WO2023089739A1 - Composite particle material, method for producing same, and electrode - Google Patents
Composite particle material, method for producing same, and electrode Download PDFInfo
- Publication number
- WO2023089739A1 WO2023089739A1 PCT/JP2021/042466 JP2021042466W WO2023089739A1 WO 2023089739 A1 WO2023089739 A1 WO 2023089739A1 JP 2021042466 W JP2021042466 W JP 2021042466W WO 2023089739 A1 WO2023089739 A1 WO 2023089739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mxene
- composite
- mass
- composite particle
- particle material
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 159
- 239000011246 composite particle Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 109
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 91
- 239000002135 nanosheet Substances 0.000 claims abstract description 74
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 68
- 239000002002 slurry Substances 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 56
- 238000001694 spray drying Methods 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 41
- 239000011148 porous material Substances 0.000 claims description 38
- 239000011859 microparticle Substances 0.000 claims description 36
- 239000002253 acid Substances 0.000 claims description 30
- 239000011163 secondary particle Substances 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 26
- 239000011238 particulate composite Substances 0.000 claims description 26
- 239000002612 dispersion medium Substances 0.000 claims description 24
- 239000011229 interlayer Substances 0.000 claims description 22
- 230000002776 aggregation Effects 0.000 claims description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 238000010306 acid treatment Methods 0.000 claims description 18
- 238000004220 aggregation Methods 0.000 claims description 18
- 239000012298 atmosphere Substances 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 17
- 239000008187 granular material Substances 0.000 claims description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 14
- 239000011149 active material Substances 0.000 claims description 12
- 238000005469 granulation Methods 0.000 claims description 12
- 230000003179 granulation Effects 0.000 claims description 12
- 239000007773 negative electrode material Substances 0.000 claims description 12
- 239000010419 fine particle Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 239000011164 primary particle Substances 0.000 claims description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910017604 nitric acid Inorganic materials 0.000 claims description 7
- 239000000523 sample Substances 0.000 claims description 5
- 238000001069 Raman spectroscopy Methods 0.000 claims description 4
- 238000004611 spectroscopical analysis Methods 0.000 claims description 4
- 229910003002 lithium salt Inorganic materials 0.000 claims description 3
- 159000000002 lithium salts Chemical class 0.000 claims description 3
- 159000000000 sodium salts Chemical class 0.000 claims description 3
- 238000003892 spreading Methods 0.000 claims description 3
- 230000007480 spreading Effects 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 210000002500 microbody Anatomy 0.000 abstract 3
- 239000000843 powder Substances 0.000 description 57
- 239000010410 layer Substances 0.000 description 43
- 239000010936 titanium Substances 0.000 description 42
- 239000002131 composite material Substances 0.000 description 30
- 239000006230 acetylene black Substances 0.000 description 27
- 230000008569 process Effects 0.000 description 26
- 239000011324 bead Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 24
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 20
- 239000000919 ceramic Substances 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000000725 suspension Substances 0.000 description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 17
- 229910001415 sodium ion Inorganic materials 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000011236 particulate material Substances 0.000 description 14
- 230000035882 stress Effects 0.000 description 14
- 238000004299 exfoliation Methods 0.000 description 13
- 125000000524 functional group Chemical group 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- -1 ketschen black Chemical compound 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000013049 sediment Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000000089 atomic force micrograph Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000010301 surface-oxidation reaction Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000004438 BET method Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910021385 hard carbon Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Natural products CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 150000004673 fluoride salts Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000252506 Characiformes Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/02—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
Definitions
- the present invention relates to a novel composite particle material of MXene nanosheets and microparticles, a method for producing the same, and an electrode using the composite particle material.
- MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
- MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
- MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
- Positive and/or negative electrode active materials for pseudocapacitors also called redox capacitors that utilize electrochemical reactions involving faradaic currents associated with electrochemical adsorption and desorption reactions of ions at the electrodes, and Due to its excellent properties, it is expected to be applied to electromagnetic wave shielding thin films and conductive thin films.
- MAX phase ceramics are layered compounds, and the general formula is expressed as M n+1 AX n .
- M is a transition metal (Ti, Sc, Cr, Zr, Nb, etc.)
- A is an A group element
- X is C or [C (1.0-x) N x (0 ⁇ x ⁇ 1.0)]
- n is 1 to 3.
- MXene nanosheets are used in secondary batteries (storage batteries) and pseudocapacitors, not only MXene nanosheets but also acetylene black is added as a conductive aid.
- acetylene black is added as a conductive aid.
- the composite particle material previously filed by the present applicant is an aggregate of primary particles. Therefore, pulverization and classification are essential for industrial use.
- pulverization which is generally performed by applying physical stress to agglomerates, it seems possible to pulverize them to a particle size that can be used in practice, but it was found that the agglomerate structure was locally destroyed. .
- the strength of aggregates is affected by the humidity environment, and thus the aggregate structure obtained differs depending on the season, making it impossible to obtain an industrially usable composite particle material.
- the characteristics will be significantly deteriorated, and if the crushing that applies physical stress is performed, the particle shape will become irregular and uniform at the time of electrode preparation.
- problems such as the inability to form a thin film.
- the present invention has been completed in view of the above circumstances, and provides a powder having a 3D porous aggregation structure with a high specific surface area, in which the novel MXene nanosheets and microparticles are highly dispersed, and which has a high sphericity.
- the problem to be solved is to provide a particulate material, a method for producing the same, and an electrode using the composite particulate material.
- the composite particle material of the present invention which solves the above problems, contains 3 to 10 parts by mass of conductive microparticles and Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0 ⁇ x ⁇ 0 .25, a is 0.01 or more) MXene nanosheets containing 90 to 97 parts by mass as primary particles, the MXene nanosheets having an average thickness of 1.0 to 3.5 nm, and having the following interdispersion degree: It has a volume average diameter of 0.01 to 7.00, a volume average diameter of 1.0 ⁇ m to 15.0 ⁇ m, and a sphericity of 0.80 or more.
- interdispersion degree Calculate 100 ratios (B/A) of peak height A at 400 cm ⁇ 1 and peak height B at 1332 cm ⁇ 1 in Raman spectroscopic analysis using a laser with a wavelength of 532 nm, and the 100 B/A values The standard deviation calculated from is taken as the degree of interdispersion.
- the method for producing a composite particle material of the present invention that solves the above problems comprises: Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0 ⁇ x ⁇ 0.25, a is 0.01 or more) a stripping step of stripping MXene to form a stripped product; an acid treatment step of treating raw carbon microparticles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70° C.
- An alkaline aqueous solution of 0.4 to 0.7 mol/L is added to the mixture slurry to make the liquid alkaline and aggregate to form the Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0 ⁇ x ⁇ 0.25, a is 0.01 or more) an aggregation step of obtaining a slurry of aggregates of MXene and the carbon fine particles;
- the composite particle material of the present invention can provide an electrode that can exhibit high performance when used in secondary batteries (storage batteries) and pseudocapacitors by adopting it as an active material.
- the method for producing a composite particle material of the present invention makes it possible to produce a composite particle material having an ideal 3D porous aggregation structure and a high degree of sphericity by using the production method having the above configuration. .
- FIG. 4 is an AFM image of a peeled product obtained in the peeling step of Example 1.
- FIG. 4 is an SEM photograph of a peeled product obtained in the peeling step of Example 1.
- FIG. 2 is the XRD profile of Ti 3 AlC 2 and composite powder material of Example 1.
- FIG. 1 is a SEM photograph of the composite powder material of Example 1.
- FIG. 2 shows adsorption isotherms of composite powder materials of Example 1, Example 2 and Comparative Example 4.
- FIG. 4 is an AFM image of a peeled product obtained in the peeling step of Example 2.
- FIG. 4 is an SEM photograph of a peeled product obtained in the peeling step of Example 2.
- FIG. 4 is an SEM photograph of the composite powder material of Comparative Example 2.
- FIG. FIG. 2 is a schematic diagram showing a unit cell of MAX
- the composite particle material, manufacturing method thereof, and electrode material of the present invention will be described in detail below based on embodiments.
- the composite particle material of the present embodiment has excellent electrical properties such as conductivity, and has a large void layer formed in the crystal due to the removal of the Al layer.
- secondary batteries, Na-ion secondary batteries, etc. active materials such as pseudocapacitors (negative electrode active materials in the case of secondary batteries, and positive and/or negative electrode active materials in the case of pseudocapacitors), electromagnetic wave shielding thin films and conductive thin films
- the numerical values described in this specification can be used as upper and lower limits of numerical ranges, and in such cases, the range can be either inclusive or exclusive of the numerical values.
- the composite particle material of the present embodiment is a particle material obtained by combining a thin piece of MXene and a particulate or tube-like minute body for application to an electrode material or the like.
- MXene exfoliated particulate material is obtained by exfoliating multi-layer MXene, which is a powdery layered compound of several microns.
- the composite particle material of this embodiment is a composite particle material of MXene and microparticles.
- MXene contains 90 to 97% based on the sum of the mass of MXene and minute bodies, and the remaining 10% to 3% is minute bodies. If the content of MXene exceeds 97%, the effect as a barrier against drying shrinkage due to the addition of fine particles is weakened, and if the content is lower than 90%, the function as an active material deteriorates. Furthermore, when the content of MXene exceeds 97%, electrons are difficult to move to the current collector, and when it is less than 90%, the function as an active material deteriorates. The lower limits of the MXene content are 93%, 92% and 90%, and the upper limits are 97%, 96% and 95%.
- the composite particulate material has a mutual dispersity of 0.01 to 7.00.
- the interdispersion degree is a value that defines the degree of dispersion between the MXene and the minute particles.
- the degree of interdispersion of 100 randomly selected composite particle materials was determined by Raman spectroscopic analysis using a laser with a wavelength of 532 nm with a peak height A of 400 cm ⁇ 1 and The standard deviation calculated from the ratio (B/A) of the peak heights B at 1332 cm -1 is defined as the degree of interdispersion. It is desirable that the interdispersion degree is small, and if it exceeds 7.00, electrons cannot effectively move to the current collector.
- the interdispersion degree of the composite particle material can adopt lower limits of 0.01, 0.05, 0.10 and upper limits of 7.00, 2.50, 1.50. .
- MXene nanosheet exfoliated to the monolayer level can be easily oxidized to precipitate anatase, analyze at a laser intensity that does not precipitate anatase. Analysis is performed in the range from 100 cm -1 to 2000 cm -1 .
- Vibration due to functional groups adsorbed on titanium atoms of MXene nanosheet is 230 to 470 cm. At ⁇ 1 (A peak), vibration due to functional groups adsorbed on carbon atoms appears at 580 cm ⁇ 1 . On the other hand, for acetylene black, the SP3 hybrid orbital carbon appears at 1332 cm ⁇ 1 (B peak), and the SP2 hybrid orbital carbon appears at 1500 to 1600 cm ⁇ 1 .
- the composite particulate material has a specific surface area of 75 m 2 /g or more.
- the specific surface area is measured by the BET method using nitrogen after heating at 110° C. for 6 hours in vacuum as a pretreatment.
- 75 m 2 /g, 80 m 2 /g and 105 m 2 /g can be adopted as lower limits, and 200 m 2 /g, 185 m 2 / g and 170 m 2 /g as upper limits. can be adopted.
- the composite particulate material preferably has an average pore diameter of 10.0-20.0 nm and an average pore volume of 0.30-0.70 mL/g.
- the average pore diameter is 10.0-15.0 nm and the average pore volume is 0.40-0.60 mL/g.
- the average pore diameter and pore volume were measured by the BET method using nitrogen after heating in vacuum at 110° C. for 6 hours as a pretreatment.
- a slurry of agglomerated particulate material is prepared in a liquid, centrifugally sedimented, the sediment is air-dried at room temperature, and then vacuum-dried at 60°C to prepare agglomerates. and then pulverized by applying physical stress to produce a composite particulate material that is secondary particles. It takes more than 24 hours to air dry. It shrinks during air drying and vacuum drying at 60°C. As for the shrinkage mechanism, the MXene nanosheets are overlapped and integrated, and at the same time, the carbon particles added as a shrinkage barrier move. Such a mechanism lowers the degree of interdispersion and lowers the specific surface area.
- the average pore diameter and average pore volume are also reduced. After air-drying, if it is dried in a vacuum at 110°C, it will shrink significantly and the specific surface area will decrease significantly. On the other hand, when a slurry of composite aggregated particles in an alcohol solvent is spray-dried, the droplets are dried instantaneously without shrinkage, resulting in a spherical composite particle material having a 3D porous aggregate structure with excellent interdispersion and a high specific surface area. Obtainable. In the method of obtaining a composite particle material by spray drying, which dries instantly, the specific surface area is reduced compared to the general method of obtaining a composite particle material, which is secondary particles, by applying physical stress to agglomerates. As the size increases, the average pore diameter and average pore volume increase.
- the 3D porous aggregation structure means a structure in which pores are formed in a three-dimensional network by aggregation of primary particles with interstices.
- the composite particle material preferably has a mass change of 1.0% or less when 0.3 g of a sample is evenly spread on a dish of 20 cm 2 or more and heated at 110° C. in vacuum for 5 hours. Under this heating condition, the water contained in the MXene layers and the water adhering to the outer surface volatilize, but by specifying the amount, it is possible to define a composite particle material with a low water content between the layers. As the mass change, upper limits of 0.8%, 0.6%, 0.4%, and 0.2% can be adopted. The mass change within the specified range means the amount of moisture adsorbed from the air on the outer surface of the composite particulate material, not the water in the MXene layers.
- the composite particulate material is preferably dried at 100-120° C. under vacuum or inert atmosphere.
- the composite particulate material preferably has a bulk density of 0.1-0.5 g/cm 3 .
- 0.1 g/cm 3 and 0.15 g/cm 3 can be adopted, and as upper limits, 0.45 g/cm 3 and 0.50 g/cm 3 can be adopted.
- the method for producing an electrode film when producing a cell of a secondary battery or a pseudocapacitor but it is preferable to produce the composite particle material to be contained so that the volume packing density is as high as possible.
- continuous particle blending particle size of compounded composite particle material mean that the particle size distribution changes continuously, and the particle size distribution is relatively broad.
- particle size of compounded composite particle material mean that the particle size distribution changes continuously, and the particle size distribution is relatively broad.
- MXene is a formula representing the aforementioned MAX phase, M n+1 AX n (M is a transition metal, A is an A group element, X is C, or [C (1.0-x) N x (0 ⁇ x ⁇ 1. 0)] and n is obtained by using Al as A in 1 to 3) and removing the Al phase by acid treatment.
- Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0 ⁇ x ⁇ 0.25, a is 0.01 or more ) is preferable.
- the lower limit of a can be 0.002. More preferably, the upper limit of a is 0.05.
- the bead mill treatment using microbeads promotes microparticulation rather than exfoliation, making it impossible to obtain thin and large nanosheets.
- it can have O, OH, and halogen groups as surface functional groups.
- MXene has a plate-like, leaf-like, flake-like, sheet-like, etc., and is generically defined as sheet-like.
- the stacking direction of the layers of the stratified compound is defined as "thickness", and countless directions perpendicular to the thickness are defined as "sheet spread directions”.
- the MXene has an average thickness of 1.0 to 3.5 nm, preferably 1.5 to 3.0 nm.
- the average thickness is calculated as the average value of 100 randomly selected particles measured by AFM analysis using a hydrophilized Si wafer.
- the size of the sheet can be measured by dropping a nanosheet onto a hydrophilized Si wafer and using an SEM.
- the average size of the sheet in the spreading direction is preferably 0.1 to 2.0 ⁇ m, more preferably 0.1 to 1.7 ⁇ m.
- the maximum value in the direction perpendicular to the thickness is the “long side” and the minimum value is the “short side”
- 100 randomly selected particles were measured by SEM, [(long side + short side) / 2 ] is taken as the average size in the spreading direction.
- Ti3Al0.02C2MXene has an average thickness of 1 .74 nm with an average size of 0.78 ⁇ m, but replacing 5% of the carbon sites with nitrogen gives an average thickness of 1.66 nm with an average size of 1.17 ⁇ m with 25% of the carbon sites replaced with nitrogen. , the average thickness is 1.81 nm and the average size is 1.61 ⁇ m. Replacing the carbon sites with nitrogen facilitates the formation of functional groups in water, lowering the interlayer bonding strength of MXene and yielding larger nanosheets at monolayer-level thicknesses.
- the firing (synthesis) temperature of MAX phase ceramics is lowered within a range that does not generate impurities, so it is possible to reduce the average size while maintaining the thickness at the monolayer level. becomes.
- the firing (synthesis) temperature of MAX phase ceramics is lowered from 1450° C. to 1430° C., the average thickness can be reduced to 2.06 nm and the average size to 0.25 ⁇ m. can.
- the average thickness can be reduced to 1.98 nm and the average size to 0.10 ⁇ m.
- the MXene nanosheet exfoliated to the monolayer level is made into a composite particle material without shrinkage, an electrode material with excellent ion diffusion can be obtained. Furthermore, a composite particle material with a high specific surface area can be obtained by using MXene nanosheets of an appropriate size. A composite particle material with a higher specific surface area can be obtained by reducing the average size while maintaining the thickness at the monolayer level.
- the interlayer distance of the (002) plane of MXene obtained from XRD analysis is preferably from 1.400 nm to 1.700 nm.
- the inter-layer distance of the void layer formed by removing the Al phase of the MAX phase by acid treatment is determined from the inter-layer distance of the (002) plane in the XRD of the MXene nanosheet powder to the (002) When defined as a value obtained by subtracting the interlayer distance of the plane, it is 0.770 nm to 0.470 nm.
- the Li ion diameter is 0.18 nm and the Na ion diameter is 0.28 nm, and can be used as a negative electrode active material for Na ion secondary batteries in addition to Li ion secondary batteries.
- the corresponding MAX phase ceramic powder is a particle material composed of a material having a value of 1 in the composition Ti3Ala (C( 1.0 -x ) Nx ) 2 of MXene to be measured. be. If the interlayer distance between the (002) planes of MXene nanosheets is less than 1.400 nm, deterioration occurs due to rapid charging and discharging when used as a negative electrode active material for Na-ion secondary batteries. If it exceeds 1.700 nm, the capacity per 1 g becomes small.
- the microscopic object it is sufficient for the microscopic object to have a size on the order of nanometers, and being on the order of nanometers means that the length of the longest part of the length of the microscopic object is 100 nm or less.
- the shape of the microscopic object may be any shape such as amorphous, spherical, thin film, and fibrous.
- the fine particles preferably have a primary particle size of 100 nm or less, preferably 30 to 50 nm, and more preferably 30 to 40 nm, and may be aggregates.
- the shape of the microscopic object is not limited, and spherical, sheet-like, tube-like, hollow, and irregular shapes can be exemplified.
- minute bodies have electrical conductivity.
- microscopic bodies include carbon microscopic bodies made of carbon materials and metal microscopic bodies made of metal materials.
- fine carbon particles it is preferable to use those having high conductivity such as acetylene black, ketschen black, carbon nanotubes, graphene, carbon fiber, graphite powder, and hard carbon powder.
- inorganic microscopic bodies composed of other inorganic substances can also be used as microscopic bodies.
- TiO 2 , Al 2 O 3 , SiO 2 and BaTiO 3 having a primary particle size of 100 nm or less can be used as the inorganic fine particles.
- the method for producing a composite particulate material of the present embodiment includes a peeling step, a mixing step, an aggregating step, a granulating step, and other necessary steps.
- the method for producing the composite particulate material of the present embodiment is a production method that can be suitably employed for the production of the above-described composite particulate material of the present embodiment.
- ⁇ Exfoliation step In the exfoliation step, microbeads are collided between the layers of multi-layered MXene, which are particles of several microns in size, in a dispersion medium to exfoliate them to obtain a nanosheet-like exfoliated slurry. be. Delamination proceeds between the layers of each layer of layered multilayer MXene.
- the stripped material is not particularly limited, but one having about 1 to 3 layers is preferable.
- the resulting exfoliated material becomes an exfoliated material suspension suspended in a dispersion medium.
- This exfoliated material suspension can be directly subjected to the mixing step, or can be subjected to the mixing step after removing the dispersion medium.
- the method for obtaining the particulate and layered multilayer MXene as a material is not particularly limited, the following method can be exemplified.
- MXene is obtained by acid-treating a raw material consisting of Ti 3-layer MAX phase ceramic powder and partially dissolving the Al layer.
- An example of a method for manufacturing MXene will be described later as a pretreatment step.
- the raw material to be subjected to the peeling step can employ those having the same composition as the material constituting the aforementioned particulate material.
- the composition does not substantially change in the stripping process.
- a portion of Al is dissolved in this particulate material by acid treatment to form a multi-layered MXene that is particulate and layered with a size of several microns.
- an exfoliated material suspension in which nanosheet-like exfoliated material of MXene is suspended is obtained by a detachment step of bead mill treatment with high-speed rotation using beads of 10 ⁇ m to 300 ⁇ m.
- the dispersion medium for the stripping step is not particularly limited, but preferably contains 50% by mass or more of water, and contains alcohols such as methanol, ethanol, and isopropanol, methyl ethyl ketone, acetone ketones, dimethylformamide, dimethyl sulfoxide, and the like. be able to. It is more preferable to make water 100% by mass.
- the concentration of MXene in the mixture for the stripping process is not particularly limited, but can be about 10.0 mg/mL to 20.0 mg/mL. Although there are no particular restrictions on the liquid properties of the mixed liquid, the pH can be adjusted to approximately 6.0 to 8.0.
- the lower limit of the bead size can be 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m
- the upper limit can be 300 ⁇ m, 200 ⁇ m, 100 ⁇ m.
- it is 10 ⁇ m or more, it is easy to classify beads and slurry.
- the use of beads of 300 ⁇ m or less allows delamination to proceed in preference to reducing the size of the particulate material. Any combination of these lower and upper limits can be employed. If the size of the beads is in the proper range, the energy to be applied can be increased and the peeling can proceed preferentially.
- the material of the beads is not particularly limited, but ceramics such as zirconia, alumina, and silicon nitride can be used. Partially stabilized zirconia, which has particularly high fracture toughness, is preferred.
- Partially stabilized zirconia which has particularly high fracture toughness, is preferred.
- Ball milling such as planetary ball milling with beads and balls greater than 300 ⁇ m, also favors exfoliation by reducing the size of the particulate material. As a result, only a part of the particles can be separated, and a part of the particles must be separated by centrifugal separation.
- MXene has been conventionally exfoliated by ultrasonic irradiation.
- the solvent is irradiated with ultrasonic waves, cavitation is generated, and due to the crushing of the cavitation, the layers constituting the layered compound are exfoliated by the mechanism of powder collision.
- peeling progresses only in part, and it cannot be said that it is at a level that can be used in industry.
- peeling occurs in part, pulverization takes precedence, and surface oxidation proceeds remarkably due to the temperature rise. For this reason, a method of exfoliating only a part by ultrasonic irradiation and collecting by centrifugal separation has been adopted.
- a peripheral speed of 6 m/sec to 12 m/sec can be adopted for the peripheral speed in the peeling process.
- a peripheral speed of 8 m/sec to 10 m/sec is more preferable. If it is 6 m/sec or more, the peeling efficiency is good, and if it is 12 m/sec or less, the application of excessive energy is suppressed, and the temperature rise of the obtained particle material can be suppressed, so that the surface of the obtained particle material is oxidized. Progression can be suppressed, and electrical resistance can be lowered.
- a slurry feed rate of 100 mL/min to 300 mL/min can be adopted.
- a slurry particle concentration of 10.0 mg/mL to 20.0 mg/mL can be adopted.
- the concentration is 10.0 mg/mL or less, the production efficiency of the MXene nanosheets will be poor, and if the concentration is 20.0 mg/mL or more, peeling will not proceed sufficiently, so this range is preferable.
- the slurry temperature is preferably in the temperature range of 35°C or less. When the temperature is 35° C. or lower, surface oxidation can be suppressed, and the electrical resistance of the particulate material can be kept low.
- 40% to 80% can be used for the filling amount of beads. When it is 40% or more, the efficiency of stripping is improved, and when it is 80% or less, it becomes easy to classify beads and slurry. Whether or not the desired particle material containing many sheet-like particles has been produced can be determined by observation with SEM, TEM, or the like. In particular, the thickness of the particulate material can be determined by AFM analysis. The particulate material obtained in the exfoliation step can be used after being classified by a method such as centrifugation, if necessary. Optimal conditions in the peeling process vary depending on the size of the apparatus, so these numerical values are not limited.
- the MXene on a mass basis is turned into the exfoliated material by the bead mill treatment, more preferably 99% or more of the exfoliated material, and still more preferably 100% of the exfoliated material.
- the peeling process is completed under the condition that all the MXene becomes the peeled substance, it becomes possible to use the MXene which is not peeled off as it is in the mixing process without removing it.
- MXene other than exfoliated matter it can be separated by centrifugation, filtration, or the like.
- the zeta potential of the exfoliated MXene obtained is measured in water of pH 6 to pH 8.
- the zeta potential is measured at pH 7 unless there is a particular problem.
- the zeta potential is preferably -25.0 mV to -35.0 mV. More preferably -28.0 mV to -34.0 mV.
- the zeta potential of Ti 3 C 2 MXene nanosheets was ⁇ 28.9 mV.
- the nanosheet in which 3% of the carbon sites are replaced with nitrogen is -29.3 mV
- the nanosheet in which 5% of the carbon sites are replaced with nitrogen is -31.5 mV
- the nanosheet in which 10% of the carbon sites are replaced with nitrogen is -32.1 mV
- the carbon sites The nanosheet in which 15% of the carbon sites were replaced with nitrogen was ⁇ 32.4 mV
- the nanosheet in which 25% of the carbon sites were replaced with nitrogen was ⁇ 33.1 mV.
- the magnitude of the absolute value of the zeta potential can be rephrased as the amount of functional groups attached in water. When many functional groups in water are attached, the absolute value of zeta potential increases. Formation of suitable functional groups in water provides excellent releasability.
- the zeta potential of MXene nanosheets and carbon microparticles is negative zeta potential explained in the mixing step. It is immobilized with Li ions and/or Na ions. A moderate zeta potential is necessary, and if the absolute value of the zeta potential is small, the resulting composite particle material will have a low degree of interdispersion and a low specific surface area. If the absolute value of the zeta potential is large, it becomes difficult for electrons to move. Therefore, it is preferable to select MXene nanosheets and carbon microparticles that have an appropriate absolute value of the zeta potential.
- the atom% of Ti, Al, C, and N was used to calculate the amounts of Al, C, and N when Ti was 3.
- For chemical analysis weigh the sample in a platinum dish, add nitric acid + sulfuric acid + hydrofluoric acid, heat (about 120 ° C) to dissolve, and then heat at a high temperature (300 ° C) to mix nitric acid and hydrogen fluoride.
- a sample solution sulfuric acid was prepared by removing the acid, and the prepared sample solution was appropriately diluted and quantitatively analyzed by ICP.
- the acid treatment step is a step of treating the raw carbon microparticles with a mixed acid solution of sulfuric acid and nitric acid to obtain highly hydrophilic carbon microparticles.
- raw carbon fine particles include acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, and hard carbon powder.
- Acetylene black, Ketsujen black, and carbon nanotubes are more preferred from the viewpoint of conductivity, and acetylene black is more preferred from the viewpoints of both conductivity, purity, and price.
- a suspension of carbon microparticles suspended in the mixed acid is obtained, which can be used as it is in the mixing step, or the mixed acid can be washed repeatedly with water or the like to remove as much as necessary and used as carbon microparticles.
- Washing can be performed until the pH of the washing solution reaches about 6, and further until the pH reaches about 6.5, 7, or 8.
- the treatment temperature is preferably 70°C or higher. In particular, it is preferable to set the temperature to 95° C. or lower so as not to cause boiling.
- the treatment time is not particularly limited, but hydrophilization can be ensured by treatment for 10 minutes or longer. Stirring or ultrasonic irradiation can be performed during the treatment. After the treatment, it may be subjected to the mixing step as it is, or the acid may be neutralized or separated. If the acid is neutralized or separated and the pH reaches a predetermined value or higher, the fine carbon particles aggregate, so neutralization can be carried out to the extent that the pH does not reach the predetermined value.
- a method of separating the acid a method of separating the solid content by a classification operation such as centrifugation can be exemplified.
- the mixing ratio of sulfuric acid and nitric acid can be about 4:1 to 1:1, preferably about 3:1 to 3:2 by volume.
- the concentration of the mixed acid can be about 42% to 96%, preferably about 90.0% to 95.0%.
- the obtained hydrophilic carbon microparticles preferably have a zeta potential of -20.0 mV to -25.0 mV in water of pH 6 to pH 8.
- the zeta potential becomes negative because COOH and CO are adsorbed as functional groups.
- the absolute value is smaller than ⁇ 20.0 mV, positively charged Li ions in water due to the addition of water-soluble Li salts and/or water-soluble Na salts with MXene nanosheets, which is a negative zeta potential explained in the mixing step. And/or it cannot be immobilized by Na ions, resulting in a composite particle material with a low interdispersion degree and a low specific surface area. It is preferable to select MXene nanosheets and carbon microparticles having moderate absolute values of zeta potential.
- the mass ratio of the exfoliated matter and the carbon particles is 90:10 to 97:3, the concentration of the exfoliated matter is 11.5-17.0 mg/mL, and water is contained in an amount of 50% by mass or more. It is a step of obtaining a mixture dispersed in a second dispersion medium. More preferably, the second dispersion medium contains 100% by mass of water. By including other substances in the mixture, those substances can also be incorporated into the composite particulate material.
