WO2022239209A1 - Composite powder material, method for producing same, and electrode material - Google Patents

Composite powder material, method for producing same, and electrode material Download PDF

Info

Publication number
WO2022239209A1
WO2022239209A1 PCT/JP2021/018296 JP2021018296W WO2022239209A1 WO 2022239209 A1 WO2022239209 A1 WO 2022239209A1 JP 2021018296 W JP2021018296 W JP 2021018296W WO 2022239209 A1 WO2022239209 A1 WO 2022239209A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
composite particle
particle material
composite
carbon
Prior art date
Application number
PCT/JP2021/018296
Other languages
French (fr)
Japanese (ja)
Inventor
仁俊 佐藤
実 長田
雄己 新井
達也 前野
亘孝 冨田
Original Assignee
株式会社アドマテックス
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドマテックス, 国立大学法人東海国立大学機構 filed Critical 株式会社アドマテックス
Priority to JP2023520701A priority Critical patent/JPWO2022239209A1/ja
Priority to PCT/JP2021/018296 priority patent/WO2022239209A1/en
Publication of WO2022239209A1 publication Critical patent/WO2022239209A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel composite particle material of MXene nanosheets and microparticles, a method for producing the same, and an electrode material using the composite particle material.
  • MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
  • MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
  • MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
  • MXene particle material a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment
  • MAX phase ceramics are layered compounds, and the general formula is expressed as M n+1 AX n .
  • M is a transition metal (Ti, Sc, Cr, Zr, Nb, etc.)
  • A is an A group element
  • X is C or [C (1.0-x) N x (0 ⁇ x ⁇ 1.0)]
  • n is from 1 to 3.
  • MXene nanosheets are used in secondary batteries (storage batteries) and capacitors
  • MXene nanosheets not only MXene nanosheets but also acetylene black as a conductive aid are added and used.
  • the specific surface area of the MXene and acetylene black composite particle material is increased, and the acetylene black is uniformly arranged between the nanosheets. is required.
  • the present invention has been completed in view of the above circumstances, and the problem to be solved is to provide a novel composite particle material of MXene nanosheets and microparticles, a method for producing the same, and an electrode material using the composite particle material. do.
  • the composite particle material of the present invention that solves the above problems comprises 90 to 97 parts by mass of sheet-like Ti 3 Al a (C( 1.0 -x )N x ) 2 (0 ⁇ x ⁇ 0.03, a is more than 0.02) MXene and 3 to 10 parts by mass of microparticles, a mutual dispersion degree of 1.50 to 7.00, and a specific surface area of 75 m 2 /g or more.
  • the interdispersion degree will be described in the embodiment section.
  • the average pore diameter is 7.0-20.0 nm and the pore volume is 0.10-0.50 mL/g.
  • MXene has an average thickness of 1.0 to 3.5 nm, It is preferable that the average size in the spreading direction of the sheet is 0.5 to 1.0 ⁇ m, and the primary particle diameter of the fine particles is 30 to 50 nm.
  • MXene's (002) plane has a half width of 0.90° to 1 0.50° is preferred. It is preferable that the surface electric resistance is from 1.0 ⁇ / ⁇ to 100.0 ⁇ / ⁇ .
  • the negative electrode of the present invention that solves the above problems has the composite particle material of the present invention as a negative electrode active material.
  • the method for producing a composite particle material of the present invention that solves the above problems is the Ti3Ala (C( 1.0 -x ) Nx) 2 (0 ⁇ x ⁇ 0.03, a is greater than 0.02) MXene a stripping step of stripping to form a stripped product, an acid treatment step of treating the raw carbon fine particles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70 ° C.
  • the stripping step is preferably a step in which 99% or more of the MXene on a mass basis becomes the stripped product.
  • the composite particle material and the method for producing the same of the present invention have the above configuration, so that Ti 3 Al a (C( 1.0 -x )N x ) 2 (0 ⁇ x ⁇ 0.03, a is more than 0.02 ) It is possible to provide a composite particulate material in which MXene and microparticles are highly dispersed.
  • the particulate material As the negative electrode active material, it is possible to provide a negative electrode that can exhibit high performance when used in secondary batteries (storage batteries) and capacitors.
  • FIG. 4 is an AFM image of a peeled product obtained in the peeling step of Example 1.
  • FIG. 4 is an SEM photograph of a peeled product obtained in the peeling step of Example 1.
  • FIG. 2 is the XRD profile of the MAX phase ceramics of Example 1, MXene after being subjected to an exfoliation process, and the composite powder material.
  • 4 is a graph showing the cycle characteristics of Li-ion secondary batteries using the composite powder materials of Example 1 and Comparative Example 1 as electrode active materials.
  • 1 is a graph showing charge-discharge curves at the 1st cycle and the 100th cycle of a Li-ion secondary battery using the composite powder material of Example 1 as an electrode active material.
  • 1 is a SEM photograph of the composite powder material of Example 1.
  • FIG. 1 is an AFM image of a peeled product obtained in the peeling step of Example 1.
  • FIG. 4 is an SEM photograph of a peeled product obtained in the peeling step of Example 1.
  • FIG. 2 is the
  • FIG. 4 is a SEM photograph of the composite powder material of Example 4.
  • FIG. 4 is a SEM photograph of the composite powder material of Example 2.
  • FIG. 4 is an SEM photograph of the composite powder material of Comparative Example 1.
  • FIG. 4 is an SEM photograph of the composite powder material of Comparative Example 2.
  • FIG. 4 is a graph showing the dependency of the specific surface area of the resulting composite powder material on the particle concentration of exfoliated material (MXene) in the aggregation step.
  • FIG. 2 is a diagram showing the crystal structure of MAX phase ceramics presented to explain the crystal structure of MXene;
  • the composite particle material, the method for producing the same, and the electrode material of the present invention will be described in detail below based on embodiments.
  • the composite particle material of the present embodiment has excellent electrical properties such as conductivity, and has a large void layer formed by removing the Al layer, so it is suitable for secondary batteries (Li-ion secondary batteries, Na ion secondary battery), active materials (especially negative electrode active materials) such as capacitors, electromagnetic wave shielding thin films, conductive thin film materials, and the like.
  • the composite particle material of the present embodiment is a particle material obtained by combining thinned MXene and particulate or tube-like carbon microscopic bodies for application to electrode materials and the like. MXene exfoliated particulate material is obtained by exfoliating MXene, which is a powdery layered compound.
  • the composite particle material of this embodiment is a composite particle material of MXene and microscopic bodies.
  • MXene contains 90 to 97% based on the sum of the mass of MXene and microscopic bodies, and the remaining 10% to 2% is microscopic bodies.
  • the lower limits of the MXene content include 93%, 92%, and 90%, and the upper limits include 97%, 96%, and 95%.
  • the composite particulate material has a mutual dispersity of 1.50 to 7.00.
  • the interdispersion degree is a value that defines the degree of dispersion between MXene and minute particles.
  • the degree of interdispersion is determined by Raman spectroscopic analysis of 100 randomly selected composite particle materials using a 532 nm wavelength laser with a peak height A of 400 cm ⁇ 1 .
  • the standard deviation calculated from the ratio (B/A) of the peak heights B at 1332 cm ⁇ 1 and 1332 cm ⁇ 1 is defined as the degree of interdispersion.
  • the interdispersion degree of the composite particulate material can adopt lower limits of 1.50, 2.00, 2.50 and upper limits of 7.00, 6.00, 5.00. .
  • the composite particulate material has a specific surface area of 75 m 2 /g or more.
  • the specific surface area is measured by the BET method using nitrogen under the condition that pretreatment is performed in vacuum at 100° C. for 24 hours.
  • the specific surface area of the composite particle material 75 m 2 /g, 77.5 m 2 /g and 80 m 2 /g can be adopted as lower limits, and 110 m 2 /g, 107.5 m 2 /g and 105 m 2 /g as upper limits. 2 /g can be adopted.
  • the composite particulate material preferably has an average pore diameter of 7.0-20.0 nm and a pore volume of 0.10-0.50 mL/g. The average pore diameter and pore volume were measured by the BET method using nitrogen under the condition that pretreatment was performed in vacuum at 100° C. for 24 hours.
  • MXene consists of three layers of titanium and two layers of carbon, or Ti3Ala (C( 1.0 -x )Nx ) 2 (0 ⁇ x ⁇ 0), which is a layered compound in which part of the carbon is replaced with nitrogen. .03, a is greater than 0.02) MXene (hereinafter referred to as "MXene" as appropriate).
  • MXene is preferably Ti 3 Al a (C ( 1.0 - x )N x ) 2 .
  • 0 ⁇ x ⁇ 0.03 and a is preferably greater than 0.02.
  • the upper limit of a is preferably 0.05. In addition to these elements, it can have O, OH, and halogen groups as surface functional groups.
  • MXene is plate-like, leaf-like, flaky, sheet-like, etc., and is generically defined as sheet-like.
  • the stacking direction of layers of a layered compound is defined as "thickness”, and the direction orthogonal to the thickness is defined as "sheet spreading direction”.
  • the average thickness of MXene is preferably 1.0 to 3.5 nm, more preferably 1.5 to 3.0 nm.
  • the average thickness is calculated as the average of the values measured on 100 randomly selected particles.
  • the size of the sheet can be measured by dropping a nanosheet onto a hydrophilized Si wafer and using SEM.
  • the average size of the sheet in the spreading direction is preferably 0.5 to 1.0 ⁇ m, more preferably 0.5 to 0.75 ⁇ m.
  • the interlayer distance of the (002) plane of MXene is preferably 1.400 nm to 1.700 nm.
  • the interlayer distance of the void layer is the value obtained by subtracting the interlayer distance, which is the d value of the (002) plane in XRD of the corresponding MAX phase ceramic powder, from the interlayer distance, which is the d value of the (002) plane in XRD of the MXene nanosheet powder.
  • the diameter of Li ion is 0.18 nm and the diameter of Na ion is 0.28 nm, and it can be used as a negative electrode active material for Na ion secondary battery as well as Li ion secondary battery.
  • the corresponding MAX phase ceramic powder is a particle material composed of a material having a value of 1 in the composition Ti3Ala (C( 1.0 -x ) Nx) 2 of MXene to be measured. be.
  • the microscopic object it is sufficient for the microscopic object to have a size on the order of nanometers, and being on the order of nanometers means that the length of the longest part of the length of the microscopic object is 100 nm or less.
  • the fine particles preferably have a primary particle size of 100 nm or less, preferably 30 to 50 nm, particularly preferably 30 to 40 nm, and may be aggregates.
  • the shape of the microscopic object is not limited, and spherical, sheet-like, tube-like, hollow, and irregular shapes can be exemplified.
  • the microscopic bodies preferably have electrical conductivity
  • examples of conductive materials include carbon microscopic bodies made of carbon materials and metal microscopic bodies made of metal materials.
  • the fine carbon particles it is preferable to use those having high conductivity such as acetylene black, ketschen black, carbon nanotubes, graphene, carbon fiber, graphite powder, and hard carbon powder.
  • inorganic microscopic bodies made of other inorganic substances can also be used as the microscopic bodies.
  • TiO 2 , Al 2 O 3 , SiO 2 and BaTiO 3 having a primary particle size of 100 nm or less can be used as the inorganic fine particles.
  • the method for producing a composite particulate material of this embodiment includes a peeling step, a mixing step, an intercalation step, an aggregation step, and other necessary steps.
  • Exfoliation step is a step of exfoliating the layered MXene by colliding microbeads between the layers in a dispersion medium to obtain a nanosheet exfoliation. The resulting exfoliate becomes an exfoliate suspension suspended in the dispersion medium.
  • This exfoliated material suspension can be directly subjected to the mixing step, or can be subjected to the mixing step after removing the dispersion medium.
  • the method for obtaining layered MXene as a material is not particularly limited, but the following methods can be exemplified.
  • MXene is obtained by acid-treating a raw material consisting of Ti 3-layer MAX phase ceramic powder and partially dissolving the Al layer.
  • An example of a method for manufacturing MXene will be described later as a pretreatment step.
  • the raw material to be subjected to the peeling step can employ those having the same composition as the material constituting the aforementioned particulate material.
  • the composition does not substantially change in the stripping process.
  • This particle material is acid-treated to dissolve part of Al to form MXene, which is mixed in a solvent containing water as a main component to form a mixture, and then subjected to high-speed rotation using beads of 10 ⁇ m to 300 ⁇ m.
  • An exfoliated material suspension in which nanosheet-like exfoliated material of MXene is suspended is obtained by the exfoliation step of performing bead mill treatment.
  • the dispersion medium for the stripping step is not particularly limited, but preferably contains 50% by mass or more of water, and contains alcohols such as methanol, ethanol, and isopropanol, methyl ethyl ketone, acetone ketones, dimethylformamide, dimethyl sulfoxide, and the like. be able to. It is more preferable to make water 100% by mass.
  • the concentration of MXene in the mixture for the stripping process is not particularly limited, but can be about 10.0 mg/mL to 20.0 mg/mL. Although there are no particular restrictions on the liquid properties of the mixed liquid, the pH can be adjusted to approximately 6.0 to 8.0.
  • the lower limit of the bead size can be 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m
  • the upper limit can be 300 ⁇ m, 200 ⁇ m, 100 ⁇ m.
  • it is 10 ⁇ m or more, it is easy to classify beads and slurry.
  • the use of beads of 300 ⁇ m or less allows delamination to proceed in preference to reducing the size of the particulate material. Any combination of these lower and upper limits can be adopted. If the size of the beads is in the proper range, the energy to be applied can be increased and the peeling can proceed preferentially.
  • the material of the beads is not particularly limited, but ceramics such as zirconia, alumina, and silicon nitride can be used. Partially stabilized zirconia, which has particularly high fracture toughness, is preferred.
  • Partially stabilized zirconia which has particularly high fracture toughness, is preferred.
  • Ball milling such as planetary ball milling with beads and balls greater than 300 ⁇ m, also favors exfoliation by reducing the size of the particulate material. As a result, only a part of the particles can be separated, and a part of the particles must be separated by centrifugal separation.
  • MXene has traditionally been exfoliated by ultrasonic irradiation.
  • the solvent is irradiated with ultrasonic waves, cavitation is generated, and due to the crushing of the cavitation, the layers constituting the layered compound are exfoliated by the mechanism of powder collision.
  • peeling progresses only partially.
  • peeling progresses only in part, and it cannot be said that it is at a level that can be used in industry.
  • Even in the method using a planetary ball mill of course, the peeling is still part of the process, and the pulverization takes precedence, and the surface oxidation proceeds remarkably due to the temperature rise. For this reason, a method of exfoliating only a part by ultrasonic irradiation and collecting by centrifugal separation has been adopted.
  • a peripheral speed of 6 m/sec to 12 m/sec can be adopted for the peripheral speed in the peeling process.
  • a peripheral speed of 8 m/sec to 10 m/sec is more preferable. If it is 6 m/sec or more, the peeling efficiency is good, and if it is 12 m/sec or less, the application of excessive energy is suppressed, and the temperature rise of the obtained particle material can be suppressed, so that the surface of the obtained particle material is oxidized. Progression can be suppressed, and electrical resistance can be lowered.
  • a slurry feed rate of 100 mL/minute to 300 mL/minute can be adopted.
  • a slurry particle concentration of 10.0 mg/mL to 20.0 mg/mL can be adopted.
  • the concentration is 10.0 mg/mL or less, the production efficiency of the MXene nanosheets will be poor, and if the concentration is 20.0 mg/mL or more, peeling will not progress sufficiently, so this range is preferable.
  • the slurry temperature is preferably in the temperature range of 35°C or less. When the temperature is 35° C. or lower, surface oxidation can be suppressed, and the electrical resistance of the particulate material can be kept low.
  • 40% to 80% can be used for the filling amount of beads. When it is 40% or more, the efficiency of stripping is improved, and when it is 80% or less, it becomes easy to classify beads and slurry. Whether or not the desired particle material containing many sheet-like particles has been produced can be determined by observation with SEM, TEM, or the like. In particular, the thickness of the particulate material can be determined by AFM analysis. The particulate material obtained in the peeling step can be used after being classified by a method such as centrifugation, if necessary. Optimal conditions in the peeling process vary depending on the size of the apparatus, so these numerical values are not limited.
  • the MXene on a mass basis is turned into the exfoliated material by the bead mill treatment, more preferably 99% or more of the exfoliated material, and still more preferably 100% of the exfoliated material.
  • the peeling process is completed under the condition that all the MXene becomes the peeled substance, it becomes possible to use the MXene which is not peeled off as it is in the mixing process without removing it.
  • MXene other than exfoliated matter it can be separated by centrifugation, filtration, or the like.
  • the obtained exfoliated MXene preferably has a zeta potential of -25.0 mV to -30.0 mV in water of pH 6 to pH 8.
  • the amounts of Al, C, and N were calculated using the atom% of Ti, Al, C, and N, with Ti being 3.
  • nitric acid + sulfuric acid + hydrofluoric acid For chemical analysis, weigh the sample in a platinum dish, add nitric acid + sulfuric acid + hydrofluoric acid, heat (about 120 ° C) to dissolve, and then heat at a high temperature (300 ° C) to mix nitric acid and hydrogen fluoride.
  • a sample solution sulfuric acid
  • was prepared sample solution was appropriately diluted and quantitatively analyzed by ICP.
  • the acid treatment step is a step of treating the raw carbon microparticles with a mixed acid solution of sulfuric acid and nitric acid to obtain highly hydrophilic carbon microparticles.
  • raw carbon fine particles include acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, and hard carbon powder.
  • Acetylene black, Ketsujen black, and carbon nanotubes are more preferred from the viewpoint of conductivity, and acetylene black is more preferred from the viewpoints of both conductivity, purity, and price.
  • a suspension of carbon microparticles suspended in the mixed acid is obtained, which can be used as it is in the mixing step, or the mixed acid can be washed repeatedly with water or the like to remove as much as necessary and used as carbon microparticles.
  • Washing can be performed until the pH of the washing solution reaches about 6, and further until the pH reaches about 6.5, 7, or 8.
  • the treatment temperature is preferably 70°C or higher. In particular, it is preferable to set the temperature to 95° C. or lower so as not to cause boiling.
  • the treatment time is not particularly limited, but hydrophilization can be ensured by treatment for 10 minutes or longer. Stirring or ultrasonic irradiation can be performed during the treatment. After the treatment, it may be subjected to the mixing step as it is, or the acid may be neutralized or separated. If the acid is neutralized or separated and the pH reaches a predetermined value or higher, the fine carbon particles aggregate, so neutralization can be carried out to the extent that the pH does not reach the predetermined value.
  • a method of separating the acid a method of separating the solid content by a classification operation such as centrifugation can be exemplified.
  • the mixing ratio of sulfuric acid and nitric acid can be about 4:1 to 1:1, preferably about 3:1 to 3:2 by volume.
  • the concentration of the mixed acid can be about 42% to 96%, preferably about 90.0% to 95.0%.
  • the resulting hydrophilic carbon microparticles preferably have a zeta potential of -20.0 mV to -25.0 mV in pH 7 water.
  • the zeta potential becomes negative because COOH and CO are adsorbed as functional groups. If the absolute value is smaller than -20.0 mV, the dispersibility in water deteriorates and the interdispersion degree of the composite particle material increases. If the absolute value becomes larger than -25.0 mV, the conductivity deteriorates.
  • ⁇ Mixing process In the mixing process, the mass ratio of the exfoliated matter and the carbon particles is 90:10 to 97:3, the concentration of the exfoliated matter is 11.5-17.0 mg/mL, and water is contained in an amount of 50% by mass or more.
  • the second dispersion medium contains 100% by mass of water.
  • the second dispersion medium contains 100% by mass of water.
  • those substances can also be incorporated into the composite particulate material.
  • coexistence of Li ions and Na ions allows these ions to be inserted into the MXene layer forming the exfoliation.
  • the mixture contains exfoliate at a concentration of 11.5-17.0 mg/mL.
  • the second dispersion medium may be the same as or different from the dispersion medium used in the peeling process and the solvent that can be used in other processes.
  • the second dispersion medium contains the dispersion medium used in the exfoliation step.
  • the amplitude of the shaker is preferably 40 mm or more.
  • 5.3 g of lithium chloride in a ratio of 30 g of pure water can be completely dissolved by stirring with a shaker at a rotation speed of 100 rpm to 300 rpm for 1 hour or more. is preferably added to a suspension of
  • the amplitude of the shaker at that time is preferably 40 mm to 45 mm.
  • the acid-treated carbon microparticles a predetermined amount of carbon microparticles was added to pure water, stirred for 1 hour or longer with a shaker at a rotation speed of 100 rpm to 300 rpm, and the suspension was added to the mixture to break up the aggregates. Mixing is preferred.
  • the amplitude of the shaker at that time is preferably 40 mm to 45 mm.
  • Aggregation step is a step of increasing the pH of the mixture obtained in the mixing step to aggregate the composite particle material of the exfoliated matter and the carbon fine particles contained in the mixture into aggregates. The pH is raised by adding an alkaline substance or by removing or diluting an acidic substance.
  • the amplitude of the shaker at that time is preferably 40 mm to 45 mm.
  • the obtained agglomerate is dried and then brought into a desired state by an appropriate operation such as pulverization, whereby the composite particle material of the present embodiment having an appropriate particle size distribution can be obtained.
  • the proper state is the state of the composite particulate material of this embodiment described above.
  • the method for drying the aggregates is not particularly limited. For example, aggregates can be separated by classification operations such as centrifugation and filtration, and then dried. After separating the agglomerates, one or more washes can be carried out, if desired. Washing can be performed with water or the like. Drying is a process of removing water adsorbed on the surface of the composite particulate material and water present between layers in the crystals.
  • a mixed raw material of TiC, TiN, Al, and Ti is pressurized in the range of 1 ton/cm 2 to 3 ton/cm 2 by CIP or uniaxial pressure, or pressurized.
  • Ti 3 Al(C 1-x N x ) 2 (0 ⁇ x ⁇ 1) which is a high-purity Ti 3-layer MAX phase ceramic, is produced by heat treatment in an inert atmosphere at 1400° C. to 1600° C. or less. can be exemplified. Alternatively, it can be produced by contacting the MAX phase ceramic powder with an acidic substance at a temperature controlled at 20° C. to 30° C. to remove part of the Al element contained in the MAX phase ceramic powder.
  • the amount of Al to be removed depends on the contact time with the acidic substance (acid aqueous solution, etc.) (the longer the time, the more removed), the concentration of the acidic substance (the higher the concentration, the more removed), It can be adjusted by changing the amount of acidic substance (the greater the absolute amount of acidic substance, the greater the amount that can be removed) and the contact temperature (the higher the temperature, the greater the amount removed).
  • the MAX-phase ceramic powder (A element is Al), which is a layered compound, is subjected to an acid treatment to remove part of the Al to form a layered compound having void layers that constitute the particle material.
  • an acidic substance in which hydrofluoric acid and hydrochloric acid are combined is employed as the acid for removing part of the Al layer.
  • a hydrofluoric acid salt KF, LiF, etc.
  • aqueous solutions of these acids are used as acidic substances.
  • the mixed concentration of hydrofluoric acid and hydrochloric acid formed when the fluoride salt is completely dissociated is not particularly limited.
  • the concentration of hydrofluoric acid the lower limit is about 1.7 mol/L, 2.0 mol/L, and 2.3 mol/L, and the upper limit is about 2.5 mol/L, 2.6 mol/L, and 2.7 mol/L. can.
  • the concentration of hydrochloric acid can be about 2.0 mol/L, 3.0 mol/L and 4.0 mol/L with lower limits and about 13.0 mol/L, 14.0 mol/L and 15.0 mol/L with upper limits. .
  • the mixing ratio (molar ratio) of hydrofluoric acid and hydrochloric acid formed when it is assumed that the fluoride salt is completely dissociated is not particularly limited, but the lower limit of hydrofluoric acid is 1:13, 1:12, 1:1: 11. About 1:5, 1:6 and 1:7 can be adopted as the upper limit.
  • the concentrations and mixing ratios of hydrofluoric acid and hydrochloric acid shown here can be used in arbitrary combinations.
  • the acid treatment temperature is preferably 20°C to 30°C. 20°C to 25°C is more preferred.
  • the electrode material of the present embodiment is a material that can be suitably used for secondary batteries.
  • Li ions and Na ions can be suitably used as an electrode active material. Moreover, it can also be used as a conductive aid because of its conductivity. Effective for lithium secondary batteries and sodium secondary batteries. Lithium ions and sodium ions are stored and desorbed in the void layer from which the Al layer has been removed by acid treatment.
  • the electrode has an active material layer containing an active material made of the composite particle material of the present embodiment, and a current collector made of a thin metal plate or the like and having an active material layer made of the active material formed on the surface thereof.
  • a binder may be included to form the active material layer.
  • the active material layer can contain an active material other than the composite particle material of the present embodiment, a conductive auxiliary agent, and the like, if necessary.
  • a commonly used binder such as carboxymethyl cellulose, polyvinylidene fluoride, styrene-butadiene rubber, polyvinylpyrrolidone, polyvinyl alcohol, or any other binder that can be used can be used.
  • Acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, hard carbon powder and the like can be used as the conductive auxiliary agent.
  • Example 1 ⁇ Pretreatment process TiC powder (TI-30-10-0020, Rare Metallic) 12.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical) 4.9 g, Al powder (ALE15PB 3NG, Kojundo Chemical) 2.8 g was ball-mill mixed in isopropanol (IPA) for 12 hours, and the IPA was removed by an evaporator to obtain a uniformly mixed dry powder.
  • IPA isopropanol
  • the uniformly mixed dry powder was placed in an alumina crucible and sintered in an Ar stream at 1450° C. for 2 hours to obtain Ti 3 AlC 2 as MAX phase ceramics.
  • the resulting Ti 3 AlC 2 was coarsely pulverized using a mortar and pestle, and then subjected to ball mill pulverization using 5 mm zirconia balls in IPA for 24 hours. Then, planetary ball mill pulverization (200 rpm, 15 minutes three times) using 0.5 mm zirconia balls was performed to obtain a suspension. IPA was removed from the suspension with an evaporator to obtain Ti 3 AlC 2 powder pulverized to about 3 ⁇ m.
  • An AFM image is shown in FIG. 100 exfoliated exfoliated products (nanosheets) were randomly sampled, and the average value of the thickness measured by AFM was obtained and shown in Table 1.
  • the result of SEM observation is shown in FIG. 100 exfoliated products were randomly selected, and the vertical (maximum diameter in the direction perpendicular to the thickness direction) and horizontal (direction perpendicular to the vertical and thickness directions) dimensions were measured from the SEM photograph, and the average value was calculated.
  • Table 1 shows the average value of the size of 100 exfoliated objects.
  • the peeled matter was measured for zeta potential in water at pH 7.0, and the results are shown in Table 6 together with the specific surface area of the composite particle material described later.
  • ⁇ Acid treatment process As a method for acid treatment of acetylene black as fine carbon particles, 100 parts by mass of a mixed acid in which sulfuric acid (98% by mass) and nitric acid (68% by mass) are mixed at a volume ratio of 3:1 is mixed with 1 part of acetylene black. 0 parts by mass was added, and the mixture was immersed for 10 minutes in an environment of 85°C. Then, it was washed with water until the pH reached about 6.0, and then the water was replaced with IPA.
  • FTIR analysis detected COOH and CO groups as surface functional groups.
  • the measured zeta potential at pH 7.0 in water was -22.5 mV.
  • Acetylene black was added to 10 mL of pure water in an amount of 5% by mass based on the Ti 3 Al 0.02 C 2 MXene nanosheets, and aggregates were crushed with a shaker under the conditions of 140 rpm and amplitude of 45 mm for 24 hours to prepare a hydrophilic acetylene black slurry.
  • Hydrophilic acetylene black slurry was dropped onto a hydrophilized Si wafer and observed by SEM. 100 primary particles were arbitrarily observed, and the vertical and horizontal dimensions were measured, and the average primary particle diameter was 33 nm.
  • ⁇ Mixing step To 220 mL of the exfoliated material suspension obtained in the exfoliating process, 5.3 g of lithium chloride powder and acetylene black powder acid-treated in the acid treatment process were added to the exfoliated material (Ti 3 Al 0.02 C 2 MXene) as a reference. After adding 5% by mass, the mixture was uniformly stirred for 5 hours with a shaker at 140 rpm and an amplitude of 45 mm.
  • Acetylene black was added in a state of being dispersed in 10 mL of water as described above. After uniform stirring, an aqueous solution obtained by dissolving 5.3 g of lithium hydroxide in 30 mL of pure water was completely dissolved in advance with a shaker at 140 rpm and an amplitude of 45 mm for 24 hours. was stirred for 1 hour under the conditions of After that, it was washed with water once, replaced with IPA three times, and air-dried to obtain a composite particle material consisting of Ti 3 Al 0.02 C 2 MXene flakes and acetylene black powder.
  • This method of mixing together the exfoliated matter and the carbon microparticles together with a substance that generates chloride ions is referred to as method A.
  • the concentration of exfoliate in the mixture in the aggregation step corresponds to 13.2 mg/mL.
  • the results of XRD measurement are shown in Fig. 3, and the results of SEM observation are shown in Fig. 6.
  • Table 2 and FIG. 11 show the results.
  • Table 5 shows the interlayer distance and half width of the (002) plane of MXene calculated from the XRD measurement for the obtained composite particle material together with the interlayer distance and half width of exfoliated MXene.
  • the obtained composite particle material was subjected to Raman spectroscopic analysis using a laser with a wavelength of 532 nm.
  • the laser irradiation conditions were such that exfoliated substances (MXene) contained in the composite particle material were not oxidized to precipitate anatase, and the laser was measured in the range of 100 cm ⁇ 1 to 2000 cm ⁇ 1 .
  • the vibration due to the functional groups adsorbed to the titanium atoms of the exfoliated Ti 3 Al 0.02 C 2 MXene is 230 to 470 cm ⁇ 1 (hereinafter, the peak appearing at 400 cm ⁇ 1 among the peaks appearing in this range is adopted as a representative, “ A peak”), the vibration due to the functional groups adsorbed on the carbon atoms appears near 580 cm ⁇ 1 .
  • the SP 3 hybrid orbital carbon appears at 1332 cm ⁇ 1 (hereinafter referred to as “B peak”), and the SP 2 hybrid orbital carbon appears at 1500 to 1600 cm ⁇ 1 .
  • the peak intensity was calculated for these A and B peaks.
  • the peak intensity was calculated from the peak height, and the B/A value was calculated.
  • 100 randomly selected composite particle materials were analyzed, the B/A value was calculated, and the standard deviation of these values was defined as the interdispersion degree of the composite particle material. Table 3 shows the results. A smaller interdispersion index means more uniform dispersion.
  • the obtained composite particle material was treated in vacuum at 100° C. for 5 hours, then uniaxially pressed in a ⁇ 10 mm mold at a pressure of 0.5 kg/cm 2 , and then at a pressure of 1.0 ton/cm 2 .
  • Table 4 shows the results of surface electrical resistance measured by the four-probe method using a copper wire of ⁇ 0.1 mm using the CIP-treated green compact.
  • ⁇ Lithium-ion battery A CR-2025 type coin cell was prepared and the battery characteristics were investigated.
  • the composite particle material of Example 1 was used as an electrode active material, acetylene black as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) as a binder in N-methylpyrrolidone (NMP) at a mass ratio of 80:10:10. and mixed using a mortar and pestle to obtain an electrode mixture paste.
  • This paste was applied to one side of a Cu foil as a current collector, and dried in vacuum at 120° C. for 24 hours.
  • FIG. 4 A composite particle material of Ti 3 Al 0.02 C 2 MXene and acetylene black was prepared in the same manner as in Example 1, except that the amount of acid-treated acetylene black added was 10% by mass with respect to the exfoliated product (MXene). of the composite particle material. SEM observation was performed in the same manner as in Example 1, and the results are shown in FIG.
  • Example 3 The BET specific surface area, average pore diameter, and average pore volume were measured in the same manner as in Example 1, and are shown in Table 2.
  • the interdispersion index was calculated in the same manner as in Example 1 and shown in Table 3.
  • the surface electrical resistance of the resulting composite particle material was measured in the same manner as in Example 1 and is shown in Table 4.
  • Example 3 A composite particle material of Ti 3 Al 0.02 C 2 MXene and acetylene black was prepared in the same manner as in Example 1 except that the amount of acid-treated acetylene black added was 3% by mass with respect to the exfoliated product (MXene). of the composite particle material.
  • Example 4 The BET specific surface area, average pore diameter, and average pore volume were measured in the same manner as in Example 1, and are shown in Table 2.
  • the interdispersion index was calculated in the same manner as in Example 1 and shown in Table 3.
  • the surface electrical resistance of the resulting composite particle material was measured in the same manner as in Example 1 and is shown in Table 4.
  • Example 4 In the same manner as in Example 1, an exfoliate suspension and acid-treated acetylene black were prepared. Acetylene black was added to 220 mL of the exfoliated material suspension at 5% by mass based on the mass of the exfoliated material, and after uniform stirring for 5 hours at 140 rpm and an amplitude of 45 mm with a shaker, lithium hydroxide was added to 30 mL of pure water.
  • Method B is a method of aggregating with an alkaline aqueous solution without mixing the exfoliated matter and a substance that generates chlorine ions together with the carbon microparticles, as in Method A.
  • FIG. 8 shows the result of SEM observation of the obtained composite particle material.
  • Table 2 and FIG. 11 show the results of measuring the BET specific surface area, average pore diameter distribution, and average pore volume in the same manner as in Example 1.
  • Table 3 shows the results of calculating the degree of interdispersion in the same manner as in Example 1.
  • Table 5 shows the interlayer distance and half width of the MXene (002) plane calculated from the XRD measurement for the obtained particle material.
  • Example 5 In Example 1, Ti 3 Al 0.02 C 2 MXene was used in the same manner as in Example 1 except that the concentration of exfoliated substances in the mixture in the aggregation step was 13.2 mg/mL, whereas it was 15.5 mg/mL.
  • Example 6 TiC powder (TI-30-10-0020, Rare Metallic) 11.9 g, TiN powder (TN-30-10-0020, Rare Metallic) 0.38 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4.
  • Ti 3 Al(C 0.97 N 0.03 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1, except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was 2.8 g.
  • Example 1 Acid treatment and peeling were performed in the same manner as in Example 1.
  • the zeta potential at pH 7 in water was measured in the same manner as in Example 1 and is shown in Table 6.
  • Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1.
  • Table 6 shows the results.
  • Table 4 shows the surface electrical resistance.
  • Exfoliate suspension was prepared in the same manner as in Example 1. An aqueous solution prepared by dissolving lithium hydroxide in 40 mL of pure water was added to 220 mL of the exfoliated material suspension, and the mixture was stirred for 1 hour at 140 rpm with a shaker to prepare a mixed suspension.
  • Example 2 the exfoliate concentration in the mixture was 13.2 mg/mL. It was washed with water once, replaced with IPA three times, and air-dried. A powder obtained by adding 10% by mass of acetylene black agglomerated powder based on the mass of the exfoliated material was stirred in NMP with a mortar and pestle, and vacuum-dried at 100 ° C. for 24 hours to obtain a composite particle material of the exfoliated material and acetylene black. It was prepared as a composite particle material of this comparative example. A SEM photograph of the composite particulate material is shown in FIG. Table 2 shows the results of measuring the BET specific surface area, average pore diameter distribution, and average pore volume in the same manner as in Example 1.
  • Table 3 shows the interdispersion index.
  • Table 4 shows the surface electrical resistance.
  • FIG. 4 shows the results of measuring the battery characteristics in the same manner as in Example 1.
  • FIG. 10 is an SEM photograph of a composite particle material of this comparative example prepared in the same manner as in Example 1 except that the acetylene black powder to be added was used without performing the acid treatment step shown in Example 1.
  • shown in Table 2 shows the results of measuring the BET specific surface area, average pore diameter, and average pore volume in the same manner as in Example 1.
  • Table 3 shows the measurement results of the degree of interdispersion.
  • a composite particulate material of this comparative example was prepared in the same manner as in Example 1, except that the bead mill treatment was performed in ethanol as the peeling step.
  • Table 1 shows the results of measuring the average thickness and average size of the exfoliated material in the same manner as in Example 1.
  • Table 2 shows the results of measuring the specific surface area, average pore diameter, and average pore volume.
  • Table 3 shows the interdispersion index.
  • Comparative Example 4 In Example 1, the concentration of exfoliated matter in the mixture in the aggregation step was 13.2 mg/mL, while the concentration was 11.0 mg/mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG.
  • Example 5 In Example 1, the concentration of exfoliated substances in the mixture in the aggregation step was 13.2 mg / mL, while the concentration was 5.0 mg / mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG. (Comparative Example 6) In Example 1, the concentration of exfoliated matter in the mixture in the aggregation step was 13.2 mg / mL, while it was 17.6 mg / mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG.
  • Example 7 In Example 1, the concentration of exfoliated substances in the mixture in the aggregation step was 13.2 mg / mL, while the concentration was 26.5 mg / mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG. (Comparative Example 8) TiC powder (TI-30-10-0020, Rare Metallic) 11.7 g, TiN powder (TN-30-10-0020, Rare Metallic) 0.64 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4.
  • Ti 3 Al(C 0.95 N 0.05 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1, except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1. (Comparative Example 9) TiC powder (TI-30-10-0020, Rare Metallic) 11.1 g, TiN powder (TN-30-10-0020, Rare Metallic) 1.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4.
  • Ti 3 Al(C 0.90 N 0.10 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1 except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was used and 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1. (Comparative Example 10) TiC powder (TI-30-10-0020, Rare Metallic) 10.4 g, TiN powder (TN-30-10-0020, Rare Metallic) 1.9 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4.
  • Ti 3 Al(C 0.85 N 0.15 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1 except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was used and 2.8 g of Al powder. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1. (Comparative Example 11) TiC powder (TI-30-10-0020, Rare Metallic) 9.2 g, TiN powder (TN-30-10-0020, Rare Metallic) 3.2 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4.
  • Ti 3 Al(C 0.75 N 0.25 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1, except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material.
  • Al powder ALE15PB 3NG, Kojundo Chemical
  • carbon microparticles made hydrophilic by acid treatment with a mixed acid of sulfuric acid and nitric acid and having a small thickness and an appropriate size. It was found that a composite particle material having a large specific surface area and a small interdispersion degree (excellent dispersion degree) can be obtained by using the MXene exfoliate as a composite particle material. Furthermore, it was found that interdispersion degree and specific surface area were changed by changing the amount of carbon particles added.
  • Method A which intercalates chlorine ions, has a smaller average pore diameter and pore volume, and a larger specific surface area than Method B, which does not. rice field. Furthermore, in the XRD profile, it was found that the interlayer distance of the (002) plane of MXene was larger in the A method than in the B method (shown in Table 5). In addition, FIG. 12 shows a reference diagram regarding the measurement of the interlayer distance. MXene has a crystal structure obtained by removing the A phase from the MAX phase shown in FIG.
  • the interlayer distance of the (002) plane of MXene minus 0.945 nm which is the interlayer distance of the (002) plane of the MAX phase
  • the interlayer distance of the gap becomes larger. This suggests that larger ions can be inserted and detached.
  • the ratio of carbon microparticles is preferably 3 to 10% by mass based on the mass of MXene and carbon microparticles.
  • the mutual dispersion degree is 1.50 when the carbon fine particles are 3% by mass and 7.00 when the carbon fine particles are 10% by mass, and the mutual dispersion degree is 1.50 or more and 7.00 or less. was found to be preferable.
  • the specific surface area was 75 m 2 /g or more.
  • the composite particle material with a specific surface area of about 110 m 2 /g showed the highest specific surface area.
  • Method A and Method B Two methods are used to produce a composite particle material of Ti 3 Al 0.02 C 2 MXene and conductive carbon black having a specific surface area of 75 m 2 /g or more and an excellent interdispersion degree. compare.
  • a composite particle material of Ti 3 Al 0.02 C 2 MXene and carbon black is produced by method A
  • an average pore diameter of 7.0 to 15.0 nm and an average pore volume of 0.10 to 0.30 mL/g are obtained.
  • a composite particle material of Ti 3 Al 0.02 C 2 MXene and conductive carbon black is produced by method B, the average pore diameter is 15.0 to 20.0 nm and the average pore volume is 0.30 to 0.50 mL. /g, and it was found that the average pore diameter and average pore volume of the A method are smaller than those of the B method.
  • the zeta potentials of Ti3Al0.02C2MXene and Ti3Al0.02 ( C0.97N0.03 ) 2MXene at pH 7.0 in water are negative , and their absolute values are 28.9 and 29.3, respectively.
  • Ti3Al0.02 ( C0.95N0.05 ) 2MXene Ti3Al0.02 ( C0.90N0.10 ) 2MXene
  • the absolute values of the zeta potential of MXene in water at pH 7.0 are 31.5, 32.1, 32.4 and 33.1, respectively.
  • a composite particle material with hydrophilized acetylene black is formed to increase the specific surface area and uniformly disperse acetylene black.
  • the present inventors have produced a composite particle material that is excellent in ion diffusibility and capable of smoothly transferring electrons to a current collector, and which is ideally suited as a negative electrode active material for a secondary battery (storage battery).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided are a novel composite particle material of an MXene nanosheet and a carbon microbody, and a method for producing the same. A composite particle material according to the present invention has 90-97 parts by mass of a sheet-shaped Ti3Ala(C(1.0-x)Nx)2 (0 ≤ x ≤ 0.03, a is more than 0.02) MXene and 3-10 parts by mass of a carbon microbody, and has an interdispersibility of 1.50-7.00 and a specific surface area of 75 m2/g or more.

