculated the two-dimensional distribution of plant characteristics by continuously measuring with destruction, and continuously measured the physiological performance response of seeds sown in an environmentally controlled closed space during the germination period.
- Non-Patent Document 1 describes the isolation of the homologous gene (LsFT gene) in lettuce of the FLOWERING LOCUST (FT) gene, which is a flowering control gene isolated in many plants, and that the LsFT gene is a cDNA
- the translational region of (complementary DeoxyriboNucleic Acid) shows 74-84% homology at the amino acid level with FT-like genes of other plants such as Arabidopsis thaliana, and bolting is promoted in Arabidopsis thaliana overexpressing the LsFT gene.
- the expression level of the LsFT gene fluctuates during the day and increases with the differentiation and development of flower buds.
- the purpose of the present invention is to provide a technology that enables efficient breeding or selective breeding.
- a breeding system including one or more breeding devices, each of which grows one or more of a plurality of organisms respectively derived from a plurality of mutants.
- an environmental chamber an environmental control device for controlling the environment in the environmental chamber, and a growth status monitor device for monitoring the growth status of the living organism in the environmental chamber, wherein the one or more growing devices are adapted to each of the plurality of living organisms.
- a breeding system for breeding under different environments, and the breeding environment data and the growth condition data in each of the one or more breeding apparatuses are acquired from the breeding system, and the genome mutation data and the breeding environment data of the plurality of mutants are obtained.
- a machine learning model that generates teacher data from the growth status data and predicts the growth status or mutation occurrence status of the organism from the genome mutation and the growth environment, or predicts the genome mutation from the growth environment and the growth status of the organism. is learned with the teacher data, and the learned machine learning model is obtained as a prediction model.
- a predictive model creation system according to the first aspect, further comprising a genome editing device that generates the plurality of mutants by genome editing.
- a genome mutagenesis processing apparatus for generating a plurality of processed bodies containing the plurality of mutants by genome mutagenesis, and analyzing the genome mutation status of each of the plurality of processed bodies.
- a prediction model creation system according to the first aspect, further comprising a genome mutation status analysis device, is provided.
- a culturing system including one or more cultivating devices, each of which includes an environmental chamber for cultivating living organisms and an environment for controlling the environment in the environmental chamber. a control device; and a growth condition monitor device for monitoring the growth condition of the living organism in the environmental chamber, wherein the one or more cultivation devices are a cultivation system for growing the living organism under different environments, and the one or more cultivation devices.
- a genome mutation status analyzer for analyzing the genome mutation status of the living organism grown in each of the above; and a rearing environment in each of the plurality of rearing apparatuses, which acquires genome mutation status data from the genome mutation status analyzer from the rearing system.
- Data and growth status data are acquired, teacher data is generated from the genome mutation status data, the rearing environment data, and the growth status data, and the growth status or mutation occurrence status of the organism is predicted from the genome mutation and the rearing environment. or making a machine learning model for predicting genomic mutations based on the breeding environment and the growing conditions of the organism learn with the training data, and obtaining the learned machine learning model as a prediction model.
- a system is provided.
- each of a plurality of organisms derived from a plurality of mutants is raised in different environments, genomic mutation data is obtained for the plurality of mutants, and the Acquiring rearing environment data and growth condition data, generating teacher data from the genome mutation data, the rearing environment data, and the growth condition data, and estimating the growth condition or mutation occurrence condition of the organism from the genome mutation and the rearing environment.
- a method of making is provided.
- a sixth aspect of the present invention growing a living organism under different environments, analyzing the genome mutation status of the raised living organism, obtaining genomic mutation status data of the raised living organism, Acquiring rearing environment data and growth condition data, generating teacher data from the genome mutation condition data, the rearing environment data, and the growth condition data, and generating the growth condition or mutation occurrence condition of the organism from the genome mutation and the rearing environment. or train a machine learning model that predicts genomic mutations from the rearing environment and the growth status of the organism with the training data, and obtain the trained machine learning model as a prediction model. is provided.
- a prediction method comprising predicting a living organism's growth status or mutagenesis status or genome mutation using the prediction model generated by the creation method according to the fifth or sixth aspect. provided.
- a technology is provided that enables efficient breeding or selective breeding.
- FIG. 1 is a block diagram of a predictive model creation system according to a first embodiment of the present invention
- FIG. 2 is a flowchart of a predictive model creation method according to the first embodiment of the present invention
- FIG. 3 is a block diagram of a predictive model creation system according to a second embodiment of the present invention
- FIG. 4 is a flowchart of a predictive model creation method according to the second embodiment of the present invention
- FIG. 5 is a block diagram of a predictive model creation system according to a third embodiment of the present invention
- FIG. 6 is a flowchart of a predictive model creation method according to the third embodiment of the present invention
- FIG. 1 is a block diagram of a prediction model creation system according to a first embodiment of the present invention.
- the predictive model creation system 1A shown in FIG. 1 is a system that creates a predictive model for predicting the growth status or mutation occurrence status of plants.
- the predictive model creation system 1A includes a genome editing unit 10A, a seedling growing device 20, a growing system 40, and a processing device 50.
- the genome editing unit 10A includes a genome editing device 11A and an editing result recording device 12A.
- the genome editing device 11A generates multiple mutants with different genetic information by editing the genome of a living organism, here a plant.
- the genome editing apparatus 11A introduces a site-specific nuclease or the like into a cell, and uses this site-specific nuclease to cleave genomic DNA at an arbitrary position. It contains a mutagenesis device that causes repair errors such as deletion, substitution, and insertion of bases, or inserts a specific sequence as a fragment at the cut site.
- a mutagenesis device that causes repair errors such as deletion, substitution, and insertion of bases, or inserts a specific sequence as a fragment at the cut site.
- CRISPR Cirlic Regularly Interspaced Short Palindromic Repeats
- Cas9 Cas9
- ZFN Zinc-Finger Nuclease
- TALEN Transcription Activator-Like Effector Nuclease
- site-specific nucleases into plant cells is performed, for example, on plants, tissues such as shoot apical meristems, or callus.
- site-specific nucleases For introduction of site-specific nucleases into cells, for example, physical methods such as particle gun method and electroporation method can be used.
- the mutagenesis device includes a holder that holds the composite particles, and an airflow generator that supplies a high-speed airflow toward the holder to move the composite particles from the holder toward the cells at high speed.
- the composite particles are, for example, in the case of CRISPR / Cas9, a complex of Cas9 and sgRNA (single guide Ribonucleic Acid) carried on carrier particles.
- the airflow generator may include at least one of a pump and a gas cylinder.
- the mutagenesis apparatus may include a holder that holds a mixed solution containing cells, a site-specific nuclease, and the like, and an electrode that applies a voltage pulse to the mixed solution.
- site-specific nucleases etc. into cells.
- chemical techniques can be used to introduce site-specific nucleases into cells.
- site-specific nucleases and the like may be introduced into protoplasts whose cell walls have been treated with cell wall-degrading enzymes.
- a vector modified to produce a site-specific nuclease or the like for example, by infecting cells with a virus containing a vector modified to produce Cas9 and sgRNA, even if the site-specific nuclease or the like is produced in the cell good.
- the genome editing device 11A further includes an analysis device.
- the analyzer analyzes what kind of mutation has occurred in the genomic DNA in the mutagenesis device.
- the analysis device analyzes the sequence of genomic DNA mutated by the mutagenesis device.
- the editing result recording device 12A records the result of genome editing performed by the genome editing device 11A.
- the editing result recording device 12A records information including the analysis result by the analysis device. According to one example, this information includes information about the cleavage site, mutations occurring at the cleavage site, presence or absence of mutations other than the cleavage site, and mutations at positions other than the cleavage site, if any. . According to another example, this information records the sequence of the mutagenized genomic DNA.
- the editing result recording device 12A can include, for example, non-volatile storage devices such as hard disk drives and solid state drives.
- the seedling growing device 20 obtains seedlings from the mutants generated by the genome editing device 11A.
- the seedling growing device 20 can be omitted.
- the breeding system 40 includes one or more breeding devices 41 and an integrated control device 42 .
- the number n of growing devices 41 is preferably two or more. There is no upper limit to the number n.
- the breeding system 40 includes a plurality of breeding devices 41 .
- Each of the growing devices 41 includes a growing environmental chamber 410 , an environmental control device 420 , and a growing condition monitor device 430 .
- Each of the environmental chambers 410 nurtures one or more of the plurality of organisms 30 each derived from a plurality of mutants.
- the seedling growing device 20 can be omitted. Therefore, the living body 30 may be a seedling obtained in the seedling growing apparatus 20 or a mutant generated in the genome editing apparatus 11A.
- the environmental controllers 420 respectively control the environment in the environmental chamber 410 .