- the negatively charged functional groups in water adsorbed to MXene and the negatively charged functional groups in water adsorbed to carbon microparticles are immobilized with positively charged Li ions and/or Na ions in water.
- water-soluble lithium salts include lithium chloride and lithium carbonate
- water-soluble sodium salts include sodium chloride and sodium carbonate.
- a water-soluble salt of a strong alkali or strong acid is added and stirred for a long time, the MXene nanosheets and the water-soluble salt may react with each other, and lithium titanate or sodium titanate may precipitate locally on the MXene surface.
- Water-soluble salts that remain neutral are preferred. It is preferable to add a water-soluble salt to the aqueous slurry of MXene in an amount of 0.8 mol/L to 1.0 mol/L. If it is less than 0.8 mol/L, it cannot be sufficiently immobilized, and if it exceeds 1.0 mol/L, many surplus ions remain. The mixture contains exfoliate at a concentration of 11.5-17.0 mg/mL.
- the second dispersion medium may be the same as or different from the dispersion medium used in the peeling process and the solvent that can be used in other processes.
- the second dispersion medium contains the dispersion medium used in the exfoliation step.
- For the acid-treated carbon microparticles add a predetermined amount of carbon microparticles to pure water, and rotate at a rotation speed of 100 rpm to 300 rpm and an amplitude of 40 mm to 50 mm, more preferably at a rotation speed of 100 rpm to 200 rpm and 45 mm to 50 mm. It is preferable to add the deaggregated carbon fines water slurry to the MXene water slurry and mix them by stirring with a shaker for 12 hours or more under the amplitude condition of .
- the conditions of the shaker at that time are preferably 100 to 300 rpm rotation speed and 40 to 50 mm amplitude.
- the rotation speed is from 100 rpm to 200 rpm and the amplitude is from 45 mm to 50 mm.
- MXene Acid-treated carbon microparticles Water slurry and water-soluble salt are added at the same time, and stirred for 4-6 hours using a shaker at a rotation speed of 100 rpm to 300 rpm and an amplitude of 40 mm to 50 mm.
- a 0.4 to 0.7 mol / L alkaline aqueous solution is added to the mixture slurry obtained in the mixing step, and the pH of the liquid is increased to remove the exfoliated material contained in the mixture.
- This is a step of aggregating the carbon particles to form aggregates dispersed in the liquid. It is preferable to raise the pH to about 12-14.
- the alkaline aqueous solution is preferably lithium hydroxide and/or sodium hydroxide.
- the pH is raised by adding an alkaline substance or by removing or diluting an acidic substance. It is preferable to increase the pH by adding the alkaline aqueous solution in several seconds and stirring within 1 hour with a shaker at a rotation speed of 100 rpm to 300 rpm.
- the amplitude of the shaker at that time is preferably 40 mm to 50 mm. In both cases, when the rotational speed is 300 rpm or less, the destruction of the nanosheets is suppressed, and when it is 100 rpm or more, uniform mixing can be easily performed.
- the alkaline aqueous solution is preferably added in an amount of 0.4 mol/L to 0.7 mol/L together with the amount of water contained in the aqueous slurry of the composite aggregated particle material.
- the amount is 0.4 mol/L or more, sufficient aggregation can be achieved, and when the amount is 0.7 mol/L or less, residual surplus ions can be suppressed, which is preferable. If the addition amount is within this range, it is possible to obtain a composite particle material with a high specific surface area, for unknown reasons. Further, a highly hydrophobic organic solvent having a small dielectric constant can be added.
- an alcohol slurry is prepared by replacing the main component of the dispersion medium contained in the aggregates dispersed in the liquid obtained in the aggregation process with alcohol, and the alcohol slurry is granulated by a spray drying method. It is a step of making granules by pressing.
- the composite particle material of the present embodiment is obtained by directly or drying the granules. In this step, the droplets are instantly dried by a spray drying method, so that spherical granules having a porous structure can be obtained.
- the method of replacing the main component of the dispersion medium contained in the aggregates dispersed in the liquid with alcohol is not particularly limited.
- the alcohol content can be improved by simply adding alcohol, or the alcohol content can be improved by repeatedly removing the dispersion medium after adding the alcohol.
- the dispersion medium can be removed by separating the dispersion medium separated by centrifugation as a supernatant or by evaporating the dispersion medium.
- alcohol is the main component
- content of alcohol is 50% or more based on the entire dispersion medium. %, preferably 99% by volume.
- the alcohol that can be contained in the alcohol slurry is not particularly limited, but it is preferable to select an alcohol solvent that evaporates at a low temperature in order to further suppress the surface oxidation of the MXene nanosheets.
- an alcohol solvent that evaporates at a low temperature for example, at least one of methanol, ethanol, and isopropanol is preferably used as the alcohol used as the dispersion medium.
- alcohol it may contain water, ketones such as MEK, or DMSO.
- the lower limit of the content of alcohol includes 99%, 95%, and 90% based on the volume of the dispersion medium.
- the spray-drying method is performed in an inert atmosphere, which has low reactivity with each material that makes up the composite particle material.
- an atmosphere filled with an inert gas such as nitrogen or argon, or a reduced pressure or vacuum atmosphere can be used.
- the temperature of the inert atmosphere is the temperature at which the alcohol contained in the alcohol slurry can evaporate.
- 80°C, 90°C, and 100°C can be adopted as the lower limit values of the temperature of the inert atmosphere
- 100°C, 110°C, and 120°C can be adopted as the upper limit values.
- the upper limit and lower limit can be arbitrarily combined.
- the spray-drying method is performed by spraying droplets of a slurry of composite agglomerated material into a high-temperature atmosphere.
- Usual methods such as a method of using a rotating disk and a method of using a nozzle such as a two-fluid nozzle can be employed as the method of spraying.
- a method using a rotating disk is preferable in that the agglomerated particles in the alcohol slurry are unlikely to clog during spraying and that spherical granules having an arbitrary secondary particle size can be produced. Spherical granules having a required secondary particle size can be easily obtained by selecting the rotational speed of the rotating disk.
- a step of granulating by a fluidized bed granulation method can be included.
- the dispersion medium is instantaneously removed from the droplets composed of the sprayed composite agglomerated particle material and alcohol, the composite particle material is formed, resulting in a high specific surface area without shrinkage and excellent interdispersion of MXene nanosheets and carbon microparticles.
- the solid content concentration which is preferably 1.0 to 10.0% by mass. More preferably 1.0 to 5.0% by mass.
- the secondary particle size when the rotating disk method is used, a large secondary particle size can be obtained by lowering the number of revolutions and increasing the spray temperature.
- a small secondary particle size can be obtained by increasing the rotational speed. Furthermore, a smaller secondary particle size can be obtained by reducing the aggregate particle size of the alcohol slurry of the composite aggregated particle material and spray-drying it using a nozzle such as a two-fluid nozzle. By combining these, an average secondary particle size of 1.0 ⁇ m to 15.0 ⁇ m can be obtained. 1.0 ⁇ m to 10.0 ⁇ m is more preferable. For spray drying using a nozzle such as a two-fluid nozzle, it is preferable to use an alcohol slurry from which large agglomerated particles have been removed through a sieve in order to prevent clogging of the nozzle.
- the average secondary particle size is 1.0 ⁇ m or more, the composite particle material is less likely to scatter during work, which is preferable.
- the average secondary particle size is preferably 1.0 ⁇ m to 15.0 ⁇ m. 1.0 ⁇ m to 11.0 ⁇ m is more preferable.
- the granules obtained in the granulation step can be used as the composite particle material of the present embodiment as they are, but can be dried after that for the purpose of removing inter-layer water of the MXene nanosheets.
- the drying step is a step of drying the granules at 100 to 120° C. under a vacuum atmosphere or an inert atmosphere to obtain the composite particle material of the present embodiment.
- the vacuum atmosphere and the inert atmosphere are atmospheres employed to suppress oxidation of the MXene nanosheets, and any atmosphere that can suppress oxidation compared to air is sufficient.
- the temperature of the drying process is determined by the temperature of the granules.
- the temperature of the atmosphere is controlled, the granules are directly heated by infrared rays, etc., the temperature of the container containing the granules is controlled, and the granules are heated by heat transfer. You can control the temperature.
- the temperature at which the drying process is performed is a temperature at which the MXene nanosheets are not denatured or within an allowable range of denaturation, and a temperature at which moisture contained between the layers of the MXene nanosheets can be removed.
- Interlayer water can be effectively removed by performing the drying process.
- a water content of less than 10% by weight, based on the total weight can easily be reached.
- the time for performing the drying process is not particularly limited, but it is preferable to perform until the moisture content is less than 10% based on the total mass, or until the mass change is 1.0% or less per hour. . More preferably, the water content is 8% or less, 6% or less, 4% or less, 2% or less, or 1% or less, and the mass change is more preferably 0.5% or less per hour. .
- the pretreatment step is an example of a method for manufacturing MXene.
- a mixed raw material of TiC, TiN, Al, and Ti is pressurized in the range of 1 ton/cm 2 to 3 ton/cm 2 by CIP or uniaxial pressure, or pressurized.
- it can be produced by contacting the MAX phase ceramic powder with an acidic substance at a temperature controlled at 20° C. to 30° C. to remove part of the Al element contained in the MAX phase ceramic powder.
- the raw material to be subjected to the pretreatment step is represented by Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0 ⁇ x ⁇ 0.25, a is 1.0 ) for the Ti3 layer. It is a MAX phase ceramic powder having a composition. Further, the amount of Al to be removed is adjusted so that the amount of Al (corresponding to x) in the MAX phase ceramic powder produced by acid treatment with an acidic substance remains at least 0.01. 0.02 can be adopted as the lower limit. More preferably, the upper limit is adjusted to 0.05. In addition, it is possible to remove all the Al, and in that case, it is preferable not to proceed the acid treatment beyond the removal of the Al.
- the amount of Al to be removed depends on the contact time with the acidic substance (acid aqueous solution, etc.) (the longer the time, the more removed), the concentration of the acidic substance (the higher the concentration, the more removed), It can be adjusted by changing the amount of acidic substance (the greater the absolute amount of acidic substance, the greater the amount that can be removed) and the contact temperature (the higher the temperature, the greater the amount removed).
- a multi-layer with a size of several micrometers having a void layer that constitutes a particle material by removing part of Al by acid-treating MAX phase ceramic powder (A element is Al), which is a layered compound.
- a layered compound As the acid for removing part of the Al layer, an acidic substance in which hydrofluoric acid and hydrochloric acid are combined is employed. In order to achieve a combination of hydrofluoric acid and hydrochloric acid, it is preferable to mix a hydrofluoric acid salt (KF, LiF, etc.) with hydrochloric acid to obtain a mixture of hydrofluoric acid and hydrochloric acid.
- KF, LiF, etc. hydrofluoric acid salt
- aqueous solutions of these acids are used as acidic substances.
- the mixed concentration of hydrofluoric acid and hydrochloric acid formed when the fluoride salt is completely dissociated is not particularly limited.
- the concentration of hydrofluoric acid the lower limit is about 1.7 mol/L, 2.0 mol/L, and 2.3 mol/L, and the upper limit is about 2.5 mol/L, 2.6 mol/L, and 2.7 mol/L. can.
- the concentration of hydrochloric acid can be about 2.0 mol/L, 3.0 mol/L and 4.0 mol/L with lower limits and about 13.0 mol/L, 14.0 mol/L and 15.0 mol/L with upper limits. .
- the mixing ratio (molar ratio) of hydrofluoric acid and hydrochloric acid formed when it is assumed that the fluoride salt is completely dissociated is not particularly limited, but the lower limit of hydrofluoric acid is 1:13, 1:12, 1:1: 11. About 1:5, 1:6 and 1:7 can be adopted as the upper limit.
- the concentrations and mixing ratios of hydrofluoric acid and hydrochloric acid shown here can be used in arbitrary combinations.
- the acid treatment temperature is preferably 20°C to 30°C. 20°C to 25°C is more preferred.
- the electrode material of the present embodiment is a material that can be suitably used for secondary batteries.
- Li ions and Na ions can be intercalated and detached between layers, it can be suitably used as an electrode active material. Moreover, it can also be used as a conductive aid because of its conductivity. Effective for lithium secondary batteries and sodium secondary batteries. Lithium ions and sodium ions are stored and desorbed in the void layer from which the Al layer has been removed by acid treatment.
- the electrode has an active material layer containing an active material made of the composite particle material of the present embodiment, and a current collector made of a thin metal plate or the like and having an active material layer made of the active material formed on the surface thereof.
- a binder may be included to form the active material layer.
- the active material layer can contain an active material other than the composite particle material of the present embodiment, a conductive auxiliary agent, and the like, if necessary.
- a commonly used binder such as carboxymethyl cellulose, polyvinylidene fluoride, styrene-butadiene rubber, polyvinylpyrrolidone, polyvinyl alcohol, or any other binder that can be used can be used.
- Acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, hard carbon powder and the like can be used as the conductive auxiliary agent.
- Example 1 ⁇ Pretreatment process TiC powder (TI-30-10-0020, Rare Metallic) 12.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical) 4.9 g, Al powder (ALE15PB 3NG, Kojundo Chemical) 2.8 g was ball-mill mixed in isopropanol (IPA) for 12 hours, and the IPA was removed by an evaporator to obtain a uniformly mixed dry powder.
- IPA isopropanol
- the uniformly mixed dry powder was placed in an alumina crucible and sintered in an Ar stream at 1450° C. for 2 hours to obtain Ti 3 AlC 2 as MAX phase ceramics.
- the resulting Ti 3 AlC 2 was coarsely pulverized using a mortar and pestle, and then subjected to ball mill pulverization using 5 mm zirconia balls in IPA for 24 hours. Then, planetary ball mill pulverization (200 rpm, 15 minutes three times) using 0.5 mm zirconia balls was performed to obtain a suspension. IPA was removed from the suspension with an evaporator to obtain Ti 3 AlC 2 powder pulverized to about 3 ⁇ m.
- the raw material suspension was adjusted by measuring the particle concentration and adding water so that the particle concentration of Ti 3 Al 0.02 C 2 MXene was 15.6 mg/mL.
- An AFM image is shown in FIG. 100 exfoliated exfoliated products (nanosheets) were randomly sampled, and the average value of the thickness measured by AFM was obtained and shown in Table 1.
- the result of SEM observation is shown in FIG. 100 exfoliated products were randomly selected, and the vertical (maximum diameter in the direction perpendicular to the thickness direction) and horizontal (direction perpendicular to the vertical and thickness directions) dimensions were measured from the SEM photograph, and the average value was calculated.
- Table 1 shows the average value of the size of 100 exfoliated objects.
- a powder of Ti 3 AlC 2 which is a MAX phase ceramic, was subjected to XRD measurement, and its profile is shown in FIG. The peeled substance was measured for zeta potential in water at pH 7.0 and found to be -28.9 mV.
- ⁇ Acid treatment process As a method for acid treatment of acetylene black as fine carbon particles, 100 parts by mass of a mixed acid in which sulfuric acid (98% by mass) and nitric acid (68% by mass) are mixed at a volume ratio of 3:1 is mixed with 1 part of acetylene black. 0 mass part was added, and the mixture was immersed for 10 minutes in an environment of 85°C. Then, it was washed with water until the pH reached about 6.0, and then the water was replaced with IPA. It was air-dried at room temperature to obtain a hydrophilic acid-treated acetylene black powder. FTIR analysis detected a COOH group and a CO group as surface functional groups.
- the measured zeta potential at pH 7.0 in water was -22.5 mV.
- the acid-treated acetylene black was deagglomerated with a shaker under conditions of 140 rpm, amplitude of 45 mm, and 24 hours to prepare a hydrophilic acetylene black aqueous slurry.
- a hydrophilic acetylene black aqueous slurry was dropped onto a hydrophilized Si wafer and observed with an SEM. 100 primary particles were arbitrarily observed, the vertical and horizontal dimensions were measured, and the average primary particle diameter is shown in Table 1.
- an aqueous solution prepared by dissolving 3.5 g of lithium hydroxide in 30 mL of pure water was completely dissolved with a shaker at 140 rpm for 1 hour and an amplitude of 45 mm. and an amplitude of 45 mm for 1 hour.
- wash with water once, replace with ethanol three times stir with a shaker for 6 hours under conditions of 140 rpm in ethanol to loosen coarse aggregates, and obtain a particle concentration of 5.0 mg / mL.
- An ethanol slurry of aggregates was obtained.
- Water washing and ethanol replacement were carried out by adding water or ethanol, centrifuging at 1000 to 8000 G for 10 minutes to sediment aggregates, and removing the supernatant.
- the content of ethanol as alcohol in the resulting alcohol slurry was 99% based on the mass of the entire dispersion medium.
- an alcohol slurry of the composite aggregated particle material was spray-dried to prepare granules.
- the operating conditions were a disk rotation speed of 20,000 rpm, a nitrogen atmosphere, an alcohol slurry injection temperature of 80° C., and an alcohol slurry injection rate of 1.4 kg/hour.
- the SEM photograph (Fig. 4) of the obtained composite powder is shown.
- the resulting composite particle material has a high degree of sphericity, and when enlarged, maintains a 3D porous aggregation structure with extremely thin MXene nanosheets in which acetylene black is uniformly dispersed, and has a high specific surface area. I found out.
- 100 secondary particles were similarly observed with an SEM, they were all composite particle materials having the same porous microstructure. In other words, it became clear that the microstructure was not disturbed by external stress.
- Table 2 shows the average secondary particle diameter and sphericity of the secondary particles
- Table 3 shows the specific surface area, average pore diameter, average pore volume and bulk density.
- FIG. 5 shows nitrogen adsorption isotherms.
- 100 particles were arbitrarily extracted from the SEM image, and the secondary particle diameter was calculated as (long side + short side)/2, and the average was calculated as the average diameter.
- 100 particles were sampled and the short side/long side were measured, and the average was calculated as the sphericity.
- the upper limit is 1.0, and the closer to 1.0, the higher the sphericity.
- the bulk density of secondary particles was measured according to JIS1628-1997.
- the specific surface area, average pore diameter, and average pore volume were measured by the BET method immediately after heating at 110°C for 6 hours in vacuum.
- the degree of interdispersion which is the degree of dispersion of the primary particles of each of the Ti 3 Al 0.02 C 2 MXene nanosheets and acetylene black as fine carbon particles, was measured. Specifically, it was quantified by Raman spectroscopic analysis. 100 points were analyzed in the laser intensity range from 100 cm ⁇ 1 to 2000 cm ⁇ 1 at a laser intensity at which anatase does not precipitate, and the standard deviation of the B peak intensity/A peak intensity ratio was calculated as the interdispersion degree. Table 4 shows the interdispersion index obtained.
- the obtained composite particle material was heat-treated in vacuum at 110° C. for 5 hours, and the change in mass was measured. Furthermore, the obtained composite particle material was subjected to XRD measurement, and the profile is shown in FIG. Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets from the results of XRD measurement.
- the resulting composite particle material was uniaxially pressed in a ⁇ 10 mm mold at a pressure of 0.5 kg/cm 2 and then subjected to cold isostatic pressing (CIP) at a pressure of 1.0 ton/cm 2 .
- Table 7 shows the electrical resistance of the surface of the powder measured by the four-probe method using a copper wire of ⁇ 0.1 mm.
- Example 2 Using a graphite resistance furnace, the uniformly mixed dry powder was placed in an alumina crucible and fired under the conditions of 1430° C. for 2 hours in an Ar stream to obtain Ti 3 AlC 2 as MAX phase ceramics. to obtain a composite particle material. Measurements were taken in the same manner as in Example 1, and the results are shown in the figure and table.
- An AFM image of the exfoliated MXene nanosheet is shown in FIG. 6, and an SEM image is shown in FIG.
- FIG. 8 shows the XRD profile of the MAX phase ceramics and the composite particle material
- FIG. 9 shows the SEM image.
- Table 1 shows the average thickness and size of the exfoliated MXene nanosheets
- Table 2 shows the average particle diameter and sphericity of the resulting composite particle material
- Table 2 shows the specific surface area, average pore diameter, average pore volume, and bulk density.
- Table 4 shows the degree of interdispersion
- Table 5 shows the change in mass
- Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets
- Table 7 shows the surface electrical resistance.
- Example 3 A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 10% by mass based on the mass of Ti 3 Al 0.02 C 2 MXene nanosheets.
- Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1.
- Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density.
- Table 4 shows the degree of dispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets, and Table 7 shows the surface electrical resistance.
- Example 4 A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 3% by mass based on the mass of the Ti 3 Al 0.02 C 2 MXene nanosheets.
- Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1.
- Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density.
- Table 4 shows the degree of dispersion
- Table 5 shows the change in mass
- Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheet
- Table 7 shows the surface electrical resistance.
- Example 5 TiC powder (TI-30-10-0020, Rare Metallic) 9.2 g, TiN powder (TN-30-10-0020, Rare Metallic) 3.2 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4.
- Ti 3 Al(C 0.75 N 0.25 ) 2 powder was prepared in the same manner as in Example 1 using 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) and 2.8 g of Al powder (ALE15PB 3NG, Kojundo Chemical) as starting materials. It was confirmed by XRD analysis that the powder was MAX phase ceramic powder free of impurities. Using this, a composite particle material was prepared in the same manner as in Example 1.
- Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1.
- Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density.
- Table 4 shows the degree of dispersion,
- Table 5 shows the change in mass, and
- Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheets.
- Example 1 A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 2% by mass based on the mass of Ti 3 Al 0.02 C 2 MXene nanosheets.
- Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1.
- Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density.
- Table 4 shows the degree of dispersion, Table 5 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheets.
- Example 2 An ethanol slurry of the composite aggregated particle material was prepared in the same manner as in Example 2 up to the mixing step and the aggregation step. In order to further reduce the amount of water remaining in the solvent, ethanol was replaced with IPA to prepare an IPA slurry of the composite aggregated particle material.
- the IPA slurry was subjected to centrifugal sedimentation (7900 G), and the sediment was air-dried for 12 hours at room temperature. After that, heat treatment was performed at 60° C. for 6 hours in vacuum to obtain a mass of composite agglomerated particle material. After that, it was pulverized by applying physical stress with a grinder composed of a mortar and a pestle to produce the composite particulate material of this comparative example. The same operations as in Example 1 were performed for other steps.
- Example 2 Measured in the same manner as in Example 1, the average particle diameter and sphericity of the obtained composite particle material are shown in Table 2, the specific surface area, average pore diameter, average pore volume, and bulk density are shown in Table 3, and the degree of interdispersion are shown in Table 4, the mass change in Table 5, the interlayer distance of the (002) plane of the MXene nanosheet in Table 6, and the surface electrical resistance in Table 7. Furthermore, 100 secondary particles were observed with an SEM to examine the uniformity of the fine structure when pulverized by applying physical stress. Most of the secondary particles maintained the aggregation structure, but the aggregation structure was destroyed in some secondary particles (Fig. 10).
- Example 3 A stripped material suspension was obtained in the same manner as in Example 1 up to the stripping step.
- An aqueous solution of 3.5 g of lithium hydroxide dissolved in 40 mL of pure water was added to 220 mL of the exfoliated material suspension having a particle concentration of 15.6 mg/mL obtained in the exfoliation step in advance for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm.
- a completely dissolved alkaline aqueous solution was added under the conditions and stirred for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm.
- a paste was prepared by adding 5% acid-treated acetylene black and N-methylpyrrolidone (NMP) to the prepared secondary particles based on the mass of MXene.
- Paste preparation was performed with a grinder consisting of a mortar and pestle. After that, it was dried in vacuum at 110° C. for 6 hours to remove NMP, thereby producing a composite particle material of MXene and acetylene black. The same operations as in Comparative Example 2 were performed for other steps.
- the average particle diameter and sphericity of the composite particle material obtained by measurement in the same manner as in Example 1 are shown in Table 2, the specific surface area, average pore diameter, average pore volume, and bulk density are shown in Table 3, and the interdispersion degree is shown in Table 3.
- Table 4 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane.
- Example 4 220 mL of exfoliated material suspension was obtained in the same manner as in Example 1 up to the exfoliation step. 220 mL of IPA was added to create an MXene aggregate particle slurry in a mixed solution of IPA and water. This was centrifuged (7900 G) and the sediment was air-dried at room temperature for 12 hours. After that, it was dried in vacuum at 60° C. for 6 hours to obtain an aggregate mass. After that, a crusher composed of a mortar and a pestle was used to apply physical stress to crush the powder to produce secondary particles.
- a paste was prepared by adding N-methylpyrrolidone (NMP) dispersed with 5% acid-treated acetylene black based on the mass of MXene to the prepared secondary particles.
- the paste was made using a grinder consisting of a mortar and pestle. Thereafter, NMP was removed at 110° C. for 6 hours in vacuum to produce a composite particle material of MXene and acetylene black.
- NMP N-methylpyrrolidone
- the average particle diameter and sphericity of the obtained composite particle material were measured in the same manner as in Example 1.
- Table 2 shows the specific surface area, average pore diameter, average pore volume, and bulk density. The lines are shown in FIG.
- FIGS. 4 and 9 the composition of Ti 3 Al 0.02 C 2 MXene (97.0-90.0% by mass)/carbon particles (3.0-10.0% by mass) and Ti 3 Al 0.02 ( C 0.75 N 0.25 ) 2 MXene (95% by mass)/carbon microparticles (5.0% by mass)
- the composite powder material spray-dried from an alcohol slurry of agglomerated powder has a spherical shape with an average secondary particle size of approximately single micrometer. Excellent degree. High-magnification SEM observation of 100 secondary particles showed the 3D porous structure shown in FIGS. 4 and 9 as representative examples. On the other hand, when a lump of agglomerated powder is air-dried and vacuum-dried at 60° C.
- Table 3 shows the physical values of the 3D porous structure.
- the composite powder material obtained by spray-drying the agglomerated powder alcohol slurry has a higher specific surface area than the composite particle material obtained by pulverizing the agglomerates by applying physical stress. Average pore diameter and average pore volume increase. This is because the droplets of the agglomerated powder alcohol slurry are dried instantly, so shrinkage during drying is suppressed.
- MXene is peeled off to a monolayer level, specifically a thickness of 1.5 nm.
- Shrinkage during drying means that the MXene nanosheets adhere to each other, and obtaining a composite powder material without shrinkage indicates that the composite powder material is produced while maintaining the MXene nanosheets at the monolayer level. Smooth ion diffusion leads to rapid charging and discharging, excellent cycle characteristics, and high capacity.
- Example 2 has a larger specific surface area.
- the sintering (synthesis) temperature of MAX phase ceramics is lowered within a range that does not produce impurities, the bonding force between the layers decreases, and the average size decreases while maintaining the thickness at the monolayer level in the exfoliation process.
- a smaller average size of about 0.2 ⁇ m (Example 2) had a larger specific surface area, a smaller average pore diameter, and a larger pore volume than about 0.8 ⁇ m (Example 1).
- the adsorption isotherms of Examples 1, 2 and Comparative Example 4 are shown in FIG. 5 as typical examples. It can be seen that the composite particulate material of the present invention is an excellent 3D porous material.
- Table 5 shows the change in mass when 0.3 g of the composite powder material was evenly spread on a dish of 20 cm 3 or more and heated in vacuum at 110° C. for 5 hours.
- the composite powder material is prepared by spray-drying the agglomerated powder alcohol slurry. Residual water is completely removed.
- Table 3 shows the bulk density of the obtained composite particle material.
- a composite powder material obtained by spray-drying an alcohol slurry of agglomerated powder having a composition of (% by mass)/carbon particles (5.0% by mass) was compared with a composite particulate material obtained by pulverizing agglomerates by applying physical stress.
- the former has a 3D porous aggregate structure, has a uniform secondary particle size, and is characterized by having a spherical shape. However, there is a feature of continuous particle blending. For this reason, the former has a smaller bulk density.
- the former makes it possible to improve the performance of the produced secondary batteries, etc., because the produced membrane has a uniform structure.
- composite particle materials having several types of secondary particle diameters are prepared so that they are properly packed, and a distribution rule that creates the closest packing using the Andreasen equation has been proposed. It is preferable to perform particle blending, or to perform two-stage particle blending in which two types of composite particle materials, coarse particles and fine particles, are blended.
- Table 6 shows the interlayer distance of the (002) plane of MXene obtained by XRD of the obtained composite particle material.
- the composite particle material of the present invention in which the carbon particles are uniformly arranged has a larger interlayer distance than the process in which the carbon particles are mixed by adding NMP after producing the aggregated powder using only MXene. This is because Li and/or Na ions and chloride ions are intercalated between the layers of MXene in the process of uniformly arranging the carbon particles, and the layers are expanded.
- the numerical value obtained by subtracting the interlayer distance of the (002) plane of MAX phase ceramics from the (002) plane of MXene can be considered as the distance of the gap generated after removing the Al phase of MAX phase ceramics (see FIG. 11).
- the composite particle material of the present invention will be about 0.6 nm.
- ions larger than Li ions such as Na ions, can also be intercalated and deintercalated.
- the gap is large, there are advantages such as rapid charge/discharge and long life.
- Table 7 shows the surface electrical resistance of the compact. This was done to define the oxidation state of the MXene nanosheet surface and the amount of water remaining between the layers. Oxidation of the surface of MXene nanosheets increases electrical resistance. In addition, if there is water remaining between the layers, it will change over time, oxidizing the surfaces of the layers and increasing the surface electrical resistance. Therefore, if the oxidation progresses or if the amount of moisture between the layers is large, the electrical resistance of the surface increases.