Description

複合粉末材料及びその製造方法、並びに電極材料Composite powder material, manufacturing method thereof, and electrode material
 本発明は、新規なMXeneナノシートと微小体との複合粒子材料及びその製造方法、並びにその複合粒子材料を用いた電極材料に関する。 The present invention relates to a novel composite particle material of MXene nanosheets and microparticles, a method for producing the same, and an electrode material using the composite particle material.
 従来から層状化合物であるTi3AlC2などのMAX相セラミックス粉末から酸処理によりAlを除去して得られるMXene層状化合物からなる粒子材料(本明細書では適宜「MXene粒子材料」と称したり、「MXene ナノシート」と称したり、「層状化合物粒子材料」と称したり、単に「粒子材料」と称したりすることがある。)が知られている(特許文献1~4)。これらのMXene層状化合物は、Al層が除去された空隙層にNaイオンやLiイオンが貯蔵/脱離可能であることから二次電池(蓄電池)やキャパシターの負極活物質材料、また導電性が優れていることから電磁波シールド薄膜、導電薄膜などへの応用が期待されている。 Conventionally, a particle material made of an MXene layered compound obtained by removing Al from a MAX phase ceramic powder such as Ti 3 AlC 2 which is a layered compound by acid treatment (in this specification, it is appropriately referred to as "MXene particle material" or " It is sometimes referred to as "MXene nanosheet", "layered compound particle material", or simply "particle material") (Patent Documents 1 to 4). These MXene layered compounds can store and release Na ions and Li ions in the void layer from which the Al layer has been removed, so they are used as negative electrode active materials for secondary batteries (storage batteries) and capacitors, and also have excellent conductivity. Therefore, it is expected to be applied to electromagnetic wave shield thin films and conductive thin films.
 MAX相セラミックスは層状化合物であり、一般式はMn+1AXnと表される。式中のMは遷移金属(Ti、Sc、Cr、Zr、Nbなど)、AはAグループ元素、XはCか、[C(1.0-x)x(0<x≦1.0)]、nは1から3、で構成されている。 MAX phase ceramics are layered compounds, and the general formula is expressed as M n+1 AX n . In the formula, M is a transition metal (Ti, Sc, Cr, Zr, Nb, etc.), A is an A group element, X is C or [C (1.0-x) N x (0<x≦1.0)] , n is from 1 to 3.
 その中、AをAlとした時、M-Xとの結合よりもM-Aの結合が弱いため、酸処理で選択的にAl層が除去される。本発明者らは、微小サイズのビーズを用いたビーズミルにより剥離して、MXeneナノシートを調製する方法を提案している(特許文献5、6)。 Among them, when A is Al, the bond of MA is weaker than that of MX, so the Al layer is selectively removed by acid treatment. The present inventors have proposed a method of preparing MXene nanosheets by exfoliating them with a bead mill using micro-sized beads (Patent Documents 5 and 6).
特開2016-63171号公報Japanese Patent Application Laid-Open No. 2016-63171 特開2017-76739号公報JP 2017-76739 A 米国特許出願公開第2017/0294546号明細書U.S. Patent Application Publication No. 2017/0294546 米国特許出願公開第2017/0088429号明細書U.S. Patent Application Publication No. 2017/0088429 特許第6564553号公報Japanese Patent No. 6564553 特許第6564552号公報Japanese Patent No. 6564552
 ここで、MXeneナノシートを二次電池(蓄電池)やキャパシターに用いる場合には、MXeneナノシートだけではなく導電補助剤としてのアセチレンブラックが添加されて使用されることが行われる。電池特性を向上させるためには、イオン拡散性を高めること、電子をスムーズに集電体に移動させることが必要である。具体的には、ナノシートを単層レベルに剥離し、その大きさを適度に小さくすることにより、MXeneとアセチレンブラック複合粒子材料の比表面積を大きくすること、アセチレンブラックがナノシート間に均一に配置されることが求められる。鋭意検討した結果、理想的な二次電池(蓄電池)負極活物質として有効なMXeneナノシートとカーボン微小体の複合粒子材料を得ることに成功した。なお、カーボン微小体以外にも微小体であれば、MXeneナノシートと複合化することで新規な材料を得ることが可能になるため、本明細書では、カーボン微小体以外の微小体についても検討対象とした。 Here, when MXene nanosheets are used in secondary batteries (storage batteries) and capacitors, not only MXene nanosheets but also acetylene black as a conductive aid are added and used. In order to improve battery characteristics, it is necessary to increase ion diffusibility and to smoothly move electrons to the current collector. Specifically, by exfoliating the nanosheets to a single layer level and appropriately reducing the size thereof, the specific surface area of the MXene and acetylene black composite particle material is increased, and the acetylene black is uniformly arranged between the nanosheets. is required. As a result of intensive studies, the inventors succeeded in obtaining a composite particle material of MXene nanosheets and carbon microparticles, which is effective as an ideal secondary battery (storage battery) negative electrode active material. In addition, if it is a microscopic object other than carbon microscopic objects, it is possible to obtain a new material by combining it with the MXene nanosheet, so in this specification, microscopic objects other than carbon microscopic objects are also subject to consideration. and
 本発明は上記実情に鑑み完成したものであり、新規なMXeneナノシートと微小体との複合粒子材料及びその製造方法、並びにその複合粒子材料を用いた電極材料を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, and the problem to be solved is to provide a novel composite particle material of MXene nanosheets and microparticles, a method for producing the same, and an electrode material using the composite particle material. do.
 上記課題を解決する本発明の複合粒子材料は、90~97質量部のシート状のTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneと、3~10質量部の微小体とを有し、相互分散度が1.50から7.00、比表面積が75m2/g以上である。相互分散度については実施形態の欄にて説明する。 The composite particle material of the present invention that solves the above problems comprises 90 to 97 parts by mass of sheet-like Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≤x≤0.03, a is more than 0.02) MXene and 3 to 10 parts by mass of microparticles, a mutual dispersion degree of 1.50 to 7.00, and a specific surface area of 75 m 2 /g or more. The interdispersion degree will be described in the embodiment section.
 平均細孔直径が7.0~20.0nm、細孔容量が0.10~0.50mL/gであることが好ましい。 It is preferable that the average pore diameter is 7.0-20.0 nm and the pore volume is 0.10-0.50 mL/g.
 前記Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneは、平均厚さが1.0~3.5nm、前記シートの拡がり方向の平均の大きさが0.5~1.0 μmであり、前記微小体の一次粒子径が30~50nmであることが好ましい。Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneの(002)面の層間距離が1.400nm~1.700nmであることが好ましい。Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneの(002)面の半価幅が0.90°から1.50°であることが好ましい。表面電気抵抗が1.0Ω/□から100.0Ω/□であることが好ましい。
ゼーター電位が-25.0mVから-30.0mVであるTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneと-20.0mVから-25.0mVであるカーボン微小体で構成していることが好ましい。
The Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) MXene has an average thickness of 1.0 to 3.5 nm, It is preferable that the average size in the spreading direction of the sheet is 0.5 to 1.0 μm, and the primary particle diameter of the fine particles is 30 to 50 nm. Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) The interlayer distance of the (002) plane of MXene is 1.400 nm to 1.700 nm is preferably Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) MXene's (002) plane has a half width of 0.90° to 1 0.50° is preferred. It is preferable that the surface electric resistance is from 1.0Ω/□ to 100.0Ω/□.
MXene with a zeta potential of -25.0 mV to -30.0 mV and - It is preferably composed of carbon particles with a voltage of 20.0 mV to -25.0 mV.
 上記課題を解決する本発明の負極は、上記の本発明の複合粒子材料を負極活物質に有している。 The negative electrode of the present invention that solves the above problems has the composite particle material of the present invention as a negative electrode active material.
 上記課題を解決する本発明の複合粒子材料の製造方法は前記Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneを剥離して剥離物を形成する剥離工程と、硫酸及び硝酸の混酸水溶液中に、原料カーボン微小体を70℃以上に10分以上処理してカーボン微小体を得る酸処理工程と、前記剥離物及びカーボン微小体が90:10~97:3の質量比、且つ、前記剥離物が11.5-17.0mg/mLの濃度で第2分散媒に分散した混合物を得る混合工程と、100rpmから300rpmの回転数で振とう機で塩化リチウム水溶液をインターカレーションさせる工程と、前記混合物の液性をアルカリ性にして凝集させて、前記Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXene及び前記カーボン微小体の複合粒子材料を得る凝集工程とを有する。特に、前記剥離工程は、前記MXeneを質量基準で99%以上前記剥離物になるまで行う工程であることが好ましい。 The method for producing a composite particle material of the present invention that solves the above problems is the Ti3Ala (C( 1.0 -x ) Nx) 2 (0≤x≤0.03, a is greater than 0.02) MXene a stripping step of stripping to form a stripped product, an acid treatment step of treating the raw carbon fine particles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70 ° C. or higher for 10 minutes or more to obtain the carbon fine particles, and the stripped product and a mixing step of obtaining a mixture in which the carbon fine particles are dispersed in the second dispersion medium at a mass ratio of 90: 10 to 97: 3 and the exfoliated substance is dispersed in the second dispersion medium at a concentration of 11.5 to 17.0 mg / mL, from 100 rpm a step of intercalating an aqueous solution of lithium chloride with a shaker at a rotation speed of 300 rpm ; 2 (0≤x≤0.03, a is greater than 0.02) and an aggregation step of obtaining a composite particle material of MXene and the carbon fine particles. In particular, the stripping step is preferably a step in which 99% or more of the MXene on a mass basis becomes the stripped product.
 本発明の複合粒子材料及びその製造方法は、上記構成を有することによりTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneと微小体が高度に分散した複合粒子材料を提供することができる。このようなTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneと微小体が高度に分散、高比表面積の複合粒子材料を負極活物質に採用することで二次電池(蓄電池)やキャパシターに用いたときに高い性能を発揮できる負極を提供することができる。 The composite particle material and the method for producing the same of the present invention have the above configuration, so that Ti 3 Al a (C( 1.0 -x )N x ) 2 (0 ≤ x ≤ 0.03, a is more than 0.02 ) It is possible to provide a composite particulate material in which MXene and microparticles are highly dispersed. Such a Ti3Ala (C( 1.0 -x ) Nx) 2 (0≤x≤0.03, a is greater than 0.02) MXene and fine particles are highly dispersed, and a composite with a high specific surface area By adopting the particulate material as the negative electrode active material, it is possible to provide a negative electrode that can exhibit high performance when used in secondary batteries (storage batteries) and capacitors.
実施例1の剥離工程で得られた剥離物のAFM像である。4 is an AFM image of a peeled product obtained in the peeling step of Example 1. FIG. 実施例1の剥離工程で得られた剥離物のSEM写真である。4 is an SEM photograph of a peeled product obtained in the peeling step of Example 1. FIG. 実施例1のMAX相セラミックス、剥離工程に供された後のMXene、及び複合粉末材料のXRDプロファイルである。2 is the XRD profile of the MAX phase ceramics of Example 1, MXene after being subjected to an exfoliation process, and the composite powder material. 実施例1及び比較例1の複合粉末材料を電極活物質に用いたLiイオン二次電池のサイクル特性を示したグラフである。4 is a graph showing the cycle characteristics of Li-ion secondary batteries using the composite powder materials of Example 1 and Comparative Example 1 as electrode active materials. 実施例1の複合粉末材料を電極活物質に用いたLiイオン二次電池の1サイクル目と100サイクル目との充放電曲線を示したグラフである。1 is a graph showing charge-discharge curves at the 1st cycle and the 100th cycle of a Li-ion secondary battery using the composite powder material of Example 1 as an electrode active material. 実施例1の複合粉末材料のSEM写真である。1 is a SEM photograph of the composite powder material of Example 1. FIG. 実施例4の複合粉末材料のSEM写真である。4 is a SEM photograph of the composite powder material of Example 4. FIG. 実施例2の複合粉末材料のSEM写真である。4 is a SEM photograph of the composite powder material of Example 2. FIG. 比較例1の複合粉末材料のSEM写真である。4 is an SEM photograph of the composite powder material of Comparative Example 1. FIG. 比較例2の複合粉末材料のSEM写真である。4 is an SEM photograph of the composite powder material of Comparative Example 2. FIG. 得られた複合粉末材料の比表面積の凝集工程における剥離物(MXene)の粒子濃度依存性を示すグラフである。4 is a graph showing the dependency of the specific surface area of the resulting composite powder material on the particle concentration of exfoliated material (MXene) in the aggregation step. MXeneの結晶構造を説明するために提示するMAX相セラミックスの結晶構造を示す図である。FIG. 2 is a diagram showing the crystal structure of MAX phase ceramics presented to explain the crystal structure of MXene;
 本発明の複合粒子材料及びその製造方法並びに電極材料について実施形態に基づいて以下に詳細に説明を行う。本実施形態の複合粒子材料は、導電性を示すなどの電気的特性に優れ、Al層が除去されたことから形成される大きな空隙層を有することから、二次電池(Liイオン二次電池、Naイオン二次電池)、及びキャパシターなどの活物質材料(特に負極活物質)、電磁波シールド薄膜や導電薄膜材料などへの応用が可能である。
(複合粒子材料)
 本実施形態の複合粒子材料は、電極材料などへの応用のために薄片化されたMXeneと粒子状あるいはチューブ状のカーボン微小体とを複合化した粒子材料である。MXeneを薄片化した粒子材料は、粉末状層状化合物であるMXeneを剥離することにより得られる。
The composite particle material, the method for producing the same, and the electrode material of the present invention will be described in detail below based on embodiments. The composite particle material of the present embodiment has excellent electrical properties such as conductivity, and has a large void layer formed by removing the Al layer, so it is suitable for secondary batteries (Li-ion secondary batteries, Na ion secondary battery), active materials (especially negative electrode active materials) such as capacitors, electromagnetic wave shielding thin films, conductive thin film materials, and the like.
(Composite particle material)
The composite particle material of the present embodiment is a particle material obtained by combining thinned MXene and particulate or tube-like carbon microscopic bodies for application to electrode materials and the like. MXene exfoliated particulate material is obtained by exfoliating MXene, which is a powdery layered compound.
 本明細書において、あるパラメータに上限値と下限値をそれぞれ複数設定した場合には特に制限しない限りはそれらの上限値と下限値とを任意に組み合わせることができる。本実施形態の複合粒子材料は、MXeneと微小体との複合粒子材料である。 In this specification, when a plurality of upper limit values and lower limit values are set for a certain parameter, those upper limit values and lower limit values can be arbitrarily combined unless otherwise specified. The composite particle material of this embodiment is a composite particle material of MXene and microscopic bodies.
 MXeneは、MXeneと微小体との質量の和を基準として、90~97%含有し、残りの10%~2%が微小体である。MXeneの含有量の下限としては93%、92%、90%が挙げられ、上限としては97%、96%、95%が挙げられる。 MXene contains 90 to 97% based on the sum of the mass of MXene and microscopic bodies, and the remaining 10% to 2% is microscopic bodies. The lower limits of the MXene content include 93%, 92%, and 90%, and the upper limits include 97%, 96%, and 95%.
 複合粒子材料は、相互分散度が1.50から7.00である。相互分散度はMXeneと微小体との分散度を規定する値である。微小体にカーボン微小体を用いた場合、相互分散度は、無作為に選択された100個の複合粒子材料について、532nm波長のレーザーを用いたのラマン分光分析により400cm-1のピーク高さAと1332cm-1のピーク高さBの比(B/A)から算出した標準偏差を相互分散度とする。複合粒子材料の相互分散度は、下限値として1.50、2.00、2.50を採用することができ、上限値として7.00、6.00、5.00を採用することができる。 The composite particulate material has a mutual dispersity of 1.50 to 7.00. The interdispersion degree is a value that defines the degree of dispersion between MXene and minute particles. When carbon particles are used as the particles, the degree of interdispersion is determined by Raman spectroscopic analysis of 100 randomly selected composite particle materials using a 532 nm wavelength laser with a peak height A of 400 cm −1 . The standard deviation calculated from the ratio (B/A) of the peak heights B at 1332 cm −1 and 1332 cm −1 is defined as the degree of interdispersion. The interdispersion degree of the composite particulate material can adopt lower limits of 1.50, 2.00, 2.50 and upper limits of 7.00, 6.00, 5.00. .
 複合粒子材料は、比表面積が75m2/g以上である。比表面積は、前処理を真空中100℃24時間とした条件で、窒素を用いたBET法により測定される。複合粒子材料の比表面積は、下限値として75m2/g、77.5m2/g、80m2/gを採用することができ、上限値として110m2/g、107.5m2/g、105m2/gを採用することができる。複合粒子材料は、平均細孔直径が7.0~20.0nm、細孔容量が0.10~0.50mL/gであることが好ましい。平均細孔直径及び細孔容量は、前処理を真空中100℃24時間とした条件で、窒素を用いたBET法により測定した。 The composite particulate material has a specific surface area of 75 m 2 /g or more. The specific surface area is measured by the BET method using nitrogen under the condition that pretreatment is performed in vacuum at 100° C. for 24 hours. As for the specific surface area of the composite particle material, 75 m 2 /g, 77.5 m 2 /g and 80 m 2 /g can be adopted as lower limits, and 110 m 2 /g, 107.5 m 2 /g and 105 m 2 /g as upper limits. 2 /g can be adopted. The composite particulate material preferably has an average pore diameter of 7.0-20.0 nm and a pore volume of 0.10-0.50 mL/g. The average pore diameter and pore volume were measured by the BET method using nitrogen under the condition that pretreatment was performed in vacuum at 100° C. for 24 hours.
 MXeneは、チタン3層と炭素2層から成る、あるいは炭素の一部を窒素に置き換えた層状化合物であるTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneである(以下適宜「MXene」と称する)。MXeneは、Ti3Ala(C(10x)Nx2であることが好ましい。ここで0≦x≦0.03且つaは0.02超であることが好ましい。aの上限としては0.05であることが好ましい。また、これらの元素以外にもO、OH、ハロゲン基を表面官能基として有することができる。 MXene consists of three layers of titanium and two layers of carbon, or Ti3Ala (C( 1.0 -x )Nx ) 2 (0≤x≤0), which is a layered compound in which part of the carbon is replaced with nitrogen. .03, a is greater than 0.02) MXene (hereinafter referred to as "MXene" as appropriate). MXene is preferably Ti 3 Al a (C ( 1.0 - x )N x ) 2 . Here, 0≤x≤0.03 and a is preferably greater than 0.02. The upper limit of a is preferably 0.05. In addition to these elements, it can have O, OH, and halogen groups as surface functional groups.