- the environmental controller 420 controls the luminous intensity of the light source illuminating the organism 30 within the environmental chamber 410, the temperature of the gas phase and/or liquid phase within the environmental chamber 410, the humidity within the environmental chamber 410, the It controls one or more of the liquid phase acidity and electrical conductivity, and water feed rate.
- Environmental controllers 420 may include one or more environmental conditioning devices such as light sources, heaters, coolers, humidifiers, dehumidifiers, pH adjusters, and water supplies.
- Environmental controller 420 may further include one or more of environmental monitoring devices such as light sensors, temperature sensors, humidity sensors, pH meters, conductivity meters, and flow meters.
- the growth condition monitor devices 430 respectively monitor the growth condition of the living body 30 in the environmental chamber 410 .
- the growth monitoring device 430 estimates the growth rate of the organism 30 by image analysis, or measures one or more of mass, photosynthetic rate, transpiration rate, respiration rate, CO2 application rate, and water absorption rate. or a combination thereof.
- Growth monitoring device 430 can include one or more of an image sensor, mass meter, photosynthetic rate meter, transpiration meter, respirometer, and flow meter.
- Each of the breeding devices 41 further includes a recording device (not shown).
- the recording device records at least one of the operation information of the environment adjustment device and the environmental information acquired by the environment monitor device, and the growth condition information acquired by the growth condition monitor device 430 .
- Storage devices may include, for example, non-volatile storage devices such as hard disk drives and solid state drives.
- the integrated controller 42 individually controls the operation of the environment controller 420 .
- the growing environment for the living body 30 can be made different between the growing devices 41 .
- the integrated control device 42 includes a processing unit, a main storage device, an auxiliary storage device, an input device, and an output device.
- the processing unit includes a central processing unit.
- the processing unit reads a program and receives commands and information sent from the input device.
- the main memory temporarily stores information to be processed, programs, calculation results, etc.
- the main memory includes volatile memory such as random access memory.
- the auxiliary storage device is a non-volatile storage device.
- the auxiliary storage device can store programs and various data for a long period of time.
- Secondary storage includes, for example, one or more of hard disk drives and solid state drives.
- the input device allows the operator to input training conditions to be set for each training device 41 .
- Input devices include, for example, one or more of a keyboard, mouse, and touch panel.
- the output device enables the operator to recognize the breeding conditions, etc. input by the operator.
- the output device may allow the operator to further recognize one or more of the operation information of the environment adjustment device, the environmental information acquired by the environment monitor device, and the growth situation information acquired by the growth situation monitor device 430.
- the output device is, for example, a display device such as a liquid crystal display device and an organic electroluminescence (EL) display device.
- each nurturing device 41 is provided with a control device for controlling the operation of its environment control device 420 .
- the processing device 50 uses machine learning, for example, deep learning, to create a prediction model for predicting the growth status of an organism from the genome mutation data, the growth environment data, and the growth status data based on the genome mutation data and the growth environment data. obtain.
- the processing device 50 includes a data acquisition unit 51 , a correlation analysis unit 52 , a prediction model creation unit 53 and a display/recording unit 54 . These will be detailed later.
- the processing device 50 can include, for example, a network device, a processing unit, a main storage device, an auxiliary storage device, and a display device.
- the network device enables wired or wireless connection of the processing device 50 to the editing result recording device 12A of the genome editing unit 10A and the recording device of the breeding device 41 .
- the processing unit includes a central processing unit. The processing unit reads the program and receives commands and information sent from the input device, and the processing unit performs arithmetic processing according to the program.
- the main memory temporarily stores information to be processed, programs, calculation results, and the like.
- the main memory includes volatile memory such as random access memory.
- Auxiliary storage is a non-volatile storage device.
- the auxiliary storage device can store programs and various data for a long period of time. Secondary storage includes, for example, one or more of hard disk drives and solid state drives.
- the display device is, for example, a liquid crystal display device or an organic EL display device.
- FIG. 2 is a flowchart of the prediction model creation method according to the first embodiment of the present invention.
- a method of generating a prediction model by the prediction model creation system 1A described with reference to FIG. 1 will be described.
- the genome editing device 11A generates a plurality of mutants with different genetic information by genome editing of a living organism, here a plant (step S1).
- the genome editing apparatus 11A may generate these mutants simultaneously or sequentially.
- the genome editing apparatus 11A sequentially generates mutants.
- the genome editing device 11A analyzes what kind of mutation occurred in the genomic DNA.
- the editing result recording device 12A records the results of genome editing performed by the genome editing device 11A.
- the seedling growing device 20 grows seedlings from each mutant (step S2).
- the seedling growing apparatus 20 may simultaneously grow seedlings derived from a plurality of mutants.
- the seedling growing apparatus 20 may sequentially grow seedlings derived from a plurality of mutants.
- the seedling growing apparatus 20 sequentially grows seedlings derived from a plurality of mutants. Note that step S2 can be omitted.
- the growing system 40 grows a plurality of living organisms 30 each derived from a plurality of mutants, here seedlings, under different environments (step S3).
- the growing system 40 grows the living body 30 from the beginning to the end of its growth.
- the nurturing system 40 nurtures the living organism 30 such that its life cycle is repeated.
- the breeding system 40 may simultaneously breed a plurality of living organisms 30 each derived from a plurality of mutants under different environments. Alternatively, the breeding system 40 may grow a living organism 30 derived from a certain mutant under a different environment, and then raise a living organism 30 derived from another mutant under a different environment. Here, as an example, the breeding system 40 breeds a living organism 30 derived from a certain mutant under a different environment, and then breeds a living organism 30 derived from another mutant under a different environment.
- the growth status monitor devices 430 monitor the growth status of the living body 30 in the environmental chamber 410 respectively.
- a recording device included in each growing device 41 records at least one of the operation information of the environment adjusting device and the environmental information acquired by the environment monitoring device, and the growing condition information acquired by the growing condition monitoring device 430 .
- the data acquisition unit 51 acquires genome mutation data from the genome editing device 11A via the editing result recording device 12A.
- the data acquisition unit 51 acquires at least one of the operation information and the environment information of the environment adjustment device and the growth status information, that is, the growth environment data and the growth status data, from the recording device included in the growth device 41 (step S4).
- the correlation analysis unit 52 statistically analyzes the correlation between the genome mutation data, the growth environment data, and the growth status data (step S5). This analysis is performed after genomic mutation data, growth environment data, and growth condition data are obtained for a plurality of organisms 30 each derived from a plurality of mutants.
- the correlation analysis unit 52 uses one or more variables contained in the growth status data as objective variables, and selects the feature quantities contained in the genome mutation data and the breeding environment data to be used as objective variables. For example, the correlation analysis unit 52 selects the feature amount that has the highest correlation with the growth of the organism 30 from among the feature amounts included in the genome mutation data and the growth environment data. Alternatively, the correlation analysis unit 52 selects the combination of these feature amounts that has the highest correlation with the growth of the living body 30 . The correlation analysis unit 52 generates teacher data including the explanatory variables and objective variables thus selected. Note that the selection of the feature amount may be performed by the operator based on the analysis result by the correlation analysis unit 52 .
- the predictive model creation unit 53 uses teacher data to learn a machine learning model that predicts the growth status of living organisms based on genomic mutations and the growing environment. As a result, the predictive model creation unit 53 obtains a learned machine learning model as a predictive model (step S6).
- the growth condition to be predicted includes, for example, the growth rate of at least some organs, traits, or both.
- the display/recording unit 54 records information about the prediction model obtained as described above, and displays at least part of it.
- the display/recording unit 54 can further display the result of prediction by the prediction model. For example, when the processing device 50 can predict the growth status of the living organism 30 from the genome mutation data and the virtual growth environment data before starting the growing of the living organism 30, the display/recording unit 54 displays the prediction result. can do.
- this predictive model can be used to automatically determine the optimal growing environment for the growth of organisms. Therefore, it is possible to efficiently grow living organisms.
- this prediction model it is also possible to estimate what kind of genome editing should be performed in order to achieve the desired growth situation for each breeding environment. This enables efficient breed improvement.
- a predictive model is used to predict the growth status of a living organism according to the breeding environment for multiple virtual mutants.
- those predicted to achieve desirable growth conditions under any growth environment are selected.
- genome editing that can produce the selected mutant is actually performed, and organisms derived from the resulting mutant are grown under the above-mentioned breeding environment, and it is confirmed whether the expected breeding situation is achieved. do.
- efficient breeding becomes possible.
- the generalized linear model cannot completely express the relationship between genome mutations caused by genome editing and growth conditions.
- the correlation between genomic mutation data, growth environment data, and growth status data is statistically analyzed, and, for example, two or more feature quantities are selected as explanatory variables. Therefore, prediction with high accuracy is possible.
- the machine learning model here predicts the growth status of an organism based on genome mutations and the growth environment. For example, when the living organism 30 is grown so that its life cycle is repeated, and when a mutation occurs in the living organism 30, it may be possible to confirm the occurrence of the mutation from the growth conditions. Therefore, the machine learning model may predict the state of mutagenesis in a living organism from genomic mutations and the breeding environment.