- the surface electrical resistance of the compact also affects the number of contacts between powders.
- the number of contacts is indicated by the relative density of the compact. Relative density is determined by (bulk specific gravity/true specific gravity) x 100.
- the composite particle material used for the negative electrode active material of the secondary battery and the electrode of the electrochemical capacitor preferably has a surface electrical resistance of 1.0 to 100.0 ⁇ / ⁇ .
- the original composite particle material is an ideal two-component material that has excellent ion diffusibility and allows electrons to move smoothly to the current collector. Since it is a composite particle material suitable for the negative electrode active material of the secondary battery (storage battery) or suitable for the positive electrode and / or negative electrode active material of the ideal pseudocapacitor, the 3D porous aggregation structure can be maintained, so that the ion diffusion is further improved. It is expected that the degree of sphericity will be increased, and since the degree of sphericity can be increased, it is expected that the uniformity of the film will be improved.
- Example 1 when a composite particle material was produced using methanol or isopropanol instead of ethanol in Example 1, a composite particle material similar to that of Example 1 was obtained.
- the composite particulate material was produced using isopropanol instead of ethanol in Example 1, it was necessary to raise the spray temperature in the granulation process to 85°C.
- the surface electric resistance in the same manner as in Example 1, it was 60.5 ⁇ / ⁇ , and when ethanol was used, it was 41.1 ⁇ / ⁇ , but the resistance increased slightly. This is because the surface was slightly oxidized because the spray temperature was raised slightly.
- the composite particulate material was produced using methanol instead of ethanol in Example 1, the spray temperature in the granulation process could be lowered to 75°C.
- the solvent used in the granulation step may be ethanol, methanol, or isopropyl alcohol.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The present invention provides a novel composite particle material of a MXene nanosheet and a carbon microbody. A composite particle material according to the present invention comprises 90 to 97 parts by mass of a sheet-shaped Ti3Ala(C(1.0-x)Nx)2 (0 ≤ x ≤ 0.25 and a is 0.01 or more) MXene and 3 to 10 parts by mass of a carbon microbody, while having an interdispersibility of 0.01 to 7.00 and a specific surface area of 75 m2/g or more. The MXene nanosheet has an average thickness of 1.0 to 3.5 nm. In addition, the sphericity is 0.8 or more. A method for producing this composite particle material according to the present invention comprises a step for granulating an alcohol slurry, which contains aggregates formed of the MXene and the microbody, by means of a spray drying method.
Description
本発明は、新規なMXeneナノシートと微小体との複合粒子材料及びその製造方法、並びにその複合粒子材料を用いた電極に関する。
The present invention relates to a novel composite particle material of MXene nanosheets and microparticles, a method for producing the same, and an electrode using the composite particle material.
従来から層状化合物であるTi3AlC2などのMAX相セラミックス粉末から酸処理によりAlを除去して得られるMXene層状化合物からなる粒子材料(本明細書では適宜「MXene粒子材料」と称したり、「MXeneナノシート」と称したり、「層状化合物粒子材料」と称したり、単に「粒子材料」と称したりすることがある。)が知られている(特許文献1~6)。これらのMXene層状化合物は、Al層が除去された空隙層にNaイオンやLiイオンが貯蔵/脱離可能であることから二次電池(蓄電池)の負極活物質材料、電極界面での酸化還元反応に伴うファラデー電流の関与した電気化学反応及び電極での電気化学的なイオンの吸脱着反応を利用するシュードキャパシタ(レドックスキャパシタとも称される)の正極及び/又は負極活物質材料、また導電性が優れていることから電磁波シールド薄膜、導電薄膜などへの応用が期待されている。
Conventionally, a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment (in this specification, it is appropriately referred to as "MXene particle material" or " It is sometimes referred to as "MXene nanosheet", "layered compound particle material", or simply "particle material") (Patent Documents 1 to 6). These MXene layered compounds can store/desorb Na ions and Li ions in the void layer from which the Al layer has been removed. Positive and/or negative electrode active materials for pseudocapacitors (also called redox capacitors) that utilize electrochemical reactions involving faradaic currents associated with electrochemical adsorption and desorption reactions of ions at the electrodes, and Due to its excellent properties, it is expected to be applied to electromagnetic wave shielding thin films and conductive thin films.
MAX相セラミックスは層状化合物であり、一般式はMn+1AXnと表される。式中のMは遷移金属(Ti、Sc、Cr、Zr、Nbなど)、AはAグループ元素、XはCか、[C(1.0-x)Nx(0<x≦1.0)]、nは1から3、で構成されている。
MAX phase ceramics are layered compounds, and the general formula is expressed as M n+1 AX n . In the formula, M is a transition metal (Ti, Sc, Cr, Zr, Nb, etc.), A is an A group element, X is C or [C (1.0-x) N x (0<x≦1.0)] , n is 1 to 3.
その中、AをAlとした時、M-Xとの結合よりもM-Aの結合が弱いため、酸処理で選択的にAl層が除去される。本発明者らは、微小サイズのビーズを用いたビーズミルにより剥離して、MXeneナノシートを調製する方法を提案している(特許文献5、6)。
Among them, when A is Al, the bond of MA is weaker than that of MX, so the Al layer is selectively removed by acid treatment. The present inventors have proposed a method of preparing MXene nanosheets by exfoliating them with a bead mill using micro-sized beads (Patent Documents 5 and 6).
ここで、MXeneナノシートを二次電池(蓄電池)やシュードキャパシタに用いる場合には、MXeneナノシートだけではなく導電補助剤としてアセチレンブラックが添加されて使用される。サイクル特性(寿命特性)、急速充放電特性、容量などの電池特性を向上させるためには、イオン拡散性を高めること、電子をスムーズに集電体に移動させることが必要となる。具体的には、ナノシートを単層レベルに剥離し、MXeneナノシートと導電性微小体との複合粒子材料の比表面積を大きくすること、導電性微小体がナノシート間に均一に配置されることが求められる。鋭意検討した結果、二次電池(蓄電池)負極活物質として、あるいはシュードキャパシタの正極及び/あるいは負極活物質として、有効なMXeneナノシートと導電性微小体の複合粒子材料を得ることに成功した。
Here, when MXene nanosheets are used in secondary batteries (storage batteries) and pseudocapacitors, not only MXene nanosheets but also acetylene black is added as a conductive aid. In order to improve battery characteristics such as cycle characteristics (lifetime characteristics), rapid charge/discharge characteristics, and capacity, it is necessary to increase ion diffusibility and move electrons smoothly to the current collector. Specifically, it is required to exfoliate the nanosheets to a single layer level, increase the specific surface area of the composite particle material of the MXene nanosheet and the conductive microparticles, and to arrange the conductive microparticles uniformly between the nanosheets. be done. As a result of intensive studies, we succeeded in obtaining a composite particle material of MXene nanosheets and conductive microparticles that is effective as a secondary battery (storage battery) negative electrode active material, or as a positive electrode and/or negative electrode active material for a pseudocapacitor.
本出願人が先に出願した複合粒子材料は、一次粒子が凝集した塊になる。そのため、産業に利用するには粉砕や分級を行うことが必須となる。一般的に行われている物理的な応力を凝集塊に付加する粉砕を行うと、一見すると実用上使用可能な粒度に粉砕可能であるが、局所的に凝集構造が破壊されることが分かった。さらに、凝集塊の強度は湿度環境に影響するため季節によって得られる凝集構造が異なり工業的に使用可能な複合粒子材料を得られないことが分かった。凝集構造が破壊された部分を二次電池やシュードキャパシタの電極に使用すると著しく特性劣化に繋がり、更には物理的な応力を付加する粉砕を行うと、粒子形状が不定形になり電極作成時に均一な成膜を行えないなどの問題が生じた。
The composite particle material previously filed by the present applicant is an aggregate of primary particles. Therefore, pulverization and classification are essential for industrial use. When pulverization, which is generally performed by applying physical stress to agglomerates, it seems possible to pulverize them to a particle size that can be used in practice, but it was found that the agglomerate structure was locally destroyed. . Furthermore, it has been found that the strength of aggregates is affected by the humidity environment, and thus the aggregate structure obtained differs depending on the season, making it impossible to obtain an industrially usable composite particle material. If the part where the agglomeration structure is destroyed is used for the electrode of a secondary battery or a pseudocapacitor, the characteristics will be significantly deteriorated, and if the crushing that applies physical stress is performed, the particle shape will become irregular and uniform at the time of electrode preparation. However, there were problems such as the inability to form a thin film.
本発明は上記実情に鑑み完成したものであり、新規なMXeneナノシートと微小体とが高度に分散している、高比表面積を有する3Dポーラス凝集構造をもつ粉末であって、球形度が高い複合粒子材料及びその製造方法、並びにその複合粒子材料を用いた電極を提供することを解決すべき課題とする。
The present invention has been completed in view of the above circumstances, and provides a powder having a 3D porous aggregation structure with a high specific surface area, in which the novel MXene nanosheets and microparticles are highly dispersed, and which has a high sphericity. The problem to be solved is to provide a particulate material, a method for producing the same, and an electrode using the composite particulate material.
上記課題を解決する本発明の複合粒子材料は、導電性をもつ微小体を3~10質量部とTi3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneナノシートを90~97質量部とを一次粒子として含有し、前記MXeneナノシートは、平均厚さが1.0~3.5nmであり、下記相互分散度が0.01~7.00であって、体積平均径が1.0μm~15.0μmであり、球形度が0.80以上である。
The composite particle material of the present invention, which solves the above problems, contains 3 to 10 parts by mass of conductive microparticles and Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0 ≤ x ≤ 0 .25, a is 0.01 or more) MXene nanosheets containing 90 to 97 parts by mass as primary particles, the MXene nanosheets having an average thickness of 1.0 to 3.5 nm, and having the following interdispersion degree: It has a volume average diameter of 0.01 to 7.00, a volume average diameter of 1.0 μm to 15.0 μm, and a sphericity of 0.80 or more.
(相互分散度)
532nm波長のレーザーを用いたラマン分光分析において400cm-1のピーク高さAと1332cm-1のピーク高さBの比(B/A)を100個算出し、その100個のB/Aの値から算出した標準偏差を相互分散度とする。 (interdispersion degree)
Calculate 100 ratios (B/A) of peak height A at 400 cm −1 and peak height B at 1332 cm −1 in Raman spectroscopic analysis using a laser with a wavelength of 532 nm, and the 100 B/A values The standard deviation calculated from is taken as the degree of interdispersion.
532nm波長のレーザーを用いたラマン分光分析において400cm-1のピーク高さAと1332cm-1のピーク高さBの比(B/A)を100個算出し、その100個のB/Aの値から算出した標準偏差を相互分散度とする。 (interdispersion degree)
Calculate 100 ratios (B/A) of peak height A at 400 cm −1 and peak height B at 1332 cm −1 in Raman spectroscopic analysis using a laser with a wavelength of 532 nm, and the 100 B/A values The standard deviation calculated from is taken as the degree of interdispersion.
上記課題を解決する本発明の複合粒子材料の製造方法は、水を50質量%以上含有する分散媒中において、Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneを剥離して剥離物を形成する剥離工程と、
硫酸及び硝酸の混酸水溶液中に、原料カーボン微小体を70℃以上に10分以上処理してカーボン微小体を得る酸処理工程と、
粒子濃度が11.5~17.0mg/Lであって、90:10~97:3の質量比の前記剥離物及びカーボン微小体の混合物スラリーに、0.8~1.0モル/Lの水溶性リチウム塩及び/又は水溶性ナトリウム塩を添加し撹拌する混合工程と、
前記混合物スラリーに0.4~0.7モル/Lのアルカリ性水溶液を添加し、液性をアルカリ性にして凝集させて、前記Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXene及び前記カーボン微小体の凝集物のスラリーを得る凝集工程と、
前記スラリーの分散媒をアルコールに置換して調製した前記凝集物のアルコールスラリーを不活性雰囲気下でスプレードライ法により造粒して造粒体を得る造粒工程と、
を有する。 The method for producing a composite particle material of the present invention that solves the above problems comprises: Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤ x ≤ 0.25, a is 0.01 or more) a stripping step of stripping MXene to form a stripped product;
an acid treatment step of treating raw carbon microparticles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70° C. or higher for 10 minutes or longer to obtain carbon microparticles;
The particle concentration is 11.5 to 17.0 mg / L, and 0.8 to 1.0 mol / L of A mixing step of adding and stirring a water-soluble lithium salt and/or a water-soluble sodium salt;
An alkaline aqueous solution of 0.4 to 0.7 mol/L is added to the mixture slurry to make the liquid alkaline and aggregate to form the Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0≦x≦0.25, a is 0.01 or more) an aggregation step of obtaining a slurry of aggregates of MXene and the carbon fine particles;
A granulation step of obtaining granules by granulating an alcohol slurry of the aggregates prepared by replacing the dispersion medium of the slurry with alcohol by a spray drying method under an inert atmosphere;
have
硫酸及び硝酸の混酸水溶液中に、原料カーボン微小体を70℃以上に10分以上処理してカーボン微小体を得る酸処理工程と、
粒子濃度が11.5~17.0mg/Lであって、90:10~97:3の質量比の前記剥離物及びカーボン微小体の混合物スラリーに、0.8~1.0モル/Lの水溶性リチウム塩及び/又は水溶性ナトリウム塩を添加し撹拌する混合工程と、
前記混合物スラリーに0.4~0.7モル/Lのアルカリ性水溶液を添加し、液性をアルカリ性にして凝集させて、前記Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXene及び前記カーボン微小体の凝集物のスラリーを得る凝集工程と、
前記スラリーの分散媒をアルコールに置換して調製した前記凝集物のアルコールスラリーを不活性雰囲気下でスプレードライ法により造粒して造粒体を得る造粒工程と、
を有する。 The method for producing a composite particle material of the present invention that solves the above problems comprises: Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤ x ≤ 0.25, a is 0.01 or more) a stripping step of stripping MXene to form a stripped product;
an acid treatment step of treating raw carbon microparticles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70° C. or higher for 10 minutes or longer to obtain carbon microparticles;
The particle concentration is 11.5 to 17.0 mg / L, and 0.8 to 1.0 mol / L of A mixing step of adding and stirring a water-soluble lithium salt and/or a water-soluble sodium salt;
An alkaline aqueous solution of 0.4 to 0.7 mol/L is added to the mixture slurry to make the liquid alkaline and aggregate to form the Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0≦x≦0.25, a is 0.01 or more) an aggregation step of obtaining a slurry of aggregates of MXene and the carbon fine particles;
A granulation step of obtaining granules by granulating an alcohol slurry of the aggregates prepared by replacing the dispersion medium of the slurry with alcohol by a spray drying method under an inert atmosphere;
have
本発明の複合粒子材料は、上記構成を有することにより、活物質に採用することで二次電池(蓄電池)やシュードキャパシタに用いたときに高い性能を発揮できる電極を提供することができる。
By having the above structure, the composite particle material of the present invention can provide an electrode that can exhibit high performance when used in secondary batteries (storage batteries) and pseudocapacitors by adopting it as an active material.
また、本発明の複合粒子材料の製造方法は、上記構成を有する製造方法により製造することで、理想的な3Dポーラス凝集構造を有した球形度が高い複合粒子材料を製造することが可能になる。
In addition, the method for producing a composite particle material of the present invention makes it possible to produce a composite particle material having an ideal 3D porous aggregation structure and a high degree of sphericity by using the production method having the above configuration. .
本発明の複合粒子材料及びその製造方法並びに電極材料について実施形態に基づいて以下に詳細に説明を行う。本実施形態の複合粒子材料は、導電性を示すなどの電気的特性に優れ、Al層が除去されたことから結晶内に形成される大きな空隙層を有することから、二次電池(Liイオン二次電池、Naイオン二次電池など)、及びシュードキャパシタなどの活物質材料(二次電池の場合は負極活物質、シュードキャパシタの場合は正極及び/あるいは負極活物質)、電磁波シールド薄膜や導電薄膜材料などへの応用が可能である。なお、本明細書中に記載した数値は、数値範囲の上限や下限として用いることができ、その場合にはその数値を含む範囲、含まない範囲の何れにすることもできる。
The composite particle material, manufacturing method thereof, and electrode material of the present invention will be described in detail below based on embodiments. The composite particle material of the present embodiment has excellent electrical properties such as conductivity, and has a large void layer formed in the crystal due to the removal of the Al layer. secondary batteries, Na-ion secondary batteries, etc.), active materials such as pseudocapacitors (negative electrode active materials in the case of secondary batteries, and positive and/or negative electrode active materials in the case of pseudocapacitors), electromagnetic wave shielding thin films and conductive thin films Application to materials is possible. In addition, the numerical values described in this specification can be used as upper and lower limits of numerical ranges, and in such cases, the range can be either inclusive or exclusive of the numerical values.
(複合粒子材料)
本実施形態の複合粒子材料は、電極材料などへの応用のために薄片化されたMXeneと粒子状あるいはチューブ状の微小体とを複合化した粒子材料である。MXeneを薄片化した粒子材料は、数ミクロンメートルの粉末状層状化合物であるマルチレイヤMXeneを剥離することにより得られる。 (Composite particle material)
The composite particle material of the present embodiment is a particle material obtained by combining a thin piece of MXene and a particulate or tube-like minute body for application to an electrode material or the like. MXene exfoliated particulate material is obtained by exfoliating multi-layer MXene, which is a powdery layered compound of several microns.
本実施形態の複合粒子材料は、電極材料などへの応用のために薄片化されたMXeneと粒子状あるいはチューブ状の微小体とを複合化した粒子材料である。MXeneを薄片化した粒子材料は、数ミクロンメートルの粉末状層状化合物であるマルチレイヤMXeneを剥離することにより得られる。 (Composite particle material)
The composite particle material of the present embodiment is a particle material obtained by combining a thin piece of MXene and a particulate or tube-like minute body for application to an electrode material or the like. MXene exfoliated particulate material is obtained by exfoliating multi-layer MXene, which is a powdery layered compound of several microns.
本明細書において、あるパラメータに上限値と下限値をそれぞれ複数設定した場合には特に制限しない限りはそれらの上限値と下限値とを任意に組み合わせることができる。本実施形態の複合粒子材料は、MXeneと微小体との複合粒子材料である。
In this specification, when a plurality of upper limit values and lower limit values are set for a certain parameter, those upper limit values and lower limit values can be arbitrarily combined unless otherwise specified. The composite particle material of this embodiment is a composite particle material of MXene and microparticles.
MXeneは、MXeneと微小体との質量の和を基準として、90~97%含有し、残りの10%~3%が微小体である。MXeneの含有量が97%を超えると、微小体添加の乾燥収縮における障壁としての効果が薄れ、90%を下回ると活物質材料としての機能が悪くなる。更にMXeneの含有量が97%を超えると、電子が集電体へ移動しにくくなり、90%を下回ると活物質材料としての機能が悪くなる。MXeneの含有量の下限としては93%、92%、90%が挙げられ、上限としては97%、96%、95%が挙げられる。
MXene contains 90 to 97% based on the sum of the mass of MXene and minute bodies, and the remaining 10% to 3% is minute bodies. If the content of MXene exceeds 97%, the effect as a barrier against drying shrinkage due to the addition of fine particles is weakened, and if the content is lower than 90%, the function as an active material deteriorates. Furthermore, when the content of MXene exceeds 97%, electrons are difficult to move to the current collector, and when it is less than 90%, the function as an active material deteriorates. The lower limits of the MXene content are 93%, 92% and 90%, and the upper limits are 97%, 96% and 95%.
複合粒子材料は、相互分散度が0.01から7.00である。相互分散度はMXeneと微小体との分散度を規定する値である。微小体にカーボン微小体を用いた場合、相互分散度は、無作為に選択された100個の複合粒子材料について、532nm波長のレーザーを用いたラマン分光分析により400cm-1のピーク高さAと1332cm-1のピーク高さBの比(B/A)から算出した標準偏差を相互分散度とする。相互分散度は小さいことが望ましく、7.00を超えると効果的に電子を集電体に移動できなくなる。複合粒子材料の相互分散度は、下限値として0.01、0.05、0.10を採用することができ、上限値として7.00、2.50、1.50を採用することができる。モノレイヤレベルまで剥離したTi3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneナノシートは、レーザーを照射すると、容易に酸化してアナターゼが析出するため、アナターゼが析出しないレーザー強度で分析する。分析は、100cm-1から2000cm-1の範囲で行う。Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneナノシートのチタニウム原子に吸着した官能基による振動が230~470cm-1(Aピーク)に、カーボン原子に吸着した官能基による振動が580cm-1に現れる。一方、アセチレンブラックについて、SP3混成軌道の炭素が1332cm-1(Bピーク)に、SP2混成軌道の炭素が1500~1600cm-1に現れる。
The composite particulate material has a mutual dispersity of 0.01 to 7.00. The interdispersion degree is a value that defines the degree of dispersion between the MXene and the minute particles. When carbon microparticles are used as the microparticles, the degree of interdispersion of 100 randomly selected composite particle materials was determined by Raman spectroscopic analysis using a laser with a wavelength of 532 nm with a peak height A of 400 cm −1 and The standard deviation calculated from the ratio (B/A) of the peak heights B at 1332 cm -1 is defined as the degree of interdispersion. It is desirable that the interdispersion degree is small, and if it exceeds 7.00, electrons cannot effectively move to the current collector. The interdispersion degree of the composite particle material can adopt lower limits of 0.01, 0.05, 0.10 and upper limits of 7.00, 2.50, 1.50. . Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤x≤0.25, a is 0.01 or more) MXene nanosheet exfoliated to the monolayer level can be easily oxidized to precipitate anatase, analyze at a laser intensity that does not precipitate anatase. Analysis is performed in the range from 100 cm -1 to 2000 cm -1 . Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0≦x≦0.25, a is 0.01 or more) Vibration due to functional groups adsorbed on titanium atoms of MXene nanosheet is 230 to 470 cm. At −1 (A peak), vibration due to functional groups adsorbed on carbon atoms appears at 580 cm −1 . On the other hand, for acetylene black, the SP3 hybrid orbital carbon appears at 1332 cm −1 (B peak), and the SP2 hybrid orbital carbon appears at 1500 to 1600 cm −1 .
複合粒子材料は、比表面積が75m2/g以上である。比表面積は、前処理として真空中110℃で6時間加熱した後、窒素を用いたBET法により測定される。複合粒子材料の比表面積は、下限値として75m2/g、80m2/g、105m2/gを採用することができ、上限値として200m2/g、185m2/g、170m2/gを採用することができる。複合粒子材料は、平均細孔直径が10.0~20.0nm、平均細孔容量が0.30~0.70mL/gであることが好ましい。平均細孔直径が10.0~15.0nm、平均細孔容量が0.40~0.60mL/gであることが更に好ましい。平均細孔直径及び細孔容量は、前処理として真空中110℃で6時間加熱した後、窒素を用いたBET法により測定した。
The composite particulate material has a specific surface area of 75 m 2 /g or more. The specific surface area is measured by the BET method using nitrogen after heating at 110° C. for 6 hours in vacuum as a pretreatment. For the specific surface area of the composite particle material, 75 m 2 /g, 80 m 2 /g and 105 m 2 /g can be adopted as lower limits, and 200 m 2 /g, 185 m 2 / g and 170 m 2 /g as upper limits. can be adopted. The composite particulate material preferably has an average pore diameter of 10.0-20.0 nm and an average pore volume of 0.30-0.70 mL/g. More preferably, the average pore diameter is 10.0-15.0 nm and the average pore volume is 0.40-0.60 mL/g. The average pore diameter and pore volume were measured by the BET method using nitrogen after heating in vacuum at 110° C. for 6 hours as a pretreatment.
本出願人は、先に出願したPCT/JP2021/018296で、液中で凝集粒子材料のスラリーを作製、遠心沈降させ、その沈降物を室温で風乾、その後60℃真空乾燥して凝集塊を作製し、その後物理的な応力付加により粉砕して二次粒子である複合粒子材料を作製することによって得られた複合材料を開示した。風乾に24時間以上要する。風乾、及び60℃真空乾燥中に収縮する。収縮メカニズムはMXeneナノシートが重なり合って一体化すると同時に収縮の障壁として添加したカーボン微小体が移動する。このようなメカニズムにより相互分散度が低下し、比表面積が低下する。さらに平均細孔直径と平均細孔容量も小さくなる。風乾後110℃真空乾燥すると著しく収縮し比表面積が著しく低下する。一方、アルコール溶媒の複合凝集粒子スラリーをスプレードライすると、液滴が収縮なしで瞬時に乾燥される結果として、優れた相互分散度で高比表面積の3Dポーラス凝集構造を有する球状の複合粒子材料を得ることができる。瞬時に乾燥するスプレードライして複合粒子材料を得る方法では、一般的に行われている凝集塊を物理的な応力付加により二次粒子である複合粒子材料を得る方法に比べて、比表面積が大きくなると同時に、平均細孔直径と平均細孔容量が大きくなる。なお、3Dポーラス凝集構造とは、一次粒子が間隙を形成して凝集することで細孔が3次元網目状に形成された構造を意味する。
In PCT/JP2021/018296 previously filed by the present applicant, a slurry of agglomerated particulate material is prepared in a liquid, centrifugally sedimented, the sediment is air-dried at room temperature, and then vacuum-dried at 60°C to prepare agglomerates. and then pulverized by applying physical stress to produce a composite particulate material that is secondary particles. It takes more than 24 hours to air dry. It shrinks during air drying and vacuum drying at 60°C. As for the shrinkage mechanism, the MXene nanosheets are overlapped and integrated, and at the same time, the carbon particles added as a shrinkage barrier move. Such a mechanism lowers the degree of interdispersion and lowers the specific surface area. Furthermore, the average pore diameter and average pore volume are also reduced. After air-drying, if it is dried in a vacuum at 110°C, it will shrink significantly and the specific surface area will decrease significantly. On the other hand, when a slurry of composite aggregated particles in an alcohol solvent is spray-dried, the droplets are dried instantaneously without shrinkage, resulting in a spherical composite particle material having a 3D porous aggregate structure with excellent interdispersion and a high specific surface area. Obtainable. In the method of obtaining a composite particle material by spray drying, which dries instantly, the specific surface area is reduced compared to the general method of obtaining a composite particle material, which is secondary particles, by applying physical stress to agglomerates. As the size increases, the average pore diameter and average pore volume increase. The 3D porous aggregation structure means a structure in which pores are formed in a three-dimensional network by aggregation of primary particles with interstices.
複合粒子材料は、0.3gの試料を20cm2以上の皿上に均一に拡げ、真空中110℃で5時間加熱したときの質量変化が1.0%以下であることが好ましい。本加熱条件下では、MXene層間中に含まれる水分と外表面に付着した水分が揮散するが、その量を規定することで層間中の水分含有量が小さい複合粒子材料を規定できる。質量変化としては、上限値が0.8%、0.6%、0.4%、0.2%を採用することができる。規定した範囲内の質量変化はMXene 層間中の水ではなく、複合粒子材料の外表面に空気中の水分が吸着した水分量を意味する。MXeneの層間に水分が残留すると二次電池やシュードキャパシタのサイクル特性で特性劣化が認められる。その層間に残留する水は二次電池やシュードキャパシタのセル作製後の真空中熱処理では完全に除去できない。スプレードライした後の複合粒子材料を真空雰囲気下又は不活性雰囲気下、100~120℃で乾燥することが好ましい。
The composite particle material preferably has a mass change of 1.0% or less when 0.3 g of a sample is evenly spread on a dish of 20 cm 2 or more and heated at 110° C. in vacuum for 5 hours. Under this heating condition, the water contained in the MXene layers and the water adhering to the outer surface volatilize, but by specifying the amount, it is possible to define a composite particle material with a low water content between the layers. As the mass change, upper limits of 0.8%, 0.6%, 0.4%, and 0.2% can be adopted. The mass change within the specified range means the amount of moisture adsorbed from the air on the outer surface of the composite particulate material, not the water in the MXene layers. If moisture remains between the layers of MXene, the cycle characteristics of secondary batteries and pseudocapacitors are degraded. The water remaining between the layers cannot be completely removed by heat treatment in a vacuum after fabrication of a secondary battery or pseudocapacitor cell. After spray drying, the composite particulate material is preferably dried at 100-120° C. under vacuum or inert atmosphere.
複合粒子材料は、かさ密度が0.1~0.5g/cm3であることが好ましい。下限値としては、0.1g/cm3、0.15g/cm3を採用することができ、上限値としては、0.45g/cm3、0.50g/cm3を採用することができる。二次電池やシュードキャパシタのセルを作製する時に電極の膜を作製する方法としては特に限定しないが、含有させる複合粒子材料ができるだけ体積充填密度が高くなるように作製することが好ましい。
The composite particulate material preferably has a bulk density of 0.1-0.5 g/cm 3 . As lower limits, 0.1 g/cm 3 and 0.15 g/cm 3 can be adopted, and as upper limits, 0.45 g/cm 3 and 0.50 g/cm 3 can be adopted. There is no particular limitation on the method for producing an electrode film when producing a cell of a secondary battery or a pseudocapacitor, but it is preferable to produce the composite particle material to be contained so that the volume packing density is as high as possible.