 MXeneは、板状、葉状、薄片状、シート状などであり、総称してシート状と定義する。MXeneは、層状化合物の層の積層方向を「厚み」とし、その厚みと直交する方向を「シートの拡がり方向」とする。MXeneの厚みは、平均厚さが1.0~3.5nmであることが好ましく、特に1.5~3.0nmであることがより好ましい。平均厚さは、ランダムに選択された100個の粒子について測定した値の平均値として算出する。シートの大きさは親水化処理したSiウエハーにナノシートを滴下しSEMで測定できる。シートの拡がり方向の平均の大きさが0.5~1.0μmであることが好ましく、特に0.5~0.75μmであることがより好ましい。厚みと直交する方向における最大値を「長辺」最小値を「短辺」とした場合に、ランダムに選択された100個の粒子についてSEMにより測定した、[(長辺+短辺)/2]の平均値を拡がり方向の平均の大きさとする。 MXene is plate-like, leaf-like, flaky, sheet-like, etc., and is generically defined as sheet-like. In MXene, the stacking direction of layers of a layered compound is defined as "thickness", and the direction orthogonal to the thickness is defined as "sheet spreading direction". The average thickness of MXene is preferably 1.0 to 3.5 nm, more preferably 1.5 to 3.0 nm. The average thickness is calculated as the average of the values measured on 100 randomly selected particles. The size of the sheet can be measured by dropping a nanosheet onto a hydrophilized Si wafer and using SEM. The average size of the sheet in the spreading direction is preferably 0.5 to 1.0 μm, more preferably 0.5 to 0.75 μm. Measured by SEM for 100 randomly selected particles, where the maximum value in the direction orthogonal to the thickness is the “long side” and the minimum value is the “short side”, [(long side + short side) / 2 ] is taken as the average size in the spreading direction.
 MXeneの(002)面の層間距離は、1.400nmから1.700nmであることが好ましい。空隙層の層間距離は、MXeneナノシート粉末のXRDにおける(002)面のd値である層間距離から対応するMAX相セラミックス粉末のXRDにおける(002)面のd値である層間距離を差し引いた値と定義すると、0.770nmから0.470nmである。Liイオン直径は0.18nm、Naイオン直径は0.28nmであり、Liイオン二次電池の他、Naイオン二次電池の負極活物質にも使用できる。Liイオン二次電池の負極活物質に使用されている黒鉛粉末の(002)面の層間距離は0.33nmであるためNaイオン二次電池には使用できず、このことが、MXeneナノシートが特にNaイオン二次電池として期待されている所以である。ここで対応するMAX相セラミックス粉末とは、測定対象のMXeneの組成Ti3Ala(C(10-x)Nx2のうち、aが1である材料から構成される粒子材料である。 The interlayer distance of the (002) plane of MXene is preferably 1.400 nm to 1.700 nm. The interlayer distance of the void layer is the value obtained by subtracting the interlayer distance, which is the d value of the (002) plane in XRD of the corresponding MAX phase ceramic powder, from the interlayer distance, which is the d value of the (002) plane in XRD of the MXene nanosheet powder. By definition, 0.770 nm to 0.470 nm. The diameter of Li ion is 0.18 nm and the diameter of Na ion is 0.28 nm, and it can be used as a negative electrode active material for Na ion secondary battery as well as Li ion secondary battery. Since the interlayer distance of the (002) plane of the graphite powder used in the negative electrode active material of Li-ion secondary batteries is 0.33 nm, it cannot be used for Na-ion secondary batteries. This is the reason why it is expected as a Na-ion secondary battery. Here, the corresponding MAX phase ceramic powder is a particle material composed of a material having a value of 1 in the composition Ti3Ala (C( 1.0 -x ) Nx) 2 of MXene to be measured. be.
 微小体は、その大きさがナノメートルオーダーであれば充分であり、ナノメートルオーダーであるとは、微小体の長さのうち最も大きい部分の長さが100nm以下であるものである。微小体は、一次粒子径が100nm以下であることが好ましく、30~50nmであることが好ましく、特に30~40nmであることがより好ましく、凝集体になっていても良い。微小体は、その形態を限定するものでは無く、球状、シート状、チューブ状、中空状、不定形のものが例示できる。 It is sufficient for the microscopic object to have a size on the order of nanometers, and being on the order of nanometers means that the length of the longest part of the length of the microscopic object is 100 nm or less. The fine particles preferably have a primary particle size of 100 nm or less, preferably 30 to 50 nm, particularly preferably 30 to 40 nm, and may be aggregates. The shape of the microscopic object is not limited, and spherical, sheet-like, tube-like, hollow, and irregular shapes can be exemplified.
 特に微小体は、導電性を有することが好ましく、導電体を有するものとしては、炭素材料からなるカーボン微小体や、金属材料からなる金属微小体が例示できる。カーボン微小体としては、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などの導電性が高いものを採用することが好ましい。微小体は、炭素材料から構成されるカーボン微小体意外にも、その他の無機物から構成される無機微小体を採用することもできる。無機微小体としては、1次粒子径が100nm以下のTiO2、Al23、SiO2、BaTiO3が採用できる。
(複合粒子材料の製造方法)
 本実施形態の複合粒子材料の製造方法は、剥離工程と混合工程とインターカレーション工程と凝集工程とその他必要な工程とを有する。
・剥離工程
剥離工程は、層状のMXeneに対して分散媒中において微小ビーズを層間に衝突させることにより、剥離させてナノシート状の剥離物を得る工程である。得られた剥離物は、分散媒に懸濁した剥離物懸濁液になる。この剥離物懸濁液をそのまま混合工程に供したり、分散媒を除去して混合工程に供したりできる。材料となる層状のMXeneを得る方法としては特に限定しないが、以下の方法が例示できる。
In particular, the microscopic bodies preferably have electrical conductivity, and examples of conductive materials include carbon microscopic bodies made of carbon materials and metal microscopic bodies made of metal materials. As the fine carbon particles, it is preferable to use those having high conductivity such as acetylene black, ketschen black, carbon nanotubes, graphene, carbon fiber, graphite powder, and hard carbon powder. In addition to carbon microscopic bodies made of a carbon material, inorganic microscopic bodies made of other inorganic substances can also be used as the microscopic bodies. TiO 2 , Al 2 O 3 , SiO 2 and BaTiO 3 having a primary particle size of 100 nm or less can be used as the inorganic fine particles.
(Manufacturing method of composite particle material)
The method for producing a composite particulate material of this embodiment includes a peeling step, a mixing step, an intercalation step, an aggregation step, and other necessary steps.
• Exfoliation step The exfoliation step is a step of exfoliating the layered MXene by colliding microbeads between the layers in a dispersion medium to obtain a nanosheet exfoliation. The resulting exfoliate becomes an exfoliate suspension suspended in the dispersion medium. This exfoliated material suspension can be directly subjected to the mixing step, or can be subjected to the mixing step after removing the dispersion medium. The method for obtaining layered MXene as a material is not particularly limited, but the following methods can be exemplified.
 MXeneはTi3層のMAX相セラミックス粉末からなる原料を酸処理してAl層を一部溶解して得られる。MXeneを製造する方法の一例を前処理工程として後述する。剥離工程に供される原料は、前述の粒子材料を構成する材料と同じ組成のものが採用できる。剥離工程では組成は概ね変化しない。 MXene is obtained by acid-treating a raw material consisting of Ti 3-layer MAX phase ceramic powder and partially dissolving the Al layer. An example of a method for manufacturing MXene will be described later as a pretreatment step. The raw material to be subjected to the peeling step can employ those having the same composition as the material constituting the aforementioned particulate material. The composition does not substantially change in the stripping process.
 この粒子材料を酸処理によってAlの一部を溶解し、MXeneとし、そのMXeneを、水を主成分とする溶媒中に混合して混合物とした後、10μmから300μmのビーズを用いて高速回転を行うビーズミル処理する剥離工程によりナノシート状のMXeneの剥離物が懸濁する剥離物懸濁液が得られる。 This particle material is acid-treated to dissolve part of Al to form MXene, which is mixed in a solvent containing water as a main component to form a mixture, and then subjected to high-speed rotation using beads of 10 μm to 300 μm. An exfoliated material suspension in which nanosheet-like exfoliated material of MXene is suspended is obtained by the exfoliation step of performing bead mill treatment.
 剥離工程を行う分散媒は、特に限定しないが、水を50質量%以上含有することが好ましく、メタノール、エタノール、イソプロパノールなどのアルコール、メチルエチルケトン、アセトンなのケトン類、ジメチルホルムアミド、ジメチルスルホキシドなどを含有することができる。水を100質量%とすることがより好ましい。 The dispersion medium for the stripping step is not particularly limited, but preferably contains 50% by mass or more of water, and contains alcohols such as methanol, ethanol, and isopropanol, methyl ethyl ketone, acetone ketones, dimethylformamide, dimethyl sulfoxide, and the like. be able to. It is more preferable to make water 100% by mass.
 剥離工程を行う混合物中のMXeneの濃度は特に限定しないが、10.0mg/mL~20.0mg/mL程度にすることができる。混合液の液性については特に限定しないが、pHを6.0~8.0程度にすることができる。 The concentration of MXene in the mixture for the stripping process is not particularly limited, but can be about 10.0 mg/mL to 20.0 mg/mL. Although there are no particular restrictions on the liquid properties of the mixed liquid, the pH can be adjusted to approximately 6.0 to 8.0.
 剥離工程における具体的なビーズミル処理について説明する。遠心分離で微小なビーズとスラリー状の混合物を分級する機構を具備したビーズミルで剥離することが可能となる。ビーズミル処理により剥離した剥離物は、剥離前の混合物から遠心分離により随時分離でき、最終的には全てのMXeneを剥離物にすることもできる。 The specific bead mill processing in the peeling process will be explained. By centrifugal separation, a bead mill equipped with a mechanism for classifying fine beads and a slurry mixture can be used to separate them. The exfoliated material exfoliated by the bead mill treatment can be optionally separated from the mixture before exfoliation by centrifugation, and finally all MXene can be exfoliated.
 例えばビーズの大きさの下限は、10μm、15μm、20μm、30μm、40μm、上限を300μm、200μm、100μmにすることができる。10μm以上であるとビーズとスラリーの分級が容易である。300μm以下のビーズを用いると粒子材料のサイズを小さくするよりも、剥離を優先して進行させることができる。これらの下限及び上限は任意に組み合わせて採用することができる。ビーズの大きさが適正な範囲であると付与するエネルギーが大きくでき、且つ、剥離を優先して進行できるため、50μm~100μmのビーズを採用することが最も好ましい。 For example, the lower limit of the bead size can be 10 μm, 15 μm, 20 μm, 30 μm, 40 μm, and the upper limit can be 300 μm, 200 μm, 100 μm. When it is 10 µm or more, it is easy to classify beads and slurry. The use of beads of 300 μm or less allows delamination to proceed in preference to reducing the size of the particulate material. Any combination of these lower and upper limits can be adopted. If the size of the beads is in the proper range, the energy to be applied can be increased and the peeling can proceed preferentially.
 ビーズの材質は特に限定しないが、ジルコニア、アルミナ、窒化ケイ素などのセラミックスが採用できる。特に破壊靭性が大きい部分安定化ジルコニアが好ましい。一方、300μm超のビーズを用いる微小サイズの隙間でビーズとスラリーを分級させる一般的に用いられるビーズミルによると、粒子材料のサイズを小さくすることが、剥離に優先して進行する。また、300μm超のビーズやボールを用いた遊星ボールミルなどのボールミルによっても、粒子材料のサイズを小さくすることが剥離に優先する。結果的に一部しか剥離できず、遠心分離で一部の剥離物を分級することになり、産業で利用できるレベルとは言えない。 The material of the beads is not particularly limited, but ceramics such as zirconia, alumina, and silicon nitride can be used. Partially stabilized zirconia, which has particularly high fracture toughness, is preferred. On the other hand, with commonly used bead mills that classify beads and slurries in micro-sized gaps using beads larger than 300 μm, size reduction of the particulate material progresses in preference to exfoliation. Ball milling, such as planetary ball milling with beads and balls greater than 300 μm, also favors exfoliation by reducing the size of the particulate material. As a result, only a part of the particles can be separated, and a part of the particles must be separated by centrifugal separation.
 さらに従来からMXeneの剥離は超音波照射で行われている。溶媒に超音波を照射すると、キャビテーションが発生し、その圧壊により、粉体どうしが衝突するメカニズムで層状化合物を構成する層の剥離が進行する。しかしながら、キャビテーションの発生が起きやすい水を用いたとしても、剥離が進行するのは一部のみである。さらに水を用いたとしても、剥離が進行するのは一部のみであり、産業で利用できるレベルとは言えなかった。遊星ボールミルによる方法でも、もちろん剥離はさらに一部であり、粉砕が優先する、更に温度上昇するため表面酸化が著しく進行するため、とても産業に利用できるレベルとは言えない。このような理由から超音波照射により一部のみを剥離させて遠心分離による分級で採取する手法がとられていた。 In addition, MXene has traditionally been exfoliated by ultrasonic irradiation. When the solvent is irradiated with ultrasonic waves, cavitation is generated, and due to the crushing of the cavitation, the layers constituting the layered compound are exfoliated by the mechanism of powder collision. However, even if water, which easily causes cavitation, is used, peeling progresses only partially. Furthermore, even if water is used, peeling progresses only in part, and it cannot be said that it is at a level that can be used in industry. Even in the method using a planetary ball mill, of course, the peeling is still part of the process, and the pulverization takes precedence, and the surface oxidation proceeds remarkably due to the temperature rise. For this reason, a method of exfoliating only a part by ultrasonic irradiation and collecting by centrifugal separation has been adopted.
 剥離工程における周速は、6m/sec~12m/secの周速が採用できる。8m/sec~10m/secの周速がより好ましい。6m/sec以上であると剥離効率が良く、12m/sec以下であると付与する過大なエネルギー付与が抑制され、得られる粒子材料の温度上昇が抑制できるため、得られる粒子材料の表面における酸化の進行が抑制でき、電気抵抗を低くできる。スラリー送り速度は100mL/分から300mL/分が採用できる。スラリー粒子濃度は10.0mg/mL~20.0mg/mLが採用できる。 A peripheral speed of 6 m/sec to 12 m/sec can be adopted for the peripheral speed in the peeling process. A peripheral speed of 8 m/sec to 10 m/sec is more preferable. If it is 6 m/sec or more, the peeling efficiency is good, and if it is 12 m/sec or less, the application of excessive energy is suppressed, and the temperature rise of the obtained particle material can be suppressed, so that the surface of the obtained particle material is oxidized. Progression can be suppressed, and electrical resistance can be lowered. A slurry feed rate of 100 mL/minute to 300 mL/minute can be adopted. A slurry particle concentration of 10.0 mg/mL to 20.0 mg/mL can be adopted.
 10.0mg/mL以下の条件によると、MXeneナノシートの作製効率が悪くなり、20.0mg/mL以上にすると剥離が充分に進行できないため、この範囲が好ましい。 If the concentration is 10.0 mg/mL or less, the production efficiency of the MXene nanosheets will be poor, and if the concentration is 20.0 mg/mL or more, peeling will not progress sufficiently, so this range is preferable.
 スラリー温度は35℃以下の温度範囲が好ましい。35℃以下にすると表面酸化が抑制でき、粒子材料の電気抵抗を低く保つことができる。 The slurry temperature is preferably in the temperature range of 35°C or less. When the temperature is 35° C. or lower, surface oxidation can be suppressed, and the electrical resistance of the particulate material can be kept low.
 ビーズの充填量は40%~80%が採用できる。40%以上にすると剥離の効率が良くなり、80%以下にするとビーズとスラリーの分級が容易となる。目的のシート状の粒子を多く含む粒子材料が製造されたかどうかは、SEM、TEMなどの観察によって判断できる。特に粒子材料の厚みについてはAFM分析することによって判断できる。剥離工程で得られた粒子材料は、必要に応じて遠心分離などの方法によって分級して使用することも可能である。剥離工程における最適な条件については、装置の大きさによって変化するので、これらの数値は限定されるものではない。 40% to 80% can be used for the filling amount of beads. When it is 40% or more, the efficiency of stripping is improved, and when it is 80% or less, it becomes easy to classify beads and slurry. Whether or not the desired particle material containing many sheet-like particles has been produced can be determined by observation with SEM, TEM, or the like. In particular, the thickness of the particulate material can be determined by AFM analysis. The particulate material obtained in the peeling step can be used after being classified by a method such as centrifugation, if necessary. Optimal conditions in the peeling process vary depending on the size of the apparatus, so these numerical values are not limited.
 ビーズミル処理によりMXeneが質量基準で98%以上剥離物になるようにすることが好ましく、99%以上剥離物になることがより好ましく、100%剥離物になることが更に好ましい。MXeneが全て剥離物になる条件で剥離工程を完了すると、剥離していないMXeneを除去することなくそのまま混合工程に用いることが可能になる。剥離物以外のMXeneを除去する場合には、遠心分離、濾過などにより分離することができる。 It is preferable that 98% or more of the MXene on a mass basis is turned into the exfoliated material by the bead mill treatment, more preferably 99% or more of the exfoliated material, and still more preferably 100% of the exfoliated material. When the peeling process is completed under the condition that all the MXene becomes the peeled substance, it becomes possible to use the MXene which is not peeled off as it is in the mixing process without removing it. When removing MXene other than exfoliated matter, it can be separated by centrifugation, filtration, or the like.
 得られた剥離したMXeneのゼーター電位はpH6からpH8の水中で、-25.0mVからー30.0mVであることが好ましい。 The obtained exfoliated MXene preferably has a zeta potential of -25.0 mV to -30.0 mV in water of pH 6 to pH 8.
 MXeneナノシートの化学組成については、Ti、Al、C、Nのatom%を用いて、Tiを3とした時のAl、C、N量を算出した。化学分析は、試料を白金皿にはかりとり、硝酸+硫酸+フッ化水素酸を加えて、加熱(120℃程度)して溶解後、さらに高温(300℃)で加熱して硝酸とフッ化水素酸を飛ばして試料溶液(硫酸)を作製し、作製した試料溶液を適宜希釈してICPで定量分析を行った。
・酸処理工程
 酸処理工程は、原料カーボン微小体に対して、硫酸と硝酸との混酸溶液で処理を行い、親水性が高いカーボン微小体を得る工程である。原料カーボン微小体は、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などが例示できる。導電性から、アセチレンブラック、ケツチェンブラック、カーボンナノチューブ、導電性と純度と価格の両面からアセチレンブラックが更に好ましい。
Regarding the chemical composition of the MXene nanosheets, the amounts of Al, C, and N were calculated using the atom% of Ti, Al, C, and N, with Ti being 3. For chemical analysis, weigh the sample in a platinum dish, add nitric acid + sulfuric acid + hydrofluoric acid, heat (about 120 ° C) to dissolve, and then heat at a high temperature (300 ° C) to mix nitric acid and hydrogen fluoride. A sample solution (sulfuric acid) was prepared by removing the acid, and the prepared sample solution was appropriately diluted and quantitatively analyzed by ICP.
Acid treatment step The acid treatment step is a step of treating the raw carbon microparticles with a mixed acid solution of sulfuric acid and nitric acid to obtain highly hydrophilic carbon microparticles. Examples of raw carbon fine particles include acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, and hard carbon powder. Acetylene black, Ketsujen black, and carbon nanotubes are more preferred from the viewpoint of conductivity, and acetylene black is more preferred from the viewpoints of both conductivity, purity, and price.
 酸処理工程では、混酸に懸濁したカーボン微小体懸濁液となり、そのまま混合工程で用いることもできるし、混酸を水などによる洗浄を繰り返すことで必要なだけ除去してカーボン微小体として用いることもできる。洗浄は、洗浄液のpHが6程度になるまで行うことができ、更にはpHが6.5や7や8程度になるまで行うこともできる。 In the acid treatment step, a suspension of carbon microparticles suspended in the mixed acid is obtained, which can be used as it is in the mixing step, or the mixed acid can be washed repeatedly with water or the like to remove as much as necessary and used as carbon microparticles. can also Washing can be performed until the pH of the washing solution reaches about 6, and further until the pH reaches about 6.5, 7, or 8.