- FIG. 3 is a block diagram of a prediction model creation system according to a second embodiment of the present invention.
- the prediction model creation system 1B shown in FIG. 3 is the same as the prediction model creation system 1A described above, except that it includes a genome mutation induction processing unit 10B and a genome mutation status analysis unit 60 instead of the genome editing unit 10A. is.
- the genome mutation induction processing unit 10B includes a genome mutation induction processing device 11B and a mutation induction condition recording device 12B.
- the genome mutagenesis processing device 11B generates a plurality of processed objects by the genome mutagenesis processing on the object to be processed.
- the object to be processed is a living body or a part thereof.
- the object to be processed is a plant or a part thereof.
- the object to be processed is a plant body, a tissue such as a shoot apical meristem, or a callus.
- the genome mutagenesis apparatus 11B for example, irradiates the object with ultraviolet light or radiation to induce genome mutation in the object.
- the genome mutagenesis processor 11B includes an ultraviolet or radiation source.
- the mutagenesis condition recording device 12B records the conditions for genome mutagenesis in the genome mutagenesis processing device 11B.
- the mutagenesis condition recording device 12B records one or more of radiation source type, wavelength, energy, irradiation time, and irradiation dose.
- the mutagenesis condition recording device 12B can include, for example, non-volatile storage devices such as hard disk drives and solid state drives.
- the genome mutation analysis unit 60 includes a genome mutation analysis device 61 and an analysis result recording device 62.
- the genome mutation status analyzer 61 analyzes the genome mutation status of each processing object. That is, the genome mutation status analyzer 61 analyzes whether or not a genome mutation has occurred for each of the processed bodies. Then, the genome mutation status analyzer 61 analyzes what kind of mutation has occurred in the genomic DNA of at least the processing body that has undergone the genome mutation.
- the analysis result recording device 62 records the results of analysis by the genome mutation analysis device 61.
- Analysis results recording device 62 may include, for example, non-volatile storage devices such as hard disk drives and solid state drives.
- FIG. 4 is a flowchart of a predictive model creation method according to the second embodiment of the present invention.
- a method of generating a prediction model by the prediction model creation system 1B described with reference to FIG. 3 will be described.
- the genome mutagenesis processing device 11B generates a plurality of processed bodies by the genome mutagenesis treatment of the target object, here, a plant or a part thereof (step S7).
- the mutagenesis condition recording device 12B records the conditions for genome mutagenesis in the genome mutagenesis processing device 11B.
- the seedling growing apparatus 20 and the growing system 40 sequentially perform steps S2 to S4 in the same manner as the method described with reference to FIG. 2, except that the object to be processed is used instead of the mutant.
- the genome mutation status analyzer 61 analyzes the genome mutation status of each processing object (step S8).
- the analysis result recording device 62 records the results of analysis by the genome mutation analysis device 61 .
- the data acquisition unit 51 acquires genome mutation data from the genome mutation status analysis device 61 via the analysis result recording device 62 .
- the correlation analysis unit 52 statistically analyzes the correlation between the genome mutation data, the growth environment data, and the growth status data (step S9).
- Step S9 is the same as step S5 described with reference to FIGS. It is the same.
- the prediction model creation unit 53 performs step S6 described with reference to FIGS. 1 and 2.
- the display/recording unit 54 records information about the prediction model obtained as described above, and displays at least part of it.
- the display/recording unit 54 can further display the result of prediction by the prediction model. For example, when the processing device 50 can predict the growth status of the living organism 30 from the genome mutation data and the virtual growth environment data before starting the growing of the living organism 30, the display/recording unit 54 displays the prediction result. can do.
- this predictive model can be used to automatically determine the optimal growing environment for the growth of organisms. Therefore, it is possible to efficiently grow living organisms.
- the processing device 50 may further create a prediction model for predicting genomic mutation from genome mutagenesis processing conditions from the genome mutagenesis processing data and the genome mutation data.
- the genome mutagenesis processing data is acquired from the genome mutagenesis processor 11B via the mutagenesis condition recording device 12B. Use of this prediction model enables more efficient breeding.
- the machine learning model here predicts the growth status of an organism based on genome mutations and the growth environment. For example, when the living organism 30 is grown so that its life cycle is repeated, and when a mutation occurs in the living organism 30, it may be possible to confirm the occurrence of the mutation from the growth conditions. Therefore, the machine learning model may predict the state of mutagenesis in a living organism from genomic mutations and the breeding environment.
- FIG. 5 is a block diagram of a prediction model creation system according to a third embodiment of the present invention.
- the prediction model creation system 1C shown in FIG. 5 omits the genome mutation induction processing unit 10B, and the genome mutation status analysis unit 60 analyzes the genome mutation status of the living organism 30 grown in the breeding system 40. Other than that, it is the same as the prediction model creation system 1B described above.
- FIG. 6 is a flow chart of a prediction model creation method according to the third embodiment of the present invention.
- a method of generating a prediction model by the prediction model creation system 1C described with reference to FIG. 5 will be described.
- seedling growing apparatus 20 grows seedlings derived from a wild-type strain or a single mutant, except instead of growing seedlings derived from them from multiple mutants, see FIG. Step S2 described above is performed in the same manner as in the method described above.
- the training system 40 sequentially performs steps S3 and S4 in the same manner as the method described with reference to FIG.
- the cultivating system 40 nurtures the living organism 30 such that the life cycle of the living organism 30 is repeated in each cultivating device 41 .
- the genome mutation status analyzer 61 performs step S8 in the same manner as the method described with reference to FIG.
- the analysis result recording device 62 records the results of analysis by the genome mutation analysis device 61 .
- the data acquisition unit 51 acquires genome mutation status data from the genome mutation status analysis device 61 via the analysis result recording device 62 .
- the correlation analysis unit 52 statistically analyzes the correlation between the genome mutation status data, the growth environment data, and the growth status data, instead of statistically analyzing the correlation between the genome editing data, the growth environment data, and the growth status data. Except for this, step S9 similar to step S5 described with reference to FIGS. 1 and 2 is performed.
- the prediction model creation unit 53 performs step S6 described with reference to FIGS. 1 and 2.
- the display/recording unit 54 records information about the prediction model obtained as described above, and displays at least part of it.
- this predictive model can be used to automatically determine the optimal growing environment for the growth of organisms. Therefore, it is possible to efficiently grow living organisms.
- the processing device 50 may further create a prediction model that predicts the mutation occurrence status from the breeding environment, from the breeding environment data and the genome mutation state data.
- the machine learning model described above predicts the growth status of an organism based on genomic mutations and growth environment.
- the machine learning model may be one that predicts what kind of genomic mutation has occurred in the living organism from the nurturing environment and the growing conditions of the living organism.
- the genome mutagenesis processing device 11B may be omitted from the prediction model creation system 1B, and instead of generating a plurality of processed bodies by the genome mutagenesis processing, a library of mutants generated using transposons may be used.
- the organisms to be cultivated may be other than land plants.
- a water tank may be used as the environmental chamber 410 and algae, fish, shellfish, etc. may be grown as the living body 30 .
- the environmental control device 420 is provided with a water temperature sensor.
- the organisms to be raised may be animals or fungi.
- a seedling growing device is installed instead of the seedling growing device 20.
- the organism to be raised may be any organism having a genome, such as terrestrial plants, aquatic plants, terrestrial animals, and aquatic animals.
- Each device may also have a communication function, a recording function, a display function, a control function, and an arithmetic function, although they are not individually shown.