例えば、汎用技術を用いて、最密充填構造となるアンドレアゼンが示した粒度分布になるよう数種類の二次粒子径を有する複合粒子材料を配合する連続粒子配合(配合する複合粒子材料の粒径が連続的に変化することを意味し、粒度分布が比較的ブロードなもの)、大小の二次粒子径を有する複合粒子材料を配合する二段粒子配合など数種類の平均二次粒子径、かさ密度を有する複合粒子材料を混合して成膜することができる。
For example, using general-purpose technology, continuous particle blending (particle size of compounded composite particle material mean that the particle size distribution changes continuously, and the particle size distribution is relatively broad). can be formed by mixing a composite particle material having
MXeneは前述のMAX相を表す式であるMn+1AXn(Mは遷移金属、AはAグループ元素、XはCか、[C(1.0-x)Nx(0<x≦1.0)]、nは1から3)において、AにAlを用い、酸処理でAl相を除去して得られる。その中、Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上)であることが好ましい。aの下限は0.002にすることができる。aの上限は0.05であることが更に好ましい。xが0.25を超えると微小ビーズを用いたビーズミル処理で、剥離よりも微粒子化が進行し薄くて大きなナノシートが得られない。また、これらの元素以外にもO、OH、ハロゲン基を表面官能基として有することができる。
MXene is a formula representing the aforementioned MAX phase, M n+1 AX n (M is a transition metal, A is an A group element, X is C, or [C (1.0-x) N x (0<x≦1. 0)] and n is obtained by using Al as A in 1 to 3) and removing the Al phase by acid treatment. Among them, Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤x≤0.25, a is 0.01 or more ) is preferable. The lower limit of a can be 0.002. More preferably, the upper limit of a is 0.05. When x exceeds 0.25, the bead mill treatment using microbeads promotes microparticulation rather than exfoliation, making it impossible to obtain thin and large nanosheets. In addition to these elements, it can have O, OH, and halogen groups as surface functional groups.
MXeneは、板状、葉状、薄片状、シート状などであり、総称してシート状と定義する。MXeneは、層状化合物の層の積層方向を「厚み」とし、その厚みと直交する無数の方向を「シートの拡がり方向」とする。MXeneの厚みは、平均厚さが1.0~3.5nmであり、1.5~3.0nmであることが好ましい。平均厚さは、ランダムに選択された100個の粒子について親水化処理したSiウエハーを用いたAFM分析により測定した値の平均値として算出する。シートの大きさは親水化処理したSiウエハーにナノシートを滴下しSEMで測定できる。シートの拡がり方向の平均の大きさが0.1~2.0μmであることが好ましく、特に0.1~1.7μmであることがより好ましい。厚みと直交する方向における最大値を「長辺」最小値を「短辺」とした場合に、ランダムに選択された100個の粒子についてSEMにより測定した、[(長辺+短辺)/2]の平均値を拡がり方向の平均の大きさとする。Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneにおいて、Ti3Al0.02C2MXeneは平均厚さが1.74nm、平均大きさが0.78μmであるが、炭素サイトの5%を窒素に置き換えると、平均厚さが1.66nm、平均大きさが1.17μm、炭素サイトの25%を窒素に置き換えると、平均厚さが1.81nm、平均大きさが1.61μmとなる。炭素サイトを窒素に置き換えると水中で官能基が生成しやすくなり、MXene の層間結合力が小さくなり、モノレイヤレベルの厚さでより大きなナノシートが得られる。またMAX相セラミックスの焼成(合成)温度を不純物生成のない範囲で低下させると層間の結合力が低下するため、モノレイヤレベルの厚みを維持した上で、平均の大きさを小さくすることが可能となる。例えば、Ti3Al0.02C2MXeneにおいて、MAX相セラミックスの焼成(合成)温度を1450℃から1430℃に低下すると、平均厚さが2.06nm、平均大きさが0.25μmと小さくすることができる。さらに1410℃まで低下させると、平均厚さが1.98nm、平均大きさが0.10μmまで小さくすることができる。
MXene has a plate-like, leaf-like, flake-like, sheet-like, etc., and is generically defined as sheet-like. In MXene, the stacking direction of the layers of the stratified compound is defined as "thickness", and countless directions perpendicular to the thickness are defined as "sheet spread directions". The MXene has an average thickness of 1.0 to 3.5 nm, preferably 1.5 to 3.0 nm. The average thickness is calculated as the average value of 100 randomly selected particles measured by AFM analysis using a hydrophilized Si wafer. The size of the sheet can be measured by dropping a nanosheet onto a hydrophilized Si wafer and using an SEM. The average size of the sheet in the spreading direction is preferably 0.1 to 2.0 μm, more preferably 0.1 to 1.7 μm. When the maximum value in the direction perpendicular to the thickness is the “long side” and the minimum value is the “short side”, 100 randomly selected particles were measured by SEM, [(long side + short side) / 2 ] is taken as the average size in the spreading direction. Ti3Ala (C( 1.0 -x ) Nx ) 2 , ( 0≤x≤0.25, a is 0.01 or more) In MXene , Ti3Al0.02C2MXene has an average thickness of 1 .74 nm with an average size of 0.78 μm, but replacing 5% of the carbon sites with nitrogen gives an average thickness of 1.66 nm with an average size of 1.17 μm with 25% of the carbon sites replaced with nitrogen. , the average thickness is 1.81 nm and the average size is 1.61 μm. Replacing the carbon sites with nitrogen facilitates the formation of functional groups in water, lowering the interlayer bonding strength of MXene and yielding larger nanosheets at monolayer-level thicknesses. In addition, if the firing (synthesis) temperature of MAX phase ceramics is lowered within a range that does not generate impurities, the bonding strength between layers decreases, so it is possible to reduce the average size while maintaining the thickness at the monolayer level. becomes. For example, in Ti 3 Al 0.02 C 2 MXene, if the firing (synthesis) temperature of MAX phase ceramics is lowered from 1450° C. to 1430° C., the average thickness can be reduced to 2.06 nm and the average size to 0.25 μm. can. When the temperature is further lowered to 1410° C., the average thickness can be reduced to 1.98 nm and the average size to 0.10 μm.
モノレイヤレベルに剥離したMXeneナノシートを収縮なしで複合粒子材料を作製するとイオン拡散に優れた電極材料を得ることができる。更に適度な大きさのMXeneナノシートを用いることにより高比表面積の複合粒子材料を得ることができる。モノレイヤレベルの厚みを維持した上で、平均大きさを小さくすることにより更に高比表面積の複合粒子材料を得ることができる。
If the MXene nanosheet exfoliated to the monolayer level is made into a composite particle material without shrinkage, an electrode material with excellent ion diffusion can be obtained. Furthermore, a composite particle material with a high specific surface area can be obtained by using MXene nanosheets of an appropriate size. A composite particle material with a higher specific surface area can be obtained by reducing the average size while maintaining the thickness at the monolayer level.
XRD分析から得られるMXeneの(002)面の層間距離は、1.400nmから1.700nmであることが好ましい。酸処理によってMAX相のAl相が除去されることによって形成される空隙層の層間距離は、MXeneナノシート粉末のXRDにおける(002)面の層間距離から対応するMAX相セラミックス粉末のXRDにおける(002)面の層間距離を差し引いた値と定義すると、0.770nmから0.470nmとなる。Liイオン直径は0.18nm、Naイオン直径は0.28nmであり、Liイオン二次電池の他、Naイオン二次電池の負極活物質にも使用できる。黒鉛粉末の(002)面の層間距離は0.33nmであるため、Naイオンの挿入脱離を繰り返すと、短時間に急激な劣化が起き、Naイオン二次電池には使用できないと結論づけられている。このことが、MXeneナノシートが特にNaイオン二次電池の負極活物質として期待されている所以である。間隙が大きいとイオンの出入りによる膨張収縮が生じにくいため急速充放電してもサイクル劣化することなく使用可能となる。ここで対応するMAX相セラミックス粉末とは、測定対象のMXeneの組成Ti3Ala(C(1.0-x)Nx)2のうち、aが1である材料から構成される粒子材料である。MXeneナノシートの(002)面の層間距離が1.400nmを下回るとNaイオン二次電池の負極活物質に使用すると、急速充放電による劣化が起きる。1.700nmを上回ると1gあたりの容量が小さくなる。
The interlayer distance of the (002) plane of MXene obtained from XRD analysis is preferably from 1.400 nm to 1.700 nm. The inter-layer distance of the void layer formed by removing the Al phase of the MAX phase by acid treatment is determined from the inter-layer distance of the (002) plane in the XRD of the MXene nanosheet powder to the (002) When defined as a value obtained by subtracting the interlayer distance of the plane, it is 0.770 nm to 0.470 nm. The Li ion diameter is 0.18 nm and the Na ion diameter is 0.28 nm, and can be used as a negative electrode active material for Na ion secondary batteries in addition to Li ion secondary batteries. Since the interlayer distance between the (002) planes of graphite powder is 0.33 nm, repeated insertion and desorption of Na ions causes rapid deterioration in a short period of time, and it was concluded that it cannot be used for Na ion secondary batteries. there is This is the reason why MXene nanosheets are particularly expected as a negative electrode active material for Na-ion secondary batteries. If the gap is large, expansion and contraction caused by the ingress and egress of ions are less likely to occur, so that the battery can be used without cycle deterioration even during rapid charging and discharging. Here, the corresponding MAX phase ceramic powder is a particle material composed of a material having a value of 1 in the composition Ti3Ala (C( 1.0 -x ) Nx ) 2 of MXene to be measured. be. If the interlayer distance between the (002) planes of MXene nanosheets is less than 1.400 nm, deterioration occurs due to rapid charging and discharging when used as a negative electrode active material for Na-ion secondary batteries. If it exceeds 1.700 nm, the capacity per 1 g becomes small.
微小体は、その大きさがナノメートルオーダーであれば充分であり、ナノメートルオーダーであるとは、微小体の長さのうち最も大きい部分の長さが100nm以下であるものである。微小体の形状は、不定形、球状、薄膜状、繊維状などどのような形状でも良い。
It is sufficient for the microscopic object to have a size on the order of nanometers, and being on the order of nanometers means that the length of the longest part of the length of the microscopic object is 100 nm or less. The shape of the microscopic object may be any shape such as amorphous, spherical, thin film, and fibrous.
微小体は、一次粒子径が100nm以下であることが好ましく、30~50nmであることが好ましく、特に30~40nmであることがより好ましく、凝集体になっていても良い。微小体は、その形態を限定するものでは無く、球状、シート状、チューブ状、中空状、不定形のものが例示できる。
The fine particles preferably have a primary particle size of 100 nm or less, preferably 30 to 50 nm, and more preferably 30 to 40 nm, and may be aggregates. The shape of the microscopic object is not limited, and spherical, sheet-like, tube-like, hollow, and irregular shapes can be exemplified.
特に微小体は、導電性を有する。微小体としては、炭素材料からなるカーボン微小体や、金属材料からなる金属微小体が例示できる。カーボン微小体としては、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などの導電性が高いものを採用することが好ましい。微小体は、カーボン微小体や金属微小体以外にも、その他の無機物から構成される無機微小体を採用することもできる。無機微小体としては、一次粒子径が100nm以下のTiO2、Al2O3、SiO2、BaTiO3が採用できる。
In particular, minute bodies have electrical conductivity. Examples of microscopic bodies include carbon microscopic bodies made of carbon materials and metal microscopic bodies made of metal materials. As the fine carbon particles, it is preferable to use those having high conductivity such as acetylene black, ketschen black, carbon nanotubes, graphene, carbon fiber, graphite powder, and hard carbon powder. In addition to carbon microscopic bodies and metal microscopic bodies, inorganic microscopic bodies composed of other inorganic substances can also be used as microscopic bodies. TiO 2 , Al 2 O 3 , SiO 2 and BaTiO 3 having a primary particle size of 100 nm or less can be used as the inorganic fine particles.
(複合粒子材料の製造方法)
本実施形態の複合粒子材料の製造方法は、剥離工程と混合工程と凝集工程と造粒工程とその他必要な工程とを有する。本実施形態の複合粒子材料の製造方法は、上述した本実施形態の複合粒子材料の製造に好適に採用できる製造方法である。
・剥離工程
剥離工程は、数ミクロンメートルの粒子状であり層状のマルチレイヤMXeneに対して分散媒中において微小ビーズを層間に衝突させることにより、剥離させてナノシート状の剥離物スラリーを得る工程である。剥離は、層状のマルチレイヤMXene各層の層間で進行する。剥離物は特に限定するものでは無いが、1~3層程度有するものが好ましい。 (Manufacturing method of composite particle material)
The method for producing a composite particulate material of the present embodiment includes a peeling step, a mixing step, an aggregating step, a granulating step, and other necessary steps. The method for producing the composite particulate material of the present embodiment is a production method that can be suitably employed for the production of the above-described composite particulate material of the present embodiment.
・Exfoliation step In the exfoliation step, microbeads are collided between the layers of multi-layered MXene, which are particles of several microns in size, in a dispersion medium to exfoliate them to obtain a nanosheet-like exfoliated slurry. be. Delamination proceeds between the layers of each layer of layered multilayer MXene. The stripped material is not particularly limited, but one having about 1 to 3 layers is preferable.
本実施形態の複合粒子材料の製造方法は、剥離工程と混合工程と凝集工程と造粒工程とその他必要な工程とを有する。本実施形態の複合粒子材料の製造方法は、上述した本実施形態の複合粒子材料の製造に好適に採用できる製造方法である。
・剥離工程
剥離工程は、数ミクロンメートルの粒子状であり層状のマルチレイヤMXeneに対して分散媒中において微小ビーズを層間に衝突させることにより、剥離させてナノシート状の剥離物スラリーを得る工程である。剥離は、層状のマルチレイヤMXene各層の層間で進行する。剥離物は特に限定するものでは無いが、1~3層程度有するものが好ましい。 (Manufacturing method of composite particle material)
The method for producing a composite particulate material of the present embodiment includes a peeling step, a mixing step, an aggregating step, a granulating step, and other necessary steps. The method for producing the composite particulate material of the present embodiment is a production method that can be suitably employed for the production of the above-described composite particulate material of the present embodiment.
・Exfoliation step In the exfoliation step, microbeads are collided between the layers of multi-layered MXene, which are particles of several microns in size, in a dispersion medium to exfoliate them to obtain a nanosheet-like exfoliated slurry. be. Delamination proceeds between the layers of each layer of layered multilayer MXene. The stripped material is not particularly limited, but one having about 1 to 3 layers is preferable.
得られた剥離物は、分散媒に懸濁した剥離物懸濁液になる。この剥離物懸濁液をそのまま混合工程に供したり、分散媒を除去して混合工程に供したりできる。材料となる粒子状であり層状のマルチレイヤMXeneを得る方法としては特に限定しないが、以下の方法が例示できる。
The resulting exfoliated material becomes an exfoliated material suspension suspended in a dispersion medium. This exfoliated material suspension can be directly subjected to the mixing step, or can be subjected to the mixing step after removing the dispersion medium. Although the method for obtaining the particulate and layered multilayer MXene as a material is not particularly limited, the following method can be exemplified.
MXeneはTi3層のMAX相セラミックス粉末からなる原料を酸処理してAl層を一部溶解して得られる。MXeneを製造する方法の一例を前処理工程として後述する。剥離工程に供される原料は、前述の粒子材料を構成する材料と同じ組成のものが採用できる。剥離工程では組成は概ね変化しない。
MXene is obtained by acid-treating a raw material consisting of Ti 3-layer MAX phase ceramic powder and partially dissolving the Al layer. An example of a method for manufacturing MXene will be described later as a pretreatment step. The raw material to be subjected to the peeling step can employ those having the same composition as the material constituting the aforementioned particulate material. The composition does not substantially change in the stripping process.
この粒子材料を酸処理によってAlの一部を溶解し、数ミクロンメートルの粒子状であり層状のマルチレイヤMXeneとし、そのマルチレイヤMXeneを、水を主成分とする溶媒中に混合して混合物とした後、10μmから300μmのビーズを用いて高速回転を行うビーズミル処理する剥離工程によりナノシート状のMXeneの剥離物が懸濁する剥離物懸濁液が得られる。
A portion of Al is dissolved in this particulate material by acid treatment to form a multi-layered MXene that is particulate and layered with a size of several microns. After that, an exfoliated material suspension in which nanosheet-like exfoliated material of MXene is suspended is obtained by a detachment step of bead mill treatment with high-speed rotation using beads of 10 μm to 300 μm.
剥離工程を行う分散媒は、特に限定しないが、水を50質量%以上含有することが好ましく、メタノール、エタノール、イソプロパノールなどのアルコール、メチルエチルケトン、アセトンなのケトン類、ジメチルホルムアミド、ジメチルスルホキシドなどを含有することができる。水を100質量%とすることがより好ましい。
The dispersion medium for the stripping step is not particularly limited, but preferably contains 50% by mass or more of water, and contains alcohols such as methanol, ethanol, and isopropanol, methyl ethyl ketone, acetone ketones, dimethylformamide, dimethyl sulfoxide, and the like. be able to. It is more preferable to make water 100% by mass.
剥離工程を行う混合物中のMXeneの濃度は特に限定しないが、10.0mg/mL~20.0mg/mL程度にすることができる。混合液の液性については特に限定しないが、pHを6.0~8.0程度にすることができる。
The concentration of MXene in the mixture for the stripping process is not particularly limited, but can be about 10.0 mg/mL to 20.0 mg/mL. Although there are no particular restrictions on the liquid properties of the mixed liquid, the pH can be adjusted to approximately 6.0 to 8.0.
剥離工程における具体的なビーズミル処理について説明する。遠心分離で微小なビーズとスラリー状の混合物を分級する機構を具備したビーズミルで剥離することが可能となる。ビーズミル処理により剥離した剥離物は、剥離前の混合物から遠心分離により随時分離でき、最終的には全てのMXeneを剥離物にすることもできる。
The specific bead mill processing in the peeling process will be explained. By centrifugal separation, a bead mill equipped with a mechanism for classifying fine beads and a slurry mixture can be used to separate them. The exfoliated material exfoliated by the bead mill treatment can be optionally separated from the mixture before exfoliation by centrifugation, and finally all MXene can be exfoliated.
例えばビーズの大きさの下限は、10μm、15μm、20μm、30μm、40μm、上限を300μm、200μm、100μmにすることができる。10μm以上であるとビーズとスラリーの分級が容易である。300μm以下のビーズを用いると粒子材料のサイズを小さくするよりも、剥離を優先して進行させることができる。これらの下限及び上限は任意に組み合わせて採用することができる。ビーズの大きさが適正な範囲であると付与するエネルギーが大きくでき、且つ、剥離を優先して進行できるため、50μm~100μmのビーズを採用することが最も好ましい。
For example, the lower limit of the bead size can be 10 μm, 15 μm, 20 μm, 30 μm, 40 μm, and the upper limit can be 300 μm, 200 μm, 100 μm. When it is 10 µm or more, it is easy to classify beads and slurry. The use of beads of 300 μm or less allows delamination to proceed in preference to reducing the size of the particulate material. Any combination of these lower and upper limits can be employed. If the size of the beads is in the proper range, the energy to be applied can be increased and the peeling can proceed preferentially.
ビーズの材質は特に限定しないが、ジルコニア、アルミナ、窒化ケイ素などのセラミックスが採用できる。特に破壊靭性が大きい部分安定化ジルコニアが好ましい。一方、300μm超のビーズを用いる微小サイズの隙間でビーズとスラリーを分級させる一般的に用いられるビーズミルによると、粒子材料のサイズを小さくすることが、剥離に優先して進行する。また、300μm超のビーズやボールを用いた遊星ボールミルなどのボールミルによっても、粒子材料のサイズを小さくすることが剥離に優先する。結果的に一部しか剥離できず、遠心分離で一部の剥離物を分級することになり、産業で利用できるレベルとは言えない。
The material of the beads is not particularly limited, but ceramics such as zirconia, alumina, and silicon nitride can be used. Partially stabilized zirconia, which has particularly high fracture toughness, is preferred. On the other hand, with commonly used bead mills that classify beads and slurries in micro-sized gaps using beads larger than 300 μm, size reduction of the particulate material progresses in preference to exfoliation. Ball milling, such as planetary ball milling with beads and balls greater than 300 μm, also favors exfoliation by reducing the size of the particulate material. As a result, only a part of the particles can be separated, and a part of the particles must be separated by centrifugal separation.
さらに従来からMXeneの剥離は超音波照射で行われている。溶媒に超音波を照射すると、キャビテーションが発生し、その圧壊により、粉体どうしが衝突するメカニズムで層状化合物を構成する層の剥離が進行する。しかしながら、キャビテーションの発生が起きやすい水を用いたとしても、剥離が進行するのは一部のみであり、産業で利用できるレベルとは言えなかった。遊星ボールミルによる方法でも、もちろん剥離は一部であり、粉砕が優先する、更に温度上昇するため表面酸化が著しく進行するため、とても産業に利用できるレベルとは言えない。このような理由から超音波照射により一部のみを剥離させて遠心分離による分級で採取する手法がとられていた。
Furthermore, MXene has been conventionally exfoliated by ultrasonic irradiation. When the solvent is irradiated with ultrasonic waves, cavitation is generated, and due to the crushing of the cavitation, the layers constituting the layered compound are exfoliated by the mechanism of powder collision. However, even if water, which tends to cause cavitation, is used, peeling progresses only in part, and it cannot be said that it is at a level that can be used in industry. Even in the method using a planetary ball mill, of course, peeling occurs in part, pulverization takes precedence, and surface oxidation proceeds remarkably due to the temperature rise. For this reason, a method of exfoliating only a part by ultrasonic irradiation and collecting by centrifugal separation has been adopted.
剥離工程における周速は、6m/sec~12m/secの周速が採用できる。8m/sec~10m/secの周速がより好ましい。6m/sec以上であると剥離効率が良く、12m/sec以下であると付与する過大なエネルギー付与が抑制され、得られる粒子材料の温度上昇が抑制できるため、得られる粒子材料の表面における酸化の進行が抑制でき、電気抵抗を低くできる。スラリー送り速度は100mL/分から300mL/分が採用できる。スラリー粒子濃度は10.0mg/mL~20.0mg/mLが採用できる。
A peripheral speed of 6 m/sec to 12 m/sec can be adopted for the peripheral speed in the peeling process. A peripheral speed of 8 m/sec to 10 m/sec is more preferable. If it is 6 m/sec or more, the peeling efficiency is good, and if it is 12 m/sec or less, the application of excessive energy is suppressed, and the temperature rise of the obtained particle material can be suppressed, so that the surface of the obtained particle material is oxidized. Progression can be suppressed, and electrical resistance can be lowered. A slurry feed rate of 100 mL/min to 300 mL/min can be adopted. A slurry particle concentration of 10.0 mg/mL to 20.0 mg/mL can be adopted.
10.0mg/mL以下の条件によると、MXeneナノシートの作製効率が悪くなり、20.0mg/mL以上にすると剥離が充分に進行できないため、この範囲が好ましい。
If the concentration is 10.0 mg/mL or less, the production efficiency of the MXene nanosheets will be poor, and if the concentration is 20.0 mg/mL or more, peeling will not proceed sufficiently, so this range is preferable.
スラリー温度は35℃以下の温度範囲が好ましい。35℃以下にすると表面酸化が抑制でき、粒子材料の電気抵抗を低く保つことができる。
The slurry temperature is preferably in the temperature range of 35°C or less. When the temperature is 35° C. or lower, surface oxidation can be suppressed, and the electrical resistance of the particulate material can be kept low.
ビーズの充填量は40%~80%が採用できる。40%以上にすると剥離の効率が良くなり、80%以下にするとビーズとスラリーの分級が容易となる。目的のシート状の粒子を多く含む粒子材料が製造されたかどうかは、SEM、TEMなどの観察によって判断できる。特に粒子材料の厚みについてはAFM分析することによって判断できる。剥離工程で得られた粒子材料は、必要に応じて遠心分離などの方法によって分級して使用することも可能である。剥離工程における最適な条件については、装置の大きさによって変化するので、これらの数値は限定されるものではない。
40% to 80% can be used for the filling amount of beads. When it is 40% or more, the efficiency of stripping is improved, and when it is 80% or less, it becomes easy to classify beads and slurry. Whether or not the desired particle material containing many sheet-like particles has been produced can be determined by observation with SEM, TEM, or the like. In particular, the thickness of the particulate material can be determined by AFM analysis. The particulate material obtained in the exfoliation step can be used after being classified by a method such as centrifugation, if necessary. Optimal conditions in the peeling process vary depending on the size of the apparatus, so these numerical values are not limited.
ビーズミル処理によりMXeneが質量基準で98%以上剥離物になるようにすることが好ましく、99%以上剥離物になることがより好ましく、100%剥離物になることが更に好ましい。MXeneが全て剥離物になる条件で剥離工程を完了すると、剥離していないMXeneを除去することなくそのまま混合工程に用いることが可能になる。剥離物以外のMXeneを除去する場合には、遠心分離、濾過などにより分離することができる。
It is preferable that 98% or more of the MXene on a mass basis is turned into the exfoliated material by the bead mill treatment, more preferably 99% or more of the exfoliated material, and still more preferably 100% of the exfoliated material. When the peeling process is completed under the condition that all the MXene becomes the peeled substance, it becomes possible to use the MXene which is not peeled off as it is in the mixing process without removing it. When removing MXene other than exfoliated matter, it can be separated by centrifugation, filtration, or the like.
得られた剥離したMXeneのゼータ電位はpH6からpH8の水中で測定する。特に問題が生じなければゼータ電位はpH7で測定する。ゼータ電位は、-25.0mVから-35.0mVであることが好ましい。-28.0mVから-34.0mVであることが更に好ましい。Ti3C2 MXeneナノシートのゼータ電位は-28.9mVであった。炭素サイトの3%を窒素に置き換えたナノシートは-29.3mV、5%を窒素に置き換えたナノシートは-31.5mV、炭素サイトの10%を窒素に置き換えたナノシートは-32.1mV、炭素サイトの15%を窒素に置き換えたナノシートは-32.4mV、炭素サイトの25%を窒素に置き換えたナノシートは-33.1mVであった。ゼータ電位の絶対値の大きさは水中で付着する官能基の量と言い換えることができる。水中官能基が多く付着するとゼータ電位の絶対値が大きくなる。適度な水中官能基が形成されると剥離性に優れる。MXeneナノシートとカーボン微小体のゼータ電位は、混合工程で説明する負のゼータ電位であるMXeneナノシートとカーボン微小体を水溶性Li塩及び/又は水溶性Na塩の添加による水中で正の電荷を持つLiイオン及び/あるいはNaイオンで固定化する。適度なゼータ電位が必要であり、ゼータ電位の絶対値が小さいと、得られた複合粒子材料は相互分散度の低い、低比表面積となってしまう。ゼータ電位の絶対値が大きいと、電子が移動しにくくなってしまうため、適度なゼータ電位の絶対値を有するMXeneナノシートとカーボン微小体を選択することが好ましい。
The zeta potential of the exfoliated MXene obtained is measured in water of pH 6 to pH 8. The zeta potential is measured at pH 7 unless there is a particular problem. The zeta potential is preferably -25.0 mV to -35.0 mV. More preferably -28.0 mV to -34.0 mV. The zeta potential of Ti 3 C 2 MXene nanosheets was −28.9 mV. The nanosheet in which 3% of the carbon sites are replaced with nitrogen is -29.3 mV, the nanosheet in which 5% of the carbon sites are replaced with nitrogen is -31.5 mV, the nanosheet in which 10% of the carbon sites are replaced with nitrogen is -32.1 mV, and the carbon sites The nanosheet in which 15% of the carbon sites were replaced with nitrogen was −32.4 mV, and the nanosheet in which 25% of the carbon sites were replaced with nitrogen was −33.1 mV. The magnitude of the absolute value of the zeta potential can be rephrased as the amount of functional groups attached in water. When many functional groups in water are attached, the absolute value of zeta potential increases. Formation of suitable functional groups in water provides excellent releasability. The zeta potential of MXene nanosheets and carbon microparticles is negative zeta potential explained in the mixing step. It is immobilized with Li ions and/or Na ions. A moderate zeta potential is necessary, and if the absolute value of the zeta potential is small, the resulting composite particle material will have a low degree of interdispersion and a low specific surface area. If the absolute value of the zeta potential is large, it becomes difficult for electrons to move. Therefore, it is preferable to select MXene nanosheets and carbon microparticles that have an appropriate absolute value of the zeta potential.
MXeneナノシートの化学組成については、Ti、Al、C、Nのatom%を用いて、Tiを3とした時のAl、C、N量を算出した。化学分析は、試料を白金皿にはかりとり、硝酸+硫酸+フッ化水素酸を加えて、加熱(120℃程度)して溶解後、さらに高温(300℃)で加熱して硝酸とフッ化水素酸を飛ばして試料溶液(硫酸)を作製し、作製した試料溶液を適宜希釈してICPで定量分析を行った。
For the chemical composition of the MXene nanosheets, the atom% of Ti, Al, C, and N was used to calculate the amounts of Al, C, and N when Ti was 3. For chemical analysis, weigh the sample in a platinum dish, add nitric acid + sulfuric acid + hydrofluoric acid, heat (about 120 ° C) to dissolve, and then heat at a high temperature (300 ° C) to mix nitric acid and hydrogen fluoride. A sample solution (sulfuric acid) was prepared by removing the acid, and the prepared sample solution was appropriately diluted and quantitatively analyzed by ICP.