 本処理によって、カーボン微小体の表面にCOOH基やCO基などの官能基が導入されて親水化される。処理後のカーボン微小体は、混酸中に分散されたカーボン微小体懸濁液になる。酸処理工程と剥離工程との間で行う前後は問わない。 Through this treatment, functional groups such as COOH groups and CO groups are introduced to the surface of the carbon microparticles to make them hydrophilic. The carbon microparticles after treatment become a carbon microparticle suspension dispersed in the mixed acid. It does not matter whether it is performed between the acid treatment process and the stripping process.
 処理温度は70℃以上が好ましい。特に沸騰などが起きないように95℃以下にすることが好ましい。処理時間は特に限定しないが、10分以上処理することで確実に親水化できる。処理中は、撹拌したり、超音波を照射したりすることができる。処理後は、そのまま混合工程に供しても良いし、酸を中和乃至分離しても良い。なお酸を中和したり分離したりして所定値以上のpHになると、カーボン微小体が凝集するため、pHが所定値には至らない程度で中和を行うことができる。酸を分離する方法としては、固形分を遠心分離などの分級操作により分離する方法が例示できる。 The treatment temperature is preferably 70°C or higher. In particular, it is preferable to set the temperature to 95° C. or lower so as not to cause boiling. The treatment time is not particularly limited, but hydrophilization can be ensured by treatment for 10 minutes or longer. Stirring or ultrasonic irradiation can be performed during the treatment. After the treatment, it may be subjected to the mixing step as it is, or the acid may be neutralized or separated. If the acid is neutralized or separated and the pH reaches a predetermined value or higher, the fine carbon particles aggregate, so neutralization can be carried out to the extent that the pH does not reach the predetermined value. As a method of separating the acid, a method of separating the solid content by a classification operation such as centrifugation can be exemplified.
 硫酸と硝酸との混合比は、体積比で、4:1~1:1程度にすることができ、特に3:1~3:2程度にすることが好ましい。混酸の濃度は、42%~96%程度にすることができ、特に90.0%~95.0%程度にすることが好ましい。 The mixing ratio of sulfuric acid and nitric acid can be about 4:1 to 1:1, preferably about 3:1 to 3:2 by volume. The concentration of the mixed acid can be about 42% to 96%, preferably about 90.0% to 95.0%.
 得られた親水性カーボン微小体のゼーター電位は、pH7の水中でー20.0mVからー25.0mVであることが好ましい。ゼーター電位はCOOHやCOが官能基として吸着するためマイナスとなる。-20.0mVよりその絶対値が小さくなると水中での分散性が劣化し、複合粒子材料の相互分散度が大きくなる。-25.0mVよりその絶対値が大きくなると導電性が劣化する。
・混合工程
 混合工程は、剥離物及びカーボン微小体が90:10~97:3の質量比、且つ、剥離物が11.5-17.0mg/mLの濃度で、水を50質量%以上含有する第2分散媒に分散した混合物を得る工程である。第2分散媒は水を100質量%とすることがより好ましい。混合物中には、その他の物質を含有させることによりその物質についても複合粒子材料に取り入れることができる。特に、Liイオンや、Naイオンを共存させることで、剥離物を構成するMXeneの層内にそれらのイオンを挿入することができる。
The resulting hydrophilic carbon microparticles preferably have a zeta potential of -20.0 mV to -25.0 mV in pH 7 water. The zeta potential becomes negative because COOH and CO are adsorbed as functional groups. If the absolute value is smaller than -20.0 mV, the dispersibility in water deteriorates and the interdispersion degree of the composite particle material increases. If the absolute value becomes larger than -25.0 mV, the conductivity deteriorates.
・Mixing process In the mixing process, the mass ratio of the exfoliated matter and the carbon particles is 90:10 to 97:3, the concentration of the exfoliated matter is 11.5-17.0 mg/mL, and water is contained in an amount of 50% by mass or more. It is a step of obtaining a mixture dispersed in a second dispersion medium. More preferably, the second dispersion medium contains 100% by mass of water. By including other substances in the mixture, those substances can also be incorporated into the composite particulate material. In particular, coexistence of Li ions and Na ions allows these ions to be inserted into the MXene layer forming the exfoliation.
 混合物は、11.5-17.0mg/mLの濃度で剥離物を含有する。第2分散媒は、剥離工程において用いる分散媒や、その他の工程で用いることができる溶媒と同一のものであっても良いし、異なるものであっても良い。剥離工程で得られた剥離物懸濁液をそのまま混合工程に供する場合には、第2分散媒に剥離工程で用いる分散媒が含まれる。複合スラリー中のMXene  粒子濃度を11.5-17.0mg/mLと限定した理由は、11.5を下回ると、あるいは17.0を超えると後述の凝集工程において得られる複合粒子材料の比表面積が小さくなるためである。 The mixture contains exfoliate at a concentration of 11.5-17.0 mg/mL. The second dispersion medium may be the same as or different from the dispersion medium used in the peeling process and the solvent that can be used in other processes. When the exfoliated material suspension obtained in the exfoliation step is directly subjected to the mixing step, the second dispersion medium contains the dispersion medium used in the exfoliation step. The reason for limiting the concentration of MXene particles in the composite slurry to 11.5-17.0 mg/mL is that if it falls below 11.5 or exceeds 17.0, the specific surface area of the composite particle material obtained in the aggregation step described later This is because the
 塩化リチウム水溶液を混合物に添加して100rpmから300rpmの回転数で、1時間から6時間、振とう機で撹拌することにより塩素やリチウムイオンをインターカレーションさせることが好ましい。振とう機の振幅は40mm以上とすることが好ましい。塩化リチウム5.3gを純水30gの比率で、100rpmから300rpmの回転数の振とう機で1時間以上撹拌することにより完全に溶解させることができ、それを所定粒子濃度のMXeneとカーボン微小体の懸濁液に添加することが好ましい。その際の振とう機の振幅は40mmから45mmとすることが好ましい。酸処理したカーボン微小体について、純水に所定量のカーボン微小体を添加し、100rpmから300rpmの回転数の振とう機で1時間以上撹拌し、凝集をほぐした懸濁液を混合物に添加し混合することが好ましい。その際の振とう機の振幅は40mmから45mmとすることが好ましい。
・凝集工程
 凝集工程は、混合工程で得られた混合物のpHを上昇させることにより、混合物に含有される剥離物とカーボン微小体との複合粒子材料を凝集させて凝集物にする工程である。pHの上昇は、アルカリ性の物質を添加する手法、あるいは酸性物質を除去乃至希釈、することで行われる。pHの上昇は、アルカリ水溶液を数秒で添加し、1時間以内で100rpmから300rpmの回転数の振とう機で撹拌することが好ましい。その際の振とう機の振幅は40mmから45mmとすることが好ましい。
It is preferable to intercalate chlorine and lithium ions by adding an aqueous solution of lithium chloride to the mixture and stirring the mixture with a shaker at a rotation speed of 100 rpm to 300 rpm for 1 hour to 6 hours. The amplitude of the shaker is preferably 40 mm or more. 5.3 g of lithium chloride in a ratio of 30 g of pure water can be completely dissolved by stirring with a shaker at a rotation speed of 100 rpm to 300 rpm for 1 hour or more. is preferably added to a suspension of The amplitude of the shaker at that time is preferably 40 mm to 45 mm. For the acid-treated carbon microparticles, a predetermined amount of carbon microparticles was added to pure water, stirred for 1 hour or longer with a shaker at a rotation speed of 100 rpm to 300 rpm, and the suspension was added to the mixture to break up the aggregates. Mixing is preferred. The amplitude of the shaker at that time is preferably 40 mm to 45 mm.
Aggregation step The aggregation step is a step of increasing the pH of the mixture obtained in the mixing step to aggregate the composite particle material of the exfoliated matter and the carbon fine particles contained in the mixture into aggregates. The pH is raised by adding an alkaline substance or by removing or diluting an acidic substance. It is preferable to increase the pH by adding the alkaline aqueous solution in a few seconds and stirring with a shaker at a rotation speed of 100 rpm to 300 rpm within 1 hour. The amplitude of the shaker at that time is preferably 40 mm to 45 mm.
 あるいは比誘電率の小さい疎水性の高い有機溶剤を添加することで行われる。 Alternatively, it can be done by adding a highly hydrophobic organic solvent with a small dielectric constant.
 得られた凝集物は、乾燥後、粉砕などの適正な操作により必要な状態にすることで、適正な粒度分布を持つ本実施形態の複合粒子材料を得ることができる。適正な状態とは、先述した本実施形態の複合粒子材料の状態である。凝集体の乾燥方法は特に限定しない。例えば、遠心分離、ろ別などの分級操作により凝集体を分離後、乾燥することができる。凝集体を分離した後に必要に応じて1回以上洗浄することができる。洗浄は水などで行うことができる。
乾燥については、複合粒子材料の表面に吸着した水、及び結晶内の層間に存在する水を除去する工程である。凝集体をエタノール、あるいはイソプロピルアルコールで3回 洗浄した後、風乾させることが好ましい。あるいは、エタノール、あるいはイソプロピルアルコール懸濁液を窒素中でスプレイドライすることが好ましい。結晶内の層間にある水を除去するには100℃から200℃以下の範囲で、6時間から24時間 真空状態で乾燥させることが好ましい。プロセスの条件を適切に選択することによりMXeneやカーボン微小体の表面酸化を抑制し、得られた複合粒子材料の表面電気抵抗を低く維持できる。
・その他必要な工程
 その他必要な工程としては特に限定しないが、前処理工程が例示できる。前処理工程は、MXeneを製造する方法の一例である。例えば、TiCとTiNとAlとTiの混合原料をCIP又は一軸加圧により1トン/cm2から3トン/cm2の範囲で加圧処理した圧粉体破砕片を、あるいは加圧処理することなく、1400℃から1600℃以下の不活性雰囲気中で熱処理することにより高純度なTi3層のMAX相セラミックスであるTi3Al(C1-xx2、(0≦x<1)を得ることが例示できる。また、MAX相セラミックス粉末に酸性物質を20℃から30℃に制御した温度にて接触させて、MAX相セラミックス粉末に含まれるAl元素の一部を除去することで製造することができる。
The obtained agglomerate is dried and then brought into a desired state by an appropriate operation such as pulverization, whereby the composite particle material of the present embodiment having an appropriate particle size distribution can be obtained. The proper state is the state of the composite particulate material of this embodiment described above. The method for drying the aggregates is not particularly limited. For example, aggregates can be separated by classification operations such as centrifugation and filtration, and then dried. After separating the agglomerates, one or more washes can be carried out, if desired. Washing can be performed with water or the like.
Drying is a process of removing water adsorbed on the surface of the composite particulate material and water present between layers in the crystals. After washing the aggregates three times with ethanol or isopropyl alcohol, it is preferable to air-dry them. Alternatively, it is preferable to spray dry an ethanol or isopropyl alcohol suspension in nitrogen. In order to remove the water between the layers in the crystal, it is preferable to dry the crystal in a vacuum at a temperature in the range of 100° C. to 200° C. for 6 to 24 hours. By appropriately selecting the process conditions, the surface oxidation of MXene and carbon particles can be suppressed, and the surface electrical resistance of the obtained composite particle material can be kept low.
-Other necessary steps Other necessary steps are not particularly limited, but a pretreatment step can be exemplified. The pretreatment step is an example of a method for manufacturing MXene. For example, a mixed raw material of TiC, TiN, Al, and Ti is pressurized in the range of 1 ton/cm 2 to 3 ton/cm 2 by CIP or uniaxial pressure, or pressurized. Ti 3 Al(C 1-x N x ) 2 (0≦x<1), which is a high-purity Ti 3-layer MAX phase ceramic, is produced by heat treatment in an inert atmosphere at 1400° C. to 1600° C. or less. can be exemplified. Alternatively, it can be produced by contacting the MAX phase ceramic powder with an acidic substance at a temperature controlled at 20° C. to 30° C. to remove part of the Al element contained in the MAX phase ceramic powder.
 前処理工程に供する原料は、Ti3層については、Ti3Ala[C(1-x)x2、(a=1、0≦x<1)で表される組成を有するMAX相セラミックス粉末である。さらに、Alを除去する量は酸性物質により酸処理されて製造されるMAX相セラミックス粉末中のAlの量(xに相当)が0.02超になる程度に残存するように調節する。なお、Alを全部除去することも可能であり、その場合にはAlを除去する以上にまで酸処理を進めないことが好ましい。 The raw material to be subjected to the pretreatment step is Ti 3 Al a [C (1-x) N x ] 2 for the Ti3 layer, MAX phase ceramics having a composition represented by (a = 1, 0 ≤ x < 1) powder. Furthermore, the amount of Al to be removed is adjusted so that the amount of Al (corresponding to x) in the MAX phase ceramic powder produced by acid treatment with an acidic substance remains at a level exceeding 0.02. In addition, it is possible to remove all the Al, and in that case, it is preferable not to proceed the acid treatment beyond the removal of the Al.
 除去されるAlの量は、酸性物質(酸水溶液など)と接触する時間(長くすると除去される量が増加する)、酸性物質の濃度(濃度が高い方が除去される量が増加する)、酸性物質の量(酸性物質の絶対量が多い方が除去され得る量を多くできる)、接触させる温度(温度が高い方が除去される量が増加する)を変化させることで調節できる。 The amount of Al to be removed depends on the contact time with the acidic substance (acid aqueous solution, etc.) (the longer the time, the more removed), the concentration of the acidic substance (the higher the concentration, the more removed), It can be adjusted by changing the amount of acidic substance (the greater the absolute amount of acidic substance, the greater the amount that can be removed) and the contact temperature (the higher the temperature, the greater the amount removed).
 層状化合物であるMAX相セラミックス粉末(A元素がAl)に対して、酸処理を行うことによりAlの一部を除去して粒子材料を構成する空隙層を有する層状化合物とする。Al層の一部を除去するための酸としてはフッ酸と塩酸との組み合わせた酸性物質を採用する。フッ酸と塩酸との組み合わせを実現するためにはフッ酸の塩(KF、LiFなど)と塩酸とを混合してフッ酸と塩酸との混合物を得ることが好ましい。 The MAX-phase ceramic powder (A element is Al), which is a layered compound, is subjected to an acid treatment to remove part of the Al to form a layered compound having void layers that constitute the particle material. As the acid for removing part of the Al layer, an acidic substance in which hydrofluoric acid and hydrochloric acid are combined is employed. In order to achieve a combination of hydrofluoric acid and hydrochloric acid, it is preferable to mix a hydrofluoric acid salt (KF, LiF, etc.) with hydrochloric acid to obtain a mixture of hydrofluoric acid and hydrochloric acid.
 特に酸性物質としてはこれらの酸の水溶液を採用する。フッ化塩が完全に解離したと仮定した時に形成されるフッ酸と塩酸との混合濃度としては特に限定しない。フッ酸の濃度としては下限が1.7mol/L、2.0mol/L、2.3mol/L、上限が2.5mol/L、2.6mol/L、2.7mol/L程度にすることができる。塩酸の濃度としては下限が2.0mol/L、3.0mol/L、4.0mol/L、上限が13.0mol/L、14.0mol/L、15.0mol/L程度にすることができる。 In particular, aqueous solutions of these acids are used as acidic substances. The mixed concentration of hydrofluoric acid and hydrochloric acid formed when the fluoride salt is completely dissociated is not particularly limited. As for the concentration of hydrofluoric acid, the lower limit is about 1.7 mol/L, 2.0 mol/L, and 2.3 mol/L, and the upper limit is about 2.5 mol/L, 2.6 mol/L, and 2.7 mol/L. can. The concentration of hydrochloric acid can be about 2.0 mol/L, 3.0 mol/L and 4.0 mol/L with lower limits and about 13.0 mol/L, 14.0 mol/L and 15.0 mol/L with upper limits. .
 フッ化塩が完全に解離したと仮定した時に形成されるフッ酸と塩酸との混合比(モル比)についても特に限定しないが、フッ酸の下限として、1:13、1:12、1:11、上限として1:5、1:6、1:7程度を採用することができる。ここで示したフッ酸及び塩酸濃度、混合比についてはそれぞれ任意に組み合わせて採用することができる。酸処理温度については、20℃から30℃が好ましい。20℃から25℃がさらに好ましい。
(電極材料)
 本実施形態の電極材料は、二次電池に好適に用いることができる材料である。特に層間へのLiイオンやNaイオンの挿脱が可能であることから、電極活物質として好適に利用できる。また、その導電性から導電補助剤に用いることもできる。リチウム二次電池、及びナトリウム二次電池に有効である。酸処理によってAl層を除去した空隙層にリチウムイオンやナトリウムイオンが貯蔵、脱離される。
The mixing ratio (molar ratio) of hydrofluoric acid and hydrochloric acid formed when it is assumed that the fluoride salt is completely dissociated is not particularly limited, but the lower limit of hydrofluoric acid is 1:13, 1:12, 1:1: 11. About 1:5, 1:6 and 1:7 can be adopted as the upper limit. The concentrations and mixing ratios of hydrofluoric acid and hydrochloric acid shown here can be used in arbitrary combinations. The acid treatment temperature is preferably 20°C to 30°C. 20°C to 25°C is more preferred.
(Electrode material)
The electrode material of the present embodiment is a material that can be suitably used for secondary batteries. In particular, since it is possible to insert and remove Li ions and Na ions between layers, it can be suitably used as an electrode active material. Moreover, it can also be used as a conductive aid because of its conductivity. Effective for lithium secondary batteries and sodium secondary batteries. Lithium ions and sodium ions are stored and desorbed in the void layer from which the Al layer has been removed by acid treatment.
 ここではリチウム二次電池を例に挙げて説明する。電極は、本実施形態の複合粒子材料からなる活物質を含む活物質層と、金属の薄板などから構成され表面に活物質からなる活物質層が形成される集電体とを有する。活物質層を形成するためにはバインダを含むことができる。また活物質層には必要に応じて本実施形態の複合粒子材料以外の活物質・導電補助剤などを含有させることができる。バインダはカルボキシメチルセルロース、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、ポリビニルピロリドン、ポリビニルアルコールなどの汎用されているバインダやその他バインダとして利用できるものが採用できる。導電補助剤としてはアセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などが採用できる。 Here, we will use a lithium secondary battery as an example. The electrode has an active material layer containing an active material made of the composite particle material of the present embodiment, and a current collector made of a thin metal plate or the like and having an active material layer made of the active material formed on the surface thereof. A binder may be included to form the active material layer. Moreover, the active material layer can contain an active material other than the composite particle material of the present embodiment, a conductive auxiliary agent, and the like, if necessary. As the binder, a commonly used binder such as carboxymethyl cellulose, polyvinylidene fluoride, styrene-butadiene rubber, polyvinylpyrrolidone, polyvinyl alcohol, or any other binder that can be used can be used. Acetylene black, ketschen black, carbon nanotube, graphene, carbon fiber, graphite powder, hard carbon powder and the like can be used as the conductive auxiliary agent.
 本発明の複合粒子材料及びその製造方法について以下実施例に基づき詳細に説明を行う。
(実施例1)
・前処理工程
 TiC粉末(TI-30-10-0020、レアメタリック社)12.3g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gをイソプロパノール(IPA)中で12時間 ボールミル混合し、エバポレータでIPAを除去して均一混合された乾燥粉末を得た。
The composite particle material and the method for producing the same of the present invention will be described in detail below based on examples.
(Example 1)
・Pretreatment process TiC powder (TI-30-10-0020, Rare Metallic) 12.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical) 4.9 g, Al powder (ALE15PB 3NG, Kojundo Chemical) 2.8 g was ball-mill mixed in isopropanol (IPA) for 12 hours, and the IPA was removed by an evaporator to obtain a uniformly mixed dry powder.