- Prediction model creation system 1B Prediction model creation system 1C
- Genome editing device 11B Genome mutagenesis processing device 12A
- Editing result recording device 12B Mutation induction condition recording device 20 Seedling growing device 30 Living body 40 Growing system 41 Growing device 42 Integrated control device 50 Processing device 51 Data acquisition unit 52 Correlation analysis unit 53 Prediction model creation unit 54 Display/ Recording unit 60 Genome mutation analysis unit 61 Genomic mutation analysis device 62 Analysis result recording device 410 Environment room 420 Environment control device 430 Growth monitor device
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Botany (AREA)
- Artificial Intelligence (AREA)
- Environmental Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Ecology (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Forests & Forestry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
効率的な育成又は品種改良を可能とする技術を提供する。予測モデル作成システム(1A)は、ゲノム編集装置(11A)と育成システム(40)と処理装置(50)とを含む。処理装置(50)は、ゲノム編集装置(11A)からゲノム編集データを取得し、育成システム(40)から各育成装置(410)における育成環境データ及び生育状況データを取得し、それらデータから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを教師データで学習させて、学習済みの機械学習モデルを予測モデルとして得る。
Description
本発明は、予測モデルの作成に関する。
ゲノム編集により作り出した新品種について、植物工場においてその生育状況をモニタして最適な育成環境を見つけ出す研究が行われている。また、栽培条件と生育状況との関係性を見つけ出し、育成結果を推定する研究も行われている。
例えば、特許文献1に記載された遺伝子改変植物の栽培評価システムは、植物を外界から隔離した状態で栽培する隔離栽培場と、この隔離栽培場の管理者と遺伝子改変植物の研究者との間の情報のやり取りを可能とするネットワークと、このネットワークを介して情報の収集及び配信を行なうサーバシステムとを有している。サーバシステムは、利用可能な隔離栽培場又はその区画を研究者に割り当てる隔離栽培場管理機能と、利用中の隔離栽培場又はその区画において遺伝子改変植物をその研究者の指示に従った栽培プロセスによって栽培させる植物の栽培プロセス管理機能とを有している。この栽培評価システムを利用することにより、依頼者である研究者が委託した遺伝子改変植物の現状を容易に確認でき、この隔離栽培場における効率的な遺伝子改変植物の栽培が可能となる。
特許文献2に記載された作物の収穫量を予測する方法は、作物の栽培条件における環境因子及び作物の光利用効率の関係式に、環境因子の値を入力して、この環境因子の値に対応する作物の光利用効率の値を算出し、算出した作物の光利用効率の値から作物の収穫量を予測する収穫量予測工程を含んでいる。この方法によると、作物の栽培、例えば、作物栽培装置又は植物工場における作物の栽培において、栽培条件の最適化及び収穫量の予測を簡便且つ迅速に行うことができる。
特許文献3には、特性推定モデル生成装置が記載されている。この特性推定モデル生成装置は、解析対象の状態を表す状態変数と、解析対象の特性を表す特性変数とから、特性変数を状態変数により推定するモデルを生成するものである。この特性推定モデル生成装置は、解析対象の状態変数と解析対象の特性変数とが入力され、解析用データとして出力するデータ出力部と、解析用データのうち、特性変数を目的変数とし、状態変数を説明変数として、正則化項を有する回帰分析を行うことで、目的変数と説明変数との関係を表す回帰モデルを生成する回帰分析部と、回帰モデルと解析用データを用いて、事前に設定された検証回数まで交差検証を行い、回帰モデルのうち最適な正則化項を有するモデルを、特性推定モデルとして生成する特性推定モデル生成部と、特性推定モデルにおいて選択された説明変数に対応するデータを解析用データから除外したデータを、更新データとして生成し、次回の特性推定モデル生成時の解析用データとしてデータ出力部へと出力する解析用データ更新部とを備えている。この特性推定モデル生成装置では、事前に設定された繰り返し回数まで、解析用データの更新と更新データを用いた特性推定モデルの生成とを繰り返す。この特性推定モデル生成装置によると、解析対象の特性変数に関連する状態変数を網羅的に抽出することができる。
また、特許文献3には、解析対象の特性を推定する特性推定装置も記載されている。この特性推定装置は、上記の特性推定モデル生成装置によって生成した特性推定モデルに、生物の遺伝子発現情報が入力されることで、解析対象の特性の推定結果である特性推定情報を出力する特性推定部を有している。この特性推定装置は、特性推定情報を用いて生物の状態を診断する状態診断部を更に備えることができる。
特許文献4に記載された人工光型植物工場種子コホートフェノタイピングシステムは、演算・制御部、データセット入力部、データ・ストレージ、機械学習部、画像処理部、統計的データ解析部、関連付け/因果関係導出計算部、及び検証部を有する統括制御部で構成される。統括制御部は、データセット入力部から入力してデータ・ストレージに格納された画像情報、環境要因情報、遺伝子特性情報、人為的操作情報に基づいて、発芽期の成長過程における植物特性情報を非破壊で連続的に計測して植物特性の2次元分布を計算し、環境制御された閉鎖空間に播種された種子の発芽期の生理性能的反応を連続的に計測するとともに、環境要因情報の2次元分布及び養液の温度、気温、飽差、養液率、pH、電気伝導度を連続的に計測する。これにより、植物工場での生産の自動化及びその種苗生産における種子選抜・育成作業の自動化の労力及び作業時間を低減し、発芽率の向上と均一な苗の生産とを可能とする。
非特許文献1には、レタスにおける抽苔制御に関連する遺伝子を特定し、その機能を明らかにすることにより、抽苔発生を抑制する先進的な栽培技術や晩抽性品種の開発に必要な基礎的知見を得ることを目的とした研究の成果が記載されている。非特許文献1には、多くの植物で単離されている花成制御遺伝子であるFLOWERING LOCUS T(FT)遺伝子のレタスにおける相同遺伝子(LsFT遺伝子)を単離したことと、LsFT遺伝子は、cDNA(complementary DeoxyriboNucleic Acid)の翻訳領域がシロイヌナズナなどの他の植物のFT様遺伝子とアミノ酸レベルで74乃至84%の相同性を示すことと、LsFT遺伝子を過剰発現させたシロイヌナズナでは抽苔が促進されることと、LsFT遺伝子の発現量は1日のなかで変動するとともに、花芽の分化・発達に伴い増加するという知見が得られたこととが示されている。
https://www.naro.go.jp/project/results/laboratory/vegetea/2011/113a4_10_04.html
本発明は、効率的な育成又は品種改良を可能とする技術を提供することを目的とする。
本発明の第1側面によると、1以上の育成装置を含んだ育成システムであって、前記1以上の育成装置の各々は、複数の変異体にそれぞれ由来する複数の生体の1以上を育成する環境室と、前記環境室内の環境を制御する環境制御装置と、前記環境室内の前記生体の生育状況を監視する生育状況モニタ装置と含み、前記1以上の育成装置は、前記複数の生体の各々を異なる環境下で育成する育成システムと、前記育成システムから前記1以上の育成装置の各々における育成環境データ及び生育状況データを取得し、前記複数の変異体のゲノム変異データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得る処理装置とを備えた予測モデル作成システムが提供される。
本発明の第2側面によると、ゲノム編集によって前記複数の変異体を生成するゲノム編集装置を更に備えた第1側面に係る予測モデル作成システムが提供される。
本発明の第3側面によると、ゲノム変異誘起処理によって前記複数の変異体を含んだ複数の処理体を生成するゲノム変異誘起処理装置と、前記複数の処理体の各々についてゲノム変異状況を分析するゲノム変異状況分析装置とを更に備えた第1側面に係る予測モデル作成システムが提供される。
本発明の第4側面によると、1以上の育成装置を含んだ育成システムであって、前記1以上の育成装置の各々は、生体を育成する環境室と、前記環境室内の環境を制御する環境制御装置と、前記環境室内の前記生体の生育状況を監視する生育状況モニタ装置と含み、前記1以上の育成装置は、前記生体を異なる環境下で育成する育成システムと、前記1以上の育成装置の各々で育成した前記生体についてゲノム変異状況を分析するゲノム変異状況分析装置と、前記ゲノム変異状況分析装置からゲノム変異状況データを取得し、前記育成システムから前記複数の育成装置の各々における育成環境データ及び生育状況データを取得し、前記ゲノム変異状況データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得る処理装置とを備えた予測モデル作成システムが提供される。
本発明の第5側面によると、複数の変異体にそれぞれ由来する複数の生体の各々を異なる環境下で育成することと、前記複数の変異体についてゲノム変異データを取得し、前記複数の生体の育成環境データ及び生育状況データを取得し、前記ゲノム変異データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得ることとを含んだ予測モデルの作成方法が提供される。