・酸処理工程
酸処理工程は、原料カーボン微小体に対して、硫酸と硝酸との混酸溶液で処理を行い、親水性が高いカーボン微小体を得る工程である。原料カーボン微小体は、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などが例示できる。導電性から、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、導電性と純度と価格の両面からアセチレンブラックが更に好ましい。 Acid treatment step The acid treatment step is a step of treating the raw carbon microparticles with a mixed acid solution of sulfuric acid and nitric acid to obtain highly hydrophilic carbon microparticles. Examples of raw carbon fine particles include acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, and hard carbon powder. Acetylene black, Ketsujen black, and carbon nanotubes are more preferred from the viewpoint of conductivity, and acetylene black is more preferred from the viewpoints of both conductivity, purity, and price.
酸処理工程は、原料カーボン微小体に対して、硫酸と硝酸との混酸溶液で処理を行い、親水性が高いカーボン微小体を得る工程である。原料カーボン微小体は、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などが例示できる。導電性から、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、導電性と純度と価格の両面からアセチレンブラックが更に好ましい。 Acid treatment step The acid treatment step is a step of treating the raw carbon microparticles with a mixed acid solution of sulfuric acid and nitric acid to obtain highly hydrophilic carbon microparticles. Examples of raw carbon fine particles include acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, and hard carbon powder. Acetylene black, Ketsujen black, and carbon nanotubes are more preferred from the viewpoint of conductivity, and acetylene black is more preferred from the viewpoints of both conductivity, purity, and price.
酸処理工程では、混酸に懸濁したカーボン微小体懸濁液となり、そのまま混合工程で用いることもできるし、混酸を水などによる洗浄を繰り返すことで必要なだけ除去してカーボン微小体として用いることもできる。洗浄は、洗浄液のpHが6程度になるまで行うことができ、更にはpHが6.5や7や8程度になるまで行うこともできる。
In the acid treatment step, a suspension of carbon microparticles suspended in the mixed acid is obtained, which can be used as it is in the mixing step, or the mixed acid can be washed repeatedly with water or the like to remove as much as necessary and used as carbon microparticles. can also Washing can be performed until the pH of the washing solution reaches about 6, and further until the pH reaches about 6.5, 7, or 8.
本処理によって、カーボン微小体の表面にCOOH基やCO基などの官能基が導入されて親水化される。処理後のカーボン微小体は、混酸中に分散されたカーボン微小体懸濁液になる。酸処理工程と剥離工程との間で行う前後は問わない。
By this treatment, functional groups such as COOH groups and CO groups are introduced to the surface of the carbon microparticles to make them hydrophilic. The carbon microparticles after treatment become a carbon microparticle suspension dispersed in the mixed acid. It does not matter whether it is performed between the acid treatment process and the stripping process.
処理温度は70℃以上が好ましい。特に沸騰などが起きないように95℃以下にすることが好ましい。処理時間は特に限定しないが、10分以上処理することで確実に親水化できる。処理中は、撹拌したり、超音波を照射したりすることができる。処理後は、そのまま混合工程に供しても良いし、酸を中和乃至分離しても良い。なお酸を中和したり分離したりして所定値以上のpHになると、カーボン微小体が凝集するため、pHが所定値には至らない程度で中和を行うことができる。酸を分離する方法としては、固形分を遠心分離などの分級操作により分離する方法が例示できる。
The treatment temperature is preferably 70°C or higher. In particular, it is preferable to set the temperature to 95° C. or lower so as not to cause boiling. The treatment time is not particularly limited, but hydrophilization can be ensured by treatment for 10 minutes or longer. Stirring or ultrasonic irradiation can be performed during the treatment. After the treatment, it may be subjected to the mixing step as it is, or the acid may be neutralized or separated. If the acid is neutralized or separated and the pH reaches a predetermined value or higher, the fine carbon particles aggregate, so neutralization can be carried out to the extent that the pH does not reach the predetermined value. As a method of separating the acid, a method of separating the solid content by a classification operation such as centrifugation can be exemplified.
硫酸と硝酸との混合比は、体積比で、4:1~1:1程度にすることができ、特に3:1~3:2程度にすることが好ましい。混酸の濃度は、42%~96%程度にすることができ、特に90.0%~95.0%程度にすることが好ましい。
The mixing ratio of sulfuric acid and nitric acid can be about 4:1 to 1:1, preferably about 3:1 to 3:2 by volume. The concentration of the mixed acid can be about 42% to 96%, preferably about 90.0% to 95.0%.
得られた親水性カーボン微小体のゼータ電位は、pH6-pH8の水中で-20.0mVから-25.0mVであることが好ましい。ゼータ電位はCOOHやCOが官能基として吸着するため負となる。-20.0mVよりその絶対値が小さくなると、混合工程で説明する負のゼータ電位であるMXeneナノシートとの水溶性Li塩及び/又は水溶性Na塩の添加による水中で正の電荷を持つLiイオン及び/あるいはNaイオンで固定化できず、相互分散度の低い、低比表面積の複合粒子材料となってしまう。適度なゼータ電位の絶対値を有するMXeneナノシートとカーボン微小体を選択することが好ましい。
The obtained hydrophilic carbon microparticles preferably have a zeta potential of -20.0 mV to -25.0 mV in water of pH 6 to pH 8. The zeta potential becomes negative because COOH and CO are adsorbed as functional groups. When the absolute value is smaller than −20.0 mV, positively charged Li ions in water due to the addition of water-soluble Li salts and/or water-soluble Na salts with MXene nanosheets, which is a negative zeta potential explained in the mixing step. And/or it cannot be immobilized by Na ions, resulting in a composite particle material with a low interdispersion degree and a low specific surface area. It is preferable to select MXene nanosheets and carbon microparticles having moderate absolute values of zeta potential.
・混合工程
混合工程は、剥離物及びカーボン微小体が90:10~97:3の質量比、且つ、剥離物が11.5-17.0mg/mLの濃度で、水を50質量%以上含有する第2分散媒に分散した混合物を得る工程である。第2分散媒は水を100質量%とすることがより好ましい。混合物中には、その他の物質を含有させることによりその物質についても複合粒子材料に取り入れることができる。 ・Mixing process In the mixing process, the mass ratio of the exfoliated matter and the carbon particles is 90:10 to 97:3, the concentration of the exfoliated matter is 11.5-17.0 mg/mL, and water is contained in an amount of 50% by mass or more. It is a step of obtaining a mixture dispersed in a second dispersion medium. More preferably, the second dispersion medium contains 100% by mass of water. By including other substances in the mixture, those substances can also be incorporated into the composite particulate material.
混合工程は、剥離物及びカーボン微小体が90:10~97:3の質量比、且つ、剥離物が11.5-17.0mg/mLの濃度で、水を50質量%以上含有する第2分散媒に分散した混合物を得る工程である。第2分散媒は水を100質量%とすることがより好ましい。混合物中には、その他の物質を含有させることによりその物質についても複合粒子材料に取り入れることができる。 ・Mixing process In the mixing process, the mass ratio of the exfoliated matter and the carbon particles is 90:10 to 97:3, the concentration of the exfoliated matter is 11.5-17.0 mg/mL, and water is contained in an amount of 50% by mass or more. It is a step of obtaining a mixture dispersed in a second dispersion medium. More preferably, the second dispersion medium contains 100% by mass of water. By including other substances in the mixture, those substances can also be incorporated into the composite particulate material.
特に、Liイオンや、Naイオンを共存させることで、剥離物を構成するMXeneとカーボン微小体を固定化することができる。具体的にはMXeneに吸着した水中で負に帯電した官能基とカーボン微小体に吸着した水中で負に帯電した官能基を、水中で正に帯電したLiイオン及び/あるいはNaイオンで固定化することが好ましい。水溶性リチウム塩としては、塩化リチウム、炭酸リチウムが例示でき、水溶性ナトリウム塩としては、塩化ナトリウム、炭酸ナトリウムが例示できる。強アルカリや強酸の水溶性塩を添加し長時間撹拌するとMXeneナノシートと水溶性塩とで反応し局所的なMXene表面にチタン酸リチウムやチタン酸ナトリウムが析出する場合があるため、水中に溶解後に中性を維持する水溶性塩が好ましい。MXeneの水スラリーに0.8モル/L~1.0モル/Lとなるように水溶性塩を添加することが好ましい。0.8モル/Lを下回ると十分に固定化できず、1.0モル/Lを上回ると余剰イオンが多数残留する。混合物は、11.5-17.0mg/mLの濃度で剥離物を含有する。第2分散媒は、剥離工程において用いる分散媒や、その他の工程で用いることができる溶媒と同一のものであっても良いし、異なるものであっても良い。剥離工程で得られた剥離物懸濁液をそのまま混合工程に供する場合には、第2分散媒に剥離工程で用いる分散媒が含まれる。複合スラリー中のMXene 粒子濃度を11.5-17.0mg/mLと限定した理由は、11.5を下回ると、あるいは17.0を超えると後述の凝集工程において得られる複合粒子材料の比表面積が小さくなるためである。
In particular, by allowing Li ions and Na ions to coexist, it is possible to immobilize the MXene and carbon microparticles that constitute the exfoliated material. Specifically, the negatively charged functional groups in water adsorbed to MXene and the negatively charged functional groups in water adsorbed to carbon microparticles are immobilized with positively charged Li ions and/or Na ions in water. is preferred. Examples of water-soluble lithium salts include lithium chloride and lithium carbonate, and examples of water-soluble sodium salts include sodium chloride and sodium carbonate. If a water-soluble salt of a strong alkali or strong acid is added and stirred for a long time, the MXene nanosheets and the water-soluble salt may react with each other, and lithium titanate or sodium titanate may precipitate locally on the MXene surface. Water-soluble salts that remain neutral are preferred. It is preferable to add a water-soluble salt to the aqueous slurry of MXene in an amount of 0.8 mol/L to 1.0 mol/L. If it is less than 0.8 mol/L, it cannot be sufficiently immobilized, and if it exceeds 1.0 mol/L, many surplus ions remain. The mixture contains exfoliate at a concentration of 11.5-17.0 mg/mL. The second dispersion medium may be the same as or different from the dispersion medium used in the peeling process and the solvent that can be used in other processes. When the exfoliated material suspension obtained in the exfoliation step is directly subjected to the mixing step, the second dispersion medium contains the dispersion medium used in the exfoliation step. The reason why the MXene particle concentration in the composite slurry is limited to 11.5-17.0 mg/mL is that if it falls below 11.5 or exceeds 17.0, the specific surface area of the composite particle material obtained in the aggregation step described later This is because the
酸処理したカーボン微小体について、純水に所定量のカーボン微小体を添加し、100rpmから300rpmの回転数、40mmから50mmの振幅の条件で、より好ましくは100rpmから200rpmの回転数、45mmから50mmの振幅の条件で、振とう機を用いて12時間以上撹拌し、凝集をほぐしたカーボン微小体水スラリーをMXene水スラリーに添加し混合することが好ましい。その際の振とう機の条件は、100rpmから300rpmの回転数、振幅は40mmから50mmとすることが好ましい。100rpmから200rpmの回転数、振幅は45mmから50mmとすることが更に好ましい。MXene 水スラリーに酸処理したカーボン微小体 水スラリーと水溶性塩を同時に添加して、100rpmから300rpmの回転数、振幅は40mmから50mmの条件で振とう機を用いて4-6時間、撹拌することで、MXeneナノシートとNa及び/あるいはLiイオンとカーボン微小体の均一配置が液中で固定化され、均一分散した複合凝集粒子水スラリーを得ることが更に好ましい。いずれも回転数が300rpmを超えるとナノシートが破壊されやすく、100rpmを下回ると均一混合できない。振幅が50mmを上回るとナノシートが破壊されやすく、40mmを下回ると均一混合できない。
For the acid-treated carbon microparticles, add a predetermined amount of carbon microparticles to pure water, and rotate at a rotation speed of 100 rpm to 300 rpm and an amplitude of 40 mm to 50 mm, more preferably at a rotation speed of 100 rpm to 200 rpm and 45 mm to 50 mm. It is preferable to add the deaggregated carbon fines water slurry to the MXene water slurry and mix them by stirring with a shaker for 12 hours or more under the amplitude condition of . The conditions of the shaker at that time are preferably 100 to 300 rpm rotation speed and 40 to 50 mm amplitude. More preferably, the rotation speed is from 100 rpm to 200 rpm and the amplitude is from 45 mm to 50 mm. MXene Acid-treated carbon microparticles Water slurry and water-soluble salt are added at the same time, and stirred for 4-6 hours using a shaker at a rotation speed of 100 rpm to 300 rpm and an amplitude of 40 mm to 50 mm. Thus, it is more preferable to obtain an aqueous slurry of composite aggregated particles in which MXene nanosheets, Na and/or Li ions and carbon microparticles are uniformly arranged and uniformly dispersed in the liquid. In both cases, if the rotational speed exceeds 300 rpm, the nanosheets are likely to be destroyed, and if the rotational speed is less than 100 rpm, uniform mixing cannot be achieved. If the amplitude exceeds 50 mm, the nanosheets are likely to be destroyed, and if it is less than 40 mm, uniform mixing cannot be achieved.
・凝集工程
凝集工程は、混合工程で得られた混合物スラリーに0.4~0.7モル/Lのアルカリ性水溶液を添加し、液のpHを上昇させることにより、混合物に含有される剥離物とカーボン微小体とを凝集させて、液中に分散した凝集物にする工程である。pHの上昇は、12~14程度まで行うことが好ましい。 Aggregation step In the aggregation step, a 0.4 to 0.7 mol / L alkaline aqueous solution is added to the mixture slurry obtained in the mixing step, and the pH of the liquid is increased to remove the exfoliated material contained in the mixture. This is a step of aggregating the carbon particles to form aggregates dispersed in the liquid. It is preferable to raise the pH to about 12-14.
凝集工程は、混合工程で得られた混合物スラリーに0.4~0.7モル/Lのアルカリ性水溶液を添加し、液のpHを上昇させることにより、混合物に含有される剥離物とカーボン微小体とを凝集させて、液中に分散した凝集物にする工程である。pHの上昇は、12~14程度まで行うことが好ましい。 Aggregation step In the aggregation step, a 0.4 to 0.7 mol / L alkaline aqueous solution is added to the mixture slurry obtained in the mixing step, and the pH of the liquid is increased to remove the exfoliated material contained in the mixture. This is a step of aggregating the carbon particles to form aggregates dispersed in the liquid. It is preferable to raise the pH to about 12-14.
アルカリ性水溶液は水酸化リチウム及び/又は水酸化ナトリウムが好ましい。pHの上昇は、アルカリ性の物質を添加する手法、あるいは酸性物質を除去乃至希釈することで行われる。pHの上昇は、アルカリ性水溶液を数秒で添加し、1間以内で100rpmから300rpmの回転数の振とう機で撹拌することが好ましい。その際の振とう機の振幅は40mmから50mmとすることが好ましい。いずれも回転数が300rpm以下にするとナノシートの破壊が抑制され、100rpm以上にすると容易に均一混合することができる。
The alkaline aqueous solution is preferably lithium hydroxide and/or sodium hydroxide. The pH is raised by adding an alkaline substance or by removing or diluting an acidic substance. It is preferable to increase the pH by adding the alkaline aqueous solution in several seconds and stirring within 1 hour with a shaker at a rotation speed of 100 rpm to 300 rpm. The amplitude of the shaker at that time is preferably 40 mm to 50 mm. In both cases, when the rotational speed is 300 rpm or less, the destruction of the nanosheets is suppressed, and when it is 100 rpm or more, uniform mixing can be easily performed.
振幅は50mm以下にするとナノシートの破壊が抑制され、40mm以上にすると容易に均一混合することができる。1時間以内で100rpmから200rpmの回転数で振幅は45mmから50mm振とう機で撹拌することが更に好ましい。アルカリ性水溶液は、複合凝集粒子材料の水スラリー中に含まれる水分量と合わせて、0.4モル/L~0.7モル/Lとなるように添加することが好ましい。0.4モル/L以上にすると十分に凝集することができ、0.7モル/L以下にすると余剰のイオンの残留が抑制できるため好ましい。この範囲内の添加量とすると明確な理由は不明であるが高比表面積の複合粒子材料を得ることができる。更に比誘電率の小さい疎水性の高い有機溶剤を添加することもできる。
When the amplitude is 50 mm or less, the destruction of the nanosheets is suppressed, and when it is 40 mm or more, uniform mixing can be easily achieved. It is more preferable to stir with a shaker with a rotation speed of 100 rpm to 200 rpm and an amplitude of 45 mm to 50 mm within 1 hour. The alkaline aqueous solution is preferably added in an amount of 0.4 mol/L to 0.7 mol/L together with the amount of water contained in the aqueous slurry of the composite aggregated particle material. When the amount is 0.4 mol/L or more, sufficient aggregation can be achieved, and when the amount is 0.7 mol/L or less, residual surplus ions can be suppressed, which is preferable. If the addition amount is within this range, it is possible to obtain a composite particle material with a high specific surface area, for unknown reasons. Further, a highly hydrophobic organic solvent having a small dielectric constant can be added.
・造粒工程
造粒工程は、凝集工程により得られた液中に分散した凝集物に含まれる分散媒の主成分をアルコールに置換したアルコールスラリーとし、そのアルコールスラリーをスプレードライ法により造粒して造粒体にする工程である。この造粒体をそのまま乃至は乾燥することで本実施形態の複合粒子材料になる。本工程では、スプレードライ法により液滴を瞬時に乾燥することで、ポーラス構造を有する球状の造粒体とすることができる。 ・Granulation process In the granulation process, an alcohol slurry is prepared by replacing the main component of the dispersion medium contained in the aggregates dispersed in the liquid obtained in the aggregation process with alcohol, and the alcohol slurry is granulated by a spray drying method. It is a step of making granules by pressing. The composite particle material of the present embodiment is obtained by directly or drying the granules. In this step, the droplets are instantly dried by a spray drying method, so that spherical granules having a porous structure can be obtained.
造粒工程は、凝集工程により得られた液中に分散した凝集物に含まれる分散媒の主成分をアルコールに置換したアルコールスラリーとし、そのアルコールスラリーをスプレードライ法により造粒して造粒体にする工程である。この造粒体をそのまま乃至は乾燥することで本実施形態の複合粒子材料になる。本工程では、スプレードライ法により液滴を瞬時に乾燥することで、ポーラス構造を有する球状の造粒体とすることができる。 ・Granulation process In the granulation process, an alcohol slurry is prepared by replacing the main component of the dispersion medium contained in the aggregates dispersed in the liquid obtained in the aggregation process with alcohol, and the alcohol slurry is granulated by a spray drying method. It is a step of making granules by pressing. The composite particle material of the present embodiment is obtained by directly or drying the granules. In this step, the droplets are instantly dried by a spray drying method, so that spherical granules having a porous structure can be obtained.
液中に分散した凝集物に含まれる分散媒の主成分をアルコールに置換する方法としては特に限定しない。例えば、単純にアルコールを添加してアルコールの含有割合を向上したり、アルコールを添加後に分散媒を除去することを繰り返してアルコールの含有割合を向上したりできる。分散媒の除去は遠沈法により分離した分散媒を上澄みとして分離したり、分散媒を蒸発させて分離したりできる。
The method of replacing the main component of the dispersion medium contained in the aggregates dispersed in the liquid with alcohol is not particularly limited. For example, the alcohol content can be improved by simply adding alcohol, or the alcohol content can be improved by repeatedly removing the dispersion medium after adding the alcohol. The dispersion medium can be removed by separating the dispersion medium separated by centrifugation as a supernatant or by evaporating the dispersion medium.
ここでアルコールが主成分であるとは、アルコールの含有割合が分散媒全体を基準として50%以上であることを意味するが、特にアルコールの含有割合の下限値としては、90体積%、95体積%、99体積%であることが好ましい。
Here, "alcohol is the main component" means that the content of alcohol is 50% or more based on the entire dispersion medium. %, preferably 99% by volume.
また、アルコールスラリーに含有できるアルコールとしては特に限定しないが、MXeneナノシートの表面酸化を更に抑制するため低温度で蒸発するアルコール溶媒を選択することが好ましい。例えば分散媒として用いるアルコールとしては、メタノール及びエタノール及びイソプロパノールの少なくとも一方を採用することが好ましい。アルコールの他には、水あるいはMEKなどのケトン類あるいはDMSOを含有していても良い。アルコールの含有量の下限値は、分散媒の体積を基準として、99%、95%、90%が挙げられる。
In addition, the alcohol that can be contained in the alcohol slurry is not particularly limited, but it is preferable to select an alcohol solvent that evaporates at a low temperature in order to further suppress the surface oxidation of the MXene nanosheets. For example, at least one of methanol, ethanol, and isopropanol is preferably used as the alcohol used as the dispersion medium. Besides alcohol, it may contain water, ketones such as MEK, or DMSO. The lower limit of the content of alcohol includes 99%, 95%, and 90% based on the volume of the dispersion medium.
スプレードライ法は、複合粒子材料を構成する各材料と反応性が低い、不活性雰囲気下で行う。不活性雰囲気としては、窒素やアルゴンなどの不活性ガスを満たした雰囲気や、減圧乃至真空雰囲気が採用できる。不活性雰囲気の温度は、アルコールスラリーに含まれるアルコールが蒸発できる温度である。例えば、不活性雰囲気の温度の下限値としては、80℃、90℃、100℃を採用することができ、上限値としては、100℃、110℃、120℃を採用することができる。上限値及び下限値は任意に組み合わせ可能である。
The spray-drying method is performed in an inert atmosphere, which has low reactivity with each material that makes up the composite particle material. As the inert atmosphere, an atmosphere filled with an inert gas such as nitrogen or argon, or a reduced pressure or vacuum atmosphere can be used. The temperature of the inert atmosphere is the temperature at which the alcohol contained in the alcohol slurry can evaporate. For example, 80°C, 90°C, and 100°C can be adopted as the lower limit values of the temperature of the inert atmosphere, and 100°C, 110°C, and 120°C can be adopted as the upper limit values. The upper limit and lower limit can be arbitrarily combined.
スプレードライ法は、複合凝集材料のスラリーを高温雰囲気中に液滴を噴霧することで行う。噴霧の方法は、回転ディスクを利用する方法、2流体ノズルなどのノズルを利用する方法など通常の方法が採用できる。アルコールスラリー中の凝集粒子が噴霧時に詰まりにくいという点、さらに任意の二次粒子径を有する球状造粒体を作製可能である点から回転ディスクを利用する方法が好ましい。回転ディスクの回転数を任意に選択することにより必要な二次粒子径の球状造粒体を容易に得ることができる。なお、スプレードライ法に代えて、又は加えて、流動層造粒法により造粒する工程を有することができる。
The spray-drying method is performed by spraying droplets of a slurry of composite agglomerated material into a high-temperature atmosphere. Usual methods such as a method of using a rotating disk and a method of using a nozzle such as a two-fluid nozzle can be employed as the method of spraying. A method using a rotating disk is preferable in that the agglomerated particles in the alcohol slurry are unlikely to clog during spraying and that spherical granules having an arbitrary secondary particle size can be produced. Spherical granules having a required secondary particle size can be easily obtained by selecting the rotational speed of the rotating disk. In addition to or instead of the spray drying method, a step of granulating by a fluidized bed granulation method can be included.
噴霧された複合凝集粒子材料とアルコールで構成される液滴から分散媒が瞬時に除去されて複合粒子材料になるため、収縮することなく高比表面積かつMXeneナノシートとカーボン微小体の優れた相互分散を維持する。アルコールスラリー中の凝集粒子の粒子径が大きいため噴霧時あるいは送液中に詰まりやすい。そのため固形分濃度を適宜選択することが必要であり、1.0~10.0質量%にすることが好ましい。1.0~5.0質量%にすることが更に好ましい。二次粒子径の大きさは、回転ディスク法を用いた場合、回転数を低くし噴霧温度を高くすることで大きな二次粒子径を得ることができる。一方、回転数を高くすることで小さな二次粒子径を得ることができる。さらに、複合凝集粒子材料のアルコールスラリーの凝集粒子径を小さくし、2流体ノズルなどのノズルを用いたスプレードライすることで更に小さな二次粒子径を得ることができる。これらを組み合わせることで、平均二次粒子径1.0μm~15.0μmを得ることができる。1.0μm~10.0μmがより好ましい。2流体ノズルなどのノズルを用いたスプレードライには、ノズル詰まりを防ぐためふるいで大きな凝集粒子を取り除いたアルコールスラリーを用いることが好ましい。実用上平均二次粒子径が1.0μm以上にすることで作業中に複合粒子材料が飛散し難くなり好ましい。15.0μm以下にすると複合粒子材料を得るために、高粒子濃度のアルコールスラリーを用いて低速回転で液滴を大きくしたり、高温度で瞬時にアルコールを除去させたりしなくても形成することが可能となる。特に高温度での処理を避けることができるためMXeneの表面酸化などの問題が生じがたいため好ましい。電池材料に用いる際には、平均二次粒子径が1.0μm~15.0μmが好ましい。1.0μm~11.0μmがより好ましい。1.0μm以上にすることで取り扱いが容易になり、15.0μm以下にすることで、作製膜の凹凸の形成が抑制されるためである。特に11.0μm前後(10.5μm~11.5μm)がより好ましい。
Since the dispersion medium is instantaneously removed from the droplets composed of the sprayed composite agglomerated particle material and alcohol, the composite particle material is formed, resulting in a high specific surface area without shrinkage and excellent interdispersion of MXene nanosheets and carbon microparticles. to maintain Since the particle size of the aggregated particles in the alcohol slurry is large, clogging is likely to occur during spraying or liquid feeding. Therefore, it is necessary to appropriately select the solid content concentration, which is preferably 1.0 to 10.0% by mass. More preferably 1.0 to 5.0% by mass. As for the secondary particle size, when the rotating disk method is used, a large secondary particle size can be obtained by lowering the number of revolutions and increasing the spray temperature. On the other hand, a small secondary particle size can be obtained by increasing the rotational speed. Furthermore, a smaller secondary particle size can be obtained by reducing the aggregate particle size of the alcohol slurry of the composite aggregated particle material and spray-drying it using a nozzle such as a two-fluid nozzle. By combining these, an average secondary particle size of 1.0 μm to 15.0 μm can be obtained. 1.0 μm to 10.0 μm is more preferable. For spray drying using a nozzle such as a two-fluid nozzle, it is preferable to use an alcohol slurry from which large agglomerated particles have been removed through a sieve in order to prevent clogging of the nozzle. Practically, when the average secondary particle size is 1.0 μm or more, the composite particle material is less likely to scatter during work, which is preferable. In order to obtain a composite particle material when it is 15.0 μm or less, it is necessary to use an alcohol slurry with a high particle concentration to increase the size of the droplets at low speed rotation, or to form without instantaneously removing the alcohol at a high temperature. becomes possible. In particular, it is preferable because the problem of surface oxidation of MXene is less likely to occur because high-temperature treatment can be avoided. When used as a battery material, the average secondary particle size is preferably 1.0 μm to 15.0 μm. 1.0 μm to 11.0 μm is more preferable. This is because when the thickness is 1.0 μm or more, handling becomes easy, and when the thickness is 15.0 μm or less, formation of irregularities in the film to be produced is suppressed. In particular, around 11.0 μm (10.5 μm to 11.5 μm) is more preferable.
・乾燥工程
造粒工程で得られた造粒体はそのままでも本実施形態の複合粒子材料とすることができるが、その後にMXeneナノシートの層間水を除去する目的で乾燥させることができる。乾燥工程は、真空雰囲気下又は不活性雰囲気下、100~120℃で造粒体を乾燥して本実施形態の複合粒子材料にする工程である。ここで真空雰囲気及び不活性雰囲気とは、MXeneナノシートの酸化を抑制するために採用する雰囲気であり、空気と比べて酸化が抑制できる雰囲気であれば充分である。 Drying step The granules obtained in the granulation step can be used as the composite particle material of the present embodiment as they are, but can be dried after that for the purpose of removing inter-layer water of the MXene nanosheets. The drying step is a step of drying the granules at 100 to 120° C. under a vacuum atmosphere or an inert atmosphere to obtain the composite particle material of the present embodiment. Here, the vacuum atmosphere and the inert atmosphere are atmospheres employed to suppress oxidation of the MXene nanosheets, and any atmosphere that can suppress oxidation compared to air is sufficient.
造粒工程で得られた造粒体はそのままでも本実施形態の複合粒子材料とすることができるが、その後にMXeneナノシートの層間水を除去する目的で乾燥させることができる。乾燥工程は、真空雰囲気下又は不活性雰囲気下、100~120℃で造粒体を乾燥して本実施形態の複合粒子材料にする工程である。ここで真空雰囲気及び不活性雰囲気とは、MXeneナノシートの酸化を抑制するために採用する雰囲気であり、空気と比べて酸化が抑制できる雰囲気であれば充分である。 Drying step The granules obtained in the granulation step can be used as the composite particle material of the present embodiment as they are, but can be dried after that for the purpose of removing inter-layer water of the MXene nanosheets. The drying step is a step of drying the granules at 100 to 120° C. under a vacuum atmosphere or an inert atmosphere to obtain the composite particle material of the present embodiment. Here, the vacuum atmosphere and the inert atmosphere are atmospheres employed to suppress oxidation of the MXene nanosheets, and any atmosphere that can suppress oxidation compared to air is sufficient.