 黒鉛抵抗炉を用いてAr気流中1450℃、2hの条件で、均一混合された乾燥粉末をアルミナるつぼに入れて焼成しMAX相セラミックスとしてのTi3AlC2を得た。得られたTi3AlC2について乳鉢と乳棒を用いて粗粉砕した後、IPA中で5mmのジルコニアボールを用いたボールミル粉砕を24時間行った。その後、0.5mmのジルコニアボールを用いた遊星ボールミル粉砕(200rpm、15分を3回)行い、懸濁液を得た。懸濁液に対してエバポレータでIPAを除去して約3μmに粉砕されたTi3AlC2粉末を得た。 Using a graphite resistance furnace, the uniformly mixed dry powder was placed in an alumina crucible and sintered in an Ar stream at 1450° C. for 2 hours to obtain Ti 3 AlC 2 as MAX phase ceramics. The resulting Ti 3 AlC 2 was coarsely pulverized using a mortar and pestle, and then subjected to ball mill pulverization using 5 mm zirconia balls in IPA for 24 hours. Then, planetary ball mill pulverization (200 rpm, 15 minutes three times) using 0.5 mm zirconia balls was performed to obtain a suspension. IPA was removed from the suspension with an evaporator to obtain Ti 3 AlC 2 powder pulverized to about 3 μm.
 300mLの濃HClにLiF18gを入れた酸水溶液を準備し、氷で冷やしながら10gのTi3AlC2粉末を入れて、10℃から20℃に制御された環境下で、24時間、マグネチックスターラーで撹拌することで、Alをエッチングして除去し、Ti3Al0.022 MXeneからなる粒子材料を得た。エッチング後、pH6程度になるまで水洗し、最後に水をエタノールに置換した。この操作により、粒子材料は、エタノール中に懸濁された原料懸濁液を得た。 Prepare an acid aqueous solution by adding 18 g of LiF to 300 mL of concentrated HCl, add 10 g of Ti 3 AlC 2 powder while cooling with ice, and stir with a magnetic stirrer for 24 hours under an environment controlled at 10 to 20 ° C. By stirring , the Al was etched away to obtain a particulate material consisting of Ti3Al0.02C2MXene . After etching, it was washed with water until the pH reached about 6, and finally water was replaced with ethanol. This operation resulted in a raw suspension of the particulate material suspended in ethanol.
 原料懸濁液中の粒子濃度を測定し、Ti3Al0.022 MXeneの粒子濃度が16.9mg/mLになるように水を添加した。
・剥離工程
 この原料懸濁液に対して、ZrO2ビーズ径50μmのビーズミルをスラリー送入速度150mL/min、ZrO2ビーズ充填量80%の条件で処理を行うことで、Ti3Al0.02MXeneからなる剥離物を生成した。この処理を3回繰り返すことにより、原料懸濁液中に含まれるTi3Al0.022 MXeneからなる粒子材料は、概ね全て剥離物になり、その剥離物を含む剥離物懸濁液を得た。
The particle concentration in the raw material suspension was measured, and water was added so that the particle concentration of Ti 3 Al 0.02 C 2 MXene was 16.9 mg/mL.
・Exfoliation process Ti 3 Al 0.02 C 2 was obtained by processing this raw material suspension in a bead mill with a ZrO 2 bead diameter of 50 μm under the conditions of a slurry feed rate of 150 mL/min and a ZrO 2 bead filling amount of 80%. An exfoliate consisting of MXene was produced. By repeating this treatment three times, almost all of the particle material composed of Ti 3 Al 0.02 C 2 MXene contained in the raw material suspension became exfoliated matter, and an exfoliated matter suspension containing the exfoliated matter was obtained. .
 得られた剥離物懸濁液について、ピラニア処理(H2SO4:H22=3体積部:1体積部の混合液に浸漬)したSi基板上に滴下し、AFM分析を行った。AFM像を図1に示す。剥離した剥離物(ナノシート)を無作為に100個抜き取り、AFMにより測定した厚さの平均値を求め表1に示す。さらにSEM観察の結果を図2に示す。剥離物を無作為に100個抜き取り、SEM写真より縦(厚み方向に直交する方向での最大径)と横(縦方向及び厚み方向に直交する方向)の寸法を測定し、その平均値をその剥離物の大きさと定義し、100個の剥離物の大きさの平均値を表1に示す。 The resulting exfoliated material suspension was dropped onto a piranha-treated Si substrate (immersed in a mixed solution of H 2 SO 4 :H 2 O 2 =3 parts by volume:1 part by volume) and subjected to AFM analysis. An AFM image is shown in FIG. 100 exfoliated exfoliated products (nanosheets) were randomly sampled, and the average value of the thickness measured by AFM was obtained and shown in Table 1. Furthermore, the result of SEM observation is shown in FIG. 100 exfoliated products were randomly selected, and the vertical (maximum diameter in the direction perpendicular to the thickness direction) and horizontal (direction perpendicular to the vertical and thickness directions) dimensions were measured from the SEM photograph, and the average value was calculated. Table 1 shows the average value of the size of 100 exfoliated objects.
 MAX相セラミックスであるTi3AlC2の粉末と、剥離物(Ti3Al0.022 MXeneのナノシート)とのそれぞれについて、XRD測定し、図3に示す。XRDプロファイルから(002)面のd値に着目し、層間距離を表5に示す。 XRD measurement was performed on each of the powder of Ti 3 AlC 2 , which is MAX phase ceramics, and the exfoliated material (nanosheet of Ti 3 Al 0.02 C 2 MXene), and the results are shown in FIG. Focusing on the d value of the (002) plane from the XRD profile, Table 5 shows the interlayer distance.
 剥離物について、水中 pH7.0におけるゼーター電位を測定し、後述の複合粒子材料の比表面積と合わせて表6に示した。
・酸処理工程
 カーボン微小体としてのアセチレンブラックを酸処理する方法として、硫酸(98質量%)と硝酸(68質量%)を体積比で3:1で混合した混酸100質量部にアセチレンブラックを1.0質量部添加し、85℃の環境下で10分間浸漬して行った。その後、pH6.0程度になるまで水洗し、その後、水をIPAにて置換した。それを風乾して親水性のアセチレンブラック粉末を得た。FTIR分析し、表面官能基としてCOOH基とCO基を検出した。水中 PH7.0におけるゼーター電位を測定した所、-22.5mVであった。アセチレンブラックをTi3Al0.022 MXeneナノシートに対し5質量%量を純水10mLに入れ、振とう機で140rpm 振幅45mm 24hの条件で凝集を解砕し、親水性アセチレンブラックスラリーを準備した。
The peeled matter was measured for zeta potential in water at pH 7.0, and the results are shown in Table 6 together with the specific surface area of the composite particle material described later.
・Acid treatment process As a method for acid treatment of acetylene black as fine carbon particles, 100 parts by mass of a mixed acid in which sulfuric acid (98% by mass) and nitric acid (68% by mass) are mixed at a volume ratio of 3:1 is mixed with 1 part of acetylene black. 0 parts by mass was added, and the mixture was immersed for 10 minutes in an environment of 85°C. Then, it was washed with water until the pH reached about 6.0, and then the water was replaced with IPA. It was air-dried to obtain a hydrophilic acetylene black powder. FTIR analysis detected COOH and CO groups as surface functional groups. The measured zeta potential at pH 7.0 in water was -22.5 mV. Acetylene black was added to 10 mL of pure water in an amount of 5% by mass based on the Ti 3 Al 0.02 C 2 MXene nanosheets, and aggregates were crushed with a shaker under the conditions of 140 rpm and amplitude of 45 mm for 24 hours to prepare a hydrophilic acetylene black slurry.
 親水性アセチレンブラックスラリーを親水化処理したSiウエハーに滴下しSEM観察した。100個の一次粒子を任意に観察し、縦と横の寸法を測定し、その平均値である一次粒子径は33nmであった。
・混合工程
 剥離工程で得られた剥離物懸濁液220mLに、塩化リチウム粉末5.3gと、酸処理工程により酸処理したアセチレンブラック粉末を剥離物(Ti3Al0.022 MXene)を基準として5質量%量添加した後、振とう機で140rpm 振幅45mmの条件で5h均一撹拌した。アセチレンブラックは、先述したように、10mLの水中に分散した状態で添加した。均一撹拌後、5.3gの水酸化リチウムを純水30mLに溶かした水溶液をあらかじめ24h振とう機で140rpm 振幅45mmの条件で完全に溶解させたアルカリ水溶液を添加し、振とう機で140rpm 振幅45mmの条件で1時間撹拌した。その後、水洗1回、IPA置換を3回行い、風乾し、Ti3Al0.022 MXeneの剥離物とアセチレンブラック粉末からなる複合粒子材料を得た。剥離物とカーボン微小体と共に塩素イオンを生成する物質(本実施例では塩化リチウム)を一緒に混合する本方法をA法と称する。凝集工程における混合物中の剥離物の濃度は13.2mg/mLに相当する。
Hydrophilic acetylene black slurry was dropped onto a hydrophilized Si wafer and observed by SEM. 100 primary particles were arbitrarily observed, and the vertical and horizontal dimensions were measured, and the average primary particle diameter was 33 nm.
・Mixing step To 220 mL of the exfoliated material suspension obtained in the exfoliating process, 5.3 g of lithium chloride powder and acetylene black powder acid-treated in the acid treatment process were added to the exfoliated material (Ti 3 Al 0.02 C 2 MXene) as a reference. After adding 5% by mass, the mixture was uniformly stirred for 5 hours with a shaker at 140 rpm and an amplitude of 45 mm. Acetylene black was added in a state of being dispersed in 10 mL of water as described above. After uniform stirring, an aqueous solution obtained by dissolving 5.3 g of lithium hydroxide in 30 mL of pure water was completely dissolved in advance with a shaker at 140 rpm and an amplitude of 45 mm for 24 hours. was stirred for 1 hour under the conditions of After that, it was washed with water once, replaced with IPA three times, and air-dried to obtain a composite particle material consisting of Ti 3 Al 0.02 C 2 MXene flakes and acetylene black powder. This method of mixing together the exfoliated matter and the carbon microparticles together with a substance that generates chloride ions (lithium chloride in this embodiment) is referred to as method A. The concentration of exfoliate in the mixture in the aggregation step corresponds to 13.2 mg/mL.
 得られた複合粒子材料について、XRD測定した結果を図3に、SEM観察を行った結果を図6に示す。100℃で24h真空乾燥を行った後、窒素を用いたBET法により、比表面積、平均細孔直径、及び平均細孔容量を測定した結果を表2及び図11に示す。更に得られた複合粒子材料についてXRD測定から算出したMXeneの(002)面の層間距離と半価幅を、剥離したMXeneの層間距離と半価幅を合わせて表5に示した。 For the obtained composite particle material, the results of XRD measurement are shown in Fig. 3, and the results of SEM observation are shown in Fig. 6. After vacuum drying at 100° C. for 24 hours, the specific surface area, average pore diameter, and average pore volume were measured by the BET method using nitrogen. Table 2 and FIG. 11 show the results. Further, Table 5 shows the interlayer distance and half width of the (002) plane of MXene calculated from the XRD measurement for the obtained composite particle material together with the interlayer distance and half width of exfoliated MXene.
 更に、得られた複合粒子材料に対し、532nm波長のレーザーを用いたラマン分光分析を行った。レーザーの照射条件としては、複合粒子材料中に含まれる剥離物(MXene)が酸化してアナターゼが析出しない強度とし、100cm-1から2000cm-1の範囲で測定した。 Furthermore, the obtained composite particle material was subjected to Raman spectroscopic analysis using a laser with a wavelength of 532 nm. The laser irradiation conditions were such that exfoliated substances (MXene) contained in the composite particle material were not oxidized to precipitate anatase, and the laser was measured in the range of 100 cm −1 to 2000 cm −1 .
 Ti3Al0.022 MXeneの剥離物のチタニウム原子に吸着した官能基による振動が230~470cm-1(以下、この範囲に出現するピークのうち400cm-1に出現するピークを代表として採用し「Aピーク」と称する)に、カーボン原子に吸着した官能基による振動が580cm-1近傍に現れる。一方、アセチレンブラックについて、SP3混成軌道の炭素が1332cm-1(以下、「Bピーク」と称する)に、SP2混成軌道の炭素が1500~1600cm-1に現れる。 The vibration due to the functional groups adsorbed to the titanium atoms of the exfoliated Ti 3 Al 0.02 C 2 MXene is 230 to 470 cm −1 (hereinafter, the peak appearing at 400 cm −1 among the peaks appearing in this range is adopted as a representative, “ A peak”), the vibration due to the functional groups adsorbed on the carbon atoms appears near 580 cm −1 . On the other hand, for acetylene black, the SP 3 hybrid orbital carbon appears at 1332 cm −1 (hereinafter referred to as “B peak”), and the SP 2 hybrid orbital carbon appears at 1500 to 1600 cm −1 .
 これらのAピークとBピークについてピーク強度を算出した。ピーク強度は、ピーク高さから算出し、B/Aの値を算出した。無作為に抽出した100個の複合粒子材料について分析を行い、B/Aの値を算出し、それらの値の標準偏差を複合粒子材料の相互分散度とした。結果を表3に示す。相互分散度が小さいほど均一に分散されていることを意味する。 The peak intensity was calculated for these A and B peaks. The peak intensity was calculated from the peak height, and the B/A value was calculated. 100 randomly selected composite particle materials were analyzed, the B/A value was calculated, and the standard deviation of these values was defined as the interdispersion degree of the composite particle material. Table 3 shows the results. A smaller interdispersion index means more uniform dispersion.
 得られた複合粒子材料を真空中で100℃ 5時間で処理した後、φ10mmの金型で0.5kg/cm2の圧力で一軸加圧成形し、その後1.0トン/cm2の圧力でCIP処理した圧粉体を用いて、φ0.1mmの銅線を用いた4端子法で測定した表面電気抵抗の結果を表4に示す。
・リチウムイオン電池
 CR-2025タイプのコインセルを作成して電池特性を調べた。実施例1の複合粒子材料を電極活物質、導電補助剤としてのアセチレンブラック、結着剤としてのポリフッ化ビニリデン(PVDF)をN-メチルピロリドン(NMP)中において質量比において、80:10:10で、且つ乳鉢と乳棒を使用して混合して電極合材ペーストを得た。このペーストを集電体としてのCu箔の片面に塗布し、真空中、120℃で24h乾燥した。電解液は、電解質としてのLiPF6を1Mの濃度で溶解した、エチレンカーボネート(EC):ジメチルカーボネート(DMC):ジエチルカーボネート(DEC)=1:1:1(体積比)を用いた。リチウム箔をカウンター電極とした。これらの操作は、全て、Ar雰囲気下(H2Oが0.1ppm未満、O2が0.1ppm未満)で行った。充放電サイクル試験を1Cの条件下で、300サイクル行った。得られた電池特性結果を図4と図5に示した。
(実施例2)
 酸処理したアセチレンブラックの添加量を剥離物(MXene)に対し10質量%とした以外は実施例1と同様にTi3Al0.022 MXeneとアセチレンブラックの複合粒子材料を調製し、本実施例の複合粒子材料とした。実施例1と同様に、SEM観察を行い図7に示す。実施例1と同様に、BET比表面積、平均細孔直径、平均細孔容量を測定し、表2に示す。実施例1と同様に相互分散度を算出し表3に示す。得られた複合粒子材料の表面電気抵抗を実施例1と同様に測定し表4に示す。
(実施例3)
 酸処理したアセチレンブラックの添加量を剥離物(MXene)に対し3質量%とした以外は実施例1と同様にTi3Al0.022 MXeneとアセチレンブラックの複合粒子材料を調製し、本実施例の複合粒子材料とした。実施例1と同様に、BET比表面積、平均細孔直径、平均細孔容量を測定し、表2に示す。実施例1と同様に相互分散度を算出し表3に示す。得られた複合粒子材料の表面電気抵抗を実施例1と同様に測定し表4に示す。
(実施例4)
 実施例1と同様に、剥離物懸濁液と酸処理したアセチレンブラックを準備した。剥離物懸濁液220mLに対して、アセチレンブラックを剥離物の質量を基準として5質量%添加し、振とう機で140rpm 振幅45mmの条件で5h均一撹拌した後、水酸化リチウムを純水30mLに溶かした水溶液を添加し、1h振とう機で140rpm 振幅45mmの条件で均一撹拌した。その後は実施例と同様の方法にて本実施形態の複合粒子材料を調製した。A法のように、剥離物とカーボン微小体と共に塩素イオンを生成する物質を一緒に混合することなく、アルカリ水溶液で凝集させる方法をB法と称する。
The obtained composite particle material was treated in vacuum at 100° C. for 5 hours, then uniaxially pressed in a φ10 mm mold at a pressure of 0.5 kg/cm 2 , and then at a pressure of 1.0 ton/cm 2 . Table 4 shows the results of surface electrical resistance measured by the four-probe method using a copper wire of φ0.1 mm using the CIP-treated green compact.
・Lithium-ion battery A CR-2025 type coin cell was prepared and the battery characteristics were investigated. The composite particle material of Example 1 was used as an electrode active material, acetylene black as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) as a binder in N-methylpyrrolidone (NMP) at a mass ratio of 80:10:10. and mixed using a mortar and pestle to obtain an electrode mixture paste. This paste was applied to one side of a Cu foil as a current collector, and dried in vacuum at 120° C. for 24 hours. The electrolytic solution used was ethylene carbonate (EC):dimethyl carbonate (DMC):diethyl carbonate (DEC)=1:1:1 (volume ratio) in which LiPF 6 was dissolved as an electrolyte at a concentration of 1M. A lithium foil was used as the counter electrode. All these operations were performed under an Ar atmosphere (H 2 O less than 0.1 ppm, O 2 less than 0.1 ppm). A charge-discharge cycle test was performed for 300 cycles under the condition of 1C. The obtained battery characteristic results are shown in FIGS. 4 and 5. FIG.
(Example 2)
A composite particle material of Ti 3 Al 0.02 C 2 MXene and acetylene black was prepared in the same manner as in Example 1, except that the amount of acid-treated acetylene black added was 10% by mass with respect to the exfoliated product (MXene). of the composite particle material. SEM observation was performed in the same manner as in Example 1, and the results are shown in FIG. The BET specific surface area, average pore diameter, and average pore volume were measured in the same manner as in Example 1, and are shown in Table 2. The interdispersion index was calculated in the same manner as in Example 1 and shown in Table 3. The surface electrical resistance of the resulting composite particle material was measured in the same manner as in Example 1 and is shown in Table 4.
(Example 3)
A composite particle material of Ti 3 Al 0.02 C 2 MXene and acetylene black was prepared in the same manner as in Example 1 except that the amount of acid-treated acetylene black added was 3% by mass with respect to the exfoliated product (MXene). of the composite particle material. The BET specific surface area, average pore diameter, and average pore volume were measured in the same manner as in Example 1, and are shown in Table 2. The interdispersion index was calculated in the same manner as in Example 1 and shown in Table 3. The surface electrical resistance of the resulting composite particle material was measured in the same manner as in Example 1 and is shown in Table 4.
(Example 4)
In the same manner as in Example 1, an exfoliate suspension and acid-treated acetylene black were prepared. Acetylene black was added to 220 mL of the exfoliated material suspension at 5% by mass based on the mass of the exfoliated material, and after uniform stirring for 5 hours at 140 rpm and an amplitude of 45 mm with a shaker, lithium hydroxide was added to 30 mL of pure water. The dissolved aqueous solution was added and uniformly stirred for 1 hour with a shaker at 140 rpm and an amplitude of 45 mm. Thereafter, a composite particle material of this embodiment was prepared in the same manner as in Examples. Method B is a method of aggregating with an alkaline aqueous solution without mixing the exfoliated matter and a substance that generates chlorine ions together with the carbon microparticles, as in Method A.
 得られた複合粒子材料のSEM観察を行った結果を図8に示す。実施例1と同様に、BET比表面積、平均細孔直径分布、平均細孔容量を測定した結果を表2及び図11に示す。実施例1と同様に相互分散度を算出した結果を表3に示す。更に得られた粒子材料についてXRD測定から算出したMXeneの(002)面の層間距離と半価幅を表5に示した。
(実施例5)
 実施例1では、凝集工程における混合物中の剥離物の濃度が、13.2mg/mLであるのに対し、15.5mg/mLとした以外は実施例1と同様にTi3Al0.022 MXeneとアセチレンブラックの複合粒子材料を調製し、本実施例の複合粒子材料とした。実施例1と同様に、BET比表面積を測定した結果を図11に示す。実施例1と同様に相互分散度を算出した結果を表3に示す。
(実施例6)
TiC粉末(TI-30-10-0020、レアメタリック社)11.9g、TiN粉末(TN-30-10-0020、レアメタリック社)0.38g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gとした以外は実施例1と同様にMAX相セラミックスとしてのTi3Al(C0.97N0.032を得た。実施例1と同様、酸処理、剥離を行った。実施例1と同様に水中pH7のゼーター電位を測定し表6に示した。実施例1と同様にアセチレンブラックを酸処理し、複合粒子材料を作製し、実施例1と同様にBET比表面積を測定し、表6に示した。表面電気抵抗を表4に示す。
(比較例1)