本発明の第6側面によると、生体を異なる環境下で育成することと、育成した前記生体についてゲノム変異状況を分析することと、育成した前記生体のゲノム変異状況データを取得し、前記生体の育成環境データ及び生育状況データを取得し、前記ゲノム変異状況データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得ることとを含んだ予測モデルの作成方法が提供される。
本発明の第7側面によると、第5又は第6側面に係る作成方法によって生成した前記予測モデルを使用して生体の育成状況若しくは突然変異発生状況又はゲノム変異を予測することを含む予測方法が提供される。
本発明によると、効率的な育成又は品種改良を可能とする技術が提供される。
以下に、本発明の実施形態について説明する。以下に説明する実施形態は、上記側面の何れかをより具体化したものである。以下に記載する事項は、単独で又は複数を組み合わせて、上記側面の各々に組み入れることができる。
<1>第1実施形態
図1は、本発明の第1実施形態に係る予測モデル作成システムのブロック図である。図1に示す予測モデル作成システム1Aは、植物の育成状況又は突然変異発生状況を予測するための予測モデルを生成するシステムである。予測モデル作成システム1Aは、ゲノム編集部10Aと、幼苗育成装置20と、育成システム40と、処理装置50とを含んでいる。
図1は、本発明の第1実施形態に係る予測モデル作成システムのブロック図である。図1に示す予測モデル作成システム1Aは、植物の育成状況又は突然変異発生状況を予測するための予測モデルを生成するシステムである。予測モデル作成システム1Aは、ゲノム編集部10Aと、幼苗育成装置20と、育成システム40と、処理装置50とを含んでいる。
ゲノム編集部10Aは、ゲノム編集装置11Aと編集結果記録装置12Aとを含んでいる。
ゲノム編集装置11Aは、生体、ここでは植物のゲノム編集によって、遺伝情報が異なる複数の変異体を生成する。
ゲノム編集装置11Aは、部位特異的ヌクレアーゼ等を細胞へ導入して、この部位特異的ヌクレアーゼを利用して任意の位置でのゲノムDNAの切断を生じさせるとともに、その修復の際に、切断位置で塩基の欠損、置換及び挿入などの修復エラーを生じさせるか、又は、切断位置に特定の配列を断片として挿入させる変異誘導装置を含んでいる。この切断には、例えば、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9(Crispr ASsociated protein 9)、ZFN(Zinc-Finger Nuclease)、又はTALEN(Transcription Activator-Like EffectorNuclease)を利用することができる。
部位特異的ヌクレアーゼ等の植物細胞への導入は、例えば、植物体、茎頂分裂組織などの組織、又はカルスに対して行う。
部位特異的ヌクレアーゼ等の細胞への導入には、例えば、パーティクルガン法及び電気穿孔法などの物理的手法を利用することができる。
パーティクルガン法では、金粒子などの担体粒子と、これに担持された部位特異的ヌクレアーゼ等とを含んだ複合粒子を、例えば高圧ガスを使用して細胞へ向けて射出し、これにより、部位特異的ヌクレアーゼ等を細胞内へ導入する。この場合、変異誘導装置は、複合粒子を保持する保持体と、この保持体へ向けて高速気流を供給して、複合粒子を保持体から細胞へ向けて高速で移動させる気流発生装置とを含み得る。ここで、複合粒子は、例えば、CRISPR/Cas9の場合には、Cas9とsgRNA(single guide Ribonucleic Acid)との複合体を担体粒子に担持させたものである。気流発生装置は、ポンプ及びガスボンベの少なくとも一方を含み得る。
電気穿孔法では、細胞分散液を、部位特異的ヌクレアーゼ等を含んだ液と混合し、この混合液へ電圧パルスを印加する。これにより、細胞壁に孔を穿ち、部位特異的ヌクレアーゼ等の細胞内への導入を可能とする。この場合、変異誘導装置は、細胞と部位特異的ヌクレアーゼ等とを含んだ混合液を保持する保持体と、混合液へ電圧パルスを印加する電極とを含み得る。
部位特異的ヌクレアーゼ等の細胞への導入には、他の方法を利用してもよい。例えば、部位特異的ヌクレアーゼ等の細胞への導入には、化学的手法を利用することもできる。例えば、部位特異的ヌクレアーゼ等は、細胞壁を細胞壁分解酵素で処理したプロトプラストへ導入してもよい。或いは、部位特異的ヌクレアーゼ等を産生するよう改変したベクター、例えば、Cas9及びsgRNAを産生するよう改変したベクターを含んだウイルスを細胞に感染させ、細胞内で部位特異的ヌクレアーゼ等を産生させてもよい。
ゲノム編集装置11Aは、解析装置を更に含んでいる。解析装置は、変異誘導装置においてゲノムDNAにどのような変異を生じたかを解析する。例えば、解析装置は、変異誘導装置において変異を導入したゲノムDNAの配列を解析する。
編集結果記録装置12Aは、ゲノム編集装置11Aが行ったゲノム編集の結果を記録する。編集結果記録装置12Aは、例えば、編集結果記録装置12Aは、解析装置による解析結果を含んだ情報を記録する。一例によれば、この情報は、切断位置、切断位置で生じた変異、切断位置以外で生じた変異の有無、及び、切断位置以外で変異を生じた場合にはその位置における変異に関する情報を含む。他の例によれば、この情報は、変異を導入したゲノムDNAの配列を記録する。編集結果記録装置12Aは、例えば、ハードディスクドライブ及びソリッドステートドライブなどの不揮発性記憶装置を含むことができる。
幼苗育成装置20は、ゲノム編集装置11Aにおいて生成した変異体から幼苗を得る。幼苗育成装置20は省略することができる。
育成システム40は、1以上の育成装置41と統合制御装置42とを含んでいる。
育成装置41の数nは、好ましくは2以上である。数nに上限値はない。ここでは、一例として、育成システム40は複数の育成装置41を含んでいるとする。
育成装置41の数nは、好ましくは2以上である。数nに上限値はない。ここでは、一例として、育成システム40は複数の育成装置41を含んでいるとする。
育成装置41の各々は、育成用の環境室410と、環境制御装置420と、生育状況モニタ装置430とを含んでいる。
環境室410の各々は、複数の変異体にそれぞれ由来する複数の生体30の1以上を育成する。上記の通り、幼苗育成装置20は省略することができる。従って、生体30は、幼苗育成装置20において得られた幼苗であってもよく、ゲノム編集装置11Aにおいて生成した変異体であってもよい。
環境制御装置420は、それぞれ、環境室410における環境を制御する。一例によれば、環境制御装置420は、環境室410内の生体30を照明する光源の光度、環境室410内の気相及び/又は液相の温度、環境室410内の湿度、環境室410内の液相の酸性度及び電気伝導度、並びに給水速度の1以上を制御する。環境制御装置420は、光源、ヒータ、クーラ、加湿器、除湿器、pH調整器、及び給水装置などの環境調整装置の1以上を含むことができる。環境制御装置420は、光センサ、温度センサ、湿度センサ、pH測定器、導電率計、及び流量計などの環境モニタ装置の1以上を更に含むことができる。
生育状況モニタ装置430は、それぞれ、環境室410における生体30の生育状況を監視する。一例によれば、生育状況モニタ装置430は、生体30の成長度合いを、画像解析で推定するか、質量、光合成速度、蒸散速度、呼吸速度、CO2施用速度、及び吸水速度の1以上を測定するか、又は、それらを組み合わせることにより監視する。生育状況モニタ装置430は、イメージセンサ、質量計、光合成速度測定装置、蒸散測定器、呼吸速度計、及び流量計の1以上を含むことができる。
育成装置41の各々は、図示しない記録装置を更に含んでいる。記録装置は、環境調整装置の動作情報及び環境モニタ装置が取得した環境情報の少なくとも一方と、生育状況モニタ装置430が取得した生育状況情報とを記録する。記録装置は、例えば、ハードディスクドライブ及びソリッドステートドライブなどの不揮発性記憶装置を含むことができる。
統合制御装置42は、環境制御装置420の動作を個別に制御する。統合制御装置42が、育成装置41間で環境制御装置420の動作を異ならしめることにより、生体30の育成環境を育成装置41間で異ならしめることができる。
統合制御装置42は、処理部と、主記憶装置と、補助記憶装置と、入力装置と、出力装置とを含んでいる。
処理部は、中央処理装置を含んでいる。処理部は、プログラムを読み込むとともに、入力装置から送出された指令及び情報を受け取り、処理部は、プログラムに従って演算処理を行い、環境制御装置420の動作を制御する。
主記憶装置は、処理すべき情報、プログラム及び演算結果等を一時的に記憶する。主記憶装置は、ランダムアクセスメモリなどの揮発性メモリを含んでいる。
補助記憶装置は、不揮発性の記憶装置である。補助記憶装置は、プログラム及び各種データを長期的に記憶可能である。補助記憶装置は、例えば、ハードディスクドライブ及びソリッドステートドライブの1以上を含む。
入力装置は、育成装置41の各々について設定すべき育成条件を、オペレータが入力可能とするものである。入力装置は、例えば、キーボード、マウス、及びタッチパネルの1以上を含む。
出力装置は、オペレータが入力した育成条件等を、オペレータが認識可能とするものである。出力装置は、環境調整装置の動作情報、環境モニタ装置が取得した環境情報、及び生育状況モニタ装置430が取得した生育状況情報の1以上を、オペレータが更に認識可能とするものであってもよい。出力装置は、例えば、液晶表示装置及び有機エレクトロルミネッセンス(EL)表示装置などの表示装置である。
統合制御装置42は、省略することができる。この場合、育成装置41の各々に、その環境制御装置420の動作を制御する制御装置を設ける。
処理装置50は、後述するように、機械学習、例えば、ディープラーニングによって、ゲノム変異データと育成環境データと生育状況データとから、ゲノム変異と育成環境とから生体の生育状況を予測する予測モデルを得る。処理装置50は、データ取得部51と、相関解析部52と、予測モデル作成部53と、表示・記録部54とを含んでいる。これらについては、後で詳述する。
処理装置50は、例えば、ネットワーク装置と、処理部と、主記憶装置と、補助記憶装置と、表示装置とを含むことができる。ネットワーク装置は、処理装置50をゲノム編集部10Aの編集結果記録装置12A及び育成装置41の記録装置へ有線又は無線接続可能とする。処理部は、中央処理装置を含んでいる。処理部は、プログラムを読み込むとともに、入力装置から送出された指令及び情報を受け取り、処理部は、プログラムに従って演算処理を行う。主記憶装置は、処理すべき情報、プログラム及び演算結果等を一時的に記憶する。主記憶装置は、ランダムアクセスメモリなどの揮発性メモリを含んでいる。補助記憶装置は、不揮発性の記憶装置である。補助記憶装置は、プログラム及び各種データを長期的に記憶可能である。補助記憶装置は、例えば、ハードディスクドライブ及びソリッドステートドライブの1以上を含む。表示装置は、例えば、液晶表示装置又は有機EL表示装置などの表示装置である。