MXeneナノシートの層間水の残留を抑制すると二次電池やシュードキャパシタの電極として使用した時に、サイクル数を増やした時の特性劣化が抑制できる。乾燥工程の温度は、造粒体の温度で判断する。造粒体の温度を制御するために雰囲気の温度を制御したり、赤外線などにより造粒体を直接加熱したり、造粒体を収納する容器の温度を制御して伝熱により造粒体の温度を制御したりできる。
By suppressing the remaining inter-layer water of MXene nanosheets, it is possible to suppress the deterioration of characteristics when the number of cycles is increased when used as electrodes for secondary batteries and pseudocapacitors. The temperature of the drying process is determined by the temperature of the granules. In order to control the temperature of the granules, the temperature of the atmosphere is controlled, the granules are directly heated by infrared rays, etc., the temperature of the container containing the granules is controlled, and the granules are heated by heat transfer. You can control the temperature.
乾燥工程を行う温度は、MXeneナノシートが変性しない又は変性が許容できる範囲内である温度であり、且つ、MXeneナノシートの層間に含まれている水分が除去可能な温度である。乾燥工程を行うことで層間水を効果的に除去することができる。例えば、全体の質量を基準として、10質量%未満の水分量にまで容易に到達することができる。乾燥工程を行う時間としては特に限定しないが、全体の質量を基準として水分量が10%未満になるまで行ったり、質量変化が1時間あたり1.0%以下になるまで行ったりすることが好ましい。水分量としては8%以下、6%以下、4%以下、2%以下、1%以下にすることが更に好ましく、質量変化としては一時間あたり0.5%以下になるまで行うことが更に好ましい。
The temperature at which the drying process is performed is a temperature at which the MXene nanosheets are not denatured or within an allowable range of denaturation, and a temperature at which moisture contained between the layers of the MXene nanosheets can be removed. Interlayer water can be effectively removed by performing the drying process. For example, a water content of less than 10% by weight, based on the total weight, can easily be reached. The time for performing the drying process is not particularly limited, but it is preferable to perform until the moisture content is less than 10% based on the total mass, or until the mass change is 1.0% or less per hour. . More preferably, the water content is 8% or less, 6% or less, 4% or less, 2% or less, or 1% or less, and the mass change is more preferably 0.5% or less per hour. .
・その他必要な工程
その他必要な工程としては特に限定しないが、前処理工程が例示できる。前処理工程は、MXeneを製造する方法の一例である。例えば、TiCとTiNとAlとTiの混合原料をCIP又は一軸加圧により1トン/cm2から3トン/cm2の範囲で加圧処理した圧粉体破砕片を、あるいは加圧処理することなく、1400℃から1600℃以下の不活性雰囲気中で熱処理することにより高純度なTi3層のMAX相セラミックスであるTi3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは1.0)を得ることが例示できる。また、MAX相セラミックス粉末に酸性物質を20℃から30℃に制御した温度にて接触させて、MAX相セラミックス粉末に含まれるAl元素の一部を除去することで製造することができる。 -Other necessary steps Other necessary steps are not particularly limited, but a pretreatment step can be exemplified. The pretreatment step is an example of a method for manufacturing MXene. For example, a mixed raw material of TiC, TiN, Al, and Ti is pressurized in the range of 1 ton/cm 2 to 3 ton/cm 2 by CIP or uniaxial pressure, or pressurized. Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0 ≤ x≦0.25 and a is 1.0). Alternatively, it can be produced by contacting the MAX phase ceramic powder with an acidic substance at a temperature controlled at 20° C. to 30° C. to remove part of the Al element contained in the MAX phase ceramic powder.
その他必要な工程としては特に限定しないが、前処理工程が例示できる。前処理工程は、MXeneを製造する方法の一例である。例えば、TiCとTiNとAlとTiの混合原料をCIP又は一軸加圧により1トン/cm2から3トン/cm2の範囲で加圧処理した圧粉体破砕片を、あるいは加圧処理することなく、1400℃から1600℃以下の不活性雰囲気中で熱処理することにより高純度なTi3層のMAX相セラミックスであるTi3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは1.0)を得ることが例示できる。また、MAX相セラミックス粉末に酸性物質を20℃から30℃に制御した温度にて接触させて、MAX相セラミックス粉末に含まれるAl元素の一部を除去することで製造することができる。 -Other necessary steps Other necessary steps are not particularly limited, but a pretreatment step can be exemplified. The pretreatment step is an example of a method for manufacturing MXene. For example, a mixed raw material of TiC, TiN, Al, and Ti is pressurized in the range of 1 ton/cm 2 to 3 ton/cm 2 by CIP or uniaxial pressure, or pressurized. Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0 ≤ x≦0.25 and a is 1.0). Alternatively, it can be produced by contacting the MAX phase ceramic powder with an acidic substance at a temperature controlled at 20° C. to 30° C. to remove part of the Al element contained in the MAX phase ceramic powder.
前処理工程に供する原料は、Ti3層については、Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは1.0)で表される組成を有するMAX相セラミックス粉末である。さらに、Alを除去する量は酸性物質により酸処理されて製造されるMAX相セラミックス粉末中のAlの量(xに相当)が0.01以上になる程度に残存するように調節する。下限としては0.02を採用することができる。上限は0.05になるように調整することがより好ましい。なお、Alを全部除去することも可能であり、その場合にはAlを除去する以上にまで酸処理を進めないことが好ましい。
The raw material to be subjected to the pretreatment step is represented by Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤x≤0.25, a is 1.0 ) for the Ti3 layer. It is a MAX phase ceramic powder having a composition. Further, the amount of Al to be removed is adjusted so that the amount of Al (corresponding to x) in the MAX phase ceramic powder produced by acid treatment with an acidic substance remains at least 0.01. 0.02 can be adopted as the lower limit. More preferably, the upper limit is adjusted to 0.05. In addition, it is possible to remove all the Al, and in that case, it is preferable not to proceed the acid treatment beyond the removal of the Al.
除去されるAlの量は、酸性物質(酸水溶液など)と接触する時間(長くすると除去される量が増加する)、酸性物質の濃度(濃度が高い方が除去される量が増加する)、酸性物質の量(酸性物質の絶対量が多い方が除去され得る量を多くできる)、接触させる温度(温度が高い方が除去される量が増加する)を変化させることで調節できる。
The amount of Al to be removed depends on the contact time with the acidic substance (acid aqueous solution, etc.) (the longer the time, the more removed), the concentration of the acidic substance (the higher the concentration, the more removed), It can be adjusted by changing the amount of acidic substance (the greater the absolute amount of acidic substance, the greater the amount that can be removed) and the contact temperature (the higher the temperature, the greater the amount removed).
層状化合物であるMAX相セラミックス粉末(A元素がAl)に対して、酸処理を行うことによりAlの一部を除去して粒子材料を構成する空隙層を有する数ミクロンメートルの大きさのマルチレイヤ層状化合物とする。Al層の一部を除去するための酸としてはフッ酸と塩酸との組み合わせた酸性物質を採用する。フッ酸と塩酸との組み合わせを実現するためにはフッ酸の塩(KF、LiFなど)と塩酸とを混合してフッ酸と塩酸との混合物を得ることが好ましい。
A multi-layer with a size of several micrometers having a void layer that constitutes a particle material by removing part of Al by acid-treating MAX phase ceramic powder (A element is Al), which is a layered compound. A layered compound. As the acid for removing part of the Al layer, an acidic substance in which hydrofluoric acid and hydrochloric acid are combined is employed. In order to achieve a combination of hydrofluoric acid and hydrochloric acid, it is preferable to mix a hydrofluoric acid salt (KF, LiF, etc.) with hydrochloric acid to obtain a mixture of hydrofluoric acid and hydrochloric acid.
特に酸性物質としてはこれらの酸の水溶液を採用する。フッ化塩が完全に解離したと仮定した時に形成されるフッ酸と塩酸との混合濃度としては特に限定しない。フッ酸の濃度としては下限が1.7mol/L、2.0mol/L、2.3mol/L、上限が2.5mol/L、2.6mol/L、2.7mol/L程度にすることができる。塩酸の濃度としては下限が2.0mol/L、3.0mol/L、4.0mol/L、上限が13.0mol/L、14.0mol/L、15.0mol/L程度にすることができる。
In particular, aqueous solutions of these acids are used as acidic substances. The mixed concentration of hydrofluoric acid and hydrochloric acid formed when the fluoride salt is completely dissociated is not particularly limited. As for the concentration of hydrofluoric acid, the lower limit is about 1.7 mol/L, 2.0 mol/L, and 2.3 mol/L, and the upper limit is about 2.5 mol/L, 2.6 mol/L, and 2.7 mol/L. can. The concentration of hydrochloric acid can be about 2.0 mol/L, 3.0 mol/L and 4.0 mol/L with lower limits and about 13.0 mol/L, 14.0 mol/L and 15.0 mol/L with upper limits. .
フッ化塩が完全に解離したと仮定した時に形成されるフッ酸と塩酸との混合比(モル比)についても特に限定しないが、フッ酸の下限として、1:13、1:12、1:11、上限として1:5、1:6、1:7程度を採用することができる。ここで示したフッ酸及び塩酸濃度、混合比についてはそれぞれ任意に組み合わせて採用することができる。酸処理温度については、20℃から30℃が好ましい。20℃から25℃がさらに好ましい。
The mixing ratio (molar ratio) of hydrofluoric acid and hydrochloric acid formed when it is assumed that the fluoride salt is completely dissociated is not particularly limited, but the lower limit of hydrofluoric acid is 1:13, 1:12, 1:1: 11. About 1:5, 1:6 and 1:7 can be adopted as the upper limit. The concentrations and mixing ratios of hydrofluoric acid and hydrochloric acid shown here can be used in arbitrary combinations. The acid treatment temperature is preferably 20°C to 30°C. 20°C to 25°C is more preferred.
(電極材料)
本実施形態の電極材料は、二次電池に好適に用いることができる材料である。特に層間へのLiイオンやNaイオンの挿入脱離が可能であることから、電極活物質として好適に利用できる。また、その導電性から導電補助剤に用いることもできる。リチウム二次電池、及びナトリウム二次電池に有効である。酸処理によってAl層を除去した空隙層にリチウムイオンやナトリウムイオンが貯蔵、脱離される。 (Electrode material)
The electrode material of the present embodiment is a material that can be suitably used for secondary batteries. In particular, since Li ions and Na ions can be intercalated and detached between layers, it can be suitably used as an electrode active material. Moreover, it can also be used as a conductive aid because of its conductivity. Effective for lithium secondary batteries and sodium secondary batteries. Lithium ions and sodium ions are stored and desorbed in the void layer from which the Al layer has been removed by acid treatment.
本実施形態の電極材料は、二次電池に好適に用いることができる材料である。特に層間へのLiイオンやNaイオンの挿入脱離が可能であることから、電極活物質として好適に利用できる。また、その導電性から導電補助剤に用いることもできる。リチウム二次電池、及びナトリウム二次電池に有効である。酸処理によってAl層を除去した空隙層にリチウムイオンやナトリウムイオンが貯蔵、脱離される。 (Electrode material)
The electrode material of the present embodiment is a material that can be suitably used for secondary batteries. In particular, since Li ions and Na ions can be intercalated and detached between layers, it can be suitably used as an electrode active material. Moreover, it can also be used as a conductive aid because of its conductivity. Effective for lithium secondary batteries and sodium secondary batteries. Lithium ions and sodium ions are stored and desorbed in the void layer from which the Al layer has been removed by acid treatment.
ここではリチウム二次電池を例に挙げて説明する。電極は、本実施形態の複合粒子材料からなる活物質を含む活物質層と、金属の薄板などから構成され表面に活物質からなる活物質層が形成される集電体とを有する。活物質層を形成するためにはバインダを含むことができる。また活物質層には必要に応じて本実施形態の複合粒子材料以外の活物質・導電補助剤などを含有させることができる。バインダはカルボキシメチルセルロース、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、ポリビニルピロリドン、ポリビニルアルコールなどの汎用されているバインダやその他バインダとして利用できるものが採用できる。導電補助剤としてはアセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などが採用できる。
Here, we will use a lithium secondary battery as an example. The electrode has an active material layer containing an active material made of the composite particle material of the present embodiment, and a current collector made of a thin metal plate or the like and having an active material layer made of the active material formed on the surface thereof. A binder may be included to form the active material layer. Moreover, the active material layer can contain an active material other than the composite particle material of the present embodiment, a conductive auxiliary agent, and the like, if necessary. As the binder, a commonly used binder such as carboxymethyl cellulose, polyvinylidene fluoride, styrene-butadiene rubber, polyvinylpyrrolidone, polyvinyl alcohol, or any other binder that can be used can be used. Acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, hard carbon powder and the like can be used as the conductive auxiliary agent.
本発明の複合粒子材料及びその製造方法について以下実施例に基づき詳細に説明を行う。
The composite particle material of the present invention and its manufacturing method will be described in detail below based on examples.
(実施例1)
・前処理工程
TiC粉末(TI-30-10-0020、レアメタリック社)12.3g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gをイソプロパノール(IPA)中で12時間 ボールミル混合し、エバポレータでIPAを除去して均一混合された乾燥粉末を得た。 (Example 1)
・Pretreatment process TiC powder (TI-30-10-0020, Rare Metallic) 12.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical) 4.9 g, Al powder (ALE15PB 3NG, Kojundo Chemical) 2.8 g was ball-mill mixed in isopropanol (IPA) for 12 hours, and the IPA was removed by an evaporator to obtain a uniformly mixed dry powder.
・前処理工程
TiC粉末(TI-30-10-0020、レアメタリック社)12.3g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gをイソプロパノール(IPA)中で12時間 ボールミル混合し、エバポレータでIPAを除去して均一混合された乾燥粉末を得た。 (Example 1)
・Pretreatment process TiC powder (TI-30-10-0020, Rare Metallic) 12.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical) 4.9 g, Al powder (ALE15PB 3NG, Kojundo Chemical) 2.8 g was ball-mill mixed in isopropanol (IPA) for 12 hours, and the IPA was removed by an evaporator to obtain a uniformly mixed dry powder.
黒鉛抵抗炉を用いてAr気流中1450℃、2hの条件で、均一混合された乾燥粉末をアルミナるつぼに入れて焼成しMAX相セラミックスとしてのTi3AlC2を得た。得られたTi3AlC2について乳鉢と乳棒を用いて粗粉砕した後、IPA中で5mmのジルコニアボールを用いたボールミル粉砕を24時間行った。その後、0.5mmのジルコニアボールを用いた遊星ボールミル粉砕(200rpm、15分を3回)行い、懸濁液を得た。懸濁液に対してエバポレータでIPAを除去して約3μmに粉砕されたTi3AlC2粉末を得た。
Using a graphite resistance furnace, the uniformly mixed dry powder was placed in an alumina crucible and sintered in an Ar stream at 1450° C. for 2 hours to obtain Ti 3 AlC 2 as MAX phase ceramics. The resulting Ti 3 AlC 2 was coarsely pulverized using a mortar and pestle, and then subjected to ball mill pulverization using 5 mm zirconia balls in IPA for 24 hours. Then, planetary ball mill pulverization (200 rpm, 15 minutes three times) using 0.5 mm zirconia balls was performed to obtain a suspension. IPA was removed from the suspension with an evaporator to obtain Ti 3 AlC 2 powder pulverized to about 3 μm.
300mLの濃HClにLiF18gを入れた酸水溶液を準備し、氷で冷やしながら10gのTi3AlC2粉末を入れて、10℃から20℃に制御された環境下で、24時間、マグネチックスターラーで撹拌することで、Alをエッチングして除去し、Ti3Al0.02C2 MXeneからなる粒子材料を得た。エッチング後、pH6程度になるまで水洗し、最後に水をエタノールに置換した。この操作により、粒子材料は、エタノール中に懸濁された原料懸濁液を得た。
Prepare an acid aqueous solution by adding 18 g of LiF to 300 mL of concentrated HCl, add 10 g of Ti 3 AlC 2 powder while cooling with ice, and stir with a magnetic stirrer for 24 hours under an environment controlled at 10 to 20 ° C. By stirring, the Al was etched away to obtain a particulate material consisting of Ti 3 Al 0.02 C 2 MXene. After etching, it was washed with water until the pH reached about 6, and finally water was replaced with ethanol. This operation resulted in a raw suspension of the particulate material suspended in ethanol.
原料懸濁液は、粒子濃度を測定し、Ti3Al0.02C2 MXeneの粒子濃度が15.6mg/mLになるように水を添加して調整した。
The raw material suspension was adjusted by measuring the particle concentration and adding water so that the particle concentration of Ti 3 Al 0.02 C 2 MXene was 15.6 mg/mL.
・剥離工程
この原料懸濁液に対して、ZrO2ビーズ径50μmのビーズミルをスラリー送入速度150mL/min、ZrO2ビーズ充填量80%の条件で処理を行うことで、Ti3Al0.02C2 MXeneからなる剥離物を生成した。この処理を3回繰り返すことにより、原料懸濁液中に含まれるTi3Al0.02C2 MXeneからなる粒子材料は、概ね全て(質量基準で99%以上)剥離物になり、その剥離物を含む剥離物懸濁液を得た。 ・Exfoliation process Ti 3 Al 0.02 C 2 was processed by treating this raw material suspension in a bead mill with a ZrO 2 bead diameter of 50 μm under the conditions of a slurry feed rate of 150 mL/min and a ZrO 2 bead filling amount of 80%. An exfoliate consisting of MXene was produced. By repeating this treatment three times, almost all of the particle material composed of Ti 3 Al 0.02 C 2 MXene contained in the raw material suspension (99% or more on a mass basis) becomes exfoliated substances, including the exfoliated substances. A flake suspension was obtained.
この原料懸濁液に対して、ZrO2ビーズ径50μmのビーズミルをスラリー送入速度150mL/min、ZrO2ビーズ充填量80%の条件で処理を行うことで、Ti3Al0.02C2 MXeneからなる剥離物を生成した。この処理を3回繰り返すことにより、原料懸濁液中に含まれるTi3Al0.02C2 MXeneからなる粒子材料は、概ね全て(質量基準で99%以上)剥離物になり、その剥離物を含む剥離物懸濁液を得た。 ・Exfoliation process Ti 3 Al 0.02 C 2 was processed by treating this raw material suspension in a bead mill with a ZrO 2 bead diameter of 50 μm under the conditions of a slurry feed rate of 150 mL/min and a ZrO 2 bead filling amount of 80%. An exfoliate consisting of MXene was produced. By repeating this treatment three times, almost all of the particle material composed of Ti 3 Al 0.02 C 2 MXene contained in the raw material suspension (99% or more on a mass basis) becomes exfoliated substances, including the exfoliated substances. A flake suspension was obtained.
得られた剥離物懸濁液について、ピラニア処理(H2SO4:H2O2=3体積部:1体積部の混合液に浸漬)したSi基板上に滴下し、AFM分析を行った。AFM像を図1に示す。剥離した剥離物(ナノシート)を無作為に100個抜き取り、AFMにより測定した厚さの平均値を求め表1に示す。さらにSEM観察の結果を図2に示す。剥離物を無作為に100個抜き取り、SEM写真より縦(厚み方向に直交する方向での最大径)と横(縦方向及び厚み方向に直交する方向)の寸法を測定し、その平均値をその剥離物の大きさと定義し、100個の剥離物の大きさの平均値を表1に示す。MAX相セラミックスであるTi3AlC2の粉末について、XRD測定し、そのプロファイルを図3に示す。 剥離物について、水中 pH7.0におけるゼータ電位を測定し、-28.9mVであった。
The resulting exfoliated material suspension was dropped onto a piranha-treated Si substrate (immersed in a mixed solution of H 2 SO 4 :H 2 O 2 =3 parts by volume:1 part by volume) and subjected to AFM analysis. An AFM image is shown in FIG. 100 exfoliated exfoliated products (nanosheets) were randomly sampled, and the average value of the thickness measured by AFM was obtained and shown in Table 1. Furthermore, the result of SEM observation is shown in FIG. 100 exfoliated products were randomly selected, and the vertical (maximum diameter in the direction perpendicular to the thickness direction) and horizontal (direction perpendicular to the vertical and thickness directions) dimensions were measured from the SEM photograph, and the average value was calculated. Table 1 shows the average value of the size of 100 exfoliated objects. A powder of Ti 3 AlC 2 , which is a MAX phase ceramic, was subjected to XRD measurement, and its profile is shown in FIG. The peeled substance was measured for zeta potential in water at pH 7.0 and found to be -28.9 mV.
・酸処理工程
カーボン微小体としてのアセチレンブラックを酸処理する方法として、硫酸(98質量%)と硝酸(68質量%)を体積比で3:1で混合した混酸100質量部にアセチレンブラックを1.0質量部添加し、85℃の環境下で10分間浸漬して行った。その後、pH6.0程度になるまで水洗し、その後、水をIPAにて置換した。それを室温で風乾して親水性の酸処理アセチレンブラック粉末を得た。FTIR分析し、表面官能基としてCOOH基とCO基を検出した。水中pH7.0におけるゼータ電位を測定した所、-22.5mVであった。酸処理アセチレンブラックは、振とう機で140rpm、振幅45mm、24hの条件で凝集を解砕し、親水性アセチレンブラック水スラリーを準備した。親水性アセチレンブラック水スラリーを親水化処理したSiウエハーに滴下しSEM観察した。100個の一次粒子を任意に観察し、縦と横の寸法を測定し、その平均値である一次粒子径を表1に示す。 ・Acid treatment process As a method for acid treatment of acetylene black as fine carbon particles, 100 parts by mass of a mixed acid in which sulfuric acid (98% by mass) and nitric acid (68% by mass) are mixed at a volume ratio of 3:1 is mixed with 1 part of acetylene black. 0 mass part was added, and the mixture was immersed for 10 minutes in an environment of 85°C. Then, it was washed with water until the pH reached about 6.0, and then the water was replaced with IPA. It was air-dried at room temperature to obtain a hydrophilic acid-treated acetylene black powder. FTIR analysis detected a COOH group and a CO group as surface functional groups. The measured zeta potential at pH 7.0 in water was -22.5 mV. The acid-treated acetylene black was deagglomerated with a shaker under conditions of 140 rpm, amplitude of 45 mm, and 24 hours to prepare a hydrophilic acetylene black aqueous slurry. A hydrophilic acetylene black aqueous slurry was dropped onto a hydrophilized Si wafer and observed with an SEM. 100 primary particles were arbitrarily observed, the vertical and horizontal dimensions were measured, and the average primary particle diameter is shown in Table 1.
カーボン微小体としてのアセチレンブラックを酸処理する方法として、硫酸(98質量%)と硝酸(68質量%)を体積比で3:1で混合した混酸100質量部にアセチレンブラックを1.0質量部添加し、85℃の環境下で10分間浸漬して行った。その後、pH6.0程度になるまで水洗し、その後、水をIPAにて置換した。それを室温で風乾して親水性の酸処理アセチレンブラック粉末を得た。FTIR分析し、表面官能基としてCOOH基とCO基を検出した。水中pH7.0におけるゼータ電位を測定した所、-22.5mVであった。酸処理アセチレンブラックは、振とう機で140rpm、振幅45mm、24hの条件で凝集を解砕し、親水性アセチレンブラック水スラリーを準備した。親水性アセチレンブラック水スラリーを親水化処理したSiウエハーに滴下しSEM観察した。100個の一次粒子を任意に観察し、縦と横の寸法を測定し、その平均値である一次粒子径を表1に示す。 ・Acid treatment process As a method for acid treatment of acetylene black as fine carbon particles, 100 parts by mass of a mixed acid in which sulfuric acid (98% by mass) and nitric acid (68% by mass) are mixed at a volume ratio of 3:1 is mixed with 1 part of acetylene black. 0 mass part was added, and the mixture was immersed for 10 minutes in an environment of 85°C. Then, it was washed with water until the pH reached about 6.0, and then the water was replaced with IPA. It was air-dried at room temperature to obtain a hydrophilic acid-treated acetylene black powder. FTIR analysis detected a COOH group and a CO group as surface functional groups. The measured zeta potential at pH 7.0 in water was -22.5 mV. The acid-treated acetylene black was deagglomerated with a shaker under conditions of 140 rpm, amplitude of 45 mm, and 24 hours to prepare a hydrophilic acetylene black aqueous slurry. A hydrophilic acetylene black aqueous slurry was dropped onto a hydrophilized Si wafer and observed with an SEM. 100 primary particles were arbitrarily observed, the vertical and horizontal dimensions were measured, and the average primary particle diameter is shown in Table 1.
・混合工程と凝集工程
剥離工程で得られた粒子濃度15.6mg/mLの剥離物懸濁液220mLに、塩化リチウム粉末5.3gと、酸処理工程により酸処理したアセチレンブラック粉末を、剥離物(Ti3Al0.02C2 MXene)を基準として5質量%量である0.172gを添加した後、振とう機で140rpm 振幅45mmの条件で5時間均一撹拌した。アセチレンブラックは、先述したように、10mLの水中に分散スラリー化した状態で添加した。均一撹拌後、3.5gの水酸化リチウムを純水30mLに溶かした水溶液をあらかじめ1時間振とう機で140rpm、振幅45mmの条件で完全に溶解させたアルカリ性水溶液を添加し、振とう機で140rpm、振幅45mmの条件で1時間撹拌した。その後、水洗1回、エタノール置換を3回行い、エタノール中で140rpmの条件で6時間振とう機を用いて撹拌して、粗大な凝集体のほぐしを行い、5.0mg/mLの粒子濃度の凝集物のエタノールスラリーを得た。水洗やエタノール置換は、水やエタノールを加えた後に1000~8000G、10分の条件による遠心沈降で凝集物を沈降させ、上澄みを除去することで行った。得られたアルコールスラリー中のアルコールとしてのエタノールの含有量は分散媒全体の質量を基準として99%であった。 Mixing step and aggregation step To 220 mL of the exfoliated material suspension having a particle concentration of 15.6 mg/mL obtained in the exfoliating step, 5.3 g of lithium chloride powder and acetylene black powder acid-treated in the acid treatment step are added to the exfoliated material. After adding 0.172 g, which is 5% by mass based on (Ti 3 Al 0.02 C 2 MXene), the mixture was uniformly stirred for 5 hours with a shaker at 140 rpm and an amplitude of 45 mm. Acetylene black was added as a dispersion slurry in 10 mL of water as described above. After uniform stirring, an aqueous solution prepared by dissolving 3.5 g of lithium hydroxide in 30 mL of pure water was completely dissolved with a shaker at 140 rpm for 1 hour and an amplitude of 45 mm. and an amplitude of 45 mm for 1 hour. After that, wash with water once, replace with ethanol three times, stir with a shaker for 6 hours under conditions of 140 rpm in ethanol to loosen coarse aggregates, and obtain a particle concentration of 5.0 mg / mL. An ethanol slurry of aggregates was obtained. Water washing and ethanol replacement were carried out by adding water or ethanol, centrifuging at 1000 to 8000 G for 10 minutes to sediment aggregates, and removing the supernatant. The content of ethanol as alcohol in the resulting alcohol slurry was 99% based on the mass of the entire dispersion medium.
剥離工程で得られた粒子濃度15.6mg/mLの剥離物懸濁液220mLに、塩化リチウム粉末5.3gと、酸処理工程により酸処理したアセチレンブラック粉末を、剥離物(Ti3Al0.02C2 MXene)を基準として5質量%量である0.172gを添加した後、振とう機で140rpm 振幅45mmの条件で5時間均一撹拌した。アセチレンブラックは、先述したように、10mLの水中に分散スラリー化した状態で添加した。均一撹拌後、3.5gの水酸化リチウムを純水30mLに溶かした水溶液をあらかじめ1時間振とう機で140rpm、振幅45mmの条件で完全に溶解させたアルカリ性水溶液を添加し、振とう機で140rpm、振幅45mmの条件で1時間撹拌した。その後、水洗1回、エタノール置換を3回行い、エタノール中で140rpmの条件で6時間振とう機を用いて撹拌して、粗大な凝集体のほぐしを行い、5.0mg/mLの粒子濃度の凝集物のエタノールスラリーを得た。水洗やエタノール置換は、水やエタノールを加えた後に1000~8000G、10分の条件による遠心沈降で凝集物を沈降させ、上澄みを除去することで行った。得られたアルコールスラリー中のアルコールとしてのエタノールの含有量は分散媒全体の質量を基準として99%であった。 Mixing step and aggregation step To 220 mL of the exfoliated material suspension having a particle concentration of 15.6 mg/mL obtained in the exfoliating step, 5.3 g of lithium chloride powder and acetylene black powder acid-treated in the acid treatment step are added to the exfoliated material. After adding 0.172 g, which is 5% by mass based on (Ti 3 Al 0.02 C 2 MXene), the mixture was uniformly stirred for 5 hours with a shaker at 140 rpm and an amplitude of 45 mm. Acetylene black was added as a dispersion slurry in 10 mL of water as described above. After uniform stirring, an aqueous solution prepared by dissolving 3.5 g of lithium hydroxide in 30 mL of pure water was completely dissolved with a shaker at 140 rpm for 1 hour and an amplitude of 45 mm. and an amplitude of 45 mm for 1 hour. After that, wash with water once, replace with ethanol three times, stir with a shaker for 6 hours under conditions of 140 rpm in ethanol to loosen coarse aggregates, and obtain a particle concentration of 5.0 mg / mL. An ethanol slurry of aggregates was obtained. Water washing and ethanol replacement were carried out by adding water or ethanol, centrifuging at 1000 to 8000 G for 10 minutes to sediment aggregates, and removing the supernatant. The content of ethanol as alcohol in the resulting alcohol slurry was 99% based on the mass of the entire dispersion medium.