 実施例1と同様に剥離物懸濁液を作製した。剥離物懸濁液220mLに水酸化リチウムを純水40mLに溶かした水溶液を添加し、1h振とう機で140rpmの条件で撹拌した、混合懸濁液を作製した。実施例1と同様、混合物中の剥離物の濃度を13.2mg/mLとした。水洗1回、IPA置換を3回行い、風乾した。アセチレンブラック凝集粉末を剥離物の質量を基準として10質量%添加した粉末をNMP中で、乳鉢と乳棒で撹拌し、100℃24時間真空乾燥することで、剥離物とアセチレンブラックの複合粒子材料を調製し本比較例の複合粒子材料とした。複合粒子材料のSEM写真を図9に示す。実施例1と同様にして、BET比表面積、平均細孔直径分布、平均細孔容量を測定した結果を表2に示す。相互分散度を表3に示す。表面電気抵抗を表4に示す。実施例1と同様に電池特性を測定した結果を図4に示す。
(比較例2)
 添加するアセチレンブラック粉末について、実施例1で示す酸処理工程を行わずに用いた以外は実施例1と同様の方法で本比較例の複合粒子材料を調製した複合粒子材料のSEM写真を図10に示す。実施例1と同様に、BET比表面積、平均細孔直径、平均細孔容量を測定した結果を表2に示す。相互分散度の測定結果を表3に示す。
(比較例3)
 剥離工程としてビーズミル処理をエタノール中で行った以外は実施例1と同様の方法で本比較例の複合粒子材料を調製した。実施例1と同様に、剥離物の平均厚さ、平均大きさを測定した結果を表1に示す。比表面積、平均細孔直径、平均細孔容量を測定した結果を表2に示す。相互分散度を表3に示す。
(比較例4)
 実施例1では、凝集工程における混合物中の剥離物の濃度が、13.2mg/mLであるのに対し、11.0mg/mLとした以外は実施例1と同様にMXeneとアセチレンブラックの複合粒子材料を調製し、本比較例の複合粒子材料とした。実施例1と同様に、BET比表面積を測定した結果を図11に示す。
(比較例5)
 実施例1では、凝集工程における混合物中の剥離物の濃度が、13.2mg/mLであるのに対し、5.0mg/mLとした以外は実施例1と同様にMXeneとアセチレンブラックの複合粒子材料を調製し、本比較例の複合粒子材料とした。実施例1と同様に、BET比表面積を測定した結果を図11に示す。
(比較例6)
 実施例1では、凝集工程における混合物中の剥離物の濃度が、13.2mg/mLであるのに対し、17.6mg/mLとした以外は実施例1と同様にMXeneとアセチレンブラックの複合粒子材料を調製し、本比較例の複合粒子材料とした。実施例1と同様に、BET比表面積を測定した結果を図11に示す。
(比較例7)
 実施例1では、凝集工程における混合物中の剥離物の濃度が、13.2mg/mLであるのに対し、26.5mg/mLとした以外は実施例1と同様にMXeneとアセチレンブラックの複合粒子材料を調製し、本比較例の複合粒子材料とした。実施例1と同様に、BET比表面積を測定した結果を図11に示す。
(比較例8)
TiC粉末(TI-30-10-0020、レアメタリック社)11.7g、TiN粉末(TN-30-10-0020、レアメタリック社)0.64g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gとした以外は実施例1と同様にMAX相セラミックスとしてのTi3Al(C0.95N0.052を得た。実施例1と同様、酸処理、剥離を行った。実施例1と同様にアセチレンブラックを酸処理し、複合粒子材料を作製し、実施例1と同様にBET比表面積を測定し、水中pH7におけるMXeneのゼーター電位を合わせて表6に示した。
(比較例9)
TiC粉末(TI-30-10-0020、レアメタリック社)11.1g、TiN粉末(TN-30-10-0020、レアメタリック社)1.3g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gとした以外は実施例1と同様にMAX相セラミックスとしてのTi3Al(C0.90N0.102を得た。実施例1と同様、酸処理、剥離を行った。実施例1と同様にアセチレンブラックを酸処理し、複合粒子材料を作製し、実施例1と同様にBET比表面積を測定し、水中pH7におけるMXeneのゼーター電位を合わせて表6に示した。
(比較例10)
TiC粉末(TI-30-10-0020、レアメタリック社)10.4g、TiN粉末(TN-30-10-0020、レアメタリック社)1.9g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gとした以外は実施例1と同様にMAX相セラミックスとしてのTi3Al(C0.85N0.152を得た。実施例1と同様、酸処理、剥離を行った。実施例1と同様にアセチレンブラックを酸処理し、複合粒子材料を作製し、実施例1と同様にBET比表面積を測定し、水中pH7におけるMXeneのゼーター電位を合わせて表6に示した。
(比較例11)
TiC粉末(TI-30-10-0020、レアメタリック社)9.2g、TiN粉末(TN-30-10-0020、レアメタリック社)3.2g、Ti粉末(TIE07PB 3N、高純度化学)4.9g、Al粉末(ALE15PB 3NG、高純度化学)2.8gとした以外は実施例1と同様にMAX相セラミックスとしてのTi3Al(C0.75N0.252を得た。実施例1と同様、酸処理、剥離を行った。実施例1と同様にアセチレンブラックを酸処理し、複合粒子材料を作製し、実施例1と同様にBET比表面積を測定し、MXeneのゼーター電位を合わせて表6に示した。
FIG. 8 shows the result of SEM observation of the obtained composite particle material. Table 2 and FIG. 11 show the results of measuring the BET specific surface area, average pore diameter distribution, and average pore volume in the same manner as in Example 1. Table 3 shows the results of calculating the degree of interdispersion in the same manner as in Example 1. Further, Table 5 shows the interlayer distance and half width of the MXene (002) plane calculated from the XRD measurement for the obtained particle material.
(Example 5)
In Example 1, Ti 3 Al 0.02 C 2 MXene was used in the same manner as in Example 1 except that the concentration of exfoliated substances in the mixture in the aggregation step was 13.2 mg/mL, whereas it was 15.5 mg/mL. and acetylene black were prepared as the composite particle material of this example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG. Table 3 shows the results of calculating the degree of interdispersion in the same manner as in Example 1.
(Example 6)
TiC powder (TI-30-10-0020, Rare Metallic) 11.9 g, TiN powder (TN-30-10-0020, Rare Metallic) 0.38 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.97 N 0.03 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1, except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. The zeta potential at pH 7 in water was measured in the same manner as in Example 1 and is shown in Table 6. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1. Table 6 shows the results. Table 4 shows the surface electrical resistance.
(Comparative example 1)
Exfoliate suspension was prepared in the same manner as in Example 1. An aqueous solution prepared by dissolving lithium hydroxide in 40 mL of pure water was added to 220 mL of the exfoliated material suspension, and the mixture was stirred for 1 hour at 140 rpm with a shaker to prepare a mixed suspension. As in Example 1, the exfoliate concentration in the mixture was 13.2 mg/mL. It was washed with water once, replaced with IPA three times, and air-dried. A powder obtained by adding 10% by mass of acetylene black agglomerated powder based on the mass of the exfoliated material was stirred in NMP with a mortar and pestle, and vacuum-dried at 100 ° C. for 24 hours to obtain a composite particle material of the exfoliated material and acetylene black. It was prepared as a composite particle material of this comparative example. A SEM photograph of the composite particulate material is shown in FIG. Table 2 shows the results of measuring the BET specific surface area, average pore diameter distribution, and average pore volume in the same manner as in Example 1. Table 3 shows the interdispersion index. Table 4 shows the surface electrical resistance. FIG. 4 shows the results of measuring the battery characteristics in the same manner as in Example 1.
(Comparative example 2)
FIG. 10 is an SEM photograph of a composite particle material of this comparative example prepared in the same manner as in Example 1 except that the acetylene black powder to be added was used without performing the acid treatment step shown in Example 1. shown in Table 2 shows the results of measuring the BET specific surface area, average pore diameter, and average pore volume in the same manner as in Example 1. Table 3 shows the measurement results of the degree of interdispersion.
(Comparative Example 3)
A composite particulate material of this comparative example was prepared in the same manner as in Example 1, except that the bead mill treatment was performed in ethanol as the peeling step. Table 1 shows the results of measuring the average thickness and average size of the exfoliated material in the same manner as in Example 1. Table 2 shows the results of measuring the specific surface area, average pore diameter, and average pore volume. Table 3 shows the interdispersion index.
(Comparative Example 4)
In Example 1, the concentration of exfoliated matter in the mixture in the aggregation step was 13.2 mg/mL, while the concentration was 11.0 mg/mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG.
(Comparative Example 5)
In Example 1, the concentration of exfoliated substances in the mixture in the aggregation step was 13.2 mg / mL, while the concentration was 5.0 mg / mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG.
(Comparative Example 6)
In Example 1, the concentration of exfoliated matter in the mixture in the aggregation step was 13.2 mg / mL, while it was 17.6 mg / mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG.
(Comparative Example 7)
In Example 1, the concentration of exfoliated substances in the mixture in the aggregation step was 13.2 mg / mL, while the concentration was 26.5 mg / mL. A material was prepared and used as the composite particle material of this comparative example. The results of measuring the BET specific surface area in the same manner as in Example 1 are shown in FIG.
(Comparative Example 8)
TiC powder (TI-30-10-0020, Rare Metallic) 11.7 g, TiN powder (TN-30-10-0020, Rare Metallic) 0.64 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.95 N 0.05 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1, except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1.
(Comparative Example 9)
TiC powder (TI-30-10-0020, Rare Metallic) 11.1 g, TiN powder (TN-30-10-0020, Rare Metallic) 1.3 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.90 N 0.10 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1 except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was used and 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1.
(Comparative Example 10)
TiC powder (TI-30-10-0020, Rare Metallic) 10.4 g, TiN powder (TN-30-10-0020, Rare Metallic) 1.9 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.85 N 0.15 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1 except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was used and 2.8 g of Al powder. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material, and the BET specific surface area was measured in the same manner as in Example 1.
(Comparative Example 11)
TiC powder (TI-30-10-0020, Rare Metallic) 9.2 g, TiN powder (TN-30-10-0020, Rare Metallic) 3.2 g, Ti powder (TIE07PB 3N, Kojundo Chemical)4. Ti 3 Al(C 0.75 N 0.25 ) 2 as MAX phase ceramics was obtained in the same manner as in Example 1, except that 9 g of Al powder (ALE15PB 3NG, Kojundo Chemical) was 2.8 g. Acid treatment and peeling were performed in the same manner as in Example 1. Acetylene black was acid-treated in the same manner as in Example 1 to prepare a composite particle material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(結果)
 表1より明らかなように、剥離工程において、水を含まないエタノールのみを分散媒として行うことにより、剥離物の厚みが大きくなり、大きさが小さくなることが分かった。水の量が増えるにつれて剥離物の厚みが小さく、大きさを大きくすることができることが分かった。
Figure JPOXMLDOC01-appb-T000006
(result)
As is clear from Table 1, it was found that the thickness of the peeled material increased and the size of the peeled material decreased when only water-free ethanol was used as the dispersion medium in the peeling process. It was found that as the amount of water increased, the exfoliate thickness decreased and the size increased.
 表2及び表3及び図6から図10から明らかなように、硫酸と硝酸の混酸で酸処理して親水性としたカーボン微小体(アセチレンブラック)と厚みの小さな、かつ適度な大きさにしたMXene剥離物の複合粒子材料とすることで、比表面積の大きな、かつ相互分散度の小さな(分散度に優れる)複合粒子材料となることが分かった。さらにカーボン微小体の添加量を変化させることにより相互分散度及び比表面積が変化することが分かった。 As is clear from Tables 2 and 3 and FIGS. 6 to 10, carbon microparticles (acetylene black) made hydrophilic by acid treatment with a mixed acid of sulfuric acid and nitric acid and having a small thickness and an appropriate size. It was found that a composite particle material having a large specific surface area and a small interdispersion degree (excellent dispersion degree) can be obtained by using the MXene exfoliate as a composite particle material. Furthermore, it was found that interdispersion degree and specific surface area were changed by changing the amount of carbon particles added.
 MXeneとカーボン微小体を均一混合させる工程において、塩素イオンをインターカレーションさせるA法は、インターカレーションさせないB法に比べて平均細孔直径及び細孔容量が小さく、比表面積が大きいことが分かった。更に、XRDプロファイルにおいて、A法はB法よりMXeneの(002)面の層間距離がより大きくなることが分かった(表5に示す)。なお、図12に層間距離の測定に関する参考図を示す。MXeneの結晶構造は、図12に示すMAX相からA相を除いた結晶構造をもつ。 In the process of uniformly mixing MXene and carbon particles, Method A, which intercalates chlorine ions, has a smaller average pore diameter and pore volume, and a larger specific surface area than Method B, which does not. rice field. Furthermore, in the XRD profile, it was found that the interlayer distance of the (002) plane of MXene was larger in the A method than in the B method (shown in Table 5). In addition, FIG. 12 shows a reference diagram regarding the measurement of the interlayer distance. MXene has a crystal structure obtained by removing the A phase from the MAX phase shown in FIG.
 これはMXeneの(002)面の層間距離から、MAX相の(002)面の層間距離である0.945nmを差し引いた距離を間隙の層間距離と定義すると、間隙の層間距離がより大きくなったことを示唆し、より大きなイオンを挿入 脱離可能であることを意味する。 If the interlayer distance of the (002) plane of MXene minus 0.945 nm, which is the interlayer distance of the (002) plane of the MAX phase, is defined as the interlayer distance of the gap, the interlayer distance of the gap becomes larger. This suggests that larger ions can be inserted and detached.
 カーボン微小体の量が3質量%以上であると、比表面積が増加し、10質量%より以下になると相互分散度が向上できた。従って、MXeneとカーボン微小体との質量を基準として、カーボン微小体の割合は、3~10質量%よりであることが好ましいことが分かった。この場合に、相互分散度は、カーボン微小体が3質量%の場合に1.50、10質量%の場合に7.00であり、相互分散度は、1.50以上7.00以下であることが好ましいことが分かった。 When the amount of fine carbon particles was 3% by mass or more, the specific surface area increased, and when the amount was 10% by mass or less, the interdispersion degree could be improved. Therefore, it was found that the ratio of carbon microparticles is preferably 3 to 10% by mass based on the mass of MXene and carbon microparticles. In this case, the mutual dispersion degree is 1.50 when the carbon fine particles are 3% by mass and 7.00 when the carbon fine particles are 10% by mass, and the mutual dispersion degree is 1.50 or more and 7.00 or less. was found to be preferable.
 比表面積が75m2/g以上となると十分な電池特性を示すことが分かった。なお、実施例において最も高い比表面積を示したのは110m2/g程度の複合粒子材料であった。 It was found that sufficient battery characteristics were exhibited when the specific surface area was 75 m 2 /g or more. In the examples, the composite particle material with a specific surface area of about 110 m 2 /g showed the highest specific surface area.
 比表面積が75m2/g以上で、かつ優れた相互分散度を示 Ti3Al0.02C2 MXeneと導電性カーボンブラック の複合粒子材料を作製する方法として2つの方法(A法とB法)を比較する。A法でTi3Al0.02C2 MXeneとカーボンブラックの複合粒子材料を作製すると、平均細孔直径が7.0~15.0nm、平均細孔容量が0.10~0.30mL/gが得られ、B法でTi3Al0.022 MXeneと導電性カーボンブラックの複合粒子材料を作製すると、平均細孔直径が15.0~20.0nm、平均細孔容量が0.30~0.50mL/gとなり、A法はB法に比べ平均細孔直径、平均細孔容量が小さくなることが分かった。 Two methods (Method A and Method B) are used to produce a composite particle material of Ti 3 Al 0.02 C 2 MXene and conductive carbon black having a specific surface area of 75 m 2 /g or more and an excellent interdispersion degree. compare. When a composite particle material of Ti 3 Al 0.02 C 2 MXene and carbon black is produced by method A, an average pore diameter of 7.0 to 15.0 nm and an average pore volume of 0.10 to 0.30 mL/g are obtained. When a composite particle material of Ti 3 Al 0.02 C 2 MXene and conductive carbon black is produced by method B, the average pore diameter is 15.0 to 20.0 nm and the average pore volume is 0.30 to 0.50 mL. /g, and it was found that the average pore diameter and average pore volume of the A method are smaller than those of the B method.
 Ti3Al0.02C2 MXene、 Ti3Al0.02(C0.97N0.03MXeneの水中 pH7.0におけるゼーター電位はマイナスであり、その絶対値はそれぞれ28.9、29.3である。Ti3Al0.02(C0.95N0.05MXene、Ti3Al0.02(C0.90N0.10MXene、Ti3Al0.02(C0.85N0.152 MXene、Ti3Al0.02(C0.75N0.25MXeneの水中 pH7.0におけるゼーター電位の絶対値は、それぞれ31.5、32.1、32.4、33.1である。後者は、凝集しにくいことを意味している。酸処理したアセチレンブラックの水中 pH7.0のゼーター電位はマイナスでありCOOH基やCO基が解離して親水性になることが分かった。そのため、MXene 水懸濁液と酸処理したアセチレンブラックの水懸濁液を撹拌することにより均一混合することが可能となり、アルカリ水溶液を添加すると均一分散状態を維持されたまま、凝集体が得られることが分かった。 The zeta potentials of Ti3Al0.02C2MXene and Ti3Al0.02 ( C0.97N0.03 ) 2MXene at pH 7.0 in water are negative , and their absolute values are 28.9 and 29.3, respectively. Ti3Al0.02 ( C0.95N0.05 ) 2MXene , Ti3Al0.02 ( C0.90N0.10 ) 2MXene , Ti3Al0.02 ( C0.85N0.15 ) 2MXene , Ti3Al0.02 ( C0.75N0.25 ) 2 The absolute values of the zeta potential of MXene in water at pH 7.0 are 31.5, 32.1, 32.4 and 33.1, respectively. The latter means less likely to agglomerate. It was found that acid-treated acetylene black has negative zeta potential at pH 7.0 in water and becomes hydrophilic due to the dissociation of COOH and CO groups. Therefore, by stirring the aqueous suspension of MXene and the aqueous suspension of acid-treated acetylene black, it becomes possible to uniformly mix them, and when an alkaline aqueous solution is added, aggregates can be obtained while maintaining a uniformly dispersed state. I found out.
 均一混合した複合粒子材料と、従来手法である複合粒子材料について、一軸加圧後にCIP処理したペレットを用いて、表面電気抵抗を測定した所、均一混合した複合粒子材料の表面電気抵抗が小さいことが分かった(表4)。二次電池の負極活物質として利用する際に効果的に電子を集電体に移動させることが可能である。 When the surface electrical resistance of the uniformly mixed composite particle material and the conventional composite particle material was measured using pellets that were subjected to CIP treatment after uniaxial pressing, the surface electrical resistance of the uniformly mixed composite particle material was small. was found (Table 4). When used as a negative electrode active material for a secondary battery, it is possible to effectively transfer electrons to the current collector.
 MXeneナノシートを単層レベルまで剥離し、その大きさを適度に小さくすることにより、更に親水化処理したアセチレンブラックとの複合粒子材料とすることによって、比表面積を大きくし、アセチレンブラックを均一に分散配置させることにより、イオン拡散性に優れた、電子をスムーズに集電体に移動可能な、理想的な二次電池(蓄電池)の負極活物質に適する複合粒子材料を作製するに至った。 By exfoliating the MXene nanosheets to the monolayer level and reducing the size to an appropriate size, a composite particle material with hydrophilized acetylene black is formed to increase the specific surface area and uniformly disperse acetylene black. By arranging them, the present inventors have produced a composite particle material that is excellent in ion diffusibility and capable of smoothly transferring electrons to a current collector, and which is ideally suited as a negative electrode active material for a secondary battery (storage battery).