図2は、本発明の第1実施形態に係る予測モデル作成方法のフローチャートである。以下、図2の方法の一例として、図1を参照しながら説明した予測モデル作成システム1Aによって予測モデルを生成する方法を説明する。
先ず、ゲノム編集装置11Aは、生体、ここでは植物のゲノム編集によって、遺伝情報が異なる複数の変異体を生成する(ステップS1)。ゲノム編集装置11Aは、これら変異体を、同時に生成してもよく、順次生成してもよい。ここでは、一例として、ゲノム編集装置11Aは、変異体を順次生成することとする。
ゲノム編集装置11Aは、ゲノムDNAにどのような変異を生じたかを解析する。編集結果記録装置12Aは、ゲノム編集装置11Aが行ったゲノム編集の結果を記録する。
次に、幼苗育成装置20は、各変異体から幼苗を育成する(ステップS2)。幼苗育成装置20は、複数の変異体から、それらに由来する幼苗を同時に育成してもよい。或いは、幼苗育成装置20は、複数の変異体から、それらに由来する幼苗を順次育成してもよい。ここでは、一例として、幼苗育成装置20は、複数の変異体から、それらに由来する幼苗を順次育成することとする。なお、ステップS2は省略することができる。
次に、育成システム40は、複数の変異体にそれぞれ由来する複数の生体30、ここでは幼苗の各々を異なる環境下で育成する(ステップS3)。例えば、育成システム40は、生体30を、その生育の初期から終期まで育成する。或いは、育成システム40は、生体30を、そのライフサイクルが繰り返されるように育成する。
育成システム40は、複数の変異体にそれぞれ由来する複数の生体30の各々を異なる環境下で同時に育成してもよい。或いは、育成システム40は、或る変異体に由来する生体30を異なる環境下で育成し、その後、他の変異体に由来する生体30を異なる環境下で育成してもよい。ここでは、一例として、育成システム40は、或る変異体に由来する生体30を異なる環境下で育成し、その後、他の変異体に由来する生体30を異なる環境下で育成することとする。
生育状況モニタ装置430は、それぞれ、環境室410における生体30の生育状況を監視する。育成装置41の各々が含んでいる記録装置は、環境調整装置の動作情報及び環境モニタ装置が取得した環境情報の少なくとも一方と、生育状況モニタ装置430が取得した生育状況情報とを記録する。
データ取得部51は、ゲノム編集装置11Aから編集結果記録装置12Aを介してゲノム変異データを取得する。データ取得部51は、育成装置41が含んでいる記録装置から、環境調整装置の動作情報及び環境情報の少なくとも一方と生育状況情報とを、即ち、育成環境データ及び生育状況データを取得する(ステップS4)。
相関解析部52は、ゲノム変異データと育成環境データと生育状況データとの相関を統計的に解析する(ステップS5)。この解析は、複数の変異体にそれぞれ由来する複数の生体30について、ゲノム変異データと育成環境データと生育状況データとが得られた後に行う。
相関解析部52は、生育状況データが含んでいる1以上の変数を目的変数とし、ゲノム変異データ及び育成環境データが含んでいる特徴量から、目的変数として利用するものを選択する。例えば、相関解析部52は、ゲノム変異データ及び育成環境データが含んでいる特徴量のうち、生体30の生育との相関が最も高いものを選択する。或いは、相関解析部52は、これら特徴量の組み合わせの中から、生体30の生育との相関が最も高いものを選択する。相関解析部52は、このようにして選択した説明変数と目的変数とを含んだ教師データを生成する。なお、特徴量の選択は、相関解析部52による解析結果に基づいてオペレータが行ってもよい。
予測モデル作成部53は、ゲノム変異と育成環境とから生体の生育状況を予測する機械学習モデルを教師データで学習させる。これにより、予測モデル作成部53は、学習済みの機械学習モデルを予測モデルとして得る(ステップS6)。ここで、予測すべき生育状況は、例えば、少なくとも一部の器官の成長速度、形質、又はそれらの双方を含む。
表示・記録部54は、上記のようにして得られた予測モデルに関する情報を記録するとともに、その少なくとも一部を表示する。表示・記録部54は、予測モデルによる予測の結果を更に表示することができる。例えば、処理装置50が生体30の育成を開始する前に、ゲノム変異データと仮想の育成環境データとから生体30の育成状況を予測し得る場合、表示・記録部54は、その予測結果を表示することができる。
このようにして得られた予測モデルを使用すると、例えば、新規な変異体について、育成環境に応じた生体の生育状況を予測することができる。それ故、この生体の生育に最適な育成環境の決定が容易になる。例えば、この予測モデルを使用して、生体の生育に最適な育成環境を自動で決定することもできる。従って、生体の効率的な育成が可能になる。
或いは、この予測モデルを使用すると、望ましい生育状況を実現するためにどのようなゲノム編集を行うべきかを、育成環境毎に推定することも可能である。これにより、効率的な品種改良が可能になる。
例えば、先ず、予測モデルを使用して、仮想上の複数の変異体について、育成環境に応じた生体の生育状況を予測する。次に、これら仮想上の変異体の中から、何れかの育成環境下で望ましい生育状況を達成すると予測されたものを選択する。そして、選択した変異体を生じ得るゲノム編集を実際に行い、それによって得られた変異体に由来する生体について、上記の育成環境下で育成して、予想通りの育成状況が達成されるか確認する。例えば、このような手順で予測と検証とを行うことにより、効率的な品種改良が可能になる。
また、ゲノム編集によって生じさせたゲノム変異と生育状況との関係等は、一般化線形モデルでは完全には表現できない。上記の予測モデルの作成では、ゲノム変異データと育成環境データと生育状況データとの相関を統計的に解析して、例えば、2以上の特徴量を説明変数として選択する。それ故、高い精度での予測が可能である。
なお、ここでは、機械学習モデルは、ゲノム変異と育成環境とから生体の生育状況を予測するものである。例えば、生体30をそのライフサイクルが繰り返されるように育成した場合であって、生体30に突然変異が発生したときには、その生育状況から、突然変異が発生したことを確認できることがある。従って、機械学習モデルは、ゲノム変異と育成環境とから生体の突然変異発生状況を予測するものであってもよい。
<2>第2実施形態
図3は、本発明の第2実施形態に係る予測モデル作成システムのブロック図である。
図3に示す予測モデル作成システム1Bは、ゲノム編集部10Aの代わりに、ゲノム変異誘起処理部10Bとゲノム変異状況分析部60とを含んでいること以外は、上述した予測モデル作成システム1Aと同様である。
図3は、本発明の第2実施形態に係る予測モデル作成システムのブロック図である。
図3に示す予測モデル作成システム1Bは、ゲノム編集部10Aの代わりに、ゲノム変異誘起処理部10Bとゲノム変異状況分析部60とを含んでいること以外は、上述した予測モデル作成システム1Aと同様である。
ゲノム変異誘起処理部10Bは、ゲノム変異誘起処理装置11Bと変異誘起条件記録装置12Bとを含んでいる。
ゲノム変異誘起処理装置11Bは、被処理体へのゲノム変異誘起処理によって複数の処理体を生成する。被処理体は、生体又はその一部である。ここでは、一例として、被処理体は植物又はその一部であるとする。一例によれば、被処理体は、植物体、茎頂分裂組織などの組織、又はカルスである。ゲノム変異誘起処理装置11Bは、例えば、被処理体へ紫外線又は放射線を照射することにより、被処理体におけるゲノム変異を誘起する。この場合、ゲノム変異誘起処理装置11Bは、紫外線又は放射線源を含む。
変異誘起条件記録装置12Bは、ゲノム変異誘起処理装置11Bにおけるゲノム変異誘起処理の条件を記録する。例えば、変異誘起条件記録装置12Bは、線源の種類、波長、エネルギー、照射時間、及び照射量の1以上を記録する。変異誘起条件記録装置12Bは、例えば、ハードディスクドライブ及びソリッドステートドライブなどの不揮発性記憶装置を含むことができる。
ゲノム変異状況分析部60は、ゲノム変異状況分析装置61と分析結果記録装置62とを含んでいる。
ゲノム変異状況分析装置61は、処理体の各々についてゲノム変異状況を分析する。即ち、ゲノム変異状況分析装置61は、処理体の各々について、ゲノム変異を生じたか否かを分析する。そして、ゲノム変異状況分析装置61は、少なくともゲノム変異を生じた処理体について、ゲノムDNAにどのような変異を生じたかを解析する。
分析結果記録装置62は、ゲノム変異状況分析装置61による分析の結果を記録する。分析結果記録装置62は、例えば、ハードディスクドライブ及びソリッドステートドライブなどの不揮発性記憶装置を含むことができる。
図4は、本発明の第2実施形態に係る予測モデル作成方法のフローチャートである。以下、図4の方法の一例として、図3を参照しながら説明した予測モデル作成システム1Bによって予測モデルを生成する方法を説明する。
先ず、ゲノム変異誘起処理装置11Bは、被処理体、ここでは植物又はその一部へのゲノム変異誘起処理によって複数の処理体を生成する(ステップS7)。変異誘起条件記録装置12Bは、ゲノム変異誘起処理装置11Bにおけるゲノム変異誘起処理の条件を記録する。
次に、幼苗育成装置20及び育成システム40は、変異体の代わりに被処理体を使用すること以外は図2を参照しながら説明した方法と同様に、ステップS2乃至S4を順次実施する。
ゲノム変異状況分析装置61は、処理体の各々についてゲノム変異状況を分析する(ステップS8)。分析結果記録装置62は、ゲノム変異状況分析装置61による分析の結果を記録する。データ取得部51は、ゲノム変異状況分析装置61から分析結果記録装置62を介してゲノム変異データを取得する。
相関解析部52は、ゲノム変異データと育成環境データと生育状況データとの相関を統計的に解析する(ステップS9)。ステップS9は、データ取得部51がゲノム変異データを編集結果記録装置12Aから取得する代わりに、分析結果記録装置62から取得すること以外は、図1及び図2を参照しながら説明したステップS5と同様である。
予測モデル作成部53は、図1及び図2を参照しながら説明したステップS6を実施する。表示・記録部54は、上記のようにして得られた予測モデルに関する情報を記録するとともに、その少なくとも一部を表示する。表示・記録部54は、予測モデルによる予測の結果を更に表示することができる。例えば、処理装置50が生体30の育成を開始する前に、ゲノム変異データと仮想の育成環境データとから生体30の育成状況を予測し得る場合、表示・記録部54は、その予測結果を表示することができる。