・造粒工程
スプレードライ装置を用いて、複合凝集粒子材料のアルコールスラリーをスプレードライして造粒体を調製した。運転条件は、ディスク回転数20000rpm、窒素雰囲気中、ディスクへのアルコールスラリー投入温度を80℃、アルコールスラリー投入速度を1.4kg/時間とした。 - Granulation process Using a spray dryer, an alcohol slurry of the composite aggregated particle material was spray-dried to prepare granules. The operating conditions were a disk rotation speed of 20,000 rpm, a nitrogen atmosphere, an alcohol slurry injection temperature of 80° C., and an alcohol slurry injection rate of 1.4 kg/hour.
スプレードライ装置を用いて、複合凝集粒子材料のアルコールスラリーをスプレードライして造粒体を調製した。運転条件は、ディスク回転数20000rpm、窒素雰囲気中、ディスクへのアルコールスラリー投入温度を80℃、アルコールスラリー投入速度を1.4kg/時間とした。 - Granulation process Using a spray dryer, an alcohol slurry of the composite aggregated particle material was spray-dried to prepare granules. The operating conditions were a disk rotation speed of 20,000 rpm, a nitrogen atmosphere, an alcohol slurry injection temperature of 80° C., and an alcohol slurry injection rate of 1.4 kg/hour.
・乾燥工程
造粒工程で得られた造粒体について、真空中110℃、6時間の条件で乾燥を行い、層間の水を除去し、本実施例のMXene/導電性カーボンブラックの複合粒子材料を得た。 ・ Drying process The granules obtained in the granulation process are dried in a vacuum at 110 ° C. for 6 hours to remove the water between the layers, and the MXene / conductive carbon black composite particle material of the present example is dried. got
造粒工程で得られた造粒体について、真空中110℃、6時間の条件で乾燥を行い、層間の水を除去し、本実施例のMXene/導電性カーボンブラックの複合粒子材料を得た。 ・ Drying process The granules obtained in the granulation process are dried in a vacuum at 110 ° C. for 6 hours to remove the water between the layers, and the MXene / conductive carbon black composite particle material of the present example is dried. got
・評価
得られた複合粉末のSEM写真(図4)にを示す。図から明らかなように、得られた複合粒子材料は、球形度が高く、拡大すると、アセチレンブラックが均一に分散した極めて薄いMXeneナノシートとの3Dポーラス凝集構造が維持され、高比表面積であることが分かった。100個の二次粒子を同様にSEM観察した所、全て同様のポーラス微細構造を有する複合粒子材料であった。つまり、微細構造が外的な応力により乱されていないことが明らかになった。 - Evaluation The SEM photograph (Fig. 4) of the obtained composite powder is shown. As is clear from the figure, the resulting composite particle material has a high degree of sphericity, and when enlarged, maintains a 3D porous aggregation structure with extremely thin MXene nanosheets in which acetylene black is uniformly dispersed, and has a high specific surface area. I found out. When 100 secondary particles were similarly observed with an SEM, they were all composite particle materials having the same porous microstructure. In other words, it became clear that the microstructure was not disturbed by external stress.
得られた複合粉末のSEM写真(図4)にを示す。図から明らかなように、得られた複合粒子材料は、球形度が高く、拡大すると、アセチレンブラックが均一に分散した極めて薄いMXeneナノシートとの3Dポーラス凝集構造が維持され、高比表面積であることが分かった。100個の二次粒子を同様にSEM観察した所、全て同様のポーラス微細構造を有する複合粒子材料であった。つまり、微細構造が外的な応力により乱されていないことが明らかになった。 - Evaluation The SEM photograph (Fig. 4) of the obtained composite powder is shown. As is clear from the figure, the resulting composite particle material has a high degree of sphericity, and when enlarged, maintains a 3D porous aggregation structure with extremely thin MXene nanosheets in which acetylene black is uniformly dispersed, and has a high specific surface area. I found out. When 100 secondary particles were similarly observed with an SEM, they were all composite particle materials having the same porous microstructure. In other words, it became clear that the microstructure was not disturbed by external stress.
表2に二次粒子の平均径、二次粒子の球形度、表3に比表面積、平均細孔直径、平均細孔容量、かさ密度を示す。図5に窒素吸着等温線を示す。二次粒子の平均径はSEM像から任意に100個を抜き取り(長辺+短辺)/2を二次粒子径としその平均を算出し平均径とした。二次粒子の球形度は100個を抜き取り短辺/長辺を測定し、その平均を算出し球形度とした。上限1.0で1.0に近いほど球形度が高い。二次粒子のかさ密度はJIS1628-1997に従って測定した。比表面積、平均細孔直径、平均細孔容量については、真空中で110℃、6時間加熱した直後にBET法により測定した。Ti3Al0.02C2 MXeneナノシート及びカーボン微小体としてのアセチレンブラックのそれぞれの一次粒子の分散の度合いである相互分散度を測定した。具体的には、ラマン分光分析により、数値化した。アナターゼが析出しないレーザー強度で100cm-1から2000cm-1の範囲で100点について分析を行い、Bピーク強度/Aピーク強度の比率について、標準偏差を算出し相互分散度とした。得られた相互分散度を表4に示す。得られた複合粒子材料を真空中110℃で5h熱処理し質量変化を測定し表5に示す。更に得られた複合粒子材料をXRD測定し図3にプロファイルを示す。XRD測定の結果から、MXeneナノシートの(002)面の層間距離を表6に示す。得られた複合粒子材料をφ10mmの金型で0.5kg/cm2の圧力で一軸加圧成形し、その後1.0トン/cm2の圧力で冷間静水圧加圧(CIP)処理した圧粉体を用いて、φ0.1mmの銅線を用いた4端子法で測定した表面の電気抵抗を測定し表7に示す。
Table 2 shows the average secondary particle diameter and sphericity of the secondary particles, and Table 3 shows the specific surface area, average pore diameter, average pore volume and bulk density. FIG. 5 shows nitrogen adsorption isotherms. For the average diameter of the secondary particles, 100 particles were arbitrarily extracted from the SEM image, and the secondary particle diameter was calculated as (long side + short side)/2, and the average was calculated as the average diameter. For the sphericity of the secondary particles, 100 particles were sampled and the short side/long side were measured, and the average was calculated as the sphericity. The upper limit is 1.0, and the closer to 1.0, the higher the sphericity. The bulk density of secondary particles was measured according to JIS1628-1997. The specific surface area, average pore diameter, and average pore volume were measured by the BET method immediately after heating at 110°C for 6 hours in vacuum. The degree of interdispersion, which is the degree of dispersion of the primary particles of each of the Ti 3 Al 0.02 C 2 MXene nanosheets and acetylene black as fine carbon particles, was measured. Specifically, it was quantified by Raman spectroscopic analysis. 100 points were analyzed in the laser intensity range from 100 cm −1 to 2000 cm −1 at a laser intensity at which anatase does not precipitate, and the standard deviation of the B peak intensity/A peak intensity ratio was calculated as the interdispersion degree. Table 4 shows the interdispersion index obtained. The obtained composite particle material was heat-treated in vacuum at 110° C. for 5 hours, and the change in mass was measured. Furthermore, the obtained composite particle material was subjected to XRD measurement, and the profile is shown in FIG. Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets from the results of XRD measurement. The resulting composite particle material was uniaxially pressed in a φ10 mm mold at a pressure of 0.5 kg/cm 2 and then subjected to cold isostatic pressing (CIP) at a pressure of 1.0 ton/cm 2 . Table 7 shows the electrical resistance of the surface of the powder measured by the four-probe method using a copper wire of φ0.1 mm.
(実施例2)
黒鉛抵抗炉を用いてAr気流中1430℃、2hの条件で、均一混合された乾燥粉末をアルミナるつぼに入れて焼成しMAX相セラミックスとしてのTi3AlC2を得た以外は実施例1と同様に複合粒子材料を得た。実施例1と同様に測定し結果を図と表に示す。剥離したMXeneナノシートのAFM像を図6に、SEM像を図7に示す。MAX相セラミックスと複合粒子材料のXRDプロファイルを図8に、SEM像を図9示す。剥離したMXeneナノシートの平均厚みと大きさを表1に、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に、表面電気抵抗を表7に示す。 (Example 2)
Using a graphite resistance furnace, the uniformly mixed dry powder was placed in an alumina crucible and fired under the conditions of 1430° C. for 2 hours in an Ar stream to obtain Ti 3 AlC 2 as MAX phase ceramics. to obtain a composite particle material. Measurements were taken in the same manner as in Example 1, and the results are shown in the figure and table. An AFM image of the exfoliated MXene nanosheet is shown in FIG. 6, and an SEM image is shown in FIG. FIG. 8 shows the XRD profile of the MAX phase ceramics and the composite particle material, and FIG. 9 shows the SEM image. Table 1 shows the average thickness and size of the exfoliated MXene nanosheets, Table 2 shows the average particle diameter and sphericity of the resulting composite particle material, and Table 2 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of interdispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets, and Table 7 shows the surface electrical resistance.
黒鉛抵抗炉を用いてAr気流中1430℃、2hの条件で、均一混合された乾燥粉末をアルミナるつぼに入れて焼成しMAX相セラミックスとしてのTi3AlC2を得た以外は実施例1と同様に複合粒子材料を得た。実施例1と同様に測定し結果を図と表に示す。剥離したMXeneナノシートのAFM像を図6に、SEM像を図7に示す。MAX相セラミックスと複合粒子材料のXRDプロファイルを図8に、SEM像を図9示す。剥離したMXeneナノシートの平均厚みと大きさを表1に、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に、表面電気抵抗を表7に示す。 (Example 2)
Using a graphite resistance furnace, the uniformly mixed dry powder was placed in an alumina crucible and fired under the conditions of 1430° C. for 2 hours in an Ar stream to obtain Ti 3 AlC 2 as MAX phase ceramics. to obtain a composite particle material. Measurements were taken in the same manner as in Example 1, and the results are shown in the figure and table. An AFM image of the exfoliated MXene nanosheet is shown in FIG. 6, and an SEM image is shown in FIG. FIG. 8 shows the XRD profile of the MAX phase ceramics and the composite particle material, and FIG. 9 shows the SEM image. Table 1 shows the average thickness and size of the exfoliated MXene nanosheets, Table 2 shows the average particle diameter and sphericity of the resulting composite particle material, and Table 2 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of interdispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets, and Table 7 shows the surface electrical resistance.
(実施例3)
酸処理アセチレンブラックの添加量をTi3Al0.02C2 MXeneナノシートの質量を基準として10質量%とした以外は実施例2と同様にMXeneと酸処理アセチレンブラックとの複合粒子材料を作製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXene ナノシートの(002)面の層間距離を表6に、表面電気抵抗を表7に示す。 (Example 3)
A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 10% by mass based on the mass of Ti 3 Al 0.02 C 2 MXene nanosheets. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets, and Table 7 shows the surface electrical resistance.
酸処理アセチレンブラックの添加量をTi3Al0.02C2 MXeneナノシートの質量を基準として10質量%とした以外は実施例2と同様にMXeneと酸処理アセチレンブラックとの複合粒子材料を作製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXene ナノシートの(002)面の層間距離を表6に、表面電気抵抗を表7に示す。 (Example 3)
A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 10% by mass based on the mass of Ti 3 Al 0.02 C 2 MXene nanosheets. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of MXene nanosheets, and Table 7 shows the surface electrical resistance.
(実施例4)
酸処理アセチレンブラックの添加量をTi3Al0.02C2 MXeneナノシートの質量を基準として3質量%とした以外は実施例2と同様にMXeneと酸処理アセチレンブラックとの複合粒子材料を作製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に表面電気抵抗を表7に示す。 (Example 4)
A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 3% by mass based on the mass of the Ti 3 Al 0.02 C 2 MXene nanosheets. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheet, and Table 7 shows the surface electrical resistance.
酸処理アセチレンブラックの添加量をTi3Al0.02C2 MXeneナノシートの質量を基準として3質量%とした以外は実施例2と同様にMXeneと酸処理アセチレンブラックとの複合粒子材料を作製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に表面電気抵抗を表7に示す。 (Example 4)
A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 3% by mass based on the mass of the Ti 3 Al 0.02 C 2 MXene nanosheets. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheet, and Table 7 shows the surface electrical resistance.
(実施例5)
TiC粉末(TI-30-10-0020、レアメタリック社)9.2g、TiN粉末(TN-30-10-0020、レアメタリック社)3.2g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gを出発原料に用いて実施例1と同様にTi3Al(C0.75N0.25)2粉末を作製した。XRD分析で不純物のないMAX相セラミックス粉末であることを確認した。これを用いて、実施例1と同様に複合粒子材料を調製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に示す。 (Example 5)
TiC powder (TI-30-10-0020, Rare Metallic) 9.2 g, TiN powder (TN-30-10-0020, Rare Metallic) 3.2 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.75 N 0.25 ) 2 powder was prepared in the same manner as in Example 1 using 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) and 2.8 g of Al powder (ALE15PB 3NG, Kojundo Chemical) as starting materials. It was confirmed by XRD analysis that the powder was MAX phase ceramic powder free of impurities. Using this, a composite particle material was prepared in the same manner as in Example 1. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheets.
TiC粉末(TI-30-10-0020、レアメタリック社)9.2g、TiN粉末(TN-30-10-0020、レアメタリック社)3.2g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gを出発原料に用いて実施例1と同様にTi3Al(C0.75N0.25)2粉末を作製した。XRD分析で不純物のないMAX相セラミックス粉末であることを確認した。これを用いて、実施例1と同様に複合粒子材料を調製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に示す。 (Example 5)
TiC powder (TI-30-10-0020, Rare Metallic) 9.2 g, TiN powder (TN-30-10-0020, Rare Metallic) 3.2 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.75 N 0.25 ) 2 powder was prepared in the same manner as in Example 1 using 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) and 2.8 g of Al powder (ALE15PB 3NG, Kojundo Chemical) as starting materials. It was confirmed by XRD analysis that the powder was MAX phase ceramic powder free of impurities. Using this, a composite particle material was prepared in the same manner as in Example 1. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheets.
(比較例1)
酸処理アセチレンブラックの添加量をTi3Al0.02C2MXeneナノシートの質量を基準として2質量%とした以外は実施例2と同様にMXeneと酸処理アセチレンブラックとの複合粒子材料を作製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に示す。 (Comparative example 1)
A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 2% by mass based on the mass of Ti 3 Al 0.02 C 2 MXene nanosheets. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheets.
酸処理アセチレンブラックの添加量をTi3Al0.02C2MXeneナノシートの質量を基準として2質量%とした以外は実施例2と同様にMXeneと酸処理アセチレンブラックとの複合粒子材料を作製した。実施例1と同様の方法で測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に示す。 (Comparative example 1)
A composite particle material of MXene and acid-treated acetylene black was produced in the same manner as in Example 2, except that the amount of acid-treated acetylene black added was 2% by mass based on the mass of Ti 3 Al 0.02 C 2 MXene nanosheets. Table 2 shows the average particle diameter and sphericity of the obtained composite particle material, which were measured in the same manner as in Example 1. Table 3 shows the specific surface area, average pore diameter, average pore volume, and bulk density. Table 4 shows the degree of dispersion, Table 5 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane of the MXene nanosheets.
(比較例2)
混合工程と凝集工程までは実施例2と同様に複合凝集粒子材料のエタノールスラリーを作製した。溶媒中に残留する水をさらに少なくするため、溶媒をエタノールからIPAに置換し複合凝集粒子材料のIPAスラリーを作製した。IPAスラリーに遠心沈降(7900G)を行い、その沈降物を12時間 室温環境下で風乾した。その後、真空中60℃、6hで熱処理し、複合凝集粒子材料の塊を得た。その後、乳鉢と乳棒で構成される擂潰機で、物理的な応力を付加して粉砕して本比較例の複合粒子材料を作製した。その他の工程については実施例1と同様の操作を行った。 (Comparative example 2)
An ethanol slurry of the composite aggregated particle material was prepared in the same manner as in Example 2 up to the mixing step and the aggregation step. In order to further reduce the amount of water remaining in the solvent, ethanol was replaced with IPA to prepare an IPA slurry of the composite aggregated particle material. The IPA slurry was subjected to centrifugal sedimentation (7900 G), and the sediment was air-dried for 12 hours at room temperature. After that, heat treatment was performed at 60° C. for 6 hours in vacuum to obtain a mass of composite agglomerated particle material. After that, it was pulverized by applying physical stress with a grinder composed of a mortar and a pestle to produce the composite particulate material of this comparative example. The same operations as in Example 1 were performed for other steps.
混合工程と凝集工程までは実施例2と同様に複合凝集粒子材料のエタノールスラリーを作製した。溶媒中に残留する水をさらに少なくするため、溶媒をエタノールからIPAに置換し複合凝集粒子材料のIPAスラリーを作製した。IPAスラリーに遠心沈降(7900G)を行い、その沈降物を12時間 室温環境下で風乾した。その後、真空中60℃、6hで熱処理し、複合凝集粒子材料の塊を得た。その後、乳鉢と乳棒で構成される擂潰機で、物理的な応力を付加して粉砕して本比較例の複合粒子材料を作製した。その他の工程については実施例1と同様の操作を行った。 (Comparative example 2)
An ethanol slurry of the composite aggregated particle material was prepared in the same manner as in Example 2 up to the mixing step and the aggregation step. In order to further reduce the amount of water remaining in the solvent, ethanol was replaced with IPA to prepare an IPA slurry of the composite aggregated particle material. The IPA slurry was subjected to centrifugal sedimentation (7900 G), and the sediment was air-dried for 12 hours at room temperature. After that, heat treatment was performed at 60° C. for 6 hours in vacuum to obtain a mass of composite agglomerated particle material. After that, it was pulverized by applying physical stress with a grinder composed of a mortar and a pestle to produce the composite particulate material of this comparative example. The same operations as in Example 1 were performed for other steps.
実施例1と同様に測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に、表面電気抵抗を表7に示す。更に100個の二次粒子をSEM観察し、物理的な応力を付加して粉砕した場合の微細構造の均一性を調べた。ほとんどの二次粒子について凝集構造を維持していたが、数個の二次粒子について凝集構造が破壊されていた(図10)。
Measured in the same manner as in Example 1, the average particle diameter and sphericity of the obtained composite particle material are shown in Table 2, the specific surface area, average pore diameter, average pore volume, and bulk density are shown in Table 3, and the degree of interdispersion are shown in Table 4, the mass change in Table 5, the interlayer distance of the (002) plane of the MXene nanosheet in Table 6, and the surface electrical resistance in Table 7. Furthermore, 100 secondary particles were observed with an SEM to examine the uniformity of the fine structure when pulverized by applying physical stress. Most of the secondary particles maintained the aggregation structure, but the aggregation structure was destroyed in some secondary particles (Fig. 10).
(比較例3)
剥離工程まで実施例1と同様に剥離物懸濁液を得た。剥離工程で得られた粒子濃度15.6mg/mLの剥離物懸濁液220mLに、3.5gの水酸化リチウムを純水40mLに溶かした水溶液をあらかじめ1時間振とう機で140rpm、振幅45mmの条件で完全に溶解させたアルカリ性水溶液を添加し、振とう機で140rpm、振幅45mmの条件で1時間撹拌した。その後、水洗1回、エタノール置換を3回行い、エタノール中で140rpmの条件で6時間振とう機を用いて撹拌して、粗大な凝集体のほぐしを行い、5.0mg/mLの粒子濃度の凝集物のエタノールスラリーを得た。比較例2と同様に溶媒をIPAに置換し複合凝集粒子材料のIPAスラリーを作製した。IPAスラリーに遠心沈降(7900G)を行い、複合凝集粒子材料を沈降させ、その沈降物を12時間室温で風乾した。その後、真空中60℃、6hで乾燥を行い、複合凝集粒子材料の塊を得た。その後、乳鉢と乳棒で構成される擂潰機で、物理的な応力を付加して粉砕して複合粒子材料を作製した。作製した二次粒子を、MXeneの質量を基準として5%の酸処理アセチレンブラックとN-メチルピロリドン(NMP)を添加してペーストを作製した。ペースト作製は乳鉢と乳棒で構成される擂潰機で行った。その後、真空中110℃、6hで乾燥しNMPを除去し、MXeneとアセチレンブラックの複合粒子材料を作製した。その他の工程については比較例2と同様の操作を行った。 (Comparative Example 3)
A stripped material suspension was obtained in the same manner as in Example 1 up to the stripping step. An aqueous solution of 3.5 g of lithium hydroxide dissolved in 40 mL of pure water was added to 220 mL of the exfoliated material suspension having a particle concentration of 15.6 mg/mL obtained in the exfoliation step in advance for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm. A completely dissolved alkaline aqueous solution was added under the conditions and stirred for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm. After that, wash with water once, replace with ethanol three times, stir with a shaker for 6 hours under conditions of 140 rpm in ethanol to loosen coarse aggregates, and obtain a particle concentration of 5.0 mg / mL. An ethanol slurry of aggregates was obtained. As in Comparative Example 2, the solvent was replaced with IPA to prepare an IPA slurry of the composite aggregated particle material. The IPA slurry was centrifuged (7900 G) to settle the composite agglomerated particulate material and the sediment was air dried for 12 hours at room temperature. Then, it was dried in vacuum at 60° C. for 6 hours to obtain a mass of composite agglomerated particle material. After that, it was pulverized by applying physical stress with a grinder composed of a mortar and pestle to prepare a composite particulate material. A paste was prepared by adding 5% acid-treated acetylene black and N-methylpyrrolidone (NMP) to the prepared secondary particles based on the mass of MXene. Paste preparation was performed with a grinder consisting of a mortar and pestle. After that, it was dried in vacuum at 110° C. for 6 hours to remove NMP, thereby producing a composite particle material of MXene and acetylene black. The same operations as in Comparative Example 2 were performed for other steps.
剥離工程まで実施例1と同様に剥離物懸濁液を得た。剥離工程で得られた粒子濃度15.6mg/mLの剥離物懸濁液220mLに、3.5gの水酸化リチウムを純水40mLに溶かした水溶液をあらかじめ1時間振とう機で140rpm、振幅45mmの条件で完全に溶解させたアルカリ性水溶液を添加し、振とう機で140rpm、振幅45mmの条件で1時間撹拌した。その後、水洗1回、エタノール置換を3回行い、エタノール中で140rpmの条件で6時間振とう機を用いて撹拌して、粗大な凝集体のほぐしを行い、5.0mg/mLの粒子濃度の凝集物のエタノールスラリーを得た。比較例2と同様に溶媒をIPAに置換し複合凝集粒子材料のIPAスラリーを作製した。IPAスラリーに遠心沈降(7900G)を行い、複合凝集粒子材料を沈降させ、その沈降物を12時間室温で風乾した。その後、真空中60℃、6hで乾燥を行い、複合凝集粒子材料の塊を得た。その後、乳鉢と乳棒で構成される擂潰機で、物理的な応力を付加して粉砕して複合粒子材料を作製した。作製した二次粒子を、MXeneの質量を基準として5%の酸処理アセチレンブラックとN-メチルピロリドン(NMP)を添加してペーストを作製した。ペースト作製は乳鉢と乳棒で構成される擂潰機で行った。その後、真空中110℃、6hで乾燥しNMPを除去し、MXeneとアセチレンブラックの複合粒子材料を作製した。その他の工程については比較例2と同様の操作を行った。 (Comparative Example 3)
A stripped material suspension was obtained in the same manner as in Example 1 up to the stripping step. An aqueous solution of 3.5 g of lithium hydroxide dissolved in 40 mL of pure water was added to 220 mL of the exfoliated material suspension having a particle concentration of 15.6 mg/mL obtained in the exfoliation step in advance for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm. A completely dissolved alkaline aqueous solution was added under the conditions and stirred for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm. After that, wash with water once, replace with ethanol three times, stir with a shaker for 6 hours under conditions of 140 rpm in ethanol to loosen coarse aggregates, and obtain a particle concentration of 5.0 mg / mL. An ethanol slurry of aggregates was obtained. As in Comparative Example 2, the solvent was replaced with IPA to prepare an IPA slurry of the composite aggregated particle material. The IPA slurry was centrifuged (7900 G) to settle the composite agglomerated particulate material and the sediment was air dried for 12 hours at room temperature. Then, it was dried in vacuum at 60° C. for 6 hours to obtain a mass of composite agglomerated particle material. After that, it was pulverized by applying physical stress with a grinder composed of a mortar and pestle to prepare a composite particulate material. A paste was prepared by adding 5% acid-treated acetylene black and N-methylpyrrolidone (NMP) to the prepared secondary particles based on the mass of MXene. Paste preparation was performed with a grinder consisting of a mortar and pestle. After that, it was dried in vacuum at 110° C. for 6 hours to remove NMP, thereby producing a composite particle material of MXene and acetylene black. The same operations as in Comparative Example 2 were performed for other steps.
実施例1と同様に測定し得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、相互分散度を表4に、質量変化を表5に、(002)面の層間距離を表6に示す。
The average particle diameter and sphericity of the composite particle material obtained by measurement in the same manner as in Example 1 are shown in Table 2, the specific surface area, average pore diameter, average pore volume, and bulk density are shown in Table 3, and the interdispersion degree is shown in Table 3. Table 4 shows the change in mass, and Table 6 shows the interlayer distance of the (002) plane.
(比較例4)
剥離工程まで実施例1と同様に220mLの剥離物懸濁液を得た。220mLのIPAを添加し、IPAと水の混合溶液中MXene凝集粒子スラリーを作製した。これを遠心沈降(7900G)し、その沈降物を12時間室温で風乾した。その後、真空中60℃、6hで乾燥し、凝集体の塊を得た。その後、乳鉢と乳棒で構成される擂潰機で、物理的な応力を付加して粉砕して二次粒子を作製した。作製した二次粒子を、MXeneの質量を基準として5%の酸処理アセチレンブラックが分散されたN-メチルピロリドン(NMP)を添加してペーストを作製した。ペーストは乳鉢と乳棒で構成された擂潰機を用いた。その後、真空中110℃、6hでNMPを除去し、MXeneとアセチレンブラックの複合粒子材料を作製した。その他の工程については比較例3と同様の操作を行った。 (Comparative Example 4)
220 mL of exfoliated material suspension was obtained in the same manner as in Example 1 up to the exfoliation step. 220 mL of IPA was added to create an MXene aggregate particle slurry in a mixed solution of IPA and water. This was centrifuged (7900 G) and the sediment was air-dried at room temperature for 12 hours. After that, it was dried in vacuum at 60° C. for 6 hours to obtain an aggregate mass. After that, a crusher composed of a mortar and a pestle was used to apply physical stress to crush the powder to produce secondary particles. A paste was prepared by adding N-methylpyrrolidone (NMP) dispersed with 5% acid-treated acetylene black based on the mass of MXene to the prepared secondary particles. The paste was made using a grinder consisting of a mortar and pestle. Thereafter, NMP was removed at 110° C. for 6 hours in vacuum to produce a composite particle material of MXene and acetylene black. The same operations as in Comparative Example 3 were performed for other steps.
剥離工程まで実施例1と同様に220mLの剥離物懸濁液を得た。220mLのIPAを添加し、IPAと水の混合溶液中MXene凝集粒子スラリーを作製した。これを遠心沈降(7900G)し、その沈降物を12時間室温で風乾した。その後、真空中60℃、6hで乾燥し、凝集体の塊を得た。その後、乳鉢と乳棒で構成される擂潰機で、物理的な応力を付加して粉砕して二次粒子を作製した。作製した二次粒子を、MXeneの質量を基準として5%の酸処理アセチレンブラックが分散されたN-メチルピロリドン(NMP)を添加してペーストを作製した。ペーストは乳鉢と乳棒で構成された擂潰機を用いた。その後、真空中110℃、6hでNMPを除去し、MXeneとアセチレンブラックの複合粒子材料を作製した。その他の工程については比較例3と同様の操作を行った。 (Comparative Example 4)
220 mL of exfoliated material suspension was obtained in the same manner as in Example 1 up to the exfoliation step. 220 mL of IPA was added to create an MXene aggregate particle slurry in a mixed solution of IPA and water. This was centrifuged (7900 G) and the sediment was air-dried at room temperature for 12 hours. After that, it was dried in vacuum at 60° C. for 6 hours to obtain an aggregate mass. After that, a crusher composed of a mortar and a pestle was used to apply physical stress to crush the powder to produce secondary particles. A paste was prepared by adding N-methylpyrrolidone (NMP) dispersed with 5% acid-treated acetylene black based on the mass of MXene to the prepared secondary particles. The paste was made using a grinder consisting of a mortar and pestle. Thereafter, NMP was removed at 110° C. for 6 hours in vacuum to produce a composite particle material of MXene and acetylene black. The same operations as in Comparative Example 3 were performed for other steps.
実施例1と同様に測定し、得られた複合粒子材料の平均粒子直径、球形度を表2に、比表面積、平均細孔直径、平均細孔容量、かさ密度を表3に、窒素吸着等温線を図5に、相互分散度を表4に、質量変化を表5に、MXeneナノシートの(002)面の層間距離を表6に、表面電気抵抗を表7に示す。
The average particle diameter and sphericity of the obtained composite particle material were measured in the same manner as in Example 1. Table 2 shows the specific surface area, average pore diameter, average pore volume, and bulk density. The lines are shown in FIG.