Claims (11)

  1.  90~97質量部のシート状のTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneと、3~10質量部の微小体とを有し、
     比表面積が75m2/g以上である複合粒子材料。
    90 to 97 parts by mass of sheet-like Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) MXene, and 3 to 10 parts by mass and a minute body of
    A composite particle material having a specific surface area of 75 m 2 /g or more.
  2.  前記微小体は、カーボン微小体である請求項1に記載の複合粒子材料。 The composite particle material according to claim 1, wherein the microscopic bodies are carbon microscopic bodies.
  3.  532nm波長のレーザーを用いたラマン分光分析において400cm-1のピーク高さAと1332cm-1のピーク高さBの比(B/A)の標準偏差である相互分散度が1.50から7.00である請求項1に記載の複合粒子材料。 In Raman spectroscopic analysis using a laser with a wavelength of 532 nm, the interdispersion index, which is the standard deviation of the ratio (B/A) of the peak height A at 400 cm -1 and the peak height B at 1332 cm -1 , is 1.50 to 7.0. 00. The composite particulate material of claim 1 .
  4.  平均細孔直径が7.0~20.0nm、細孔容量が0.10~0.50mL/gである請求項1~3のうちの何れか1項に記載の複合粒子材料。 The composite particle material according to any one of claims 1 to 3, which has an average pore diameter of 7.0 to 20.0 nm and a pore volume of 0.10 to 0.50 mL/g.
  5.  前記Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超)  MXeneは、平均厚さが1.0~3.5nm、前記シートの拡がり方向の平均の大きさが0.5~1.0μmであり、
     前記微小体の一次粒子径が30~50nmである請求項1~4のうちの何れか1項に記載の複合粒子材料。
    The Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) MXene has an average thickness of 1.0 to 3.5 nm, The average size of the sheet in the spreading direction is 0.5 to 1.0 μm,
    The composite particle material according to any one of claims 1 to 4, wherein the fine particles have a primary particle diameter of 30 to 50 nm.
  6.  前記Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneの結晶構造において、(002)面の層間距離が1.400nmから1.700nm、半価幅が0.9度から1.50度である請求項1~5のうちの何れか1項に記載の複合粒子材料。 In the crystal structure of the Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) MXene, the interlayer distance of the (002) plane is 1.0. 6. The composite particle material according to any one of claims 1 to 5, wherein the particle width is 400 nm to 1.700 nm and the half width is 0.9 degrees to 1.50 degrees.
  7. 下記表面電気抵抗が1.0Ω/□から100.0Ω/□である請求項1~6のうちの何れか1項に記載の複合粒子材料。
    (表面電気抵抗)
     複合粒子材料を真空中で100℃ 5時間 で処理した後、φ10mmの金型で0.5kg/cm2の圧力で一軸加圧成形し、その後1.0トン/cm2の圧力でCIP処理した圧粉体を用いて、φ0.1mmの銅線を用いた4端子法で測定した表面の電気抵抗を表面電気抵抗とする。
    7. The composite particle material according to any one of claims 1 to 6, wherein the following surface electrical resistance is from 1.0 Ω/square to 100.0 Ω/square.
    (Surface electrical resistance)
    After the composite particle material was treated in vacuum at 100°C for 5 hours, it was uniaxially pressed with a φ10 mm mold at a pressure of 0.5 kg/cm 2 and then subjected to CIP treatment at a pressure of 1.0 ton/cm 2 . The electrical resistance of the surface measured by the four-probe method using a copper wire of φ0.1 mm is defined as the surface electrical resistance.
  8.  前記微小体は、ゼーター電位が-25.0mVから-30.0mVであるTi3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneと、ゼーター電位が-20.0mVから-25.0mVである請求項1~7のうちの何れか1項に記載の複合粒子材料。
     前記ゼーター電位は、水中においてpH7.0で測定する。
    The fine particles are Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is 0.02 Super) MXene and the composite particulate material according to any one of claims 1 to 7, wherein the zeta potential is from -20.0 mV to -25.0 mV.
    The zeta potential is measured in water at pH 7.0.
  9.  請求項1~8のうちの何れか1項に記載の複合粒子材料を負極活物質に有することを特徴とする負極。 A negative electrode comprising the composite particle material according to any one of claims 1 to 8 as a negative electrode active material.
  10.  Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXeneを剥離して剥離物を形成する剥離工程と、
     硫酸及び硝酸の混酸水溶液中に、原料カーボン微小体を70℃以上に10分以上処理してカーボン微小体を得る酸処理工程と、
     前記剥離物及びカーボン微小体が90:10~97:3の質量比、且つ、前記剥離物が11.5-17.0mg/mLの濃度で第2分散媒に分散した混合物を得る混合工程と、
     100rpmから300rpmの振とう機で塩化リチウム水溶液を添加してインターカレーションさせる工程と、
     前記混合物の液性をアルカリ性にして凝集させて、前記Ti3Ala(C(10-x)Nx2(0≦x≦0.03、aは0.02超) MXene及び前記カーボン微小体の複合粒子材料を得る凝集工程と、
     を有する複合粒子材料の製造方法。
    a stripping step of stripping Ti3Ala (C( 1.0 -x ) Nx) 2 (0≤x≤0.03, a is greater than 0.02) MXene to form a stripped product;
    an acid treatment step of treating raw carbon microparticles in a mixed acid aqueous solution of sulfuric acid and nitric acid at 70° C. or higher for 10 minutes or longer to obtain carbon microparticles;
    a mixing step of obtaining a mixture in which the exfoliated matter and the carbon microparticles are dispersed in a second dispersion medium at a mass ratio of 90:10 to 97:3 and the exfoliated matter has a concentration of 11.5 to 17.0 mg/mL; ,
    adding an aqueous solution of lithium chloride with a shaker at 100 rpm to 300 rpm for intercalation;
    The liquid of the mixture is made alkaline and aggregated to form the Ti 3 Al a (C( 1.0 -x )N x ) 2 (0≦x≦0.03, a is greater than 0.02) MXene and the an agglomeration step of obtaining a composite particle material of fine carbon particles;
    A method for producing a composite particulate material having
  11.  前記剥離工程は、前記MXeneを質量基準で99%以上前記剥離物になるまで行う工程である請求項10記載の複合粒子材料の製造方法。 11. The method for producing a composite particulate material according to claim 10, wherein the peeling step is a step in which 99% or more of the MXene on a mass basis becomes the peeled material.
PCT/JP2021/018296 2021-05-13 2021-05-13 Composite powder material, method for producing same, and electrode material WO2022239209A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023520701A JPWO2022239209A1 (en) 2021-05-13 2021-05-13
PCT/JP2021/018296 WO2022239209A1 (en) 2021-05-13 2021-05-13 Composite powder material, method for producing same, and electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018296 WO2022239209A1 (en) 2021-05-13 2021-05-13 Composite powder material, method for producing same, and electrode material

Publications (1)

Publication Number Publication Date
WO2022239209A1 true WO2022239209A1 (en) 2022-11-17

Family

ID=84028991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018296 WO2022239209A1 (en) 2021-05-13 2021-05-13 Composite powder material, method for producing same, and electrode material

Country Status (2)

Country Link
JP (1) JPWO2022239209A1 (en)
WO (1) WO2022239209A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162130A1 (en) * 2011-06-21 2014-06-12 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
WO2020136865A1 (en) * 2018-12-28 2020-07-02 株式会社アドマテックス Mxene particulate materials, method for producing these particulate materials, and secondary battery
WO2020136864A1 (en) * 2018-12-28 2020-07-02 株式会社アドマテックス Mxene particulate material, slurry, secondary battery, transparent electrode, and method for producing mxene particulate material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162130A1 (en) * 2011-06-21 2014-06-12 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
WO2020136865A1 (en) * 2018-12-28 2020-07-02 株式会社アドマテックス Mxene particulate materials, method for producing these particulate materials, and secondary battery
WO2020136864A1 (en) * 2018-12-28 2020-07-02 株式会社アドマテックス Mxene particulate material, slurry, secondary battery, transparent electrode, and method for producing mxene particulate material

Also Published As

Publication number Publication date
JPWO2022239209A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US10981835B2 (en) “MXene” particulate material, slurry, secondary battery, transparent electrode and production process for “MXene” particulate material
CN107925072B (en) Anode material containing silicon particles for lithium ion batteries
JP7075346B2 (en) Manufacture of Si / C composite particles
JP6199491B2 (en) Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries
KR102154947B1 (en) MXene particulate material, manufacturing method of the particulate material, and secondary battery
JP2020507547A (en) Core-shell composite particles for anode material of lithium ion battery
CN106133962B (en) Composite graphite particles for nonaqueous secondary battery negative electrode, active material for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
US11217792B2 (en) Graphene-enabled metal fluoride and metal chloride cathode active materials for lithium batteries
US11223035B2 (en) Graphene-enabled niobium-based composite metal oxide as an anode active material for a lithium-ion battery
KR101465385B1 (en) A micron sized anode active material containing titanium dioxide nanoparticles and method for the preparation thereof
JP6696632B1 (en) Graphene dispersion, method for producing the same, and electrode for secondary battery
CN116368641A (en) Silicon nano composite structure powder for negative electrode material and preparation method thereof
TW202226652A (en) Porous silicon-carbon composite, preparation method thereof, and negative electrode active material comprising same
WO2022239209A1 (en) Composite powder material, method for producing same, and electrode material
WO2023089739A1 (en) Composite particle material, method for producing same, and electrode
KR20190047367A (en) Porous Silicon-Nano Carbon-Multilayer Graphene Composite Using Multi-Layer Graphene and Metal Alloy Powder and Manufacturing Thereof
WO2022239210A1 (en) Particle material composed of novel mxene nanosheets, dispersion containing said particle material, and method for producing said particle material
WO2022186154A1 (en) Particles, method for producing same, negative electrode active material comprising same, and battery containing same
TW202349768A (en) Silicon-carbon mixture, preparation method thereof, and negative electrode active material and lithium secondary battery comprising the same
CN115485881A (en) Powder for use in negative electrode of battery and battery comprising such powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520701

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941941

Country of ref document: EP

Kind code of ref document: A1