このようにして得られた予測モデルを使用すると、例えば、新規な変異体について、育成環境に応じた生体の生育状況を予測することができる。それ故、生体の生育に最適な育成環境の決定が容易になる。例えば、この予測モデルを使用して、生体の生育に最適な育成環境を自動で決定することもできる。従って、生体の効率的な育成が可能になる。
或いは、この予測モデルを使用すると、望ましい生育状況を実現するためにどのようなゲノム変異を生じさせるべきかを、育成環境毎に推定することも可能である。これにより、効率的な品種改良が可能になる。
処理装置50は、ゲノム変異誘起処理データとゲノム変異データとから、ゲノム変異誘起処理条件からゲノム変異を予測する予測モデルを更に作成してもよい。ここで、ゲノム変異誘起処理データは、ゲノム変異誘起処理装置11Bから変異誘起条件記録装置12Bを介して取得する。この予測モデルを利用すると、更に効率的な品種改良が可能になる。
なお、ここでは、機械学習モデルは、ゲノム変異と育成環境とから生体の生育状況を予測するものである。例えば、生体30をそのライフサイクルが繰り返されるように育成した場合であって、生体30に突然変異が発生したときには、その生育状況から、突然変異が発生したことを確認できることがある。従って、機械学習モデルは、ゲノム変異と育成環境とから生体の突然変異発生状況を予測するものであってもよい。
<3>第3実施形態
図5は、本発明の第3実施形態に係る予測モデル作成システムのブロック図である。
図5に示す予測モデル作成システム1Cは、ゲノム変異誘起処理部10Bを省略し、ゲノム変異状況分析部60が、育成システム40において育成した生体30に対してゲノム変異状況の分析を行うものであること以外は、上述した予測モデル作成システム1Bと同様である。
図5は、本発明の第3実施形態に係る予測モデル作成システムのブロック図である。
図5に示す予測モデル作成システム1Cは、ゲノム変異誘起処理部10Bを省略し、ゲノム変異状況分析部60が、育成システム40において育成した生体30に対してゲノム変異状況の分析を行うものであること以外は、上述した予測モデル作成システム1Bと同様である。
図6は、本発明の第3実施形態に係る予測モデル作成方法のフローチャートである。以下、図6の方法の一例として、図5を参照しながら説明した予測モデル作成システム1Cによって予測モデルを生成する方法を説明する。
先ず、幼苗育成装置20は、複数の変異体からそれらに由来する幼苗を育成する代わりに、野生型株又は単一の変異体からそれに由来する幼苗を育成すること以外は、図2を参照しながら説明した方法と同様に、上述したステップS2を実施する。
育成システム40は、図2を参照しながら説明した方法と同様に、ステップS3及びS4を順次実施する。好ましくは、育成システム40は、各育成装置41において生体30のライフサイクルが繰り返されるように、生体30を育成する。
ゲノム変異状況分析装置61は、図4を参照しながら説明した方法と同様に、ステップS8を実施する。分析結果記録装置62は、ゲノム変異状況分析装置61による分析の結果を記録する。データ取得部51は、ゲノム変異状況分析装置61から分析結果記録装置62を介してゲノム変異状況データを取得する。
相関解析部52は、ゲノム編集データと育成環境データと生育状況データとの相関を統計的に解析する代わりに、ゲノム変異状況データと育成環境データと生育状況データとの相関を統計的に解析すること以外は、図1及び図2を参照しながら説明したステップS5と同様のステップS9を実施する。
予測モデル作成部53は、図1及び図2を参照しながら説明したステップS6を実施する。表示・記録部54は、上記のようにして得られた予測モデルに関する情報を記録するとともに、その少なくとも一部を表示する。
このようにして得られた予測モデルを使用すると、例えば、新規な変異体について、育成環境に応じた生体の生育状況を予測することができる。それ故、生体の生育に最適な育成環境の決定が容易になる。例えば、この予測モデルを使用して、生体の生育に最適な育成環境を自動で決定することもできる。従って、生体の効率的な育成が可能になる。
或いは、この予測モデルを使用すると、望ましい生育状況を実現するためにどのようなゲノム変異を生じさせるべきかを、育成環境毎に推定することも可能である。これにより、効率的な品種改良が可能になる。
処理装置50は、育成環境データとゲノム変異状況データとから、育成環境から突然変異発生状況を予測する予測モデルを更に作成してもよい。
<4>変形例
第1乃至第3実施形態には、様々な変形が可能である。
例えば、上記の機械学習モデルは、ゲノム変異と育成環境とから生体の生育状況を予測するものである。機械学習モデルは、育成環境と生体の生育状況とから、その生体にどのようなゲノム変異を生じているかを予測するものであってもよい。
第1乃至第3実施形態には、様々な変形が可能である。
例えば、上記の機械学習モデルは、ゲノム変異と育成環境とから生体の生育状況を予測するものである。機械学習モデルは、育成環境と生体の生育状況とから、その生体にどのようなゲノム変異を生じているかを予測するものであってもよい。
予測モデル作成システム1Bからゲノム変異誘起処理装置11Bを省略し、ゲノム変異誘起処理によって複数の処理体を生成する代わりに、トランスポゾンを用いて生成した変異体のライブラリを使用してもよい。
育成すべき生体は、陸上植物以外であってもよい。例えば、環境室410として水槽を使用し、生体30として藻類、魚類及び貝類等を育成してもよい。この場合、環境制御装置420には、水温センサを設ける。
育成すべき生体は、動物や菌類であってもよい。この場合、幼苗育成装置20の代わりに、幼体育成装置を設置する。
このように、育成すべき生体は、陸上植物、水生植物、陸上動物、及び水生動物などの、ゲノムを有する何れの生物であってもよい。
なお、本発明は、以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形及び組み合わせを実施可能であることは明白である。また、各装置には、個々に明示していないが、通信機能、記録機能、表示機能、制御機能、及び演算機能が付随していてもよい。
1A…予測モデル作成システム
1B…予測モデル作成システム
1C…予測モデル作成システム
10A…ゲノム編集部
10B…ゲノム変異誘起処理部
11A…ゲノム編集装置
11B…ゲノム変異誘起処理装置
12A…編集結果記録装置
12B…変異誘起条件記録装置
20…幼苗育成装置
30…生体
40…育成システム
41…育成装置
42…統合制御装置
50…処理装置
51…データ取得部
52…相関解析部
53…予測モデル作成部
54…表示・記録部
60…ゲノム変異状況分析部
61…ゲノム変異状況分析装置
62…分析結果記録装置
410…環境室
420…環境制御装置
430…生育状況モニタ装置
1B…予測モデル作成システム
1C…予測モデル作成システム
10A…ゲノム編集部
10B…ゲノム変異誘起処理部
11A…ゲノム編集装置
11B…ゲノム変異誘起処理装置
12A…編集結果記録装置
12B…変異誘起条件記録装置
20…幼苗育成装置
30…生体
40…育成システム
41…育成装置
42…統合制御装置
50…処理装置
51…データ取得部
52…相関解析部
53…予測モデル作成部
54…表示・記録部
60…ゲノム変異状況分析部
61…ゲノム変異状況分析装置
62…分析結果記録装置
410…環境室
420…環境制御装置
430…生育状況モニタ装置
Claims (7)
- 1以上の育成装置を含んだ育成システムであって、前記1以上の育成装置の各々は、複数の変異体にそれぞれ由来する複数の生体の1以上を育成する環境室と、前記環境室内の環境を制御する環境制御装置と、前記環境室内の前記生体の生育状況を監視する生育状況モニタ装置と含み、前記1以上の育成装置は、前記複数の生体の各々を異なる環境下で育成する育成システムと、
前記育成システムから前記1以上の育成装置の各々における育成環境データ及び生育状況データを取得し、前記複数の変異体のゲノム変異データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得る処理装置と
を備えた予測モデル作成システム。 - ゲノム編集によって前記複数の変異体を生成するゲノム編集装置を更に備えた請求項1に記載の予測モデル作成システム。
- ゲノム変異誘起処理によって前記複数の変異体を含んだ複数の処理体を生成するゲノム変異誘起処理装置と、
前記複数の処理体の各々についてゲノム変異状況を分析するゲノム変異状況分析装置と
を更に備えた請求項1に記載の予測モデル作成システム。 - 1以上の育成装置を含んだ育成システムであって、前記1以上の育成装置の各々は、生体を育成する環境室と、前記環境室内の環境を制御する環境制御装置と、前記環境室内の前記生体の生育状況を監視する生育状況モニタ装置と含み、前記1以上の育成装置は、前記生体を異なる環境下で育成する育成システムと、
前記1以上の育成装置の各々で育成した前記生体についてゲノム変異状況を分析するゲノム変異状況分析装置と、
前記ゲノム変異状況分析装置からゲノム変異状況データを取得し、前記育成システムから前記1以上の育成装置の各々における育成環境データ及び生育状況データを取得し、前記ゲノム変異状況データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得る処理装置と
を備えた予測モデル作成システム。 - 複数の変異体にそれぞれ由来する複数の生体の各々を異なる環境下で育成することと、
前記複数の変異体についてゲノム変異データを取得し、前記複数の生体の育成環境データ及び生育状況データを取得し、前記ゲノム変異データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得ることと
を含んだ予測モデルの作成方法。 - 生体を異なる環境下で育成することと、
育成した前記生体についてゲノム変異状況を分析することと、
育成した前記生体のゲノム変異状況データを取得し、前記生体の育成環境データ及び生育状況データを取得し、前記ゲノム変異状況データと前記育成環境データと前記生育状況データとから教師データを生成し、ゲノム変異と育成環境とから生体の生育状況若しくは突然変異発生状況を予測するか又は育成環境と生体の生育状況とからゲノム変異を予測する機械学習モデルを前記教師データで学習させて、学習済みの前記機械学習モデルを予測モデルとして得ることと
を含んだ予測モデルの作成方法。 - 請求項5又は6に記載の作成方法によって生成した前記予測モデルを使用して生体の育成状況若しくは突然変異発生状況又はゲノム変異を予測することを含む予測方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/042617 WO2023089775A1 (ja) | 2021-11-19 | 2021-11-19 | 予測モデル作成システム、予測モデルの作成方法、及び予測方法 |