表2、図4、図9から、Ti3Al0.02C2 MXene(97.0-90.0質量%)/カーボン微小体(3.0-10.0質量%)組成及びTi3Al0.02(C0.75N0.25)2MXene(95質量%)/カーボン微小体(5.0質量%)組成の凝集粉末アルコールスラリーをスプレードライした複合粉末材料は、概ねシングルミクロンメートルの平均二次粒子径で球形度に優れた。100個の二次粒子について高倍率のSEM観察を実施した結果、いずれも代表例として図4及び図9に示した3Dポーラス構造を示した。一方、凝集粉末の塊を風乾及び60℃、真空乾燥した後に乳鉢乳棒を用いて物理的な応力を付加して粉砕すると(擂潰機)、図10のSEM像を見て分かるように、細かく粉砕された部分と粉砕されていない粗大部分が混在し、さらに不定形となる。これではセルの膜作製時に均一な膜を得ることができない。さらに100個の複合粉末材料を高倍率のSEM観察を行い物理的な応力付加で凝集構造が破壊されていないかを調べた。代表例として図10に示したように、数個について凝集構造が破壊されていることが確認された。二次粒子径を小さくするために長時間物理的な応力を付加すると、凝集構造がさらに破壊されてしまった。
From Table 2, FIGS. 4 and 9, the composition of Ti 3 Al 0.02 C 2 MXene (97.0-90.0% by mass)/carbon particles (3.0-10.0% by mass) and Ti 3 Al 0.02 ( C 0.75 N 0.25 ) 2 MXene (95% by mass)/carbon microparticles (5.0% by mass) The composite powder material spray-dried from an alcohol slurry of agglomerated powder has a spherical shape with an average secondary particle size of approximately single micrometer. Excellent degree. High-magnification SEM observation of 100 secondary particles showed the 3D porous structure shown in FIGS. 4 and 9 as representative examples. On the other hand, when a lump of agglomerated powder is air-dried and vacuum-dried at 60° C. and then pulverized by applying physical stress using a mortar and pestle (grinder), as can be seen from the SEM image in FIG. The pulverized portion and the unpulverized coarse portion are mixed, and the shape becomes irregular. This makes it impossible to obtain a uniform film when manufacturing a cell film. Furthermore, 100 composite powder materials were observed with a high-magnification SEM to investigate whether the aggregated structure was destroyed by the application of physical stress. As shown in FIG. 10 as a representative example, it was confirmed that the aggregation structure was broken for several pieces. When physical stress was applied for a long time to reduce the secondary particle size, the aggregate structure was further destroyed.
表3に3Dポーラス構造の物理的な数値を示す。Ti3Al0.02C2 MXene(97.0-90.0質量%)/カーボン微小体(3.0-10.0質量%)組成及びTi3Al0.02(C0.75N0.25)2MXene(95質量%)/カーボン微小体(5.0質量%)組成の凝集粉末アルコールスラリーをスプレードライした複合粉末材料は、凝集塊を物理的な応力付加により粉砕した複合粒子材料に比べて比表面積が高く、平均細孔直径、平均細孔容量が大きくなる。凝集粉末アルコールスラリーの液滴が瞬時に乾燥されるため乾燥時の収縮が抑制されるためである。表1に示したようにMXeneをモノレイヤレベル、具体的には厚みが1.5nmレベルまで剥離している。乾燥時の収縮はMXeneナノシートどうしが付着することを意味し、収縮させずに複合粉末材料を得る事はモノレイヤレベルのMXeneナノシートを維持して複合粉末材料が作製されていることを示す。イオン拡散性がスムーズになるため急速充放電可能、優れたサイクル特性、高容量に繋がる。
Table 3 shows the physical values of the 3D porous structure. Composition of Ti 3 Al 0.02 C 2 MXene (97.0-90.0% by mass)/carbon particles (3.0-10.0% by mass) and Ti 3 Al 0.02 (C 0.75 N 0.25 ) 2 MXene (95% by mass %)/carbon microparticles (5.0% by mass) The composite powder material obtained by spray-drying the agglomerated powder alcohol slurry has a higher specific surface area than the composite particle material obtained by pulverizing the agglomerates by applying physical stress. Average pore diameter and average pore volume increase. This is because the droplets of the agglomerated powder alcohol slurry are dried instantly, so shrinkage during drying is suppressed. As shown in Table 1, MXene is peeled off to a monolayer level, specifically a thickness of 1.5 nm. Shrinkage during drying means that the MXene nanosheets adhere to each other, and obtaining a composite powder material without shrinkage indicates that the composite powder material is produced while maintaining the MXene nanosheets at the monolayer level. Smooth ion diffusion leads to rapid charging and discharging, excellent cycle characteristics, and high capacity.
MXeneナノシートの平均の大きさが造粒後の複合粒子材料の3Dポーラス構造の物理的な数値に及ぼす影響について具体的に説明する。実施例1と実施例2を比較すると実施例2の方が、比表面積が大きい。MAX相セラミックスの焼成(合成)温度を不純物生成のない範囲で低下させると層間の結合力が小さくなり、剥離工程でモノレイヤレベルの厚みを維持しつつ、平均の大きさが小さくなる。平均の大きさが0.2μm程度(実施例2)と小さい方が、0.8μm程度(実施例1)より比表面積が大きく、平均細孔直径が小さく、細孔容量が大きくなった。
We will specifically explain the effect of the average size of MXene nanosheets on the physical values of the 3D porous structure of the composite particle material after granulation. When Example 1 and Example 2 are compared, Example 2 has a larger specific surface area. When the sintering (synthesis) temperature of MAX phase ceramics is lowered within a range that does not produce impurities, the bonding force between the layers decreases, and the average size decreases while maintaining the thickness at the monolayer level in the exfoliation process. A smaller average size of about 0.2 μm (Example 2) had a larger specific surface area, a smaller average pore diameter, and a larger pore volume than about 0.8 μm (Example 1).
図5に代表的な例として実施例1、実施例2と比較例4の吸着等温線を示した。本発明の複合粒子材料は優れた3Dポーラス材料であることが分かる。
The adsorption isotherms of Examples 1, 2 and Comparative Example 4 are shown in FIG. 5 as typical examples. It can be seen that the composite particulate material of the present invention is an excellent 3D porous material.
表5に0.3gの複合粉末材料を20cm3以上の皿上に均一に拡げ真空中110℃で5時間加熱した時の質量変化を示した。Ti3Al0.02C2 MXene(97.0-90.0質量%)/カーボン微小体(3.0-10.0質量%)組成、及びTi3Al0.02(C0.75N0.25)2MXene(95質量%)/カーボン微小体(5.0質量%)組成の凝集粉末アルコールスラリーをスプレードライした複合粉末材料は、液滴を瞬時に乾燥した造粒体作製後に110℃真空乾燥しMXeneの層間に残存した水を完全に除去されている。一方、風乾後60℃真空乾燥した凝集塊を物理的な応力付加により粉砕した複合粒子材料はMXene層間に多量の水が残存した。凝集塊を風乾後110℃真空乾燥すると著しく収縮し、低比表面積化が起こる。通常セル作製時の膜作製後に110℃真空乾燥するがMXeneの層間の水を完全に除去することが困難でサイクル特性で劣化が生じるなどの問題が生じた。
Table 5 shows the change in mass when 0.3 g of the composite powder material was evenly spread on a dish of 20 cm 3 or more and heated in vacuum at 110° C. for 5 hours. Ti 3 Al 0.02 C 2 MXene (97.0-90.0% by mass)/carbon particles (3.0-10.0% by mass) composition, and Ti 3 Al 0.02 (C 0.75 N 0.25 ) 2 MXene (95 mass %)/carbon fine particles (5.0 mass %) / carbon fine particles (5.0 mass %) The composite powder material is prepared by spray-drying the agglomerated powder alcohol slurry. Residual water is completely removed. On the other hand, a large amount of water remained between the MXene layers in the composite particle material obtained by pulverizing the aggregates air-dried and then vacuum-dried at 60° C. by applying physical stress. When the agglomerate is air-dried and then vacuum-dried at 110° C., it shrinks significantly, resulting in a low specific surface area. Although the film is usually vacuum-dried at 110° C. after forming the film in cell production, it is difficult to completely remove the water between the layers of MXene, resulting in problems such as deterioration in cycle characteristics.
表3に得られた複合粒子材料のかさ密度を示した。Ti3Al0.02C2 MXene(97.0~90.0質量%)/カーボン微小体(3.0~10.0質量%)組成、及びTi3Al0.02(C0.75N0.25)2MXene(95質量%)/カーボン微小体(5.0質量%)組成の凝集粉末アルコールスラリーをスプレードライした複合粉末材料を、凝集塊を物理的な応力付加により粉砕した複合粒子材料と比較した。前者は3Dポーラス凝集構造をもち、均一な二次粒子径であって、球状の形態をもつことが特徴であり、後者は3Dポーラス凝集構造をもたず、前者に比べて緻密質で不定形ではあるが連続粒子配合となる特徴がある。このことからかさ密度は前者の方が小さくなる。
Table 3 shows the bulk density of the obtained composite particle material. Ti 3 Al 0.02 C 2 MXene (97.0 to 90.0% by mass)/carbon particles (3.0 to 10.0% by mass) composition, and Ti 3 Al 0.02 (C 0.75 N 0.25 ) 2 MXene (95 A composite powder material obtained by spray-drying an alcohol slurry of agglomerated powder having a composition of (% by mass)/carbon particles (5.0% by mass) was compared with a composite particulate material obtained by pulverizing agglomerates by applying physical stress. The former has a 3D porous aggregate structure, has a uniform secondary particle size, and is characterized by having a spherical shape. However, there is a feature of continuous particle blending. For this reason, the former has a smaller bulk density.
しかし二次電池などのセルを作製する時には、前者では作製した膜が均一な組織となり製造された二次電池などの性能を高くすることができる。高密度な膜を作製するためには、適宜細密充填となるよう数種類の二次粒子径を有する複合粒子材料を準備し、アンドレアゼンの式で最密充填をつくる分布法則が提案されている連続粒子配合を行うこと、あるいは粗粒と微粒の二種類の複合粒子材料を配合する二段粒子配合を行ったりすることが好ましい。
However, when producing cells such as secondary batteries, the former makes it possible to improve the performance of the produced secondary batteries, etc., because the produced membrane has a uniform structure. In order to produce a high-density membrane, composite particle materials having several types of secondary particle diameters are prepared so that they are properly packed, and a distribution rule that creates the closest packing using the Andreasen equation has been proposed. It is preferable to perform particle blending, or to perform two-stage particle blending in which two types of composite particle materials, coarse particles and fine particles, are blended.
表6に得られた複合粒子材料のXRDで得られるMXeneの(002)面の層間距離を示した。カーボン微小体を均一配置させた本発明の複合粒子材料は、MXeneのみで凝集粉末作製後にNMP添加してカーボン微小体を混合したプロセスに比べて層間距離が大きくなっている。これはカーボン微小体を均一配置させるプロセスでLi及び/又はNaイオン、塩素イオンがMXeneの層間にインターカレーションし、層間が拡がったためである。MXeneの(002)面からMAX相セラミックスの(002)面の層間距離を差し引いた数値が、MAX相セラミックスのAl相を除去した後に生じる間隙の距離と考えることができる(図11参照)。本発明の複合粒子材料は約0.6nmとなる。例えばNaイオンなどLiイオンより大きなイオンも挿入脱離可能となる。更に間隙が大きいため急速充放電が可能になると共に高寿命化ができるなどの利点がある。
Table 6 shows the interlayer distance of the (002) plane of MXene obtained by XRD of the obtained composite particle material. The composite particle material of the present invention in which the carbon particles are uniformly arranged has a larger interlayer distance than the process in which the carbon particles are mixed by adding NMP after producing the aggregated powder using only MXene. This is because Li and/or Na ions and chloride ions are intercalated between the layers of MXene in the process of uniformly arranging the carbon particles, and the layers are expanded. The numerical value obtained by subtracting the interlayer distance of the (002) plane of MAX phase ceramics from the (002) plane of MXene can be considered as the distance of the gap generated after removing the Al phase of MAX phase ceramics (see FIG. 11). The composite particle material of the present invention will be about 0.6 nm. For example, ions larger than Li ions, such as Na ions, can also be intercalated and deintercalated. Furthermore, since the gap is large, there are advantages such as rapid charge/discharge and long life.
表7に圧粉体の表面電気抵抗を示す。MXeneナノシート表面の酸化状態と層間に残留する水の量を規定するために行った。MXeneナノシートの表面が酸化すると電気抵抗が大きくなる。また、層間に残留する水が存在すると経時変化し層間表面の酸化が進行して表面電気抵抗が大きくなる。そのため、酸化が進んでいたり、層間の水分量が多かったりすると表面の電気抵抗が大きくなる。
Table 7 shows the surface electrical resistance of the compact. This was done to define the oxidation state of the MXene nanosheet surface and the amount of water remaining between the layers. Oxidation of the surface of MXene nanosheets increases electrical resistance. In addition, if there is water remaining between the layers, it will change over time, oxidizing the surfaces of the layers and increasing the surface electrical resistance. Therefore, if the oxidation progresses or if the amount of moisture between the layers is large, the electrical resistance of the surface increases.
圧粉体の表面電気抵抗は、粉体どうしの接触数にも影響する。接触数は圧粉体の相対密度で示される。相対密度は(かさ比重/真比重)×100、で決定される。二次電池の負極活物質や電気化学キャパシタの電極に用いる複合粒子材料は、表7に示す様に、圧粉体の表面電気抵抗が1.0~100.0Ω/□の範囲が好ましい。
The surface electrical resistance of the compact also affects the number of contacts between powders. The number of contacts is indicated by the relative density of the compact. Relative density is determined by (bulk specific gravity/true specific gravity) x 100. As shown in Table 7, the composite particle material used for the negative electrode active material of the secondary battery and the electrode of the electrochemical capacitor preferably has a surface electrical resistance of 1.0 to 100.0 Ω/□.
以上説明したように、MXeneと微小体とが高度に分散し、凝集構造を維持し、球形度が高い複合粒子材料を得ることができることが分かった。元々の複合粒子材料は、本出願人が先に出願したPCT/JP2021/018296で明らかにしたように、イオン拡散性に優れた、電子をスムーズに集電体に移動可能な、理想的な二次電池(蓄電池)の負極活物質に適する、あるいは理想的なシュードキャパシタの正極及び/又は負極活物質に適する複合粒子材料であるため、3Dポーラス凝集構造を維持できるために、イオン拡散性が更に高くなることが期待され、球形度を高くできるために成膜した時の均一性が高くなることが期待できる。
As described above, it was found that MXene and microparticles were highly dispersed, maintained an aggregated structure, and produced a composite particle material with a high degree of sphericity. As clarified in PCT/JP2021/018296 previously filed by the present applicant, the original composite particle material is an ideal two-component material that has excellent ion diffusibility and allows electrons to move smoothly to the current collector. Since it is a composite particle material suitable for the negative electrode active material of the secondary battery (storage battery) or suitable for the positive electrode and / or negative electrode active material of the ideal pseudocapacitor, the 3D porous aggregation structure can be maintained, so that the ion diffusion is further improved. It is expected that the degree of sphericity will be increased, and since the degree of sphericity can be increased, it is expected that the uniformity of the film will be improved.
更に、実施例1におけるエタノールの代わりにメタノールやイソプロパノールを利用して複合粒子材料を製造したときにも実施例1と同様の複合粒子材料が得られた。ここで、実施例1におけるエタノールの代わりにイソプロパノールを利用して複合粒子材料を製造したときには、造粒工程の噴霧温度を85℃に上げる必要があった。実施例1と同様に、表面電気抵抗を測定した結果、60.5Ω/□であり、エタノールを用いた時は41.1Ω/□であったが、少し抵抗増加した。噴霧温度を少し上げたため表面においてわずかに酸化が進行したためである。実施例1におけるエタノールの代わりにメタノールを利用して複合粒子材料を製造したときには、造粒工程の噴霧温度を75℃に下げることができた。実施例1と同様に、表面電気抵抗を測定した結果、40.7Ω/□であり、エタノールを用いた時とほぼ同程度であった。これらのことより、造粒工程で用いる溶媒はエタノール、メタノール、イソプロピルアルコールのいずれを用いても構わない。
Furthermore, when a composite particle material was produced using methanol or isopropanol instead of ethanol in Example 1, a composite particle material similar to that of Example 1 was obtained. Here, when the composite particulate material was produced using isopropanol instead of ethanol in Example 1, it was necessary to raise the spray temperature in the granulation process to 85°C. As a result of measuring the surface electric resistance in the same manner as in Example 1, it was 60.5 Ω/□, and when ethanol was used, it was 41.1 Ω/□, but the resistance increased slightly. This is because the surface was slightly oxidized because the spray temperature was raised slightly. When the composite particulate material was produced using methanol instead of ethanol in Example 1, the spray temperature in the granulation process could be lowered to 75°C. As a result of measuring the surface electric resistance in the same manner as in Example 1, it was 40.7 Ω/□, which was almost the same as when ethanol was used. For these reasons, the solvent used in the granulation step may be ethanol, methanol, or isopropyl alcohol.
Claims (15)
- 導電性をもつ微小体を3~10質量部とTi3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneナノシートを90~97質量部とを一次粒子として含有し、
前記MXeneナノシートは、平均厚さが1.0~3.5nmであり、
下記相互分散度が0.01~7.00であって、平均二次粒子径が1.0μm~15.0μmであり、球形度が0.8以上である複合粒子材料。
(相互分散度)
532nm波長のレーザーを用いたラマン分光分析において400cm-1のピーク高さAと1332cm-1のピーク高さBの比(B/A)を100個算出し、その100個のB/Aの値から算出した標準偏差を相互分散度とする。 3 to 10 parts by mass of conductive microparticles and Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.25, a is 0.01 or more) MXene nanosheets 90 to 97 parts by mass as primary particles,
The MXene nanosheet has an average thickness of 1.0 to 3.5 nm,
A composite particle material having the following interdispersion degree of 0.01 to 7.00, an average secondary particle diameter of 1.0 μm to 15.0 μm, and a sphericity of 0.8 or more.
(interdispersion degree)
Calculate 100 ratios (B/A) of peak height A at 400 cm −1 and peak height B at 1332 cm −1 in Raman spectroscopic analysis using a laser with a wavelength of 532 nm, and the 100 B/A values The standard deviation calculated from is taken as the degree of interdispersion. - 前記微小体は、カーボン微小体である請求項1に記載の複合粒子材料。 The composite particle material according to claim 1, wherein the microscopic bodies are carbon microscopic bodies.
- 比表面積が75m2/g以上、平均細孔直径が10.0~20.0nm、平均細孔容量が0.30~0.70mL/gである請求項1又は2に記載の複合粒子材料。 3. The composite particle material according to claim 1, which has a specific surface area of 75 m 2 /g or more, an average pore diameter of 10.0 to 20.0 nm, and an average pore volume of 0.30 to 0.70 mL/g.
- 0.3gの試料を20cm2以上の皿上に均一に拡げ、真空中110℃で5時間加熱したときの質量変化が1.0質量%以下である請求項1~3のうちの何れか1項に記載の複合粒子材料。 Any one of claims 1 to 3, wherein a mass change is 1.0% by mass or less when 0.3 g of a sample is evenly spread on a dish of 20 cm 2 or more and heated at 110°C for 5 hours in a vacuum. A composite particulate material according to any one of claims 1 to 3.
- かさ密度が0.1~0.5g/cm3である請求項1~4のうちの何れか1項に記載の複合粒子材料。 The composite particulate material according to any one of claims 1 to 4, which has a bulk density of 0.1 to 0.5 g/cm 3 .
- 前記Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneナノシートの拡がり方向の平均の大きさが0.1~2.0μmであり、
前記微小体の一次粒子径が30~50nmである請求項1~5のうちの何れか1項に記載の複合粒子材料。 The Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0≦x≦0.25, a is 0.01 or more), and the average size in the spreading direction of the MXene nanosheet is 0.1 to 2.0 μm,
The composite particle material according to any one of claims 1 to 5, wherein the fine particles have a primary particle diameter of 30 to 50 nm. - 前記Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneの結晶構造において、(002)面の層間距離が1.400nmから1.700nmである請求項1~6のうちの何れか1項に記載の複合粒子材料。 In the crystal structure of the Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤x≤0.25, a is 0.01 or more) MXene, the interlayer distance of the (002) plane is 1 A composite particulate material according to any one of claims 1 to 6, which is between 0.400 nm and 1.700 nm.
- 下記ゼータ電位が-25.0mVから-35.0mVであるTi3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneと、ゼータ電位が-20.0mVから-25.0mVであるカーボン微小体で構成した請求項1~7のうちの何れか1項に記載の複合粒子材料。
(ゼータ電位)
水中においてpH6.0からpH8.0の範囲で測定したゼータ電位とする。 Ti 3 Al a (C( 1.0 -x )N x ) 2 with a zeta potential of −25.0 mV to −35.0 mV, (0≦x≦0.25, a is 0.01 or more) MXene and carbon fine particles having a zeta potential of -20.0 mV to -25.0 mV.
(Zeta potential)
The zeta potential is measured in water in the range of pH 6.0 to pH 8.0. - 下記表面電気抵抗が1.0Ω/□から100.0Ω/□である請求項1~8のうちの何れか1項に記載の複合粒子材料。
(表面電気抵抗)
真空中で110℃、5時間加熱処理した後、φ10mmの金型で0.5kg/cm2の圧力で一軸加圧成形し、その後1.0トン/cm2の圧力で冷間静水圧加圧処理した圧粉体を用いて、φ0.1mmの銅線を用いた4端子法で測定した表面の電気抵抗を表面電気抵抗とする。 9. The composite particulate material according to any one of claims 1 to 8, wherein the following surface electrical resistance is from 1.0 Ω/square to 100.0 Ω/square.
(Surface electrical resistance)
After heat treatment in vacuum at 110°C for 5 hours, it is uniaxially pressed with a φ10 mm mold at a pressure of 0.5 kg/cm 2 , and then cold isostatically pressed at a pressure of 1.0 ton/cm 2 . The electrical resistance of the surface of the treated green compact measured by the four-probe method using a copper wire of φ0.1 mm is defined as the surface electrical resistance. - 請求項1~9のうちの何れか1項に記載の複合粒子材料を負極活物質に有する二次電池用の負極。 A negative electrode for a secondary battery having the composite particle material according to any one of claims 1 to 9 as a negative electrode active material.
- 請求項1~9のうちの何れか1項に記載の複合粒子材料を正極及び/又は負極の活物質に有するシュードキャパシタ用の電極。 An electrode for a pseudocapacitor having the composite particle material according to any one of claims 1 to 9 as the active material of the positive electrode and/or the negative electrode.
- 水を50質量%以上含有する分散媒中において、Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXeneを剥離して剥離物を形成する剥離工程と、
硫酸及び硝酸の混酸水溶液中に、原料カーボン微小体を70℃以上に10分以上処理してカーボン微小体を得る酸処理工程と、
粒子濃度が11.5~17.0mg/Lであって、90:10~97:3の質量比の前記剥離物及びカーボン微小体の混合物スラリーに、0.8~1.0モル/Lの水溶性リチウム塩及び/又は水溶性ナトリウム塩を添加し撹拌する混合工程と、
前記混合物スラリーに0.4~0.7モル/Lのアルカリ性水溶液を添加し、液性をアルカリ性にして凝集させて、前記Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上) MXene及び前記カーボン微小体の凝集物のスラリーを得る凝集工程と、
前記スラリーの分散媒をアルコールに置換して調製した前記凝集物のアルコールスラリーを不活性雰囲気下でスプレードライ法により造粒して造粒体を得る造粒工程と、
を有する複合粒子材料の製造方法。 Ti3Ala ( C( 1.0 -x ) Nx ) 2 , (0≤x≤0.25, a is 0.01 or more) in a dispersion medium containing 50% by mass or more of water, MXene is peeled off. a stripping step of forming a stripped material by
an acid treatment step of treating raw carbon microparticles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70° C. or higher for 10 minutes or longer to obtain carbon microparticles;
The particle concentration is 11.5 to 17.0 mg / L, and 0.8 to 1.0 mol / L of A mixing step of adding and stirring a water-soluble lithium salt and/or a water-soluble sodium salt;
An alkaline aqueous solution of 0.4 to 0.7 mol/L is added to the mixture slurry to make the liquid alkaline and aggregate to form the Ti 3 Al a (C( 1.0 -x )N x ) 2 , (0≦x≦0.25, a is 0.01 or more) an aggregation step of obtaining a slurry of aggregates of MXene and the carbon fine particles;
A granulation step of obtaining granules by granulating an alcohol slurry of the aggregates prepared by replacing the dispersion medium of the slurry with alcohol by a spray drying method under an inert atmosphere;
A method for producing a composite particulate material having - 前記アルコールは、メタノール、エタノール及び/又はイソプロパノールである請求項12に記載の複合粒子材料の製造方法。 The method for producing a composite particulate material according to claim 12, wherein the alcohol is methanol, ethanol and/or isopropanol.
- 不活性雰囲気下、100~120℃で前記造粒体を乾燥する乾燥工程を有する請求項12又は13に記載の複合粒子材料の製造方法。 The method for producing a composite particulate material according to claim 12 or 13, comprising a drying step of drying the granules at 100 to 120°C under an inert atmosphere.
- 前記剥離工程は、前記Ti3Ala(C(1.0-x)Nx)2、(0≦x≦0.25、aは0.01以上)を質量基準で99%以上前記剥離物になるまで行う工程である請求項12~14のうちの何れか1項に記載の複合粒子材料の製造方法。
In the stripping step, the Ti3Ala (C( 1.0 -x ) Nx ) 2 , (0≤x≤0.25, a is 0.01 or greater) is 99% or more by mass of the stripped material The method for producing a composite particulate material according to any one of claims 12 to 14, wherein the step is performed until
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/042466 WO2023089739A1 (en) | 2021-11-18 | 2021-11-18 | Composite particle material, method for producing same, and electrode |
JP2023562018A JPWO2023089739A1 (en) | 2021-11-18 | 2021-11-18 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/042466 WO2023089739A1 (en) | 2021-11-18 | 2021-11-18 | Composite particle material, method for producing same, and electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023089739A1 true WO2023089739A1 (en) | 2023-05-25 |
Family
ID=86396481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/042466 WO2023089739A1 (en) | 2021-11-18 | 2021-11-18 | Composite particle material, method for producing same, and electrode |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023089739A1 (en) |
WO (1) | WO2023089739A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020136864A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社アドマテックス | Mxene particulate material, slurry, secondary battery, transparent electrode, and method for producing mxene particulate material |
WO2020136865A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社アドマテックス | Mxene particulate materials, method for producing these particulate materials, and secondary battery |
CN112263974A (en) * | 2020-11-24 | 2021-01-26 | 山东大学 | Spray drying method for preparing Ti3C2Method for Tx/carbon black composite microsphere |
CN113235108A (en) * | 2021-04-30 | 2021-08-10 | 武汉理工大学 | MXene supported noble metal cluster catalyst and preparation method and application thereof |
-
2021
- 2021-11-18 WO PCT/JP2021/042466 patent/WO2023089739A1/en active Application Filing
- 2021-11-18 JP JP2023562018A patent/JPWO2023089739A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020136864A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社アドマテックス | Mxene particulate material, slurry, secondary battery, transparent electrode, and method for producing mxene particulate material |
WO2020136865A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社アドマテックス | Mxene particulate materials, method for producing these particulate materials, and secondary battery |
CN112263974A (en) * | 2020-11-24 | 2021-01-26 | 山东大学 | Spray drying method for preparing Ti3C2Method for Tx/carbon black composite microsphere |
CN113235108A (en) * | 2021-04-30 | 2021-08-10 | 武汉理工大学 | MXene supported noble metal cluster catalyst and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023089739A1 (en) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110892570B (en) | MXene particle material, slurry, secondary battery, transparent electrode, and method for producing MXene particle material | |
JP7507086B2 (en) | Carbon-coated silicon oxide/graphite composite particles, production method, and uses thereof | |
JP7075346B2 (en) | Manufacture of Si / C composite particles | |
KR101767393B1 (en) | Manufacturing method of silicon-carbon-graphene composite, composite manufactured thereby and secondary battery containing the same | |
TWI694971B (en) | MXene particle material, manufacturing method of these particle materials and secondary battery | |
JP6858175B2 (en) | Silicon-carbon composite particle material | |
JP5755227B2 (en) | Nanostructured silicon-carbon composites for battery electrodes | |
JP6199491B2 (en) | Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries | |
JP4773355B2 (en) | Niobium oxide and method for producing niobium oxide with reduced oxygen | |
CA2906995C (en) | Lithium transition metal phosphate secondary agglomerates and process for its manufacture | |
CA2907374C (en) | Lithium transition metal phosphate secondary agglomerates and process for its manufacture | |
JP6434555B2 (en) | Negative electrode active material composite for lithium ion secondary battery and method for producing the same | |
WO2018046765A2 (en) | Compositions and uses thereof | |
WO2023089739A1 (en) | Composite particle material, method for producing same, and electrode | |
WO2022239209A1 (en) | Composite powder material, method for producing same, and electrode material | |
KR20190047367A (en) | Porous Silicon-Nano Carbon-Multilayer Graphene Composite Using Multi-Layer Graphene and Metal Alloy Powder and Manufacturing Thereof | |
WO2022239210A1 (en) | Particle material composed of novel mxene nanosheets, dispersion containing said particle material, and method for producing said particle material | |
CN118355523A (en) | Negative electrode material for secondary battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21964754 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023562018 Country of ref document: JP |