JP2023562051A JPWO2023089775A1 (ja) | 2021-11-19 | 2021-11-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/042617 WO2023089775A1 (ja) | 2021-11-19 | 2021-11-19 | 予測モデル作成システム、予測モデルの作成方法、及び予測方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023089775A1 true WO2023089775A1 (ja) | 2023-05-25 |
Family
ID=86396453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/042617 WO2023089775A1 (ja) | 2021-11-19 | 2021-11-19 | 予測モデル作成システム、予測モデルの作成方法、及び予測方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023089775A1 (ja) |
WO (1) | WO2023089775A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106779076A (zh) * | 2016-11-18 | 2017-05-31 | 栾图 | 基于生物信息的选育良种系统及其算法 |
US20170354105A1 (en) * | 2016-06-08 | 2017-12-14 | Monsanto Technology Llc | Methods for identifying crosses for use in plant breeding |
CN112837267A (zh) * | 2021-01-11 | 2021-05-25 | 浙江大学 | 一种预测转基因玉米抗药性的数字检测方法及系统 |
-
2021
- 2021-11-19 JP JP2023562051A patent/JPWO2023089775A1/ja active Pending
- 2021-11-19 WO PCT/JP2021/042617 patent/WO2023089775A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170354105A1 (en) * | 2016-06-08 | 2017-12-14 | Monsanto Technology Llc | Methods for identifying crosses for use in plant breeding |
CN106779076A (zh) * | 2016-11-18 | 2017-05-31 | 栾图 | 基于生物信息的选育良种系统及其算法 |
CN112837267A (zh) * | 2021-01-11 | 2021-05-25 | 浙江大学 | 一种预测转基因玉米抗药性的数字检测方法及系统 |
Non-Patent Citations (3)
Title |
---|
ANONYMOUS: "Molecular genetic studies using model plants. Column 4", NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES. ENVIRONMENTAL INSTRUMENTS NO.67, 28 December 2017 (2017-12-28), XP093068284, Retrieved from the Internet <URL:https://www.nies.go.jp/kanko/kankyogi/67/column4.html> [retrieved on 20230728] * |
KERRY A LUTZ;WENQIN WANG;ANNA ZDEPSKI;TODD P MICHAEL: "Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing", BMC BIOTECHNOLOGY, BIOMED CENTRAL LTD, vol. 11, no. 1, 20 May 2011 (2011-05-20), pages 54, XP021103471, ISSN: 1472-6750, DOI: 10.1186/1472-6750-11-54 * |
OSAKABE YURIKO: "The latest developments in genome editing technology and applications in plants", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 92, no. 3, 25 June 2020 (2020-06-25), pages 462 - 466, XP093068290, DOI: 10.14952/SEIKAGAKU.2020.920462 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023089775A1 (ja) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ober et al. | Wheat root systems as a breeding target for climate resilience | |
Alford | Bioprocess control: Advances and challenges | |
Anderson et al. | Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change | |
Arab et al. | Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for G× N15 rootstock | |
US20230030326A1 (en) | Synchronized breeding and agronomic methods to improve crop plants | |
CA3026835A1 (en) | Environmental microclimate growth chamber and method | |
CN103189550A (zh) | 高表达基因组合和其他生物组分组合的计算机模拟预测 | |
Ivashchuk et al. | Microclonal propagation of plant process modeling and optimization of its parameters based on neural network | |
Abe et al. | Ion beam mutagenesis-an innovative and effective method for plant breeding and gene discovery. | |
WO2023089775A1 (ja) | 予測モデル作成システム、予測モデルの作成方法、及び予測方法 | |
CN117546742A (zh) | 一种预防水稻穗枯病的种植方法 | |
Sato et al. | Neighbor QTL: an interval mapping method for quantitative trait loci underlying plant neighborhood effects | |
Griffing et al. | Qualitative and quantitative genetic studies of Arabidopsis thaliana | |
CN108753814A (zh) | 一种加速物种突变的新育种方法 | |
WO2023105721A1 (ja) | 情報解析方法及び情報解析装置 | |
Makin | A Metabolic Perspective on Nitrogen Source and Temperature in Microalgae | |
Malacrinò et al. | Induced responses contribute to rapid plant adaptation to herbivory | |
Rael et al. | Using stage-structured evolutionary game theory to model the experimentally observed evolution of a genetic polymorphism | |
Sun et al. | Converging functional phenotyping with systems mapping to illuminate the genotype–phenotype associations | |
Naveen et al. | Smart Breeding: Innovations Beyond Traditional Methods | |
Gassenmeier et al. | Model-assisted DoE applied to microalgae processes | |
Li et al. | A review on big data analysis and the application of machine learning and deep learning in crop molecular breeding | |
WO2024166240A1 (ja) | 形質変化予測システム、形質変化予測装置、および形質変化予測方法 | |
Trinder | Genetic variation in life history strategy and the responses of plant populations and communities to climate change | |
Han | Computational Modelling of Plant Signalling Control: a Case Study Based on Legume Autoregulation of Nodulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21964790 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023562051 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18709523 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |